1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CodeGen/ValueTypes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/IntrinsicsRISCV.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "riscv-lower"
44 
45 STATISTIC(NumTailCalls, "Number of tail calls");
46 
47 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
48                                          const RISCVSubtarget &STI)
49     : TargetLowering(TM), Subtarget(STI) {
50 
51   if (Subtarget.isRV32E())
52     report_fatal_error("Codegen not yet implemented for RV32E");
53 
54   RISCVABI::ABI ABI = Subtarget.getTargetABI();
55   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
56 
57   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
58       !Subtarget.hasStdExtF()) {
59     errs() << "Hard-float 'f' ABI can't be used for a target that "
60                 "doesn't support the F instruction set extension (ignoring "
61                           "target-abi)\n";
62     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
63   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
64              !Subtarget.hasStdExtD()) {
65     errs() << "Hard-float 'd' ABI can't be used for a target that "
66               "doesn't support the D instruction set extension (ignoring "
67               "target-abi)\n";
68     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
69   }
70 
71   switch (ABI) {
72   default:
73     report_fatal_error("Don't know how to lower this ABI");
74   case RISCVABI::ABI_ILP32:
75   case RISCVABI::ABI_ILP32F:
76   case RISCVABI::ABI_ILP32D:
77   case RISCVABI::ABI_LP64:
78   case RISCVABI::ABI_LP64F:
79   case RISCVABI::ABI_LP64D:
80     break;
81   }
82 
83   MVT XLenVT = Subtarget.getXLenVT();
84 
85   // Set up the register classes.
86   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
87 
88   if (Subtarget.hasStdExtZfh())
89     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
90   if (Subtarget.hasStdExtF())
91     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
92   if (Subtarget.hasStdExtD())
93     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
94 
95   static const MVT::SimpleValueType BoolVecVTs[] = {
96       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
97       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
98   static const MVT::SimpleValueType IntVecVTs[] = {
99       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
100       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
101       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
102       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
103       MVT::nxv4i64, MVT::nxv8i64};
104   static const MVT::SimpleValueType F16VecVTs[] = {
105       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
106       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
107   static const MVT::SimpleValueType F32VecVTs[] = {
108       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
109   static const MVT::SimpleValueType F64VecVTs[] = {
110       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
111 
112   if (Subtarget.hasVInstructions()) {
113     auto addRegClassForRVV = [this](MVT VT) {
114       unsigned Size = VT.getSizeInBits().getKnownMinValue();
115       assert(Size <= 512 && isPowerOf2_32(Size));
116       const TargetRegisterClass *RC;
117       if (Size <= 64)
118         RC = &RISCV::VRRegClass;
119       else if (Size == 128)
120         RC = &RISCV::VRM2RegClass;
121       else if (Size == 256)
122         RC = &RISCV::VRM4RegClass;
123       else
124         RC = &RISCV::VRM8RegClass;
125 
126       addRegisterClass(VT, RC);
127     };
128 
129     for (MVT VT : BoolVecVTs)
130       addRegClassForRVV(VT);
131     for (MVT VT : IntVecVTs) {
132       if (VT.getVectorElementType() == MVT::i64 &&
133           !Subtarget.hasVInstructionsI64())
134         continue;
135       addRegClassForRVV(VT);
136     }
137 
138     if (Subtarget.hasVInstructionsF16())
139       for (MVT VT : F16VecVTs)
140         addRegClassForRVV(VT);
141 
142     if (Subtarget.hasVInstructionsF32())
143       for (MVT VT : F32VecVTs)
144         addRegClassForRVV(VT);
145 
146     if (Subtarget.hasVInstructionsF64())
147       for (MVT VT : F64VecVTs)
148         addRegClassForRVV(VT);
149 
150     if (Subtarget.useRVVForFixedLengthVectors()) {
151       auto addRegClassForFixedVectors = [this](MVT VT) {
152         MVT ContainerVT = getContainerForFixedLengthVector(VT);
153         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
154         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
155         addRegisterClass(VT, TRI.getRegClass(RCID));
156       };
157       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
158         if (useRVVForFixedLengthVectorVT(VT))
159           addRegClassForFixedVectors(VT);
160 
161       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
162         if (useRVVForFixedLengthVectorVT(VT))
163           addRegClassForFixedVectors(VT);
164     }
165   }
166 
167   // Compute derived properties from the register classes.
168   computeRegisterProperties(STI.getRegisterInfo());
169 
170   setStackPointerRegisterToSaveRestore(RISCV::X2);
171 
172   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
173     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
174 
175   // TODO: add all necessary setOperationAction calls.
176   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
177 
178   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
179   setOperationAction(ISD::BR_CC, XLenVT, Expand);
180   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
181   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
182 
183   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
184   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
185 
186   setOperationAction(ISD::VASTART, MVT::Other, Custom);
187   setOperationAction(ISD::VAARG, MVT::Other, Expand);
188   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
189   setOperationAction(ISD::VAEND, MVT::Other, Expand);
190 
191   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
192   if (!Subtarget.hasStdExtZbb()) {
193     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
194     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
195   }
196 
197   if (Subtarget.is64Bit()) {
198     setOperationAction(ISD::ADD, MVT::i32, Custom);
199     setOperationAction(ISD::SUB, MVT::i32, Custom);
200     setOperationAction(ISD::SHL, MVT::i32, Custom);
201     setOperationAction(ISD::SRA, MVT::i32, Custom);
202     setOperationAction(ISD::SRL, MVT::i32, Custom);
203 
204     setOperationAction(ISD::UADDO, MVT::i32, Custom);
205     setOperationAction(ISD::USUBO, MVT::i32, Custom);
206     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
207     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
208   } else {
209     setLibcallName(RTLIB::SHL_I128, nullptr);
210     setLibcallName(RTLIB::SRL_I128, nullptr);
211     setLibcallName(RTLIB::SRA_I128, nullptr);
212     setLibcallName(RTLIB::MUL_I128, nullptr);
213     setLibcallName(RTLIB::MULO_I64, nullptr);
214   }
215 
216   if (!Subtarget.hasStdExtM()) {
217     setOperationAction(ISD::MUL, XLenVT, Expand);
218     setOperationAction(ISD::MULHS, XLenVT, Expand);
219     setOperationAction(ISD::MULHU, XLenVT, Expand);
220     setOperationAction(ISD::SDIV, XLenVT, Expand);
221     setOperationAction(ISD::UDIV, XLenVT, Expand);
222     setOperationAction(ISD::SREM, XLenVT, Expand);
223     setOperationAction(ISD::UREM, XLenVT, Expand);
224   } else {
225     if (Subtarget.is64Bit()) {
226       setOperationAction(ISD::MUL, MVT::i32, Custom);
227       setOperationAction(ISD::MUL, MVT::i128, Custom);
228 
229       setOperationAction(ISD::SDIV, MVT::i8, Custom);
230       setOperationAction(ISD::UDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UREM, MVT::i8, Custom);
232       setOperationAction(ISD::SDIV, MVT::i16, Custom);
233       setOperationAction(ISD::UDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UREM, MVT::i16, Custom);
235       setOperationAction(ISD::SDIV, MVT::i32, Custom);
236       setOperationAction(ISD::UDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UREM, MVT::i32, Custom);
238     } else {
239       setOperationAction(ISD::MUL, MVT::i64, Custom);
240     }
241   }
242 
243   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
244   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
246   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
247 
248   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
249   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
251 
252   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
253     if (Subtarget.is64Bit()) {
254       setOperationAction(ISD::ROTL, MVT::i32, Custom);
255       setOperationAction(ISD::ROTR, MVT::i32, Custom);
256     }
257   } else {
258     setOperationAction(ISD::ROTL, XLenVT, Expand);
259     setOperationAction(ISD::ROTR, XLenVT, Expand);
260   }
261 
262   if (Subtarget.hasStdExtZbp()) {
263     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
264     // more combining.
265     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
266     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
267     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
268     // BSWAP i8 doesn't exist.
269     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
270     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
271 
272     if (Subtarget.is64Bit()) {
273       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
274       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
275     }
276   } else {
277     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
278     // pattern match it directly in isel.
279     setOperationAction(ISD::BSWAP, XLenVT,
280                        Subtarget.hasStdExtZbb() ? Legal : Expand);
281   }
282 
283   if (Subtarget.hasStdExtZbb()) {
284     setOperationAction(ISD::SMIN, XLenVT, Legal);
285     setOperationAction(ISD::SMAX, XLenVT, Legal);
286     setOperationAction(ISD::UMIN, XLenVT, Legal);
287     setOperationAction(ISD::UMAX, XLenVT, Legal);
288 
289     if (Subtarget.is64Bit()) {
290       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
291       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
292       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
293       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
294     }
295   } else {
296     setOperationAction(ISD::CTTZ, XLenVT, Expand);
297     setOperationAction(ISD::CTLZ, XLenVT, Expand);
298     setOperationAction(ISD::CTPOP, XLenVT, Expand);
299   }
300 
301   if (Subtarget.hasStdExtZbt()) {
302     setOperationAction(ISD::FSHL, XLenVT, Custom);
303     setOperationAction(ISD::FSHR, XLenVT, Custom);
304     setOperationAction(ISD::SELECT, XLenVT, Legal);
305 
306     if (Subtarget.is64Bit()) {
307       setOperationAction(ISD::FSHL, MVT::i32, Custom);
308       setOperationAction(ISD::FSHR, MVT::i32, Custom);
309     }
310   } else {
311     setOperationAction(ISD::SELECT, XLenVT, Custom);
312   }
313 
314   static const ISD::CondCode FPCCToExpand[] = {
315       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
316       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
317       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
318 
319   static const ISD::NodeType FPOpToExpand[] = {
320       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
321       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
322 
323   if (Subtarget.hasStdExtZfh())
324     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
325 
326   if (Subtarget.hasStdExtZfh()) {
327     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
328     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
329     setOperationAction(ISD::LRINT, MVT::f16, Legal);
330     setOperationAction(ISD::LLRINT, MVT::f16, Legal);
331     setOperationAction(ISD::LROUND, MVT::f16, Legal);
332     setOperationAction(ISD::LLROUND, MVT::f16, Legal);
333     for (auto CC : FPCCToExpand)
334       setCondCodeAction(CC, MVT::f16, Expand);
335     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
336     setOperationAction(ISD::SELECT, MVT::f16, Custom);
337     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
338     for (auto Op : FPOpToExpand)
339       setOperationAction(Op, MVT::f16, Expand);
340 
341     setOperationAction(ISD::FREM,       MVT::f16, Promote);
342     setOperationAction(ISD::FCEIL,      MVT::f16,  Promote);
343     setOperationAction(ISD::FFLOOR,     MVT::f16,  Promote);
344     setOperationAction(ISD::FNEARBYINT, MVT::f16,  Promote);
345     setOperationAction(ISD::FRINT,      MVT::f16,  Promote);
346     setOperationAction(ISD::FROUND,     MVT::f16,  Promote);
347     setOperationAction(ISD::FROUNDEVEN, MVT::f16,  Promote);
348     setOperationAction(ISD::FTRUNC,     MVT::f16,  Promote);
349   }
350 
351   if (Subtarget.hasStdExtF()) {
352     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
353     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
354     setOperationAction(ISD::LRINT, MVT::f32, Legal);
355     setOperationAction(ISD::LLRINT, MVT::f32, Legal);
356     setOperationAction(ISD::LROUND, MVT::f32, Legal);
357     setOperationAction(ISD::LLROUND, MVT::f32, Legal);
358     for (auto CC : FPCCToExpand)
359       setCondCodeAction(CC, MVT::f32, Expand);
360     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
361     setOperationAction(ISD::SELECT, MVT::f32, Custom);
362     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
363     for (auto Op : FPOpToExpand)
364       setOperationAction(Op, MVT::f32, Expand);
365     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
366     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
367   }
368 
369   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
370     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
371 
372   if (Subtarget.hasStdExtD()) {
373     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
374     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
375     setOperationAction(ISD::LRINT, MVT::f64, Legal);
376     setOperationAction(ISD::LLRINT, MVT::f64, Legal);
377     setOperationAction(ISD::LROUND, MVT::f64, Legal);
378     setOperationAction(ISD::LLROUND, MVT::f64, Legal);
379     for (auto CC : FPCCToExpand)
380       setCondCodeAction(CC, MVT::f64, Expand);
381     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
382     setOperationAction(ISD::SELECT, MVT::f64, Custom);
383     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
384     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
385     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
386     for (auto Op : FPOpToExpand)
387       setOperationAction(Op, MVT::f64, Expand);
388     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
389     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
390   }
391 
392   if (Subtarget.is64Bit()) {
393     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
394     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
395     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
396     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
397   }
398 
399   if (Subtarget.hasStdExtF()) {
400     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
401     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
402 
403     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
404     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
405   }
406 
407   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
408   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
409   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
410   setOperationAction(ISD::JumpTable, XLenVT, Custom);
411 
412   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
413 
414   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
415   // Unfortunately this can't be determined just from the ISA naming string.
