1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       unsigned Size = VT.getSizeInBits().getKnownMinValue();
116       assert(Size <= 512 && isPowerOf2_32(Size));
117       const TargetRegisterClass *RC;
118       if (Size <= 64)
119         RC = &RISCV::VRRegClass;
120       else if (Size == 128)
121         RC = &RISCV::VRM2RegClass;
122       else if (Size == 256)
123         RC = &RISCV::VRM4RegClass;
124       else
125         RC = &RISCV::VRM8RegClass;
126 
127       addRegisterClass(VT, RC);
128     };
129 
130     for (MVT VT : BoolVecVTs)
131       addRegClassForRVV(VT);
132     for (MVT VT : IntVecVTs) {
133       if (VT.getVectorElementType() == MVT::i64 &&
134           !Subtarget.hasVInstructionsI64())
135         continue;
136       addRegClassForRVV(VT);
137     }
138 
139     if (Subtarget.hasVInstructionsF16())
140       for (MVT VT : F16VecVTs)
141         addRegClassForRVV(VT);
142 
143     if (Subtarget.hasVInstructionsF32())
144       for (MVT VT : F32VecVTs)
145         addRegClassForRVV(VT);
146 
147     if (Subtarget.hasVInstructionsF64())
148       for (MVT VT : F64VecVTs)
149         addRegClassForRVV(VT);
150 
151     if (Subtarget.useRVVForFixedLengthVectors()) {
152       auto addRegClassForFixedVectors = [this](MVT VT) {
153         MVT ContainerVT = getContainerForFixedLengthVector(VT);
154         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
155         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
156         addRegisterClass(VT, TRI.getRegClass(RCID));
157       };
158       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
159         if (useRVVForFixedLengthVectorVT(VT))
160           addRegClassForFixedVectors(VT);
161 
162       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
163         if (useRVVForFixedLengthVectorVT(VT))
164           addRegClassForFixedVectors(VT);
165     }
166   }
167 
168   // Compute derived properties from the register classes.
169   computeRegisterProperties(STI.getRegisterInfo());
170 
171   setStackPointerRegisterToSaveRestore(RISCV::X2);
172 
173   setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, XLenVT,
174                    MVT::i1, Promote);
175 
176   // TODO: add all necessary setOperationAction calls.
177   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
178 
179   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
180   setOperationAction(ISD::BR_CC, XLenVT, Expand);
181   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
182   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
183 
184   setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand);
185 
186   setOperationAction(ISD::VASTART, MVT::Other, Custom);
187   setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand);
188 
189   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
190   if (!Subtarget.hasStdExtZbb())
191     setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16}, Expand);
192 
193   if (Subtarget.is64Bit()) {
194     setOperationAction({ISD::ADD, ISD::SUB, ISD::SHL, ISD::SRA, ISD::SRL},
195                        MVT::i32, Custom);
196 
197     setOperationAction({ISD::UADDO, ISD::USUBO, ISD::UADDSAT, ISD::USUBSAT},
198                        MVT::i32, Custom);
199   } else {
200     setLibcallName(
201         {RTLIB::SHL_I128, RTLIB::SRL_I128, RTLIB::SRA_I128, RTLIB::MUL_I128},
202         nullptr);
203     setLibcallName(RTLIB::MULO_I64, nullptr);
204   }
205 
206   if (!Subtarget.hasStdExtM()) {
207     setOperationAction({ISD::MUL, ISD::MULHS, ISD::MULHU, ISD::SDIV, ISD::UDIV,
208                         ISD::SREM, ISD::UREM},
209                        XLenVT, Expand);
210   } else {
211     if (Subtarget.is64Bit()) {
212       setOperationAction(ISD::MUL, {MVT::i32, MVT::i128}, Custom);
213 
214       setOperationAction({ISD::SDIV, ISD::UDIV, ISD::UREM},
215                          {MVT::i8, MVT::i16, MVT::i32}, Custom);
216     } else {
217       setOperationAction(ISD::MUL, MVT::i64, Custom);
218     }
219   }
220 
221   setOperationAction(
222       {ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, XLenVT,
223       Expand);
224 
225   setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, XLenVT,
226                      Custom);
227 
228   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
229       Subtarget.hasStdExtZbkb()) {
230     if (Subtarget.is64Bit())
231       setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom);
232   } else {
233     setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Expand);
234   }
235 
236   if (Subtarget.hasStdExtZbp()) {
237     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
238     // more combining.
239     setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, XLenVT, Custom);
240 
241     // BSWAP i8 doesn't exist.
242     setOperationAction(ISD::BITREVERSE, MVT::i8, Custom);
243 
244     setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i16, Custom);
245 
246     if (Subtarget.is64Bit())
247       setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i32, Custom);
248   } else {
249     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
250     // pattern match it directly in isel.
251     setOperationAction(ISD::BSWAP, XLenVT,
252                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
253                            ? Legal
254                            : Expand);
255     // Zbkb can use rev8+brev8 to implement bitreverse.
256     setOperationAction(ISD::BITREVERSE, XLenVT,
257                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
258   }
259 
260   if (Subtarget.hasStdExtZbb()) {
261     setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, XLenVT,
262                        Legal);
263 
264     if (Subtarget.is64Bit())
265       setOperationAction(
266           {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF},
267           MVT::i32, Custom);
268   } else {
269     setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP}, XLenVT, Expand);
270 
271     if (Subtarget.is64Bit())
272       setOperationAction(ISD::ABS, MVT::i32, Custom);
273   }
274 
275   if (Subtarget.hasStdExtZbt()) {
276     setOperationAction({ISD::FSHL, ISD::FSHR}, XLenVT, Custom);
277     setOperationAction(ISD::SELECT, XLenVT, Legal);
278 
279     if (Subtarget.is64Bit())
280       setOperationAction({ISD::FSHL, ISD::FSHR}, MVT::i32, Custom);
281   } else {
282     setOperationAction(ISD::SELECT, XLenVT, Custom);
283   }
284 
285   static constexpr ISD::NodeType FPLegalNodeTypes[] = {
286       ISD::FMINNUM,        ISD::FMAXNUM,       ISD::LRINT,
287       ISD::LLRINT,         ISD::LROUND,        ISD::LLROUND,
288       ISD::STRICT_LRINT,   ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
289       ISD::STRICT_LLROUND, ISD::STRICT_FMA,    ISD::STRICT_FADD,
290       ISD::STRICT_FSUB,    ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
291       ISD::STRICT_FSQRT,   ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
292 
293   static const ISD::CondCode FPCCToExpand[] = {
294       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
295       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
296       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
297 
298   static const ISD::NodeType FPOpToExpand[] = {
299       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
300       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
301 
302   if (Subtarget.hasStdExtZfh())
303     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
304 
305   if (Subtarget.hasStdExtZfh()) {
306     for (auto NT : FPLegalNodeTypes)
307       setOperationAction(NT, MVT::f16, Legal);
308     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
309     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
310     for (auto CC : FPCCToExpand)
311       setCondCodeAction(CC, MVT::f16, Expand);
312     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
313     setOperationAction(ISD::SELECT, MVT::f16, Custom);
314     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
315 
316     setOperationAction({ISD::FREM, ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT,
317                         ISD::FRINT, ISD::FROUND, ISD::FROUNDEVEN, ISD::FTRUNC,
318                         ISD::FPOW, ISD::FPOWI, ISD::FCOS, ISD::FSIN,
319                         ISD::FSINCOS, ISD::FEXP, ISD::FEXP2, ISD::FLOG,
320                         ISD::FLOG2, ISD::FLOG10},
321                        MVT::f16, Promote);
322 
323     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
324     // complete support for all operations in LegalizeDAG.
325 
326     // We need to custom promote this.
327     if (Subtarget.is64Bit())
328       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
329   }
330 
331   if (Subtarget.hasStdExtF()) {
332     for (auto NT : FPLegalNodeTypes)
333       setOperationAction(NT, MVT::f32, Legal);
334     for (auto CC : FPCCToExpand)
335       setCondCodeAction(CC, MVT::f32, Expand);
336     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
337     setOperationAction(ISD::SELECT, MVT::f32, Custom);
338     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
339     for (auto Op : FPOpToExpand)
340       setOperationAction(Op, MVT::f32, Expand);
341     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
342     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
343   }
344 
345   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
346     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
347 
348   if (Subtarget.hasStdExtD()) {
349     for (auto NT : FPLegalNodeTypes)
350       setOperationAction(NT, MVT::f64, Legal);
351     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
352     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
353     for (auto CC : FPCCToExpand)
354       setCondCodeAction(CC, MVT::f64, Expand);
355     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
356     setOperationAction(ISD::SELECT, MVT::f64, Custom);
357     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
358     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
359     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
360     for (auto Op : FPOpToExpand)
361       setOperationAction(Op, MVT::f64, Expand);
362     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
363     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
364   }
365 
366   if (Subtarget.is64Bit())
367     setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT,
368                         ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT},
369                        MVT::i32, Custom);
370 
371   if (Subtarget.hasStdExtF()) {
372     setOperationAction({ISD::FP_TO_UINT_SAT, ISD::FP_TO_SINT_SAT}, XLenVT,
373                        Custom);
374 
375     setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT,
376                         ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP},
377                        XLenVT, Legal);
378 
379     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
380     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
381   }
382 
383   setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool,
384                       ISD::JumpTable},
385                      XLenVT, Custom);
386 
387   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
388 
389   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
390   // Unfortunately this can't be determined just from the ISA naming string.
391   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
392                      Subtarget.is64Bit() ? Legal : Custom);
393 
394   setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Legal);
395   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
396   if (Subtarget.is64Bit())
397     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
398 
399   if (Subtarget.hasStdExtA()) {
400     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
401     setMinCmpXchgSizeInBits(32);
402   } else {
403     setMaxAtomicSizeInBitsSupported(0);
404   }
405 
406   setBooleanContents(ZeroOrOneBooleanContent);
407 
408   if (Subtarget.hasVInstructions()) {
409     setBooleanVectorContents(ZeroOrOneBooleanContent);
410 
411     setOperationAction(ISD::VSCALE, XLenVT, Custom);
412 
413     // RVV intrinsics may have illegal operands.
414     // We also need to custom legalize vmv.x.s.
415     setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
416                        {MVT::i8, MVT::i16}, Custom);
417     if (Subtarget.is64Bit())
418       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
419     else
420       setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
421                          MVT::i64, Custom);
422 
423     setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID},
424                        MVT::Other, Custom);
425 
426     static const unsigned IntegerVPOps[] = {
427         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
428         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
429         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
430         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
431         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
432         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
433         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
434         ISD::VP_MERGE,       ISD::VP_SELECT,      ISD::VP_FPTOSI,
435         ISD::VP_FPTOUI,      ISD::VP_SETCC,       ISD::VP_SEXT,
436         ISD::VP_ZEXT,        ISD::VP_TRUNC};
437 
438     static const unsigned FloatingPointVPOps[] = {
439         ISD::VP_FADD,        ISD::VP_FSUB,
440         ISD::VP_FMUL,        ISD::VP_FDIV,
441         ISD::VP_FNEG,        ISD::VP_FMA,
442         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
443         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX,
444         ISD::VP_MERGE,       ISD::VP_SELECT,
445         ISD::VP_SITOFP,      ISD::VP_UITOFP,
446         ISD::VP_SETCC,       ISD::VP_FP_ROUND};
447 
448     if (!Subtarget.is64Bit()) {
449       // We must custom-lower certain vXi64 operations on RV32 due to the vector
450       // element type being illegal.
451       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
452                          MVT::i64, Custom);
453 
454       setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND,
455                           ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR,
456                           ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
457                           ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN},
458                          MVT::i64, Custom);
459 
460       setOperationAction({ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND,
461                           ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR,
462                           ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN,
463                           ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN},
464                          MVT::i64, Custom);
465     }
466 
467     for (MVT VT : BoolVecVTs) {
468       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
469 
470       // Mask VTs are custom-expanded into a series of standard nodes
471       setOperationAction({ISD::TRUNCATE, ISD::CONCAT_VECTORS,
472                           ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
473                          VT, Custom);
474 
475       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
476                          Custom);
477 
478       setOperationAction(ISD::SELECT, VT, Custom);
479       setOperationAction(
480           {ISD::SELECT_CC, ISD::VSELECT, ISD::VP_MERGE, ISD::VP_SELECT}, VT,
481           Expand);
482 
483       setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR}, VT, Custom);
484 
485       setOperationAction(
486           {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
487           Custom);
488 
489       setOperationAction(
490           {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
491           Custom);
492 
493       // RVV has native int->float & float->int conversions where the
494       // element type sizes are within one power-of-two of each other. Any
495       // wider distances between type sizes have to be lowered as sequences
496       // which progressively narrow the gap in stages.
497       setOperationAction(
498           {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
499           VT, Custom);
500 
501       // Expand all extending loads to types larger than this, and truncating
502       // stores from types larger than this.
503       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
504         setTruncStoreAction(OtherVT, VT, Expand);
505         setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
506                          VT, Expand);
507       }
508 
509       setOperationAction(
510           {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_TRUNC, ISD::VP_SETCC}, VT,
511           Custom);
512     }
513 
514     for (MVT VT : IntVecVTs) {
515       if (VT.getVectorElementType() == MVT::i64 &&
516           !Subtarget.hasVInstructionsI64())
517         continue;
518 
519       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
520       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
521 
522       // Vectors implement MULHS/MULHU.
523       setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand);
524 
525       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
526       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV())
527         setOperationAction({ISD::MULHU, ISD::MULHS}, VT, Expand);
528 
529       setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, VT,
530                          Legal);
531 
532       setOperationAction({ISD::ROTL, ISD::ROTR}, VT, Expand);
533 
534       setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP, ISD::BSWAP}, VT,
535                          Expand);
536 
537       setOperationAction(ISD::BSWAP, VT, Expand);
538 
539       // Custom-lower extensions and truncations from/to mask types.
540       setOperationAction({ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND},
541                          VT, Custom);
542 
543       // RVV has native int->float & float->int conversions where the
544       // element type sizes are within one power-of-two of each other. Any
545       // wider distances between type sizes have to be lowered as sequences
546       // which progressively narrow the gap in stages.
547       setOperationAction(
548           {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
549           VT, Custom);
550 
551       setOperationAction(
552           {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, Legal);
553 
554       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
555       // nodes which truncate by one power of two at a time.
556       setOperationAction(ISD::TRUNCATE, VT, Custom);
557 
558       // Custom-lower insert/extract operations to simplify patterns.
559       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
560                          Custom);
561 
562       // Custom-lower reduction operations to set up the corresponding custom
563       // nodes' operands.
564       setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND,
565                           ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR,
566                           ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
567                           ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN},
568                          VT, Custom);
569 
570       for (unsigned VPOpc : IntegerVPOps)
571         setOperationAction(VPOpc, VT, Custom);
572 
573       setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
574 
575       setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
576                          VT, Custom);
577 
578       setOperationAction(
579           {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
580           Custom);
581 
582       setOperationAction(
583           {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
584           VT, Custom);
585 
586       setOperationAction(ISD::SELECT, VT, Custom);
587       setOperationAction(ISD::SELECT_CC, VT, Expand);
588 
589       setOperationAction({ISD::STEP_VECTOR, ISD::VECTOR_REVERSE}, VT, Custom);
590 
591       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
592         setTruncStoreAction(VT, OtherVT, Expand);
593         setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
594                          VT, Expand);
595       }
596 
597       // Splice
598       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
599 
600       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
601       // type that can represent the value exactly.
602       if (VT.getVectorElementType() != MVT::i64) {
603         MVT FloatEltVT =
604             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
605         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
606         if (isTypeLegal(FloatVT)) {
607           setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
608                              Custom);
609         }
610       }
611     }
612 
613     // Expand various CCs to best match the RVV ISA, which natively supports UNE
614     // but no other unordered comparisons, and supports all ordered comparisons
615     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
616     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
617     // and we pattern-match those back to the "original", swapping operands once
618     // more. This way we catch both operations and both "vf" and "fv" forms with
619     // fewer patterns.
620     static const ISD::CondCode VFPCCToExpand[] = {
621         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
622         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
623         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
624     };
625 
626     // Sets common operation actions on RVV floating-point vector types.
627     const auto SetCommonVFPActions = [&](MVT VT) {
628       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
629       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
630       // sizes are within one power-of-two of each other. Therefore conversions
631       // between vXf16 and vXf64 must be lowered as sequences which convert via
632       // vXf32.
633       setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
634       // Custom-lower insert/extract operations to simplify patterns.
635       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
636                          Custom);
637       // Expand various condition codes (explained above).
638       for (auto CC : VFPCCToExpand)
639         setCondCodeAction(CC, VT, Expand);
640 
641       setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, VT, Legal);
642 
643       setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND},
644                          VT, Custom);
645 
646       setOperationAction({ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD,
647                           ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX},
648                          VT, Custom);
649 
650       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
651 
652       setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
653 
654       setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
655                          VT, Custom);
656 
657       setOperationAction(
658           {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
659           Custom);
660 
661       setOperationAction(ISD::SELECT, VT, Custom);
662       setOperationAction(ISD::SELECT_CC, VT, Expand);
663 
664       setOperationAction(
665           {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
666           VT, Custom);
667 
668       setOperationAction({ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE}, VT, Custom);
669 
670       for (unsigned VPOpc : FloatingPointVPOps)
671         setOperationAction(VPOpc, VT, Custom);
672     };
673 
674     // Sets common extload/truncstore actions on RVV floating-point vector
675     // types.
676     const auto SetCommonVFPExtLoadTruncStoreActions =
677         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
678           for (auto SmallVT : SmallerVTs) {
679             setTruncStoreAction(VT, SmallVT, Expand);
680             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
681           }
682         };
683 
684     if (Subtarget.hasVInstructionsF16())
685       for (MVT VT : F16VecVTs)
686         SetCommonVFPActions(VT);
687 
688     for (MVT VT : F32VecVTs) {
689       if (Subtarget.hasVInstructionsF32())
690         SetCommonVFPActions(VT);
691       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
692     }
693 
694     for (MVT VT : F64VecVTs) {
695       if (Subtarget.hasVInstructionsF64())
696         SetCommonVFPActions(VT);
697       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
698       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
699     }
700 
701     if (Subtarget.useRVVForFixedLengthVectors()) {
702       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
703         if (!useRVVForFixedLengthVectorVT(VT))
704           continue;
705 
706         // By default everything must be expanded.
707         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
708           setOperationAction(Op, VT, Expand);
709         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
710           setTruncStoreAction(VT, OtherVT, Expand);
711           setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD},
712                            OtherVT, VT, Expand);
713         }
714 
715         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
716         setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
717                            Custom);
718 
719         setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS}, VT,
720                            Custom);
721 
722         setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
723                            VT, Custom);
724 
725         setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
726 
727         setOperationAction(ISD::SETCC, VT, Custom);
728 
729         setOperationAction(ISD::SELECT, VT, Custom);
730 
731         setOperationAction(ISD::TRUNCATE, VT, Custom);
732 
733         setOperationAction(ISD::BITCAST, VT, Custom);
734 
735         setOperationAction(
736             {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
737             Custom);
738 
739         setOperationAction(
740             {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
741             Custom);
742 
743         setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT,
744                             ISD::FP_TO_UINT},
745                            VT, Custom);
746 
747         // Operations below are different for between masks and other vectors.
748         if (VT.getVectorElementType() == MVT::i1) {
749           setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::AND,
750                               ISD::OR, ISD::XOR},
751                              VT, Custom);
752 
753           setOperationAction(
754               {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_TRUNC},
755               VT, Custom);
756           continue;
757         }
758 
759         // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to
760         // it before type legalization for i64 vectors on RV32. It will then be
761         // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle.
762         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
763         // improvements first.
764         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
765           setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
766           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
767         }
768 
769         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
770         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
771 
772         setOperationAction(
773             {ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom);
774 
775         setOperationAction(
776             {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
777             Custom);
778 
779         setOperationAction({ISD::ADD, ISD::MUL, ISD::SUB, ISD::AND, ISD::OR,
780                             ISD::XOR, ISD::SDIV, ISD::SREM, ISD::UDIV,
781                             ISD::UREM, ISD::SHL, ISD::SRA, ISD::SRL},
782                            VT, Custom);
783 
784         setOperationAction(
785             {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::ABS}, VT, Custom);
786 
787         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
788         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV())
789           setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Custom);
790 
791         setOperationAction(
792             {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT,
793             Custom);
794 
795         setOperationAction(ISD::VSELECT, VT, Custom);
796         setOperationAction(ISD::SELECT_CC, VT, Expand);
797 
798         setOperationAction(
799             {ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom);
800 
801         // Custom-lower reduction operations to set up the corresponding custom
802         // nodes' operands.
803         setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_SMAX,
804                             ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX,
805                             ISD::VECREDUCE_UMIN},
806                            VT, Custom);
807 
808         for (unsigned VPOpc : IntegerVPOps)
809           setOperationAction(VPOpc, VT, Custom);
810 
811         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
812         // type that can represent the value exactly.
813         if (VT.getVectorElementType() != MVT::i64) {
814           MVT FloatEltVT =
815               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
816           EVT FloatVT =
817               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
818           if (isTypeLegal(FloatVT))
819             setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
820                                Custom);
821         }
822       }
823 
824       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
825         if (!useRVVForFixedLengthVectorVT(VT))
826           continue;
827 
828         // By default everything must be expanded.
829         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
830           setOperationAction(Op, VT, Expand);
831         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
832           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
833           setTruncStoreAction(VT, OtherVT, Expand);
834         }
835 
836         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
837         setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
838                            Custom);
839 
840         setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS,
841                             ISD::VECTOR_SHUFFLE, ISD::INSERT_VECTOR_ELT,
842                             ISD::EXTRACT_VECTOR_ELT},
843                            VT, Custom);
844 
845         setOperationAction({ISD::LOAD, ISD::STORE, ISD::MLOAD, ISD::MSTORE,
846                             ISD::MGATHER, ISD::MSCATTER},
847                            VT, Custom);
848 
849         setOperationAction(
850             {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
851             Custom);
852 
853         setOperationAction({ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV,
854                             ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN, ISD::FSQRT,
855                             ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM},
856                            VT, Custom);
857 
858         setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
859 
860         setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND},
861                            VT, Custom);
862 
863         for (auto CC : VFPCCToExpand)
864           setCondCodeAction(CC, VT, Expand);
865 
866         setOperationAction({ISD::VSELECT, ISD::SELECT}, VT, Custom);
867         setOperationAction(ISD::SELECT_CC, VT, Expand);
868 
869         setOperationAction(ISD::BITCAST, VT, Custom);
870 
871         setOperationAction({ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD,
872                             ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX},
873                            VT, Custom);
874 
875         for (unsigned VPOpc : FloatingPointVPOps)
876           setOperationAction(VPOpc, VT, Custom);
877       }
878 
879       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
880       setOperationAction(ISD::BITCAST, {MVT::i8, MVT::i16, MVT::i32, MVT::i64},
881                          Custom);
882       if (Subtarget.hasStdExtZfh())
883         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
884       if (Subtarget.hasStdExtF())
885         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
886       if (Subtarget.hasStdExtD())
887         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
888     }
889   }
890 
891   // Function alignments.
892   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
893   setMinFunctionAlignment(FunctionAlignment);
894   setPrefFunctionAlignment(FunctionAlignment);
895 
896   setMinimumJumpTableEntries(5);
897 
898   // Jumps are expensive, compared to logic
899   setJumpIsExpensive();
900 
901   setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND,
902                        ISD::OR, ISD::XOR});
903 
904   if (Subtarget.hasStdExtF())
905     setTargetDAGCombine({ISD::FADD, ISD::FMAXNUM, ISD::FMINNUM});
906 
907   if (Subtarget.hasStdExtZbp())
908     setTargetDAGCombine({ISD::ROTL, ISD::ROTR});
909 
910   if (Subtarget.hasStdExtZbb())
911     setTargetDAGCombine({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN});
912 
913   if (Subtarget.hasStdExtZbkb())
914     setTargetDAGCombine(ISD::BITREVERSE);
915   if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb())
916     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
917   if (Subtarget.hasStdExtF())
918     setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT,
919                          ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT});
920   if (Subtarget.hasVInstructions())
921     setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER,
922                          ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL,
923                          ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR});
924 
925   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
926   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
927 }
928 
929 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
930                                             LLVMContext &Context,
931                                             EVT VT) const {
932   if (!VT.isVector())
933     return getPointerTy(DL);
934   if (Subtarget.hasVInstructions() &&
935       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
936     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
937   return VT.changeVectorElementTypeToInteger();
938 }
939 
940 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
941   return Subtarget.getXLenVT();
942 }
943 
944 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
945                                              const CallInst &I,
946                                              MachineFunction &MF,
947                                              unsigned Intrinsic) const {
948   auto &DL = I.getModule()->getDataLayout();
949   switch (Intrinsic) {
950   default:
951     return false;
952   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
953   case Intrinsic::riscv_masked_atomicrmw_add_i32:
954   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
955   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
956   case Intrinsic::riscv_masked_atomicrmw_max_i32:
957   case Intrinsic::riscv_masked_atomicrmw_min_i32:
958   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
959   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
960   case Intrinsic::riscv_masked_cmpxchg_i32:
961     Info.opc = ISD::INTRINSIC_W_CHAIN;
962     Info.memVT = MVT::i32;
963     Info.ptrVal = I.getArgOperand(0);
964     Info.offset = 0;
965     Info.align = Align(4);
966     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
967                  MachineMemOperand::MOVolatile;
968     return true;
969   case Intrinsic::riscv_masked_strided_load:
970     Info.opc = ISD::INTRINSIC_W_CHAIN;
971     Info.ptrVal = I.getArgOperand(1);
972     Info.memVT = getValueType(DL, I.getType()->getScalarType());
973     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
974     Info.size = MemoryLocation::UnknownSize;
975     Info.flags |= MachineMemOperand::MOLoad;
976     return true;
977   case Intrinsic::riscv_masked_strided_store:
978     Info.opc = ISD::INTRINSIC_VOID;
979     Info.ptrVal = I.getArgOperand(1);
980     Info.memVT =
981         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
982     Info.align = Align(
983         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
984         8);
985     Info.size = MemoryLocation::UnknownSize;
986     Info.flags |= MachineMemOperand::MOStore;
987     return true;
988   case Intrinsic::riscv_seg2_load:
989   case Intrinsic::riscv_seg3_load:
990   case Intrinsic::riscv_seg4_load:
991   case Intrinsic::riscv_seg5_load:
992   case Intrinsic::riscv_seg6_load:
993   case Intrinsic::riscv_seg7_load:
994   case Intrinsic::riscv_seg8_load:
995     Info.opc = ISD::INTRINSIC_W_CHAIN;
996     Info.ptrVal = I.getArgOperand(0);
997     Info.memVT =
998         getValueType(DL, I.getType()->getStructElementType(0)->getScalarType());
999     Info.align =
1000         Align(DL.getTypeSizeInBits(
1001                   I.getType()->getStructElementType(0)->getScalarType()) /
1002               8);
1003     Info.size = MemoryLocation::UnknownSize;
1004     Info.flags |= MachineMemOperand::MOLoad;
1005     return true;
1006   }
1007 }
1008 
1009 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1010                                                 const AddrMode &AM, Type *Ty,
1011                                                 unsigned AS,
1012                                                 Instruction *I) const {
1013   // No global is ever allowed as a base.
1014   if (AM.BaseGV)
1015     return false;
1016 
1017   // RVV instructions only support register addressing.
1018   if (Subtarget.hasVInstructions() && isa<VectorType>(Ty))
1019     return AM.HasBaseReg && AM.Scale == 0 && !AM.BaseOffs;
1020 
1021   // Require a 12-bit signed offset.
1022   if (!isInt<12>(AM.BaseOffs))
1023     return false;
1024 
1025   switch (AM.Scale) {
1026   case 0: // "r+i" or just "i", depending on HasBaseReg.
1027     break;
1028   case 1:
1029     if (!AM.HasBaseReg) // allow "r+i".
1030       break;
1031     return false; // disallow "r+r" or "r+r+i".
1032   default:
1033     return false;
1034   }
1035 
1036   return true;
1037 }
1038 
1039 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1040   return isInt<12>(Imm);
1041 }
1042 
1043 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1044   return isInt<12>(Imm);
1045 }
1046 
1047 // On RV32, 64-bit integers are split into their high and low parts and held
1048 // in two different registers, so the trunc is free since the low register can
1049 // just be used.
1050 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1051   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1052     return false;
1053   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1054   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1055   return (SrcBits == 64 && DestBits == 32);
1056 }
1057 
1058 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1059   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1060       !SrcVT.isInteger() || !DstVT.isInteger())
1061     return false;
1062   unsigned SrcBits = SrcVT.getSizeInBits();
1063   unsigned DestBits = DstVT.getSizeInBits();
1064   return (SrcBits == 64 && DestBits == 32);
1065 }
1066 
1067 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1068   // Zexts are free if they can be combined with a load.
1069   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1070   // poorly with type legalization of compares preferring sext.
1071   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1072     EVT MemVT = LD->getMemoryVT();
1073     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1074         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1075          LD->getExtensionType() == ISD::ZEXTLOAD))
1076       return true;
1077   }
1078 
1079   return TargetLowering::isZExtFree(Val, VT2);
1080 }
1081 
1082 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1083   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1084 }
1085 
1086 bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const {
1087   return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32);
1088 }
1089 
1090 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1091   return Subtarget.hasStdExtZbb();
1092 }
1093 
1094 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1095   return Subtarget.hasStdExtZbb();
1096 }
1097 
1098 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1099   EVT VT = Y.getValueType();
1100 
1101   // FIXME: Support vectors once we have tests.
1102   if (VT.isVector())
1103     return false;
1104 
1105   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1106           Subtarget.hasStdExtZbkb()) &&
1107          !isa<ConstantSDNode>(Y);
1108 }
1109 
1110 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
1111   // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position.
1112   auto *C = dyn_cast<ConstantSDNode>(Y);
1113   return C && C->getAPIntValue().ule(10);
1114 }
1115 
1116 /// Check if sinking \p I's operands to I's basic block is profitable, because
1117 /// the operands can be folded into a target instruction, e.g.
1118 /// splats of scalars can fold into vector instructions.
1119 bool RISCVTargetLowering::shouldSinkOperands(
1120     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1121   using namespace llvm::PatternMatch;
1122 
1123   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1124     return false;
1125 
1126   auto IsSinker = [&](Instruction *I, int Operand) {
1127     switch (I->getOpcode()) {
1128     case Instruction::Add:
1129     case Instruction::Sub:
1130     case Instruction::Mul:
1131     case Instruction::And:
1132     case Instruction::Or:
1133     case Instruction::Xor:
1134     case Instruction::FAdd:
1135     case Instruction::FSub:
1136     case Instruction::FMul:
1137     case Instruction::FDiv:
1138     case Instruction::ICmp:
1139     case Instruction::FCmp:
1140       return true;
1141     case Instruction::Shl:
1142     case Instruction::LShr:
1143     case Instruction::AShr:
1144     case Instruction::UDiv:
1145     case Instruction::SDiv:
1146     case Instruction::URem:
1147     case Instruction::SRem:
1148       return Operand == 1;
1149     case Instruction::Call:
1150       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1151         switch (II->getIntrinsicID()) {
1152         case Intrinsic::fma:
1153         case Intrinsic::vp_fma:
1154           return Operand == 0 || Operand == 1;
1155         // FIXME: Our patterns can only match vx/vf instructions when the splat
1156         // it on the RHS, because TableGen doesn't recognize our VP operations
1157         // as commutative.
1158         case Intrinsic::vp_add:
1159         case Intrinsic::vp_mul:
1160         case Intrinsic::vp_and:
1161         case Intrinsic::vp_or:
1162         case Intrinsic::vp_xor:
1163         case Intrinsic::vp_fadd:
1164         case Intrinsic::vp_fmul:
1165         case Intrinsic::vp_shl:
1166         case Intrinsic::vp_lshr:
1167         case Intrinsic::vp_ashr:
1168         case Intrinsic::vp_udiv:
1169         case Intrinsic::vp_sdiv:
1170         case Intrinsic::vp_urem:
1171         case Intrinsic::vp_srem:
1172           return Operand == 1;
1173         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1174         // explicit patterns for both LHS and RHS (as 'vr' versions).
1175         case Intrinsic::vp_sub:
1176         case Intrinsic::vp_fsub:
1177         case Intrinsic::vp_fdiv:
1178           return Operand == 0 || Operand == 1;
1179         default:
1180           return false;
1181         }
1182       }
1183       return false;
1184     default:
1185       return false;
1186     }
1187   };
1188 
1189   for (auto OpIdx : enumerate(I->operands())) {
1190     if (!IsSinker(I, OpIdx.index()))
1191       continue;
1192 
1193     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1194     // Make sure we are not already sinking this operand
1195     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1196       continue;
1197 
1198     // We are looking for a splat that can be sunk.
1199     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1200                              m_Undef(), m_ZeroMask())))
1201       continue;
1202 
1203     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1204     // and vector registers
1205     for (Use &U : Op->uses()) {
1206       Instruction *Insn = cast<Instruction>(U.getUser());
1207       if (!IsSinker(Insn, U.getOperandNo()))
1208         return false;
1209     }
1210 
1211     Ops.push_back(&Op->getOperandUse(0));
1212     Ops.push_back(&OpIdx.value());
1213   }
1214   return true;
1215 }
1216 
1217 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1218                                        bool ForCodeSize) const {
1219   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1220   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1221     return false;
1222   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1223     return false;
1224   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1225     return false;
1226   return Imm.isZero();
1227 }
1228 
1229 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1230   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1231          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1232          (VT == MVT::f64 && Subtarget.hasStdExtD());
1233 }
1234 
1235 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1236                                                       CallingConv::ID CC,
1237                                                       EVT VT) const {
1238   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1239   // We might still end up using a GPR but that will be decided based on ABI.
1240   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1241   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1242     return MVT::f32;
1243 
1244   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1245 }
1246 
1247 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1248                                                            CallingConv::ID CC,
1249                                                            EVT VT) const {
1250   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1251   // We might still end up using a GPR but that will be decided based on ABI.
1252   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1253   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1254     return 1;
1255 
1256   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1257 }
1258 
1259 // Changes the condition code and swaps operands if necessary, so the SetCC
1260 // operation matches one of the comparisons supported directly by branches
1261 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1262 // with 1/-1.
1263 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1264                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1265   // Convert X > -1 to X >= 0.
1266   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1267     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1268     CC = ISD::SETGE;
1269     return;
1270   }
1271   // Convert X < 1 to 0 >= X.
1272   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1273     RHS = LHS;
1274     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1275     CC = ISD::SETGE;
1276     return;
1277   }
1278 
1279   switch (CC) {
1280   default:
1281     break;
1282   case ISD::SETGT:
1283   case ISD::SETLE:
1284   case ISD::SETUGT:
1285   case ISD::SETULE:
1286     CC = ISD::getSetCCSwappedOperands(CC);
1287     std::swap(LHS, RHS);
1288     break;
1289   }
1290 }
1291 
1292 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1293   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1294   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1295   if (VT.getVectorElementType() == MVT::i1)
1296     KnownSize *= 8;
1297 
1298   switch (KnownSize) {
1299   default:
1300     llvm_unreachable("Invalid LMUL.");
1301   case 8:
1302     return RISCVII::VLMUL::LMUL_F8;
1303   case 16:
1304     return RISCVII::VLMUL::LMUL_F4;
1305   case 32:
1306     return RISCVII::VLMUL::LMUL_F2;
1307   case 64:
1308     return RISCVII::VLMUL::LMUL_1;
1309   case 128:
1310     return RISCVII::VLMUL::LMUL_2;
1311   case 256:
1312     return RISCVII::VLMUL::LMUL_4;
1313   case 512:
1314     return RISCVII::VLMUL::LMUL_8;
1315   }
1316 }
1317 
1318 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1319   switch (LMul) {
1320   default:
1321     llvm_unreachable("Invalid LMUL.");
1322   case RISCVII::VLMUL::LMUL_F8:
1323   case RISCVII::VLMUL::LMUL_F4:
1324   case RISCVII::VLMUL::LMUL_F2:
1325   case RISCVII::VLMUL::LMUL_1:
1326     return RISCV::VRRegClassID;
1327   case RISCVII::VLMUL::LMUL_2:
1328     return RISCV::VRM2RegClassID;
1329   case RISCVII::VLMUL::LMUL_4:
1330     return RISCV::VRM4RegClassID;
1331   case RISCVII::VLMUL::LMUL_8:
1332     return RISCV::VRM8RegClassID;
1333   }
1334 }
1335 
1336 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1337   RISCVII::VLMUL LMUL = getLMUL(VT);
1338   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1339       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1340       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1341       LMUL == RISCVII::VLMUL::LMUL_1) {
1342     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1343                   "Unexpected subreg numbering");
1344     return RISCV::sub_vrm1_0 + Index;
1345   }
1346   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1347     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1348                   "Unexpected subreg numbering");
1349     return RISCV::sub_vrm2_0 + Index;
1350   }
1351   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1352     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1353                   "Unexpected subreg numbering");
1354     return RISCV::sub_vrm4_0 + Index;
1355   }
1356   llvm_unreachable("Invalid vector type.");
1357 }
1358 
1359 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1360   if (VT.getVectorElementType() == MVT::i1)
1361     return RISCV::VRRegClassID;
1362   return getRegClassIDForLMUL(getLMUL(VT));
1363 }
1364 
1365 // Attempt to decompose a subvector insert/extract between VecVT and
1366 // SubVecVT via subregister indices. Returns the subregister index that
1367 // can perform the subvector insert/extract with the given element index, as
1368 // well as the index corresponding to any leftover subvectors that must be
1369 // further inserted/extracted within the register class for SubVecVT.
1370 std::pair<unsigned, unsigned>
1371 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1372     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1373     const RISCVRegisterInfo *TRI) {
1374   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1375                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1376                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1377                 "Register classes not ordered");
1378   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1379   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1380   // Try to compose a subregister index that takes us from the incoming
1381   // LMUL>1 register class down to the outgoing one. At each step we half
1382   // the LMUL:
1383   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1384   // Note that this is not guaranteed to find a subregister index, such as
1385   // when we are extracting from one VR type to another.
1386   unsigned SubRegIdx = RISCV::NoSubRegister;
1387   for (const unsigned RCID :
1388        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1389     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1390       VecVT = VecVT.getHalfNumVectorElementsVT();
1391       bool IsHi =
1392           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1393       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1394                                             getSubregIndexByMVT(VecVT, IsHi));
1395       if (IsHi)
1396         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1397     }
1398   return {SubRegIdx, InsertExtractIdx};
1399 }
1400 
1401 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1402 // stores for those types.
1403 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1404   return !Subtarget.useRVVForFixedLengthVectors() ||
1405          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1406 }
1407 
1408 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1409   if (ScalarTy->isPointerTy())
1410     return true;
1411 
1412   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1413       ScalarTy->isIntegerTy(32))
1414     return true;
1415 
1416   if (ScalarTy->isIntegerTy(64))
1417     return Subtarget.hasVInstructionsI64();
1418 
1419   if (ScalarTy->isHalfTy())
1420     return Subtarget.hasVInstructionsF16();
1421   if (ScalarTy->isFloatTy())
1422     return Subtarget.hasVInstructionsF32();
1423   if (ScalarTy->isDoubleTy())
1424     return Subtarget.hasVInstructionsF64();
1425 
1426   return false;
1427 }
1428 
1429 static SDValue getVLOperand(SDValue Op) {
1430   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1431           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1432          "Unexpected opcode");
1433   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1434   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1435   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1436       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1437   if (!II)
1438     return SDValue();
1439   return Op.getOperand(II->VLOperand + 1 + HasChain);
1440 }
1441 
1442 static bool useRVVForFixedLengthVectorVT(MVT VT,
1443                                          const RISCVSubtarget &Subtarget) {
1444   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1445   if (!Subtarget.useRVVForFixedLengthVectors())
1446     return false;
1447 
1448   // We only support a set of vector types with a consistent maximum fixed size
1449   // across all supported vector element types to avoid legalization issues.
1450   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1451   // fixed-length vector type we support is 1024 bytes.
1452   if (VT.getFixedSizeInBits() > 1024 * 8)
1453     return false;
1454 
1455   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1456 
1457   MVT EltVT = VT.getVectorElementType();
1458 
1459   // Don't use RVV for vectors we cannot scalarize if required.
1460   switch (EltVT.SimpleTy) {
1461   // i1 is supported but has different rules.
1462   default:
1463     return false;
1464   case MVT::i1:
1465     // Masks can only use a single register.
1466     if (VT.getVectorNumElements() > MinVLen)
1467       return false;
1468     MinVLen /= 8;
1469     break;
1470   case MVT::i8:
1471   case MVT::i16:
1472   case MVT::i32:
1473     break;
1474   case MVT::i64:
1475     if (!Subtarget.hasVInstructionsI64())
1476       return false;
1477     break;
1478   case MVT::f16:
1479     if (!Subtarget.hasVInstructionsF16())
1480       return false;
1481     break;
1482   case MVT::f32:
1483     if (!Subtarget.hasVInstructionsF32())
1484       return false;
1485     break;
1486   case MVT::f64:
1487     if (!Subtarget.hasVInstructionsF64())
1488       return false;
1489     break;
1490   }
1491 
1492   // Reject elements larger than ELEN.
1493   if (EltVT.getSizeInBits() > Subtarget.getELEN())
1494     return false;
1495 
1496   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1497   // Don't use RVV for types that don't fit.
1498   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1499     return false;
1500 
1501   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1502   // the base fixed length RVV support in place.
1503   if (!VT.isPow2VectorType())
1504     return false;
1505 
1506   return true;
1507 }
1508 
1509 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1510   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1511 }
1512 
1513 // Return the largest legal scalable vector type that matches VT's element type.
1514 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1515                                             const RISCVSubtarget &Subtarget) {
1516   // This may be called before legal types are setup.
1517   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1518           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1519          "Expected legal fixed length vector!");
1520 
1521   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1522   unsigned MaxELen = Subtarget.getELEN();
1523 
1524   MVT EltVT = VT.getVectorElementType();
1525   switch (EltVT.SimpleTy) {
1526   default:
1527     llvm_unreachable("unexpected element type for RVV container");
1528   case MVT::i1:
1529   case MVT::i8:
1530   case MVT::i16:
1531   case MVT::i32:
1532   case MVT::i64:
1533   case MVT::f16:
1534   case MVT::f32:
1535   case MVT::f64: {
1536     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1537     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1538     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1539     unsigned NumElts =
1540         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1541     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1542     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1543     return MVT::getScalableVectorVT(EltVT, NumElts);
1544   }
1545   }
1546 }
1547 
1548 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1549                                             const RISCVSubtarget &Subtarget) {
1550   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1551                                           Subtarget);
1552 }
1553 
1554 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1555   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1556 }
1557 
1558 // Grow V to consume an entire RVV register.
1559 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1560                                        const RISCVSubtarget &Subtarget) {
1561   assert(VT.isScalableVector() &&
1562          "Expected to convert into a scalable vector!");
1563   assert(V.getValueType().isFixedLengthVector() &&
1564          "Expected a fixed length vector operand!");
1565   SDLoc DL(V);
1566   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1567   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1568 }
1569 
1570 // Shrink V so it's just big enough to maintain a VT's worth of data.
1571 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1572                                          const RISCVSubtarget &Subtarget) {
1573   assert(VT.isFixedLengthVector() &&
1574          "Expected to convert into a fixed length vector!");
1575   assert(V.getValueType().isScalableVector() &&
1576          "Expected a scalable vector operand!");
1577   SDLoc DL(V);
1578   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1579   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1580 }
1581 
1582 /// Return the type of the mask type suitable for masking the provided
1583 /// vector type.  This is simply an i1 element type vector of the same
1584 /// (possibly scalable) length.
1585 static MVT getMaskTypeFor(EVT VecVT) {
1586   assert(VecVT.isVector());
1587   ElementCount EC = VecVT.getVectorElementCount();
1588   return MVT::getVectorVT(MVT::i1, EC);
1589 }
1590 
1591 /// Creates an all ones mask suitable for masking a vector of type VecTy with
1592 /// vector length VL.  .
1593 static SDValue getAllOnesMask(MVT VecVT, SDValue VL, SDLoc DL,
1594                               SelectionDAG &DAG) {
1595   MVT MaskVT = getMaskTypeFor(VecVT);
1596   return DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1597 }
1598 
1599 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1600 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1601 // the vector type that it is contained in.
1602 static std::pair<SDValue, SDValue>
1603 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1604                 const RISCVSubtarget &Subtarget) {
1605   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1606   MVT XLenVT = Subtarget.getXLenVT();
1607   SDValue VL = VecVT.isFixedLengthVector()
1608                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1609                    : DAG.getRegister(RISCV::X0, XLenVT);
1610   SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
1611   return {Mask, VL};
1612 }
1613 
1614 // As above but assuming the given type is a scalable vector type.
1615 static std::pair<SDValue, SDValue>
1616 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1617                         const RISCVSubtarget &Subtarget) {
1618   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1619   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1620 }
1621 
1622 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1623 // of either is (currently) supported. This can get us into an infinite loop
1624 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1625 // as a ..., etc.
1626 // Until either (or both) of these can reliably lower any node, reporting that
1627 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1628 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1629 // which is not desirable.
1630 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1631     EVT VT, unsigned DefinedValues) const {
1632   return false;
1633 }
1634 
1635 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1636                                   const RISCVSubtarget &Subtarget) {
1637   // RISCV FP-to-int conversions saturate to the destination register size, but
1638   // don't produce 0 for nan. We can use a conversion instruction and fix the
1639   // nan case with a compare and a select.
1640   SDValue Src = Op.getOperand(0);
1641 
1642   EVT DstVT = Op.getValueType();
1643   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1644 
1645   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1646   unsigned Opc;
1647   if (SatVT == DstVT)
1648     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1649   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1650     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1651   else
1652     return SDValue();
1653   // FIXME: Support other SatVTs by clamping before or after the conversion.
1654 
1655   SDLoc DL(Op);
1656   SDValue FpToInt = DAG.getNode(
1657       Opc, DL, DstVT, Src,
1658       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1659 
1660   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1661   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1662 }
1663 
1664 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1665 // and back. Taking care to avoid converting values that are nan or already
1666 // correct.
1667 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1668 // have FRM dependencies modeled yet.
1669 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1670   MVT VT = Op.getSimpleValueType();
1671   assert(VT.isVector() && "Unexpected type");
1672 
1673   SDLoc DL(Op);
1674 
1675   // Freeze the source since we are increasing the number of uses.
1676   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1677 
1678   // Truncate to integer and convert back to FP.
1679   MVT IntVT = VT.changeVectorElementTypeToInteger();
1680   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1681   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1682 
1683   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1684 
1685   if (Op.getOpcode() == ISD::FCEIL) {
1686     // If the truncated value is the greater than or equal to the original
1687     // value, we've computed the ceil. Otherwise, we went the wrong way and
1688     // need to increase by 1.
1689     // FIXME: This should use a masked operation. Handle here or in isel?