416   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
417                      Subtarget.is64Bit() ? Legal : Custom);
418 
419   setOperationAction(ISD::TRAP, MVT::Other, Legal);
420   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
421   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
422   if (Subtarget.is64Bit())
423     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
424 
425   if (Subtarget.hasStdExtA()) {
426     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
427     setMinCmpXchgSizeInBits(32);
428   } else {
429     setMaxAtomicSizeInBitsSupported(0);
430   }
431 
432   setBooleanContents(ZeroOrOneBooleanContent);
433 
434   if (Subtarget.hasVInstructions()) {
435     setBooleanVectorContents(ZeroOrOneBooleanContent);
436 
437     setOperationAction(ISD::VSCALE, XLenVT, Custom);
438 
439     // RVV intrinsics may have illegal operands.
440     // We also need to custom legalize vmv.x.s.
441     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
442     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
443     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
444     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
445     if (Subtarget.is64Bit()) {
446       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
447     } else {
448       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
449       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
450     }
451 
452     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
453     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
454 
455     static const unsigned IntegerVPOps[] = {
456         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
457         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
458         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
459         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
460         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
461         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
462         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN};
463 
464     static const unsigned FloatingPointVPOps[] = {
465         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
466         ISD::VP_FDIV,        ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
467         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX};
468 
469     if (!Subtarget.is64Bit()) {
470       // We must custom-lower certain vXi64 operations on RV32 due to the vector
471       // element type being illegal.
472       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
473       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
474 
475       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
476       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
477       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
478       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
479       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
480       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
481       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
482       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
483 
484       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
485       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
486       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
487       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
488       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
489       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
490       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
491       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
492     }
493 
494     for (MVT VT : BoolVecVTs) {
495       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
496 
497       // Mask VTs are custom-expanded into a series of standard nodes
498       setOperationAction(ISD::TRUNCATE, VT, Custom);
499       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
500       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
501       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
502 
503       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
504       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
505 
506       setOperationAction(ISD::SELECT, VT, Custom);
507       setOperationAction(ISD::SELECT_CC, VT, Expand);
508       setOperationAction(ISD::VSELECT, VT, Expand);
509 
510       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
511       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
512       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
513 
514       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
515       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
516       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
517 
518       // RVV has native int->float & float->int conversions where the
519       // element type sizes are within one power-of-two of each other. Any
520       // wider distances between type sizes have to be lowered as sequences
521       // which progressively narrow the gap in stages.
522       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
523       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
524       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
525       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
526 
527       // Expand all extending loads to types larger than this, and truncating
528       // stores from types larger than this.
529       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
530         setTruncStoreAction(OtherVT, VT, Expand);
531         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
532         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
533         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
534       }
535     }
536 
537     for (MVT VT : IntVecVTs) {
538       if (VT.getVectorElementType() == MVT::i64 &&
539           !Subtarget.hasVInstructionsI64())
540         continue;
541 
542       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
543       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
544 
545       // Vectors implement MULHS/MULHU.
546       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
547       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
548 
549       setOperationAction(ISD::SMIN, VT, Legal);
550       setOperationAction(ISD::SMAX, VT, Legal);
551       setOperationAction(ISD::UMIN, VT, Legal);
552       setOperationAction(ISD::UMAX, VT, Legal);
553 
554       setOperationAction(ISD::ROTL, VT, Expand);
555       setOperationAction(ISD::ROTR, VT, Expand);
556 
557       setOperationAction(ISD::CTTZ, VT, Expand);
558       setOperationAction(ISD::CTLZ, VT, Expand);
559       setOperationAction(ISD::CTPOP, VT, Expand);
560 
561       setOperationAction(ISD::BSWAP, VT, Expand);
562 
563       // Custom-lower extensions and truncations from/to mask types.
564       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
565       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
566       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
567 
568       // RVV has native int->float & float->int conversions where the
569       // element type sizes are within one power-of-two of each other. Any
570       // wider distances between type sizes have to be lowered as sequences
571       // which progressively narrow the gap in stages.
572       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
573       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
574       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
575       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
576 
577       setOperationAction(ISD::SADDSAT, VT, Legal);
578       setOperationAction(ISD::UADDSAT, VT, Legal);
579       setOperationAction(ISD::SSUBSAT, VT, Legal);
580       setOperationAction(ISD::USUBSAT, VT, Legal);
581 
582       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
583       // nodes which truncate by one power of two at a time.
584       setOperationAction(ISD::TRUNCATE, VT, Custom);
585 
586       // Custom-lower insert/extract operations to simplify patterns.
587       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
588       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
589 
590       // Custom-lower reduction operations to set up the corresponding custom
591       // nodes' operands.
592       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
593       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
594       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
595       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
596       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
597       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
598       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
599       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
600 
601       for (unsigned VPOpc : IntegerVPOps)
602         setOperationAction(VPOpc, VT, Custom);
603 
604       setOperationAction(ISD::LOAD, VT, Custom);
605       setOperationAction(ISD::STORE, VT, Custom);
606 
607       setOperationAction(ISD::MLOAD, VT, Custom);
608       setOperationAction(ISD::MSTORE, VT, Custom);
609       setOperationAction(ISD::MGATHER, VT, Custom);
610       setOperationAction(ISD::MSCATTER, VT, Custom);
611 
612       setOperationAction(ISD::VP_LOAD, VT, Custom);
613       setOperationAction(ISD::VP_STORE, VT, Custom);
614       setOperationAction(ISD::VP_GATHER, VT, Custom);
615       setOperationAction(ISD::VP_SCATTER, VT, Custom);
616 
617       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
618       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
619       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
620 
621       setOperationAction(ISD::SELECT, VT, Custom);
622       setOperationAction(ISD::SELECT_CC, VT, Expand);
623 
624       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
625       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
626 
627       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
628         setTruncStoreAction(VT, OtherVT, Expand);
629         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
630         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
631         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
632       }
633 
634       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
635       // type that can represent the value exactly.
636       if (VT.getVectorElementType() != MVT::i64) {
637         MVT FloatEltVT =
638             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
639         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
640         if (isTypeLegal(FloatVT)) {
641           setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
642           setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
643         }
644       }
645     }
646 
647     // Expand various CCs to best match the RVV ISA, which natively supports UNE
648     // but no other unordered comparisons, and supports all ordered comparisons
649     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
650     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
651     // and we pattern-match those back to the "original", swapping operands once
652     // more. This way we catch both operations and both "vf" and "fv" forms with
653     // fewer patterns.
654     static const ISD::CondCode VFPCCToExpand[] = {
655         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
656         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
657         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
658     };
659 
660     // Sets common operation actions on RVV floating-point vector types.
661     const auto SetCommonVFPActions = [&](MVT VT) {
662       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
663       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
664       // sizes are within one power-of-two of each other. Therefore conversions
665       // between vXf16 and vXf64 must be lowered as sequences which convert via
666       // vXf32.
667       setOperationAction(ISD::FP_ROUND, VT, Custom);
668       setOperationAction(ISD::FP_EXTEND, VT, Custom);
669       // Custom-lower insert/extract operations to simplify patterns.
670       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
671       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
672       // Expand various condition codes (explained above).
673       for (auto CC : VFPCCToExpand)
674         setCondCodeAction(CC, VT, Expand);
675 
676       setOperationAction(ISD::FMINNUM, VT, Legal);
677       setOperationAction(ISD::FMAXNUM, VT, Legal);
678 
679       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
680       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
681       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
682       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
683 
684       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
685 
686       setOperationAction(ISD::LOAD, VT, Custom);
687       setOperationAction(ISD::STORE, VT, Custom);
688 
689       setOperationAction(ISD::MLOAD, VT, Custom);
690       setOperationAction(ISD::MSTORE, VT, Custom);
691       setOperationAction(ISD::MGATHER, VT, Custom);
692       setOperationAction(ISD::MSCATTER, VT, Custom);
693 
694       setOperationAction(ISD::VP_LOAD, VT, Custom);
695       setOperationAction(ISD::VP_STORE, VT, Custom);
696       setOperationAction(ISD::VP_GATHER, VT, Custom);
697       setOperationAction(ISD::VP_SCATTER, VT, Custom);
698 
699       setOperationAction(ISD::SELECT, VT, Custom);
700       setOperationAction(ISD::SELECT_CC, VT, Expand);
701 
702       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
703       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
704       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
705 
706       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
707 
708       for (unsigned VPOpc : FloatingPointVPOps)
709         setOperationAction(VPOpc, VT, Custom);
710     };
711 
712     // Sets common extload/truncstore actions on RVV floating-point vector
713     // types.
714     const auto SetCommonVFPExtLoadTruncStoreActions =
715         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
716           for (auto SmallVT : SmallerVTs) {
717             setTruncStoreAction(VT, SmallVT, Expand);
718             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
719           }
720         };
721 
722     if (Subtarget.hasVInstructionsF16())
723       for (MVT VT : F16VecVTs)
724         SetCommonVFPActions(VT);
725 
726     for (MVT VT : F32VecVTs) {
727       if (Subtarget.hasVInstructionsF32())
728         SetCommonVFPActions(VT);
729       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
730     }
731 
732     for (MVT VT : F64VecVTs) {
733       if (Subtarget.hasVInstructionsF64())
734         SetCommonVFPActions(VT);
735       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
736       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
737     }
738 
739     if (Subtarget.useRVVForFixedLengthVectors()) {
740       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
741         if (!useRVVForFixedLengthVectorVT(VT))
742           continue;
743 
744         // By default everything must be expanded.
745         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
746           setOperationAction(Op, VT, Expand);
747         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
748           setTruncStoreAction(VT, OtherVT, Expand);
749           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
750           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
751           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
752         }
753 
754         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
755         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
756         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
757 
758         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
759         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
760 
761         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
762         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
763 
764         setOperationAction(ISD::LOAD, VT, Custom);
765         setOperationAction(ISD::STORE, VT, Custom);
766 
767         setOperationAction(ISD::SETCC, VT, Custom);
768 
769         setOperationAction(ISD::SELECT, VT, Custom);
770 
771         setOperationAction(ISD::TRUNCATE, VT, Custom);
772 
773         setOperationAction(ISD::BITCAST, VT, Custom);
774 
775         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
776         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
777         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
778 
779         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
780         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
781         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
782 
783         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
784         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
785         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
786         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
787 
788         // Operations below are different for between masks and other vectors.
789         if (VT.getVectorElementType() == MVT::i1) {
790           setOperationAction(ISD::AND, VT, Custom);
791           setOperationAction(ISD::OR, VT, Custom);
792           setOperationAction(ISD::XOR, VT, Custom);
793           continue;
794         }
795 
796         // Use SPLAT_VECTOR to prevent type legalization from destroying the
797         // splats when type legalizing i64 scalar on RV32.
798         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
799         // improvements first.
800         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
801           setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
802           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
803         }
804 
805         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
806         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
807 
808         setOperationAction(ISD::MLOAD, VT, Custom);
809         setOperationAction(ISD::MSTORE, VT, Custom);
810         setOperationAction(ISD::MGATHER, VT, Custom);
811         setOperationAction(ISD::MSCATTER, VT, Custom);
812 
813         setOperationAction(ISD::VP_LOAD, VT, Custom);
814         setOperationAction(ISD::VP_STORE, VT, Custom);
815         setOperationAction(ISD::VP_GATHER, VT, Custom);
816         setOperationAction(ISD::VP_SCATTER, VT, Custom);
817 
818         setOperationAction(ISD::ADD, VT, Custom);
819         setOperationAction(ISD::MUL, VT, Custom);
820         setOperationAction(ISD::SUB, VT, Custom);
821         setOperationAction(ISD::AND, VT, Custom);
822         setOperationAction(ISD::OR, VT, Custom);
823         setOperationAction(ISD::XOR, VT, Custom);
824         setOperationAction(ISD::SDIV, VT, Custom);
825         setOperationAction(ISD::SREM, VT, Custom);
826         setOperationAction(ISD::UDIV, VT, Custom);
827         setOperationAction(ISD::UREM, VT, Custom);
828         setOperationAction(ISD::SHL, VT, Custom);
829         setOperationAction(ISD::SRA, VT, Custom);
830         setOperationAction(ISD::SRL, VT, Custom);
831 
832         setOperationAction(ISD::SMIN, VT, Custom);
833         setOperationAction(ISD::SMAX, VT, Custom);
834         setOperationAction(ISD::UMIN, VT, Custom);
835         setOperationAction(ISD::UMAX, VT, Custom);
836         setOperationAction(ISD::ABS,  VT, Custom);
837 
838         setOperationAction(ISD::MULHS, VT, Custom);
839         setOperationAction(ISD::MULHU, VT, Custom);
840 
841         setOperationAction(ISD::SADDSAT, VT, Custom);
842         setOperationAction(ISD::UADDSAT, VT, Custom);
843         setOperationAction(ISD::SSUBSAT, VT, Custom);
844         setOperationAction(ISD::USUBSAT, VT, Custom);
845 
846         setOperationAction(ISD::VSELECT, VT, Custom);
847         setOperationAction(ISD::SELECT_CC, VT, Expand);
848 
849         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
850         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
851         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
852 
853         // Custom-lower reduction operations to set up the corresponding custom
854         // nodes' operands.
855         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
856         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
857         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
858         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
859         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
860 
861         for (unsigned VPOpc : IntegerVPOps)
862           setOperationAction(VPOpc, VT, Custom);
863 
864         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
865         // type that can represent the value exactly.
866         if (VT.getVectorElementType() != MVT::i64) {
867           MVT FloatEltVT =
868               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
869           EVT FloatVT =
870               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
871           if (isTypeLegal(FloatVT)) {
872             setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
873             setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
874           }
875         }
876       }
877 
878       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
879         if (!useRVVForFixedLengthVectorVT(VT))
880           continue;
881 
882         // By default everything must be expanded.
883         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
884           setOperationAction(Op, VT, Expand);
885         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
886           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
887           setTruncStoreAction(VT, OtherVT, Expand);
888         }
889 
890         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
891         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
892         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
893 
894         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
895         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
896         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
897         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
898         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
899 
900         setOperationAction(ISD::LOAD, VT, Custom);
901         setOperationAction(ISD::STORE, VT, Custom);
902         setOperationAction(ISD::MLOAD, VT, Custom);
903         setOperationAction(ISD::MSTORE, VT, Custom);
904         setOperationAction(ISD::MGATHER, VT, Custom);
905         setOperationAction(ISD::MSCATTER, VT, Custom);
906 
907         setOperationAction(ISD::VP_LOAD, VT, Custom);
908         setOperationAction(ISD::VP_STORE, VT, Custom);
909         setOperationAction(ISD::VP_GATHER, VT, Custom);
910         setOperationAction(ISD::VP_SCATTER, VT, Custom);
911 
912         setOperationAction(ISD::FADD, VT, Custom);
913         setOperationAction(ISD::FSUB, VT, Custom);
914         setOperationAction(ISD::FMUL, VT, Custom);
915         setOperationAction(ISD::FDIV, VT, Custom);
916         setOperationAction(ISD::FNEG, VT, Custom);
917         setOperationAction(ISD::FABS, VT, Custom);
918         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
919         setOperationAction(ISD::FSQRT, VT, Custom);
920         setOperationAction(ISD::FMA, VT, Custom);
921         setOperationAction(ISD::FMINNUM, VT, Custom);
922         setOperationAction(ISD::FMAXNUM, VT, Custom);
923 
924         setOperationAction(ISD::FP_ROUND, VT, Custom);
925         setOperationAction(ISD::FP_EXTEND, VT, Custom);
926 
927         for (auto CC : VFPCCToExpand)
928           setCondCodeAction(CC, VT, Expand);
929 
930         setOperationAction(ISD::VSELECT, VT, Custom);
931         setOperationAction(ISD::SELECT, VT, Custom);
932         setOperationAction(ISD::SELECT_CC, VT, Expand);
933 
934         setOperationAction(ISD::BITCAST, VT, Custom);
935 
936         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
937         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
938         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
939         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
940 
941         for (unsigned VPOpc : FloatingPointVPOps)
942           setOperationAction(VPOpc, VT, Custom);
943       }
944 
945       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
946       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
947       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
948       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
949       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
950       setOperationAction(ISD::BITCAST, MVT::f16, Custom);
951       setOperationAction(ISD::BITCAST, MVT::f32, Custom);
952       setOperationAction(ISD::BITCAST, MVT::f64, Custom);
953     }
954   }
955 
956   // Function alignments.
957   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
958   setMinFunctionAlignment(FunctionAlignment);
959   setPrefFunctionAlignment(FunctionAlignment);
960 
961   setMinimumJumpTableEntries(5);
962 
963   // Jumps are expensive, compared to logic
964   setJumpIsExpensive();
965 
966   // We can use any register for comparisons
967   setHasMultipleConditionRegisters();
968 
969   setTargetDAGCombine(ISD::ADD);
970   setTargetDAGCombine(ISD::SUB);
971   setTargetDAGCombine(ISD::AND);
972   setTargetDAGCombine(ISD::OR);
973   setTargetDAGCombine(ISD::XOR);
974   setTargetDAGCombine(ISD::ANY_EXTEND);
975   setTargetDAGCombine(ISD::ZERO_EXTEND);
976   if (Subtarget.hasVInstructions()) {
977     setTargetDAGCombine(ISD::FCOPYSIGN);
978     setTargetDAGCombine(ISD::MGATHER);
979     setTargetDAGCombine(ISD::MSCATTER);
980     setTargetDAGCombine(ISD::VP_GATHER);
981     setTargetDAGCombine(ISD::VP_SCATTER);
982     setTargetDAGCombine(ISD::SRA);
983     setTargetDAGCombine(ISD::SRL);
984     setTargetDAGCombine(ISD::SHL);
985     setTargetDAGCombine(ISD::STORE);
986   }
987 }
988 
989 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
990                                             LLVMContext &Context,
991                                             EVT VT) const {
992   if (!VT.isVector())
993     return getPointerTy(DL);
994   if (Subtarget.hasVInstructions() &&
995       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
996     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
997   return VT.changeVectorElementTypeToInteger();
998 }
999 
1000 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
1001   return Subtarget.getXLenVT();
1002 }
1003 
1004 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1005                                              const CallInst &I,
1006                                              MachineFunction &MF,
1007                                              unsigned Intrinsic) const {
1008   auto &DL = I.getModule()->getDataLayout();
1009   switch (Intrinsic) {
1010   default:
1011     return false;
1012   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1013   case Intrinsic::riscv_masked_atomicrmw_add_i32:
1014   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1015   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1016   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1017   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1018   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1019   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1020   case Intrinsic::riscv_masked_cmpxchg_i32: {
1021     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
1022     Info.opc = ISD::INTRINSIC_W_CHAIN;
1023     Info.memVT = MVT::getVT(PtrTy->getElementType());
1024     Info.ptrVal = I.getArgOperand(0);
1025     Info.offset = 0;
1026     Info.align = Align(4);
1027     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1028                  MachineMemOperand::MOVolatile;
1029     return true;
1030   }
1031   case Intrinsic::riscv_masked_strided_load:
1032     Info.opc = ISD::INTRINSIC_W_CHAIN;
1033     Info.ptrVal = I.getArgOperand(1);
1034     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1035     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1036     Info.size = MemoryLocation::UnknownSize;
1037     Info.flags |= MachineMemOperand::MOLoad;
1038     return true;
1039   case Intrinsic::riscv_masked_strided_store:
1040     Info.opc = ISD::INTRINSIC_VOID;
1041     Info.ptrVal = I.getArgOperand(1);
1042     Info.memVT =
1043         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1044     Info.align = Align(
1045         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1046         8);
1047     Info.size = MemoryLocation::UnknownSize;
1048     Info.flags |= MachineMemOperand::MOStore;
1049     return true;
1050   }
1051 }
1052 
1053 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1054                                                 const AddrMode &AM, Type *Ty,
1055                                                 unsigned AS,
1056                                                 Instruction *I) const {
1057   // No global is ever allowed as a base.
1058   if (AM.BaseGV)
1059     return false;
1060 
1061   // Require a 12-bit signed offset.
1062   if (!isInt<12>(AM.BaseOffs))
1063     return false;
1064 
1065   switch (AM.Scale) {
1066   case 0: // "r+i" or just "i", depending on HasBaseReg.
1067     break;
1068   case 1:
1069     if (!AM.HasBaseReg) // allow "r+i".
1070       break;
1071     return false; // disallow "r+r" or "r+r+i".
1072   default:
1073     return false;
1074   }
1075 
1076   return true;
1077 }
1078 
1079 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1080   return isInt<12>(Imm);
1081 }
1082 
1083 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1084   return isInt<12>(Imm);
1085 }
1086 
1087 // On RV32, 64-bit integers are split into their high and low parts and held
1088 // in two different registers, so the trunc is free since the low register can
1089 // just be used.
1090 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1091   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1092     return false;
1093   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1094   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1095   return (SrcBits == 64 && DestBits == 32);
1096 }
1097 
1098 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1099   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1100       !SrcVT.isInteger() || !DstVT.isInteger())
1101     return false;
1102   unsigned SrcBits = SrcVT.getSizeInBits();
1103   unsigned DestBits = DstVT.getSizeInBits();
1104   return (SrcBits == 64 && DestBits == 32);
1105 }
1106 
1107 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1108   // Zexts are free if they can be combined with a load.
1109   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1110     EVT MemVT = LD->getMemoryVT();
1111     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
1112          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
1113         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1114          LD->getExtensionType() == ISD::ZEXTLOAD))
1115       return true;
1116   }
1117 
1118   return TargetLowering::isZExtFree(Val, VT2);
1119 }
1120 
1121 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1122   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1123 }
1124 
1125 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1126   return Subtarget.hasStdExtZbb();
1127 }
1128 
1129 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1130   return Subtarget.hasStdExtZbb();
1131 }
1132 
1133 bool RISCVTargetLowering::hasAndNot(SDValue Y) const {
1134   EVT VT = Y.getValueType();
1135 
1136   // FIXME: Support vectors once we have tests.
1137   if (VT.isVector())
1138     return false;
1139 
1140   return Subtarget.hasStdExtZbb() && !isa<ConstantSDNode>(Y);
1141 }
1142 
1143 /// Check if sinking \p I's operands to I's basic block is profitable, because
1144 /// the operands can be folded into a target instruction, e.g.
1145 /// splats of scalars can fold into vector instructions.
1146 bool RISCVTargetLowering::shouldSinkOperands(
1147     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1148   using namespace llvm::PatternMatch;
1149 
1150   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1151     return false;
1152 
1153   auto IsSinker = [&](Instruction *I, int Operand) {
1154     switch (I->getOpcode()) {
1155     case Instruction::Add:
1156     case Instruction::Sub:
1157     case Instruction::Mul:
1158     case Instruction::And:
1159     case Instruction::Or:
1160     case Instruction::Xor:
1161     case Instruction::FAdd:
1162     case Instruction::FSub:
1163     case Instruction::FMul:
1164     case Instruction::FDiv:
1165     case Instruction::ICmp:
1166     case Instruction::FCmp:
1167       return true;
1168     case Instruction::Shl:
1169     case Instruction::LShr:
1170     case Instruction::AShr:
1171       return Operand == 1;
1172     case Instruction::Call:
1173       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1174         switch (II->getIntrinsicID()) {
1175         case Intrinsic::fma:
1176           return Operand == 0 || Operand == 1;
1177         default:
1178           return false;
1179         }
1180       }
1181       return false;
1182     default:
1183       return false;
1184     }
1185   };
1186 
1187   for (auto OpIdx : enumerate(I->operands())) {
1188     if (!IsSinker(I, OpIdx.index()))
1189       continue;
1190 
1191     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1192     // Make sure we are not already sinking this operand
1193     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1194       continue;
1195 
1196     // We are looking for a splat that can be sunk.
1197     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1198                              m_Undef(), m_ZeroMask())))
1199       continue;
1200 
1201     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1202     // and vector registers
1203     for (Use &U : Op->uses()) {
1204       Instruction *Insn = cast<Instruction>(U.getUser());
1205       if (!IsSinker(Insn, U.getOperandNo()))
1206         return false;
1207     }
1208 
1209     Ops.push_back(&Op->getOperandUse(0));
1210     Ops.push_back(&OpIdx.value());
1211   }
1212   return true;
1213 }
1214 
1215 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1216                                        bool ForCodeSize) const {
1217   if (VT == MVT::f16 && !Subtarget.hasStdExtZfhmin())
1218     return false;
1219   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1220     return false;
1221   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1222     return false;
1223   if (Imm.isNegZero())
1224     return false;
1225   return Imm.isZero();
1226 }
1227 
1228 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1229   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1230          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1231          (VT == MVT::f64 && Subtarget.hasStdExtD());
1232 }
1233 
1234 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1235                                                       CallingConv::ID CC,
1236                                                       EVT VT) const {
1237   // Use f32 to pass f16 if it is legal and Zfhmin/Zfh is not enabled.
1238   // We might still end up using a GPR but that will be decided based on ABI.
1239   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfhmin())
1240     return MVT::f32;
1241 
1242   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1243 }
1244 
1245 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1246                                                            CallingConv::ID CC,
1247                                                            EVT VT) const {
1248   // Use f32 to pass f16 if it is legal and Zfhmin/Zfh is not enabled.
1249   // We might still end up using a GPR but that will be decided based on ABI.
1250   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfhmin())
1251     return 1;
1252 
1253   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1254 }
1255 
1256 // Changes the condition code and swaps operands if necessary, so the SetCC
1257 // operation matches one of the comparisons supported directly by branches
1258 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1259 // with 1/-1.
1260 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1261                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1262   // Convert X > -1 to X >= 0.
1263   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1264     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1265     CC = ISD::SETGE;
1266     return;
1267   }
1268   // Convert X < 1 to 0 >= X.