1690     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1691                                  DAG.getConstantFP(1.0, DL, VT));
1692     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1693     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1694   } else if (Op.getOpcode() == ISD::FFLOOR) {
1695     // If the truncated value is the less than or equal to the original value,
1696     // we've computed the floor. Otherwise, we went the wrong way and need to
1697     // decrease by 1.
1698     // FIXME: This should use a masked operation. Handle here or in isel?
1699     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1700                                  DAG.getConstantFP(1.0, DL, VT));
1701     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1702     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1703   }
1704 
1705   // Restore the original sign so that -0.0 is preserved.
1706   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1707 
1708   // Determine the largest integer that can be represented exactly. This and
1709   // values larger than it don't have any fractional bits so don't need to
1710   // be converted.
1711   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1712   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1713   APFloat MaxVal = APFloat(FltSem);
1714   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1715                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1716   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1717 
1718   // If abs(Src) was larger than MaxVal or nan, keep it.
1719   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1720   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1721   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1722 }
1723 
1724 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1725 // This mode isn't supported in vector hardware on RISCV. But as long as we
1726 // aren't compiling with trapping math, we can emulate this with
1727 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1728 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1729 // dependencies modeled yet.
1730 // FIXME: Use masked operations to avoid final merge.
1731 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1732   MVT VT = Op.getSimpleValueType();
1733   assert(VT.isVector() && "Unexpected type");
1734 
1735   SDLoc DL(Op);
1736 
1737   // Freeze the source since we are increasing the number of uses.
1738   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1739 
1740   // We do the conversion on the absolute value and fix the sign at the end.
1741   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1742 
1743   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1744   bool Ignored;
1745   APFloat Point5Pred = APFloat(0.5f);
1746   Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1747   Point5Pred.next(/*nextDown*/ true);
1748 
1749   // Add the adjustment.
1750   SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1751                                DAG.getConstantFP(Point5Pred, DL, VT));
1752 
1753   // Truncate to integer and convert back to fp.
1754   MVT IntVT = VT.changeVectorElementTypeToInteger();
1755   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1756   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1757 
1758   // Restore the original sign.
1759   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1760 
1761   // Determine the largest integer that can be represented exactly. This and
1762   // values larger than it don't have any fractional bits so don't need to
1763   // be converted.
1764   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1765   APFloat MaxVal = APFloat(FltSem);
1766   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1767                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1768   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1769 
1770   // If abs(Src) was larger than MaxVal or nan, keep it.
1771   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1772   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1773   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1774 }
1775 
1776 struct VIDSequence {
1777   int64_t StepNumerator;
1778   unsigned StepDenominator;
1779   int64_t Addend;
1780 };
1781 
1782 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1783 // to the (non-zero) step S and start value X. This can be then lowered as the
1784 // RVV sequence (VID * S) + X, for example.
1785 // The step S is represented as an integer numerator divided by a positive
1786 // denominator. Note that the implementation currently only identifies
1787 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1788 // cannot detect 2/3, for example.
1789 // Note that this method will also match potentially unappealing index
1790 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1791 // determine whether this is worth generating code for.
1792 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1793   unsigned NumElts = Op.getNumOperands();
1794   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1795   if (!Op.getValueType().isInteger())
1796     return None;
1797 
1798   Optional<unsigned> SeqStepDenom;
1799   Optional<int64_t> SeqStepNum, SeqAddend;
1800   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1801   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1802   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1803     // Assume undef elements match the sequence; we just have to be careful
1804     // when interpolating across them.
1805     if (Op.getOperand(Idx).isUndef())
1806       continue;
1807     // The BUILD_VECTOR must be all constants.
1808     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1809       return None;
1810 
1811     uint64_t Val = Op.getConstantOperandVal(Idx) &
1812                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1813 
1814     if (PrevElt) {
1815       // Calculate the step since the last non-undef element, and ensure
1816       // it's consistent across the entire sequence.
1817       unsigned IdxDiff = Idx - PrevElt->second;
1818       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1819 
1820       // A zero-value value difference means that we're somewhere in the middle
1821       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1822       // step change before evaluating the sequence.
1823       if (ValDiff == 0)
1824         continue;
1825 
1826       int64_t Remainder = ValDiff % IdxDiff;
1827       // Normalize the step if it's greater than 1.
1828       if (Remainder != ValDiff) {
1829         // The difference must cleanly divide the element span.
1830         if (Remainder != 0)
1831           return None;
1832         ValDiff /= IdxDiff;
1833         IdxDiff = 1;
1834       }
1835 
1836       if (!SeqStepNum)
1837         SeqStepNum = ValDiff;
1838       else if (ValDiff != SeqStepNum)
1839         return None;
1840 
1841       if (!SeqStepDenom)
1842         SeqStepDenom = IdxDiff;
1843       else if (IdxDiff != *SeqStepDenom)
1844         return None;
1845     }
1846 
1847     // Record this non-undef element for later.
1848     if (!PrevElt || PrevElt->first != Val)
1849       PrevElt = std::make_pair(Val, Idx);
1850   }
1851 
1852   // We need to have logged a step for this to count as a legal index sequence.
1853   if (!SeqStepNum || !SeqStepDenom)
1854     return None;
1855 
1856   // Loop back through the sequence and validate elements we might have skipped
1857   // while waiting for a valid step. While doing this, log any sequence addend.
1858   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1859     if (Op.getOperand(Idx).isUndef())
1860       continue;
1861     uint64_t Val = Op.getConstantOperandVal(Idx) &
1862                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1863     uint64_t ExpectedVal =
1864         (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1865     int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1866     if (!SeqAddend)
1867       SeqAddend = Addend;
1868     else if (Addend != SeqAddend)
1869       return None;
1870   }
1871 
1872   assert(SeqAddend && "Must have an addend if we have a step");
1873 
1874   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1875 }
1876 
1877 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
1878 // and lower it as a VRGATHER_VX_VL from the source vector.
1879 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
1880                                   SelectionDAG &DAG,
1881                                   const RISCVSubtarget &Subtarget) {
1882   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1883     return SDValue();
1884   SDValue Vec = SplatVal.getOperand(0);
1885   // Only perform this optimization on vectors of the same size for simplicity.
1886   if (Vec.getValueType() != VT)
1887     return SDValue();
1888   SDValue Idx = SplatVal.getOperand(1);
1889   // The index must be a legal type.
1890   if (Idx.getValueType() != Subtarget.getXLenVT())
1891     return SDValue();
1892 
1893   MVT ContainerVT = VT;
1894   if (VT.isFixedLengthVector()) {
1895     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1896     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
1897   }
1898 
1899   SDValue Mask, VL;
1900   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1901 
1902   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
1903                                Idx, Mask, VL);
1904 
1905   if (!VT.isFixedLengthVector())
1906     return Gather;
1907 
1908   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1909 }
1910 
1911 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1912                                  const RISCVSubtarget &Subtarget) {
1913   MVT VT = Op.getSimpleValueType();
1914   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1915 
1916   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1917 
1918   SDLoc DL(Op);
1919   SDValue Mask, VL;
1920   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1921 
1922   MVT XLenVT = Subtarget.getXLenVT();
1923   unsigned NumElts = Op.getNumOperands();
1924 
1925   if (VT.getVectorElementType() == MVT::i1) {
1926     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1927       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1928       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1929     }
1930 
1931     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1932       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1933       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1934     }
1935 
1936     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1937     // scalar integer chunks whose bit-width depends on the number of mask
1938     // bits and XLEN.
1939     // First, determine the most appropriate scalar integer type to use. This
1940     // is at most XLenVT, but may be shrunk to a smaller vector element type
1941     // according to the size of the final vector - use i8 chunks rather than
1942     // XLenVT if we're producing a v8i1. This results in more consistent
1943     // codegen across RV32 and RV64.
1944     unsigned NumViaIntegerBits =
1945         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1946     NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELEN());
1947     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
1948       // If we have to use more than one INSERT_VECTOR_ELT then this
1949       // optimization is likely to increase code size; avoid peforming it in
1950       // such a case. We can use a load from a constant pool in this case.
1951       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
1952         return SDValue();
1953       // Now we can create our integer vector type. Note that it may be larger
1954       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1955       MVT IntegerViaVecVT =
1956           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1957                            divideCeil(NumElts, NumViaIntegerBits));
1958 
1959       uint64_t Bits = 0;
1960       unsigned BitPos = 0, IntegerEltIdx = 0;
1961       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1962 
1963       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1964         // Once we accumulate enough bits to fill our scalar type, insert into
1965         // our vector and clear our accumulated data.
1966         if (I != 0 && I % NumViaIntegerBits == 0) {
1967           if (NumViaIntegerBits <= 32)
1968             Bits = SignExtend64(Bits, 32);
1969           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1970           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1971                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1972           Bits = 0;
1973           BitPos = 0;
1974           IntegerEltIdx++;
1975         }
1976         SDValue V = Op.getOperand(I);
1977         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
1978         Bits |= ((uint64_t)BitValue << BitPos);
1979       }
1980 
1981       // Insert the (remaining) scalar value into position in our integer
1982       // vector type.
1983       if (NumViaIntegerBits <= 32)
1984         Bits = SignExtend64(Bits, 32);
1985       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1986       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
1987                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1988 
1989       if (NumElts < NumViaIntegerBits) {
1990         // If we're producing a smaller vector than our minimum legal integer
1991         // type, bitcast to the equivalent (known-legal) mask type, and extract
1992         // our final mask.
1993         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
1994         Vec = DAG.getBitcast(MVT::v8i1, Vec);
1995         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
1996                           DAG.getConstant(0, DL, XLenVT));
1997       } else {
1998         // Else we must have produced an integer type with the same size as the
1999         // mask type; bitcast for the final result.
2000         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2001         Vec = DAG.getBitcast(VT, Vec);
2002       }
2003 
2004       return Vec;
2005     }
2006 
2007     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2008     // vector type, we have a legal equivalently-sized i8 type, so we can use
2009     // that.
2010     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2011     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2012 
2013     SDValue WideVec;
2014     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2015       // For a splat, perform a scalar truncate before creating the wider
2016       // vector.
2017       assert(Splat.getValueType() == XLenVT &&
2018              "Unexpected type for i1 splat value");
2019       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2020                           DAG.getConstant(1, DL, XLenVT));
2021       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2022     } else {
2023       SmallVector<SDValue, 8> Ops(Op->op_values());
2024       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2025       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2026       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2027     }
2028 
2029     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2030   }
2031 
2032   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2033     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2034       return Gather;
2035     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2036                                         : RISCVISD::VMV_V_X_VL;
2037     Splat =
2038         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2039     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2040   }
2041 
2042   // Try and match index sequences, which we can lower to the vid instruction
2043   // with optional modifications. An all-undef vector is matched by
2044   // getSplatValue, above.
2045   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2046     int64_t StepNumerator = SimpleVID->StepNumerator;
2047     unsigned StepDenominator = SimpleVID->StepDenominator;
2048     int64_t Addend = SimpleVID->Addend;
2049 
2050     assert(StepNumerator != 0 && "Invalid step");
2051     bool Negate = false;
2052     int64_t SplatStepVal = StepNumerator;
2053     unsigned StepOpcode = ISD::MUL;
2054     if (StepNumerator != 1) {
2055       if (isPowerOf2_64(std::abs(StepNumerator))) {
2056         Negate = StepNumerator < 0;
2057         StepOpcode = ISD::SHL;
2058         SplatStepVal = Log2_64(std::abs(StepNumerator));
2059       }
2060     }
2061 
2062     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2063     // threshold since it's the immediate value many RVV instructions accept.
2064     // There is no vmul.vi instruction so ensure multiply constant can fit in
2065     // a single addi instruction.
2066     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2067          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2068         isPowerOf2_32(StepDenominator) &&
2069         (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) {
2070       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2071       // Convert right out of the scalable type so we can use standard ISD
2072       // nodes for the rest of the computation. If we used scalable types with
2073       // these, we'd lose the fixed-length vector info and generate worse
2074       // vsetvli code.
2075       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2076       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2077           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2078         SDValue SplatStep = DAG.getSplatBuildVector(
2079             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2080         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2081       }
2082       if (StepDenominator != 1) {
2083         SDValue SplatStep = DAG.getSplatBuildVector(
2084             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2085         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2086       }
2087       if (Addend != 0 || Negate) {
2088         SDValue SplatAddend = DAG.getSplatBuildVector(
2089             VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2090         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2091       }
2092       return VID;
2093     }
2094   }
2095 
2096   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2097   // when re-interpreted as a vector with a larger element type. For example,
2098   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2099   // could be instead splat as
2100   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2101   // TODO: This optimization could also work on non-constant splats, but it
2102   // would require bit-manipulation instructions to construct the splat value.
2103   SmallVector<SDValue> Sequence;
2104   unsigned EltBitSize = VT.getScalarSizeInBits();
2105   const auto *BV = cast<BuildVectorSDNode>(Op);
2106   if (VT.isInteger() && EltBitSize < 64 &&
2107       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2108       BV->getRepeatedSequence(Sequence) &&
2109       (Sequence.size() * EltBitSize) <= 64) {
2110     unsigned SeqLen = Sequence.size();
2111     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2112     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2113     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2114             ViaIntVT == MVT::i64) &&
2115            "Unexpected sequence type");
2116 
2117     unsigned EltIdx = 0;
2118     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2119     uint64_t SplatValue = 0;
2120     // Construct the amalgamated value which can be splatted as this larger
2121     // vector type.
2122     for (const auto &SeqV : Sequence) {
2123       if (!SeqV.isUndef())
2124         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2125                        << (EltIdx * EltBitSize));
2126       EltIdx++;
2127     }
2128 
2129     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2130     // achieve better constant materializion.
2131     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2132       SplatValue = SignExtend64(SplatValue, 32);
2133 
2134     // Since we can't introduce illegal i64 types at this stage, we can only
2135     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2136     // way we can use RVV instructions to splat.
2137     assert((ViaIntVT.bitsLE(XLenVT) ||
2138             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2139            "Unexpected bitcast sequence");
2140     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2141       SDValue ViaVL =
2142           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2143       MVT ViaContainerVT =
2144           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2145       SDValue Splat =
2146           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2147                       DAG.getUNDEF(ViaContainerVT),
2148                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2149       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2150       return DAG.getBitcast(VT, Splat);
2151     }
2152   }
2153 
2154   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2155   // which constitute a large proportion of the elements. In such cases we can
2156   // splat a vector with the dominant element and make up the shortfall with
2157   // INSERT_VECTOR_ELTs.
2158   // Note that this includes vectors of 2 elements by association. The
2159   // upper-most element is the "dominant" one, allowing us to use a splat to
2160   // "insert" the upper element, and an insert of the lower element at position
2161   // 0, which improves codegen.
2162   SDValue DominantValue;
2163   unsigned MostCommonCount = 0;
2164   DenseMap<SDValue, unsigned> ValueCounts;
2165   unsigned NumUndefElts =
2166       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2167 
2168   // Track the number of scalar loads we know we'd be inserting, estimated as
2169   // any non-zero floating-point constant. Other kinds of element are either
2170   // already in registers or are materialized on demand. The threshold at which
2171   // a vector load is more desirable than several scalar materializion and
2172   // vector-insertion instructions is not known.
2173   unsigned NumScalarLoads = 0;
2174 
2175   for (SDValue V : Op->op_values()) {
2176     if (V.isUndef())
2177       continue;
2178 
2179     ValueCounts.insert(std::make_pair(V, 0));
2180     unsigned &Count = ValueCounts[V];
2181 
2182     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2183       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2184 
2185     // Is this value dominant? In case of a tie, prefer the highest element as
2186     // it's cheaper to insert near the beginning of a vector than it is at the
2187     // end.
2188     if (++Count >= MostCommonCount) {
2189       DominantValue = V;
2190       MostCommonCount = Count;
2191     }
2192   }
2193 
2194   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2195   unsigned NumDefElts = NumElts - NumUndefElts;
2196   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2197 
2198   // Don't perform this optimization when optimizing for size, since
2199   // materializing elements and inserting them tends to cause code bloat.
2200   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2201       ((MostCommonCount > DominantValueCountThreshold) ||
2202        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2203     // Start by splatting the most common element.
2204     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2205 
2206     DenseSet<SDValue> Processed{DominantValue};
2207     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2208     for (const auto &OpIdx : enumerate(Op->ops())) {
2209       const SDValue &V = OpIdx.value();
2210       if (V.isUndef() || !Processed.insert(V).second)
2211         continue;
2212       if (ValueCounts[V] == 1) {
2213         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2214                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2215       } else {
2216         // Blend in all instances of this value using a VSELECT, using a
2217         // mask where each bit signals whether that element is the one
2218         // we're after.
2219         SmallVector<SDValue> Ops;
2220         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2221           return DAG.getConstant(V == V1, DL, XLenVT);
2222         });
2223         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2224                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2225                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2226       }
2227     }
2228 
2229     return Vec;
2230   }
2231 
2232   return SDValue();
2233 }
2234 
2235 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2236                                    SDValue Lo, SDValue Hi, SDValue VL,
2237                                    SelectionDAG &DAG) {
2238   if (!Passthru)
2239     Passthru = DAG.getUNDEF(VT);
2240   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2241     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2242     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2243     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2244     // node in order to try and match RVV vector/scalar instructions.
2245     if ((LoC >> 31) == HiC)
2246       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2247 
2248     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2249     // vmv.v.x whose EEW = 32 to lower it.
2250     auto *Const = dyn_cast<ConstantSDNode>(VL);
2251     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2252       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2253       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2254       // access the subtarget here now.
2255       auto InterVec = DAG.getNode(
2256           RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2257                                   DAG.getRegister(RISCV::X0, MVT::i32));
2258       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2259     }
2260   }
2261 
2262   // Fall back to a stack store and stride x0 vector load.
2263   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2264                      Hi, VL);
2265 }
2266 
2267 // Called by type legalization to handle splat of i64 on RV32.
2268 // FIXME: We can optimize this when the type has sign or zero bits in one
2269 // of the halves.
2270 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2271                                    SDValue Scalar, SDValue VL,
2272                                    SelectionDAG &DAG) {
2273   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2274   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2275                            DAG.getConstant(0, DL, MVT::i32));
2276   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2277                            DAG.getConstant(1, DL, MVT::i32));
2278   return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2279 }
2280 
2281 // This function lowers a splat of a scalar operand Splat with the vector
2282 // length VL. It ensures the final sequence is type legal, which is useful when
2283 // lowering a splat after type legalization.
2284 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2285                                 MVT VT, SDLoc DL, SelectionDAG &DAG,
2286                                 const RISCVSubtarget &Subtarget) {
2287   bool HasPassthru = Passthru && !Passthru.isUndef();
2288   if (!HasPassthru && !Passthru)
2289     Passthru = DAG.getUNDEF(VT);
2290   if (VT.isFloatingPoint()) {
2291     // If VL is 1, we could use vfmv.s.f.
2292     if (isOneConstant(VL))
2293       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2294     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2295   }
2296 
2297   MVT XLenVT = Subtarget.getXLenVT();
2298 
2299   // Simplest case is that the operand needs to be promoted to XLenVT.
2300   if (Scalar.getValueType().bitsLE(XLenVT)) {
2301     // If the operand is a constant, sign extend to increase our chances
2302     // of being able to use a .vi instruction. ANY_EXTEND would become a
2303     // a zero extend and the simm5 check in isel would fail.
2304     // FIXME: Should we ignore the upper bits in isel instead?
2305     unsigned ExtOpc =
2306         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2307     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2308     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2309     // If VL is 1 and the scalar value won't benefit from immediate, we could
2310     // use vmv.s.x.
2311     if (isOneConstant(VL) &&
2312         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2313       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2314     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2315   }
2316 
2317   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2318          "Unexpected scalar for splat lowering!");
2319 
2320   if (isOneConstant(VL) && isNullConstant(Scalar))
2321     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2322                        DAG.getConstant(0, DL, XLenVT), VL);
2323 
2324   // Otherwise use the more complicated splatting algorithm.
2325   return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2326 }
2327 
2328 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2329                                 const RISCVSubtarget &Subtarget) {
2330   // We need to be able to widen elements to the next larger integer type.
2331   if (VT.getScalarSizeInBits() >= Subtarget.getELEN())
2332     return false;
2333 
2334   int Size = Mask.size();
2335   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2336 
2337   int Srcs[] = {-1, -1};
2338   for (int i = 0; i != Size; ++i) {
2339     // Ignore undef elements.
2340     if (Mask[i] < 0)
2341       continue;
2342 
2343     // Is this an even or odd element.
2344     int Pol = i % 2;
2345 
2346     // Ensure we consistently use the same source for this element polarity.
2347     int Src = Mask[i] / Size;
2348     if (Srcs[Pol] < 0)
2349       Srcs[Pol] = Src;
2350     if (Srcs[Pol] != Src)
2351       return false;
2352 
2353     // Make sure the element within the source is appropriate for this element
2354     // in the destination.
2355     int Elt = Mask[i] % Size;
2356     if (Elt != i / 2)
2357       return false;
2358   }
2359 
2360   // We need to find a source for each polarity and they can't be the same.
2361   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2362     return false;
2363 
2364   // Swap the sources if the second source was in the even polarity.
2365   SwapSources = Srcs[0] > Srcs[1];
2366 
2367   return true;
2368 }
2369 
2370 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2371 /// and then extract the original number of elements from the rotated result.
2372 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2373 /// returned rotation amount is for a rotate right, where elements move from
2374 /// higher elements to lower elements. \p LoSrc indicates the first source
2375 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2376 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2377 /// 0 or 1 if a rotation is found.
2378 ///
2379 /// NOTE: We talk about rotate to the right which matches how bit shift and
2380 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2381 /// and the table below write vectors with the lowest elements on the left.
2382 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2383   int Size = Mask.size();
2384 
2385   // We need to detect various ways of spelling a rotation:
2386   //   [11, 12, 13, 14, 15,  0,  1,  2]
2387   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2388   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2389   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2390   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2391   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2392   int Rotation = 0;
2393   LoSrc = -1;
2394   HiSrc = -1;
2395   for (int i = 0; i != Size; ++i) {
2396     int M = Mask[i];
2397     if (M < 0)
2398       continue;
2399 
2400     // Determine where a rotate vector would have started.
2401     int StartIdx = i - (M % Size);
2402     // The identity rotation isn't interesting, stop.
2403     if (StartIdx == 0)
2404       return -1;
2405 
2406     // If we found the tail of a vector the rotation must be the missing
2407     // front. If we found the head of a vector, it must be how much of the
2408     // head.
2409     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2410 
2411     if (Rotation == 0)
2412       Rotation = CandidateRotation;
2413     else if (Rotation != CandidateRotation)
2414       // The rotations don't match, so we can't match this mask.
2415       return -1;
2416 
2417     // Compute which value this mask is pointing at.
2418     int MaskSrc = M < Size ? 0 : 1;
2419 
2420     // Compute which of the two target values this index should be assigned to.
2421     // This reflects whether the high elements are remaining or the low elemnts
2422     // are remaining.
2423     int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2424 
2425     // Either set up this value if we've not encountered it before, or check
2426     // that it remains consistent.
2427     if (TargetSrc < 0)
2428       TargetSrc = MaskSrc;
2429     else if (TargetSrc != MaskSrc)
2430       // This may be a rotation, but it pulls from the inputs in some
2431       // unsupported interleaving.
2432       return -1;
2433   }
2434 
2435   // Check that we successfully analyzed the mask, and normalize the results.
2436   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2437   assert((LoSrc >= 0 || HiSrc >= 0) &&
2438          "Failed to find a rotated input vector!");
2439 
2440   return Rotation;
2441 }
2442 
2443 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2444                                    const RISCVSubtarget &Subtarget) {
2445   SDValue V1 = Op.getOperand(0);
2446   SDValue V2 = Op.getOperand(1);
2447   SDLoc DL(Op);
2448   MVT XLenVT = Subtarget.getXLenVT();
2449   MVT VT = Op.getSimpleValueType();
2450   unsigned NumElts = VT.getVectorNumElements();
2451   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2452 
2453   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2454 
2455   SDValue TrueMask, VL;
2456   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2457 
2458   if (SVN->isSplat()) {
2459     const int Lane = SVN->getSplatIndex();
2460     if (Lane >= 0) {
2461       MVT SVT = VT.getVectorElementType();
2462 
2463       // Turn splatted vector load into a strided load with an X0 stride.
2464       SDValue V = V1;
2465       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2466       // with undef.
2467       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2468       int Offset = Lane;
2469       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2470         int OpElements =
2471             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2472         V = V.getOperand(Offset / OpElements);
2473         Offset %= OpElements;
2474       }
2475 
2476       // We need to ensure the load isn't atomic or volatile.
2477       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2478         auto *Ld = cast<LoadSDNode>(V);
2479         Offset *= SVT.getStoreSize();
2480         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2481                                                    TypeSize::Fixed(Offset), DL);
2482 
2483         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2484         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2485           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2486           SDValue IntID =
2487               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2488           SDValue Ops[] = {Ld->getChain(),
2489                            IntID,
2490                            DAG.getUNDEF(ContainerVT),
2491                            NewAddr,
2492                            DAG.getRegister(RISCV::X0, XLenVT),
2493                            VL};
2494           SDValue NewLoad = DAG.getMemIntrinsicNode(
2495               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2496               DAG.getMachineFunction().getMachineMemOperand(
2497                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2498           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2499           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2500         }
2501 
2502         // Otherwise use a scalar load and splat. This will give the best
2503         // opportunity to fold a splat into the operation. ISel can turn it into
2504         // the x0 strided load if we aren't able to fold away the select.
2505         if (SVT.isFloatingPoint())
2506           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2507                           Ld->getPointerInfo().getWithOffset(Offset),
2508                           Ld->getOriginalAlign(),
2509                           Ld->getMemOperand()->getFlags());
2510         else
2511           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2512                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2513                              Ld->getOriginalAlign(),
2514                              Ld->getMemOperand()->getFlags());
2515         DAG.makeEquivalentMemoryOrdering(Ld, V);
2516 
2517         unsigned Opc =
2518             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2519         SDValue Splat =
2520             DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
2521         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2522       }
2523 
2524       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2525       assert(Lane < (int)NumElts && "Unexpected lane!");
2526       SDValue Gather =
2527           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2528                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2529       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2530     }
2531   }
2532 
2533   ArrayRef<int> Mask = SVN->getMask();
2534 
2535   // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
2536   // be undef which can be handled with a single SLIDEDOWN/UP.
2537   int LoSrc, HiSrc;
2538   int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
2539   if (Rotation > 0) {
2540     SDValue LoV, HiV;
2541     if (LoSrc >= 0) {
2542       LoV = LoSrc == 0 ? V1 : V2;
2543       LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
2544     }
2545     if (HiSrc >= 0) {
2546       HiV = HiSrc == 0 ? V1 : V2;
2547       HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
2548     }
2549 
2550     // We found a rotation. We need to slide HiV down by Rotation. Then we need
2551     // to slide LoV up by (NumElts - Rotation).
2552     unsigned InvRotate = NumElts - Rotation;
2553 
2554     SDValue Res = DAG.getUNDEF(ContainerVT);
2555     if (HiV) {
2556       // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
2557       // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
2558       // causes multiple vsetvlis in some test cases such as lowering
2559       // reduce.mul
2560       SDValue DownVL = VL;
2561       if (LoV)
2562         DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
2563       Res =
2564           DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
2565                       DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
2566     }
2567     if (LoV)
2568       Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
2569                         DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
2570 
2571     return convertFromScalableVector(VT, Res, DAG, Subtarget);
2572   }
2573 
2574   // Detect an interleave shuffle and lower to
2575   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2576   bool SwapSources;
2577   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2578     // Swap sources if needed.
2579     if (SwapSources)
2580       std::swap(V1, V2);
2581 
2582     // Extract the lower half of the vectors.
2583     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2584     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2585                      DAG.getConstant(0, DL, XLenVT));
2586     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2587                      DAG.getConstant(0, DL, XLenVT));
2588 
2589     // Double the element width and halve the number of elements in an int type.
2590     unsigned EltBits = VT.getScalarSizeInBits();
2591     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2592     MVT WideIntVT =
2593         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2594     // Convert this to a scalable vector. We need to base this on the
2595     // destination size to ensure there's always a type with a smaller LMUL.
2596     MVT WideIntContainerVT =
2597         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2598 
2599     // Convert sources to scalable vectors with the same element count as the
2600     // larger type.
2601     MVT HalfContainerVT = MVT::getVectorVT(
2602         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2603     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2604     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2605 
2606     // Cast sources to integer.
2607     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2608     MVT IntHalfVT =
2609         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2610     V1 = DAG.getBitcast(IntHalfVT, V1);
2611     V2 = DAG.getBitcast(IntHalfVT, V2);
2612 
2613     // Freeze V2 since we use it twice and we need to be sure that the add and
2614     // multiply see the same value.
2615     V2 = DAG.getFreeze(V2);
2616 
2617     // Recreate TrueMask using the widened type's element count.
2618     TrueMask = getAllOnesMask(HalfContainerVT, VL, DL, DAG);
2619 
2620     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2621     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2622                               V2, TrueMask, VL);
2623     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2624     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2625                                      DAG.getUNDEF(IntHalfVT),
2626                                      DAG.getAllOnesConstant(DL, XLenVT));
2627     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2628                                    V2, Multiplier, TrueMask, VL);
2629     // Add the new copies to our previous addition giving us 2^eltbits copies of
2630     // V2. This is equivalent to shifting V2 left by eltbits. This should
2631     // combine with the vwmulu.vv above to form vwmaccu.vv.
2632     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2633                       TrueMask, VL);
2634     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2635     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2636     // vector VT.
2637     ContainerVT =
2638         MVT::getVectorVT(VT.getVectorElementType(),
2639                          WideIntContainerVT.getVectorElementCount() * 2);
2640     Add = DAG.getBitcast(ContainerVT, Add);
2641     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2642   }
2643 
2644   // Detect shuffles which can be re-expressed as vector selects; these are
2645   // shuffles in which each element in the destination is taken from an element
2646   // at the corresponding index in either source vectors.
2647   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2648     int MaskIndex = MaskIdx.value();
2649     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2650   });
2651 
2652   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2653 
2654   SmallVector<SDValue> MaskVals;
2655   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2656   // merged with a second vrgather.
2657   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2658 
2659   // By default we preserve the original operand order, and use a mask to
2660   // select LHS as true and RHS as false. However, since RVV vector selects may
2661   // feature splats but only on the LHS, we may choose to invert our mask and
2662   // instead select between RHS and LHS.
2663   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2664   bool InvertMask = IsSelect == SwapOps;
2665 
2666   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2667   // half.
2668   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2669 
2670   // Now construct the mask that will be used by the vselect or blended
2671   // vrgather operation. For vrgathers, construct the appropriate indices into
2672   // each vector.
2673   for (int MaskIndex : Mask) {
2674     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2675     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2676     if (!IsSelect) {
2677       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2678       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2679                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2680                                      : DAG.getUNDEF(XLenVT));
2681       GatherIndicesRHS.push_back(
2682           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2683                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2684       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2685         ++LHSIndexCounts[MaskIndex];
2686       if (!IsLHSOrUndefIndex)
2687         ++RHSIndexCounts[MaskIndex - NumElts];
2688     }
2689   }
2690 
2691   if (SwapOps) {
2692     std::swap(V1, V2);
2693     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2694   }
2695 
2696   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2697   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2698   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2699 
2700   if (IsSelect)
2701     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2702 
2703   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2704     // On such a large vector we're unable to use i8 as the index type.
2705     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2706     // may involve vector splitting if we're already at LMUL=8, or our
2707     // user-supplied maximum fixed-length LMUL.
2708     return SDValue();
2709   }
2710 
2711   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2712   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2713   MVT IndexVT = VT.changeTypeToInteger();
2714   // Since we can't introduce illegal index types at this stage, use i16 and
2715   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2716   // than XLenVT.
2717   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2718     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2719     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2720   }
2721 
2722   MVT IndexContainerVT =
2723       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2724 
2725   SDValue Gather;
2726   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2727   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2728   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2729     Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
2730                               Subtarget);
2731   } else {
2732     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2733     // If only one index is used, we can use a "splat" vrgather.
2734     // TODO: We can splat the most-common index and fix-up any stragglers, if
2735     // that's beneficial.
2736     if (LHSIndexCounts.size() == 1) {
2737       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2738       Gather =
2739           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2740                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2741     } else {
2742       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2743       LHSIndices =
2744           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2745 
2746       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2747                            TrueMask, VL);
2748     }
2749   }
2750 
2751   // If a second vector operand is used by this shuffle, blend it in with an
2752   // additional vrgather.
2753   if (!V2.isUndef()) {
2754     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2755     // If only one index is used, we can use a "splat" vrgather.
2756     // TODO: We can splat the most-common index and fix-up any stragglers, if
2757     // that's beneficial.
2758     if (RHSIndexCounts.size() == 1) {
2759       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2760       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2761                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2762     } else {
2763       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2764       RHSIndices =
2765           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2766       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2767                        VL);
2768     }
2769 
2770     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2771     SelectMask =
2772         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2773 
2774     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2775                          Gather, VL);
2776   }
2777 
2778   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2779 }
2780 
2781 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2782   // Support splats for any type. These should type legalize well.
2783   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2784     return true;
2785 
2786   // Only support legal VTs for other shuffles for now.
2787   if (!isTypeLegal(VT))
2788     return false;
2789 
2790   MVT SVT = VT.getSimpleVT();
2791 
2792   bool SwapSources;
2793   int LoSrc, HiSrc;
2794   return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
2795          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2796 }
2797 
2798 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2799                                      SDLoc DL, SelectionDAG &DAG,
2800                                      const RISCVSubtarget &Subtarget) {
2801   if (VT.isScalableVector())
2802     return DAG.getFPExtendOrRound(Op, DL, VT);
2803   assert(VT.isFixedLengthVector() &&
2804          "Unexpected value type for RVV FP extend/round lowering");
2805   SDValue Mask, VL;
2806   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2807   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2808                         ? RISCVISD::FP_EXTEND_VL
2809                         : RISCVISD::FP_ROUND_VL;
2810   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2811 }
2812 
2813 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2814 // the exponent.
2815 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2816   MVT VT = Op.getSimpleValueType();
2817   unsigned EltSize = VT.getScalarSizeInBits();
2818   SDValue Src = Op.getOperand(0);
2819   SDLoc DL(Op);
2820 
2821   // We need a FP type that can represent the value.
2822   // TODO: Use f16 for i8 when possible?
2823   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2824   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2825 
2826   // Legal types should have been checked in the RISCVTargetLowering
2827   // constructor.
2828   // TODO: Splitting may make sense in some cases.
2829   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2830          "Expected legal float type!");
2831 
2832   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2833   // The trailing zero count is equal to log2 of this single bit value.
2834   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2835     SDValue Neg =
2836         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2837     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2838   }
2839 
2840   // We have a legal FP type, convert to it.
2841   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2842   // Bitcast to integer and shift the exponent to the LSB.
2843   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2844   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2845   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2846   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2847                               DAG.getConstant(ShiftAmt, DL, IntVT));
2848   // Truncate back to original type to allow vnsrl.
2849   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2850   // The exponent contains log2 of the value in biased form.
2851   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2852 
2853   // For trailing zeros, we just need to subtract the bias.
2854   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2855     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2856                        DAG.getConstant(ExponentBias, DL, VT));
2857 
2858   // For leading zeros, we need to remove the bias and convert from log2 to
2859   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2860   unsigned Adjust = ExponentBias + (EltSize - 1);
2861   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2862 }
2863 
2864 // While RVV has alignment restrictions, we should always be able to load as a
2865 // legal equivalently-sized byte-typed vector instead. This method is
2866 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2867 // the load is already correctly-aligned, it returns SDValue().
2868 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2869                                                     SelectionDAG &DAG) const {
2870   auto *Load = cast<LoadSDNode>(Op);
2871   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2872 
2873   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2874                                      Load->getMemoryVT(),
2875                                      *Load->getMemOperand()))
2876     return SDValue();
2877 
2878   SDLoc DL(Op);
2879   MVT VT = Op.getSimpleValueType();
2880   unsigned EltSizeBits = VT.getScalarSizeInBits();
2881   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2882          "Unexpected unaligned RVV load type");
2883   MVT NewVT =
2884       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2885   assert(NewVT.isValid() &&
2886          "Expecting equally-sized RVV vector types to be legal");
2887   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2888                           Load->getPointerInfo(), Load->getOriginalAlign(),
2889                           Load->getMemOperand()->getFlags());
2890   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2891 }
2892 
2893 // While RVV has alignment restrictions, we should always be able to store as a
2894 // legal equivalently-sized byte-typed vector instead. This method is
2895 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2896 // returns SDValue() if the store is already correctly aligned.
2897 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2898                                                      SelectionDAG &DAG) const {
2899   auto *Store = cast<StoreSDNode>(Op);
2900   assert(Store && Store->getValue().getValueType().isVector() &&
2901          "Expected vector store");
2902 
2903   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2904                                      Store->getMemoryVT(),
2905                                      *Store->getMemOperand()))
2906     return SDValue();
2907 
2908   SDLoc DL(Op);
2909   SDValue StoredVal = Store->getValue();
2910   MVT VT = StoredVal.getSimpleValueType();
2911   unsigned EltSizeBits = VT.getScalarSizeInBits();
2912   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2913          "Unexpected unaligned RVV store type");
2914   MVT NewVT =
2915       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2916   assert(NewVT.isValid() &&
2917          "Expecting equally-sized RVV vector types to be legal");
2918   StoredVal = DAG.getBitcast(NewVT, StoredVal);
2919   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
2920                       Store->getPointerInfo(), Store->getOriginalAlign(),
2921                       Store->getMemOperand()->getFlags());
2922 }
2923 
2924 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
2925                                             SelectionDAG &DAG) const {
2926   switch (Op.getOpcode()) {
2927   default:
2928     report_fatal_error("unimplemented operand");
2929   case ISD::GlobalAddress:
2930     return lowerGlobalAddress(Op, DAG);
2931   case ISD::BlockAddress:
2932     return lowerBlockAddress(Op, DAG);
2933   case ISD::ConstantPool:
2934     return lowerConstantPool(Op, DAG);
2935   case ISD::JumpTable:
2936     return lowerJumpTable(Op, DAG);
2937   case ISD::GlobalTLSAddress:
2938     return lowerGlobalTLSAddress(Op, DAG);
2939   case ISD::SELECT:
2940     return lowerSELECT(Op, DAG);
2941   case ISD::BRCOND:
2942     return lowerBRCOND(Op, DAG);
2943   case ISD::VASTART:
2944     return lowerVASTART(Op, DAG);
2945   case ISD::FRAMEADDR:
2946     return lowerFRAMEADDR(Op, DAG);
2947   case ISD::RETURNADDR:
2948     return lowerRETURNADDR(Op, DAG);
2949   case ISD::SHL_PARTS:
2950     return lowerShiftLeftParts(Op, DAG);
2951   case ISD::SRA_PARTS:
2952     return lowerShiftRightParts(Op, DAG, true);
2953   case ISD::SRL_PARTS:
2954     return lowerShiftRightParts(Op, DAG, false);
2955   case ISD::BITCAST: {
2956     SDLoc DL(Op);
2957     EVT VT = Op.getValueType();
2958     SDValue Op0 = Op.getOperand(0);
2959     EVT Op0VT = Op0.getValueType();
2960     MVT XLenVT = Subtarget.getXLenVT();
2961     if (VT.isFixedLengthVector()) {
2962       // We can handle fixed length vector bitcasts with a simple replacement
2963       // in isel.
2964       if (Op0VT.isFixedLengthVector())
2965         return Op;
2966       // When bitcasting from scalar to fixed-length vector, insert the scalar
2967       // into a one-element vector of the result type, and perform a vector
2968       // bitcast.
2969       if (!Op0VT.isVector()) {
2970         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
2971         if (!isTypeLegal(BVT))
2972           return SDValue();
2973         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
2974                                               DAG.getUNDEF(BVT), Op0,
2975                                               DAG.getConstant(0, DL, XLenVT)));
2976       }
2977       return SDValue();
2978     }
2979     // Custom-legalize bitcasts from fixed-length vector types to scalar types
2980     // thus: bitcast the vector to a one-element vector type whose element type
2981     // is the same as the result type, and extract the first element.
2982     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
2983       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
2984       if (!isTypeLegal(BVT))
2985         return SDValue();
2986       SDValue BVec = DAG.getBitcast(BVT, Op0);
2987       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
2988                          DAG.getConstant(0, DL, XLenVT));
2989     }
2990     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
2991       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
2992       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
2993       return FPConv;
2994     }
2995     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
2996         Subtarget.hasStdExtF()) {
2997       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
2998       SDValue FPConv =
2999           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
3000       return FPConv;
3001     }
3002     return SDValue();
3003   }
3004   case ISD::INTRINSIC_WO_CHAIN:
3005     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3006   case ISD::INTRINSIC_W_CHAIN:
3007     return LowerINTRINSIC_W_CHAIN(Op, DAG);
3008   case ISD::INTRINSIC_VOID:
3009     return LowerINTRINSIC_VOID(Op, DAG);
3010   case ISD::BSWAP:
3011   case ISD::BITREVERSE: {
3012     MVT VT = Op.getSimpleValueType();
3013     SDLoc DL(Op);
3014     if (Subtarget.hasStdExtZbp()) {
3015       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3016       // Start with the maximum immediate value which is the bitwidth - 1.
3017       unsigned Imm = VT.getSizeInBits() - 1;
3018       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3019       if (Op.getOpcode() == ISD::BSWAP)
3020         Imm &= ~0x7U;
3021       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3022                          DAG.getConstant(Imm, DL, VT));
3023     }
3024     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3025     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3026     // Expand bitreverse to a bswap(rev8) followed by brev8.
3027     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3028     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3029     // as brev8 by an isel pattern.
3030     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3031                        DAG.getConstant(7, DL, VT));
3032   }
3033   case ISD::FSHL:
3034   case ISD::FSHR: {
3035     MVT VT = Op.getSimpleValueType();
3036     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3037     SDLoc DL(Op);
3038     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3039     // use log(XLen) bits. Mask the shift amount accordingly to prevent
3040     // accidentally setting the extra bit.
3041     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3042     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3043                                 DAG.getConstant(ShAmtWidth, DL, VT));
3044     // fshl and fshr concatenate their operands in the same order. fsr and fsl
3045     // instruction use different orders. fshl will return its first operand for
3046     // shift of zero, fshr will return its second operand. fsl and fsr both
3047     // return rs1 so the ISD nodes need to have different operand orders.
3048     // Shift amount is in rs2.
3049     SDValue Op0 = Op.getOperand(0);
3050     SDValue Op1 = Op.getOperand(1);
3051     unsigned Opc = RISCVISD::FSL;
3052     if (Op.getOpcode() == ISD::FSHR) {
3053       std::swap(Op0, Op1);
3054       Opc = RISCVISD::FSR;
3055     }
3056     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3057   }
3058   case ISD::TRUNCATE:
3059     // Only custom-lower vector truncates
3060     if (!Op.getSimpleValueType().isVector())
3061       return Op;
3062     return lowerVectorTruncLike(Op, DAG);
3063   case ISD::ANY_EXTEND:
3064   case ISD::ZERO_EXTEND:
3065     if (Op.getOperand(0).getValueType().isVector() &&
3066         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3067       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3068     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3069   case ISD::SIGN_EXTEND:
3070     if (Op.getOperand(0).getValueType().isVector() &&
3071         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3072       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3073     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3074   case ISD::SPLAT_VECTOR_PARTS:
3075     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3076   case ISD::INSERT_VECTOR_ELT:
3077     return lowerINSERT_VECTOR_ELT(Op, DAG);
3078   case ISD::EXTRACT_VECTOR_ELT:
3079     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3080   case ISD::VSCALE: {
3081     MVT VT = Op.getSimpleValueType();
3082     SDLoc DL(Op);
3083     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3084     // We define our scalable vector types for lmul=1 to use a 64 bit known
3085     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3086     // vscale as VLENB / 8.
3087     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3088     if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock)
3089       report_fatal_error("Support for VLEN==32 is incomplete.");
3090     if (isa<ConstantSDNode>(Op.getOperand(0))) {
3091       // We assume VLENB is a multiple of 8. We manually choose the best shift
3092       // here because SimplifyDemandedBits isn't always able to simplify it.
3093       uint64_t Val = Op.getConstantOperandVal(0);
3094       if (isPowerOf2_64(Val)) {
3095         uint64_t Log2 = Log2_64(Val);
3096         if (Log2 < 3)
3097           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3098                              DAG.getConstant(3 - Log2, DL, VT));
3099         if (Log2 > 3)
3100           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3101                              DAG.getConstant(Log2 - 3, DL, VT));
3102         return VLENB;
3103       }
3104       // If the multiplier is a multiple of 8, scale it down to avoid needing
3105       // to shift the VLENB value.
3106       if ((Val % 8) == 0)
3107         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3108                            DAG.getConstant(Val / 8, DL, VT));
3109     }
3110 
3111     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3112                                  DAG.getConstant(3, DL, VT));
3113     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3114   }
3115   case ISD::FPOWI: {
3116     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3117     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3118     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3119         Op.getOperand(1).getValueType() == MVT::i32) {
3120       SDLoc DL(Op);
3121       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3122       SDValue Powi =
3123           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3124       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3125                          DAG.getIntPtrConstant(0, DL));
3126     }
3127     return SDValue();
3128   }
3129   case ISD::FP_EXTEND: {
3130     // RVV can only do fp_extend to types double the size as the source. We
3131     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
3132     // via f32.
3133     SDLoc DL(Op);
3134     MVT VT = Op.getSimpleValueType();
3135     SDValue Src = Op.getOperand(0);
3136     MVT SrcVT = Src.getSimpleValueType();
3137 
3138     // Prepare any fixed-length vector operands.
3139     MVT ContainerVT = VT;
3140     if (SrcVT.isFixedLengthVector()) {
3141       ContainerVT = getContainerForFixedLengthVector(VT);
3142       MVT SrcContainerVT =
3143           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
3144       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3145     }
3146 
3147     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
3148         SrcVT.getVectorElementType() != MVT::f16) {
3149       // For scalable vectors, we only need to close the gap between
3150       // vXf16->vXf64.
3151       if (!VT.isFixedLengthVector())
3152         return Op;
3153       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
3154       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3155       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3156     }
3157 
3158     MVT InterVT = VT.changeVectorElementType(MVT::f32);
3159     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
3160     SDValue IntermediateExtend = getRVVFPExtendOrRound(
3161         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
3162 
3163     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
3164                                            DL, DAG, Subtarget);
3165     if (VT.isFixedLengthVector())
3166       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
3167     return Extend;
3168   }
3169   case ISD::FP_ROUND:
3170     if (!Op.getValueType().isVector())
3171       return Op;
3172     return lowerVectorFPRoundLike(Op, DAG);
3173   case ISD::FP_TO_SINT:
3174   case ISD::FP_TO_UINT:
3175   case ISD::SINT_TO_FP:
3176   case ISD::UINT_TO_FP: {
3177     // RVV can only do fp<->int conversions to types half/double the size as
3178     // the source. We custom-lower any conversions that do two hops into
3179     // sequences.