1269   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1270     RHS = LHS;
1271     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1272     CC = ISD::SETGE;
1273     return;
1274   }
1275 
1276   switch (CC) {
1277   default:
1278     break;
1279   case ISD::SETGT:
1280   case ISD::SETLE:
1281   case ISD::SETUGT:
1282   case ISD::SETULE:
1283     CC = ISD::getSetCCSwappedOperands(CC);
1284     std::swap(LHS, RHS);
1285     break;
1286   }
1287 }
1288 
1289 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1290   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1291   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1292   if (VT.getVectorElementType() == MVT::i1)
1293     KnownSize *= 8;
1294 
1295   switch (KnownSize) {
1296   default:
1297     llvm_unreachable("Invalid LMUL.");
1298   case 8:
1299     return RISCVII::VLMUL::LMUL_F8;
1300   case 16:
1301     return RISCVII::VLMUL::LMUL_F4;
1302   case 32:
1303     return RISCVII::VLMUL::LMUL_F2;
1304   case 64:
1305     return RISCVII::VLMUL::LMUL_1;
1306   case 128:
1307     return RISCVII::VLMUL::LMUL_2;
1308   case 256:
1309     return RISCVII::VLMUL::LMUL_4;
1310   case 512:
1311     return RISCVII::VLMUL::LMUL_8;
1312   }
1313 }
1314 
1315 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1316   switch (LMul) {
1317   default:
1318     llvm_unreachable("Invalid LMUL.");
1319   case RISCVII::VLMUL::LMUL_F8:
1320   case RISCVII::VLMUL::LMUL_F4:
1321   case RISCVII::VLMUL::LMUL_F2:
1322   case RISCVII::VLMUL::LMUL_1:
1323     return RISCV::VRRegClassID;
1324   case RISCVII::VLMUL::LMUL_2:
1325     return RISCV::VRM2RegClassID;
1326   case RISCVII::VLMUL::LMUL_4:
1327     return RISCV::VRM4RegClassID;
1328   case RISCVII::VLMUL::LMUL_8:
1329     return RISCV::VRM8RegClassID;
1330   }
1331 }
1332 
1333 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1334   RISCVII::VLMUL LMUL = getLMUL(VT);
1335   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1336       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1337       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1338       LMUL == RISCVII::VLMUL::LMUL_1) {
1339     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1340                   "Unexpected subreg numbering");
1341     return RISCV::sub_vrm1_0 + Index;
1342   }
1343   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1344     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1345                   "Unexpected subreg numbering");
1346     return RISCV::sub_vrm2_0 + Index;
1347   }
1348   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1349     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1350                   "Unexpected subreg numbering");
1351     return RISCV::sub_vrm4_0 + Index;
1352   }
1353   llvm_unreachable("Invalid vector type.");
1354 }
1355 
1356 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1357   if (VT.getVectorElementType() == MVT::i1)
1358     return RISCV::VRRegClassID;
1359   return getRegClassIDForLMUL(getLMUL(VT));
1360 }
1361 
1362 // Attempt to decompose a subvector insert/extract between VecVT and
1363 // SubVecVT via subregister indices. Returns the subregister index that
1364 // can perform the subvector insert/extract with the given element index, as
1365 // well as the index corresponding to any leftover subvectors that must be
1366 // further inserted/extracted within the register class for SubVecVT.
1367 std::pair<unsigned, unsigned>
1368 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1369     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1370     const RISCVRegisterInfo *TRI) {
1371   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1372                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1373                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1374                 "Register classes not ordered");
1375   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1376   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1377   // Try to compose a subregister index that takes us from the incoming
1378   // LMUL>1 register class down to the outgoing one. At each step we half
1379   // the LMUL:
1380   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1381   // Note that this is not guaranteed to find a subregister index, such as
1382   // when we are extracting from one VR type to another.
1383   unsigned SubRegIdx = RISCV::NoSubRegister;
1384   for (const unsigned RCID :
1385        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1386     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1387       VecVT = VecVT.getHalfNumVectorElementsVT();
1388       bool IsHi =
1389           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1390       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1391                                             getSubregIndexByMVT(VecVT, IsHi));
1392       if (IsHi)
1393         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1394     }
1395   return {SubRegIdx, InsertExtractIdx};
1396 }
1397 
1398 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1399 // stores for those types.
1400 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1401   return !Subtarget.useRVVForFixedLengthVectors() ||
1402          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1403 }
1404 
1405 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1406   if (ScalarTy->isPointerTy())
1407     return true;
1408 
1409   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1410       ScalarTy->isIntegerTy(32))
1411     return true;
1412 
1413   if (ScalarTy->isIntegerTy(64))
1414     return Subtarget.hasVInstructionsI64();
1415 
1416   if (ScalarTy->isHalfTy())
1417     return Subtarget.hasVInstructionsF16();
1418   if (ScalarTy->isFloatTy())
1419     return Subtarget.hasVInstructionsF32();
1420   if (ScalarTy->isDoubleTy())
1421     return Subtarget.hasVInstructionsF64();
1422 
1423   return false;
1424 }
1425 
1426 static bool useRVVForFixedLengthVectorVT(MVT VT,
1427                                          const RISCVSubtarget &Subtarget) {
1428   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1429   if (!Subtarget.useRVVForFixedLengthVectors())
1430     return false;
1431 
1432   // We only support a set of vector types with a consistent maximum fixed size
1433   // across all supported vector element types to avoid legalization issues.
1434   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1435   // fixed-length vector type we support is 1024 bytes.
1436   if (VT.getFixedSizeInBits() > 1024 * 8)
1437     return false;
1438 
1439   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1440 
1441   MVT EltVT = VT.getVectorElementType();
1442 
1443   // Don't use RVV for vectors we cannot scalarize if required.
1444   switch (EltVT.SimpleTy) {
1445   // i1 is supported but has different rules.
1446   default:
1447     return false;
1448   case MVT::i1:
1449     // Masks can only use a single register.
1450     if (VT.getVectorNumElements() > MinVLen)
1451       return false;
1452     MinVLen /= 8;
1453     break;
1454   case MVT::i8:
1455   case MVT::i16:
1456   case MVT::i32:
1457     break;
1458   case MVT::i64:
1459     if (!Subtarget.hasVInstructionsI64())
1460       return false;
1461     break;
1462   case MVT::f16:
1463     if (!Subtarget.hasVInstructionsF16())
1464       return false;
1465     break;
1466   case MVT::f32:
1467     if (!Subtarget.hasVInstructionsF32())
1468       return false;
1469     break;
1470   case MVT::f64:
1471     if (!Subtarget.hasVInstructionsF64())
1472       return false;
1473     break;
1474   }
1475 
1476   // Reject elements larger than ELEN.
1477   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1478     return false;
1479 
1480   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1481   // Don't use RVV for types that don't fit.
1482   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1483     return false;
1484 
1485   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1486   // the base fixed length RVV support in place.
1487   if (!VT.isPow2VectorType())
1488     return false;
1489 
1490   return true;
1491 }
1492 
1493 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1494   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1495 }
1496 
1497 // Return the largest legal scalable vector type that matches VT's element type.
1498 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1499                                             const RISCVSubtarget &Subtarget) {
1500   // This may be called before legal types are setup.
1501   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1502           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1503          "Expected legal fixed length vector!");
1504 
1505   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1506   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1507 
1508   MVT EltVT = VT.getVectorElementType();
1509   switch (EltVT.SimpleTy) {
1510   default:
1511     llvm_unreachable("unexpected element type for RVV container");
1512   case MVT::i1:
1513   case MVT::i8:
1514   case MVT::i16:
1515   case MVT::i32:
1516   case MVT::i64:
1517   case MVT::f16:
1518   case MVT::f32:
1519   case MVT::f64: {
1520     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1521     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1522     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1523     unsigned NumElts =
1524         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1525     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1526     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1527     return MVT::getScalableVectorVT(EltVT, NumElts);
1528   }
1529   }
1530 }
1531 
1532 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1533                                             const RISCVSubtarget &Subtarget) {
1534   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1535                                           Subtarget);
1536 }
1537 
1538 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1539   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1540 }
1541 
1542 // Grow V to consume an entire RVV register.
1543 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1544                                        const RISCVSubtarget &Subtarget) {
1545   assert(VT.isScalableVector() &&
1546          "Expected to convert into a scalable vector!");
1547   assert(V.getValueType().isFixedLengthVector() &&
1548          "Expected a fixed length vector operand!");
1549   SDLoc DL(V);
1550   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1551   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1552 }
1553 
1554 // Shrink V so it's just big enough to maintain a VT's worth of data.
1555 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1556                                          const RISCVSubtarget &Subtarget) {
1557   assert(VT.isFixedLengthVector() &&
1558          "Expected to convert into a fixed length vector!");
1559   assert(V.getValueType().isScalableVector() &&
1560          "Expected a scalable vector operand!");
1561   SDLoc DL(V);
1562   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1563   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1564 }
1565 
1566 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1567 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1568 // the vector type that it is contained in.
1569 static std::pair<SDValue, SDValue>
1570 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1571                 const RISCVSubtarget &Subtarget) {
1572   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1573   MVT XLenVT = Subtarget.getXLenVT();
1574   SDValue VL = VecVT.isFixedLengthVector()
1575                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1576                    : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT);
1577   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1578   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1579   return {Mask, VL};
1580 }
1581 
1582 // As above but assuming the given type is a scalable vector type.
1583 static std::pair<SDValue, SDValue>
1584 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1585                         const RISCVSubtarget &Subtarget) {
1586   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1587   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1588 }
1589 
1590 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1591 // of either is (currently) supported. This can get us into an infinite loop
1592 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1593 // as a ..., etc.
1594 // Until either (or both) of these can reliably lower any node, reporting that
1595 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1596 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1597 // which is not desirable.
1598 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1599     EVT VT, unsigned DefinedValues) const {
1600   return false;
1601 }
1602 
1603 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1604   // Only splats are currently supported.
1605   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1606     return true;
1607 
1608   return false;
1609 }
1610 
1611 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) {
1612   // RISCV FP-to-int conversions saturate to the destination register size, but
1613   // don't produce 0 for nan. We can use a conversion instruction and fix the
1614   // nan case with a compare and a select.
1615   SDValue Src = Op.getOperand(0);
1616 
1617   EVT DstVT = Op.getValueType();
1618   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1619 
1620   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1621   unsigned Opc;
1622   if (SatVT == DstVT)
1623     Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ;
1624   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1625     Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64;
1626   else
1627     return SDValue();
1628   // FIXME: Support other SatVTs by clamping before or after the conversion.
1629 
1630   SDLoc DL(Op);
1631   SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src);
1632 
1633   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1634   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1635 }
1636 
1637 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1638                                  const RISCVSubtarget &Subtarget) {
1639   MVT VT = Op.getSimpleValueType();
1640   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1641 
1642   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1643 
1644   SDLoc DL(Op);
1645   SDValue Mask, VL;
1646   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1647 
1648   unsigned Opc =
1649       VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1650   SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL);
1651   return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1652 }
1653 
1654 struct VIDSequence {
1655   int64_t StepNumerator;
1656   unsigned StepDenominator;
1657   int64_t Addend;
1658 };
1659 
1660 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1661 // to the (non-zero) step S and start value X. This can be then lowered as the
1662 // RVV sequence (VID * S) + X, for example.
1663 // The step S is represented as an integer numerator divided by a positive
1664 // denominator. Note that the implementation currently only identifies
1665 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1666 // cannot detect 2/3, for example.
1667 // Note that this method will also match potentially unappealing index
1668 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1669 // determine whether this is worth generating code for.
1670 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1671   unsigned NumElts = Op.getNumOperands();
1672   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1673   if (!Op.getValueType().isInteger())
1674     return None;
1675 
1676   Optional<unsigned> SeqStepDenom;
1677   Optional<int64_t> SeqStepNum, SeqAddend;
1678   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1679   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1680   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1681     // Assume undef elements match the sequence; we just have to be careful
1682     // when interpolating across them.
1683     if (Op.getOperand(Idx).isUndef())
1684       continue;
1685     // The BUILD_VECTOR must be all constants.
1686     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1687       return None;
1688 
1689     uint64_t Val = Op.getConstantOperandVal(Idx) &
1690                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1691 
1692     if (PrevElt) {
1693       // Calculate the step since the last non-undef element, and ensure
1694       // it's consistent across the entire sequence.
1695       unsigned IdxDiff = Idx - PrevElt->second;
1696       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1697 
1698       // A zero-value value difference means that we're somewhere in the middle
1699       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1700       // step change before evaluating the sequence.
1701       if (ValDiff != 0) {
1702         int64_t Remainder = ValDiff % IdxDiff;
1703         // Normalize the step if it's greater than 1.
1704         if (Remainder != ValDiff) {
1705           // The difference must cleanly divide the element span.
1706           if (Remainder != 0)
1707             return None;
1708           ValDiff /= IdxDiff;
1709           IdxDiff = 1;
1710         }
1711 
1712         if (!SeqStepNum)
1713           SeqStepNum = ValDiff;
1714         else if (ValDiff != SeqStepNum)
1715           return None;
1716 
1717         if (!SeqStepDenom)
1718           SeqStepDenom = IdxDiff;
1719         else if (IdxDiff != *SeqStepDenom)
1720           return None;
1721       }
1722     }
1723 
1724     // Record and/or check any addend.
1725     if (SeqStepNum && SeqStepDenom) {
1726       uint64_t ExpectedVal =
1727           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1728       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1729       if (!SeqAddend)
1730         SeqAddend = Addend;
1731       else if (SeqAddend != Addend)
1732         return None;
1733     }
1734 
1735     // Record this non-undef element for later.
1736     if (!PrevElt || PrevElt->first != Val)
1737       PrevElt = std::make_pair(Val, Idx);
1738   }
1739   // We need to have logged both a step and an addend for this to count as
1740   // a legal index sequence.