3180     MVT VT = Op.getSimpleValueType();
3181     if (!VT.isVector())
3182       return Op;
3183     SDLoc DL(Op);
3184     SDValue Src = Op.getOperand(0);
3185     MVT EltVT = VT.getVectorElementType();
3186     MVT SrcVT = Src.getSimpleValueType();
3187     MVT SrcEltVT = SrcVT.getVectorElementType();
3188     unsigned EltSize = EltVT.getSizeInBits();
3189     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3190     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3191            "Unexpected vector element types");
3192 
3193     bool IsInt2FP = SrcEltVT.isInteger();
3194     // Widening conversions
3195     if (EltSize > (2 * SrcEltSize)) {
3196       if (IsInt2FP) {
3197         // Do a regular integer sign/zero extension then convert to float.
3198         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize),
3199                                       VT.getVectorElementCount());
3200         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3201                                  ? ISD::ZERO_EXTEND
3202                                  : ISD::SIGN_EXTEND;
3203         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3204         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3205       }
3206       // FP2Int
3207       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3208       // Do one doubling fp_extend then complete the operation by converting
3209       // to int.
3210       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3211       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3212       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3213     }
3214 
3215     // Narrowing conversions
3216     if (SrcEltSize > (2 * EltSize)) {
3217       if (IsInt2FP) {
3218         // One narrowing int_to_fp, then an fp_round.
3219         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3220         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3221         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3222         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3223       }
3224       // FP2Int
3225       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3226       // representable by the integer, the result is poison.
3227       MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
3228                                     VT.getVectorElementCount());
3229       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3230       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3231     }
3232 
3233     // Scalable vectors can exit here. Patterns will handle equally-sized
3234     // conversions halving/doubling ones.
3235     if (!VT.isFixedLengthVector())
3236       return Op;
3237 
3238     // For fixed-length vectors we lower to a custom "VL" node.
3239     unsigned RVVOpc = 0;
3240     switch (Op.getOpcode()) {
3241     default:
3242       llvm_unreachable("Impossible opcode");
3243     case ISD::FP_TO_SINT:
3244       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3245       break;
3246     case ISD::FP_TO_UINT:
3247       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3248       break;
3249     case ISD::SINT_TO_FP:
3250       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3251       break;
3252     case ISD::UINT_TO_FP:
3253       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3254       break;
3255     }
3256 
3257     MVT ContainerVT, SrcContainerVT;
3258     // Derive the reference container type from the larger vector type.
3259     if (SrcEltSize > EltSize) {
3260       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3261       ContainerVT =
3262           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3263     } else {
3264       ContainerVT = getContainerForFixedLengthVector(VT);
3265       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3266     }
3267 
3268     SDValue Mask, VL;
3269     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3270 
3271     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3272     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3273     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3274   }
3275   case ISD::FP_TO_SINT_SAT:
3276   case ISD::FP_TO_UINT_SAT:
3277     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3278   case ISD::FTRUNC:
3279   case ISD::FCEIL:
3280   case ISD::FFLOOR:
3281     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3282   case ISD::FROUND:
3283     return lowerFROUND(Op, DAG);
3284   case ISD::VECREDUCE_ADD:
3285   case ISD::VECREDUCE_UMAX:
3286   case ISD::VECREDUCE_SMAX:
3287   case ISD::VECREDUCE_UMIN:
3288   case ISD::VECREDUCE_SMIN:
3289     return lowerVECREDUCE(Op, DAG);
3290   case ISD::VECREDUCE_AND:
3291   case ISD::VECREDUCE_OR:
3292   case ISD::VECREDUCE_XOR:
3293     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3294       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3295     return lowerVECREDUCE(Op, DAG);
3296   case ISD::VECREDUCE_FADD:
3297   case ISD::VECREDUCE_SEQ_FADD:
3298   case ISD::VECREDUCE_FMIN:
3299   case ISD::VECREDUCE_FMAX:
3300     return lowerFPVECREDUCE(Op, DAG);
3301   case ISD::VP_REDUCE_ADD:
3302   case ISD::VP_REDUCE_UMAX:
3303   case ISD::VP_REDUCE_SMAX:
3304   case ISD::VP_REDUCE_UMIN:
3305   case ISD::VP_REDUCE_SMIN:
3306   case ISD::VP_REDUCE_FADD:
3307   case ISD::VP_REDUCE_SEQ_FADD:
3308   case ISD::VP_REDUCE_FMIN:
3309   case ISD::VP_REDUCE_FMAX:
3310     return lowerVPREDUCE(Op, DAG);
3311   case ISD::VP_REDUCE_AND:
3312   case ISD::VP_REDUCE_OR:
3313   case ISD::VP_REDUCE_XOR:
3314     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3315       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3316     return lowerVPREDUCE(Op, DAG);
3317   case ISD::INSERT_SUBVECTOR:
3318     return lowerINSERT_SUBVECTOR(Op, DAG);
3319   case ISD::EXTRACT_SUBVECTOR:
3320     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3321   case ISD::STEP_VECTOR:
3322     return lowerSTEP_VECTOR(Op, DAG);
3323   case ISD::VECTOR_REVERSE:
3324     return lowerVECTOR_REVERSE(Op, DAG);
3325   case ISD::VECTOR_SPLICE:
3326     return lowerVECTOR_SPLICE(Op, DAG);
3327   case ISD::BUILD_VECTOR:
3328     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3329   case ISD::SPLAT_VECTOR:
3330     if (Op.getValueType().getVectorElementType() == MVT::i1)
3331       return lowerVectorMaskSplat(Op, DAG);
3332     return SDValue();
3333   case ISD::VECTOR_SHUFFLE:
3334     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3335   case ISD::CONCAT_VECTORS: {
3336     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3337     // better than going through the stack, as the default expansion does.
3338     SDLoc DL(Op);
3339     MVT VT = Op.getSimpleValueType();
3340     unsigned NumOpElts =
3341         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3342     SDValue Vec = DAG.getUNDEF(VT);
3343     for (const auto &OpIdx : enumerate(Op->ops())) {
3344       SDValue SubVec = OpIdx.value();
3345       // Don't insert undef subvectors.
3346       if (SubVec.isUndef())
3347         continue;
3348       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3349                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3350     }
3351     return Vec;
3352   }
3353   case ISD::LOAD:
3354     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3355       return V;
3356     if (Op.getValueType().isFixedLengthVector())
3357       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3358     return Op;
3359   case ISD::STORE:
3360     if (auto V = expandUnalignedRVVStore(Op, DAG))
3361       return V;
3362     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3363       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3364     return Op;
3365   case ISD::MLOAD:
3366   case ISD::VP_LOAD:
3367     return lowerMaskedLoad(Op, DAG);
3368   case ISD::MSTORE:
3369   case ISD::VP_STORE:
3370     return lowerMaskedStore(Op, DAG);
3371   case ISD::SETCC:
3372     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3373   case ISD::ADD:
3374     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3375   case ISD::SUB:
3376     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3377   case ISD::MUL:
3378     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3379   case ISD::MULHS:
3380     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3381   case ISD::MULHU:
3382     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3383   case ISD::AND:
3384     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3385                                               RISCVISD::AND_VL);
3386   case ISD::OR:
3387     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3388                                               RISCVISD::OR_VL);
3389   case ISD::XOR:
3390     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3391                                               RISCVISD::XOR_VL);
3392   case ISD::SDIV:
3393     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3394   case ISD::SREM:
3395     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3396   case ISD::UDIV:
3397     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3398   case ISD::UREM:
3399     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3400   case ISD::SHL:
3401   case ISD::SRA:
3402   case ISD::SRL:
3403     if (Op.getSimpleValueType().isFixedLengthVector())
3404       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3405     // This can be called for an i32 shift amount that needs to be promoted.
3406     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3407            "Unexpected custom legalisation");
3408     return SDValue();
3409   case ISD::SADDSAT:
3410     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3411   case ISD::UADDSAT:
3412     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3413   case ISD::SSUBSAT:
3414     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3415   case ISD::USUBSAT:
3416     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3417   case ISD::FADD:
3418     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3419   case ISD::FSUB:
3420     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3421   case ISD::FMUL:
3422     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3423   case ISD::FDIV:
3424     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3425   case ISD::FNEG:
3426     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3427   case ISD::FABS:
3428     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3429   case ISD::FSQRT:
3430     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3431   case ISD::FMA:
3432     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3433   case ISD::SMIN:
3434     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3435   case ISD::SMAX:
3436     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3437   case ISD::UMIN:
3438     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3439   case ISD::UMAX:
3440     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3441   case ISD::FMINNUM:
3442     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3443   case ISD::FMAXNUM:
3444     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3445   case ISD::ABS:
3446     return lowerABS(Op, DAG);
3447   case ISD::CTLZ_ZERO_UNDEF:
3448   case ISD::CTTZ_ZERO_UNDEF:
3449     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3450   case ISD::VSELECT:
3451     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3452   case ISD::FCOPYSIGN:
3453     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3454   case ISD::MGATHER:
3455   case ISD::VP_GATHER:
3456     return lowerMaskedGather(Op, DAG);
3457   case ISD::MSCATTER:
3458   case ISD::VP_SCATTER:
3459     return lowerMaskedScatter(Op, DAG);
3460   case ISD::FLT_ROUNDS_:
3461     return lowerGET_ROUNDING(Op, DAG);
3462   case ISD::SET_ROUNDING:
3463     return lowerSET_ROUNDING(Op, DAG);
3464   case ISD::VP_SELECT:
3465     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3466   case ISD::VP_MERGE:
3467     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3468   case ISD::VP_ADD:
3469     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3470   case ISD::VP_SUB:
3471     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3472   case ISD::VP_MUL:
3473     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3474   case ISD::VP_SDIV:
3475     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3476   case ISD::VP_UDIV:
3477     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3478   case ISD::VP_SREM:
3479     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3480   case ISD::VP_UREM:
3481     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3482   case ISD::VP_AND:
3483     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3484   case ISD::VP_OR:
3485     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3486   case ISD::VP_XOR:
3487     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3488   case ISD::VP_ASHR:
3489     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3490   case ISD::VP_LSHR:
3491     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3492   case ISD::VP_SHL:
3493     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3494   case ISD::VP_FADD:
3495     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3496   case ISD::VP_FSUB:
3497     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3498   case ISD::VP_FMUL:
3499     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3500   case ISD::VP_FDIV:
3501     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3502   case ISD::VP_FNEG:
3503     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3504   case ISD::VP_FMA:
3505     return lowerVPOp(Op, DAG, RISCVISD::FMA_VL);
3506   case ISD::VP_SEXT:
3507   case ISD::VP_ZEXT:
3508     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3509       return lowerVPExtMaskOp(Op, DAG);
3510     return lowerVPOp(Op, DAG,
3511                      Op.getOpcode() == ISD::VP_SEXT ? RISCVISD::VSEXT_VL
3512                                                     : RISCVISD::VZEXT_VL);
3513   case ISD::VP_TRUNC:
3514     return lowerVectorTruncLike(Op, DAG);
3515   case ISD::VP_FP_ROUND:
3516     return lowerVectorFPRoundLike(Op, DAG);
3517   case ISD::VP_FPTOSI:
3518     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_SINT_VL);
3519   case ISD::VP_FPTOUI:
3520     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_UINT_VL);
3521   case ISD::VP_SITOFP:
3522     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL);
3523   case ISD::VP_UITOFP:
3524     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL);
3525   case ISD::VP_SETCC:
3526     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3527       return lowerVPSetCCMaskOp(Op, DAG);
3528     return lowerVPOp(Op, DAG, RISCVISD::SETCC_VL);
3529   }
3530 }
3531 
3532 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3533                              SelectionDAG &DAG, unsigned Flags) {
3534   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3535 }
3536 
3537 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3538                              SelectionDAG &DAG, unsigned Flags) {
3539   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3540                                    Flags);
3541 }
3542 
3543 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3544                              SelectionDAG &DAG, unsigned Flags) {
3545   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3546                                    N->getOffset(), Flags);
3547 }
3548 
3549 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3550                              SelectionDAG &DAG, unsigned Flags) {
3551   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3552 }
3553 
3554 template <class NodeTy>
3555 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3556                                      bool IsLocal) const {
3557   SDLoc DL(N);
3558   EVT Ty = getPointerTy(DAG.getDataLayout());
3559 
3560   if (isPositionIndependent()) {
3561     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3562     if (IsLocal)
3563       // Use PC-relative addressing to access the symbol. This generates the
3564       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3565       // %pcrel_lo(auipc)).
3566       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3567 
3568     // Use PC-relative addressing to access the GOT for this symbol, then load
3569     // the address from the GOT. This generates the pattern (PseudoLA sym),
3570     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3571     SDValue Load =
3572         SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3573     MachineFunction &MF = DAG.getMachineFunction();
3574     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3575         MachinePointerInfo::getGOT(MF),
3576         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3577             MachineMemOperand::MOInvariant,
3578         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3579     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3580     return Load;
3581   }
3582 
3583   switch (getTargetMachine().getCodeModel()) {
3584   default:
3585     report_fatal_error("Unsupported code model for lowering");
3586   case CodeModel::Small: {
3587     // Generate a sequence for accessing addresses within the first 2 GiB of
3588     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3589     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3590     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3591     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3592     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3593   }
3594   case CodeModel::Medium: {
3595     // Generate a sequence for accessing addresses within any 2GiB range within
3596     // the address space. This generates the pattern (PseudoLLA sym), which
3597     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3598     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3599     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3600   }
3601   }
3602 }
3603 
3604 template SDValue RISCVTargetLowering::getAddr<GlobalAddressSDNode>(
3605     GlobalAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3606 template SDValue RISCVTargetLowering::getAddr<BlockAddressSDNode>(
3607     BlockAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3608 template SDValue RISCVTargetLowering::getAddr<ConstantPoolSDNode>(
3609     ConstantPoolSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3610 template SDValue RISCVTargetLowering::getAddr<JumpTableSDNode>(
3611     JumpTableSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3612 
3613 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3614                                                 SelectionDAG &DAG) const {
3615   SDLoc DL(Op);
3616   EVT Ty = Op.getValueType();
3617   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3618   int64_t Offset = N->getOffset();
3619   MVT XLenVT = Subtarget.getXLenVT();
3620 
3621   const GlobalValue *GV = N->getGlobal();
3622   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3623   SDValue Addr = getAddr(N, DAG, IsLocal);
3624 
3625   // In order to maximise the opportunity for common subexpression elimination,
3626   // emit a separate ADD node for the global address offset instead of folding
3627   // it in the global address node. Later peephole optimisations may choose to
3628   // fold it back in when profitable.
3629   if (Offset != 0)
3630     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3631                        DAG.getConstant(Offset, DL, XLenVT));
3632   return Addr;
3633 }
3634 
3635 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3636                                                SelectionDAG &DAG) const {
3637   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3638 
3639   return getAddr(N, DAG);
3640 }
3641 
3642 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3643                                                SelectionDAG &DAG) const {
3644   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3645 
3646   return getAddr(N, DAG);
3647 }
3648 
3649 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3650                                             SelectionDAG &DAG) const {
3651   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3652 
3653   return getAddr(N, DAG);
3654 }
3655 
3656 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3657                                               SelectionDAG &DAG,
3658                                               bool UseGOT) const {
3659   SDLoc DL(N);
3660   EVT Ty = getPointerTy(DAG.getDataLayout());
3661   const GlobalValue *GV = N->getGlobal();
3662   MVT XLenVT = Subtarget.getXLenVT();
3663 
3664   if (UseGOT) {
3665     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3666     // load the address from the GOT and add the thread pointer. This generates
3667     // the pattern (PseudoLA_TLS_IE sym), which expands to
3668     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3669     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3670     SDValue Load =
3671         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3672     MachineFunction &MF = DAG.getMachineFunction();
3673     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3674         MachinePointerInfo::getGOT(MF),
3675         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3676             MachineMemOperand::MOInvariant,
3677         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3678     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3679 
3680     // Add the thread pointer.
3681     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3682     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3683   }
3684 
3685   // Generate a sequence for accessing the address relative to the thread
3686   // pointer, with the appropriate adjustment for the thread pointer offset.
3687   // This generates the pattern
3688   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3689   SDValue AddrHi =
3690       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3691   SDValue AddrAdd =
3692       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3693   SDValue AddrLo =
3694       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3695 
3696   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3697   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3698   SDValue MNAdd = SDValue(
3699       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3700       0);
3701   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3702 }
3703 
3704 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3705                                                SelectionDAG &DAG) const {
3706   SDLoc DL(N);
3707   EVT Ty = getPointerTy(DAG.getDataLayout());
3708   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3709   const GlobalValue *GV = N->getGlobal();
3710 
3711   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3712   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3713   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3714   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3715   SDValue Load =
3716       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3717 
3718   // Prepare argument list to generate call.
3719   ArgListTy Args;
3720   ArgListEntry Entry;
3721   Entry.Node = Load;
3722   Entry.Ty = CallTy;
3723   Args.push_back(Entry);
3724 
3725   // Setup call to __tls_get_addr.
3726   TargetLowering::CallLoweringInfo CLI(DAG);
3727   CLI.setDebugLoc(DL)
3728       .setChain(DAG.getEntryNode())
3729       .setLibCallee(CallingConv::C, CallTy,
3730                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3731                     std::move(Args));
3732 
3733   return LowerCallTo(CLI).first;
3734 }
3735 
3736 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3737                                                    SelectionDAG &DAG) const {
3738   SDLoc DL(Op);
3739   EVT Ty = Op.getValueType();
3740   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3741   int64_t Offset = N->getOffset();
3742   MVT XLenVT = Subtarget.getXLenVT();
3743 
3744   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3745 
3746   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3747       CallingConv::GHC)
3748     report_fatal_error("In GHC calling convention TLS is not supported");
3749 
3750   SDValue Addr;
3751   switch (Model) {
3752   case TLSModel::LocalExec:
3753     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3754     break;
3755   case TLSModel::InitialExec:
3756     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3757     break;
3758   case TLSModel::LocalDynamic:
3759   case TLSModel::GeneralDynamic:
3760     Addr = getDynamicTLSAddr(N, DAG);
3761     break;
3762   }
3763 
3764   // In order to maximise the opportunity for common subexpression elimination,
3765   // emit a separate ADD node for the global address offset instead of folding
3766   // it in the global address node. Later peephole optimisations may choose to
3767   // fold it back in when profitable.
3768   if (Offset != 0)
3769     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3770                        DAG.getConstant(Offset, DL, XLenVT));
3771   return Addr;
3772 }
3773 
3774 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3775   SDValue CondV = Op.getOperand(0);
3776   SDValue TrueV = Op.getOperand(1);
3777   SDValue FalseV = Op.getOperand(2);
3778   SDLoc DL(Op);
3779   MVT VT = Op.getSimpleValueType();
3780   MVT XLenVT = Subtarget.getXLenVT();
3781 
3782   // Lower vector SELECTs to VSELECTs by splatting the condition.
3783   if (VT.isVector()) {
3784     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3785     SDValue CondSplat = VT.isScalableVector()
3786                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3787                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3788     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3789   }
3790 
3791   // If the result type is XLenVT and CondV is the output of a SETCC node
3792   // which also operated on XLenVT inputs, then merge the SETCC node into the
3793   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3794   // compare+branch instructions. i.e.:
3795   // (select (setcc lhs, rhs, cc), truev, falsev)
3796   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3797   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3798       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3799     SDValue LHS = CondV.getOperand(0);
3800     SDValue RHS = CondV.getOperand(1);
3801     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3802     ISD::CondCode CCVal = CC->get();
3803 
3804     // Special case for a select of 2 constants that have a diffence of 1.
3805     // Normally this is done by DAGCombine, but if the select is introduced by
3806     // type legalization or op legalization, we miss it. Restricting to SETLT
3807     // case for now because that is what signed saturating add/sub need.
3808     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3809     // but we would probably want to swap the true/false values if the condition
3810     // is SETGE/SETLE to avoid an XORI.
3811     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3812         CCVal == ISD::SETLT) {
3813       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3814       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3815       if (TrueVal - 1 == FalseVal)
3816         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3817       if (TrueVal + 1 == FalseVal)
3818         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3819     }
3820 
3821     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3822 
3823     SDValue TargetCC = DAG.getCondCode(CCVal);
3824     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3825     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3826   }
3827 
3828   // Otherwise:
3829   // (select condv, truev, falsev)
3830   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3831   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3832   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3833 
3834   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3835 
3836   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3837 }
3838 
3839 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3840   SDValue CondV = Op.getOperand(1);
3841   SDLoc DL(Op);
3842   MVT XLenVT = Subtarget.getXLenVT();
3843 
3844   if (CondV.getOpcode() == ISD::SETCC &&
3845       CondV.getOperand(0).getValueType() == XLenVT) {
3846     SDValue LHS = CondV.getOperand(0);
3847     SDValue RHS = CondV.getOperand(1);
3848     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3849 
3850     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3851 
3852     SDValue TargetCC = DAG.getCondCode(CCVal);
3853     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3854                        LHS, RHS, TargetCC, Op.getOperand(2));
3855   }
3856 
3857   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3858                      CondV, DAG.getConstant(0, DL, XLenVT),
3859                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3860 }
3861 
3862 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3863   MachineFunction &MF = DAG.getMachineFunction();
3864   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3865 
3866   SDLoc DL(Op);
3867   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3868                                  getPointerTy(MF.getDataLayout()));
3869 
3870   // vastart just stores the address of the VarArgsFrameIndex slot into the
3871   // memory location argument.
3872   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3873   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3874                       MachinePointerInfo(SV));
3875 }
3876 
3877 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3878                                             SelectionDAG &DAG) const {
3879   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3880   MachineFunction &MF = DAG.getMachineFunction();
3881   MachineFrameInfo &MFI = MF.getFrameInfo();
3882   MFI.setFrameAddressIsTaken(true);
3883   Register FrameReg = RI.getFrameRegister(MF);
3884   int XLenInBytes = Subtarget.getXLen() / 8;
3885 
3886   EVT VT = Op.getValueType();
3887   SDLoc DL(Op);
3888   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3889   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3890   while (Depth--) {
3891     int Offset = -(XLenInBytes * 2);
3892     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3893                               DAG.getIntPtrConstant(Offset, DL));
3894     FrameAddr =
3895         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3896   }
3897   return FrameAddr;
3898 }
3899 
3900 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3901                                              SelectionDAG &DAG) const {
3902   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3903   MachineFunction &MF = DAG.getMachineFunction();
3904   MachineFrameInfo &MFI = MF.getFrameInfo();
3905   MFI.setReturnAddressIsTaken(true);
3906   MVT XLenVT = Subtarget.getXLenVT();
3907   int XLenInBytes = Subtarget.getXLen() / 8;
3908 
3909   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3910     return SDValue();
3911 
3912   EVT VT = Op.getValueType();
3913   SDLoc DL(Op);
3914   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3915   if (Depth) {
3916     int Off = -XLenInBytes;
3917     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3918     SDValue Offset = DAG.getConstant(Off, DL, VT);
3919     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3920                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3921                        MachinePointerInfo());
3922   }
3923 
3924   // Return the value of the return address register, marking it an implicit
3925   // live-in.
3926   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3927   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3928 }
3929 
3930 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3931                                                  SelectionDAG &DAG) const {
3932   SDLoc DL(Op);
3933   SDValue Lo = Op.getOperand(0);
3934   SDValue Hi = Op.getOperand(1);
3935   SDValue Shamt = Op.getOperand(2);
3936   EVT VT = Lo.getValueType();
3937 
3938   // if Shamt-XLEN < 0: // Shamt < XLEN
3939   //   Lo = Lo << Shamt
3940   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
3941   // else:
3942   //   Lo = 0
3943   //   Hi = Lo << (Shamt-XLEN)
3944 
3945   SDValue Zero = DAG.getConstant(0, DL, VT);
3946   SDValue One = DAG.getConstant(1, DL, VT);
3947   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3948   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3949   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3950   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
3951 
3952   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3953   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3954   SDValue ShiftRightLo =
3955       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
3956   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3957   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3958   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
3959 
3960   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3961 
3962   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3963   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3964 
3965   SDValue Parts[2] = {Lo, Hi};
3966   return DAG.getMergeValues(Parts, DL);
3967 }
3968 
3969 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
3970                                                   bool IsSRA) const {
3971   SDLoc DL(Op);
3972   SDValue Lo = Op.getOperand(0);
3973   SDValue Hi = Op.getOperand(1);
3974   SDValue Shamt = Op.getOperand(2);
3975   EVT VT = Lo.getValueType();
3976 
3977   // SRA expansion:
3978   //   if Shamt-XLEN < 0: // Shamt < XLEN
3979   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
3980   //     Hi = Hi >>s Shamt
3981   //   else:
3982   //     Lo = Hi >>s (Shamt-XLEN);
3983   //     Hi = Hi >>s (XLEN-1)
3984   //
3985   // SRL expansion:
3986   //   if Shamt-XLEN < 0: // Shamt < XLEN
3987   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
3988   //     Hi = Hi >>u Shamt
3989   //   else:
3990   //     Lo = Hi >>u (Shamt-XLEN);
3991   //     Hi = 0;
3992 
3993   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
3994 
3995   SDValue Zero = DAG.getConstant(0, DL, VT);
3996   SDValue One = DAG.getConstant(1, DL, VT);
3997   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3998   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3999   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4000   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4001 
4002   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
4003   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
4004   SDValue ShiftLeftHi =
4005       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
4006   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
4007   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
4008   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
4009   SDValue HiFalse =
4010       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
4011 
4012   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4013 
4014   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
4015   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4016 
4017   SDValue Parts[2] = {Lo, Hi};
4018   return DAG.getMergeValues(Parts, DL);
4019 }
4020 
4021 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
4022 // legal equivalently-sized i8 type, so we can use that as a go-between.
4023 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
4024                                                   SelectionDAG &DAG) const {
4025   SDLoc DL(Op);
4026   MVT VT = Op.getSimpleValueType();
4027   SDValue SplatVal = Op.getOperand(0);
4028   // All-zeros or all-ones splats are handled specially.
4029   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4030     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4031     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4032   }
4033   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4034     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4035     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4036   }
4037   MVT XLenVT = Subtarget.getXLenVT();
4038   assert(SplatVal.getValueType() == XLenVT &&
4039          "Unexpected type for i1 splat value");
4040   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4041   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4042                          DAG.getConstant(1, DL, XLenVT));
4043   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4044   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4045   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4046 }
4047 
4048 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4049 // illegal (currently only vXi64 RV32).
4050 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4051 // them to VMV_V_X_VL.
4052 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4053                                                      SelectionDAG &DAG) const {
4054   SDLoc DL(Op);
4055   MVT VecVT = Op.getSimpleValueType();
4056   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4057          "Unexpected SPLAT_VECTOR_PARTS lowering");
4058 
4059   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4060   SDValue Lo = Op.getOperand(0);
4061   SDValue Hi = Op.getOperand(1);
4062 
4063   if (VecVT.isFixedLengthVector()) {
4064     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4065     SDLoc DL(Op);
4066     SDValue Mask, VL;
4067     std::tie(Mask, VL) =
4068         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4069 
4070     SDValue Res =
4071         splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4072     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4073   }
4074 
4075   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4076     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4077     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4078     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4079     // node in order to try and match RVV vector/scalar instructions.
4080     if ((LoC >> 31) == HiC)
4081       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4082                          Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4083   }
4084 
4085   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4086   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4087       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4088       Hi.getConstantOperandVal(1) == 31)
4089     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4090                        DAG.getRegister(RISCV::X0, MVT::i32));
4091 
4092   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4093   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4094                      DAG.getUNDEF(VecVT), Lo, Hi,
4095                      DAG.getRegister(RISCV::X0, MVT::i32));
4096 }
4097 
4098 // Custom-lower extensions from mask vectors by using a vselect either with 1
4099 // for zero/any-extension or -1 for sign-extension:
4100 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4101 // Note that any-extension is lowered identically to zero-extension.
4102 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4103                                                 int64_t ExtTrueVal) const {
4104   SDLoc DL(Op);
4105   MVT VecVT = Op.getSimpleValueType();
4106   SDValue Src = Op.getOperand(0);
4107   // Only custom-lower extensions from mask types
4108   assert(Src.getValueType().isVector() &&
4109          Src.getValueType().getVectorElementType() == MVT::i1);
4110 
4111   if (VecVT.isScalableVector()) {
4112     SDValue SplatZero = DAG.getConstant(0, DL, VecVT);
4113     SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT);
4114     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4115   }
4116 
4117   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4118   MVT I1ContainerVT =
4119       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4120 
4121   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4122 
4123   SDValue Mask, VL;
4124   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4125 
4126   MVT XLenVT = Subtarget.getXLenVT();
4127   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4128   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4129 
4130   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4131                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4132   SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4133                              DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4134   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4135                                SplatTrueVal, SplatZero, VL);
4136 
4137   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4138 }
4139 
4140 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4141     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4142   MVT ExtVT = Op.getSimpleValueType();
4143   // Only custom-lower extensions from fixed-length vector types.
4144   if (!ExtVT.isFixedLengthVector())
4145     return Op;
4146   MVT VT = Op.getOperand(0).getSimpleValueType();
4147   // Grab the canonical container type for the extended type. Infer the smaller
4148   // type from that to ensure the same number of vector elements, as we know
4149   // the LMUL will be sufficient to hold the smaller type.
4150   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4151   // Get the extended container type manually to ensure the same number of
4152   // vector elements between source and dest.
4153   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4154                                      ContainerExtVT.getVectorElementCount());
4155 
4156   SDValue Op1 =
4157       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4158 
4159   SDLoc DL(Op);
4160   SDValue Mask, VL;
4161   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4162 
4163   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4164 
4165   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4166 }
4167 
4168 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4169 // setcc operation:
4170 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4171 SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op,
4172                                                       SelectionDAG &DAG) const {
4173   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNC;
4174   SDLoc DL(Op);
4175   EVT MaskVT = Op.getValueType();
4176   // Only expect to custom-lower truncations to mask types
4177   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4178          "Unexpected type for vector mask lowering");
4179   SDValue Src = Op.getOperand(0);
4180   MVT VecVT = Src.getSimpleValueType();
4181   SDValue Mask, VL;
4182   if (IsVPTrunc) {
4183     Mask = Op.getOperand(1);
4184     VL = Op.getOperand(2);
4185   }
4186   // If this is a fixed vector, we need to convert it to a scalable vector.
4187   MVT ContainerVT = VecVT;
4188 
4189   if (VecVT.isFixedLengthVector()) {
4190     ContainerVT = getContainerForFixedLengthVector(VecVT);
4191     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4192     if (IsVPTrunc) {
4193       MVT MaskContainerVT =
4194           getContainerForFixedLengthVector(Mask.getSimpleValueType());
4195       Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget);
4196     }
4197   }
4198 
4199   if (!IsVPTrunc) {
4200     std::tie(Mask, VL) =
4201         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4202   }
4203 
4204   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4205   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4206 
4207   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4208                          DAG.getUNDEF(ContainerVT), SplatOne, VL);
4209   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4210                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4211 
4212   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4213   SDValue Trunc =
4214       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4215   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4216                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4217   if (MaskVT.isFixedLengthVector())
4218     Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4219   return Trunc;
4220 }
4221 
4222 SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op,
4223                                                   SelectionDAG &DAG) const {
4224   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNC;
4225   SDLoc DL(Op);
4226 
4227   MVT VT = Op.getSimpleValueType();
4228   // Only custom-lower vector truncates
4229   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4230 
4231   // Truncates to mask types are handled differently
4232   if (VT.getVectorElementType() == MVT::i1)
4233     return lowerVectorMaskTruncLike(Op, DAG);
4234 
4235   // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
4236   // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
4237   // truncate by one power of two at a time.
4238   MVT DstEltVT = VT.getVectorElementType();
4239 
4240   SDValue Src = Op.getOperand(0);
4241   MVT SrcVT = Src.getSimpleValueType();
4242   MVT SrcEltVT = SrcVT.getVectorElementType();
4243 
4244   assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) &&
4245          isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
4246          "Unexpected vector truncate lowering");
4247 
4248   MVT ContainerVT = SrcVT;
4249   SDValue Mask, VL;
4250   if (IsVPTrunc) {
4251     Mask = Op.getOperand(1);
4252     VL = Op.getOperand(2);
4253   }
4254   if (SrcVT.isFixedLengthVector()) {
4255     ContainerVT = getContainerForFixedLengthVector(SrcVT);
4256     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4257     if (IsVPTrunc) {
4258       MVT MaskVT = getMaskTypeFor(ContainerVT);
4259       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4260     }
4261   }
4262 
4263   SDValue Result = Src;
4264   if (!IsVPTrunc) {
4265     std::tie(Mask, VL) =
4266         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4267   }
4268 
4269   LLVMContext &Context = *DAG.getContext();
4270   const ElementCount Count = ContainerVT.getVectorElementCount();
4271   do {
4272     SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
4273     EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
4274     Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
4275                          Mask, VL);
4276   } while (SrcEltVT != DstEltVT);
4277 
4278   if (SrcVT.isFixedLengthVector())
4279     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4280 
4281   return Result;
4282 }
4283 
4284 SDValue RISCVTargetLowering::lowerVectorFPRoundLike(SDValue Op,
4285                                                     SelectionDAG &DAG) const {
4286   bool IsVPFPTrunc = Op.getOpcode() == ISD::VP_FP_ROUND;
4287   // RVV can only do truncate fp to types half the size as the source. We
4288   // custom-lower f64->f16 rounds via RVV's round-to-odd float
4289   // conversion instruction.
4290   SDLoc DL(Op);
4291   MVT VT = Op.getSimpleValueType();
4292 
4293   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4294 
4295   SDValue Src = Op.getOperand(0);
4296   MVT SrcVT = Src.getSimpleValueType();
4297 
4298   bool IsDirectConv = VT.getVectorElementType() != MVT::f16 ||
4299                       SrcVT.getVectorElementType() != MVT::f64;
4300 
4301   // For FP_ROUND of scalable vectors, leave it to the pattern.
4302   if (!VT.isFixedLengthVector() && !IsVPFPTrunc && IsDirectConv)
4303     return Op;
4304 
4305   // Prepare any fixed-length vector operands.
4306   MVT ContainerVT = VT;
4307   SDValue Mask, VL;
4308   if (IsVPFPTrunc) {
4309     Mask = Op.getOperand(1);
4310     VL = Op.getOperand(2);
4311   }
4312   if (VT.isFixedLengthVector()) {
4313     MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
4314     ContainerVT =
4315         SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
4316     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
4317     if (IsVPFPTrunc) {
4318       MVT MaskVT = getMaskTypeFor(ContainerVT);
4319       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4320     }
4321   }
4322 
4323   if (!IsVPFPTrunc)
4324     std::tie(Mask, VL) =
4325         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4326 
4327   if (IsDirectConv) {
4328     Src = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, ContainerVT, Src, Mask, VL);
4329     if (VT.isFixedLengthVector())
4330       Src = convertFromScalableVector(VT, Src, DAG, Subtarget);
4331     return Src;
4332   }
4333 
4334   MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
4335   SDValue IntermediateRound =
4336       DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
4337   SDValue Round = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, ContainerVT,
4338                               IntermediateRound, Mask, VL);
4339   if (VT.isFixedLengthVector())
4340     return convertFromScalableVector(VT, Round, DAG, Subtarget);
4341   return Round;
4342 }
4343 
4344 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4345 // first position of a vector, and that vector is slid up to the insert index.
4346 // By limiting the active vector length to index+1 and merging with the
4347 // original vector (with an undisturbed tail policy for elements >= VL), we
4348 // achieve the desired result of leaving all elements untouched except the one
4349 // at VL-1, which is replaced with the desired value.
4350 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4351                                                     SelectionDAG &DAG) const {
4352   SDLoc DL(Op);
4353   MVT VecVT = Op.getSimpleValueType();
4354   SDValue Vec = Op.getOperand(0);
4355   SDValue Val = Op.getOperand(1);
4356   SDValue Idx = Op.getOperand(2);
4357 
4358   if (VecVT.getVectorElementType() == MVT::i1) {
4359     // FIXME: For now we just promote to an i8 vector and insert into that,
4360     // but this is probably not optimal.
4361     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4362     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4363     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4364     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4365   }
4366 
4367   MVT ContainerVT = VecVT;
4368   // If the operand is a fixed-length vector, convert to a scalable one.
4369   if (VecVT.isFixedLengthVector()) {
4370     ContainerVT = getContainerForFixedLengthVector(VecVT);
4371     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4372   }
4373 
4374   MVT XLenVT = Subtarget.getXLenVT();
4375 
4376   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4377   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4378   // Even i64-element vectors on RV32 can be lowered without scalar
4379   // legalization if the most-significant 32 bits of the value are not affected
4380   // by the sign-extension of the lower 32 bits.
4381   // TODO: We could also catch sign extensions of a 32-bit value.
4382   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4383     const auto *CVal = cast<ConstantSDNode>(Val);
4384     if (isInt<32>(CVal->getSExtValue())) {
4385       IsLegalInsert = true;
4386       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4387     }
4388   }
4389 
4390   SDValue Mask, VL;
4391   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4392 
4393   SDValue ValInVec;
4394 
4395   if (IsLegalInsert) {
4396     unsigned Opc =
4397         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4398     if (isNullConstant(Idx)) {
4399       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4400       if (!VecVT.isFixedLengthVector())
4401         return Vec;
4402       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4403     }
4404     ValInVec =
4405         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4406   } else {
4407     // On RV32, i64-element vectors must be specially handled to place the
4408     // value at element 0, by using two vslide1up instructions in sequence on
4409     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4410     // this.
4411     SDValue One = DAG.getConstant(1, DL, XLenVT);
4412     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4413     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4414     MVT I32ContainerVT =
4415         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4416     SDValue I32Mask =
4417         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4418     // Limit the active VL to two.
4419     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4420     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4421     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4422     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
4423                            DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
4424     // First slide in the hi value, then the lo in underneath it.
4425     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4426                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4427                            I32Mask, InsertI64VL);
4428     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4429                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4430                            I32Mask, InsertI64VL);
4431     // Bitcast back to the right container type.
4432     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4433   }
4434 
4435   // Now that the value is in a vector, slide it into position.
4436   SDValue InsertVL =
4437       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4438   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4439                                 ValInVec, Idx, Mask, InsertVL);
4440   if (!VecVT.isFixedLengthVector())
4441     return Slideup;
4442   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4443 }
4444 
4445 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4446 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4447 // types this is done using VMV_X_S to allow us to glean information about the
4448 // sign bits of the result.
4449 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4450                                                      SelectionDAG &DAG) const {
4451   SDLoc DL(Op);
4452   SDValue Idx = Op.getOperand(1);
4453   SDValue Vec = Op.getOperand(0);
4454   EVT EltVT = Op.getValueType();
4455   MVT VecVT = Vec.getSimpleValueType();
4456   MVT XLenVT = Subtarget.getXLenVT();
4457 
4458   if (VecVT.getVectorElementType() == MVT::i1) {
4459     if (VecVT.isFixedLengthVector()) {
4460       unsigned NumElts = VecVT.getVectorNumElements();
4461       if (NumElts >= 8) {
4462         MVT WideEltVT;
4463         unsigned WidenVecLen;
4464         SDValue ExtractElementIdx;
4465         SDValue ExtractBitIdx;
4466         unsigned MaxEEW = Subtarget.getELEN();
4467         MVT LargestEltVT = MVT::getIntegerVT(
4468             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4469         if (NumElts <= LargestEltVT.getSizeInBits()) {
4470           assert(isPowerOf2_32(NumElts) &&
4471                  "the number of elements should be power of 2");
4472           WideEltVT = MVT::getIntegerVT(NumElts);
4473           WidenVecLen = 1;
4474           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4475           ExtractBitIdx = Idx;
4476         } else {
4477           WideEltVT = LargestEltVT;
4478           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4479           // extract element index = index / element width
4480           ExtractElementIdx = DAG.getNode(
4481               ISD::SRL, DL, XLenVT, Idx,
4482               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4483           // mask bit index = index % element width
4484           ExtractBitIdx = DAG.getNode(
4485               ISD::AND, DL, XLenVT, Idx,
4486               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4487         }
4488         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4489         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4490         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4491                                          Vec, ExtractElementIdx);
4492         // Extract the bit from GPR.
4493         SDValue ShiftRight =
4494             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4495         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4496                            DAG.getConstant(1, DL, XLenVT));
4497       }
4498     }
4499     // Otherwise, promote to an i8 vector and extract from that.
4500     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4501     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4502     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4503   }
4504 
4505   // If this is a fixed vector, we need to convert it to a scalable vector.
4506   MVT ContainerVT = VecVT;
4507   if (VecVT.isFixedLengthVector()) {
4508     ContainerVT = getContainerForFixedLengthVector(VecVT);
4509     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4510   }
4511 
4512   // If the index is 0, the vector is already in the right position.
4513   if (!isNullConstant(Idx)) {
4514     // Use a VL of 1 to avoid processing more elements than we need.
4515     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4516     SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
4517     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4518                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4519   }
4520 
4521   if (!EltVT.isInteger()) {
4522     // Floating-point extracts are handled in TableGen.
4523     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4524                        DAG.getConstant(0, DL, XLenVT));
4525   }
4526 
4527   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4528   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4529 }
4530 
4531 // Some RVV intrinsics may claim that they want an integer operand to be
4532 // promoted or expanded.
4533 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
4534                                            const RISCVSubtarget &Subtarget) {
4535   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4536           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4537          "Unexpected opcode");
4538 
4539   if (!Subtarget.hasVInstructions())
4540     return SDValue();
4541 
4542   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4543   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4544   SDLoc DL(Op);
4545 
4546   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4547       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4548   if (!II || !II->hasScalarOperand())
4549     return SDValue();
4550 
4551   unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
4552   assert(SplatOp < Op.getNumOperands());
4553 
4554   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4555   SDValue &ScalarOp = Operands[SplatOp];
4556   MVT OpVT = ScalarOp.getSimpleValueType();
4557   MVT XLenVT = Subtarget.getXLenVT();
4558 
4559   // If this isn't a scalar, or its type is XLenVT we're done.
4560   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4561     return SDValue();
4562 
4563   // Simplest case is that the operand needs to be promoted to XLenVT.
4564   if (OpVT.bitsLT(XLenVT)) {
4565     // If the operand is a constant, sign extend to increase our chances
4566     // of being able to use a .vi instruction. ANY_EXTEND would become a
4567     // a zero extend and the simm5 check in isel would fail.
4568     // FIXME: Should we ignore the upper bits in isel instead?
4569     unsigned ExtOpc =
4570         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4571     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4572     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4573   }
4574 
4575   // Use the previous operand to get the vXi64 VT. The result might be a mask
4576   // VT for compares. Using the previous operand assumes that the previous
4577   // operand will never have a smaller element size than a scalar operand and
4578   // that a widening operation never uses SEW=64.
4579   // NOTE: If this fails the below assert, we can probably just find the
4580   // element count from any operand or result and use it to construct the VT.
4581   assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
4582   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4583 
4584   // The more complex case is when the scalar is larger than XLenVT.
4585   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4586          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4587 
4588   // If this is a sign-extended 32-bit value, we can truncate it and rely on the
4589   // instruction to sign-extend since SEW>XLEN.
4590   if (DAG.ComputeNumSignBits(ScalarOp) > 32) {
4591     ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp);
4592     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4593   }
4594 
4595   switch (IntNo) {
4596   case Intrinsic::riscv_vslide1up:
4597   case Intrinsic::riscv_vslide1down:
4598   case Intrinsic::riscv_vslide1up_mask:
4599   case Intrinsic::riscv_vslide1down_mask: {
4600     // We need to special case these when the scalar is larger than XLen.
4601     unsigned NumOps = Op.getNumOperands();
4602     bool IsMasked = NumOps == 7;
4603 
4604     // Convert the vector source to the equivalent nxvXi32 vector.
4605     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4606     SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
4607 
4608     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4609                                    DAG.getConstant(0, DL, XLenVT));
4610     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4611                                    DAG.getConstant(1, DL, XLenVT));
4612 
4613     // Double the VL since we halved SEW.
4614     SDValue AVL = getVLOperand(Op);
4615     SDValue I32VL;
4616 
4617     // Optimize for constant AVL
4618     if (isa<ConstantSDNode>(AVL)) {
4619       unsigned EltSize = VT.getScalarSizeInBits();
4620       unsigned MinSize = VT.getSizeInBits().getKnownMinValue();
4621 
4622       unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
4623       unsigned MaxVLMAX =
4624           RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
4625 
4626       unsigned VectorBitsMin = Subtarget.getRealMinVLen();
4627       unsigned MinVLMAX =
4628           RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
4629 
4630       uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue();
4631       if (AVLInt <= MinVLMAX) {
4632         I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
4633       } else if (AVLInt >= 2 * MaxVLMAX) {
4634         // Just set vl to VLMAX in this situation
4635         RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT);
4636         SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4637         unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits());
4638         SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4639         SDValue SETVLMAX = DAG.getTargetConstant(
4640             Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32);
4641         I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW,
4642                             LMUL);
4643       } else {
4644         // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
4645         // is related to the hardware implementation.
4646         // So let the following code handle
4647       }
4648     }
4649     if (!I32VL) {
4650       RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
4651       SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4652       unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
4653       SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4654       SDValue SETVL =
4655           DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32);
4656       // Using vsetvli instruction to get actually used length which related to
4657       // the hardware implementation
4658       SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
4659                                SEW, LMUL);
4660       I32VL =
4661           DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4662     }
4663 
4664     SDValue I32Mask = getAllOnesMask(I32VT, I32VL, DL, DAG);
4665 
4666     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4667     // instructions.
4668     SDValue Passthru;
4669     if (IsMasked)
4670       Passthru = DAG.getUNDEF(I32VT);
4671     else
4672       Passthru = DAG.getBitcast(I32VT, Operands[1]);
4673 
4674     if (IntNo == Intrinsic::riscv_vslide1up ||
4675         IntNo == Intrinsic::riscv_vslide1up_mask) {
4676       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4677                         ScalarHi, I32Mask, I32VL);
4678       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4679                         ScalarLo, I32Mask, I32VL);
4680     } else {
4681       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4682                         ScalarLo, I32Mask, I32VL);
4683       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4684                         ScalarHi, I32Mask, I32VL);
4685     }
4686 
4687     // Convert back to nxvXi64.
4688     Vec = DAG.getBitcast(VT, Vec);
4689 
4690     if (!IsMasked)
4691       return Vec;
4692     // Apply mask after the operation.
4693     SDValue Mask = Operands[NumOps - 3];
4694     SDValue MaskedOff = Operands[1];
4695     // Assume Policy operand is the last operand.
4696     uint64_t Policy =
4697         cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue();
4698     // We don't need to select maskedoff if it's undef.
4699     if (MaskedOff.isUndef())
4700       return Vec;
4701     // TAMU
4702     if (Policy == RISCVII::TAIL_AGNOSTIC)
4703       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4704                          AVL);
4705     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4706     // It's fine because vmerge does not care mask policy.
4707     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff,
4708                        AVL);
4709   }
4710   }
4711 
4712   // We need to convert the scalar to a splat vector.
4713   SDValue VL = getVLOperand(Op);
4714   assert(VL.getValueType() == XLenVT);
4715   ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
4716   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4717 }
4718 
4719 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4720                                                      SelectionDAG &DAG) const {
4721   unsigned IntNo = Op.getConstantOperandVal(0);
4722   SDLoc DL(Op);
4723   MVT XLenVT = Subtarget.getXLenVT();
4724 
4725   switch (IntNo) {
4726   default:
4727     break; // Don't custom lower most intrinsics.
4728   case Intrinsic::thread_pointer: {
4729     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4730     return DAG.getRegister(RISCV::X4, PtrVT);
4731   }
4732   case Intrinsic::riscv_orc_b:
4733   case Intrinsic::riscv_brev8: {
4734     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4735     unsigned Opc =
4736         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4737     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4738                        DAG.getConstant(7, DL, XLenVT));
4739   }
4740   case Intrinsic::riscv_grev:
4741   case Intrinsic::riscv_gorc: {
4742     unsigned Opc =
4743         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4744     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4745   }
4746   case Intrinsic::riscv_zip:
4747   case Intrinsic::riscv_unzip: {
4748     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4749     // For i32 the immediate is 15. For i64 the immediate is 31.
4750     unsigned Opc =
4751         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4752     unsigned BitWidth = Op.getValueSizeInBits();
4753     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4754     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4755                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4756   }
4757   case Intrinsic::riscv_shfl:
4758   case Intrinsic::riscv_unshfl: {
4759     unsigned Opc =
4760         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4761     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4762   }
4763   case Intrinsic::riscv_bcompress:
4764   case Intrinsic::riscv_bdecompress: {
4765     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4766                                                        : RISCVISD::BDECOMPRESS;
4767     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4768   }
4769   case Intrinsic::riscv_bfp:
4770     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4771                        Op.getOperand(2));
4772   case Intrinsic::riscv_fsl:
4773     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4774                        Op.getOperand(2), Op.getOperand(3));
4775   case Intrinsic::riscv_fsr:
4776     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4777                        Op.getOperand(2), Op.getOperand(3));
4778   case Intrinsic::riscv_vmv_x_s:
4779     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4780     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4781                        Op.getOperand(1));
4782   case Intrinsic::riscv_vmv_v_x:
4783     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4784                             Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
4785                             Subtarget);
4786   case Intrinsic::riscv_vfmv_v_f:
4787     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4788                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4789   case Intrinsic::riscv_vmv_s_x: {
4790     SDValue Scalar = Op.getOperand(2);
4791 
4792     if (Scalar.getValueType().bitsLE(XLenVT)) {
4793       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4794       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4795                          Op.getOperand(1), Scalar, Op.getOperand(3));
4796     }
4797 
4798     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4799 
4800     // This is an i64 value that lives in two scalar registers. We have to
4801     // insert this in a convoluted way. First we build vXi64 splat containing
4802     // the two values that we assemble using some bit math. Next we'll use
4803     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4804     // to merge element 0 from our splat into the source vector.
4805     // FIXME: This is probably not the best way to do this, but it is
4806     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4807     // point.
4808     //   sw lo, (a0)
4809     //   sw hi, 4(a0)
4810     //   vlse vX, (a0)
4811     //
4812     //   vid.v      vVid
4813     //   vmseq.vx   mMask, vVid, 0
4814     //   vmerge.vvm vDest, vSrc, vVal, mMask
4815     MVT VT = Op.getSimpleValueType();
4816     SDValue Vec = Op.getOperand(1);
4817     SDValue VL = getVLOperand(Op);
4818 
4819     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
4820     if (Op.getOperand(1).isUndef())
4821       return SplattedVal;
4822     SDValue SplattedIdx =
4823         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
4824                     DAG.getConstant(0, DL, MVT::i32), VL);
4825 
4826     MVT MaskVT = getMaskTypeFor(VT);
4827     SDValue Mask = getAllOnesMask(VT, VL, DL, DAG);
4828     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4829     SDValue SelectCond =
4830         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4831                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4832     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4833                        Vec, VL);
4834   }
4835   }
4836 
4837   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4838 }
4839 
4840 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4841                                                     SelectionDAG &DAG) const {
4842   unsigned IntNo = Op.getConstantOperandVal(1);
4843   switch (IntNo) {
4844   default:
4845     break;
4846   case Intrinsic::riscv_masked_strided_load: {
4847     SDLoc DL(Op);
4848     MVT XLenVT = Subtarget.getXLenVT();
4849 
4850     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4851     // the selection of the masked intrinsics doesn't do this for us.
4852     SDValue Mask = Op.getOperand(5);
4853     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4854 
4855     MVT VT = Op->getSimpleValueType(0);
4856     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4857 
4858     SDValue PassThru = Op.getOperand(2);
4859     if (!IsUnmasked) {
4860       MVT MaskVT = getMaskTypeFor(ContainerVT);
4861       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4862       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4863     }
4864 
4865     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4866 
4867     SDValue IntID = DAG.getTargetConstant(
4868         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4869         XLenVT);
4870 
4871     auto *Load = cast<MemIntrinsicSDNode>(Op);
4872     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4873     if (IsUnmasked)
4874       Ops.push_back(DAG.getUNDEF(ContainerVT));
4875     else
4876       Ops.push_back(PassThru);
4877     Ops.push_back(Op.getOperand(3)); // Ptr
4878     Ops.push_back(Op.getOperand(4)); // Stride
4879     if (!IsUnmasked)
4880       Ops.push_back(Mask);
4881     Ops.push_back(VL);
4882     if (!IsUnmasked) {
4883       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4884       Ops.push_back(Policy);
4885     }
4886 
4887     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4888     SDValue Result =
4889         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4890                                 Load->getMemoryVT(), Load->getMemOperand());
4891     SDValue Chain = Result.getValue(1);
4892     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4893     return DAG.getMergeValues({Result, Chain}, DL);
4894   }
4895   case Intrinsic::riscv_seg2_load:
4896   case Intrinsic::riscv_seg3_load:
4897   case Intrinsic::riscv_seg4_load:
4898   case Intrinsic::riscv_seg5_load:
4899   case Intrinsic::riscv_seg6_load:
4900   case Intrinsic::riscv_seg7_load:
4901   case Intrinsic::riscv_seg8_load: {
4902     SDLoc DL(Op);
4903     static const Intrinsic::ID VlsegInts[7] = {
4904         Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
4905         Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
4906         Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
4907         Intrinsic::riscv_vlseg8};
4908     unsigned NF = Op->getNumValues() - 1;
4909     assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
4910     MVT XLenVT = Subtarget.getXLenVT();
4911     MVT VT = Op->getSimpleValueType(0);
4912     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4913 
4914     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4915     SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
4916     auto *Load = cast<MemIntrinsicSDNode>(Op);
4917     SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT);
4918     ContainerVTs.push_back(MVT::Other);
4919     SDVTList VTs = DAG.getVTList(ContainerVTs);
4920     SDValue Result =
4921         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs,
4922                                 {Load->getChain(), IntID, Op.getOperand(2), VL},
4923                                 Load->getMemoryVT(), Load->getMemOperand());
4924     SmallVector<SDValue, 9> Results;
4925     for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++)
4926       Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx),
4927                                                   DAG, Subtarget));
4928     Results.push_back(Result.getValue(NF));
4929     return DAG.getMergeValues(Results, DL);
4930   }
4931   }
4932 
4933   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4934 }
4935 
4936 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4937                                                  SelectionDAG &DAG) const {
4938   unsigned IntNo = Op.getConstantOperandVal(1);
4939   switch (IntNo) {
4940   default:
4941     break;
4942   case Intrinsic::riscv_masked_strided_store: {
4943     SDLoc DL(Op);
4944     MVT XLenVT = Subtarget.getXLenVT();
4945 
4946     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4947     // the selection of the masked intrinsics doesn't do this for us.
4948     SDValue Mask = Op.getOperand(5);
4949     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4950 
4951     SDValue Val = Op.getOperand(2);
4952     MVT VT = Val.getSimpleValueType();
4953     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4954 
4955     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4956     if (!IsUnmasked) {
4957       MVT MaskVT = getMaskTypeFor(ContainerVT);
4958       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4959     }
4960 
4961     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4962 
4963     SDValue IntID = DAG.getTargetConstant(
4964         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
4965         XLenVT);
4966 
4967     auto *Store = cast<MemIntrinsicSDNode>(Op);
4968     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
4969     Ops.push_back(Val);
4970     Ops.push_back(Op.getOperand(3)); // Ptr
4971     Ops.push_back(Op.getOperand(4)); // Stride
4972     if (!IsUnmasked)
4973       Ops.push_back(Mask);
4974     Ops.push_back(VL);
4975 
4976     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
4977                                    Ops, Store->getMemoryVT(),
4978                                    Store->getMemOperand());
4979   }
4980   }
4981 
4982   return SDValue();
4983 }
4984 
4985 static MVT getLMUL1VT(MVT VT) {
4986   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
4987          "Unexpected vector MVT");
4988   return MVT::getScalableVectorVT(
4989       VT.getVectorElementType(),
4990       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
4991 }
4992 
4993 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
4994   switch (ISDOpcode) {
4995   default:
4996     llvm_unreachable("Unhandled reduction");
4997   case ISD::VECREDUCE_ADD:
4998     return RISCVISD::VECREDUCE_ADD_VL;
4999   case ISD::VECREDUCE_UMAX:
5000     return RISCVISD::VECREDUCE_UMAX_VL;
5001   case ISD::VECREDUCE_SMAX:
5002     return RISCVISD::VECREDUCE_SMAX_VL;
5003   case ISD::VECREDUCE_UMIN:
5004     return RISCVISD::VECREDUCE_UMIN_VL;
5005   case ISD::VECREDUCE_SMIN:
5006     return RISCVISD::VECREDUCE_SMIN_VL;
5007   case ISD::VECREDUCE_AND:
5008     return RISCVISD::VECREDUCE_AND_VL;
5009   case ISD::VECREDUCE_OR:
5010     return RISCVISD::VECREDUCE_OR_VL;
5011   case ISD::VECREDUCE_XOR:
5012     return RISCVISD::VECREDUCE_XOR_VL;
5013   }
5014 }
5015 
5016 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
5017                                                          SelectionDAG &DAG,
5018                                                          bool IsVP) const {
5019   SDLoc DL(Op);
5020   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
5021   MVT VecVT = Vec.getSimpleValueType();
5022   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
5023           Op.getOpcode() == ISD::VECREDUCE_OR ||
5024           Op.getOpcode() == ISD::VECREDUCE_XOR ||
5025           Op.getOpcode() == ISD::VP_REDUCE_AND ||
5026           Op.getOpcode() == ISD::VP_REDUCE_OR ||
5027           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
5028          "Unexpected reduction lowering");
5029 
5030   MVT XLenVT = Subtarget.getXLenVT();
5031   assert(Op.getValueType() == XLenVT &&
5032          "Expected reduction output to be legalized to XLenVT");
5033 
5034   MVT ContainerVT = VecVT;
5035   if (VecVT.isFixedLengthVector()) {
5036     ContainerVT = getContainerForFixedLengthVector(VecVT);
5037     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5038   }
5039 
5040   SDValue Mask, VL;
5041   if (IsVP) {
5042     Mask = Op.getOperand(2);
5043     VL = Op.getOperand(3);
5044   } else {
5045     std::tie(Mask, VL) =
5046         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5047   }
5048 
5049   unsigned BaseOpc;
5050   ISD::CondCode CC;
5051   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5052 
5053   switch (Op.getOpcode()) {
5054   default:
5055     llvm_unreachable("Unhandled reduction");
5056   case ISD::VECREDUCE_AND:
5057   case ISD::VP_REDUCE_AND: {
5058     // vcpop ~x == 0
5059     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5060     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5061     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5062     CC = ISD::SETEQ;
5063     BaseOpc = ISD::AND;
5064     break;
5065   }
5066   case ISD::VECREDUCE_OR:
5067   case ISD::VP_REDUCE_OR:
5068     // vcpop x != 0
5069     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5070     CC = ISD::SETNE;
5071     BaseOpc = ISD::OR;
5072     break;
5073   case ISD::VECREDUCE_XOR:
5074   case ISD::VP_REDUCE_XOR: {
5075     // ((vcpop x) & 1) != 0
5076     SDValue One = DAG.getConstant(1, DL, XLenVT);
5077     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5078     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5079     CC = ISD::SETNE;
5080     BaseOpc = ISD::XOR;
5081     break;
5082   }
5083   }
5084 
5085   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5086 
5087   if (!IsVP)
5088     return SetCC;
5089 
5090   // Now include the start value in the operation.
5091   // Note that we must return the start value when no elements are operated
5092   // upon. The vcpop instructions we've emitted in each case above will return
5093   // 0 for an inactive vector, and so we've already received the neutral value:
5094   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5095   // can simply include the start value.
5096   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5097 }
5098 
5099 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5100                                             SelectionDAG &DAG) const {
5101   SDLoc DL(Op);
5102   SDValue Vec = Op.getOperand(0);
5103   EVT VecEVT = Vec.getValueType();
5104 
5105   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5106 
5107   // Due to ordering in legalize types we may have a vector type that needs to
5108   // be split. Do that manually so we can get down to a legal type.
5109   while (getTypeAction(*DAG.getContext(), VecEVT) ==
5110          TargetLowering::TypeSplitVector) {
5111     SDValue Lo, Hi;
5112     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5113     VecEVT = Lo.getValueType();
5114     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5115   }
5116 
5117   // TODO: The type may need to be widened rather than split. Or widened before
5118   // it can be split.
5119   if (!isTypeLegal(VecEVT))
5120     return SDValue();
5121 
5122   MVT VecVT = VecEVT.getSimpleVT();
5123   MVT VecEltVT = VecVT.getVectorElementType();
5124   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5125 
5126   MVT ContainerVT = VecVT;
5127   if (VecVT.isFixedLengthVector()) {
5128     ContainerVT = getContainerForFixedLengthVector(VecVT);
5129     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5130   }
5131 
5132   MVT M1VT = getLMUL1VT(ContainerVT);
5133   MVT XLenVT = Subtarget.getXLenVT();
5134 
5135   SDValue Mask, VL;
5136   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5137 
5138   SDValue NeutralElem =
5139       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5140   SDValue IdentitySplat =
5141       lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
5142                        M1VT, DL, DAG, Subtarget);
5143   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5144                                   IdentitySplat, Mask, VL);
5145   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5146                              DAG.getConstant(0, DL, XLenVT));
5147   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5148 }
5149 
5150 // Given a reduction op, this function returns the matching reduction opcode,
5151 // the vector SDValue and the scalar SDValue required to lower this to a
5152 // RISCVISD node.
5153 static std::tuple<unsigned, SDValue, SDValue>
5154 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5155   SDLoc DL(Op);
5156   auto Flags = Op->getFlags();
5157   unsigned Opcode = Op.getOpcode();
5158   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5159   switch (Opcode) {
5160   default:
5161     llvm_unreachable("Unhandled reduction");
5162   case ISD::VECREDUCE_FADD: {
5163     // Use positive zero if we can. It is cheaper to materialize.
5164     SDValue Zero =
5165         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5166     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5167   }
5168   case ISD::VECREDUCE_SEQ_FADD:
5169     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5170                            Op.getOperand(0));
5171   case ISD::VECREDUCE_FMIN:
5172     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5173                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5174   case ISD::VECREDUCE_FMAX:
5175     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5176                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5177   }
5178 }
5179 
5180 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5181                                               SelectionDAG &DAG) const {
5182   SDLoc DL(Op);
5183   MVT VecEltVT = Op.getSimpleValueType();
5184 
5185   unsigned RVVOpcode;
5186   SDValue VectorVal, ScalarVal;
5187   std::tie(RVVOpcode, VectorVal, ScalarVal) =
5188       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5189   MVT VecVT = VectorVal.getSimpleValueType();
5190 
5191   MVT ContainerVT = VecVT;
5192   if (VecVT.isFixedLengthVector()) {
5193     ContainerVT = getContainerForFixedLengthVector(VecVT);
5194     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5195   }
5196 
5197   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5198   MVT XLenVT = Subtarget.getXLenVT();
5199 
5200   SDValue Mask, VL;
5201   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5202 
5203   SDValue ScalarSplat =
5204       lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
5205                        M1VT, DL, DAG, Subtarget);
5206   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5207                                   VectorVal, ScalarSplat, Mask, VL);
5208   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5209                      DAG.getConstant(0, DL, XLenVT));
5210 }
5211 
5212 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5213   switch (ISDOpcode) {
5214   default:
5215     llvm_unreachable("Unhandled reduction");
5216   case ISD::VP_REDUCE_ADD:
5217     return RISCVISD::VECREDUCE_ADD_VL;
5218   case ISD::VP_REDUCE_UMAX:
5219     return RISCVISD::VECREDUCE_UMAX_VL;
5220   case ISD::VP_REDUCE_SMAX:
5221     return RISCVISD::VECREDUCE_SMAX_VL;
5222   case ISD::VP_REDUCE_UMIN:
5223     return RISCVISD::VECREDUCE_UMIN_VL;
5224   case ISD::VP_REDUCE_SMIN:
5225     return RISCVISD::VECREDUCE_SMIN_VL;
5226   case ISD::VP_REDUCE_AND:
5227     return RISCVISD::VECREDUCE_AND_VL;
5228   case ISD::VP_REDUCE_OR:
5229     return RISCVISD::VECREDUCE_OR_VL;
5230   case ISD::VP_REDUCE_XOR:
5231     return RISCVISD::VECREDUCE_XOR_VL;
5232   case ISD::VP_REDUCE_FADD:
5233     return RISCVISD::VECREDUCE_FADD_VL;
5234   case ISD::VP_REDUCE_SEQ_FADD:
5235     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5236   case ISD::VP_REDUCE_FMAX:
5237     return RISCVISD::VECREDUCE_FMAX_VL;
5238   case ISD::VP_REDUCE_FMIN:
5239     return RISCVISD::VECREDUCE_FMIN_VL;
5240   }
5241 }
5242 
5243 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5244                                            SelectionDAG &DAG) const {
5245   SDLoc DL(Op);
5246   SDValue Vec = Op.getOperand(1);
5247   EVT VecEVT = Vec.getValueType();
5248 
5249   // TODO: The type may need to be widened rather than split. Or widened before
5250   // it can be split.
5251   if (!isTypeLegal(VecEVT))
5252     return SDValue();
5253 
5254   MVT VecVT = VecEVT.getSimpleVT();
5255   MVT VecEltVT = VecVT.getVectorElementType();
5256   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5257 
5258   MVT ContainerVT = VecVT;
5259   if (VecVT.isFixedLengthVector()) {
5260     ContainerVT = getContainerForFixedLengthVector(VecVT);
5261     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5262   }
5263 
5264   SDValue VL = Op.getOperand(3);
5265   SDValue Mask = Op.getOperand(2);
5266 
5267   MVT M1VT = getLMUL1VT(ContainerVT);
5268   MVT XLenVT = Subtarget.getXLenVT();
5269   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5270 
5271   SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
5272                                         DAG.getConstant(1, DL, XLenVT), M1VT,
5273                                         DL, DAG, Subtarget);
5274   SDValue Reduction =
5275       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5276   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5277                              DAG.getConstant(0, DL, XLenVT));
5278   if (!VecVT.isInteger())
5279     return Elt0;
5280   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5281 }
5282 
5283 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5284                                                    SelectionDAG &DAG) const {
5285   SDValue Vec = Op.getOperand(0);
5286   SDValue SubVec = Op.getOperand(1);
5287   MVT VecVT = Vec.getSimpleValueType();
5288   MVT SubVecVT = SubVec.getSimpleValueType();
5289 
5290   SDLoc DL(Op);
5291   MVT XLenVT = Subtarget.getXLenVT();
5292   unsigned OrigIdx = Op.getConstantOperandVal(2);
5293   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5294 
5295   // We don't have the ability to slide mask vectors up indexed by their i1
5296   // elements; the smallest we can do is i8. Often we are able to bitcast to
5297   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5298   // into a scalable one, we might not necessarily have enough scalable
5299   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5300   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5301       (OrigIdx != 0 || !Vec.isUndef())) {
5302     if (VecVT.getVectorMinNumElements() >= 8 &&
5303         SubVecVT.getVectorMinNumElements() >= 8) {
5304       assert(OrigIdx % 8 == 0 && "Invalid index");
5305       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5306              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5307              "Unexpected mask vector lowering");
5308       OrigIdx /= 8;
5309       SubVecVT =
5310           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5311                            SubVecVT.isScalableVector());
5312       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5313                                VecVT.isScalableVector());
5314       Vec = DAG.getBitcast(VecVT, Vec);
5315       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5316     } else {
5317       // We can't slide this mask vector up indexed by its i1 elements.
5318       // This poses a problem when we wish to insert a scalable vector which
5319       // can't be re-expressed as a larger type. Just choose the slow path and
5320       // extend to a larger type, then truncate back down.
5321       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5322       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5323       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5324       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5325       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5326                         Op.getOperand(2));
5327       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5328       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5329     }
5330   }
5331 
5332   // If the subvector vector is a fixed-length type, we cannot use subregister
5333   // manipulation to simplify the codegen; we don't know which register of a
5334   // LMUL group contains the specific subvector as we only know the minimum
5335   // register size. Therefore we must slide the vector group up the full
5336   // amount.
5337   if (SubVecVT.isFixedLengthVector()) {
5338     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5339       return Op;
5340     MVT ContainerVT = VecVT;
5341     if (VecVT.isFixedLengthVector()) {
5342       ContainerVT = getContainerForFixedLengthVector(VecVT);
5343       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5344     }
5345     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5346                          DAG.getUNDEF(ContainerVT), SubVec,
5347                          DAG.getConstant(0, DL, XLenVT));
5348     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5349       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5350       return DAG.getBitcast(Op.getValueType(), SubVec);
5351     }
5352     SDValue Mask =
5353         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5354     // Set the vector length to only the number of elements we care about. Note
5355     // that for slideup this includes the offset.
5356     SDValue VL =
5357         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5358     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5359     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5360                                   SubVec, SlideupAmt, Mask, VL);
5361     if (VecVT.isFixedLengthVector())
5362       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5363     return DAG.getBitcast(Op.getValueType(), Slideup);
5364   }
5365 
5366   unsigned SubRegIdx, RemIdx;
5367   std::tie(SubRegIdx, RemIdx) =
5368       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5369           VecVT, SubVecVT, OrigIdx, TRI);
5370 
5371   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5372   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5373                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5374                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5375 
5376   // 1. If the Idx has been completely eliminated and this subvector's size is
5377   // a vector register or a multiple thereof, or the surrounding elements are
5378   // undef, then this is a subvector insert which naturally aligns to a vector
5379   // register. These can easily be handled using subregister manipulation.
5380   // 2. If the subvector is smaller than a vector register, then the insertion
5381   // must preserve the undisturbed elements of the register. We do this by
5382   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5383   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5384   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5385   // LMUL=1 type back into the larger vector (resolving to another subregister
5386   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5387   // to avoid allocating a large register group to hold our subvector.
5388   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5389     return Op;
5390 
5391   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5392   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5393   // (in our case undisturbed). This means we can set up a subvector insertion
5394   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5395   // size of the subvector.
5396   MVT InterSubVT = VecVT;
5397   SDValue AlignedExtract = Vec;
5398   unsigned AlignedIdx = OrigIdx - RemIdx;
5399   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5400     InterSubVT = getLMUL1VT(VecVT);
5401     // Extract a subvector equal to the nearest full vector register type. This
5402     // should resolve to a EXTRACT_SUBREG instruction.
5403     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5404                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5405   }
5406 
5407   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5408   // For scalable vectors this must be further multiplied by vscale.
5409   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5410 
5411   SDValue Mask, VL;
5412   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5413 
5414   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5415   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5416   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5417   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5418 
5419   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5420                        DAG.getUNDEF(InterSubVT), SubVec,
5421                        DAG.getConstant(0, DL, XLenVT));
5422 
5423   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5424                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5425 
5426   // If required, insert this subvector back into the correct vector register.
5427   // This should resolve to an INSERT_SUBREG instruction.
5428   if (VecVT.bitsGT(InterSubVT))
5429     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5430                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5431 
5432   // We might have bitcast from a mask type: cast back to the original type if
5433   // required.
5434   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5435 }
5436 
5437 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5438                                                     SelectionDAG &DAG) const {
5439   SDValue Vec = Op.getOperand(0);
5440   MVT SubVecVT = Op.getSimpleValueType();
5441   MVT VecVT = Vec.getSimpleValueType();
5442 
5443   SDLoc DL(Op);
5444   MVT XLenVT = Subtarget.getXLenVT();
5445   unsigned OrigIdx = Op.getConstantOperandVal(1);
5446   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5447 
5448   // We don't have the ability to slide mask vectors down indexed by their i1
5449   // elements; the smallest we can do is i8. Often we are able to bitcast to
5450   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5451   // from a scalable one, we might not necessarily have enough scalable
5452   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5453   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5454     if (VecVT.getVectorMinNumElements() >= 8 &&
5455         SubVecVT.getVectorMinNumElements() >= 8) {
5456       assert(OrigIdx % 8 == 0 && "Invalid index");
5457       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5458              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5459              "Unexpected mask vector lowering");
5460       OrigIdx /= 8;
5461       SubVecVT =
5462           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5463                            SubVecVT.isScalableVector());
5464       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5465                                VecVT.isScalableVector());
5466       Vec = DAG.getBitcast(VecVT, Vec);
5467     } else {
5468       // We can't slide this mask vector down, indexed by its i1 elements.
5469       // This poses a problem when we wish to extract a scalable vector which
5470       // can't be re-expressed as a larger type. Just choose the slow path and
5471       // extend to a larger type, then truncate back down.
5472       // TODO: We could probably improve this when extracting certain fixed
5473       // from fixed, where we can extract as i8 and shift the correct element
5474       // right to reach the desired subvector?
5475       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5476       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5477       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5478       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5479                         Op.getOperand(1));
5480       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5481       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5482     }
5483   }
5484 
5485   // If the subvector vector is a fixed-length type, we cannot use subregister
5486   // manipulation to simplify the codegen; we don't know which register of a
5487   // LMUL group contains the specific subvector as we only know the minimum
5488   // register size. Therefore we must slide the vector group down the full
5489   // amount.
5490   if (SubVecVT.isFixedLengthVector()) {
5491     // With an index of 0 this is a cast-like subvector, which can be performed
5492     // with subregister operations.
5493     if (OrigIdx == 0)
5494       return Op;
5495     MVT ContainerVT = VecVT;
5496     if (VecVT.isFixedLengthVector()) {
5497       ContainerVT = getContainerForFixedLengthVector(VecVT);
5498       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5499     }
5500     SDValue Mask =
5501         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5502     // Set the vector length to only the number of elements we care about. This
5503     // avoids sliding down elements we're going to discard straight away.
5504     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5505     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5506     SDValue Slidedown =
5507         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5508                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5509     // Now we can use a cast-like subvector extract to get the result.
5510     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5511                             DAG.getConstant(0, DL, XLenVT));
5512     return DAG.getBitcast(Op.getValueType(), Slidedown);
5513   }
5514 
5515   unsigned SubRegIdx, RemIdx;
5516   std::tie(SubRegIdx, RemIdx) =
5517       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5518           VecVT, SubVecVT, OrigIdx, TRI);
5519 
5520   // If the Idx has been completely eliminated then this is a subvector extract
5521   // which naturally aligns to a vector register. These can easily be handled
5522   // using subregister manipulation.
5523   if (RemIdx == 0)
5524     return Op;
5525 
5526   // Else we must shift our vector register directly to extract the subvector.
5527   // Do this using VSLIDEDOWN.
5528 
5529   // If the vector type is an LMUL-group type, extract a subvector equal to the
5530   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5531   // instruction.
5532   MVT InterSubVT = VecVT;
5533   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5534     InterSubVT = getLMUL1VT(VecVT);
5535     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5536                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5537   }
5538 
5539   // Slide this vector register down by the desired number of elements in order
5540   // to place the desired subvector starting at element 0.
5541   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5542   // For scalable vectors this must be further multiplied by vscale.
5543   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5544 
5545   SDValue Mask, VL;
5546   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5547   SDValue Slidedown =
5548       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5549                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5550 
5551   // Now the vector is in the right position, extract our final subvector. This
5552   // should resolve to a COPY.
5553   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5554                           DAG.getConstant(0, DL, XLenVT));
5555 
5556   // We might have bitcast from a mask type: cast back to the original type if
5557   // required.
5558   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5559 }
5560 
5561 // Lower step_vector to the vid instruction. Any non-identity step value must
5562 // be accounted for my manual expansion.
5563 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5564                                               SelectionDAG &DAG) const {
5565   SDLoc DL(Op);
5566   MVT VT = Op.getSimpleValueType();
5567   MVT XLenVT = Subtarget.getXLenVT();
5568   SDValue Mask, VL;
5569   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5570   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5571   uint64_t StepValImm = Op.getConstantOperandVal(0);
5572   if (StepValImm != 1) {
5573     if (isPowerOf2_64(StepValImm)) {
5574       SDValue StepVal =
5575           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5576                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5577       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5578     } else {
5579       SDValue StepVal = lowerScalarSplat(
5580           SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
5581           VL, VT, DL, DAG, Subtarget);
5582       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5583     }
5584   }
5585   return StepVec;
5586 }
5587 
5588 // Implement vector_reverse using vrgather.vv with indices determined by
5589 // subtracting the id of each element from (VLMAX-1). This will convert
5590 // the indices like so:
5591 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5592 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5593 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5594                                                  SelectionDAG &DAG) const {
5595   SDLoc DL(Op);
5596   MVT VecVT = Op.getSimpleValueType();
5597   unsigned EltSize = VecVT.getScalarSizeInBits();
5598   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5599 
5600   unsigned MaxVLMAX = 0;
5601   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
5602   if (VectorBitsMax != 0)
5603     MaxVLMAX =
5604         RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
5605 
5606   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5607   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5608 
5609   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5610   // to use vrgatherei16.vv.
5611   // TODO: It's also possible to use vrgatherei16.vv for other types to
5612   // decrease register width for the index calculation.
5613   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5614     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5615     // Reverse each half, then reassemble them in reverse order.
5616     // NOTE: It's also possible that after splitting that VLMAX no longer
5617     // requires vrgatherei16.vv.
5618     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5619       SDValue Lo, Hi;
5620       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5621       EVT LoVT, HiVT;
5622       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5623       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5624       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5625       // Reassemble the low and high pieces reversed.
5626       // FIXME: This is a CONCAT_VECTORS.
5627       SDValue Res =
5628           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5629                       DAG.getIntPtrConstant(0, DL));
5630       return DAG.getNode(
5631           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5632           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5633     }
5634 
5635     // Just promote the int type to i16 which will double the LMUL.
5636     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5637     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5638   }
5639 
5640   MVT XLenVT = Subtarget.getXLenVT();
5641   SDValue Mask, VL;
5642   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5643 
5644   // Calculate VLMAX-1 for the desired SEW.
5645   unsigned MinElts = VecVT.getVectorMinNumElements();
5646   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5647                               DAG.getConstant(MinElts, DL, XLenVT));
5648   SDValue VLMinus1 =
5649       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5650 
5651   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5652   bool IsRV32E64 =
5653       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5654   SDValue SplatVL;
5655   if (!IsRV32E64)
5656     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5657   else
5658     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
5659                           VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
5660 
5661   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5662   SDValue Indices =
5663       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5664 
5665   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5666 }
5667 
5668 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
5669                                                 SelectionDAG &DAG) const {
5670   SDLoc DL(Op);
5671   SDValue V1 = Op.getOperand(0);
5672   SDValue V2 = Op.getOperand(1);
5673   MVT XLenVT = Subtarget.getXLenVT();
5674   MVT VecVT = Op.getSimpleValueType();
5675 
5676   unsigned MinElts = VecVT.getVectorMinNumElements();
5677   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5678                               DAG.getConstant(MinElts, DL, XLenVT));
5679 
5680   int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
5681   SDValue DownOffset, UpOffset;
5682   if (ImmValue >= 0) {
5683     // The operand is a TargetConstant, we need to rebuild it as a regular
5684     // constant.
5685     DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
5686     UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
5687   } else {
5688     // The operand is a TargetConstant, we need to rebuild it as a regular
5689     // constant rather than negating the original operand.
5690     UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
5691     DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
5692   }
5693 
5694   SDValue TrueMask = getAllOnesMask(VecVT, VLMax, DL, DAG);
5695 
5696   SDValue SlideDown =
5697       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1,
5698                   DownOffset, TrueMask, UpOffset);
5699   return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset,
5700                      TrueMask,
5701                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT));
5702 }
5703 
5704 SDValue
5705 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5706                                                      SelectionDAG &DAG) const {
5707   SDLoc DL(Op);
5708   auto *Load = cast<LoadSDNode>(Op);
5709 
5710   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5711                                         Load->getMemoryVT(),
5712                                         *Load->getMemOperand()) &&
5713          "Expecting a correctly-aligned load");
5714 
5715   MVT VT = Op.getSimpleValueType();
5716   MVT XLenVT = Subtarget.getXLenVT();
5717   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5718 
5719   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5720 
5721   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5722   SDValue IntID = DAG.getTargetConstant(
5723       IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
5724   SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
5725   if (!IsMaskOp)
5726     Ops.push_back(DAG.getUNDEF(ContainerVT));
5727   Ops.push_back(Load->getBasePtr());
5728   Ops.push_back(VL);
5729   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5730   SDValue NewLoad =
5731       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5732                               Load->getMemoryVT(), Load->getMemOperand());
5733 
5734   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5735   return DAG.getMergeValues({Result, Load->getChain()}, DL);
5736 }
5737 
5738 SDValue
5739 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5740                                                       SelectionDAG &DAG) const {
5741   SDLoc DL(Op);
5742   auto *Store = cast<StoreSDNode>(Op);
5743 
5744   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5745                                         Store->getMemoryVT(),
5746                                         *Store->getMemOperand()) &&
5747          "Expecting a correctly-aligned store");
5748 
5749   SDValue StoreVal = Store->getValue();
5750   MVT VT = StoreVal.getSimpleValueType();
5751   MVT XLenVT = Subtarget.getXLenVT();
5752 
5753   // If the size less than a byte, we need to pad with zeros to make a byte.
5754   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5755     VT = MVT::v8i1;
5756     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5757                            DAG.getConstant(0, DL, VT), StoreVal,
5758                            DAG.getIntPtrConstant(0, DL));
5759   }
5760 
5761   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5762 
5763   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5764 
5765   SDValue NewValue =
5766       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5767 
5768   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5769   SDValue IntID = DAG.getTargetConstant(
5770       IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
5771   return DAG.getMemIntrinsicNode(
5772       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
5773       {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
5774       Store->getMemoryVT(), Store->getMemOperand());
5775 }
5776 
5777 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5778                                              SelectionDAG &DAG) const {
5779   SDLoc DL(Op);
5780   MVT VT = Op.getSimpleValueType();
5781 
5782   const auto *MemSD = cast<MemSDNode>(Op);
5783   EVT MemVT = MemSD->getMemoryVT();
5784   MachineMemOperand *MMO = MemSD->getMemOperand();
5785   SDValue Chain = MemSD->getChain();
5786   SDValue BasePtr = MemSD->getBasePtr();
5787 
5788   SDValue Mask, PassThru, VL;
5789   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5790     Mask = VPLoad->getMask();
5791     PassThru = DAG.getUNDEF(VT);
5792     VL = VPLoad->getVectorLength();
5793   } else {
5794     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5795     Mask = MLoad->getMask();
5796     PassThru = MLoad->getPassThru();
5797   }
5798 
5799   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5800 
5801   MVT XLenVT = Subtarget.getXLenVT();
5802 
5803   MVT ContainerVT = VT;
5804   if (VT.isFixedLengthVector()) {
5805     ContainerVT = getContainerForFixedLengthVector(VT);
5806     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5807     if (!IsUnmasked) {
5808       MVT MaskVT = getMaskTypeFor(ContainerVT);
5809       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5810     }
5811   }
5812 
5813   if (!VL)
5814     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5815 
5816   unsigned IntID =
5817       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5818   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5819   if (IsUnmasked)
5820     Ops.push_back(DAG.getUNDEF(ContainerVT));
5821   else
5822     Ops.push_back(PassThru);
5823   Ops.push_back(BasePtr);
5824   if (!IsUnmasked)
5825     Ops.push_back(Mask);
5826   Ops.push_back(VL);
5827   if (!IsUnmasked)
5828     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5829 
5830   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5831 
5832   SDValue Result =
5833       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5834   Chain = Result.getValue(1);
5835 
5836   if (VT.isFixedLengthVector())
5837     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5838 
5839   return DAG.getMergeValues({Result, Chain}, DL);
5840 }
5841 
5842 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5843                                               SelectionDAG &DAG) const {
5844   SDLoc DL(Op);
5845 
5846   const auto *MemSD = cast<MemSDNode>(Op);
5847   EVT MemVT = MemSD->getMemoryVT();
5848   MachineMemOperand *MMO = MemSD->getMemOperand();
5849   SDValue Chain = MemSD->getChain();
5850   SDValue BasePtr = MemSD->getBasePtr();
5851   SDValue Val, Mask, VL;
5852 
5853   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5854     Val = VPStore->getValue();
5855     Mask = VPStore->getMask();
5856     VL = VPStore->getVectorLength();
5857   } else {
5858     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5859     Val = MStore->getValue();
5860     Mask = MStore->getMask();
5861   }
5862 
5863   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5864 
5865   MVT VT = Val.getSimpleValueType();
5866   MVT XLenVT = Subtarget.getXLenVT();
5867 
5868   MVT ContainerVT = VT;
5869   if (VT.isFixedLengthVector()) {
5870     ContainerVT = getContainerForFixedLengthVector(VT);
5871 
5872     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5873     if (!IsUnmasked) {
5874       MVT MaskVT = getMaskTypeFor(ContainerVT);
5875       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5876     }
5877   }
5878 
5879   if (!VL)
5880     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5881 
5882   unsigned IntID =
5883       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5884   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5885   Ops.push_back(Val);
5886   Ops.push_back(BasePtr);
5887   if (!IsUnmasked)
5888     Ops.push_back(Mask);
5889   Ops.push_back(VL);
5890 
5891   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5892                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5893 }
5894 
5895 SDValue
5896 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5897                                                       SelectionDAG &DAG) const {
5898   MVT InVT = Op.getOperand(0).getSimpleValueType();
5899   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5900 
5901   MVT VT = Op.getSimpleValueType();
5902 
5903   SDValue Op1 =
5904       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5905   SDValue Op2 =
5906       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5907 
5908   SDLoc DL(Op);
5909   SDValue VL =
5910       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5911 
5912   MVT MaskVT = getMaskTypeFor(ContainerVT);
5913   SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
5914 
5915   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5916                             Op.getOperand(2), Mask, VL);
5917 
5918   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5919 }
5920 
5921 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5922     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5923   MVT VT = Op.getSimpleValueType();
5924 
5925   if (VT.getVectorElementType() == MVT::i1)
5926     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5927 
5928   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5929 }
5930 
5931 SDValue
5932 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5933                                                       SelectionDAG &DAG) const {
5934   unsigned Opc;
5935   switch (Op.getOpcode()) {
5936   default: llvm_unreachable("Unexpected opcode!");
5937   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5938   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5939   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5940   }
5941 
5942   return lowerToScalableOp(Op, DAG, Opc);
5943 }
5944 
5945 // Lower vector ABS to smax(X, sub(0, X)).
5946 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5947   SDLoc DL(Op);
5948   MVT VT = Op.getSimpleValueType();
5949   SDValue X = Op.getOperand(0);
5950 
5951   assert(VT.isFixedLengthVector() && "Unexpected type");
5952 
5953   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5954   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5955 
5956   SDValue Mask, VL;
5957   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5958 
5959   SDValue SplatZero = DAG.getNode(
5960       RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
5961       DAG.getConstant(0, DL, Subtarget.getXLenVT()));
5962   SDValue NegX =
5963       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
5964   SDValue Max =
5965       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
5966 
5967   return convertFromScalableVector(VT, Max, DAG, Subtarget);
5968 }
5969 
5970 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
5971     SDValue Op, SelectionDAG &DAG) const {
5972   SDLoc DL(Op);
5973   MVT VT = Op.getSimpleValueType();
5974   SDValue Mag = Op.getOperand(0);
5975   SDValue Sign = Op.getOperand(1);
5976   assert(Mag.getValueType() == Sign.getValueType() &&
5977          "Can only handle COPYSIGN with matching types.");
5978 
5979   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5980   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
5981   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
5982 
5983   SDValue Mask, VL;
5984   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5985 
5986   SDValue CopySign =
5987       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
5988 
5989   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
5990 }
5991 
5992 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
5993     SDValue Op, SelectionDAG &DAG) const {
5994   MVT VT = Op.getSimpleValueType();
5995   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5996 
5997   MVT I1ContainerVT =
5998       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5999 
6000   SDValue CC =
6001       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
6002   SDValue Op1 =
6003       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
6004   SDValue Op2 =
6005       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
6006 
6007   SDLoc DL(Op);
6008   SDValue Mask, VL;
6009   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6010 
6011   SDValue Select =
6012       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
6013 
6014   return convertFromScalableVector(VT, Select, DAG, Subtarget);
6015 }
6016 
6017 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
6018                                                unsigned NewOpc,
6019                                                bool HasMask) const {
6020   MVT VT = Op.getSimpleValueType();
6021   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6022 
6023   // Create list of operands by converting existing ones to scalable types.
6024   SmallVector<SDValue, 6> Ops;
6025   for (const SDValue &V : Op->op_values()) {
6026     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6027 
6028     // Pass through non-vector operands.
6029     if (!V.getValueType().isVector()) {
6030       Ops.push_back(V);
6031       continue;
6032     }
6033 
6034     // "cast" fixed length vector to a scalable vector.
6035     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
6036            "Only fixed length vectors are supported!");
6037     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6038   }
6039 
6040   SDLoc DL(Op);
6041   SDValue Mask, VL;
6042   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6043   if (HasMask)
6044     Ops.push_back(Mask);
6045   Ops.push_back(VL);
6046 
6047   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
6048   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
6049 }
6050 
6051 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
6052 // * Operands of each node are assumed to be in the same order.
6053 // * The EVL operand is promoted from i32 to i64 on RV64.
6054 // * Fixed-length vectors are converted to their scalable-vector container
6055 //   types.
6056 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
6057                                        unsigned RISCVISDOpc) const {
6058   SDLoc DL(Op);
6059   MVT VT = Op.getSimpleValueType();
6060   SmallVector<SDValue, 4> Ops;
6061 
6062   for (const auto &OpIdx : enumerate(Op->ops())) {
6063     SDValue V = OpIdx.value();
6064     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6065     // Pass through operands which aren't fixed-length vectors.
6066     if (!V.getValueType().isFixedLengthVector()) {
6067       Ops.push_back(V);
6068       continue;
6069     }
6070     // "cast" fixed length vector to a scalable vector.
6071     MVT OpVT = V.getSimpleValueType();
6072     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
6073     assert(useRVVForFixedLengthVectorVT(OpVT) &&
6074            "Only fixed length vectors are supported!");
6075     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6076   }
6077 
6078   if (!VT.isFixedLengthVector())
6079     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
6080 
6081   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6082 
6083   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
6084 
6085   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
6086 }
6087 
6088 SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op,
6089                                               SelectionDAG &DAG) const {
6090   SDLoc DL(Op);
6091   MVT VT = Op.getSimpleValueType();
6092 
6093   SDValue Src = Op.getOperand(0);
6094   // NOTE: Mask is dropped.
6095   SDValue VL = Op.getOperand(2);
6096 
6097   MVT ContainerVT = VT;
6098   if (VT.isFixedLengthVector()) {
6099     ContainerVT = getContainerForFixedLengthVector(VT);
6100     MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6101     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6102   }
6103 
6104   MVT XLenVT = Subtarget.getXLenVT();
6105   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6106   SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6107                                   DAG.getUNDEF(ContainerVT), Zero, VL);
6108 
6109   SDValue SplatValue =
6110       DAG.getConstant(Op.getOpcode() == ISD::VP_ZEXT ? 1 : -1, DL, XLenVT);
6111   SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6112                               DAG.getUNDEF(ContainerVT), SplatValue, VL);
6113 
6114   SDValue Result = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, Src,
6115                                Splat, ZeroSplat, VL);
6116   if (!VT.isFixedLengthVector())
6117     return Result;
6118   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6119 }
6120 
6121 SDValue RISCVTargetLowering::lowerVPSetCCMaskOp(SDValue Op,
6122                                                 SelectionDAG &DAG) const {
6123   SDLoc DL(Op);
6124   MVT VT = Op.getSimpleValueType();
6125 
6126   SDValue Op1 = Op.getOperand(0);
6127   SDValue Op2 = Op.getOperand(1);
6128   ISD::CondCode Condition = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6129   // NOTE: Mask is dropped.
6130   SDValue VL = Op.getOperand(4);
6131 
6132   MVT ContainerVT = VT;
6133   if (VT.isFixedLengthVector()) {
6134     ContainerVT = getContainerForFixedLengthVector(VT);
6135     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6136     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6137   }
6138 
6139   SDValue Result;
6140   SDValue AllOneMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
6141 
6142   switch (Condition) {
6143   default:
6144     break;
6145   // X != Y  --> (X^Y)
6146   case ISD::SETNE:
6147     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
6148     break;
6149   // X == Y  --> ~(X^Y)
6150   case ISD::SETEQ: {
6151     SDValue Temp =
6152         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
6153     Result =
6154         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, AllOneMask, VL);
6155     break;
6156   }
6157   // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
6158   // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
6159   case ISD::SETGT:
6160   case ISD::SETULT: {
6161     SDValue Temp =
6162         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
6163     Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Temp, Op2, VL);
6164     break;
6165   }
6166   // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
6167   // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
6168   case ISD::SETLT:
6169   case ISD::SETUGT: {
6170     SDValue Temp =
6171         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
6172     Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Op1, Temp, VL);
6173     break;
6174   }
6175   // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
6176   // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
6177   case ISD::SETGE:
6178   case ISD::SETULE: {
6179     SDValue Temp =
6180         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
6181     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op2, VL);
6182     break;
6183   }
6184   // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
6185   // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
6186   case ISD::SETLE:
6187   case ISD::SETUGE: {
6188     SDValue Temp =
6189         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
6190     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op1, VL);
6191     break;
6192   }
6193   }
6194 
6195   if (!VT.isFixedLengthVector())
6196     return Result;
6197   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6198 }
6199 
6200 // Lower Floating-Point/Integer Type-Convert VP SDNodes
6201 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG,
6202                                                 unsigned RISCVISDOpc) const {
6203   SDLoc DL(Op);
6204 
6205   SDValue Src = Op.getOperand(0);
6206   SDValue Mask = Op.getOperand(1);
6207   SDValue VL = Op.getOperand(2);
6208 
6209   MVT DstVT = Op.getSimpleValueType();
6210   MVT SrcVT = Src.getSimpleValueType();
6211   if (DstVT.isFixedLengthVector()) {
6212     DstVT = getContainerForFixedLengthVector(DstVT);
6213     SrcVT = getContainerForFixedLengthVector(SrcVT);
6214     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6215     MVT MaskVT = getMaskTypeFor(DstVT);
6216     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6217   }
6218 
6219   unsigned RISCVISDExtOpc = (RISCVISDOpc == RISCVISD::SINT_TO_FP_VL ||
6220                              RISCVISDOpc == RISCVISD::FP_TO_SINT_VL)
6221                                 ? RISCVISD::VSEXT_VL
6222                                 : RISCVISD::VZEXT_VL;
6223 
6224   unsigned DstEltSize = DstVT.getScalarSizeInBits();
6225   unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
6226 
6227   SDValue Result;
6228   if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion.