1741   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1742     return None;
1743 
1744   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1745 }
1746 
1747 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1748                                  const RISCVSubtarget &Subtarget) {
1749   MVT VT = Op.getSimpleValueType();
1750   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1751 
1752   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1753 
1754   SDLoc DL(Op);
1755   SDValue Mask, VL;
1756   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1757 
1758   MVT XLenVT = Subtarget.getXLenVT();
1759   unsigned NumElts = Op.getNumOperands();
1760 
1761   if (VT.getVectorElementType() == MVT::i1) {
1762     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1763       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1764       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1765     }
1766 
1767     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1768       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1769       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1770     }
1771 
1772     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1773     // scalar integer chunks whose bit-width depends on the number of mask
1774     // bits and XLEN.
1775     // First, determine the most appropriate scalar integer type to use. This
1776     // is at most XLenVT, but may be shrunk to a smaller vector element type
1777     // according to the size of the final vector - use i8 chunks rather than
1778     // XLenVT if we're producing a v8i1. This results in more consistent
1779     // codegen across RV32 and RV64.
1780     unsigned NumViaIntegerBits =
1781         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1782     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
1783       // If we have to use more than one INSERT_VECTOR_ELT then this
1784       // optimization is likely to increase code size; avoid peforming it in
1785       // such a case. We can use a load from a constant pool in this case.
1786       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
1787         return SDValue();
1788       // Now we can create our integer vector type. Note that it may be larger
1789       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1790       MVT IntegerViaVecVT =
1791           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1792                            divideCeil(NumElts, NumViaIntegerBits));
1793 
1794       uint64_t Bits = 0;
1795       unsigned BitPos = 0, IntegerEltIdx = 0;
1796       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1797 
1798       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1799         // Once we accumulate enough bits to fill our scalar type, insert into
1800         // our vector and clear our accumulated data.
1801         if (I != 0 && I % NumViaIntegerBits == 0) {
1802           if (NumViaIntegerBits <= 32)
1803             Bits = SignExtend64(Bits, 32);
1804           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1805           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1806                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1807           Bits = 0;
1808           BitPos = 0;
1809           IntegerEltIdx++;
1810         }
1811         SDValue V = Op.getOperand(I);
1812         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
1813         Bits |= ((uint64_t)BitValue << BitPos);
1814       }
1815 
1816       // Insert the (remaining) scalar value into position in our integer
1817       // vector type.
1818       if (NumViaIntegerBits <= 32)
1819         Bits = SignExtend64(Bits, 32);
1820       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1821       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
1822                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1823 
1824       if (NumElts < NumViaIntegerBits) {
1825         // If we're producing a smaller vector than our minimum legal integer
1826         // type, bitcast to the equivalent (known-legal) mask type, and extract
1827         // our final mask.
1828         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
1829         Vec = DAG.getBitcast(MVT::v8i1, Vec);
1830         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
1831                           DAG.getConstant(0, DL, XLenVT));
1832       } else {
1833         // Else we must have produced an integer type with the same size as the
1834         // mask type; bitcast for the final result.
1835         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
1836         Vec = DAG.getBitcast(VT, Vec);
1837       }
1838 
1839       return Vec;
1840     }
1841 
1842     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
1843     // vector type, we have a legal equivalently-sized i8 type, so we can use
1844     // that.
1845     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
1846     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
1847 
1848     SDValue WideVec;
1849     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1850       // For a splat, perform a scalar truncate before creating the wider
1851       // vector.
1852       assert(Splat.getValueType() == XLenVT &&
1853              "Unexpected type for i1 splat value");
1854       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
1855                           DAG.getConstant(1, DL, XLenVT));
1856       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
1857     } else {
1858       SmallVector<SDValue, 8> Ops(Op->op_values());
1859       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
1860       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
1861       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
1862     }
1863 
1864     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
1865   }
1866 
1867   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1868     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
1869                                         : RISCVISD::VMV_V_X_VL;
1870     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
1871     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1872   }
1873 
1874   // Try and match index sequences, which we can lower to the vid instruction
1875   // with optional modifications. An all-undef vector is matched by
1876   // getSplatValue, above.
1877   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
1878     int64_t StepNumerator = SimpleVID->StepNumerator;
1879     unsigned StepDenominator = SimpleVID->StepDenominator;
1880     int64_t Addend = SimpleVID->Addend;
1881     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
1882     // threshold since it's the immediate value many RVV instructions accept.
1883     if (isInt<5>(StepNumerator) && isPowerOf2_32(StepDenominator) &&
1884         isInt<5>(Addend)) {
1885       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
1886       // Convert right out of the scalable type so we can use standard ISD
1887       // nodes for the rest of the computation. If we used scalable types with
1888       // these, we'd lose the fixed-length vector info and generate worse
1889       // vsetvli code.
1890       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
1891       assert(StepNumerator != 0 && "Invalid step");
1892       bool Negate = false;
1893       if (StepNumerator != 1) {
1894         int64_t SplatStepVal = StepNumerator;
1895         unsigned Opcode = ISD::MUL;
1896         if (isPowerOf2_64(std::abs(StepNumerator))) {
1897           Negate = StepNumerator < 0;
1898           Opcode = ISD::SHL;
1899           SplatStepVal = Log2_64(std::abs(StepNumerator));
1900         }
1901         SDValue SplatStep = DAG.getSplatVector(
1902             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
1903         VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep);
1904       }
1905       if (StepDenominator != 1) {
1906         SDValue SplatStep = DAG.getSplatVector(
1907             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
1908         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
1909       }
1910       if (Addend != 0 || Negate) {
1911         SDValue SplatAddend =
1912             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
1913         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
1914       }
1915       return VID;
1916     }
1917   }
1918 
1919   // Attempt to detect "hidden" splats, which only reveal themselves as splats
1920   // when re-interpreted as a vector with a larger element type. For example,
1921   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
1922   // could be instead splat as
1923   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
1924   // TODO: This optimization could also work on non-constant splats, but it
1925   // would require bit-manipulation instructions to construct the splat value.
1926   SmallVector<SDValue> Sequence;
1927   unsigned EltBitSize = VT.getScalarSizeInBits();
1928   const auto *BV = cast<BuildVectorSDNode>(Op);
1929   if (VT.isInteger() && EltBitSize < 64 &&
1930       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
1931       BV->getRepeatedSequence(Sequence) &&
1932       (Sequence.size() * EltBitSize) <= 64) {
1933     unsigned SeqLen = Sequence.size();
1934     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
1935     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
1936     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
1937             ViaIntVT == MVT::i64) &&
1938            "Unexpected sequence type");
1939 
1940     unsigned EltIdx = 0;
1941     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
1942     uint64_t SplatValue = 0;
1943     // Construct the amalgamated value which can be splatted as this larger
1944     // vector type.
1945     for (const auto &SeqV : Sequence) {
1946       if (!SeqV.isUndef())
1947         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
1948                        << (EltIdx * EltBitSize));
1949       EltIdx++;
1950     }
1951 
1952     // On RV64, sign-extend from 32 to 64 bits where possible in order to
1953     // achieve better constant materializion.
1954     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
1955       SplatValue = SignExtend64(SplatValue, 32);
1956 
1957     // Since we can't introduce illegal i64 types at this stage, we can only
1958     // perform an i64 splat on RV32 if it is its own sign-extended value. That
1959     // way we can use RVV instructions to splat.
1960     assert((ViaIntVT.bitsLE(XLenVT) ||
1961             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
1962            "Unexpected bitcast sequence");
1963     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
1964       SDValue ViaVL =
1965           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
1966       MVT ViaContainerVT =
1967           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
1968       SDValue Splat =
1969           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
1970                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
1971       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
1972       return DAG.getBitcast(VT, Splat);
1973     }
1974   }
1975 
1976   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
1977   // which constitute a large proportion of the elements. In such cases we can
1978   // splat a vector with the dominant element and make up the shortfall with
1979   // INSERT_VECTOR_ELTs.
1980   // Note that this includes vectors of 2 elements by association. The
1981   // upper-most element is the "dominant" one, allowing us to use a splat to
1982   // "insert" the upper element, and an insert of the lower element at position
1983   // 0, which improves codegen.
1984   SDValue DominantValue;
1985   unsigned MostCommonCount = 0;
1986   DenseMap<SDValue, unsigned> ValueCounts;
1987   unsigned NumUndefElts =
1988       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
1989 
1990   // Track the number of scalar loads we know we'd be inserting, estimated as
1991   // any non-zero floating-point constant. Other kinds of element are either
1992   // already in registers or are materialized on demand. The threshold at which
1993   // a vector load is more desirable than several scalar materializion and
1994   // vector-insertion instructions is not known.
1995   unsigned NumScalarLoads = 0;
1996 
1997   for (SDValue V : Op->op_values()) {
1998     if (V.isUndef())
1999       continue;
2000 
2001     ValueCounts.insert(std::make_pair(V, 0));
2002     unsigned &Count = ValueCounts[V];
2003 
2004     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2005       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2006 
2007     // Is this value dominant? In case of a tie, prefer the highest element as
2008     // it's cheaper to insert near the beginning of a vector than it is at the
2009     // end.
2010     if (++Count >= MostCommonCount) {
2011       DominantValue = V;
2012       MostCommonCount = Count;
2013     }
2014   }
2015 
2016   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2017   unsigned NumDefElts = NumElts - NumUndefElts;
2018   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2019 
2020   // Don't perform this optimization when optimizing for size, since
2021   // materializing elements and inserting them tends to cause code bloat.
2022   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2023       ((MostCommonCount > DominantValueCountThreshold) ||
2024        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2025     // Start by splatting the most common element.
2026     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2027 
2028     DenseSet<SDValue> Processed{DominantValue};
2029     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2030     for (const auto &OpIdx : enumerate(Op->ops())) {
2031       const SDValue &V = OpIdx.value();
2032       if (V.isUndef() || !Processed.insert(V).second)
2033         continue;
2034       if (ValueCounts[V] == 1) {
2035         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2036                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2037       } else {
2038         // Blend in all instances of this value using a VSELECT, using a
2039         // mask where each bit signals whether that element is the one
2040         // we're after.
2041         SmallVector<SDValue> Ops;
2042         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2043           return DAG.getConstant(V == V1, DL, XLenVT);
2044         });
2045         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2046                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2047                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2048       }
2049     }
2050 
2051     return Vec;
2052   }
2053 
2054   return SDValue();
2055 }
2056 
2057 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo,
2058                                    SDValue Hi, SDValue VL, SelectionDAG &DAG) {
2059   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2060     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2061     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2062     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2063     // node in order to try and match RVV vector/scalar instructions.
2064     if ((LoC >> 31) == HiC)
2065       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
2066   }
2067 
2068   // Fall back to a stack store and stride x0 vector load.
2069   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL);
2070 }
2071 
2072 // Called by type legalization to handle splat of i64 on RV32.
2073 // FIXME: We can optimize this when the type has sign or zero bits in one
2074 // of the halves.
2075 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
2076                                    SDValue VL, SelectionDAG &DAG) {
2077   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2078   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2079                            DAG.getConstant(0, DL, MVT::i32));
2080   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2081                            DAG.getConstant(1, DL, MVT::i32));
2082   return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG);
2083 }
2084 
2085 // This function lowers a splat of a scalar operand Splat with the vector
2086 // length VL. It ensures the final sequence is type legal, which is useful when
2087 // lowering a splat after type legalization.
2088 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL,
2089                                 SelectionDAG &DAG,
2090                                 const RISCVSubtarget &Subtarget) {
2091   if (VT.isFloatingPoint())
2092     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL);
2093 
2094   MVT XLenVT = Subtarget.getXLenVT();
2095 
2096   // Simplest case is that the operand needs to be promoted to XLenVT.
2097   if (Scalar.getValueType().bitsLE(XLenVT)) {
2098     // If the operand is a constant, sign extend to increase our chances
2099     // of being able to use a .vi instruction. ANY_EXTEND would become a
2100     // a zero extend and the simm5 check in isel would fail.
2101     // FIXME: Should we ignore the upper bits in isel instead?
2102     unsigned ExtOpc =
2103         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2104     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2105     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL);
2106   }
2107 
2108   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2109          "Unexpected scalar for splat lowering!");
2110 
2111   // Otherwise use the more complicated splatting algorithm.
2112   return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
2113 }
2114 
2115 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2116                                    const RISCVSubtarget &Subtarget) {
2117   SDValue V1 = Op.getOperand(0);
2118   SDValue V2 = Op.getOperand(1);
2119   SDLoc DL(Op);
2120   MVT XLenVT = Subtarget.getXLenVT();
2121   MVT VT = Op.getSimpleValueType();
2122   unsigned NumElts = VT.getVectorNumElements();
2123   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2124 
2125   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2126 
2127   SDValue TrueMask, VL;
2128   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2129 
2130   if (SVN->isSplat()) {
2131     const int Lane = SVN->getSplatIndex();
2132     if (Lane >= 0) {
2133       MVT SVT = VT.getVectorElementType();
2134 
2135       // Turn splatted vector load into a strided load with an X0 stride.
2136       SDValue V = V1;
2137       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2138       // with undef.