6229     if (SrcVT.isInteger()) {
6230       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6231 
6232       // Do we need to do any pre-widening before converting?
6233       if (SrcEltSize == 1) {
6234         MVT IntVT = DstVT.changeVectorElementTypeToInteger();
6235         MVT XLenVT = Subtarget.getXLenVT();
6236         SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6237         SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6238                                         DAG.getUNDEF(IntVT), Zero, VL);
6239         SDValue One = DAG.getConstant(
6240             RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT);
6241         SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6242                                        DAG.getUNDEF(IntVT), One, VL);
6243         Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat,
6244                           ZeroSplat, VL);
6245       } else if (DstEltSize > (2 * SrcEltSize)) {
6246         // Widen before converting.
6247         MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2),
6248                                      DstVT.getVectorElementCount());
6249         Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL);
6250       }
6251 
6252       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6253     } else {
6254       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6255              "Wrong input/output vector types");
6256 
6257       // Convert f16 to f32 then convert f32 to i64.
6258       if (DstEltSize > (2 * SrcEltSize)) {
6259         assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6260         MVT InterimFVT =
6261             MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6262         Src =
6263             DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL);
6264       }
6265 
6266       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6267     }
6268   } else { // Narrowing + Conversion
6269     if (SrcVT.isInteger()) {
6270       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6271       // First do a narrowing convert to an FP type half the size, then round
6272       // the FP type to a small FP type if needed.
6273 
6274       MVT InterimFVT = DstVT;
6275       if (SrcEltSize > (2 * DstEltSize)) {
6276         assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!");
6277         assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6278         InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6279       }
6280 
6281       Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL);
6282 
6283       if (InterimFVT != DstVT) {
6284         Src = Result;
6285         Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL);
6286       }
6287     } else {
6288       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6289              "Wrong input/output vector types");
6290       // First do a narrowing conversion to an integer half the size, then
6291       // truncate if needed.
6292 
6293       if (DstEltSize == 1) {
6294         // First convert to the same size integer, then convert to mask using
6295         // setcc.
6296         assert(SrcEltSize >= 16 && "Unexpected FP type!");
6297         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize),
6298                                           DstVT.getVectorElementCount());
6299         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6300 
6301         // Compare the integer result to 0. The integer should be 0 or 1/-1,
6302         // otherwise the conversion was undefined.
6303         MVT XLenVT = Subtarget.getXLenVT();
6304         SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
6305         SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT,
6306                                 DAG.getUNDEF(InterimIVT), SplatZero);
6307         Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, Result, SplatZero,
6308                              DAG.getCondCode(ISD::SETNE), Mask, VL);
6309       } else {
6310         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6311                                           DstVT.getVectorElementCount());
6312 
6313         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6314 
6315         while (InterimIVT != DstVT) {
6316           SrcEltSize /= 2;
6317           Src = Result;
6318           InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6319                                         DstVT.getVectorElementCount());
6320           Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT,
6321                                Src, Mask, VL);
6322         }
6323       }
6324     }
6325   }
6326 
6327   MVT VT = Op.getSimpleValueType();
6328   if (!VT.isFixedLengthVector())
6329     return Result;
6330   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6331 }
6332 
6333 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6334                                             unsigned MaskOpc,
6335                                             unsigned VecOpc) const {
6336   MVT VT = Op.getSimpleValueType();
6337   if (VT.getVectorElementType() != MVT::i1)
6338     return lowerVPOp(Op, DAG, VecOpc);
6339 
6340   // It is safe to drop mask parameter as masked-off elements are undef.
6341   SDValue Op1 = Op->getOperand(0);
6342   SDValue Op2 = Op->getOperand(1);
6343   SDValue VL = Op->getOperand(3);
6344 
6345   MVT ContainerVT = VT;
6346   const bool IsFixed = VT.isFixedLengthVector();
6347   if (IsFixed) {
6348     ContainerVT = getContainerForFixedLengthVector(VT);
6349     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6350     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6351   }
6352 
6353   SDLoc DL(Op);
6354   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6355   if (!IsFixed)
6356     return Val;
6357   return convertFromScalableVector(VT, Val, DAG, Subtarget);
6358 }
6359 
6360 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6361 // matched to a RVV indexed load. The RVV indexed load instructions only
6362 // support the "unsigned unscaled" addressing mode; indices are implicitly
6363 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6364 // signed or scaled indexing is extended to the XLEN value type and scaled
6365 // accordingly.
6366 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6367                                                SelectionDAG &DAG) const {
6368   SDLoc DL(Op);
6369   MVT VT = Op.getSimpleValueType();
6370 
6371   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6372   EVT MemVT = MemSD->getMemoryVT();
6373   MachineMemOperand *MMO = MemSD->getMemOperand();
6374   SDValue Chain = MemSD->getChain();
6375   SDValue BasePtr = MemSD->getBasePtr();
6376 
6377   ISD::LoadExtType LoadExtType;
6378   SDValue Index, Mask, PassThru, VL;
6379 
6380   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6381     Index = VPGN->getIndex();
6382     Mask = VPGN->getMask();
6383     PassThru = DAG.getUNDEF(VT);
6384     VL = VPGN->getVectorLength();
6385     // VP doesn't support extending loads.
6386     LoadExtType = ISD::NON_EXTLOAD;
6387   } else {
6388     // Else it must be a MGATHER.
6389     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6390     Index = MGN->getIndex();
6391     Mask = MGN->getMask();
6392     PassThru = MGN->getPassThru();
6393     LoadExtType = MGN->getExtensionType();
6394   }
6395 
6396   MVT IndexVT = Index.getSimpleValueType();
6397   MVT XLenVT = Subtarget.getXLenVT();
6398 
6399   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6400          "Unexpected VTs!");
6401   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6402   // Targets have to explicitly opt-in for extending vector loads.
6403   assert(LoadExtType == ISD::NON_EXTLOAD &&
6404          "Unexpected extending MGATHER/VP_GATHER");
6405   (void)LoadExtType;
6406 
6407   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6408   // the selection of the masked intrinsics doesn't do this for us.
6409   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6410 
6411   MVT ContainerVT = VT;
6412   if (VT.isFixedLengthVector()) {
6413     // We need to use the larger of the result and index type to determine the
6414     // scalable type to use so we don't increase LMUL for any operand/result.
6415     if (VT.bitsGE(IndexVT)) {
6416       ContainerVT = getContainerForFixedLengthVector(VT);
6417       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6418                                  ContainerVT.getVectorElementCount());
6419     } else {
6420       IndexVT = getContainerForFixedLengthVector(IndexVT);
6421       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
6422                                      IndexVT.getVectorElementCount());
6423     }
6424 
6425     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6426 
6427     if (!IsUnmasked) {
6428       MVT MaskVT = getMaskTypeFor(ContainerVT);
6429       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6430       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6431     }
6432   }
6433 
6434   if (!VL)
6435     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6436 
6437   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6438     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6439     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6440                                    VL);
6441     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6442                         TrueMask, VL);
6443   }
6444 
6445   unsigned IntID =
6446       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6447   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6448   if (IsUnmasked)
6449     Ops.push_back(DAG.getUNDEF(ContainerVT));
6450   else
6451     Ops.push_back(PassThru);
6452   Ops.push_back(BasePtr);
6453   Ops.push_back(Index);
6454   if (!IsUnmasked)
6455     Ops.push_back(Mask);
6456   Ops.push_back(VL);
6457   if (!IsUnmasked)
6458     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6459 
6460   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6461   SDValue Result =
6462       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6463   Chain = Result.getValue(1);
6464 
6465   if (VT.isFixedLengthVector())
6466     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6467 
6468   return DAG.getMergeValues({Result, Chain}, DL);
6469 }
6470 
6471 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6472 // matched to a RVV indexed store. The RVV indexed store instructions only
6473 // support the "unsigned unscaled" addressing mode; indices are implicitly
6474 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6475 // signed or scaled indexing is extended to the XLEN value type and scaled
6476 // accordingly.
6477 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6478                                                 SelectionDAG &DAG) const {
6479   SDLoc DL(Op);
6480   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6481   EVT MemVT = MemSD->getMemoryVT();
6482   MachineMemOperand *MMO = MemSD->getMemOperand();
6483   SDValue Chain = MemSD->getChain();
6484   SDValue BasePtr = MemSD->getBasePtr();
6485 
6486   bool IsTruncatingStore = false;
6487   SDValue Index, Mask, Val, VL;
6488 
6489   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6490     Index = VPSN->getIndex();
6491     Mask = VPSN->getMask();
6492     Val = VPSN->getValue();
6493     VL = VPSN->getVectorLength();
6494     // VP doesn't support truncating stores.
6495     IsTruncatingStore = false;
6496   } else {
6497     // Else it must be a MSCATTER.
6498     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6499     Index = MSN->getIndex();
6500     Mask = MSN->getMask();
6501     Val = MSN->getValue();
6502     IsTruncatingStore = MSN->isTruncatingStore();
6503   }
6504 
6505   MVT VT = Val.getSimpleValueType();
6506   MVT IndexVT = Index.getSimpleValueType();
6507   MVT XLenVT = Subtarget.getXLenVT();
6508 
6509   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6510          "Unexpected VTs!");
6511   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6512   // Targets have to explicitly opt-in for extending vector loads and
6513   // truncating vector stores.
6514   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6515   (void)IsTruncatingStore;
6516 
6517   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6518   // the selection of the masked intrinsics doesn't do this for us.
6519   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6520 
6521   MVT ContainerVT = VT;
6522   if (VT.isFixedLengthVector()) {
6523     // We need to use the larger of the value and index type to determine the
6524     // scalable type to use so we don't increase LMUL for any operand/result.
6525     if (VT.bitsGE(IndexVT)) {
6526       ContainerVT = getContainerForFixedLengthVector(VT);
6527       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6528                                  ContainerVT.getVectorElementCount());
6529     } else {
6530       IndexVT = getContainerForFixedLengthVector(IndexVT);
6531       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
6532                                      IndexVT.getVectorElementCount());
6533     }
6534 
6535     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6536     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6537 
6538     if (!IsUnmasked) {
6539       MVT MaskVT = getMaskTypeFor(ContainerVT);
6540       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6541     }
6542   }
6543 
6544   if (!VL)
6545     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6546 
6547   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6548     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6549     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6550                                    VL);
6551     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6552                         TrueMask, VL);
6553   }
6554 
6555   unsigned IntID =
6556       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6557   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6558   Ops.push_back(Val);
6559   Ops.push_back(BasePtr);
6560   Ops.push_back(Index);
6561   if (!IsUnmasked)
6562     Ops.push_back(Mask);
6563   Ops.push_back(VL);
6564 
6565   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6566                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6567 }
6568 
6569 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6570                                                SelectionDAG &DAG) const {
6571   const MVT XLenVT = Subtarget.getXLenVT();
6572   SDLoc DL(Op);
6573   SDValue Chain = Op->getOperand(0);
6574   SDValue SysRegNo = DAG.getTargetConstant(
6575       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6576   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6577   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6578 
6579   // Encoding used for rounding mode in RISCV differs from that used in
6580   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6581   // table, which consists of a sequence of 4-bit fields, each representing
6582   // corresponding FLT_ROUNDS mode.
6583   static const int Table =
6584       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6585       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6586       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6587       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6588       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6589 
6590   SDValue Shift =
6591       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6592   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6593                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6594   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6595                                DAG.getConstant(7, DL, XLenVT));
6596 
6597   return DAG.getMergeValues({Masked, Chain}, DL);
6598 }
6599 
6600 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6601                                                SelectionDAG &DAG) const {
6602   const MVT XLenVT = Subtarget.getXLenVT();
6603   SDLoc DL(Op);
6604   SDValue Chain = Op->getOperand(0);
6605   SDValue RMValue = Op->getOperand(1);
6606   SDValue SysRegNo = DAG.getTargetConstant(
6607       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6608 
6609   // Encoding used for rounding mode in RISCV differs from that used in
6610   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6611   // a table, which consists of a sequence of 4-bit fields, each representing
6612   // corresponding RISCV mode.
6613   static const unsigned Table =
6614       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6615       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6616       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6617       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6618       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6619 
6620   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6621                               DAG.getConstant(2, DL, XLenVT));
6622   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6623                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6624   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6625                         DAG.getConstant(0x7, DL, XLenVT));
6626   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6627                      RMValue);
6628 }
6629 
6630 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6631   switch (IntNo) {
6632   default:
6633     llvm_unreachable("Unexpected Intrinsic");
6634   case Intrinsic::riscv_bcompress:
6635     return RISCVISD::BCOMPRESSW;
6636   case Intrinsic::riscv_bdecompress:
6637     return RISCVISD::BDECOMPRESSW;
6638   case Intrinsic::riscv_bfp:
6639     return RISCVISD::BFPW;
6640   case Intrinsic::riscv_fsl:
6641     return RISCVISD::FSLW;
6642   case Intrinsic::riscv_fsr:
6643     return RISCVISD::FSRW;
6644   }
6645 }
6646 
6647 // Converts the given intrinsic to a i64 operation with any extension.
6648 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6649                                          unsigned IntNo) {
6650   SDLoc DL(N);
6651   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6652   // Deal with the Instruction Operands
6653   SmallVector<SDValue, 3> NewOps;
6654   for (SDValue Op : drop_begin(N->ops()))
6655     // Promote the operand to i64 type
6656     NewOps.push_back(DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op));
6657   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOps);
6658   // ReplaceNodeResults requires we maintain the same type for the return value.
6659   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6660 }
6661 
6662 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6663 // form of the given Opcode.
6664 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6665   switch (Opcode) {
6666   default:
6667     llvm_unreachable("Unexpected opcode");
6668   case ISD::SHL:
6669     return RISCVISD::SLLW;
6670   case ISD::SRA:
6671     return RISCVISD::SRAW;
6672   case ISD::SRL:
6673     return RISCVISD::SRLW;
6674   case ISD::SDIV:
6675     return RISCVISD::DIVW;
6676   case ISD::UDIV:
6677     return RISCVISD::DIVUW;
6678   case ISD::UREM:
6679     return RISCVISD::REMUW;
6680   case ISD::ROTL:
6681     return RISCVISD::ROLW;
6682   case ISD::ROTR:
6683     return RISCVISD::RORW;
6684   }
6685 }
6686 
6687 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6688 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6689 // otherwise be promoted to i64, making it difficult to select the
6690 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6691 // type i8/i16/i32 is lost.
6692 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6693                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6694   SDLoc DL(N);
6695   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6696   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6697   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6698   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6699   // ReplaceNodeResults requires we maintain the same type for the return value.
6700   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6701 }
6702 
6703 // Converts the given 32-bit operation to a i64 operation with signed extension
6704 // semantic to reduce the signed extension instructions.
6705 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6706   SDLoc DL(N);
6707   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6708   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6709   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6710   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6711                                DAG.getValueType(MVT::i32));
6712   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6713 }
6714 
6715 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6716                                              SmallVectorImpl<SDValue> &Results,
6717                                              SelectionDAG &DAG) const {
6718   SDLoc DL(N);
6719   switch (N->getOpcode()) {
6720   default:
6721     llvm_unreachable("Don't know how to custom type legalize this operation!");
6722   case ISD::STRICT_FP_TO_SINT:
6723   case ISD::STRICT_FP_TO_UINT:
6724   case ISD::FP_TO_SINT:
6725   case ISD::FP_TO_UINT: {
6726     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6727            "Unexpected custom legalisation");
6728     bool IsStrict = N->isStrictFPOpcode();
6729     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6730                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6731     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6732     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6733         TargetLowering::TypeSoftenFloat) {
6734       if (!isTypeLegal(Op0.getValueType()))
6735         return;
6736       if (IsStrict) {
6737         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6738                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6739         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6740         SDValue Res = DAG.getNode(
6741             Opc, DL, VTs, N->getOperand(0), Op0,
6742             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6743         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6744         Results.push_back(Res.getValue(1));
6745         return;
6746       }
6747       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6748       SDValue Res =
6749           DAG.getNode(Opc, DL, MVT::i64, Op0,
6750                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6751       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6752       return;
6753     }
6754     // If the FP type needs to be softened, emit a library call using the 'si'
6755     // version. If we left it to default legalization we'd end up with 'di'. If
6756     // the FP type doesn't need to be softened just let generic type
6757     // legalization promote the result type.
6758     RTLIB::Libcall LC;
6759     if (IsSigned)
6760       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6761     else
6762       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6763     MakeLibCallOptions CallOptions;
6764     EVT OpVT = Op0.getValueType();
6765     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6766     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6767     SDValue Result;
6768     std::tie(Result, Chain) =
6769         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6770     Results.push_back(Result);
6771     if (IsStrict)
6772       Results.push_back(Chain);
6773     break;
6774   }
6775   case ISD::READCYCLECOUNTER: {
6776     assert(!Subtarget.is64Bit() &&
6777            "READCYCLECOUNTER only has custom type legalization on riscv32");
6778 
6779     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6780     SDValue RCW =
6781         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6782 
6783     Results.push_back(
6784         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6785     Results.push_back(RCW.getValue(2));
6786     break;
6787   }
6788   case ISD::MUL: {
6789     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6790     unsigned XLen = Subtarget.getXLen();
6791     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6792     if (Size > XLen) {
6793       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6794       SDValue LHS = N->getOperand(0);
6795       SDValue RHS = N->getOperand(1);
6796       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6797 
6798       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6799       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6800       // We need exactly one side to be unsigned.
6801       if (LHSIsU == RHSIsU)
6802         return;
6803 
6804       auto MakeMULPair = [&](SDValue S, SDValue U) {
6805         MVT XLenVT = Subtarget.getXLenVT();
6806         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6807         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6808         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6809         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6810         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6811       };
6812 
6813       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6814       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6815 
6816       // The other operand should be signed, but still prefer MULH when
6817       // possible.
6818       if (RHSIsU && LHSIsS && !RHSIsS)
6819         Results.push_back(MakeMULPair(LHS, RHS));
6820       else if (LHSIsU && RHSIsS && !LHSIsS)
6821         Results.push_back(MakeMULPair(RHS, LHS));
6822 
6823       return;
6824     }
6825     LLVM_FALLTHROUGH;
6826   }
6827   case ISD::ADD:
6828   case ISD::SUB:
6829     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6830            "Unexpected custom legalisation");
6831     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6832     break;
6833   case ISD::SHL:
6834   case ISD::SRA:
6835   case ISD::SRL:
6836     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6837            "Unexpected custom legalisation");
6838     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6839       // If we can use a BSET instruction, allow default promotion to apply.
6840       if (N->getOpcode() == ISD::SHL && Subtarget.hasStdExtZbs() &&
6841           isOneConstant(N->getOperand(0)))
6842         break;
6843       Results.push_back(customLegalizeToWOp(N, DAG));
6844       break;
6845     }
6846 
6847     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6848     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6849     // shift amount.
6850     if (N->getOpcode() == ISD::SHL) {
6851       SDLoc DL(N);
6852       SDValue NewOp0 =
6853           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6854       SDValue NewOp1 =
6855           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6856       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6857       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6858                                    DAG.getValueType(MVT::i32));
6859       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6860     }
6861 
6862     break;
6863   case ISD::ROTL:
6864   case ISD::ROTR:
6865     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6866            "Unexpected custom legalisation");
6867     Results.push_back(customLegalizeToWOp(N, DAG));
6868     break;
6869   case ISD::CTTZ:
6870   case ISD::CTTZ_ZERO_UNDEF:
6871   case ISD::CTLZ:
6872   case ISD::CTLZ_ZERO_UNDEF: {
6873     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6874            "Unexpected custom legalisation");
6875 
6876     SDValue NewOp0 =
6877         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6878     bool IsCTZ =
6879         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6880     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6881     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6882     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6883     return;
6884   }
6885   case ISD::SDIV:
6886   case ISD::UDIV:
6887   case ISD::UREM: {
6888     MVT VT = N->getSimpleValueType(0);
6889     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6890            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6891            "Unexpected custom legalisation");
6892     // Don't promote division/remainder by constant since we should expand those
6893     // to multiply by magic constant.
6894     // FIXME: What if the expansion is disabled for minsize.
6895     if (N->getOperand(1).getOpcode() == ISD::Constant)
6896       return;
6897 
6898     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6899     // the upper 32 bits. For other types we need to sign or zero extend
6900     // based on the opcode.
6901     unsigned ExtOpc = ISD::ANY_EXTEND;
6902     if (VT != MVT::i32)
6903       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6904                                            : ISD::ZERO_EXTEND;
6905 
6906     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6907     break;
6908   }
6909   case ISD::UADDO:
6910   case ISD::USUBO: {
6911     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6912            "Unexpected custom legalisation");
6913     bool IsAdd = N->getOpcode() == ISD::UADDO;
6914     // Create an ADDW or SUBW.
6915     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6916     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6917     SDValue Res =
6918         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6919     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6920                       DAG.getValueType(MVT::i32));
6921 
6922     SDValue Overflow;
6923     if (IsAdd && isOneConstant(RHS)) {
6924       // Special case uaddo X, 1 overflowed if the addition result is 0.
6925       // The general case (X + C) < C is not necessarily beneficial. Although we
6926       // reduce the live range of X, we may introduce the materialization of
6927       // constant C, especially when the setcc result is used by branch. We have
6928       // no compare with constant and branch instructions.
6929       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res,
6930                               DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ);
6931     } else {
6932       // Sign extend the LHS and perform an unsigned compare with the ADDW
6933       // result. Since the inputs are sign extended from i32, this is equivalent
6934       // to comparing the lower 32 bits.
6935       LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6936       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6937                               IsAdd ? ISD::SETULT : ISD::SETUGT);
6938     }
6939 
6940     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6941     Results.push_back(Overflow);
6942     return;
6943   }
6944   case ISD::UADDSAT:
6945   case ISD::USUBSAT: {
6946     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6947            "Unexpected custom legalisation");
6948     if (Subtarget.hasStdExtZbb()) {
6949       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6950       // sign extend allows overflow of the lower 32 bits to be detected on
6951       // the promoted size.
6952       SDValue LHS =
6953           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6954       SDValue RHS =
6955           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
6956       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
6957       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6958       return;
6959     }
6960 
6961     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
6962     // promotion for UADDO/USUBO.
6963     Results.push_back(expandAddSubSat(N, DAG));
6964     return;
6965   }
6966   case ISD::ABS: {
6967     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6968            "Unexpected custom legalisation");
6969           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6970 
6971     // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
6972 
6973     SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6974 
6975     // Freeze the source so we can increase it's use count.
6976     Src = DAG.getFreeze(Src);
6977 
6978     // Copy sign bit to all bits using the sraiw pattern.
6979     SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
6980                                    DAG.getValueType(MVT::i32));
6981     SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
6982                            DAG.getConstant(31, DL, MVT::i64));
6983 
6984     SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
6985     NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
6986 
6987     // NOTE: The result is only required to be anyextended, but sext is
6988     // consistent with type legalization of sub.
6989     NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
6990                          DAG.getValueType(MVT::i32));
6991     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6992     return;
6993   }
6994   case ISD::BITCAST: {
6995     EVT VT = N->getValueType(0);
6996     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
6997     SDValue Op0 = N->getOperand(0);
6998     EVT Op0VT = Op0.getValueType();
6999     MVT XLenVT = Subtarget.getXLenVT();
7000     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
7001       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
7002       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
7003     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
7004                Subtarget.hasStdExtF()) {
7005       SDValue FPConv =
7006           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
7007       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
7008     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
7009                isTypeLegal(Op0VT)) {
7010       // Custom-legalize bitcasts from fixed-length vector types to illegal
7011       // scalar types in order to improve codegen. Bitcast the vector to a
7012       // one-element vector type whose element type is the same as the result
7013       // type, and extract the first element.
7014       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
7015       if (isTypeLegal(BVT)) {
7016         SDValue BVec = DAG.getBitcast(BVT, Op0);
7017         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
7018                                       DAG.getConstant(0, DL, XLenVT)));
7019       }
7020     }
7021     break;
7022   }
7023   case RISCVISD::GREV:
7024   case RISCVISD::GORC:
7025   case RISCVISD::SHFL: {
7026     MVT VT = N->getSimpleValueType(0);
7027     MVT XLenVT = Subtarget.getXLenVT();
7028     assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
7029            "Unexpected custom legalisation");
7030     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
7031     assert((Subtarget.hasStdExtZbp() ||
7032             (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV &&
7033              N->getConstantOperandVal(1) == 7)) &&
7034            "Unexpected extension");
7035     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7036     SDValue NewOp1 =
7037         DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1));
7038     SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1);
7039     // ReplaceNodeResults requires we maintain the same type for the return
7040     // value.
7041     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
7042     break;
7043   }
7044   case ISD::BSWAP:
7045   case ISD::BITREVERSE: {
7046     MVT VT = N->getSimpleValueType(0);
7047     MVT XLenVT = Subtarget.getXLenVT();
7048     assert((VT == MVT::i8 || VT == MVT::i16 ||
7049             (VT == MVT::i32 && Subtarget.is64Bit())) &&
7050            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
7051     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7052     unsigned Imm = VT.getSizeInBits() - 1;
7053     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
7054     if (N->getOpcode() == ISD::BSWAP)
7055       Imm &= ~0x7U;
7056     SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0,
7057                                 DAG.getConstant(Imm, DL, XLenVT));
7058     // ReplaceNodeResults requires we maintain the same type for the return
7059     // value.
7060     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
7061     break;
7062   }
7063   case ISD::FSHL:
7064   case ISD::FSHR: {
7065     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7066            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
7067     SDValue NewOp0 =
7068         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7069     SDValue NewOp1 =
7070         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7071     SDValue NewShAmt =
7072         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7073     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
7074     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
7075     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
7076                            DAG.getConstant(0x1f, DL, MVT::i64));
7077     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
7078     // instruction use different orders. fshl will return its first operand for
7079     // shift of zero, fshr will return its second operand. fsl and fsr both
7080     // return rs1 so the ISD nodes need to have different operand orders.
7081     // Shift amount is in rs2.
7082     unsigned Opc = RISCVISD::FSLW;
7083     if (N->getOpcode() == ISD::FSHR) {
7084       std::swap(NewOp0, NewOp1);
7085       Opc = RISCVISD::FSRW;
7086     }
7087     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
7088     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
7089     break;
7090   }
7091   case ISD::EXTRACT_VECTOR_ELT: {
7092     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
7093     // type is illegal (currently only vXi64 RV32).
7094     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
7095     // transferred to the destination register. We issue two of these from the
7096     // upper- and lower- halves of the SEW-bit vector element, slid down to the
7097     // first element.
7098     SDValue Vec = N->getOperand(0);
7099     SDValue Idx = N->getOperand(1);
7100 
7101     // The vector type hasn't been legalized yet so we can't issue target
7102     // specific nodes if it needs legalization.
7103     // FIXME: We would manually legalize if it's important.
7104     if (!isTypeLegal(Vec.getValueType()))
7105       return;
7106 
7107     MVT VecVT = Vec.getSimpleValueType();
7108 
7109     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
7110            VecVT.getVectorElementType() == MVT::i64 &&
7111            "Unexpected EXTRACT_VECTOR_ELT legalization");
7112 
7113     // If this is a fixed vector, we need to convert it to a scalable vector.
7114     MVT ContainerVT = VecVT;
7115     if (VecVT.isFixedLengthVector()) {
7116       ContainerVT = getContainerForFixedLengthVector(VecVT);
7117       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
7118     }
7119 
7120     MVT XLenVT = Subtarget.getXLenVT();
7121 
7122     // Use a VL of 1 to avoid processing more elements than we need.
7123     SDValue VL = DAG.getConstant(1, DL, XLenVT);
7124     SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
7125 
7126     // Unless the index is known to be 0, we must slide the vector down to get
7127     // the desired element into index 0.
7128     if (!isNullConstant(Idx)) {
7129       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
7130                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
7131     }
7132 
7133     // Extract the lower XLEN bits of the correct vector element.
7134     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7135 
7136     // To extract the upper XLEN bits of the vector element, shift the first
7137     // element right by 32 bits and re-extract the lower XLEN bits.
7138     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
7139                                      DAG.getUNDEF(ContainerVT),
7140                                      DAG.getConstant(32, DL, XLenVT), VL);
7141     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
7142                                  ThirtyTwoV, Mask, VL);
7143 
7144     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7145 
7146     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7147     break;
7148   }
7149   case ISD::INTRINSIC_WO_CHAIN: {
7150     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7151     switch (IntNo) {
7152     default:
7153       llvm_unreachable(
7154           "Don't know how to custom type legalize this intrinsic!");
7155     case Intrinsic::riscv_grev:
7156     case Intrinsic::riscv_gorc: {
7157       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7158              "Unexpected custom legalisation");
7159       SDValue NewOp1 =
7160           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7161       SDValue NewOp2 =
7162           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7163       unsigned Opc =
7164           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
7165       // If the control is a constant, promote the node by clearing any extra
7166       // bits bits in the control. isel will form greviw/gorciw if the result is
7167       // sign extended.
7168       if (isa<ConstantSDNode>(NewOp2)) {
7169         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7170                              DAG.getConstant(0x1f, DL, MVT::i64));
7171         Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
7172       }
7173       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7174       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7175       break;
7176     }
7177     case Intrinsic::riscv_bcompress:
7178     case Intrinsic::riscv_bdecompress:
7179     case Intrinsic::riscv_bfp:
7180     case Intrinsic::riscv_fsl:
7181     case Intrinsic::riscv_fsr: {
7182       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7183              "Unexpected custom legalisation");
7184       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
7185       break;
7186     }
7187     case Intrinsic::riscv_orc_b: {
7188       // Lower to the GORCI encoding for orc.b with the operand extended.
7189       SDValue NewOp =
7190           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7191       SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp,
7192                                 DAG.getConstant(7, DL, MVT::i64));
7193       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7194       return;
7195     }
7196     case Intrinsic::riscv_shfl:
7197     case Intrinsic::riscv_unshfl: {
7198       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7199              "Unexpected custom legalisation");
7200       SDValue NewOp1 =
7201           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7202       SDValue NewOp2 =
7203           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7204       unsigned Opc =
7205           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
7206       // There is no (UN)SHFLIW. If the control word is a constant, we can use
7207       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
7208       // will be shuffled the same way as the lower 32 bit half, but the two
7209       // halves won't cross.
7210       if (isa<ConstantSDNode>(NewOp2)) {
7211         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7212                              DAG.getConstant(0xf, DL, MVT::i64));
7213         Opc =
7214             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
7215       }
7216       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7217       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7218       break;
7219     }
7220     case Intrinsic::riscv_vmv_x_s: {
7221       EVT VT = N->getValueType(0);
7222       MVT XLenVT = Subtarget.getXLenVT();
7223       if (VT.bitsLT(XLenVT)) {
7224         // Simple case just extract using vmv.x.s and truncate.
7225         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
7226                                       Subtarget.getXLenVT(), N->getOperand(1));
7227         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
7228         return;
7229       }
7230 
7231       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
7232              "Unexpected custom legalization");
7233 
7234       // We need to do the move in two steps.
7235       SDValue Vec = N->getOperand(1);
7236       MVT VecVT = Vec.getSimpleValueType();
7237 
7238       // First extract the lower XLEN bits of the element.
7239       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7240 
7241       // To extract the upper XLEN bits of the vector element, shift the first
7242       // element right by 32 bits and re-extract the lower XLEN bits.
7243       SDValue VL = DAG.getConstant(1, DL, XLenVT);
7244       SDValue Mask = getAllOnesMask(VecVT, VL, DL, DAG);
7245 
7246       SDValue ThirtyTwoV =
7247           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
7248                       DAG.getConstant(32, DL, XLenVT), VL);
7249       SDValue LShr32 =
7250           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
7251       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7252 
7253       Results.push_back(
7254           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7255       break;
7256     }
7257     }
7258     break;
7259   }
7260   case ISD::VECREDUCE_ADD:
7261   case ISD::VECREDUCE_AND:
7262   case ISD::VECREDUCE_OR:
7263   case ISD::VECREDUCE_XOR:
7264   case ISD::VECREDUCE_SMAX:
7265   case ISD::VECREDUCE_UMAX:
7266   case ISD::VECREDUCE_SMIN:
7267   case ISD::VECREDUCE_UMIN:
7268     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
7269       Results.push_back(V);
7270     break;
7271   case ISD::VP_REDUCE_ADD:
7272   case ISD::VP_REDUCE_AND:
7273   case ISD::VP_REDUCE_OR:
7274   case ISD::VP_REDUCE_XOR:
7275   case ISD::VP_REDUCE_SMAX:
7276   case ISD::VP_REDUCE_UMAX:
7277   case ISD::VP_REDUCE_SMIN:
7278   case ISD::VP_REDUCE_UMIN:
7279     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
7280       Results.push_back(V);
7281     break;
7282   case ISD::FLT_ROUNDS_: {
7283     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
7284     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
7285     Results.push_back(Res.getValue(0));
7286     Results.push_back(Res.getValue(1));
7287     break;
7288   }
7289   }
7290 }
7291 
7292 // A structure to hold one of the bit-manipulation patterns below. Together, a
7293 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
7294 //   (or (and (shl x, 1), 0xAAAAAAAA),
7295 //       (and (srl x, 1), 0x55555555))
7296 struct RISCVBitmanipPat {
7297   SDValue Op;
7298   unsigned ShAmt;
7299   bool IsSHL;
7300 
7301   bool formsPairWith(const RISCVBitmanipPat &Other) const {
7302     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
7303   }
7304 };
7305 
7306 // Matches patterns of the form
7307 //   (and (shl x, C2), (C1 << C2))
7308 //   (and (srl x, C2), C1)
7309 //   (shl (and x, C1), C2)
7310 //   (srl (and x, (C1 << C2)), C2)
7311 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
7312 // The expected masks for each shift amount are specified in BitmanipMasks where
7313 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
7314 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
7315 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
7316 // XLen is 64.
7317 static Optional<RISCVBitmanipPat>
7318 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
7319   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
7320          "Unexpected number of masks");
7321   Optional<uint64_t> Mask;
7322   // Optionally consume a mask around the shift operation.
7323   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
7324     Mask = Op.getConstantOperandVal(1);
7325     Op = Op.getOperand(0);
7326   }
7327   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
7328     return None;
7329   bool IsSHL = Op.getOpcode() == ISD::SHL;
7330 
7331   if (!isa<ConstantSDNode>(Op.getOperand(1)))
7332     return None;
7333   uint64_t ShAmt = Op.getConstantOperandVal(1);
7334 
7335   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7336   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
7337     return None;
7338   // If we don't have enough masks for 64 bit, then we must be trying to
7339   // match SHFL so we're only allowed to shift 1/4 of the width.
7340   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
7341     return None;
7342 
7343   SDValue Src = Op.getOperand(0);
7344 
7345   // The expected mask is shifted left when the AND is found around SHL
7346   // patterns.
7347   //   ((x >> 1) & 0x55555555)
7348   //   ((x << 1) & 0xAAAAAAAA)
7349   bool SHLExpMask = IsSHL;
7350 
7351   if (!Mask) {
7352     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
7353     // the mask is all ones: consume that now.
7354     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
7355       Mask = Src.getConstantOperandVal(1);
7356       Src = Src.getOperand(0);
7357       // The expected mask is now in fact shifted left for SRL, so reverse the
7358       // decision.
7359       //   ((x & 0xAAAAAAAA) >> 1)
7360       //   ((x & 0x55555555) << 1)
7361       SHLExpMask = !SHLExpMask;
7362     } else {
7363       // Use a default shifted mask of all-ones if there's no AND, truncated
7364       // down to the expected width. This simplifies the logic later on.
7365       Mask = maskTrailingOnes<uint64_t>(Width);
7366       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7367     }
7368   }
7369 
7370   unsigned MaskIdx = Log2_32(ShAmt);
7371   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7372 
7373   if (SHLExpMask)
7374     ExpMask <<= ShAmt;
7375 
7376   if (Mask != ExpMask)
7377     return None;
7378 
7379   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7380 }
7381 
7382 // Matches any of the following bit-manipulation patterns:
7383 //   (and (shl x, 1), (0x55555555 << 1))
7384 //   (and (srl x, 1), 0x55555555)
7385 //   (shl (and x, 0x55555555), 1)
7386 //   (srl (and x, (0x55555555 << 1)), 1)
7387 // where the shift amount and mask may vary thus:
7388 //   [1]  = 0x55555555 / 0xAAAAAAAA
7389 //   [2]  = 0x33333333 / 0xCCCCCCCC
7390 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
7391 //   [8]  = 0x00FF00FF / 0xFF00FF00
7392 //   [16] = 0x0000FFFF / 0xFFFFFFFF
7393 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
7394 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7395   // These are the unshifted masks which we use to match bit-manipulation
7396   // patterns. They may be shifted left in certain circumstances.
7397   static const uint64_t BitmanipMasks[] = {
7398       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7399       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7400 
7401   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7402 }
7403 
7404 // Try to fold (<bop> x, (reduction.<bop> vec, start))
7405 static SDValue combineBinOpToReduce(SDNode *N, SelectionDAG &DAG) {
7406   auto BinOpToRVVReduce = [](unsigned Opc) {
7407     switch (Opc) {
7408     default:
7409       llvm_unreachable("Unhandled binary to transfrom reduction");
7410     case ISD::ADD:
7411       return RISCVISD::VECREDUCE_ADD_VL;
7412     case ISD::UMAX:
7413       return RISCVISD::VECREDUCE_UMAX_VL;
7414     case ISD::SMAX:
7415       return RISCVISD::VECREDUCE_SMAX_VL;
7416     case ISD::UMIN:
7417       return RISCVISD::VECREDUCE_UMIN_VL;
7418     case ISD::SMIN:
7419       return RISCVISD::VECREDUCE_SMIN_VL;
7420     case ISD::AND:
7421       return RISCVISD::VECREDUCE_AND_VL;
7422     case ISD::OR:
7423       return RISCVISD::VECREDUCE_OR_VL;
7424     case ISD::XOR:
7425       return RISCVISD::VECREDUCE_XOR_VL;
7426     case ISD::FADD:
7427       return RISCVISD::VECREDUCE_FADD_VL;
7428     case ISD::FMAXNUM:
7429       return RISCVISD::VECREDUCE_FMAX_VL;
7430     case ISD::FMINNUM:
7431       return RISCVISD::VECREDUCE_FMIN_VL;
7432     }
7433   };
7434 
7435   auto IsReduction = [&BinOpToRVVReduce](SDValue V, unsigned Opc) {
7436     return V.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7437            isNullConstant(V.getOperand(1)) &&
7438            V.getOperand(0).getOpcode() == BinOpToRVVReduce(Opc);
7439   };
7440 
7441   unsigned Opc = N->getOpcode();
7442   unsigned ReduceIdx;
7443   if (IsReduction(N->getOperand(0), Opc))
7444     ReduceIdx = 0;
7445   else if (IsReduction(N->getOperand(1), Opc))
7446     ReduceIdx = 1;
7447   else
7448     return SDValue();
7449 
7450   // Skip if FADD disallows reassociation but the combiner needs.
7451   if (Opc == ISD::FADD && !N->getFlags().hasAllowReassociation())
7452     return SDValue();
7453 
7454   SDValue Extract = N->getOperand(ReduceIdx);
7455   SDValue Reduce = Extract.getOperand(0);
7456   if (!Reduce.hasOneUse())
7457     return SDValue();
7458 
7459   SDValue ScalarV = Reduce.getOperand(2);
7460 
7461   // Make sure that ScalarV is a splat with VL=1.
7462   if (ScalarV.getOpcode() != RISCVISD::VFMV_S_F_VL &&
7463       ScalarV.getOpcode() != RISCVISD::VMV_S_X_VL &&
7464       ScalarV.getOpcode() != RISCVISD::VMV_V_X_VL)
7465     return SDValue();
7466 
7467   if (!isOneConstant(ScalarV.getOperand(2)))
7468     return SDValue();
7469 
7470   // TODO: Deal with value other than neutral element.
7471   auto IsRVVNeutralElement = [Opc, &DAG](SDNode *N, SDValue V) {
7472     if (Opc == ISD::FADD && N->getFlags().hasNoSignedZeros() &&
7473         isNullFPConstant(V))
7474       return true;
7475     return DAG.getNeutralElement(Opc, SDLoc(V), V.getSimpleValueType(),
7476                                  N->getFlags()) == V;
7477   };
7478 
7479   // Check the scalar of ScalarV is neutral element
7480   if (!IsRVVNeutralElement(N, ScalarV.getOperand(1)))
7481     return SDValue();
7482 
7483   if (!ScalarV.hasOneUse())
7484     return SDValue();
7485 
7486   EVT SplatVT = ScalarV.getValueType();
7487   SDValue NewStart = N->getOperand(1 - ReduceIdx);
7488   unsigned SplatOpc = RISCVISD::VFMV_S_F_VL;
7489   if (SplatVT.isInteger()) {
7490     auto *C = dyn_cast<ConstantSDNode>(NewStart.getNode());
7491     if (!C || C->isZero() || !isInt<5>(C->getSExtValue()))
7492       SplatOpc = RISCVISD::VMV_S_X_VL;
7493     else
7494       SplatOpc = RISCVISD::VMV_V_X_VL;
7495   }
7496 
7497   SDValue NewScalarV =
7498       DAG.getNode(SplatOpc, SDLoc(N), SplatVT, ScalarV.getOperand(0), NewStart,
7499                   ScalarV.getOperand(2));
7500   SDValue NewReduce =
7501       DAG.getNode(Reduce.getOpcode(), SDLoc(Reduce), Reduce.getValueType(),
7502                   Reduce.getOperand(0), Reduce.getOperand(1), NewScalarV,
7503                   Reduce.getOperand(3), Reduce.getOperand(4));
7504   return DAG.getNode(Extract.getOpcode(), SDLoc(Extract),
7505                      Extract.getValueType(), NewReduce, Extract.getOperand(1));
7506 }
7507 
7508 // Match the following pattern as a GREVI(W) operation
7509 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
7510 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7511                                const RISCVSubtarget &Subtarget) {
7512   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7513   EVT VT = Op.getValueType();
7514 
7515   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7516     auto LHS = matchGREVIPat(Op.getOperand(0));
7517     auto RHS = matchGREVIPat(Op.getOperand(1));
7518     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7519       SDLoc DL(Op);
7520       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7521                          DAG.getConstant(LHS->ShAmt, DL, VT));
7522     }
7523   }
7524   return SDValue();
7525 }
7526 
7527 // Matches any the following pattern as a GORCI(W) operation
7528 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
7529 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
7530 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7531 // Note that with the variant of 3.,
7532 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7533 // the inner pattern will first be matched as GREVI and then the outer
7534 // pattern will be matched to GORC via the first rule above.
7535 // 4.  (or (rotl/rotr x, bitwidth/2), x)
7536 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7537                                const RISCVSubtarget &Subtarget) {
7538   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7539   EVT VT = Op.getValueType();
7540 
7541   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7542     SDLoc DL(Op);
7543     SDValue Op0 = Op.getOperand(0);
7544     SDValue Op1 = Op.getOperand(1);
7545 
7546     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7547       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7548           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7549           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7550         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7551       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7552       if ((Reverse.getOpcode() == ISD::ROTL ||
7553            Reverse.getOpcode() == ISD::ROTR) &&
7554           Reverse.getOperand(0) == X &&
7555           isa<ConstantSDNode>(Reverse.getOperand(1))) {
7556         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7557         if (RotAmt == (VT.getSizeInBits() / 2))
7558           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7559                              DAG.getConstant(RotAmt, DL, VT));
7560       }
7561       return SDValue();
7562     };
7563 
7564     // Check for either commutable permutation of (or (GREVI x, shamt), x)
7565     if (SDValue V = MatchOROfReverse(Op0, Op1))
7566       return V;
7567     if (SDValue V = MatchOROfReverse(Op1, Op0))
7568       return V;
7569 
7570     // OR is commutable so canonicalize its OR operand to the left
7571     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7572       std::swap(Op0, Op1);
7573     if (Op0.getOpcode() != ISD::OR)
7574       return SDValue();
7575     SDValue OrOp0 = Op0.getOperand(0);
7576     SDValue OrOp1 = Op0.getOperand(1);
7577     auto LHS = matchGREVIPat(OrOp0);
7578     // OR is commutable so swap the operands and try again: x might have been
7579     // on the left
7580     if (!LHS) {
7581       std::swap(OrOp0, OrOp1);
7582       LHS = matchGREVIPat(OrOp0);
7583     }
7584     auto RHS = matchGREVIPat(Op1);
7585     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7586       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7587                          DAG.getConstant(LHS->ShAmt, DL, VT));
7588     }
7589   }
7590   return SDValue();
7591 }
7592 
7593 // Matches any of the following bit-manipulation patterns:
7594 //   (and (shl x, 1), (0x22222222 << 1))
7595 //   (and (srl x, 1), 0x22222222)
7596 //   (shl (and x, 0x22222222), 1)
7597 //   (srl (and x, (0x22222222 << 1)), 1)
7598 // where the shift amount and mask may vary thus:
7599 //   [1]  = 0x22222222 / 0x44444444
7600 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
7601 //   [4]  = 0x00F000F0 / 0x0F000F00
7602 //   [8]  = 0x0000FF00 / 0x00FF0000
7603 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
7604 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7605   // These are the unshifted masks which we use to match bit-manipulation
7606   // patterns. They may be shifted left in certain circumstances.
7607   static const uint64_t BitmanipMasks[] = {
7608       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7609       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7610 
7611   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7612 }
7613 
7614 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
7615 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7616                                const RISCVSubtarget &Subtarget) {
7617   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7618   EVT VT = Op.getValueType();
7619 
7620   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7621     return SDValue();
7622 
7623   SDValue Op0 = Op.getOperand(0);
7624   SDValue Op1 = Op.getOperand(1);
7625 
7626   // Or is commutable so canonicalize the second OR to the LHS.
7627   if (Op0.getOpcode() != ISD::OR)
7628     std::swap(Op0, Op1);
7629   if (Op0.getOpcode() != ISD::OR)
7630     return SDValue();
7631 
7632   // We found an inner OR, so our operands are the operands of the inner OR
7633   // and the other operand of the outer OR.
7634   SDValue A = Op0.getOperand(0);
7635   SDValue B = Op0.getOperand(1);
7636   SDValue C = Op1;
7637 
7638   auto Match1 = matchSHFLPat(A);
7639   auto Match2 = matchSHFLPat(B);
7640 
7641   // If neither matched, we failed.
7642   if (!Match1 && !Match2)
7643     return SDValue();
7644 
7645   // We had at least one match. if one failed, try the remaining C operand.
7646   if (!Match1) {
7647     std::swap(A, C);
7648     Match1 = matchSHFLPat(A);
7649     if (!Match1)
7650       return SDValue();
7651   } else if (!Match2) {
7652     std::swap(B, C);
7653     Match2 = matchSHFLPat(B);
7654     if (!Match2)
7655       return SDValue();
7656   }
7657   assert(Match1 && Match2);
7658 
7659   // Make sure our matches pair up.
7660   if (!Match1->formsPairWith(*Match2))
7661     return SDValue();
7662 
7663   // All the remains is to make sure C is an AND with the same input, that masks
7664   // out the bits that are being shuffled.
7665   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7666       C.getOperand(0) != Match1->Op)
7667     return SDValue();
7668 
7669   uint64_t Mask = C.getConstantOperandVal(1);
7670 
7671   static const uint64_t BitmanipMasks[] = {
7672       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7673       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7674   };
7675 
7676   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7677   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7678   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7679 
7680   if (Mask != ExpMask)
7681     return SDValue();
7682 
7683   SDLoc DL(Op);
7684   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7685                      DAG.getConstant(Match1->ShAmt, DL, VT));
7686 }
7687 
7688 // Optimize (add (shl x, c0), (shl y, c1)) ->
7689 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7690 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7691                                   const RISCVSubtarget &Subtarget) {
7692   // Perform this optimization only in the zba extension.
7693   if (!Subtarget.hasStdExtZba())
7694     return SDValue();
7695 
7696   // Skip for vector types and larger types.
7697   EVT VT = N->getValueType(0);
7698   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7699     return SDValue();
7700 
7701   // The two operand nodes must be SHL and have no other use.
7702   SDValue N0 = N->getOperand(0);
7703   SDValue N1 = N->getOperand(1);
7704   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7705       !N0->hasOneUse() || !N1->hasOneUse())
7706     return SDValue();
7707 
7708   // Check c0 and c1.
7709   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7710   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7711   if (!N0C || !N1C)
7712     return SDValue();
7713   int64_t C0 = N0C->getSExtValue();
7714   int64_t C1 = N1C->getSExtValue();
7715   if (C0 <= 0 || C1 <= 0)
7716     return SDValue();
7717 
7718   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7719   int64_t Bits = std::min(C0, C1);
7720   int64_t Diff = std::abs(C0 - C1);
7721   if (Diff != 1 && Diff != 2 && Diff != 3)
7722     return SDValue();
7723 
7724   // Build nodes.
7725   SDLoc DL(N);
7726   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7727   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7728   SDValue NA0 =
7729       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7730   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7731   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7732 }
7733 
7734 // Combine
7735 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7736 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7737 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7738 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7739 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7740 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7741 // The grev patterns represents BSWAP.
7742 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB
7743 // off the grev.
7744 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG,
7745                                           const RISCVSubtarget &Subtarget) {
7746   bool IsWInstruction =
7747       N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW;
7748   assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL ||
7749           IsWInstruction) &&
7750          "Unexpected opcode!");
7751   SDValue Src = N->getOperand(0);
7752   EVT VT = N->getValueType(0);
7753   SDLoc DL(N);
7754 
7755   if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV)
7756     return SDValue();
7757 
7758   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7759       !isa<ConstantSDNode>(Src.getOperand(1)))
7760     return SDValue();
7761 
7762   unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits();
7763   assert(isPowerOf2_32(BitWidth) && "Expected a power of 2");
7764 
7765   // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for
7766   // RORW/ROLW. And the grev should be the encoding for bswap for this width.
7767   unsigned ShAmt1 = N->getConstantOperandVal(1);
7768   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7769   if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8))
7770     return SDValue();
7771 
7772   Src = Src.getOperand(0);
7773 
7774   // Toggle bit the MSB of the shift.
7775   unsigned CombinedShAmt = ShAmt1 ^ ShAmt2;
7776   if (CombinedShAmt == 0)
7777     return Src;
7778 
7779   SDValue Res = DAG.getNode(
7780       RISCVISD::GREV, DL, VT, Src,
7781       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7782   if (!IsWInstruction)
7783     return Res;
7784 
7785   // Sign extend the result to match the behavior of the rotate. This will be
7786   // selected to GREVIW in isel.
7787   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res,
7788                      DAG.getValueType(MVT::i32));
7789 }
7790 
7791 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7792 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7793 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7794 // not undo itself, but they are redundant.
7795 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7796   bool IsGORC = N->getOpcode() == RISCVISD::GORC;
7797   assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode");
7798   SDValue Src = N->getOperand(0);
7799 
7800   if (Src.getOpcode() != N->getOpcode())
7801     return SDValue();
7802 
7803   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7804       !isa<ConstantSDNode>(Src.getOperand(1)))
7805     return SDValue();
7806 
7807   unsigned ShAmt1 = N->getConstantOperandVal(1);
7808   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7809   Src = Src.getOperand(0);
7810 
7811   unsigned CombinedShAmt;
7812   if (IsGORC)
7813     CombinedShAmt = ShAmt1 | ShAmt2;
7814   else
7815     CombinedShAmt = ShAmt1 ^ ShAmt2;
7816 
7817   if (CombinedShAmt == 0)
7818     return Src;
7819 
7820   SDLoc DL(N);
7821   return DAG.getNode(
7822       N->getOpcode(), DL, N->getValueType(0), Src,
7823       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7824 }
7825 
7826 // Combine a constant select operand into its use:
7827 //
7828 // (and (select cond, -1, c), x)
7829 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7830 // (or  (select cond, 0, c), x)
7831 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7832 // (xor (select cond, 0, c), x)
7833 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7834 // (add (select cond, 0, c), x)
7835 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7836 // (sub x, (select cond, 0, c))
7837 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7838 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7839                                    SelectionDAG &DAG, bool AllOnes) {
7840   EVT VT = N->getValueType(0);
7841 
7842   // Skip vectors.
7843   if (VT.isVector())
7844     return SDValue();
7845 
7846   if ((Slct.getOpcode() != ISD::SELECT &&
7847        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7848       !Slct.hasOneUse())
7849     return SDValue();
7850 
7851   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7852     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7853   };
7854 
7855   bool SwapSelectOps;
7856   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7857   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7858   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7859   SDValue NonConstantVal;
7860   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7861     SwapSelectOps = false;
7862     NonConstantVal = FalseVal;
7863   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7864     SwapSelectOps = true;
7865     NonConstantVal = TrueVal;
7866   } else
7867     return SDValue();
7868 
7869   // Slct is now know to be the desired identity constant when CC is true.
7870   TrueVal = OtherOp;
7871   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7872   // Unless SwapSelectOps says the condition should be false.
7873   if (SwapSelectOps)
7874     std::swap(TrueVal, FalseVal);
7875 
7876   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7877     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7878                        {Slct.getOperand(0), Slct.getOperand(1),
7879                         Slct.getOperand(2), TrueVal, FalseVal});
7880 
7881   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7882                      {Slct.getOperand(0), TrueVal, FalseVal});
7883 }
7884 
7885 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7886 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7887                                               bool AllOnes) {
7888   SDValue N0 = N->getOperand(0);
7889   SDValue N1 = N->getOperand(1);
7890   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7891     return Result;
7892   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7893     return Result;
7894   return SDValue();
7895 }
7896 
7897 // Transform (add (mul x, c0), c1) ->
7898 //           (add (mul (add x, c1/c0), c0), c1%c0).
7899 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7900 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7901 // to an infinite loop in DAGCombine if transformed.
7902 // Or transform (add (mul x, c0), c1) ->
7903 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7904 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7905 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7906 // lead to an infinite loop in DAGCombine if transformed.
7907 // Or transform (add (mul x, c0), c1) ->
7908 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7909 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7910 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
7911 // lead to an infinite loop in DAGCombine if transformed.
7912 // Or transform (add (mul x, c0), c1) ->
7913 //              (mul (add x, c1/c0), c0).
7914 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
7915 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
7916                                      const RISCVSubtarget &Subtarget) {
7917   // Skip for vector types and larger types.
7918   EVT VT = N->getValueType(0);
7919   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7920     return SDValue();
7921   // The first operand node must be a MUL and has no other use.
7922   SDValue N0 = N->getOperand(0);
7923   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
7924     return SDValue();
7925   // Check if c0 and c1 match above conditions.
7926   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7927   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7928   if (!N0C || !N1C)
7929     return SDValue();
7930   // If N0C has multiple uses it's possible one of the cases in
7931   // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
7932   // in an infinite loop.
7933   if (!N0C->hasOneUse())
7934     return SDValue();
7935   int64_t C0 = N0C->getSExtValue();
7936   int64_t C1 = N1C->getSExtValue();
7937   int64_t CA, CB;
7938   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
7939     return SDValue();
7940   // Search for proper CA (non-zero) and CB that both are simm12.
7941   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
7942       !isInt<12>(C0 * (C1 / C0))) {
7943     CA = C1 / C0;
7944     CB = C1 % C0;
7945   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
7946              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
7947     CA = C1 / C0 + 1;
7948     CB = C1 % C0 - C0;
7949   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
7950              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
7951     CA = C1 / C0 - 1;
7952     CB = C1 % C0 + C0;
7953   } else
7954     return SDValue();
7955   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
7956   SDLoc DL(N);
7957   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
7958                              DAG.getConstant(CA, DL, VT));
7959   SDValue New1 =
7960       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
7961   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
7962 }
7963 
7964 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
7965                                  const RISCVSubtarget &Subtarget) {
7966   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
7967     return V;
7968   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
7969     return V;
7970   if (SDValue V = combineBinOpToReduce(N, DAG))
7971     return V;
7972   // fold (add (select lhs, rhs, cc, 0, y), x) ->
7973   //      (select lhs, rhs, cc, x, (add x, y))
7974   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7975 }
7976 
7977 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
7978   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
7979   //      (select lhs, rhs, cc, x, (sub x, y))
7980   SDValue N0 = N->getOperand(0);
7981   SDValue N1 = N->getOperand(1);
7982   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
7983 }
7984 
7985 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
7986   if (SDValue V = combineBinOpToReduce(N, DAG))
7987     return V;
7988   // fold (and (select lhs, rhs, cc, -1, y), x) ->
7989   //      (select lhs, rhs, cc, x, (and x, y))
7990   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
7991 }
7992 
7993 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
7994                                 const RISCVSubtarget &Subtarget) {
7995   if (Subtarget.hasStdExtZbp()) {
7996     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
7997       return GREV;
7998     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
7999       return GORC;
8000     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
8001       return SHFL;
8002   }
8003 
8004   if (SDValue V = combineBinOpToReduce(N, DAG))
8005     return V;
8006   // fold (or (select cond, 0, y), x) ->
8007   //      (select cond, x, (or x, y))
8008   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8009 }
8010 
8011 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
8012   SDValue N0 = N->getOperand(0);
8013   SDValue N1 = N->getOperand(1);
8014 
8015   // fold (xor (sllw 1, x), -1) -> (rolw ~1, x)
8016   // NOTE: Assumes ROL being legal means ROLW is legal.
8017   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8018   if (N0.getOpcode() == RISCVISD::SLLW &&
8019       isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) &&
8020       TLI.isOperationLegal(ISD::ROTL, MVT::i64)) {
8021     SDLoc DL(N);
8022     return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64,
8023                        DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1));
8024   }
8025 
8026   if (SDValue V = combineBinOpToReduce(N, DAG))
8027     return V;
8028   // fold (xor (select cond, 0, y), x) ->
8029   //      (select cond, x, (xor x, y))
8030   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8031 }
8032 
8033 static SDValue
8034 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
8035                                 const RISCVSubtarget &Subtarget) {
8036   SDValue Src = N->getOperand(0);
8037   EVT VT = N->getValueType(0);
8038 
8039   // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
8040   if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8041       cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
8042     return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
8043                        Src.getOperand(0));
8044 
8045   // Fold (i64 (sext_inreg (abs X), i32)) ->
8046   // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits.
8047   // The (sext_inreg (neg X), i32) will be selected to negw by isel. This
8048   // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user
8049   // of the (i32 (abs X)) is a sext or setcc or something else that causes type
8050   // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have
8051   // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg
8052   // may get combined into an earlier operation so we need to use
8053   // ComputeNumSignBits.
8054   // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for
8055   // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so
8056   // we can't assume that X has 33 sign bits. We must check.
8057   if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() &&
8058       Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 &&
8059       cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 &&
8060       DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) {
8061     SDLoc DL(N);
8062     SDValue Freeze = DAG.getFreeze(Src.getOperand(0));
8063     SDValue Neg =
8064         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze);
8065     Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg,
8066                       DAG.getValueType(MVT::i32));
8067     return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg);
8068   }
8069 
8070   return SDValue();
8071 }
8072 
8073 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
8074 // vwadd(u).vv/vx or vwsub(u).vv/vx.
8075 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
8076                                              bool Commute = false) {
8077   assert((N->getOpcode() == RISCVISD::ADD_VL ||
8078           N->getOpcode() == RISCVISD::SUB_VL) &&
8079          "Unexpected opcode");
8080   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
8081   SDValue Op0 = N->getOperand(0);
8082   SDValue Op1 = N->getOperand(1);
8083   if (Commute)
8084     std::swap(Op0, Op1);
8085 
8086   MVT VT = N->getSimpleValueType(0);
8087 
8088   // Determine the narrow size for a widening add/sub.
8089   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8090   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8091                                   VT.getVectorElementCount());
8092 
8093   SDValue Mask = N->getOperand(2);
8094   SDValue VL = N->getOperand(3);
8095 
8096   SDLoc DL(N);
8097 
8098   // If the RHS is a sext or zext, we can form a widening op.
8099   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
8100        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
8101       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
8102     unsigned ExtOpc = Op1.getOpcode();
8103     Op1 = Op1.getOperand(0);
8104     // Re-introduce narrower extends if needed.
8105     if (Op1.getValueType() != NarrowVT)
8106       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8107 
8108     unsigned WOpc;
8109     if (ExtOpc == RISCVISD::VSEXT_VL)
8110       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
8111     else
8112       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
8113 
8114     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
8115   }
8116 
8117   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
8118   // sext/zext?
8119 
8120   return SDValue();
8121 }
8122 
8123 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
8124 // vwsub(u).vv/vx.
8125 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
8126   SDValue Op0 = N->getOperand(0);
8127   SDValue Op1 = N->getOperand(1);
8128   SDValue Mask = N->getOperand(2);
8129   SDValue VL = N->getOperand(3);
8130 
8131   MVT VT = N->getSimpleValueType(0);
8132   MVT NarrowVT = Op1.getSimpleValueType();
8133   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
8134 
8135   unsigned VOpc;
8136   switch (N->getOpcode()) {
8137   default: llvm_unreachable("Unexpected opcode");
8138   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
8139   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
8140   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
8141   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
8142   }
8143 
8144   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8145                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
8146 
8147   SDLoc DL(N);
8148 
8149   // If the LHS is a sext or zext, we can narrow this op to the same size as
8150   // the RHS.
8151   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
8152        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
8153       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
8154     unsigned ExtOpc = Op0.getOpcode();
8155     Op0 = Op0.getOperand(0);
8156     // Re-introduce narrower extends if needed.
8157     if (Op0.getValueType() != NarrowVT)
8158       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8159     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
8160   }
8161 
8162   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8163                N->getOpcode() == RISCVISD::VWADDU_W_VL;
8164 
8165   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
8166   // to commute and use a vwadd(u).vx instead.
8167   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
8168       Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
8169     Op0 = Op0.getOperand(1);
8170 
8171     // See if have enough sign bits or zero bits in the scalar to use a
8172     // widening add/sub by splatting to smaller element size.
8173     unsigned EltBits = VT.getScalarSizeInBits();
8174     unsigned ScalarBits = Op0.getValueSizeInBits();
8175     // Make sure we're getting all element bits from the scalar register.
8176     // FIXME: Support implicit sign extension of vmv.v.x?
8177     if (ScalarBits < EltBits)
8178       return SDValue();
8179 
8180     if (IsSigned) {
8181       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
8182         return SDValue();
8183     } else {
8184       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8185       if (!DAG.MaskedValueIsZero(Op0, Mask))
8186         return SDValue();
8187     }
8188 
8189     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8190                       DAG.getUNDEF(NarrowVT), Op0, VL);
8191     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
8192   }
8193 
8194   return SDValue();
8195 }
8196 
8197 // Try to form VWMUL, VWMULU or VWMULSU.
8198 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
8199 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
8200                                        bool Commute) {
8201   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
8202   SDValue Op0 = N->getOperand(0);
8203   SDValue Op1 = N->getOperand(1);
8204   if (Commute)
8205     std::swap(Op0, Op1);
8206 
8207   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
8208   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
8209   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
8210   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
8211     return SDValue();
8212 
8213   SDValue Mask = N->getOperand(2);
8214   SDValue VL = N->getOperand(3);
8215 
8216   // Make sure the mask and VL match.
8217   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
8218     return SDValue();
8219 
8220   MVT VT = N->getSimpleValueType(0);
8221 
8222   // Determine the narrow size for a widening multiply.
8223   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8224   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8225                                   VT.getVectorElementCount());
8226 
8227   SDLoc DL(N);
8228 
8229   // See if the other operand is the same opcode.
8230   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
8231     if (!Op1.hasOneUse())
8232       return SDValue();
8233 
8234     // Make sure the mask and VL match.
8235     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
8236       return SDValue();
8237 
8238     Op1 = Op1.getOperand(0);
8239   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
8240     // The operand is a splat of a scalar.
8241 
8242     // The pasthru must be undef for tail agnostic
8243     if (!Op1.getOperand(0).isUndef())
8244       return SDValue();
8245     // The VL must be the same.
8246     if (Op1.getOperand(2) != VL)
8247       return SDValue();
8248 
8249     // Get the scalar value.
8250     Op1 = Op1.getOperand(1);
8251 
8252     // See if have enough sign bits or zero bits in the scalar to use a
8253     // widening multiply by splatting to smaller element size.
8254     unsigned EltBits = VT.getScalarSizeInBits();
8255     unsigned ScalarBits = Op1.getValueSizeInBits();
8256     // Make sure we're getting all element bits from the scalar register.
8257     // FIXME: Support implicit sign extension of vmv.v.x?
8258     if (ScalarBits < EltBits)
8259       return SDValue();
8260 
8261     // If the LHS is a sign extend, try to use vwmul.
8262     if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
8263       // Can use vwmul.
8264     } else {
8265       // Otherwise try to use vwmulu or vwmulsu.
8266       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8267       if (DAG.MaskedValueIsZero(Op1, Mask))
8268         IsVWMULSU = IsSignExt;
8269       else
8270         return SDValue();
8271     }
8272 
8273     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8274                       DAG.getUNDEF(NarrowVT), Op1, VL);
8275   } else
8276     return SDValue();
8277 
8278   Op0 = Op0.getOperand(0);
8279 
8280   // Re-introduce narrower extends if needed.
8281   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
8282   if (Op0.getValueType() != NarrowVT)
8283     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8284   // vwmulsu requires second operand to be zero extended.
8285   ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
8286   if (Op1.getValueType() != NarrowVT)
8287     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8288 
8289   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
8290   if (!IsVWMULSU)
8291     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
8292   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
8293 }
8294 
8295 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
8296   switch (Op.getOpcode()) {
8297   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
8298   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
8299   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
8300   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
8301   case ISD::FROUND:     return RISCVFPRndMode::RMM;
8302   }
8303 
8304   return RISCVFPRndMode::Invalid;
8305 }
8306 
8307 // Fold
8308 //   (fp_to_int (froundeven X)) -> fcvt X, rne
8309 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
8310 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
8311 //   (fp_to_int (fceil X))      -> fcvt X, rup
8312 //   (fp_to_int (fround X))     -> fcvt X, rmm
8313 static SDValue performFP_TO_INTCombine(SDNode *N,
8314                                        TargetLowering::DAGCombinerInfo &DCI,
8315                                        const RISCVSubtarget &Subtarget) {
8316   SelectionDAG &DAG = DCI.DAG;
8317   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8318   MVT XLenVT = Subtarget.getXLenVT();
8319 
8320   // Only handle XLen or i32 types. Other types narrower than XLen will
8321   // eventually be legalized to XLenVT.
8322   EVT VT = N->getValueType(0);
8323   if (VT != MVT::i32 && VT != XLenVT)
8324     return SDValue();
8325 
8326   SDValue Src = N->getOperand(0);
8327 
8328   // Ensure the FP type is also legal.
8329   if (!TLI.isTypeLegal(Src.getValueType()))
8330     return SDValue();
8331 
8332   // Don't do this for f16 with Zfhmin and not Zfh.
8333   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8334     return SDValue();
8335 
8336   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8337   if (FRM == RISCVFPRndMode::Invalid)
8338     return SDValue();
8339 
8340   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
8341 
8342   unsigned Opc;
8343   if (VT == XLenVT)
8344     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8345   else
8346     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8347 
8348   SDLoc DL(N);
8349   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
8350                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8351   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
8352 }
8353 
8354 // Fold
8355 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
8356 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
8357 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
8358 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
8359 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
8360 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
8361                                        TargetLowering::DAGCombinerInfo &DCI,
8362                                        const RISCVSubtarget &Subtarget) {
8363   SelectionDAG &DAG = DCI.DAG;
8364   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8365   MVT XLenVT = Subtarget.getXLenVT();
8366 
8367   // Only handle XLen types. Other types narrower than XLen will eventually be
8368   // legalized to XLenVT.
8369   EVT DstVT = N->getValueType(0);
8370   if (DstVT != XLenVT)
8371     return SDValue();
8372 
8373   SDValue Src = N->getOperand(0);
8374 
8375   // Ensure the FP type is also legal.
8376   if (!TLI.isTypeLegal(Src.getValueType()))
8377     return SDValue();
8378 
8379   // Don't do this for f16 with Zfhmin and not Zfh.
8380   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8381     return SDValue();
8382 
8383   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
8384 
8385   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8386   if (FRM == RISCVFPRndMode::Invalid)
8387     return SDValue();
8388 
8389   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
8390 
8391   unsigned Opc;
8392   if (SatVT == DstVT)
8393     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8394   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
8395     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8396   else
8397     return SDValue();
8398   // FIXME: Support other SatVTs by clamping before or after the conversion.
8399 
8400   Src = Src.getOperand(0);
8401 
8402   SDLoc DL(N);
8403   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
8404                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8405 
8406   // RISCV FP-to-int conversions saturate to the destination register size, but
8407   // don't produce 0 for nan.
8408   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
8409   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
8410 }
8411 
8412 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
8413 // smaller than XLenVT.
8414 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
8415                                         const RISCVSubtarget &Subtarget) {
8416   assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
8417 
8418   SDValue Src = N->getOperand(0);
8419   if (Src.getOpcode() != ISD::BSWAP)
8420     return SDValue();
8421 
8422   EVT VT = N->getValueType(0);
8423   if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
8424       !isPowerOf2_32(VT.getSizeInBits()))
8425     return SDValue();
8426 
8427   SDLoc DL(N);
8428   return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0),
8429                      DAG.getConstant(7, DL, VT));
8430 }
8431 
8432 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
8433                                                DAGCombinerInfo &DCI) const {
8434   SelectionDAG &DAG = DCI.DAG;
8435 
8436   // Helper to call SimplifyDemandedBits on an operand of N where only some low
8437   // bits are demanded. N will be added to the Worklist if it was not deleted.
8438   // Caller should return SDValue(N, 0) if this returns true.
8439   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
8440     SDValue Op = N->getOperand(OpNo);
8441     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
8442     if (!SimplifyDemandedBits(Op, Mask, DCI))
8443       return false;
8444 
8445     if (N->getOpcode() != ISD::DELETED_NODE)
8446       DCI.AddToWorklist(N);
8447     return true;
8448   };
8449 
8450   switch (N->getOpcode()) {
8451   default:
8452     break;
8453   case RISCVISD::SplitF64: {
8454     SDValue Op0 = N->getOperand(0);
8455     // If the input to SplitF64 is just BuildPairF64 then the operation is
8456     // redundant. Instead, use BuildPairF64's operands directly.
8457     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
8458       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
8459 
8460     if (Op0->isUndef()) {
8461       SDValue Lo = DAG.getUNDEF(MVT::i32);
8462       SDValue Hi = DAG.getUNDEF(MVT::i32);
8463       return DCI.CombineTo(N, Lo, Hi);
8464     }
8465 
8466     SDLoc DL(N);
8467 
8468     // It's cheaper to materialise two 32-bit integers than to load a double
8469     // from the constant pool and transfer it to integer registers through the
8470     // stack.
8471     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
8472       APInt V = C->getValueAPF().bitcastToAPInt();
8473       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8474       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8475       return DCI.CombineTo(N, Lo, Hi);
8476     }
8477 
8478     // This is a target-specific version of a DAGCombine performed in
8479     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8480     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8481     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8482     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8483         !Op0.getNode()->hasOneUse())
8484       break;
8485     SDValue NewSplitF64 =
8486         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8487                     Op0.getOperand(0));
8488     SDValue Lo = NewSplitF64.getValue(0);
8489     SDValue Hi = NewSplitF64.getValue(1);
8490     APInt SignBit = APInt::getSignMask(32);
8491     if (Op0.getOpcode() == ISD::FNEG) {
8492       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8493                                   DAG.getConstant(SignBit, DL, MVT::i32));
8494       return DCI.CombineTo(N, Lo, NewHi);
8495     }
8496     assert(Op0.getOpcode() == ISD::FABS);
8497     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8498                                 DAG.getConstant(~SignBit, DL, MVT::i32));
8499     return DCI.CombineTo(N, Lo, NewHi);
8500   }
8501   case RISCVISD::SLLW:
8502   case RISCVISD::SRAW:
8503   case RISCVISD::SRLW: {
8504     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8505     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8506         SimplifyDemandedLowBitsHelper(1, 5))
8507       return SDValue(N, 0);
8508 
8509     break;
8510   }
8511   case ISD::ROTR:
8512   case ISD::ROTL:
8513   case RISCVISD::RORW:
8514   case RISCVISD::ROLW: {
8515     if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) {
8516       // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8517       if (SimplifyDemandedLowBitsHelper(0, 32) ||
8518           SimplifyDemandedLowBitsHelper(1, 5))
8519         return SDValue(N, 0);
8520     }
8521 
8522     return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget);
8523   }
8524   case RISCVISD::CLZW:
8525   case RISCVISD::CTZW: {
8526     // Only the lower 32 bits of the first operand are read
8527     if (SimplifyDemandedLowBitsHelper(0, 32))
8528       return SDValue(N, 0);
8529     break;
8530   }
8531   case RISCVISD::GREV:
8532   case RISCVISD::GORC: {
8533     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8534     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8535     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8536     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8537       return SDValue(N, 0);
8538 
8539     return combineGREVI_GORCI(N, DAG);
8540   }
8541   case RISCVISD::GREVW:
8542   case RISCVISD::GORCW: {
8543     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8544     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8545         SimplifyDemandedLowBitsHelper(1, 5))
8546       return SDValue(N, 0);
8547 
8548     break;
8549   }
8550   case RISCVISD::SHFL:
8551   case RISCVISD::UNSHFL: {
8552     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8553     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8554     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8555     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8556       return SDValue(N, 0);
8557 
8558     break;
8559   }
8560   case RISCVISD::SHFLW:
8561   case RISCVISD::UNSHFLW: {
8562     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8563     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8564         SimplifyDemandedLowBitsHelper(1, 4))
8565       return SDValue(N, 0);
8566 
8567     break;
8568   }
8569   case RISCVISD::BCOMPRESSW:
8570   case RISCVISD::BDECOMPRESSW: {
8571     // Only the lower 32 bits of LHS and RHS are read.
8572     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8573         SimplifyDemandedLowBitsHelper(1, 32))
8574       return SDValue(N, 0);
8575 
8576     break;
8577   }
8578   case RISCVISD::FSR:
8579   case RISCVISD::FSL:
8580   case RISCVISD::FSRW:
8581   case RISCVISD::FSLW: {
8582     bool IsWInstruction =
8583         N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW;
8584     unsigned BitWidth =
8585         IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits();
8586     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8587     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
8588     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1))
8589       return SDValue(N, 0);
8590 
8591     break;
8592   }
8593   case RISCVISD::FMV_X_ANYEXTH:
8594   case RISCVISD::FMV_X_ANYEXTW_RV64: {
8595     SDLoc DL(N);
8596     SDValue Op0 = N->getOperand(0);
8597     MVT VT = N->getSimpleValueType(0);
8598     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8599     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8600     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8601     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8602          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8603         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8604          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8605       assert(Op0.getOperand(0).getValueType() == VT &&
8606              "Unexpected value type!");
8607       return Op0.getOperand(0);
8608     }
8609 
8610     // This is a target-specific version of a DAGCombine performed in
8611     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8612     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8613     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8614     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8615         !Op0.getNode()->hasOneUse())
8616       break;
8617     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
8618     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
8619     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
8620     if (Op0.getOpcode() == ISD::FNEG)
8621       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
8622                          DAG.getConstant(SignBit, DL, VT));
8623 
8624     assert(Op0.getOpcode() == ISD::FABS);
8625     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
8626                        DAG.getConstant(~SignBit, DL, VT));
8627   }
8628   case ISD::ADD:
8629     return performADDCombine(N, DAG, Subtarget);
8630   case ISD::SUB:
8631     return performSUBCombine(N, DAG);
8632   case ISD::AND:
8633     return performANDCombine(N, DAG);
8634   case ISD::OR:
8635     return performORCombine(N, DAG, Subtarget);
8636   case ISD::XOR:
8637     return performXORCombine(N, DAG);
8638   case ISD::FADD:
8639   case ISD::UMAX:
8640   case ISD::UMIN:
8641   case ISD::SMAX:
8642   case ISD::SMIN:
8643   case ISD::FMAXNUM:
8644   case ISD::FMINNUM:
8645     return combineBinOpToReduce(N, DAG);
8646   case ISD::SIGN_EXTEND_INREG:
8647     return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
8648   case ISD::ZERO_EXTEND:
8649     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
8650     // type legalization. This is safe because fp_to_uint produces poison if
8651     // it overflows.
8652     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
8653       SDValue Src = N->getOperand(0);
8654       if (Src.getOpcode() == ISD::FP_TO_UINT &&
8655           isTypeLegal(Src.getOperand(0).getValueType()))
8656         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
8657                            Src.getOperand(0));
8658       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
8659           isTypeLegal(Src.getOperand(1).getValueType())) {
8660         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
8661         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
8662                                   Src.getOperand(0), Src.getOperand(1));
8663         DCI.CombineTo(N, Res);
8664         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
8665         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
8666         return SDValue(N, 0); // Return N so it doesn't get rechecked.
8667       }
8668     }
8669     return SDValue();
8670   case RISCVISD::SELECT_CC: {
8671     // Transform
8672     SDValue LHS = N->getOperand(0);
8673     SDValue RHS = N->getOperand(1);
8674     SDValue TrueV = N->getOperand(3);
8675     SDValue FalseV = N->getOperand(4);
8676 
8677     // If the True and False values are the same, we don't need a select_cc.
8678     if (TrueV == FalseV)
8679       return TrueV;
8680 
8681     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
8682     if (!ISD::isIntEqualitySetCC(CCVal))
8683       break;
8684 
8685     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
8686     //      (select_cc X, Y, lt, trueV, falseV)
8687     // Sometimes the setcc is introduced after select_cc has been formed.
8688     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8689         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8690       // If we're looking for eq 0 instead of ne 0, we need to invert the
8691       // condition.
8692       bool Invert = CCVal == ISD::SETEQ;
8693       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8694       if (Invert)
8695         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8696 
8697       SDLoc DL(N);
8698       RHS = LHS.getOperand(1);
8699       LHS = LHS.getOperand(0);
8700       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8701 
8702       SDValue TargetCC = DAG.getCondCode(CCVal);
8703       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8704                          {LHS, RHS, TargetCC, TrueV, FalseV});
8705     }
8706 
8707     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
8708     //      (select_cc X, Y, eq/ne, trueV, falseV)
8709     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8710       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
8711                          {LHS.getOperand(0), LHS.getOperand(1),
8712                           N->getOperand(2), TrueV, FalseV});
8713     // (select_cc X, 1, setne, trueV, falseV) ->
8714     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
8715     // This can occur when legalizing some floating point comparisons.
8716     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8717     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8718       SDLoc DL(N);
8719       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8720       SDValue TargetCC = DAG.getCondCode(CCVal);
8721       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8722       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8723                          {LHS, RHS, TargetCC, TrueV, FalseV});
8724     }
8725 
8726     break;
8727   }
8728   case RISCVISD::BR_CC: {
8729     SDValue LHS = N->getOperand(1);
8730     SDValue RHS = N->getOperand(2);
8731     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
8732     if (!ISD::isIntEqualitySetCC(CCVal))
8733       break;
8734 
8735     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
8736     //      (br_cc X, Y, lt, dest)
8737     // Sometimes the setcc is introduced after br_cc has been formed.
8738     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8739         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8740       // If we're looking for eq 0 instead of ne 0, we need to invert the
8741       // condition.
8742       bool Invert = CCVal == ISD::SETEQ;
8743       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8744       if (Invert)
8745         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8746 
8747       SDLoc DL(N);
8748       RHS = LHS.getOperand(1);
8749       LHS = LHS.getOperand(0);
8750       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8751 
8752       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8753                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
8754                          N->getOperand(4));
8755     }
8756 
8757     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
8758     //      (br_cc X, Y, eq/ne, trueV, falseV)
8759     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8760       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
8761                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
8762                          N->getOperand(3), N->getOperand(4));
8763 
8764     // (br_cc X, 1, setne, br_cc) ->
8765     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
8766     // This can occur when legalizing some floating point comparisons.
8767     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8768     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8769       SDLoc DL(N);
8770       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8771       SDValue TargetCC = DAG.getCondCode(CCVal);
8772       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8773       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8774                          N->getOperand(0), LHS, RHS, TargetCC,
8775                          N->getOperand(4));
8776     }
8777     break;
8778   }
8779   case ISD::BITREVERSE:
8780     return performBITREVERSECombine(N, DAG, Subtarget);
8781   case ISD::FP_TO_SINT:
8782   case ISD::FP_TO_UINT:
8783     return performFP_TO_INTCombine(N, DCI, Subtarget);
8784   case ISD::FP_TO_SINT_SAT:
8785   case ISD::FP_TO_UINT_SAT:
8786     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
8787   case ISD::FCOPYSIGN: {
8788     EVT VT = N->getValueType(0);
8789     if (!VT.isVector())
8790       break;
8791     // There is a form of VFSGNJ which injects the negated sign of its second
8792     // operand. Try and bubble any FNEG up after the extend/round to produce
8793     // this optimized pattern. Avoid modifying cases where FP_ROUND and
8794     // TRUNC=1.
8795     SDValue In2 = N->getOperand(1);
8796     // Avoid cases where the extend/round has multiple uses, as duplicating
8797     // those is typically more expensive than removing a fneg.
8798     if (!In2.hasOneUse())
8799       break;
8800     if (In2.getOpcode() != ISD::FP_EXTEND &&
8801         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
8802       break;
8803     In2 = In2.getOperand(0);
8804     if (In2.getOpcode() != ISD::FNEG)
8805       break;
8806     SDLoc DL(N);
8807     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
8808     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
8809                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
8810   }
8811   case ISD::MGATHER:
8812   case ISD::MSCATTER:
8813   case ISD::VP_GATHER:
8814   case ISD::VP_SCATTER: {
8815     if (!DCI.isBeforeLegalize())
8816       break;
8817     SDValue Index, ScaleOp;
8818     bool IsIndexScaled = false;
8819     bool IsIndexSigned = false;
8820     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
8821       Index = VPGSN->getIndex();
8822       ScaleOp = VPGSN->getScale();
8823       IsIndexScaled = VPGSN->isIndexScaled();
8824       IsIndexSigned = VPGSN->isIndexSigned();
8825     } else {
8826       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
8827       Index = MGSN->getIndex();
8828       ScaleOp = MGSN->getScale();
8829       IsIndexScaled = MGSN->isIndexScaled();
8830       IsIndexSigned = MGSN->isIndexSigned();
8831     }
8832     EVT IndexVT = Index.getValueType();
8833     MVT XLenVT = Subtarget.getXLenVT();
8834     // RISCV indexed loads only support the "unsigned unscaled" addressing
8835     // mode, so anything else must be manually legalized.
8836     bool NeedsIdxLegalization =
8837         IsIndexScaled ||
8838         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
8839     if (!NeedsIdxLegalization)
8840       break;
8841 
8842     SDLoc DL(N);
8843 
8844     // Any index legalization should first promote to XLenVT, so we don't lose
8845     // bits when scaling. This may create an illegal index type so we let
8846     // LLVM's legalization take care of the splitting.
8847     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
8848     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
8849       IndexVT = IndexVT.changeVectorElementType(XLenVT);
8850       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
8851                           DL, IndexVT, Index);
8852     }
8853 
8854     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
8855     if (IsIndexScaled && Scale != 1) {
8856       // Manually scale the indices by the element size.
8857       // TODO: Sanitize the scale operand here?
8858       // TODO: For VP nodes, should we use VP_SHL here?
8859       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
8860       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
8861       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
8862     }
8863 
8864     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
8865     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
8866       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
8867                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
8868                               VPGN->getScale(), VPGN->getMask(),
8869                               VPGN->getVectorLength()},
8870                              VPGN->getMemOperand(), NewIndexTy);
8871     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
8872       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
8873                               {VPSN->getChain(), VPSN->getValue(),
8874                                VPSN->getBasePtr(), Index, VPSN->getScale(),
8875                                VPSN->getMask(), VPSN->getVectorLength()},
8876                               VPSN->getMemOperand(), NewIndexTy);
8877     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
8878       return DAG.getMaskedGather(
8879           N->getVTList(), MGN->getMemoryVT(), DL,
8880           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
8881            MGN->getBasePtr(), Index, MGN->getScale()},
8882           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
8883     const auto *MSN = cast<MaskedScatterSDNode>(N);
8884     return DAG.getMaskedScatter(
8885         N->getVTList(), MSN->getMemoryVT(), DL,
8886         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
8887          Index, MSN->getScale()},
8888         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
8889   }
8890   case RISCVISD::SRA_VL:
8891   case RISCVISD::SRL_VL:
8892   case RISCVISD::SHL_VL: {
8893     SDValue ShAmt = N->getOperand(1);
8894     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8895       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8896       SDLoc DL(N);
8897       SDValue VL = N->getOperand(3);
8898       EVT VT = N->getValueType(0);
8899       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8900                           ShAmt.getOperand(1), VL);
8901       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
8902                          N->getOperand(2), N->getOperand(3));
8903     }
8904     break;
8905   }
8906   case ISD::SRA:
8907   case ISD::SRL:
8908   case ISD::SHL: {
8909     SDValue ShAmt = N->getOperand(1);
8910     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8911       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8912       SDLoc DL(N);
8913       EVT VT = N->getValueType(0);
8914       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8915                           ShAmt.getOperand(1),
8916                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
8917       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
8918     }
8919     break;
8920   }
8921   case RISCVISD::ADD_VL:
8922     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
8923       return V;
8924     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
8925   case RISCVISD::SUB_VL:
8926     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
8927   case RISCVISD::VWADD_W_VL:
8928   case RISCVISD::VWADDU_W_VL:
8929   case RISCVISD::VWSUB_W_VL:
8930   case RISCVISD::VWSUBU_W_VL:
8931     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
8932   case RISCVISD::MUL_VL:
8933     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
8934       return V;
8935     // Mul is commutative.
8936     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
8937   case ISD::STORE: {
8938     auto *Store = cast<StoreSDNode>(N);
8939     SDValue Val = Store->getValue();
8940     // Combine store of vmv.x.s to vse with VL of 1.
8941     // FIXME: Support FP.
8942     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
8943       SDValue Src = Val.getOperand(0);
8944       EVT VecVT = Src.getValueType();
8945       EVT MemVT = Store->getMemoryVT();
8946       // The memory VT and the element type must match.
8947       if (VecVT.getVectorElementType() == MemVT) {
8948         SDLoc DL(N);
8949         MVT MaskVT = getMaskTypeFor(VecVT);
8950         return DAG.getStoreVP(
8951             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
8952             DAG.getConstant(1, DL, MaskVT),
8953             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
8954             Store->getMemOperand(), Store->getAddressingMode(),
8955             Store->isTruncatingStore(), /*IsCompress*/ false);
8956       }
8957     }
8958 
8959     break;
8960   }
8961   case ISD::SPLAT_VECTOR: {
8962     EVT VT = N->getValueType(0);
8963     // Only perform this combine on legal MVT types.
8964     if (!isTypeLegal(VT))
8965       break;
8966     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
8967                                          DAG, Subtarget))
8968       return Gather;
8969     break;
8970   }
8971   case RISCVISD::VMV_V_X_VL: {
8972     // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
8973     // scalar input.
8974     unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
8975     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
8976     if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
8977       if (SimplifyDemandedLowBitsHelper(1, EltWidth))
8978         return SDValue(N, 0);
8979 
8980     break;
8981   }
8982   case ISD::INTRINSIC_WO_CHAIN: {
8983     unsigned IntNo = N->getConstantOperandVal(0);
8984     switch (IntNo) {
8985       // By default we do not combine any intrinsic.
8986     default:
8987       return SDValue();
8988     case Intrinsic::riscv_vcpop:
8989     case Intrinsic::riscv_vcpop_mask:
8990     case Intrinsic::riscv_vfirst:
8991     case Intrinsic::riscv_vfirst_mask: {
8992       SDValue VL = N->getOperand(2);
8993       if (IntNo == Intrinsic::riscv_vcpop_mask ||
8994           IntNo == Intrinsic::riscv_vfirst_mask)
8995         VL = N->getOperand(3);
8996       if (!isNullConstant(VL))
8997         return SDValue();
8998       // If VL is 0, vcpop -> li 0, vfirst -> li -1.
8999       SDLoc DL(N);
9000       EVT VT = N->getValueType(0);
9001       if (IntNo == Intrinsic::riscv_vfirst ||
9002           IntNo == Intrinsic::riscv_vfirst_mask)
9003         return DAG.getConstant(-1, DL, VT);
9004       return DAG.getConstant(0, DL, VT);
9005     }
9006     }
9007   }
9008   }
9009 
9010   return SDValue();
9011 }
9012 
9013 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
9014     const SDNode *N, CombineLevel Level) const {
9015   // The following folds are only desirable if `(OP _, c1 << c2)` can be
9016   // materialised in fewer instructions than `(OP _, c1)`:
9017   //
9018   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
9019   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
9020   SDValue N0 = N->getOperand(0);
9021   EVT Ty = N0.getValueType();
9022   if (Ty.isScalarInteger() &&
9023       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
9024     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
9025     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
9026     if (C1 && C2) {
9027       const APInt &C1Int = C1->getAPIntValue();
9028       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
9029 
9030       // We can materialise `c1 << c2` into an add immediate, so it's "free",
9031       // and the combine should happen, to potentially allow further combines
9032       // later.
9033       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
9034           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
9035         return true;
9036 
9037       // We can materialise `c1` in an add immediate, so it's "free", and the
9038       // combine should be prevented.
9039       if (C1Int.getMinSignedBits() <= 64 &&
9040           isLegalAddImmediate(C1Int.getSExtValue()))
9041         return false;
9042 
9043       // Neither constant will fit into an immediate, so find materialisation
9044       // costs.
9045       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
9046                                               Subtarget.getFeatureBits(),
9047                                               /*CompressionCost*/true);
9048       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
9049           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
9050           /*CompressionCost*/true);
9051 
9052       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
9053       // combine should be prevented.
9054       if (C1Cost < ShiftedC1Cost)
9055         return false;
9056     }
9057   }
9058   return true;
9059 }
9060 
9061 bool RISCVTargetLowering::targetShrinkDemandedConstant(
9062     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
9063     TargetLoweringOpt &TLO) const {
9064   // Delay this optimization as late as possible.
9065   if (!TLO.LegalOps)
9066     return false;
9067 
9068   EVT VT = Op.getValueType();
9069   if (VT.isVector())
9070     return false;
9071 
9072   // Only handle AND for now.
9073   if (Op.getOpcode() != ISD::AND)
9074     return false;
9075 
9076   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9077   if (!C)
9078     return false;
9079 
9080   const APInt &Mask = C->getAPIntValue();
9081 
9082   // Clear all non-demanded bits initially.
9083   APInt ShrunkMask = Mask & DemandedBits;
9084 
9085   // Try to make a smaller immediate by setting undemanded bits.
9086 
9087   APInt ExpandedMask = Mask | ~DemandedBits;
9088 
9089   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
9090     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
9091   };
9092   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
9093     if (NewMask == Mask)
9094       return true;
9095     SDLoc DL(Op);
9096     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
9097     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
9098     return TLO.CombineTo(Op, NewOp);
9099   };
9100 
9101   // If the shrunk mask fits in sign extended 12 bits, let the target
9102   // independent code apply it.
9103   if (ShrunkMask.isSignedIntN(12))
9104     return false;
9105 
9106   // Preserve (and X, 0xffff) when zext.h is supported.
9107   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
9108     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
9109     if (IsLegalMask(NewMask))
9110       return UseMask(NewMask);
9111   }
9112 
9113   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
9114   if (VT == MVT::i64) {
9115     APInt NewMask = APInt(64, 0xffffffff);
9116     if (IsLegalMask(NewMask))
9117       return UseMask(NewMask);
9118   }
9119 
9120   // For the remaining optimizations, we need to be able to make a negative
9121   // number through a combination of mask and undemanded bits.
9122   if (!ExpandedMask.isNegative())
9123     return false;
9124 
9125   // What is the fewest number of bits we need to represent the negative number.
9126   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
9127 
9128   // Try to make a 12 bit negative immediate. If that fails try to make a 32
9129   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
9130   APInt NewMask = ShrunkMask;
9131   if (MinSignedBits <= 12)
9132     NewMask.setBitsFrom(11);
9133   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
9134     NewMask.setBitsFrom(31);
9135   else
9136     return false;
9137 
9138   // Check that our new mask is a subset of the demanded mask.
9139   assert(IsLegalMask(NewMask));
9140   return UseMask(NewMask);
9141 }
9142 
9143 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) {
9144   static const uint64_t GREVMasks[] = {
9145       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
9146       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
9147 
9148   for (unsigned Stage = 0; Stage != 6; ++Stage) {
9149     unsigned Shift = 1 << Stage;
9150     if (ShAmt & Shift) {
9151       uint64_t Mask = GREVMasks[Stage];
9152       uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask);
9153       if (IsGORC)
9154         Res |= x;
9155       x = Res;
9156     }
9157   }
9158 
9159   return x;
9160 }
9161 
9162 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
9163                                                         KnownBits &Known,
9164                                                         const APInt &DemandedElts,
9165                                                         const SelectionDAG &DAG,
9166                                                         unsigned Depth) const {
9167   unsigned BitWidth = Known.getBitWidth();
9168   unsigned Opc = Op.getOpcode();
9169   assert((Opc >= ISD::BUILTIN_OP_END ||
9170           Opc == ISD::INTRINSIC_WO_CHAIN ||
9171           Opc == ISD::INTRINSIC_W_CHAIN ||
9172           Opc == ISD::INTRINSIC_VOID) &&
9173          "Should use MaskedValueIsZero if you don't know whether Op"
9174          " is a target node!");
9175 
9176   Known.resetAll();
9177   switch (Opc) {
9178   default: break;
9179   case RISCVISD::SELECT_CC: {
9180     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
9181     // If we don't know any bits, early out.