2139       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2140       int Offset = Lane;
2141       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2142         int OpElements =
2143             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2144         V = V.getOperand(Offset / OpElements);
2145         Offset %= OpElements;
2146       }
2147 
2148       // We need to ensure the load isn't atomic or volatile.
2149       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2150         auto *Ld = cast<LoadSDNode>(V);
2151         Offset *= SVT.getStoreSize();
2152         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2153                                                    TypeSize::Fixed(Offset), DL);
2154 
2155         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2156         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2157           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2158           SDValue IntID =
2159               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2160           SDValue Ops[] = {Ld->getChain(), IntID, NewAddr,
2161                            DAG.getRegister(RISCV::X0, XLenVT), VL};
2162           SDValue NewLoad = DAG.getMemIntrinsicNode(
2163               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2164               DAG.getMachineFunction().getMachineMemOperand(
2165                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2166           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2167           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2168         }
2169 
2170         // Otherwise use a scalar load and splat. This will give the best
2171         // opportunity to fold a splat into the operation. ISel can turn it into
2172         // the x0 strided load if we aren't able to fold away the select.
2173         if (SVT.isFloatingPoint())
2174           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2175                           Ld->getPointerInfo().getWithOffset(Offset),
2176                           Ld->getOriginalAlign(),
2177                           Ld->getMemOperand()->getFlags());
2178         else
2179           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2180                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2181                              Ld->getOriginalAlign(),
2182                              Ld->getMemOperand()->getFlags());
2183         DAG.makeEquivalentMemoryOrdering(Ld, V);
2184 
2185         unsigned Opc =
2186             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2187         SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL);
2188         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2189       }
2190 
2191       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2192       assert(Lane < (int)NumElts && "Unexpected lane!");
2193       SDValue Gather =
2194           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2195                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2196       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2197     }
2198   }
2199 
2200   // Detect shuffles which can be re-expressed as vector selects; these are
2201   // shuffles in which each element in the destination is taken from an element
2202   // at the corresponding index in either source vectors.
2203   bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) {
2204     int MaskIndex = MaskIdx.value();
2205     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2206   });
2207 
2208   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2209 
2210   SmallVector<SDValue> MaskVals;
2211   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2212   // merged with a second vrgather.
2213   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2214 
2215   // By default we preserve the original operand order, and use a mask to
2216   // select LHS as true and RHS as false. However, since RVV vector selects may
2217   // feature splats but only on the LHS, we may choose to invert our mask and
2218   // instead select between RHS and LHS.
2219   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2220   bool InvertMask = IsSelect == SwapOps;
2221 
2222   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2223   // half.
2224   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2225 
2226   // Now construct the mask that will be used by the vselect or blended
2227   // vrgather operation. For vrgathers, construct the appropriate indices into
2228   // each vector.
2229   for (int MaskIndex : SVN->getMask()) {
2230     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2231     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2232     if (!IsSelect) {
2233       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2234       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2235                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2236                                      : DAG.getUNDEF(XLenVT));
2237       GatherIndicesRHS.push_back(
2238           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2239                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2240       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2241         ++LHSIndexCounts[MaskIndex];
2242       if (!IsLHSOrUndefIndex)
2243         ++RHSIndexCounts[MaskIndex - NumElts];
2244     }
2245   }
2246 
2247   if (SwapOps) {
2248     std::swap(V1, V2);
2249     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2250   }
2251 
2252   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2253   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2254   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2255 
2256   if (IsSelect)
2257     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2258 
2259   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2260     // On such a large vector we're unable to use i8 as the index type.
2261     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2262     // may involve vector splitting if we're already at LMUL=8, or our
2263     // user-supplied maximum fixed-length LMUL.
2264     return SDValue();
2265   }
2266 
2267   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2268   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2269   MVT IndexVT = VT.changeTypeToInteger();
2270   // Since we can't introduce illegal index types at this stage, use i16 and
2271   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2272   // than XLenVT.
2273   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2274     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2275     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2276   }
2277 
2278   MVT IndexContainerVT =
2279       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2280 
2281   SDValue Gather;
2282   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2283   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2284   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2285     Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget);
2286   } else {
2287     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2288     // If only one index is used, we can use a "splat" vrgather.
2289     // TODO: We can splat the most-common index and fix-up any stragglers, if
2290     // that's beneficial.
2291     if (LHSIndexCounts.size() == 1) {
2292       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2293       Gather =
2294           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2295                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2296     } else {
2297       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2298       LHSIndices =
2299           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2300 
2301       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2302                            TrueMask, VL);
2303     }
2304   }
2305 
2306   // If a second vector operand is used by this shuffle, blend it in with an
2307   // additional vrgather.
2308   if (!V2.isUndef()) {
2309     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2310     // If only one index is used, we can use a "splat" vrgather.
2311     // TODO: We can splat the most-common index and fix-up any stragglers, if
2312     // that's beneficial.
2313     if (RHSIndexCounts.size() == 1) {
2314       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2315       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2316                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2317     } else {
2318       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2319       RHSIndices =
2320           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2321       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2322                        VL);
2323     }
2324 
2325     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2326     SelectMask =
2327         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2328 
2329     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2330                          Gather, VL);
2331   }
2332 
2333   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2334 }
2335 
2336 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2337                                      SDLoc DL, SelectionDAG &DAG,
2338                                      const RISCVSubtarget &Subtarget) {
2339   if (VT.isScalableVector())
2340     return DAG.getFPExtendOrRound(Op, DL, VT);
2341   assert(VT.isFixedLengthVector() &&
2342          "Unexpected value type for RVV FP extend/round lowering");
2343   SDValue Mask, VL;
2344   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2345   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2346                         ? RISCVISD::FP_EXTEND_VL
2347                         : RISCVISD::FP_ROUND_VL;
2348   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2349 }
2350 
2351 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2352 // the exponent.
2353 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2354   MVT VT = Op.getSimpleValueType();
2355   unsigned EltSize = VT.getScalarSizeInBits();
2356   SDValue Src = Op.getOperand(0);
2357   SDLoc DL(Op);
2358 
2359   // We need a FP type that can represent the value.
2360   // TODO: Use f16 for i8 when possible?
2361   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2362   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2363 
2364   // Legal types should have been checked in the RISCVTargetLowering
2365   // constructor.
2366   // TODO: Splitting may make sense in some cases.
2367   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2368          "Expected legal float type!");
2369 
2370   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2371   // The trailing zero count is equal to log2 of this single bit value.
2372   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2373     SDValue Neg =
2374         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2375     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2376   }
2377 
2378   // We have a legal FP type, convert to it.
2379   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2380   // Bitcast to integer and shift the exponent to the LSB.
2381   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2382   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2383   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2384   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2385                               DAG.getConstant(ShiftAmt, DL, IntVT));
2386   // Truncate back to original type to allow vnsrl.
2387   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2388   // The exponent contains log2 of the value in biased form.
2389   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2390 
2391   // For trailing zeros, we just need to subtract the bias.
2392   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2393     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2394                        DAG.getConstant(ExponentBias, DL, VT));
2395 
2396   // For leading zeros, we need to remove the bias and convert from log2 to
2397   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2398   unsigned Adjust = ExponentBias + (EltSize - 1);
2399   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2400 }
2401 
2402 // While RVV has alignment restrictions, we should always be able to load as a
2403 // legal equivalently-sized byte-typed vector instead. This method is
2404 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2405 // the load is already correctly-aligned, it returns SDValue().
2406 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2407                                                     SelectionDAG &DAG) const {
2408   auto *Load = cast<LoadSDNode>(Op);
2409   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2410 
2411   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2412                                      Load->getMemoryVT(),
2413                                      *Load->getMemOperand()))
2414     return SDValue();
2415 
2416   SDLoc DL(Op);
2417   MVT VT = Op.getSimpleValueType();
2418   unsigned EltSizeBits = VT.getScalarSizeInBits();
2419   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2420          "Unexpected unaligned RVV load type");
2421   MVT NewVT =
2422       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2423   assert(NewVT.isValid() &&
2424          "Expecting equally-sized RVV vector types to be legal");
2425   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2426                           Load->getPointerInfo(), Load->getOriginalAlign(),
2427                           Load->getMemOperand()->getFlags());
2428   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2429 }
2430 
2431 // While RVV has alignment restrictions, we should always be able to store as a
2432 // legal equivalently-sized byte-typed vector instead. This method is
2433 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2434 // returns SDValue() if the store is already correctly aligned.
2435 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2436                                                      SelectionDAG &DAG) const {
2437   auto *Store = cast<StoreSDNode>(Op);
2438   assert(Store && Store->getValue().getValueType().isVector() &&
2439          "Expected vector store");
2440 
2441   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2442                                      Store->getMemoryVT(),
2443                                      *Store->getMemOperand()))
2444     return SDValue();
2445 
2446   SDLoc DL(Op);
2447   SDValue StoredVal = Store->getValue();
2448   MVT VT = StoredVal.getSimpleValueType();
2449   unsigned EltSizeBits = VT.getScalarSizeInBits();
2450   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2451          "Unexpected unaligned RVV store type");
2452   MVT NewVT =
2453       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2454   assert(NewVT.isValid() &&
2455          "Expecting equally-sized RVV vector types to be legal");
2456   StoredVal = DAG.getBitcast(NewVT, StoredVal);
2457   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
2458                       Store->getPointerInfo(), Store->getOriginalAlign(),
2459                       Store->getMemOperand()->getFlags());
2460 }
2461 
2462 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
2463                                             SelectionDAG &DAG) const {
2464   switch (Op.getOpcode()) {
2465   default:
2466     report_fatal_error("unimplemented operand");
2467   case ISD::GlobalAddress:
2468     return lowerGlobalAddress(Op, DAG);
2469   case ISD::BlockAddress:
2470     return lowerBlockAddress(Op, DAG);
2471   case ISD::ConstantPool:
2472     return lowerConstantPool(Op, DAG);
2473   case ISD::JumpTable:
2474     return lowerJumpTable(Op, DAG);
2475   case ISD::GlobalTLSAddress:
2476     return lowerGlobalTLSAddress(Op, DAG);
2477   case ISD::SELECT:
2478     return lowerSELECT(Op, DAG);
2479   case ISD::BRCOND:
2480     return lowerBRCOND(Op, DAG);
2481   case ISD::VASTART:
2482     return lowerVASTART(Op, DAG);
2483   case ISD::FRAMEADDR:
2484     return lowerFRAMEADDR(Op, DAG);
2485   case ISD::RETURNADDR:
2486     return lowerRETURNADDR(Op, DAG);
2487   case ISD::SHL_PARTS:
2488     return lowerShiftLeftParts(Op, DAG);
2489   case ISD::SRA_PARTS:
2490     return lowerShiftRightParts(Op, DAG, true);
2491   case ISD::SRL_PARTS:
2492     return lowerShiftRightParts(Op, DAG, false);
2493   case ISD::BITCAST: {
2494     SDLoc DL(Op);
2495     EVT VT = Op.getValueType();
2496     SDValue Op0 = Op.getOperand(0);
2497     EVT Op0VT = Op0.getValueType();
2498     MVT XLenVT = Subtarget.getXLenVT();
2499     if (VT.isFixedLengthVector()) {
2500       // We can handle fixed length vector bitcasts with a simple replacement
2501       // in isel.
2502       if (Op0VT.isFixedLengthVector())
2503         return Op;
2504       // When bitcasting from scalar to fixed-length vector, insert the scalar
2505       // into a one-element vector of the result type, and perform a vector
2506       // bitcast.
2507       if (!Op0VT.isVector()) {
2508         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
2509         if (!isTypeLegal(BVT))
2510           return SDValue();
2511         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
2512                                               DAG.getUNDEF(BVT), Op0,
2513                                               DAG.getConstant(0, DL, XLenVT)));
2514       }
2515       return SDValue();
2516     }
2517     // Custom-legalize bitcasts from fixed-length vector types to scalar types
2518     // thus: bitcast the vector to a one-element vector type whose element type
2519     // is the same as the result type, and extract the first element.
2520     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
2521       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
2522       if (!isTypeLegal(BVT))
2523         return SDValue();
2524       SDValue BVec = DAG.getBitcast(BVT, Op0);
2525       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
2526                          DAG.getConstant(0, DL, XLenVT));
2527     }
2528     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
2529       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
2530       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
2531       return FPConv;
2532     }
2533     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
2534         Subtarget.hasStdExtF()) {
2535       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
2536       SDValue FPConv =
2537           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
2538       return FPConv;
2539     }
2540     return SDValue();
2541   }
2542   case ISD::INTRINSIC_WO_CHAIN:
2543     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2544   case ISD::INTRINSIC_W_CHAIN:
2545     return LowerINTRINSIC_W_CHAIN(Op, DAG);
2546   case ISD::INTRINSIC_VOID:
2547     return LowerINTRINSIC_VOID(Op, DAG);
2548   case ISD::BSWAP:
2549   case ISD::BITREVERSE: {
2550     // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
2551     assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
2552     MVT VT = Op.getSimpleValueType();
2553     SDLoc DL(Op);
2554     // Start with the maximum immediate value which is the bitwidth - 1.