9182     if (Known.isUnknown())
9183       break;
9184     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
9185 
9186     // Only known if known in both the LHS and RHS.
9187     Known = KnownBits::commonBits(Known, Known2);
9188     break;
9189   }
9190   case RISCVISD::REMUW: {
9191     KnownBits Known2;
9192     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9193     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9194     // We only care about the lower 32 bits.
9195     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
9196     // Restore the original width by sign extending.
9197     Known = Known.sext(BitWidth);
9198     break;
9199   }
9200   case RISCVISD::DIVUW: {
9201     KnownBits Known2;
9202     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9203     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9204     // We only care about the lower 32 bits.
9205     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
9206     // Restore the original width by sign extending.
9207     Known = Known.sext(BitWidth);
9208     break;
9209   }
9210   case RISCVISD::CTZW: {
9211     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9212     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
9213     unsigned LowBits = Log2_32(PossibleTZ) + 1;
9214     Known.Zero.setBitsFrom(LowBits);
9215     break;
9216   }
9217   case RISCVISD::CLZW: {
9218     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9219     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
9220     unsigned LowBits = Log2_32(PossibleLZ) + 1;
9221     Known.Zero.setBitsFrom(LowBits);
9222     break;
9223   }
9224   case RISCVISD::GREV:
9225   case RISCVISD::GORC: {
9226     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9227       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9228       unsigned ShAmt = C->getZExtValue() & (Known.getBitWidth() - 1);
9229       bool IsGORC = Op.getOpcode() == RISCVISD::GORC;
9230       // To compute zeros, we need to invert the value and invert it back after.
9231       Known.Zero =
9232           ~computeGREVOrGORC(~Known.Zero.getZExtValue(), ShAmt, IsGORC);
9233       Known.One = computeGREVOrGORC(Known.One.getZExtValue(), ShAmt, IsGORC);
9234     }
9235     break;
9236   }
9237   case RISCVISD::READ_VLENB: {
9238     // If we know the minimum VLen from Zvl extensions, we can use that to
9239     // determine the trailing zeros of VLENB.
9240     // FIXME: Limit to 128 bit vectors until we have more testing.
9241     unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8;
9242     if (MinVLenB > 0)
9243       Known.Zero.setLowBits(Log2_32(MinVLenB));
9244     // We assume VLENB is no more than 65536 / 8 bytes.
9245     Known.Zero.setBitsFrom(14);
9246     break;
9247   }
9248   case ISD::INTRINSIC_W_CHAIN:
9249   case ISD::INTRINSIC_WO_CHAIN: {
9250     unsigned IntNo =
9251         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
9252     switch (IntNo) {
9253     default:
9254       // We can't do anything for most intrinsics.
9255       break;
9256     case Intrinsic::riscv_vsetvli:
9257     case Intrinsic::riscv_vsetvlimax:
9258     case Intrinsic::riscv_vsetvli_opt:
9259     case Intrinsic::riscv_vsetvlimax_opt:
9260       // Assume that VL output is positive and would fit in an int32_t.
9261       // TODO: VLEN might be capped at 16 bits in a future V spec update.
9262       if (BitWidth >= 32)
9263         Known.Zero.setBitsFrom(31);
9264       break;
9265     }
9266     break;
9267   }
9268   }
9269 }
9270 
9271 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
9272     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
9273     unsigned Depth) const {
9274   switch (Op.getOpcode()) {
9275   default:
9276     break;
9277   case RISCVISD::SELECT_CC: {
9278     unsigned Tmp =
9279         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
9280     if (Tmp == 1) return 1;  // Early out.
9281     unsigned Tmp2 =
9282         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
9283     return std::min(Tmp, Tmp2);
9284   }
9285   case RISCVISD::SLLW:
9286   case RISCVISD::SRAW:
9287   case RISCVISD::SRLW:
9288   case RISCVISD::DIVW:
9289   case RISCVISD::DIVUW:
9290   case RISCVISD::REMUW:
9291   case RISCVISD::ROLW:
9292   case RISCVISD::RORW:
9293   case RISCVISD::GREVW:
9294   case RISCVISD::GORCW:
9295   case RISCVISD::FSLW:
9296   case RISCVISD::FSRW:
9297   case RISCVISD::SHFLW:
9298   case RISCVISD::UNSHFLW:
9299   case RISCVISD::BCOMPRESSW:
9300   case RISCVISD::BDECOMPRESSW:
9301   case RISCVISD::BFPW:
9302   case RISCVISD::FCVT_W_RV64:
9303   case RISCVISD::FCVT_WU_RV64:
9304   case RISCVISD::STRICT_FCVT_W_RV64:
9305   case RISCVISD::STRICT_FCVT_WU_RV64:
9306     // TODO: As the result is sign-extended, this is conservatively correct. A
9307     // more precise answer could be calculated for SRAW depending on known
9308     // bits in the shift amount.
9309     return 33;
9310   case RISCVISD::SHFL:
9311   case RISCVISD::UNSHFL: {
9312     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
9313     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
9314     // will stay within the upper 32 bits. If there were more than 32 sign bits
9315     // before there will be at least 33 sign bits after.
9316     if (Op.getValueType() == MVT::i64 &&
9317         isa<ConstantSDNode>(Op.getOperand(1)) &&
9318         (Op.getConstantOperandVal(1) & 0x10) == 0) {
9319       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
9320       if (Tmp > 32)
9321         return 33;
9322     }
9323     break;
9324   }
9325   case RISCVISD::VMV_X_S: {
9326     // The number of sign bits of the scalar result is computed by obtaining the
9327     // element type of the input vector operand, subtracting its width from the
9328     // XLEN, and then adding one (sign bit within the element type). If the
9329     // element type is wider than XLen, the least-significant XLEN bits are
9330     // taken.
9331     unsigned XLen = Subtarget.getXLen();
9332     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
9333     if (EltBits <= XLen)
9334       return XLen - EltBits + 1;
9335     break;
9336   }
9337   }
9338 
9339   return 1;
9340 }
9341 
9342 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
9343                                                   MachineBasicBlock *BB) {
9344   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
9345 
9346   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
9347   // Should the count have wrapped while it was being read, we need to try
9348   // again.
9349   // ...
9350   // read:
9351   // rdcycleh x3 # load high word of cycle
9352   // rdcycle  x2 # load low word of cycle
9353   // rdcycleh x4 # load high word of cycle
9354   // bne x3, x4, read # check if high word reads match, otherwise try again
9355   // ...
9356 
9357   MachineFunction &MF = *BB->getParent();
9358   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9359   MachineFunction::iterator It = ++BB->getIterator();
9360 
9361   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9362   MF.insert(It, LoopMBB);
9363 
9364   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9365   MF.insert(It, DoneMBB);
9366 
9367   // Transfer the remainder of BB and its successor edges to DoneMBB.
9368   DoneMBB->splice(DoneMBB->begin(), BB,
9369                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9370   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
9371 
9372   BB->addSuccessor(LoopMBB);
9373 
9374   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9375   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9376   Register LoReg = MI.getOperand(0).getReg();
9377   Register HiReg = MI.getOperand(1).getReg();
9378   DebugLoc DL = MI.getDebugLoc();
9379 
9380   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
9381   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
9382       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9383       .addReg(RISCV::X0);
9384   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
9385       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
9386       .addReg(RISCV::X0);
9387   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
9388       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9389       .addReg(RISCV::X0);
9390 
9391   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
9392       .addReg(HiReg)
9393       .addReg(ReadAgainReg)
9394       .addMBB(LoopMBB);
9395 
9396   LoopMBB->addSuccessor(LoopMBB);
9397   LoopMBB->addSuccessor(DoneMBB);
9398 
9399   MI.eraseFromParent();
9400 
9401   return DoneMBB;
9402 }
9403 
9404 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
9405                                              MachineBasicBlock *BB) {
9406   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
9407 
9408   MachineFunction &MF = *BB->getParent();
9409   DebugLoc DL = MI.getDebugLoc();
9410   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9411   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9412   Register LoReg = MI.getOperand(0).getReg();
9413   Register HiReg = MI.getOperand(1).getReg();
9414   Register SrcReg = MI.getOperand(2).getReg();
9415   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
9416   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9417 
9418   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
9419                           RI);
9420   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9421   MachineMemOperand *MMOLo =
9422       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
9423   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9424       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
9425   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
9426       .addFrameIndex(FI)
9427       .addImm(0)
9428       .addMemOperand(MMOLo);
9429   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
9430       .addFrameIndex(FI)
9431       .addImm(4)
9432       .addMemOperand(MMOHi);
9433   MI.eraseFromParent(); // The pseudo instruction is gone now.
9434   return BB;
9435 }
9436 
9437 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
9438                                                  MachineBasicBlock *BB) {
9439   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
9440          "Unexpected instruction");
9441 
9442   MachineFunction &MF = *BB->getParent();
9443   DebugLoc DL = MI.getDebugLoc();
9444   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9445   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9446   Register DstReg = MI.getOperand(0).getReg();
9447   Register LoReg = MI.getOperand(1).getReg();
9448   Register HiReg = MI.getOperand(2).getReg();
9449   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
9450   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9451 
9452   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9453   MachineMemOperand *MMOLo =
9454       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
9455   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9456       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
9457   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9458       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
9459       .addFrameIndex(FI)
9460       .addImm(0)
9461       .addMemOperand(MMOLo);
9462   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9463       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
9464       .addFrameIndex(FI)
9465       .addImm(4)
9466       .addMemOperand(MMOHi);
9467   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
9468   MI.eraseFromParent(); // The pseudo instruction is gone now.
9469   return BB;
9470 }
9471 
9472 static bool isSelectPseudo(MachineInstr &MI) {
9473   switch (MI.getOpcode()) {
9474   default:
9475     return false;
9476   case RISCV::Select_GPR_Using_CC_GPR:
9477   case RISCV::Select_FPR16_Using_CC_GPR:
9478   case RISCV::Select_FPR32_Using_CC_GPR:
9479   case RISCV::Select_FPR64_Using_CC_GPR:
9480     return true;
9481   }
9482 }
9483 
9484 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
9485                                         unsigned RelOpcode, unsigned EqOpcode,
9486                                         const RISCVSubtarget &Subtarget) {
9487   DebugLoc DL = MI.getDebugLoc();
9488   Register DstReg = MI.getOperand(0).getReg();
9489   Register Src1Reg = MI.getOperand(1).getReg();
9490   Register Src2Reg = MI.getOperand(2).getReg();
9491   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
9492   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
9493   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
9494 
9495   // Save the current FFLAGS.
9496   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
9497 
9498   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
9499                  .addReg(Src1Reg)
9500                  .addReg(Src2Reg);
9501   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9502     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
9503 
9504   // Restore the FFLAGS.
9505   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
9506       .addReg(SavedFFlags, RegState::Kill);
9507 
9508   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
9509   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
9510                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
9511                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
9512   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9513     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
9514 
9515   // Erase the pseudoinstruction.
9516   MI.eraseFromParent();
9517   return BB;
9518 }
9519 
9520 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
9521                                            MachineBasicBlock *BB,
9522                                            const RISCVSubtarget &Subtarget) {
9523   // To "insert" Select_* instructions, we actually have to insert the triangle
9524   // control-flow pattern.  The incoming instructions know the destination vreg
9525   // to set, the condition code register to branch on, the true/false values to
9526   // select between, and the condcode to use to select the appropriate branch.
9527   //
9528   // We produce the following control flow:
9529   //     HeadMBB
9530   //     |  \
9531   //     |  IfFalseMBB
9532   //     | /
9533   //    TailMBB
9534   //
9535   // When we find a sequence of selects we attempt to optimize their emission
9536   // by sharing the control flow. Currently we only handle cases where we have
9537   // multiple selects with the exact same condition (same LHS, RHS and CC).
9538   // The selects may be interleaved with other instructions if the other
9539   // instructions meet some requirements we deem safe:
9540   // - They are debug instructions. Otherwise,
9541   // - They do not have side-effects, do not access memory and their inputs do
9542   //   not depend on the results of the select pseudo-instructions.
9543   // The TrueV/FalseV operands of the selects cannot depend on the result of
9544   // previous selects in the sequence.
9545   // These conditions could be further relaxed. See the X86 target for a
9546   // related approach and more information.
9547   Register LHS = MI.getOperand(1).getReg();
9548   Register RHS = MI.getOperand(2).getReg();
9549   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
9550 
9551   SmallVector<MachineInstr *, 4> SelectDebugValues;
9552   SmallSet<Register, 4> SelectDests;
9553   SelectDests.insert(MI.getOperand(0).getReg());
9554 
9555   MachineInstr *LastSelectPseudo = &MI;
9556 
9557   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
9558        SequenceMBBI != E; ++SequenceMBBI) {
9559     if (SequenceMBBI->isDebugInstr())
9560       continue;
9561     else if (isSelectPseudo(*SequenceMBBI)) {
9562       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
9563           SequenceMBBI->getOperand(2).getReg() != RHS ||
9564           SequenceMBBI->getOperand(3).getImm() != CC ||
9565           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
9566           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
9567         break;
9568       LastSelectPseudo = &*SequenceMBBI;
9569       SequenceMBBI->collectDebugValues(SelectDebugValues);
9570       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
9571     } else {
9572       if (SequenceMBBI->hasUnmodeledSideEffects() ||
9573           SequenceMBBI->mayLoadOrStore())
9574         break;
9575       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
9576             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
9577           }))
9578         break;
9579     }
9580   }
9581 
9582   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9583   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9584   DebugLoc DL = MI.getDebugLoc();
9585   MachineFunction::iterator I = ++BB->getIterator();
9586 
9587   MachineBasicBlock *HeadMBB = BB;
9588   MachineFunction *F = BB->getParent();
9589   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
9590   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
9591 
9592   F->insert(I, IfFalseMBB);
9593   F->insert(I, TailMBB);
9594 
9595   // Transfer debug instructions associated with the selects to TailMBB.
9596   for (MachineInstr *DebugInstr : SelectDebugValues) {
9597     TailMBB->push_back(DebugInstr->removeFromParent());
9598   }
9599 
9600   // Move all instructions after the sequence to TailMBB.
9601   TailMBB->splice(TailMBB->end(), HeadMBB,
9602                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
9603   // Update machine-CFG edges by transferring all successors of the current
9604   // block to the new block which will contain the Phi nodes for the selects.
9605   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
9606   // Set the successors for HeadMBB.
9607   HeadMBB->addSuccessor(IfFalseMBB);
9608   HeadMBB->addSuccessor(TailMBB);
9609 
9610   // Insert appropriate branch.
9611   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
9612     .addReg(LHS)
9613     .addReg(RHS)
9614     .addMBB(TailMBB);
9615 
9616   // IfFalseMBB just falls through to TailMBB.
9617   IfFalseMBB->addSuccessor(TailMBB);
9618 
9619   // Create PHIs for all of the select pseudo-instructions.
9620   auto SelectMBBI = MI.getIterator();
9621   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
9622   auto InsertionPoint = TailMBB->begin();
9623   while (SelectMBBI != SelectEnd) {
9624     auto Next = std::next(SelectMBBI);
9625     if (isSelectPseudo(*SelectMBBI)) {
9626       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
9627       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
9628               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
9629           .addReg(SelectMBBI->getOperand(4).getReg())
9630           .addMBB(HeadMBB)
9631           .addReg(SelectMBBI->getOperand(5).getReg())
9632           .addMBB(IfFalseMBB);
9633       SelectMBBI->eraseFromParent();
9634     }
9635     SelectMBBI = Next;
9636   }
9637 
9638   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9639   return TailMBB;
9640 }
9641 
9642 MachineBasicBlock *
9643 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9644                                                  MachineBasicBlock *BB) const {
9645   switch (MI.getOpcode()) {
9646   default:
9647     llvm_unreachable("Unexpected instr type to insert");
9648   case RISCV::ReadCycleWide:
9649     assert(!Subtarget.is64Bit() &&
9650            "ReadCycleWrite is only to be used on riscv32");
9651     return emitReadCycleWidePseudo(MI, BB);
9652   case RISCV::Select_GPR_Using_CC_GPR:
9653   case RISCV::Select_FPR16_Using_CC_GPR:
9654   case RISCV::Select_FPR32_Using_CC_GPR:
9655   case RISCV::Select_FPR64_Using_CC_GPR:
9656     return emitSelectPseudo(MI, BB, Subtarget);
9657   case RISCV::BuildPairF64Pseudo:
9658     return emitBuildPairF64Pseudo(MI, BB);
9659   case RISCV::SplitF64Pseudo:
9660     return emitSplitF64Pseudo(MI, BB);
9661   case RISCV::PseudoQuietFLE_H:
9662     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
9663   case RISCV::PseudoQuietFLT_H:
9664     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
9665   case RISCV::PseudoQuietFLE_S:
9666     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
9667   case RISCV::PseudoQuietFLT_S:
9668     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
9669   case RISCV::PseudoQuietFLE_D:
9670     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
9671   case RISCV::PseudoQuietFLT_D:
9672     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
9673   }
9674 }
9675 
9676 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9677                                                         SDNode *Node) const {
9678   // Add FRM dependency to any instructions with dynamic rounding mode.
9679   unsigned Opc = MI.getOpcode();
9680   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
9681   if (Idx < 0)
9682     return;
9683   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
9684     return;
9685   // If the instruction already reads FRM, don't add another read.
9686   if (MI.readsRegister(RISCV::FRM))
9687     return;
9688   MI.addOperand(
9689       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
9690 }
9691 
9692 // Calling Convention Implementation.
9693 // The expectations for frontend ABI lowering vary from target to target.
9694 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
9695 // details, but this is a longer term goal. For now, we simply try to keep the
9696 // role of the frontend as simple and well-defined as possible. The rules can
9697 // be summarised as:
9698 // * Never split up large scalar arguments. We handle them here.
9699 // * If a hardfloat calling convention is being used, and the struct may be
9700 // passed in a pair of registers (fp+fp, int+fp), and both registers are
9701 // available, then pass as two separate arguments. If either the GPRs or FPRs
9702 // are exhausted, then pass according to the rule below.
9703 // * If a struct could never be passed in registers or directly in a stack
9704 // slot (as it is larger than 2*XLEN and the floating point rules don't
9705 // apply), then pass it using a pointer with the byval attribute.
9706 // * If a struct is less than 2*XLEN, then coerce to either a two-element
9707 // word-sized array or a 2*XLEN scalar (depending on alignment).
9708 // * The frontend can determine whether a struct is returned by reference or
9709 // not based on its size and fields. If it will be returned by reference, the
9710 // frontend must modify the prototype so a pointer with the sret annotation is
9711 // passed as the first argument. This is not necessary for large scalar
9712 // returns.
9713 // * Struct return values and varargs should be coerced to structs containing
9714 // register-size fields in the same situations they would be for fixed
9715 // arguments.
9716 
9717 static const MCPhysReg ArgGPRs[] = {
9718   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
9719   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
9720 };
9721 static const MCPhysReg ArgFPR16s[] = {
9722   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
9723   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
9724 };
9725 static const MCPhysReg ArgFPR32s[] = {
9726   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
9727   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
9728 };
9729 static const MCPhysReg ArgFPR64s[] = {
9730   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
9731   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
9732 };
9733 // This is an interim calling convention and it may be changed in the future.
9734 static const MCPhysReg ArgVRs[] = {
9735     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
9736     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
9737     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
9738 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
9739                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
9740                                      RISCV::V20M2, RISCV::V22M2};
9741 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
9742                                      RISCV::V20M4};
9743 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
9744 
9745 // Pass a 2*XLEN argument that has been split into two XLEN values through
9746 // registers or the stack as necessary.
9747 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
9748                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
9749                                 MVT ValVT2, MVT LocVT2,
9750                                 ISD::ArgFlagsTy ArgFlags2) {
9751   unsigned XLenInBytes = XLen / 8;
9752   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9753     // At least one half can be passed via register.
9754     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
9755                                      VA1.getLocVT(), CCValAssign::Full));
9756   } else {
9757     // Both halves must be passed on the stack, with proper alignment.
9758     Align StackAlign =
9759         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
9760     State.addLoc(
9761         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
9762                             State.AllocateStack(XLenInBytes, StackAlign),
9763                             VA1.getLocVT(), CCValAssign::Full));
9764     State.addLoc(CCValAssign::getMem(
9765         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9766         LocVT2, CCValAssign::Full));
9767     return false;
9768   }
9769 
9770   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9771     // The second half can also be passed via register.
9772     State.addLoc(
9773         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
9774   } else {
9775     // The second half is passed via the stack, without additional alignment.
9776     State.addLoc(CCValAssign::getMem(
9777         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9778         LocVT2, CCValAssign::Full));
9779   }
9780 
9781   return false;
9782 }
9783 
9784 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
9785                                Optional<unsigned> FirstMaskArgument,
9786                                CCState &State, const RISCVTargetLowering &TLI) {
9787   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
9788   if (RC == &RISCV::VRRegClass) {
9789     // Assign the first mask argument to V0.
9790     // This is an interim calling convention and it may be changed in the
9791     // future.
9792     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
9793       return State.AllocateReg(RISCV::V0);
9794     return State.AllocateReg(ArgVRs);
9795   }
9796   if (RC == &RISCV::VRM2RegClass)
9797     return State.AllocateReg(ArgVRM2s);
9798   if (RC == &RISCV::VRM4RegClass)
9799     return State.AllocateReg(ArgVRM4s);
9800   if (RC == &RISCV::VRM8RegClass)
9801     return State.AllocateReg(ArgVRM8s);
9802   llvm_unreachable("Unhandled register class for ValueType");
9803 }
9804 
9805 // Implements the RISC-V calling convention. Returns true upon failure.
9806 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
9807                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
9808                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
9809                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
9810                      Optional<unsigned> FirstMaskArgument) {
9811   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
9812   assert(XLen == 32 || XLen == 64);
9813   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
9814 
9815   // Any return value split in to more than two values can't be returned
9816   // directly. Vectors are returned via the available vector registers.
9817   if (!LocVT.isVector() && IsRet && ValNo > 1)
9818     return true;
9819 
9820   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
9821   // variadic argument, or if no F16/F32 argument registers are available.
9822   bool UseGPRForF16_F32 = true;
9823   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
9824   // variadic argument, or if no F64 argument registers are available.
9825   bool UseGPRForF64 = true;
9826 
9827   switch (ABI) {
9828   default:
9829     llvm_unreachable("Unexpected ABI");
9830   case RISCVABI::ABI_ILP32:
9831   case RISCVABI::ABI_LP64:
9832     break;
9833   case RISCVABI::ABI_ILP32F:
9834   case RISCVABI::ABI_LP64F:
9835     UseGPRForF16_F32 = !IsFixed;
9836     break;
9837   case RISCVABI::ABI_ILP32D:
9838   case RISCVABI::ABI_LP64D:
9839     UseGPRForF16_F32 = !IsFixed;
9840     UseGPRForF64 = !IsFixed;
9841     break;
9842   }
9843 
9844   // FPR16, FPR32, and FPR64 alias each other.
9845   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
9846     UseGPRForF16_F32 = true;
9847     UseGPRForF64 = true;
9848   }
9849 
9850   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
9851   // similar local variables rather than directly checking against the target
9852   // ABI.
9853 
9854   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
9855     LocVT = XLenVT;
9856     LocInfo = CCValAssign::BCvt;
9857   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
9858     LocVT = MVT::i64;
9859     LocInfo = CCValAssign::BCvt;
9860   }
9861 
9862   // If this is a variadic argument, the RISC-V calling convention requires
9863   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
9864   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
9865   // be used regardless of whether the original argument was split during
9866   // legalisation or not. The argument will not be passed by registers if the
9867   // original type is larger than 2*XLEN, so the register alignment rule does
9868   // not apply.
9869   unsigned TwoXLenInBytes = (2 * XLen) / 8;
9870   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
9871       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
9872     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
9873     // Skip 'odd' register if necessary.
9874     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
9875       State.AllocateReg(ArgGPRs);
9876   }
9877 
9878   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
9879   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
9880       State.getPendingArgFlags();
9881 
9882   assert(PendingLocs.size() == PendingArgFlags.size() &&
9883          "PendingLocs and PendingArgFlags out of sync");
9884 
9885   // Handle passing f64 on RV32D with a soft float ABI or when floating point
9886   // registers are exhausted.
9887   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
9888     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
9889            "Can't lower f64 if it is split");
9890     // Depending on available argument GPRS, f64 may be passed in a pair of
9891     // GPRs, split between a GPR and the stack, or passed completely on the
9892     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
9893     // cases.
9894     Register Reg = State.AllocateReg(ArgGPRs);
9895     LocVT = MVT::i32;
9896     if (!Reg) {
9897       unsigned StackOffset = State.AllocateStack(8, Align(8));
9898       State.addLoc(
9899           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9900       return false;
9901     }
9902     if (!State.AllocateReg(ArgGPRs))
9903       State.AllocateStack(4, Align(4));
9904     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9905     return false;
9906   }
9907 
9908   // Fixed-length vectors are located in the corresponding scalable-vector
9909   // container types.
9910   if (ValVT.isFixedLengthVector())
9911     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9912 
9913   // Split arguments might be passed indirectly, so keep track of the pending
9914   // values. Split vectors are passed via a mix of registers and indirectly, so
9915   // treat them as we would any other argument.
9916   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
9917     LocVT = XLenVT;
9918     LocInfo = CCValAssign::Indirect;
9919     PendingLocs.push_back(
9920         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
9921     PendingArgFlags.push_back(ArgFlags);
9922     if (!ArgFlags.isSplitEnd()) {
9923       return false;
9924     }
9925   }
9926 
9927   // If the split argument only had two elements, it should be passed directly
9928   // in registers or on the stack.
9929   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
9930       PendingLocs.size() <= 2) {
9931     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
9932     // Apply the normal calling convention rules to the first half of the
9933     // split argument.
9934     CCValAssign VA = PendingLocs[0];
9935     ISD::ArgFlagsTy AF = PendingArgFlags[0];
9936     PendingLocs.clear();
9937     PendingArgFlags.clear();
9938     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
9939                                ArgFlags);
9940   }
9941 
9942   // Allocate to a register if possible, or else a stack slot.
9943   Register Reg;
9944   unsigned StoreSizeBytes = XLen / 8;
9945   Align StackAlign = Align(XLen / 8);
9946 
9947   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
9948     Reg = State.AllocateReg(ArgFPR16s);
9949   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
9950     Reg = State.AllocateReg(ArgFPR32s);
9951   else if (ValVT == MVT::f64 && !UseGPRForF64)
9952     Reg = State.AllocateReg(ArgFPR64s);
9953   else if (ValVT.isVector()) {
9954     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
9955     if (!Reg) {
9956       // For return values, the vector must be passed fully via registers or
9957       // via the stack.
9958       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
9959       // but we're using all of them.
9960       if (IsRet)
9961         return true;
9962       // Try using a GPR to pass the address
9963       if ((Reg = State.AllocateReg(ArgGPRs))) {
9964         LocVT = XLenVT;
9965         LocInfo = CCValAssign::Indirect;
9966       } else if (ValVT.isScalableVector()) {
9967         LocVT = XLenVT;
9968         LocInfo = CCValAssign::Indirect;
9969       } else {
9970         // Pass fixed-length vectors on the stack.
9971         LocVT = ValVT;
9972         StoreSizeBytes = ValVT.getStoreSize();
9973         // Align vectors to their element sizes, being careful for vXi1
9974         // vectors.
9975         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9976       }
9977     }
9978   } else {
9979     Reg = State.AllocateReg(ArgGPRs);
9980   }
9981 
9982   unsigned StackOffset =
9983       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
9984 
9985   // If we reach this point and PendingLocs is non-empty, we must be at the
9986   // end of a split argument that must be passed indirectly.
9987   if (!PendingLocs.empty()) {
9988     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
9989     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
9990 
9991     for (auto &It : PendingLocs) {
9992       if (Reg)
9993         It.convertToReg(Reg);
9994       else
9995         It.convertToMem(StackOffset);
9996       State.addLoc(It);
9997     }
9998     PendingLocs.clear();
9999     PendingArgFlags.clear();
10000     return false;
10001   }
10002 
10003   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
10004           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
10005          "Expected an XLenVT or vector types at this stage");
10006 
10007   if (Reg) {
10008     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10009     return false;
10010   }
10011 
10012   // When a floating-point value is passed on the stack, no bit-conversion is
10013   // needed.
10014   if (ValVT.isFloatingPoint()) {
10015     LocVT = ValVT;
10016     LocInfo = CCValAssign::Full;
10017   }
10018   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10019   return false;
10020 }
10021 
10022 template <typename ArgTy>
10023 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
10024   for (const auto &ArgIdx : enumerate(Args)) {
10025     MVT ArgVT = ArgIdx.value().VT;
10026     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
10027       return ArgIdx.index();
10028   }
10029   return None;
10030 }
10031 
10032 void RISCVTargetLowering::analyzeInputArgs(
10033     MachineFunction &MF, CCState &CCInfo,
10034     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
10035     RISCVCCAssignFn Fn) const {
10036   unsigned NumArgs = Ins.size();
10037   FunctionType *FType = MF.getFunction().getFunctionType();
10038 
10039   Optional<unsigned> FirstMaskArgument;
10040   if (Subtarget.hasVInstructions())
10041     FirstMaskArgument = preAssignMask(Ins);
10042 
10043   for (unsigned i = 0; i != NumArgs; ++i) {
10044     MVT ArgVT = Ins[i].VT;
10045     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
10046 
10047     Type *ArgTy = nullptr;
10048     if (IsRet)
10049       ArgTy = FType->getReturnType();
10050     else if (Ins[i].isOrigArg())
10051       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
10052 
10053     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10054     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
10055            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
10056            FirstMaskArgument)) {
10057       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
10058                         << EVT(ArgVT).getEVTString() << '\n');
10059       llvm_unreachable(nullptr);
10060     }
10061   }
10062 }
10063 
10064 void RISCVTargetLowering::analyzeOutputArgs(
10065     MachineFunction &MF, CCState &CCInfo,
10066     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
10067     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
10068   unsigned NumArgs = Outs.size();
10069 
10070   Optional<unsigned> FirstMaskArgument;
10071   if (Subtarget.hasVInstructions())
10072     FirstMaskArgument = preAssignMask(Outs);
10073 
10074   for (unsigned i = 0; i != NumArgs; i++) {
10075     MVT ArgVT = Outs[i].VT;
10076     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10077     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
10078 
10079     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10080     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
10081            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
10082            FirstMaskArgument)) {
10083       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
10084                         << EVT(ArgVT).getEVTString() << "\n");
10085       llvm_unreachable(nullptr);
10086     }
10087   }
10088 }
10089 
10090 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
10091 // values.
10092 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
10093                                    const CCValAssign &VA, const SDLoc &DL,
10094                                    const RISCVSubtarget &Subtarget) {
10095   switch (VA.getLocInfo()) {
10096   default:
10097     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10098   case CCValAssign::Full:
10099     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
10100       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
10101     break;
10102   case CCValAssign::BCvt:
10103     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10104       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
10105     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10106       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
10107     else
10108       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
10109     break;
10110   }
10111   return Val;
10112 }
10113 
10114 // The caller is responsible for loading the full value if the argument is
10115 // passed with CCValAssign::Indirect.
10116 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
10117                                 const CCValAssign &VA, const SDLoc &DL,
10118                                 const RISCVTargetLowering &TLI) {
10119   MachineFunction &MF = DAG.getMachineFunction();
10120   MachineRegisterInfo &RegInfo = MF.getRegInfo();
10121   EVT LocVT = VA.getLocVT();
10122   SDValue Val;
10123   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
10124   Register VReg = RegInfo.createVirtualRegister(RC);
10125   RegInfo.addLiveIn(VA.getLocReg(), VReg);
10126   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
10127 
10128   if (VA.getLocInfo() == CCValAssign::Indirect)
10129     return Val;
10130 
10131   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
10132 }
10133 
10134 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
10135                                    const CCValAssign &VA, const SDLoc &DL,
10136                                    const RISCVSubtarget &Subtarget) {
10137   EVT LocVT = VA.getLocVT();
10138 
10139   switch (VA.getLocInfo()) {
10140   default:
10141     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10142   case CCValAssign::Full:
10143     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
10144       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
10145     break;
10146   case CCValAssign::BCvt:
10147     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10148       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
10149     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10150       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
10151     else
10152       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
10153     break;
10154   }
10155   return Val;
10156 }
10157 
10158 // The caller is responsible for loading the full value if the argument is
10159 // passed with CCValAssign::Indirect.
10160 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
10161                                 const CCValAssign &VA, const SDLoc &DL) {
10162   MachineFunction &MF = DAG.getMachineFunction();
10163   MachineFrameInfo &MFI = MF.getFrameInfo();
10164   EVT LocVT = VA.getLocVT();
10165   EVT ValVT = VA.getValVT();
10166   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
10167   if (ValVT.isScalableVector()) {
10168     // When the value is a scalable vector, we save the pointer which points to
10169     // the scalable vector value in the stack. The ValVT will be the pointer
10170     // type, instead of the scalable vector type.
10171     ValVT = LocVT;
10172   }
10173   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
10174                                  /*IsImmutable=*/true);
10175   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
10176   SDValue Val;
10177 
10178   ISD::LoadExtType ExtType;
10179   switch (VA.getLocInfo()) {
10180   default:
10181     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10182   case CCValAssign::Full:
10183   case CCValAssign::Indirect:
10184   case CCValAssign::BCvt:
10185     ExtType = ISD::NON_EXTLOAD;
10186     break;
10187   }
10188   Val = DAG.getExtLoad(
10189       ExtType, DL, LocVT, Chain, FIN,
10190       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
10191   return Val;
10192 }
10193 
10194 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
10195                                        const CCValAssign &VA, const SDLoc &DL) {
10196   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
10197          "Unexpected VA");
10198   MachineFunction &MF = DAG.getMachineFunction();
10199   MachineFrameInfo &MFI = MF.getFrameInfo();
10200   MachineRegisterInfo &RegInfo = MF.getRegInfo();
10201 
10202   if (VA.isMemLoc()) {
10203     // f64 is passed on the stack.
10204     int FI =
10205         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
10206     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10207     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
10208                        MachinePointerInfo::getFixedStack(MF, FI));
10209   }
10210 
10211   assert(VA.isRegLoc() && "Expected register VA assignment");
10212 
10213   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10214   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
10215   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
10216   SDValue Hi;
10217   if (VA.getLocReg() == RISCV::X17) {
10218     // Second half of f64 is passed on the stack.
10219     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
10220     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10221     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
10222                      MachinePointerInfo::getFixedStack(MF, FI));
10223   } else {
10224     // Second half of f64 is passed in another GPR.
10225     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10226     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
10227     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
10228   }
10229   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
10230 }
10231 
10232 // FastCC has less than 1% performance improvement for some particular
10233 // benchmark. But theoretically, it may has benenfit for some cases.
10234 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
10235                             unsigned ValNo, MVT ValVT, MVT LocVT,
10236                             CCValAssign::LocInfo LocInfo,
10237                             ISD::ArgFlagsTy ArgFlags, CCState &State,
10238                             bool IsFixed, bool IsRet, Type *OrigTy,
10239                             const RISCVTargetLowering &TLI,
10240                             Optional<unsigned> FirstMaskArgument) {
10241 
10242   // X5 and X6 might be used for save-restore libcall.
10243   static const MCPhysReg GPRList[] = {
10244       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
10245       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
10246       RISCV::X29, RISCV::X30, RISCV::X31};
10247 
10248   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10249     if (unsigned Reg = State.AllocateReg(GPRList)) {
10250       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10251       return false;
10252     }
10253   }
10254 
10255   if (LocVT == MVT::f16) {
10256     static const MCPhysReg FPR16List[] = {
10257         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
10258         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
10259         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
10260         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
10261     if (unsigned Reg = State.AllocateReg(FPR16List)) {
10262       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10263       return false;
10264     }
10265   }
10266 
10267   if (LocVT == MVT::f32) {
10268     static const MCPhysReg FPR32List[] = {
10269         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
10270         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
10271         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
10272         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
10273     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10274       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10275       return false;
10276     }
10277   }
10278 
10279   if (LocVT == MVT::f64) {
10280     static const MCPhysReg FPR64List[] = {
10281         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
10282         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
10283         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
10284         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
10285     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10286       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10287       return false;
10288     }
10289   }
10290 
10291   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
10292     unsigned Offset4 = State.AllocateStack(4, Align(4));
10293     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
10294     return false;
10295   }
10296 
10297   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
10298     unsigned Offset5 = State.AllocateStack(8, Align(8));
10299     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
10300     return false;
10301   }
10302 
10303   if (LocVT.isVector()) {
10304     if (unsigned Reg =
10305             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
10306       // Fixed-length vectors are located in the corresponding scalable-vector
10307       // container types.
10308       if (ValVT.isFixedLengthVector())
10309         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
10310       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10311     } else {
10312       // Try and pass the address via a "fast" GPR.
10313       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
10314         LocInfo = CCValAssign::Indirect;
10315         LocVT = TLI.getSubtarget().getXLenVT();
10316         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
10317       } else if (ValVT.isFixedLengthVector()) {
10318         auto StackAlign =
10319             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
10320         unsigned StackOffset =
10321             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
10322         State.addLoc(
10323             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10324       } else {
10325         // Can't pass scalable vectors on the stack.
10326         return true;
10327       }
10328     }
10329 
10330     return false;
10331   }
10332 
10333   return true; // CC didn't match.
10334 }
10335 
10336 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
10337                          CCValAssign::LocInfo LocInfo,
10338                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
10339 
10340   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10341     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
10342     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
10343     static const MCPhysReg GPRList[] = {
10344         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
10345         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
10346     if (unsigned Reg = State.AllocateReg(GPRList)) {
10347       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10348       return false;
10349     }
10350   }
10351 
10352   if (LocVT == MVT::f32) {
10353     // Pass in STG registers: F1, ..., F6
10354     //                        fs0 ... fs5
10355     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
10356                                           RISCV::F18_F, RISCV::F19_F,
10357                                           RISCV::F20_F, RISCV::F21_F};
10358     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10359       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10360       return false;
10361     }
10362   }
10363 
10364   if (LocVT == MVT::f64) {
10365     // Pass in STG registers: D1, ..., D6
10366     //                        fs6 ... fs11
10367     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
10368                                           RISCV::F24_D, RISCV::F25_D,
10369                                           RISCV::F26_D, RISCV::F27_D};
10370     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10371       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10372       return false;
10373     }
10374   }
10375 
10376   report_fatal_error("No registers left in GHC calling convention");
10377   return true;
10378 }
10379 
10380 // Transform physical registers into virtual registers.
10381 SDValue RISCVTargetLowering::LowerFormalArguments(
10382     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
10383     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
10384     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
10385 
10386   MachineFunction &MF = DAG.getMachineFunction();
10387 
10388   switch (CallConv) {
10389   default:
10390     report_fatal_error("Unsupported calling convention");
10391   case CallingConv::C:
10392   case CallingConv::Fast:
10393     break;
10394   case CallingConv::GHC:
10395     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
10396         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
10397       report_fatal_error(
10398         "GHC calling convention requires the F and D instruction set extensions");
10399   }
10400 
10401   const Function &Func = MF.getFunction();
10402   if (Func.hasFnAttribute("interrupt")) {
10403     if (!Func.arg_empty())
10404       report_fatal_error(
10405         "Functions with the interrupt attribute cannot have arguments!");
10406 
10407     StringRef Kind =
10408       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10409 
10410     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
10411       report_fatal_error(
10412         "Function interrupt attribute argument not supported!");
10413   }
10414 
10415   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10416   MVT XLenVT = Subtarget.getXLenVT();
10417   unsigned XLenInBytes = Subtarget.getXLen() / 8;
10418   // Used with vargs to acumulate store chains.
10419   std::vector<SDValue> OutChains;
10420 
10421   // Assign locations to all of the incoming arguments.
10422   SmallVector<CCValAssign, 16> ArgLocs;
10423   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10424 
10425   if (CallConv == CallingConv::GHC)
10426     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
10427   else
10428     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
10429                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10430                                                    : CC_RISCV);
10431 
10432   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
10433     CCValAssign &VA = ArgLocs[i];
10434     SDValue ArgValue;
10435     // Passing f64 on RV32D with a soft float ABI must be handled as a special
10436     // case.
10437     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
10438       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
10439     else if (VA.isRegLoc())
10440       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
10441     else
10442       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
10443 
10444     if (VA.getLocInfo() == CCValAssign::Indirect) {
10445       // If the original argument was split and passed by reference (e.g. i128
10446       // on RV32), we need to load all parts of it here (using the same
10447       // address). Vectors may be partly split to registers and partly to the
10448       // stack, in which case the base address is partly offset and subsequent
10449       // stores are relative to that.
10450       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
10451                                    MachinePointerInfo()));
10452       unsigned ArgIndex = Ins[i].OrigArgIndex;
10453       unsigned ArgPartOffset = Ins[i].PartOffset;
10454       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10455       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
10456         CCValAssign &PartVA = ArgLocs[i + 1];
10457         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
10458         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10459         if (PartVA.getValVT().isScalableVector())
10460           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10461         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
10462         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
10463                                      MachinePointerInfo()));
10464         ++i;
10465       }
10466       continue;
10467     }
10468     InVals.push_back(ArgValue);
10469   }
10470 
10471   if (IsVarArg) {
10472     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
10473     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
10474     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
10475     MachineFrameInfo &MFI = MF.getFrameInfo();
10476     MachineRegisterInfo &RegInfo = MF.getRegInfo();
10477     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
10478 
10479     // Offset of the first variable argument from stack pointer, and size of
10480     // the vararg save area. For now, the varargs save area is either zero or
10481     // large enough to hold a0-a7.
10482     int VaArgOffset, VarArgsSaveSize;
10483 
10484     // If all registers are allocated, then all varargs must be passed on the
10485     // stack and we don't need to save any argregs.
10486     if (ArgRegs.size() == Idx) {
10487       VaArgOffset = CCInfo.getNextStackOffset();
10488       VarArgsSaveSize = 0;
10489     } else {
10490       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
10491       VaArgOffset = -VarArgsSaveSize;
10492     }
10493 
10494     // Record the frame index of the first variable argument
10495     // which is a value necessary to VASTART.
10496     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10497     RVFI->setVarArgsFrameIndex(FI);
10498 
10499     // If saving an odd number of registers then create an extra stack slot to
10500     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
10501     // offsets to even-numbered registered remain 2*XLEN-aligned.
10502     if (Idx % 2) {
10503       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
10504       VarArgsSaveSize += XLenInBytes;
10505     }
10506 
10507     // Copy the integer registers that may have been used for passing varargs
10508     // to the vararg save area.
10509     for (unsigned I = Idx; I < ArgRegs.size();
10510          ++I, VaArgOffset += XLenInBytes) {
10511       const Register Reg = RegInfo.createVirtualRegister(RC);
10512       RegInfo.addLiveIn(ArgRegs[I], Reg);
10513       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
10514       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10515       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10516       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
10517                                    MachinePointerInfo::getFixedStack(MF, FI));
10518       cast<StoreSDNode>(Store.getNode())
10519           ->getMemOperand()
10520           ->setValue((Value *)nullptr);
10521       OutChains.push_back(Store);
10522     }
10523     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
10524   }
10525 
10526   // All stores are grouped in one node to allow the matching between
10527   // the size of Ins and InVals. This only happens for vararg functions.
10528   if (!OutChains.empty()) {
10529     OutChains.push_back(Chain);
10530     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
10531   }
10532 
10533   return Chain;
10534 }
10535 
10536 /// isEligibleForTailCallOptimization - Check whether the call is eligible
10537 /// for tail call optimization.
10538 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
10539 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
10540     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
10541     const SmallVector<CCValAssign, 16> &ArgLocs) const {
10542 
10543   auto &Callee = CLI.Callee;
10544   auto CalleeCC = CLI.CallConv;
10545   auto &Outs = CLI.Outs;
10546   auto &Caller = MF.getFunction();
10547   auto CallerCC = Caller.getCallingConv();
10548 
10549   // Exception-handling functions need a special set of instructions to
10550   // indicate a return to the hardware. Tail-calling another function would
10551   // probably break this.
10552   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
10553   // should be expanded as new function attributes are introduced.
10554   if (Caller.hasFnAttribute("interrupt"))
10555     return false;
10556 
10557   // Do not tail call opt if the stack is used to pass parameters.
10558   if (CCInfo.getNextStackOffset() != 0)
10559     return false;
10560 
10561   // Do not tail call opt if any parameters need to be passed indirectly.
10562   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
10563   // passed indirectly. So the address of the value will be passed in a
10564   // register, or if not available, then the address is put on the stack. In
10565   // order to pass indirectly, space on the stack often needs to be allocated
10566   // in order to store the value. In this case the CCInfo.getNextStackOffset()
10567   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
10568   // are passed CCValAssign::Indirect.
10569   for (auto &VA : ArgLocs)
10570     if (VA.getLocInfo() == CCValAssign::Indirect)
10571       return false;
10572 
10573   // Do not tail call opt if either caller or callee uses struct return
10574   // semantics.
10575   auto IsCallerStructRet = Caller.hasStructRetAttr();
10576   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
10577   if (IsCallerStructRet || IsCalleeStructRet)
10578     return false;
10579 
10580   // Externally-defined functions with weak linkage should not be
10581   // tail-called. The behaviour of branch instructions in this situation (as
10582   // used for tail calls) is implementation-defined, so we cannot rely on the
10583   // linker replacing the tail call with a return.
10584   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
10585     const GlobalValue *GV = G->getGlobal();
10586     if (GV->hasExternalWeakLinkage())
10587       return false;
10588   }
10589 
10590   // The callee has to preserve all registers the caller needs to preserve.
10591   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
10592   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
10593   if (CalleeCC != CallerCC) {
10594     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
10595     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
10596       return false;
10597   }
10598 
10599   // Byval parameters hand the function a pointer directly into the stack area
10600   // we want to reuse during a tail call. Working around this *is* possible
10601   // but less efficient and uglier in LowerCall.
10602   for (auto &Arg : Outs)
10603     if (Arg.Flags.isByVal())
10604       return false;
10605 
10606   return true;
10607 }
10608 
10609 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
10610   return DAG.getDataLayout().getPrefTypeAlign(
10611       VT.getTypeForEVT(*DAG.getContext()));
10612 }
10613 
10614 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
10615 // and output parameter nodes.