2555     unsigned Imm = VT.getSizeInBits() - 1;
2556     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
2557     if (Op.getOpcode() == ISD::BSWAP)
2558       Imm &= ~0x7U;
2559     return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
2560                        DAG.getConstant(Imm, DL, VT));
2561   }
2562   case ISD::FSHL:
2563   case ISD::FSHR: {
2564     MVT VT = Op.getSimpleValueType();
2565     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
2566     SDLoc DL(Op);
2567     if (Op.getOperand(2).getOpcode() == ISD::Constant)
2568       return Op;
2569     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
2570     // use log(XLen) bits. Mask the shift amount accordingly.
2571     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
2572     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
2573                                 DAG.getConstant(ShAmtWidth, DL, VT));
2574     unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
2575     return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
2576   }
2577   case ISD::TRUNCATE: {
2578     SDLoc DL(Op);
2579     MVT VT = Op.getSimpleValueType();
2580     // Only custom-lower vector truncates
2581     if (!VT.isVector())
2582       return Op;
2583 
2584     // Truncates to mask types are handled differently
2585     if (VT.getVectorElementType() == MVT::i1)
2586       return lowerVectorMaskTrunc(Op, DAG);
2587 
2588     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
2589     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
2590     // truncate by one power of two at a time.
2591     MVT DstEltVT = VT.getVectorElementType();
2592 
2593     SDValue Src = Op.getOperand(0);
2594     MVT SrcVT = Src.getSimpleValueType();
2595     MVT SrcEltVT = SrcVT.getVectorElementType();
2596 
2597     assert(DstEltVT.bitsLT(SrcEltVT) &&
2598            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
2599            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
2600            "Unexpected vector truncate lowering");
2601 
2602     MVT ContainerVT = SrcVT;
2603     if (SrcVT.isFixedLengthVector()) {
2604       ContainerVT = getContainerForFixedLengthVector(SrcVT);
2605       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2606     }
2607 
2608     SDValue Result = Src;
2609     SDValue Mask, VL;
2610     std::tie(Mask, VL) =
2611         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
2612     LLVMContext &Context = *DAG.getContext();
2613     const ElementCount Count = ContainerVT.getVectorElementCount();
2614     do {
2615       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
2616       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
2617       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
2618                            Mask, VL);
2619     } while (SrcEltVT != DstEltVT);
2620 
2621     if (SrcVT.isFixedLengthVector())
2622       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
2623 
2624     return Result;
2625   }
2626   case ISD::ANY_EXTEND:
2627   case ISD::ZERO_EXTEND:
2628     if (Op.getOperand(0).getValueType().isVector() &&
2629         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2630       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
2631     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
2632   case ISD::SIGN_EXTEND:
2633     if (Op.getOperand(0).getValueType().isVector() &&
2634         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2635       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
2636     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
2637   case ISD::SPLAT_VECTOR_PARTS:
2638     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
2639   case ISD::INSERT_VECTOR_ELT:
2640     return lowerINSERT_VECTOR_ELT(Op, DAG);
2641   case ISD::EXTRACT_VECTOR_ELT:
2642     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
2643   case ISD::VSCALE: {
2644     MVT VT = Op.getSimpleValueType();
2645     SDLoc DL(Op);
2646     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
2647     // We define our scalable vector types for lmul=1 to use a 64 bit known
2648     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
2649     // vscale as VLENB / 8.
2650     assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!");
2651     if (isa<ConstantSDNode>(Op.getOperand(0))) {
2652       // We assume VLENB is a multiple of 8. We manually choose the best shift
2653       // here because SimplifyDemandedBits isn't always able to simplify it.
2654       uint64_t Val = Op.getConstantOperandVal(0);
2655       if (isPowerOf2_64(Val)) {
2656         uint64_t Log2 = Log2_64(Val);
2657         if (Log2 < 3)
2658           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
2659                              DAG.getConstant(3 - Log2, DL, VT));
2660         if (Log2 > 3)
2661           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
2662                              DAG.getConstant(Log2 - 3, DL, VT));
2663         return VLENB;
2664       }
2665       // If the multiplier is a multiple of 8, scale it down to avoid needing
2666       // to shift the VLENB value.
2667       if ((Val % 8) == 0)
2668         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
2669                            DAG.getConstant(Val / 8, DL, VT));
2670     }
2671 
2672     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
2673                                  DAG.getConstant(3, DL, VT));
2674     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
2675   }
2676   case ISD::FP_EXTEND: {
2677     // RVV can only do fp_extend to types double the size as the source. We
2678     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
2679     // via f32.
2680     SDLoc DL(Op);
2681     MVT VT = Op.getSimpleValueType();
2682     SDValue Src = Op.getOperand(0);
2683     MVT SrcVT = Src.getSimpleValueType();
2684 
2685     // Prepare any fixed-length vector operands.
2686     MVT ContainerVT = VT;
2687     if (SrcVT.isFixedLengthVector()) {
2688       ContainerVT = getContainerForFixedLengthVector(VT);
2689       MVT SrcContainerVT =
2690           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
2691       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2692     }
2693 
2694     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
2695         SrcVT.getVectorElementType() != MVT::f16) {
2696       // For scalable vectors, we only need to close the gap between
2697       // vXf16->vXf64.
2698       if (!VT.isFixedLengthVector())
2699         return Op;
2700       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
2701       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2702       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2703     }
2704 
2705     MVT InterVT = VT.changeVectorElementType(MVT::f32);
2706     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
2707     SDValue IntermediateExtend = getRVVFPExtendOrRound(
2708         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
2709 
2710     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
2711                                            DL, DAG, Subtarget);
2712     if (VT.isFixedLengthVector())
2713       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
2714     return Extend;
2715   }
2716   case ISD::FP_ROUND: {
2717     // RVV can only do fp_round to types half the size as the source. We
2718     // custom-lower f64->f16 rounds via RVV's round-to-odd float
2719     // conversion instruction.
2720     SDLoc DL(Op);
2721     MVT VT = Op.getSimpleValueType();
2722     SDValue Src = Op.getOperand(0);
2723     MVT SrcVT = Src.getSimpleValueType();
2724 
2725     // Prepare any fixed-length vector operands.
2726     MVT ContainerVT = VT;
2727     if (VT.isFixedLengthVector()) {
2728       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2729       ContainerVT =
2730           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2731       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2732     }
2733 
2734     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
2735         SrcVT.getVectorElementType() != MVT::f64) {
2736       // For scalable vectors, we only need to close the gap between
2737       // vXf64<->vXf16.
2738       if (!VT.isFixedLengthVector())
2739         return Op;
2740       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
2741       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2742       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2743     }
2744 
2745     SDValue Mask, VL;
2746     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2747 
2748     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
2749     SDValue IntermediateRound =
2750         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
2751     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
2752                                           DL, DAG, Subtarget);
2753 
2754     if (VT.isFixedLengthVector())
2755       return convertFromScalableVector(VT, Round, DAG, Subtarget);
2756     return Round;
2757   }
2758   case ISD::FP_TO_SINT:
2759   case ISD::FP_TO_UINT:
2760   case ISD::SINT_TO_FP:
2761   case ISD::UINT_TO_FP: {
2762     // RVV can only do fp<->int conversions to types half/double the size as
2763     // the source. We custom-lower any conversions that do two hops into
2764     // sequences.
2765     MVT VT = Op.getSimpleValueType();
2766     if (!VT.isVector())
2767       return Op;
2768     SDLoc DL(Op);
2769     SDValue Src = Op.getOperand(0);
2770     MVT EltVT = VT.getVectorElementType();
2771     MVT SrcVT = Src.getSimpleValueType();
2772     MVT SrcEltVT = SrcVT.getVectorElementType();
2773     unsigned EltSize = EltVT.getSizeInBits();
2774     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
2775     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
2776            "Unexpected vector element types");
2777 
2778     bool IsInt2FP = SrcEltVT.isInteger();
2779     // Widening conversions
2780     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
2781       if (IsInt2FP) {
2782         // Do a regular integer sign/zero extension then convert to float.
2783         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
2784                                       VT.getVectorElementCount());
2785         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
2786                                  ? ISD::ZERO_EXTEND
2787                                  : ISD::SIGN_EXTEND;
2788         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
2789         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
2790       }
2791       // FP2Int
2792       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
2793       // Do one doubling fp_extend then complete the operation by converting
2794       // to int.
2795       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2796       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
2797       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
2798     }
2799 
2800     // Narrowing conversions
2801     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
2802       if (IsInt2FP) {
2803         // One narrowing int_to_fp, then an fp_round.
2804         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
2805         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2806         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
2807         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
2808       }
2809       // FP2Int
2810       // One narrowing fp_to_int, then truncate the integer. If the float isn't
2811       // representable by the integer, the result is poison.
2812       MVT IVecVT =
2813           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
2814                            VT.getVectorElementCount());
2815       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
2816       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
2817     }
2818 
2819     // Scalable vectors can exit here. Patterns will handle equally-sized
2820     // conversions halving/doubling ones.
2821     if (!VT.isFixedLengthVector())
2822       return Op;
2823 
2824     // For fixed-length vectors we lower to a custom "VL" node.
2825     unsigned RVVOpc = 0;
2826     switch (Op.getOpcode()) {
2827     default:
2828       llvm_unreachable("Impossible opcode");
2829     case ISD::FP_TO_SINT:
2830       RVVOpc = RISCVISD::FP_TO_SINT_VL;
2831       break;
2832     case ISD::FP_TO_UINT:
2833       RVVOpc = RISCVISD::FP_TO_UINT_VL;
2834       break;
2835     case ISD::SINT_TO_FP:
2836       RVVOpc = RISCVISD::SINT_TO_FP_VL;
2837       break;
2838     case ISD::UINT_TO_FP:
2839       RVVOpc = RISCVISD::UINT_TO_FP_VL;
2840       break;
2841     }
2842 
2843     MVT ContainerVT, SrcContainerVT;
2844     // Derive the reference container type from the larger vector type.
2845     if (SrcEltSize > EltSize) {
2846       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2847       ContainerVT =
2848           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2849     } else {
2850       ContainerVT = getContainerForFixedLengthVector(VT);
2851       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
2852     }
2853 
2854     SDValue Mask, VL;
2855     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2856 
2857     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2858     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
2859     return convertFromScalableVector(VT, Src, DAG, Subtarget);
2860   }
2861   case ISD::FP_TO_SINT_SAT:
2862   case ISD::FP_TO_UINT_SAT:
2863     return lowerFP_TO_INT_SAT(Op, DAG);
2864   case ISD::VECREDUCE_ADD:
2865   case ISD::VECREDUCE_UMAX:
2866   case ISD::VECREDUCE_SMAX:
2867   case ISD::VECREDUCE_UMIN:
2868   case ISD::VECREDUCE_SMIN:
2869     return lowerVECREDUCE(Op, DAG);
2870   case ISD::VECREDUCE_AND:
2871   case ISD::VECREDUCE_OR:
2872   case ISD::VECREDUCE_XOR:
2873     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2874       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
2875     return lowerVECREDUCE(Op, DAG);
2876   case ISD::VECREDUCE_FADD:
2877   case ISD::VECREDUCE_SEQ_FADD:
2878   case ISD::VECREDUCE_FMIN:
2879   case ISD::VECREDUCE_FMAX:
2880     return lowerFPVECREDUCE(Op, DAG);
2881   case ISD::VP_REDUCE_ADD:
2882   case ISD::VP_REDUCE_UMAX:
2883   case ISD::VP_REDUCE_SMAX:
2884   case ISD::VP_REDUCE_UMIN:
2885   case ISD::VP_REDUCE_SMIN:
2886   case ISD::VP_REDUCE_FADD:
2887   case ISD::VP_REDUCE_SEQ_FADD:
2888   case ISD::VP_REDUCE_FMIN:
2889   case ISD::VP_REDUCE_FMAX:
2890     return lowerVPREDUCE(Op, DAG);
2891   case ISD::VP_REDUCE_AND:
2892   case ISD::VP_REDUCE_OR:
2893   case ISD::VP_REDUCE_XOR:
2894     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
2895       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
2896     return lowerVPREDUCE(Op, DAG);
2897   case ISD::INSERT_SUBVECTOR:
2898     return lowerINSERT_SUBVECTOR(Op, DAG);
2899   case ISD::EXTRACT_SUBVECTOR:
2900     return lowerEXTRACT_SUBVECTOR(Op, DAG);
2901   case ISD::STEP_VECTOR:
2902     return lowerSTEP_VECTOR(Op, DAG);
2903   case ISD::VECTOR_REVERSE:
2904     return lowerVECTOR_REVERSE(Op, DAG);
2905   case ISD::BUILD_VECTOR:
2906     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
2907   case ISD::SPLAT_VECTOR:
2908     if (Op.getValueType().getVectorElementType() == MVT::i1)
2909       return lowerVectorMaskSplat(Op, DAG);
2910     return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
2911   case ISD::VECTOR_SHUFFLE:
2912     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
2913   case ISD::CONCAT_VECTORS: {
2914     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
2915     // better than going through the stack, as the default expansion does.