10616 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
10617                                        SmallVectorImpl<SDValue> &InVals) const {
10618   SelectionDAG &DAG = CLI.DAG;
10619   SDLoc &DL = CLI.DL;
10620   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
10621   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
10622   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
10623   SDValue Chain = CLI.Chain;
10624   SDValue Callee = CLI.Callee;
10625   bool &IsTailCall = CLI.IsTailCall;
10626   CallingConv::ID CallConv = CLI.CallConv;
10627   bool IsVarArg = CLI.IsVarArg;
10628   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10629   MVT XLenVT = Subtarget.getXLenVT();
10630 
10631   MachineFunction &MF = DAG.getMachineFunction();
10632 
10633   // Analyze the operands of the call, assigning locations to each operand.
10634   SmallVector<CCValAssign, 16> ArgLocs;
10635   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10636 
10637   if (CallConv == CallingConv::GHC)
10638     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
10639   else
10640     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
10641                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10642                                                     : CC_RISCV);
10643 
10644   // Check if it's really possible to do a tail call.
10645   if (IsTailCall)
10646     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
10647 
10648   if (IsTailCall)
10649     ++NumTailCalls;
10650   else if (CLI.CB && CLI.CB->isMustTailCall())
10651     report_fatal_error("failed to perform tail call elimination on a call "
10652                        "site marked musttail");
10653 
10654   // Get a count of how many bytes are to be pushed on the stack.
10655   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
10656 
10657   // Create local copies for byval args
10658   SmallVector<SDValue, 8> ByValArgs;
10659   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10660     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10661     if (!Flags.isByVal())
10662       continue;
10663 
10664     SDValue Arg = OutVals[i];
10665     unsigned Size = Flags.getByValSize();
10666     Align Alignment = Flags.getNonZeroByValAlign();
10667 
10668     int FI =
10669         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
10670     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10671     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
10672 
10673     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
10674                           /*IsVolatile=*/false,
10675                           /*AlwaysInline=*/false, IsTailCall,
10676                           MachinePointerInfo(), MachinePointerInfo());
10677     ByValArgs.push_back(FIPtr);
10678   }
10679 
10680   if (!IsTailCall)
10681     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
10682 
10683   // Copy argument values to their designated locations.
10684   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
10685   SmallVector<SDValue, 8> MemOpChains;
10686   SDValue StackPtr;
10687   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
10688     CCValAssign &VA = ArgLocs[i];
10689     SDValue ArgValue = OutVals[i];
10690     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10691 
10692     // Handle passing f64 on RV32D with a soft float ABI as a special case.
10693     bool IsF64OnRV32DSoftABI =
10694         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
10695     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
10696       SDValue SplitF64 = DAG.getNode(
10697           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
10698       SDValue Lo = SplitF64.getValue(0);
10699       SDValue Hi = SplitF64.getValue(1);
10700 
10701       Register RegLo = VA.getLocReg();
10702       RegsToPass.push_back(std::make_pair(RegLo, Lo));
10703 
10704       if (RegLo == RISCV::X17) {
10705         // Second half of f64 is passed on the stack.
10706         // Work out the address of the stack slot.
10707         if (!StackPtr.getNode())
10708           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10709         // Emit the store.
10710         MemOpChains.push_back(
10711             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
10712       } else {
10713         // Second half of f64 is passed in another GPR.
10714         assert(RegLo < RISCV::X31 && "Invalid register pair");
10715         Register RegHigh = RegLo + 1;
10716         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
10717       }
10718       continue;
10719     }
10720 
10721     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
10722     // as any other MemLoc.
10723 
10724     // Promote the value if needed.
10725     // For now, only handle fully promoted and indirect arguments.
10726     if (VA.getLocInfo() == CCValAssign::Indirect) {
10727       // Store the argument in a stack slot and pass its address.
10728       Align StackAlign =
10729           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
10730                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
10731       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
10732       // If the original argument was split (e.g. i128), we need
10733       // to store the required parts of it here (and pass just one address).
10734       // Vectors may be partly split to registers and partly to the stack, in
10735       // which case the base address is partly offset and subsequent stores are
10736       // relative to that.
10737       unsigned ArgIndex = Outs[i].OrigArgIndex;
10738       unsigned ArgPartOffset = Outs[i].PartOffset;
10739       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10740       // Calculate the total size to store. We don't have access to what we're
10741       // actually storing other than performing the loop and collecting the
10742       // info.
10743       SmallVector<std::pair<SDValue, SDValue>> Parts;
10744       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
10745         SDValue PartValue = OutVals[i + 1];
10746         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
10747         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10748         EVT PartVT = PartValue.getValueType();
10749         if (PartVT.isScalableVector())
10750           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10751         StoredSize += PartVT.getStoreSize();
10752         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
10753         Parts.push_back(std::make_pair(PartValue, Offset));
10754         ++i;
10755       }
10756       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
10757       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
10758       MemOpChains.push_back(
10759           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
10760                        MachinePointerInfo::getFixedStack(MF, FI)));
10761       for (const auto &Part : Parts) {
10762         SDValue PartValue = Part.first;
10763         SDValue PartOffset = Part.second;
10764         SDValue Address =
10765             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
10766         MemOpChains.push_back(
10767             DAG.getStore(Chain, DL, PartValue, Address,
10768                          MachinePointerInfo::getFixedStack(MF, FI)));
10769       }
10770       ArgValue = SpillSlot;
10771     } else {
10772       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
10773     }
10774 
10775     // Use local copy if it is a byval arg.
10776     if (Flags.isByVal())
10777       ArgValue = ByValArgs[j++];
10778 
10779     if (VA.isRegLoc()) {
10780       // Queue up the argument copies and emit them at the end.
10781       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
10782     } else {
10783       assert(VA.isMemLoc() && "Argument not register or memory");
10784       assert(!IsTailCall && "Tail call not allowed if stack is used "
10785                             "for passing parameters");
10786 
10787       // Work out the address of the stack slot.
10788       if (!StackPtr.getNode())
10789         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10790       SDValue Address =
10791           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
10792                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
10793 
10794       // Emit the store.
10795       MemOpChains.push_back(
10796           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
10797     }
10798   }
10799 
10800   // Join the stores, which are independent of one another.
10801   if (!MemOpChains.empty())
10802     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
10803 
10804   SDValue Glue;
10805 
10806   // Build a sequence of copy-to-reg nodes, chained and glued together.
10807   for (auto &Reg : RegsToPass) {
10808     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
10809     Glue = Chain.getValue(1);
10810   }
10811 
10812   // Validate that none of the argument registers have been marked as
10813   // reserved, if so report an error. Do the same for the return address if this
10814   // is not a tailcall.
10815   validateCCReservedRegs(RegsToPass, MF);
10816   if (!IsTailCall &&
10817       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
10818     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10819         MF.getFunction(),
10820         "Return address register required, but has been reserved."});
10821 
10822   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
10823   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
10824   // split it and then direct call can be matched by PseudoCALL.
10825   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
10826     const GlobalValue *GV = S->getGlobal();
10827 
10828     unsigned OpFlags = RISCVII::MO_CALL;
10829     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
10830       OpFlags = RISCVII::MO_PLT;
10831 
10832     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
10833   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
10834     unsigned OpFlags = RISCVII::MO_CALL;
10835 
10836     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
10837                                                  nullptr))
10838       OpFlags = RISCVII::MO_PLT;
10839 
10840     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
10841   }
10842 
10843   // The first call operand is the chain and the second is the target address.
10844   SmallVector<SDValue, 8> Ops;
10845   Ops.push_back(Chain);
10846   Ops.push_back(Callee);
10847 
10848   // Add argument registers to the end of the list so that they are
10849   // known live into the call.
10850   for (auto &Reg : RegsToPass)
10851     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
10852 
10853   if (!IsTailCall) {
10854     // Add a register mask operand representing the call-preserved registers.
10855     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
10856     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
10857     assert(Mask && "Missing call preserved mask for calling convention");
10858     Ops.push_back(DAG.getRegisterMask(Mask));
10859   }
10860 
10861   // Glue the call to the argument copies, if any.
10862   if (Glue.getNode())
10863     Ops.push_back(Glue);
10864 
10865   // Emit the call.
10866   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10867 
10868   if (IsTailCall) {
10869     MF.getFrameInfo().setHasTailCall();
10870     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
10871   }
10872 
10873   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
10874   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
10875   Glue = Chain.getValue(1);
10876 
10877   // Mark the end of the call, which is glued to the call itself.
10878   Chain = DAG.getCALLSEQ_END(Chain,
10879                              DAG.getConstant(NumBytes, DL, PtrVT, true),
10880                              DAG.getConstant(0, DL, PtrVT, true),
10881                              Glue, DL);
10882   Glue = Chain.getValue(1);
10883 
10884   // Assign locations to each value returned by this call.
10885   SmallVector<CCValAssign, 16> RVLocs;
10886   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
10887   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
10888 
10889   // Copy all of the result registers out of their specified physreg.
10890   for (auto &VA : RVLocs) {
10891     // Copy the value out
10892     SDValue RetValue =
10893         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
10894     // Glue the RetValue to the end of the call sequence
10895     Chain = RetValue.getValue(1);
10896     Glue = RetValue.getValue(2);
10897 
10898     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10899       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
10900       SDValue RetValue2 =
10901           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
10902       Chain = RetValue2.getValue(1);
10903       Glue = RetValue2.getValue(2);
10904       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
10905                              RetValue2);
10906     }
10907 
10908     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
10909 
10910     InVals.push_back(RetValue);
10911   }
10912 
10913   return Chain;
10914 }
10915 
10916 bool RISCVTargetLowering::CanLowerReturn(
10917     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
10918     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
10919   SmallVector<CCValAssign, 16> RVLocs;
10920   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
10921 
10922   Optional<unsigned> FirstMaskArgument;
10923   if (Subtarget.hasVInstructions())
10924     FirstMaskArgument = preAssignMask(Outs);
10925 
10926   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10927     MVT VT = Outs[i].VT;
10928     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10929     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10930     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
10931                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
10932                  *this, FirstMaskArgument))
10933       return false;
10934   }
10935   return true;
10936 }
10937 
10938 SDValue
10939 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
10940                                  bool IsVarArg,
10941                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
10942                                  const SmallVectorImpl<SDValue> &OutVals,
10943                                  const SDLoc &DL, SelectionDAG &DAG) const {
10944   const MachineFunction &MF = DAG.getMachineFunction();
10945   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10946 
10947   // Stores the assignment of the return value to a location.
10948   SmallVector<CCValAssign, 16> RVLocs;
10949 
10950   // Info about the registers and stack slot.
10951   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
10952                  *DAG.getContext());
10953 
10954   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
10955                     nullptr, CC_RISCV);
10956 
10957   if (CallConv == CallingConv::GHC && !RVLocs.empty())
10958     report_fatal_error("GHC functions return void only");
10959 
10960   SDValue Glue;
10961   SmallVector<SDValue, 4> RetOps(1, Chain);
10962 
10963   // Copy the result values into the output registers.
10964   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
10965     SDValue Val = OutVals[i];
10966     CCValAssign &VA = RVLocs[i];
10967     assert(VA.isRegLoc() && "Can only return in registers!");
10968 
10969     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10970       // Handle returning f64 on RV32D with a soft float ABI.
10971       assert(VA.isRegLoc() && "Expected return via registers");
10972       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
10973                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
10974       SDValue Lo = SplitF64.getValue(0);
10975       SDValue Hi = SplitF64.getValue(1);
10976       Register RegLo = VA.getLocReg();
10977       assert(RegLo < RISCV::X31 && "Invalid register pair");
10978       Register RegHi = RegLo + 1;
10979 
10980       if (STI.isRegisterReservedByUser(RegLo) ||
10981           STI.isRegisterReservedByUser(RegHi))
10982         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10983             MF.getFunction(),
10984             "Return value register required, but has been reserved."});
10985 
10986       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
10987       Glue = Chain.getValue(1);
10988       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
10989       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
10990       Glue = Chain.getValue(1);
10991       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
10992     } else {
10993       // Handle a 'normal' return.
10994       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
10995       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
10996 
10997       if (STI.isRegisterReservedByUser(VA.getLocReg()))
10998         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10999             MF.getFunction(),
11000             "Return value register required, but has been reserved."});
11001 
11002       // Guarantee that all emitted copies are stuck together.
11003       Glue = Chain.getValue(1);
11004       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
11005     }
11006   }
11007 
11008   RetOps[0] = Chain; // Update chain.
11009 
11010   // Add the glue node if we have it.
11011   if (Glue.getNode()) {
11012     RetOps.push_back(Glue);
11013   }
11014 
11015   unsigned RetOpc = RISCVISD::RET_FLAG;
11016   // Interrupt service routines use different return instructions.
11017   const Function &Func = DAG.getMachineFunction().getFunction();
11018   if (Func.hasFnAttribute("interrupt")) {
11019     if (!Func.getReturnType()->isVoidTy())
11020       report_fatal_error(
11021           "Functions with the interrupt attribute must have void return type!");
11022 
11023     MachineFunction &MF = DAG.getMachineFunction();
11024     StringRef Kind =
11025       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
11026 
11027     if (Kind == "user")
11028       RetOpc = RISCVISD::URET_FLAG;
11029     else if (Kind == "supervisor")
11030       RetOpc = RISCVISD::SRET_FLAG;
11031     else
11032       RetOpc = RISCVISD::MRET_FLAG;
11033   }
11034 
11035   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
11036 }
11037 
11038 void RISCVTargetLowering::validateCCReservedRegs(
11039     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
11040     MachineFunction &MF) const {
11041   const Function &F = MF.getFunction();
11042   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
11043 
11044   if (llvm::any_of(Regs, [&STI](auto Reg) {
11045         return STI.isRegisterReservedByUser(Reg.first);
11046       }))
11047     F.getContext().diagnose(DiagnosticInfoUnsupported{
11048         F, "Argument register required, but has been reserved."});
11049 }
11050 
11051 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
11052   return CI->isTailCall();
11053 }
11054 
11055 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
11056 #define NODE_NAME_CASE(NODE)                                                   \
11057   case RISCVISD::NODE:                                                         \
11058     return "RISCVISD::" #NODE;
11059   // clang-format off
11060   switch ((RISCVISD::NodeType)Opcode) {
11061   case RISCVISD::FIRST_NUMBER:
11062     break;
11063   NODE_NAME_CASE(RET_FLAG)
11064   NODE_NAME_CASE(URET_FLAG)
11065   NODE_NAME_CASE(SRET_FLAG)
11066   NODE_NAME_CASE(MRET_FLAG)
11067   NODE_NAME_CASE(CALL)
11068   NODE_NAME_CASE(SELECT_CC)
11069   NODE_NAME_CASE(BR_CC)
11070   NODE_NAME_CASE(BuildPairF64)
11071   NODE_NAME_CASE(SplitF64)
11072   NODE_NAME_CASE(TAIL)
11073   NODE_NAME_CASE(MULHSU)
11074   NODE_NAME_CASE(SLLW)
11075   NODE_NAME_CASE(SRAW)
11076   NODE_NAME_CASE(SRLW)
11077   NODE_NAME_CASE(DIVW)
11078   NODE_NAME_CASE(DIVUW)
11079   NODE_NAME_CASE(REMUW)
11080   NODE_NAME_CASE(ROLW)
11081   NODE_NAME_CASE(RORW)
11082   NODE_NAME_CASE(CLZW)
11083   NODE_NAME_CASE(CTZW)
11084   NODE_NAME_CASE(FSLW)
11085   NODE_NAME_CASE(FSRW)
11086   NODE_NAME_CASE(FSL)
11087   NODE_NAME_CASE(FSR)
11088   NODE_NAME_CASE(FMV_H_X)
11089   NODE_NAME_CASE(FMV_X_ANYEXTH)
11090   NODE_NAME_CASE(FMV_X_SIGNEXTH)
11091   NODE_NAME_CASE(FMV_W_X_RV64)
11092   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
11093   NODE_NAME_CASE(FCVT_X)
11094   NODE_NAME_CASE(FCVT_XU)
11095   NODE_NAME_CASE(FCVT_W_RV64)
11096   NODE_NAME_CASE(FCVT_WU_RV64)
11097   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
11098   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
11099   NODE_NAME_CASE(READ_CYCLE_WIDE)
11100   NODE_NAME_CASE(GREV)
11101   NODE_NAME_CASE(GREVW)
11102   NODE_NAME_CASE(GORC)
11103   NODE_NAME_CASE(GORCW)
11104   NODE_NAME_CASE(SHFL)
11105   NODE_NAME_CASE(SHFLW)
11106   NODE_NAME_CASE(UNSHFL)
11107   NODE_NAME_CASE(UNSHFLW)
11108   NODE_NAME_CASE(BFP)
11109   NODE_NAME_CASE(BFPW)
11110   NODE_NAME_CASE(BCOMPRESS)
11111   NODE_NAME_CASE(BCOMPRESSW)
11112   NODE_NAME_CASE(BDECOMPRESS)
11113   NODE_NAME_CASE(BDECOMPRESSW)
11114   NODE_NAME_CASE(VMV_V_X_VL)
11115   NODE_NAME_CASE(VFMV_V_F_VL)
11116   NODE_NAME_CASE(VMV_X_S)
11117   NODE_NAME_CASE(VMV_S_X_VL)
11118   NODE_NAME_CASE(VFMV_S_F_VL)
11119   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
11120   NODE_NAME_CASE(READ_VLENB)
11121   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
11122   NODE_NAME_CASE(VSLIDEUP_VL)
11123   NODE_NAME_CASE(VSLIDE1UP_VL)
11124   NODE_NAME_CASE(VSLIDEDOWN_VL)
11125   NODE_NAME_CASE(VSLIDE1DOWN_VL)
11126   NODE_NAME_CASE(VID_VL)
11127   NODE_NAME_CASE(VFNCVT_ROD_VL)
11128   NODE_NAME_CASE(VECREDUCE_ADD_VL)
11129   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
11130   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
11131   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
11132   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
11133   NODE_NAME_CASE(VECREDUCE_AND_VL)
11134   NODE_NAME_CASE(VECREDUCE_OR_VL)
11135   NODE_NAME_CASE(VECREDUCE_XOR_VL)
11136   NODE_NAME_CASE(VECREDUCE_FADD_VL)
11137   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
11138   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
11139   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
11140   NODE_NAME_CASE(ADD_VL)
11141   NODE_NAME_CASE(AND_VL)
11142   NODE_NAME_CASE(MUL_VL)
11143   NODE_NAME_CASE(OR_VL)
11144   NODE_NAME_CASE(SDIV_VL)
11145   NODE_NAME_CASE(SHL_VL)
11146   NODE_NAME_CASE(SREM_VL)
11147   NODE_NAME_CASE(SRA_VL)
11148   NODE_NAME_CASE(SRL_VL)
11149   NODE_NAME_CASE(SUB_VL)
11150   NODE_NAME_CASE(UDIV_VL)
11151   NODE_NAME_CASE(UREM_VL)
11152   NODE_NAME_CASE(XOR_VL)
11153   NODE_NAME_CASE(SADDSAT_VL)
11154   NODE_NAME_CASE(UADDSAT_VL)
11155   NODE_NAME_CASE(SSUBSAT_VL)
11156   NODE_NAME_CASE(USUBSAT_VL)
11157   NODE_NAME_CASE(FADD_VL)
11158   NODE_NAME_CASE(FSUB_VL)
11159   NODE_NAME_CASE(FMUL_VL)
11160   NODE_NAME_CASE(FDIV_VL)
11161   NODE_NAME_CASE(FNEG_VL)
11162   NODE_NAME_CASE(FABS_VL)
11163   NODE_NAME_CASE(FSQRT_VL)
11164   NODE_NAME_CASE(FMA_VL)
11165   NODE_NAME_CASE(FCOPYSIGN_VL)
11166   NODE_NAME_CASE(SMIN_VL)
11167   NODE_NAME_CASE(SMAX_VL)
11168   NODE_NAME_CASE(UMIN_VL)
11169   NODE_NAME_CASE(UMAX_VL)
11170   NODE_NAME_CASE(FMINNUM_VL)
11171   NODE_NAME_CASE(FMAXNUM_VL)
11172   NODE_NAME_CASE(MULHS_VL)
11173   NODE_NAME_CASE(MULHU_VL)
11174   NODE_NAME_CASE(FP_TO_SINT_VL)
11175   NODE_NAME_CASE(FP_TO_UINT_VL)
11176   NODE_NAME_CASE(SINT_TO_FP_VL)
11177   NODE_NAME_CASE(UINT_TO_FP_VL)
11178   NODE_NAME_CASE(FP_EXTEND_VL)
11179   NODE_NAME_CASE(FP_ROUND_VL)
11180   NODE_NAME_CASE(VWMUL_VL)
11181   NODE_NAME_CASE(VWMULU_VL)
11182   NODE_NAME_CASE(VWMULSU_VL)
11183   NODE_NAME_CASE(VWADD_VL)
11184   NODE_NAME_CASE(VWADDU_VL)
11185   NODE_NAME_CASE(VWSUB_VL)
11186   NODE_NAME_CASE(VWSUBU_VL)
11187   NODE_NAME_CASE(VWADD_W_VL)
11188   NODE_NAME_CASE(VWADDU_W_VL)
11189   NODE_NAME_CASE(VWSUB_W_VL)
11190   NODE_NAME_CASE(VWSUBU_W_VL)
11191   NODE_NAME_CASE(SETCC_VL)
11192   NODE_NAME_CASE(VSELECT_VL)
11193   NODE_NAME_CASE(VP_MERGE_VL)
11194   NODE_NAME_CASE(VMAND_VL)
11195   NODE_NAME_CASE(VMOR_VL)
11196   NODE_NAME_CASE(VMXOR_VL)
11197   NODE_NAME_CASE(VMCLR_VL)
11198   NODE_NAME_CASE(VMSET_VL)
11199   NODE_NAME_CASE(VRGATHER_VX_VL)
11200   NODE_NAME_CASE(VRGATHER_VV_VL)
11201   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
11202   NODE_NAME_CASE(VSEXT_VL)
11203   NODE_NAME_CASE(VZEXT_VL)
11204   NODE_NAME_CASE(VCPOP_VL)
11205   NODE_NAME_CASE(READ_CSR)
11206   NODE_NAME_CASE(WRITE_CSR)
11207   NODE_NAME_CASE(SWAP_CSR)
11208   }
11209   // clang-format on
11210   return nullptr;
11211 #undef NODE_NAME_CASE
11212 }
11213 
11214 /// getConstraintType - Given a constraint letter, return the type of
11215 /// constraint it is for this target.
11216 RISCVTargetLowering::ConstraintType
11217 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
11218   if (Constraint.size() == 1) {
11219     switch (Constraint[0]) {
11220     default:
11221       break;
11222     case 'f':
11223       return C_RegisterClass;
11224     case 'I':
11225     case 'J':
11226     case 'K':
11227       return C_Immediate;
11228     case 'A':
11229       return C_Memory;
11230     case 'S': // A symbolic address
11231       return C_Other;
11232     }
11233   } else {
11234     if (Constraint == "vr" || Constraint == "vm")
11235       return C_RegisterClass;
11236   }
11237   return TargetLowering::getConstraintType(Constraint);
11238 }
11239 
11240 std::pair<unsigned, const TargetRegisterClass *>
11241 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11242                                                   StringRef Constraint,
11243                                                   MVT VT) const {
11244   // First, see if this is a constraint that directly corresponds to a
11245   // RISCV register class.
11246   if (Constraint.size() == 1) {
11247     switch (Constraint[0]) {
11248     case 'r':
11249       // TODO: Support fixed vectors up to XLen for P extension?
11250       if (VT.isVector())
11251         break;
11252       return std::make_pair(0U, &RISCV::GPRRegClass);
11253     case 'f':
11254       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
11255         return std::make_pair(0U, &RISCV::FPR16RegClass);
11256       if (Subtarget.hasStdExtF() && VT == MVT::f32)
11257         return std::make_pair(0U, &RISCV::FPR32RegClass);
11258       if (Subtarget.hasStdExtD() && VT == MVT::f64)
11259         return std::make_pair(0U, &RISCV::FPR64RegClass);
11260       break;
11261     default:
11262       break;
11263     }
11264   } else if (Constraint == "vr") {
11265     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
11266                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11267       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
11268         return std::make_pair(0U, RC);
11269     }
11270   } else if (Constraint == "vm") {
11271     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
11272       return std::make_pair(0U, &RISCV::VMV0RegClass);
11273   }
11274 
11275   // Clang will correctly decode the usage of register name aliases into their
11276   // official names. However, other frontends like `rustc` do not. This allows
11277   // users of these frontends to use the ABI names for registers in LLVM-style
11278   // register constraints.
11279   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
11280                                .Case("{zero}", RISCV::X0)
11281                                .Case("{ra}", RISCV::X1)
11282                                .Case("{sp}", RISCV::X2)
11283                                .Case("{gp}", RISCV::X3)
11284                                .Case("{tp}", RISCV::X4)
11285                                .Case("{t0}", RISCV::X5)
11286                                .Case("{t1}", RISCV::X6)
11287                                .Case("{t2}", RISCV::X7)
11288                                .Cases("{s0}", "{fp}", RISCV::X8)
11289                                .Case("{s1}", RISCV::X9)
11290                                .Case("{a0}", RISCV::X10)
11291                                .Case("{a1}", RISCV::X11)
11292                                .Case("{a2}", RISCV::X12)
11293                                .Case("{a3}", RISCV::X13)
11294                                .Case("{a4}", RISCV::X14)
11295                                .Case("{a5}", RISCV::X15)
11296                                .Case("{a6}", RISCV::X16)
11297                                .Case("{a7}", RISCV::X17)
11298                                .Case("{s2}", RISCV::X18)
11299                                .Case("{s3}", RISCV::X19)
11300                                .Case("{s4}", RISCV::X20)
11301                                .Case("{s5}", RISCV::X21)
11302                                .Case("{s6}", RISCV::X22)
11303                                .Case("{s7}", RISCV::X23)
11304                                .Case("{s8}", RISCV::X24)
11305                                .Case("{s9}", RISCV::X25)
11306                                .Case("{s10}", RISCV::X26)
11307                                .Case("{s11}", RISCV::X27)
11308                                .Case("{t3}", RISCV::X28)
11309                                .Case("{t4}", RISCV::X29)
11310                                .Case("{t5}", RISCV::X30)
11311                                .Case("{t6}", RISCV::X31)
11312                                .Default(RISCV::NoRegister);
11313   if (XRegFromAlias != RISCV::NoRegister)
11314     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
11315 
11316   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
11317   // TableGen record rather than the AsmName to choose registers for InlineAsm
11318   // constraints, plus we want to match those names to the widest floating point
11319   // register type available, manually select floating point registers here.
11320   //
11321   // The second case is the ABI name of the register, so that frontends can also
11322   // use the ABI names in register constraint lists.
11323   if (Subtarget.hasStdExtF()) {
11324     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
11325                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
11326                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
11327                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
11328                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
11329                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
11330                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
11331                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
11332                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
11333                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
11334                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
11335                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
11336                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
11337                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
11338                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
11339                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
11340                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
11341                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
11342                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
11343                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
11344                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
11345                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
11346                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
11347                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
11348                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
11349                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
11350                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
11351                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
11352                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
11353                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
11354                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
11355                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
11356                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
11357                         .Default(RISCV::NoRegister);
11358     if (FReg != RISCV::NoRegister) {
11359       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
11360       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
11361         unsigned RegNo = FReg - RISCV::F0_F;
11362         unsigned DReg = RISCV::F0_D + RegNo;
11363         return std::make_pair(DReg, &RISCV::FPR64RegClass);
11364       }
11365       if (VT == MVT::f32 || VT == MVT::Other)
11366         return std::make_pair(FReg, &RISCV::FPR32RegClass);
11367       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
11368         unsigned RegNo = FReg - RISCV::F0_F;
11369         unsigned HReg = RISCV::F0_H + RegNo;
11370         return std::make_pair(HReg, &RISCV::FPR16RegClass);
11371       }
11372     }
11373   }
11374 
11375   if (Subtarget.hasVInstructions()) {
11376     Register VReg = StringSwitch<Register>(Constraint.lower())
11377                         .Case("{v0}", RISCV::V0)
11378                         .Case("{v1}", RISCV::V1)
11379                         .Case("{v2}", RISCV::V2)
11380                         .Case("{v3}", RISCV::V3)
11381                         .Case("{v4}", RISCV::V4)
11382                         .Case("{v5}", RISCV::V5)
11383                         .Case("{v6}", RISCV::V6)
11384                         .Case("{v7}", RISCV::V7)
11385                         .Case("{v8}", RISCV::V8)
11386                         .Case("{v9}", RISCV::V9)
11387                         .Case("{v10}", RISCV::V10)
11388                         .Case("{v11}", RISCV::V11)
11389                         .Case("{v12}", RISCV::V12)
11390                         .Case("{v13}", RISCV::V13)
11391                         .Case("{v14}", RISCV::V14)
11392                         .Case("{v15}", RISCV::V15)
11393                         .Case("{v16}", RISCV::V16)
11394                         .Case("{v17}", RISCV::V17)
11395                         .Case("{v18}", RISCV::V18)
11396                         .Case("{v19}", RISCV::V19)
11397                         .Case("{v20}", RISCV::V20)
11398                         .Case("{v21}", RISCV::V21)
11399                         .Case("{v22}", RISCV::V22)
11400                         .Case("{v23}", RISCV::V23)
11401                         .Case("{v24}", RISCV::V24)
11402                         .Case("{v25}", RISCV::V25)
11403                         .Case("{v26}", RISCV::V26)
11404                         .Case("{v27}", RISCV::V27)
11405                         .Case("{v28}", RISCV::V28)
11406                         .Case("{v29}", RISCV::V29)
11407                         .Case("{v30}", RISCV::V30)
11408                         .Case("{v31}", RISCV::V31)
11409                         .Default(RISCV::NoRegister);
11410     if (VReg != RISCV::NoRegister) {
11411       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
11412         return std::make_pair(VReg, &RISCV::VMRegClass);
11413       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
11414         return std::make_pair(VReg, &RISCV::VRRegClass);
11415       for (const auto *RC :
11416            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11417         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
11418           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
11419           return std::make_pair(VReg, RC);
11420         }
11421       }
11422     }
11423   }
11424 
11425   std::pair<Register, const TargetRegisterClass *> Res =
11426       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11427 
11428   // If we picked one of the Zfinx register classes, remap it to the GPR class.
11429   // FIXME: When Zfinx is supported in CodeGen this will need to take the
11430   // Subtarget into account.
11431   if (Res.second == &RISCV::GPRF16RegClass ||
11432       Res.second == &RISCV::GPRF32RegClass ||
11433       Res.second == &RISCV::GPRF64RegClass)
11434     return std::make_pair(Res.first, &RISCV::GPRRegClass);
11435 
11436   return Res;
11437 }
11438 
11439 unsigned
11440 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
11441   // Currently only support length 1 constraints.
11442   if (ConstraintCode.size() == 1) {
11443     switch (ConstraintCode[0]) {
11444     case 'A':
11445       return InlineAsm::Constraint_A;
11446     default:
11447       break;
11448     }
11449   }
11450 
11451   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
11452 }
11453 
11454 void RISCVTargetLowering::LowerAsmOperandForConstraint(
11455     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
11456     SelectionDAG &DAG) const {
11457   // Currently only support length 1 constraints.
11458   if (Constraint.length() == 1) {
11459     switch (Constraint[0]) {
11460     case 'I':
11461       // Validate & create a 12-bit signed immediate operand.
11462       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11463         uint64_t CVal = C->getSExtValue();
11464         if (isInt<12>(CVal))
11465           Ops.push_back(
11466               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11467       }
11468       return;
11469     case 'J':
11470       // Validate & create an integer zero operand.
11471       if (auto *C = dyn_cast<ConstantSDNode>(Op))
11472         if (C->getZExtValue() == 0)
11473           Ops.push_back(
11474               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
11475       return;
11476     case 'K':
11477       // Validate & create a 5-bit unsigned immediate operand.
11478       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11479         uint64_t CVal = C->getZExtValue();
11480         if (isUInt<5>(CVal))
11481           Ops.push_back(
11482               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11483       }
11484       return;
11485     case 'S':
11486       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
11487         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
11488                                                  GA->getValueType(0)));
11489       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
11490         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
11491                                                 BA->getValueType(0)));
11492       }
11493       return;
11494     default:
11495       break;
11496     }
11497   }
11498   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11499 }
11500 
11501 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11502                                                    Instruction *Inst,
11503                                                    AtomicOrdering Ord) const {
11504   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
11505     return Builder.CreateFence(Ord);
11506   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
11507     return Builder.CreateFence(AtomicOrdering::Release);
11508   return nullptr;
11509 }
11510 
11511 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11512                                                     Instruction *Inst,
11513                                                     AtomicOrdering Ord) const {
11514   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
11515     return Builder.CreateFence(AtomicOrdering::Acquire);
11516   return nullptr;
11517 }
11518 
11519 TargetLowering::AtomicExpansionKind
11520 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11521   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
11522   // point operations can't be used in an lr/sc sequence without breaking the
11523   // forward-progress guarantee.
11524   if (AI->isFloatingPointOperation())
11525     return AtomicExpansionKind::CmpXChg;
11526 
11527   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11528   if (Size == 8 || Size == 16)
11529     return AtomicExpansionKind::MaskedIntrinsic;
11530   return AtomicExpansionKind::None;
11531 }
11532 
11533 static Intrinsic::ID
11534 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
11535   if (XLen == 32) {
11536     switch (BinOp) {
11537     default:
11538       llvm_unreachable("Unexpected AtomicRMW BinOp");
11539     case AtomicRMWInst::Xchg:
11540       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
11541     case AtomicRMWInst::Add:
11542       return Intrinsic::riscv_masked_atomicrmw_add_i32;
11543     case AtomicRMWInst::Sub:
11544       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
11545     case AtomicRMWInst::Nand:
11546       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
11547     case AtomicRMWInst::Max:
11548       return Intrinsic::riscv_masked_atomicrmw_max_i32;
11549     case AtomicRMWInst::Min:
11550       return Intrinsic::riscv_masked_atomicrmw_min_i32;
11551     case AtomicRMWInst::UMax:
11552       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
11553     case AtomicRMWInst::UMin:
11554       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
11555     }
11556   }
11557 
11558   if (XLen == 64) {
11559     switch (BinOp) {
11560     default:
11561       llvm_unreachable("Unexpected AtomicRMW BinOp");
11562     case AtomicRMWInst::Xchg:
11563       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
11564     case AtomicRMWInst::Add:
11565       return Intrinsic::riscv_masked_atomicrmw_add_i64;
11566     case AtomicRMWInst::Sub:
11567       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
11568     case AtomicRMWInst::Nand:
11569       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
11570     case AtomicRMWInst::Max:
11571       return Intrinsic::riscv_masked_atomicrmw_max_i64;
11572     case AtomicRMWInst::Min:
11573       return Intrinsic::riscv_masked_atomicrmw_min_i64;
11574     case AtomicRMWInst::UMax:
11575       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
11576     case AtomicRMWInst::UMin:
11577       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
11578     }
11579   }
11580 
11581   llvm_unreachable("Unexpected XLen\n");
11582 }
11583 
11584 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
11585     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
11586     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
11587   unsigned XLen = Subtarget.getXLen();
11588   Value *Ordering =
11589       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
11590   Type *Tys[] = {AlignedAddr->getType()};
11591   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
11592       AI->getModule(),
11593       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
11594 
11595   if (XLen == 64) {
11596     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
11597     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11598     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
11599   }
11600 
11601   Value *Result;
11602 
11603   // Must pass the shift amount needed to sign extend the loaded value prior
11604   // to performing a signed comparison for min/max. ShiftAmt is the number of
11605   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
11606   // is the number of bits to left+right shift the value in order to
11607   // sign-extend.
11608   if (AI->getOperation() == AtomicRMWInst::Min ||
11609       AI->getOperation() == AtomicRMWInst::Max) {
11610     const DataLayout &DL = AI->getModule()->getDataLayout();
11611     unsigned ValWidth =
11612         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
11613     Value *SextShamt =
11614         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
11615     Result = Builder.CreateCall(LrwOpScwLoop,
11616                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
11617   } else {
11618     Result =
11619         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
11620   }
11621 
11622   if (XLen == 64)
11623     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11624   return Result;
11625 }
11626 
11627 TargetLowering::AtomicExpansionKind
11628 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
11629     AtomicCmpXchgInst *CI) const {
11630   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
11631   if (Size == 8 || Size == 16)
11632     return AtomicExpansionKind::MaskedIntrinsic;
11633   return AtomicExpansionKind::None;
11634 }
11635 
11636 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
11637     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
11638     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
11639   unsigned XLen = Subtarget.getXLen();
11640   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
11641   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
11642   if (XLen == 64) {
11643     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
11644     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
11645     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11646     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
11647   }
11648   Type *Tys[] = {AlignedAddr->getType()};
11649   Function *MaskedCmpXchg =
11650       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
11651   Value *Result = Builder.CreateCall(
11652       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
11653   if (XLen == 64)
11654     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11655   return Result;
11656 }
11657 
11658 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
11659   return false;
11660 }
11661 
11662 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
11663                                                EVT VT) const {
11664   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
11665     return false;
11666 
11667   switch (FPVT.getSimpleVT().SimpleTy) {
11668   case MVT::f16:
11669     return Subtarget.hasStdExtZfh();
11670   case MVT::f32:
11671     return Subtarget.hasStdExtF();
11672   case MVT::f64:
11673     return Subtarget.hasStdExtD();
11674   default:
11675     return false;
11676   }
11677 }
11678 
11679 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
11680   // If we are using the small code model, we can reduce size of jump table
11681   // entry to 4 bytes.
11682   if (Subtarget.is64Bit() && !isPositionIndependent() &&
11683       getTargetMachine().getCodeModel() == CodeModel::Small) {
11684     return MachineJumpTableInfo::EK_Custom32;
11685   }
11686   return TargetLowering::getJumpTableEncoding();
11687 }
11688 
11689 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
11690     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
11691     unsigned uid, MCContext &Ctx) const {
11692   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
11693          getTargetMachine().getCodeModel() == CodeModel::Small);
11694   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
11695 }
11696 
11697 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
11698                                                      EVT VT) const {
11699   VT = VT.getScalarType();
11700 
11701   if (!VT.isSimple())
11702     return false;
11703 
11704   switch (VT.getSimpleVT().SimpleTy) {
11705   case MVT::f16:
11706     return Subtarget.hasStdExtZfh();
11707   case MVT::f32:
11708     return Subtarget.hasStdExtF();
11709   case MVT::f64:
11710     return Subtarget.hasStdExtD();
11711   default:
11712     break;
11713   }
11714 
11715   return false;
11716 }
11717 
11718 Register RISCVTargetLowering::getExceptionPointerRegister(
11719     const Constant *PersonalityFn) const {
11720   return RISCV::X10;
11721 }
11722 
11723 Register RISCVTargetLowering::getExceptionSelectorRegister(
11724     const Constant *PersonalityFn) const {
11725   return RISCV::X11;
11726 }
11727 
11728 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
11729   // Return false to suppress the unnecessary extensions if the LibCall
11730   // arguments or return value is f32 type for LP64 ABI.
11731   RISCVABI::ABI ABI = Subtarget.getTargetABI();
11732   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
11733     return false;
11734 
11735   return true;
11736 }
11737 
11738 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
11739   if (Subtarget.is64Bit() && Type == MVT::i32)
11740     return true;
11741 
11742   return IsSigned;
11743 }
11744 
11745 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
11746                                                  SDValue C) const {
11747   // Check integral scalar types.
11748   if (VT.isScalarInteger()) {
11749     // Omit the optimization if the sub target has the M extension and the data
11750     // size exceeds XLen.
11751     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
11752       return false;
11753     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
11754       // Break the MUL to a SLLI and an ADD/SUB.
11755       const APInt &Imm = ConstNode->getAPIntValue();
11756       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
11757           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
11758         return true;
11759       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
11760       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
11761           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
11762            (Imm - 8).isPowerOf2()))
11763         return true;
11764       // Omit the following optimization if the sub target has the M extension
11765       // and the data size >= XLen.
11766       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
11767         return false;
11768       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
11769       // a pair of LUI/ADDI.
11770       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
11771         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
11772         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
11773             (1 - ImmS).isPowerOf2())
11774         return true;
11775       }
11776     }
11777   }
11778 
11779   return false;
11780 }
11781 
11782 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
11783                                                       SDValue ConstNode) const {
11784   // Let the DAGCombiner decide for vectors.
11785   EVT VT = AddNode.getValueType();
11786   if (VT.isVector())
11787     return true;
11788 
11789   // Let the DAGCombiner decide for larger types.
11790   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
11791     return true;
11792 
11793   // It is worse if c1 is simm12 while c1*c2 is not.
11794   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
11795   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
11796   const APInt &C1 = C1Node->getAPIntValue();
11797   const APInt &C2 = C2Node->getAPIntValue();
11798   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
11799     return false;
11800 
11801   // Default to true and let the DAGCombiner decide.
11802   return true;
11803 }
11804 
11805 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
11806     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
11807     bool *Fast) const {
11808   if (!VT.isVector())
11809     return false;
11810 
11811   EVT ElemVT = VT.getVectorElementType();
11812   if (Alignment >= ElemVT.getStoreSize()) {
11813     if (Fast)
11814       *Fast = true;
11815     return true;
11816   }
11817 
11818   return false;
11819 }
11820 
11821 bool RISCVTargetLowering::splitValueIntoRegisterParts(
11822     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
11823     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
11824   bool IsABIRegCopy = CC.hasValue();
11825   EVT ValueVT = Val.getValueType();
11826   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11827     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
11828     // and cast to f32.
11829     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
11830     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
11831     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
11832                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
11833     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
11834     Parts[0] = Val;
11835     return true;
11836   }
11837 
11838   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11839     LLVMContext &Context = *DAG.getContext();
11840     EVT ValueEltVT = ValueVT.getVectorElementType();
11841     EVT PartEltVT = PartVT.getVectorElementType();
11842     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11843     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11844     if (PartVTBitSize % ValueVTBitSize == 0) {
11845       assert(PartVTBitSize >= ValueVTBitSize);
11846       // If the element types are different, bitcast to the same element type of
11847       // PartVT first.
11848       // Give an example here, we want copy a <vscale x 1 x i8> value to
11849       // <vscale x 4 x i16>.
11850       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
11851       // subvector, then we can bitcast to <vscale x 4 x i16>.
11852       if (ValueEltVT != PartEltVT) {
11853         if (PartVTBitSize > ValueVTBitSize) {
11854           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11855           assert(Count != 0 && "The number of element should not be zero.");
11856           EVT SameEltTypeVT =
11857               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11858           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
11859                             DAG.getUNDEF(SameEltTypeVT), Val,
11860                             DAG.getVectorIdxConstant(0, DL));
11861         }
11862         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
11863       } else {
11864         Val =
11865             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
11866                         Val, DAG.getVectorIdxConstant(0, DL));
11867       }
11868       Parts[0] = Val;
11869       return true;
11870     }
11871   }
11872   return false;
11873 }
11874 
11875 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
11876     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
11877     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
11878   bool IsABIRegCopy = CC.hasValue();
11879   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11880     SDValue Val = Parts[0];
11881 
11882     // Cast the f32 to i32, truncate to i16, and cast back to f16.
11883     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
11884     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
11885     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
11886     return Val;
11887   }
11888 
11889   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11890     LLVMContext &Context = *DAG.getContext();
11891     SDValue Val = Parts[0];
11892     EVT ValueEltVT = ValueVT.getVectorElementType();
11893     EVT PartEltVT = PartVT.getVectorElementType();
11894     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11895     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11896     if (PartVTBitSize % ValueVTBitSize == 0) {
11897       assert(PartVTBitSize >= ValueVTBitSize);
11898       EVT SameEltTypeVT = ValueVT;
11899       // If the element types are different, convert it to the same element type
11900       // of PartVT.
11901       // Give an example here, we want copy a <vscale x 1 x i8> value from
11902       // <vscale x 4 x i16>.
11903       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
11904       // then we can extract <vscale x 1 x i8>.
11905       if (ValueEltVT != PartEltVT) {
11906         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11907         assert(Count != 0 && "The number of element should not be zero.");
11908         SameEltTypeVT =
11909             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11910         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
11911       }
11912       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
11913                         DAG.getVectorIdxConstant(0, DL));
11914       return Val;
11915     }
11916   }
11917   return SDValue();
11918 }
11919 
11920 SDValue
11921 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11922                                    SelectionDAG &DAG,
11923                                    SmallVectorImpl<SDNode *> &Created) const {
11924   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
11925   if (isIntDivCheap(N->getValueType(0), Attr))
11926     return SDValue(N, 0); // Lower SDIV as SDIV
11927 
11928   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
11929          "Unexpected divisor!");
11930 
11931   // Conditional move is needed, so do the transformation iff Zbt is enabled.
11932   if (!Subtarget.hasStdExtZbt())
11933     return SDValue();
11934 
11935   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
11936   // Besides, more critical path instructions will be generated when dividing
11937   // by 2. So we keep using the original DAGs for these cases.
11938   unsigned Lg2 = Divisor.countTrailingZeros();
11939   if (Lg2 == 1 || Lg2 >= 12)
11940     return SDValue();
11941 
11942   // fold (sdiv X, pow2)
11943   EVT VT = N->getValueType(0);
11944   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
11945     return SDValue();
11946 
11947   SDLoc DL(N);
11948   SDValue N0 = N->getOperand(0);
11949   SDValue Zero = DAG.getConstant(0, DL, VT);
11950   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
11951 
11952   // Add (N0 < 0) ? Pow2 - 1 : 0;
11953   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
11954   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
11955   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
11956 
11957   Created.push_back(Cmp.getNode());
11958   Created.push_back(Add.getNode());
11959   Created.push_back(Sel.getNode());
11960 
11961   // Divide by pow2.
11962   SDValue SRA =
11963       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
11964 
11965   // If we're dividing by a positive value, we're done.  Otherwise, we must
11966   // negate the result.
11967   if (Divisor.isNonNegative())
11968     return SRA;
11969 
11970   Created.push_back(SRA.getNode());
11971   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
11972 }
11973 
11974 #define GET_REGISTER_MATCHER
11975 #include "RISCVGenAsmMatcher.inc"
11976 
11977 Register
11978 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
11979                                        const MachineFunction &MF) const {
11980   Register Reg = MatchRegisterAltName(RegName);
11981   if (Reg == RISCV::NoRegister)
11982     Reg = MatchRegisterName(RegName);
11983   if (Reg == RISCV::NoRegister)
11984     report_fatal_error(
11985         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
11986   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
11987   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
11988     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
11989                              StringRef(RegName) + "\"."));
11990   return Reg;
11991 }
11992 
11993 namespace llvm {
11994 namespace RISCVVIntrinsicsTable {
11995 
11996 #define GET_RISCVVIntrinsicsTable_IMPL
11997 #include "RISCVGenSearchableTables.inc"
11998 
11999 } // namespace RISCVVIntrinsicsTable
12000 
12001 } // namespace llvm
12002