2916     SDLoc DL(Op);
2917     MVT VT = Op.getSimpleValueType();
2918     unsigned NumOpElts =
2919         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
2920     SDValue Vec = DAG.getUNDEF(VT);
2921     for (const auto &OpIdx : enumerate(Op->ops()))
2922       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(),
2923                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
2924     return Vec;
2925   }
2926   case ISD::LOAD:
2927     if (auto V = expandUnalignedRVVLoad(Op, DAG))
2928       return V;
2929     if (Op.getValueType().isFixedLengthVector())
2930       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
2931     return Op;
2932   case ISD::STORE:
2933     if (auto V = expandUnalignedRVVStore(Op, DAG))
2934       return V;
2935     if (Op.getOperand(1).getValueType().isFixedLengthVector())
2936       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
2937     return Op;
2938   case ISD::MLOAD:
2939   case ISD::VP_LOAD:
2940     return lowerMaskedLoad(Op, DAG);
2941   case ISD::MSTORE:
2942   case ISD::VP_STORE:
2943     return lowerMaskedStore(Op, DAG);
2944   case ISD::SETCC:
2945     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
2946   case ISD::ADD:
2947     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
2948   case ISD::SUB:
2949     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
2950   case ISD::MUL:
2951     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
2952   case ISD::MULHS:
2953     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
2954   case ISD::MULHU:
2955     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
2956   case ISD::AND:
2957     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
2958                                               RISCVISD::AND_VL);
2959   case ISD::OR:
2960     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
2961                                               RISCVISD::OR_VL);
2962   case ISD::XOR:
2963     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
2964                                               RISCVISD::XOR_VL);
2965   case ISD::SDIV:
2966     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
2967   case ISD::SREM:
2968     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
2969   case ISD::UDIV:
2970     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
2971   case ISD::UREM:
2972     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
2973   case ISD::SHL:
2974   case ISD::SRA:
2975   case ISD::SRL:
2976     if (Op.getSimpleValueType().isFixedLengthVector())
2977       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
2978     // This can be called for an i32 shift amount that needs to be promoted.
2979     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
2980            "Unexpected custom legalisation");
2981     return SDValue();
2982   case ISD::SADDSAT:
2983     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
2984   case ISD::UADDSAT:
2985     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
2986   case ISD::SSUBSAT:
2987     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
2988   case ISD::USUBSAT:
2989     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
2990   case ISD::FADD:
2991     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
2992   case ISD::FSUB:
2993     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
2994   case ISD::FMUL:
2995     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
2996   case ISD::FDIV:
2997     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
2998   case ISD::FNEG:
2999     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3000   case ISD::FABS:
3001     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3002   case ISD::FSQRT:
3003     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3004   case ISD::FMA:
3005     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3006   case ISD::SMIN:
3007     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3008   case ISD::SMAX:
3009     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3010   case ISD::UMIN:
3011     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3012   case ISD::UMAX:
3013     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3014   case ISD::FMINNUM:
3015     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3016   case ISD::FMAXNUM:
3017     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3018   case ISD::ABS:
3019     return lowerABS(Op, DAG);
3020   case ISD::CTLZ_ZERO_UNDEF:
3021   case ISD::CTTZ_ZERO_UNDEF:
3022     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3023   case ISD::VSELECT:
3024     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3025   case ISD::FCOPYSIGN:
3026     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3027   case ISD::MGATHER:
3028   case ISD::VP_GATHER:
3029     return lowerMaskedGather(Op, DAG);
3030   case ISD::MSCATTER:
3031   case ISD::VP_SCATTER:
3032     return lowerMaskedScatter(Op, DAG);
3033   case ISD::FLT_ROUNDS_:
3034     return lowerGET_ROUNDING(Op, DAG);
3035   case ISD::SET_ROUNDING:
3036     return lowerSET_ROUNDING(Op, DAG);
3037   case ISD::VP_ADD:
3038     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3039   case ISD::VP_SUB:
3040     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3041   case ISD::VP_MUL:
3042     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3043   case ISD::VP_SDIV:
3044     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3045   case ISD::VP_UDIV:
3046     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3047   case ISD::VP_SREM:
3048     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3049   case ISD::VP_UREM:
3050     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3051   case ISD::VP_AND:
3052     return lowerVPOp(Op, DAG, RISCVISD::AND_VL);
3053   case ISD::VP_OR:
3054     return lowerVPOp(Op, DAG, RISCVISD::OR_VL);
3055   case ISD::VP_XOR:
3056     return lowerVPOp(Op, DAG, RISCVISD::XOR_VL);
3057   case ISD::VP_ASHR:
3058     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3059   case ISD::VP_LSHR:
3060     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3061   case ISD::VP_SHL:
3062     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3063   case ISD::VP_FADD:
3064     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3065   case ISD::VP_FSUB:
3066     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3067   case ISD::VP_FMUL:
3068     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3069   case ISD::VP_FDIV:
3070     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3071   }
3072 }
3073 
3074 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3075                              SelectionDAG &DAG, unsigned Flags) {
3076   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3077 }
3078 
3079 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3080                              SelectionDAG &DAG, unsigned Flags) {
3081   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3082                                    Flags);
3083 }
3084 
3085 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3086                              SelectionDAG &DAG, unsigned Flags) {
3087   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3088                                    N->getOffset(), Flags);
3089 }
3090 
3091 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3092                              SelectionDAG &DAG, unsigned Flags) {
3093   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3094 }
3095 
3096 template <class NodeTy>
3097 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3098                                      bool IsLocal) const {
3099   SDLoc DL(N);
3100   EVT Ty = getPointerTy(DAG.getDataLayout());
3101 
3102   if (isPositionIndependent()) {
3103     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3104     if (IsLocal)
3105       // Use PC-relative addressing to access the symbol. This generates the
3106       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3107       // %pcrel_lo(auipc)).
3108       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3109 
3110     // Use PC-relative addressing to access the GOT for this symbol, then load
3111     // the address from the GOT. This generates the pattern (PseudoLA sym),
3112     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3113     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3114   }
3115 
3116   switch (getTargetMachine().getCodeModel()) {
3117   default:
3118     report_fatal_error("Unsupported code model for lowering");
3119   case CodeModel::Small: {
3120     // Generate a sequence for accessing addresses within the first 2 GiB of
3121     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3122     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3123     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3124     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3125     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3126   }
3127   case CodeModel::Medium: {
3128     // Generate a sequence for accessing addresses within any 2GiB range within
3129     // the address space. This generates the pattern (PseudoLLA sym), which
3130     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3131     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3132     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3133   }
3134   }
3135 }
3136 
3137 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3138                                                 SelectionDAG &DAG) const {
3139   SDLoc DL(Op);
3140   EVT Ty = Op.getValueType();
3141   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3142   int64_t Offset = N->getOffset();
3143   MVT XLenVT = Subtarget.getXLenVT();
3144 
3145   const GlobalValue *GV = N->getGlobal();
3146   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3147   SDValue Addr = getAddr(N, DAG, IsLocal);
3148 
3149   // In order to maximise the opportunity for common subexpression elimination,
3150   // emit a separate ADD node for the global address offset instead of folding
3151   // it in the global address node. Later peephole optimisations may choose to
3152   // fold it back in when profitable.
3153   if (Offset != 0)
3154     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3155                        DAG.getConstant(Offset, DL, XLenVT));
3156   return Addr;
3157 }
3158 
3159 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3160                                                SelectionDAG &DAG) const {
3161   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3162 
3163   return getAddr(N, DAG);
3164 }
3165 
3166 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3167                                                SelectionDAG &DAG) const {
3168   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3169 
3170   return getAddr(N, DAG);
3171 }
3172 
3173 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3174                                             SelectionDAG &DAG) const {
3175   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3176 
3177   return getAddr(N, DAG);
3178 }
3179 
3180 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3181                                               SelectionDAG &DAG,
3182                                               bool UseGOT) const {
3183   SDLoc DL(N);
3184   EVT Ty = getPointerTy(DAG.getDataLayout());
3185   const GlobalValue *GV = N->getGlobal();
3186   MVT XLenVT = Subtarget.getXLenVT();
3187 
3188   if (UseGOT) {
3189     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3190     // load the address from the GOT and add the thread pointer. This generates
3191     // the pattern (PseudoLA_TLS_IE sym), which expands to
3192     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3193     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3194     SDValue Load =
3195         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3196 
3197     // Add the thread pointer.
3198     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3199     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3200   }
3201 
3202   // Generate a sequence for accessing the address relative to the thread
3203   // pointer, with the appropriate adjustment for the thread pointer offset.
3204   // This generates the pattern
3205   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3206   SDValue AddrHi =
3207       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3208   SDValue AddrAdd =
3209       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3210   SDValue AddrLo =
3211       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3212 
3213   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3214   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3215   SDValue MNAdd = SDValue(
3216       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3217       0);
3218   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3219 }
3220 
3221 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3222                                                SelectionDAG &DAG) const {
3223   SDLoc DL(N);
3224   EVT Ty = getPointerTy(DAG.getDataLayout());
3225   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3226   const GlobalValue *GV = N->getGlobal();
3227 
3228   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3229   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3230   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3231   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3232   SDValue Load =
3233       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3234 
3235   // Prepare argument list to generate call.
3236   ArgListTy Args;
3237   ArgListEntry Entry;
3238   Entry.Node = Load;
3239   Entry.Ty = CallTy;
3240   Args.push_back(Entry);
3241 
3242   // Setup call to __tls_get_addr.
3243   TargetLowering::CallLoweringInfo CLI(DAG);
3244   CLI.setDebugLoc(DL)
3245       .setChain(DAG.getEntryNode())
3246       .setLibCallee(CallingConv::C, CallTy,
3247                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3248                     std::move(Args));
3249 
3250   return LowerCallTo(CLI).first;
3251 }
3252 
3253 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3254                                                    SelectionDAG &DAG) const {
3255   SDLoc DL(Op);
3256   EVT Ty = Op.getValueType();
3257   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3258   int64_t Offset = N->getOffset();
3259   MVT XLenVT = Subtarget.getXLenVT();
3260 
3261   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3262 
3263   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3264       CallingConv::GHC)
3265     report_fatal_error("In GHC calling convention TLS is not supported");
3266 
3267   SDValue Addr;
3268   switch (Model) {
3269   case TLSModel::LocalExec:
3270     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3271     break;
3272   case TLSModel::InitialExec:
3273     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3274     break;
3275   case TLSModel::LocalDynamic:
3276   case TLSModel::GeneralDynamic:
3277     Addr = getDynamicTLSAddr(N, DAG);
3278     break;
3279   }
3280 
3281   // In order to maximise the opportunity for common subexpression elimination,
3282   // emit a separate ADD node for the global address offset instead of folding
3283   // it in the global address node. Later peephole optimisations may choose to
3284   // fold it back in when profitable.
3285   if (Offset != 0)
3286     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3287                        DAG.getConstant(Offset, DL, XLenVT));
3288   return Addr;
3289 }
3290 
3291 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3292   SDValue CondV = Op.getOperand(0);
3293   SDValue TrueV = Op.getOperand(1);
3294   SDValue FalseV = Op.getOperand(2);
3295   SDLoc DL(Op);
3296   MVT VT = Op.getSimpleValueType();
3297   MVT XLenVT = Subtarget.getXLenVT();
3298 
3299   // Lower vector SELECTs to VSELECTs by splatting the condition.
3300   if (VT.isVector()) {
3301     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3302     SDValue CondSplat = VT.isScalableVector()
3303                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3304                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3305     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3306   }
3307 
3308   // If the result type is XLenVT and CondV is the output of a SETCC node
3309   // which also operated on XLenVT inputs, then merge the SETCC node into the
3310   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3311   // compare+branch instructions. i.e.:
3312   // (select (setcc lhs, rhs, cc), truev, falsev)
3313   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3314   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3315       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3316     SDValue LHS = CondV.getOperand(0);
3317     SDValue RHS = CondV.getOperand(1);
3318     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3319     ISD::CondCode CCVal = CC->get();
3320 
3321     // Special case for a select of 2 constants that have a diffence of 1.
3322     // Normally this is done by DAGCombine, but if the select is introduced by
3323     // type legalization or op legalization, we miss it. Restricting to SETLT
3324     // case for now because that is what signed saturating add/sub need.
3325     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3326     // but we would probably want to swap the true/false values if the condition
3327     // is SETGE/SETLE to avoid an XORI.
3328     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3329         CCVal == ISD::SETLT) {
3330       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3331       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3332       if (TrueVal - 1 == FalseVal)
3333         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3334       if (TrueVal + 1 == FalseVal)
3335         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3336     }
3337 
3338     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3339 
3340     SDValue TargetCC = DAG.getCondCode(CCVal);
3341     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3342     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3343   }
3344 
3345   // Otherwise:
3346   // (select condv, truev, falsev)
3347   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3348   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3349   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3350 
3351   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3352 
3353   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3354 }
3355 
3356 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3357   SDValue CondV = Op.getOperand(1);
3358   SDLoc DL(Op);
3359   MVT XLenVT = Subtarget.getXLenVT();
3360 
3361   if (CondV.getOpcode() == ISD::SETCC &&
3362       CondV.getOperand(0).getValueType() == XLenVT) {
3363     SDValue LHS = CondV.getOperand(0);
3364     SDValue RHS = CondV.getOperand(1);
3365     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3366 
3367     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3368 
3369     SDValue TargetCC = DAG.getCondCode(CCVal);
3370     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3371                        LHS, RHS, TargetCC, Op.getOperand(2));
3372   }
3373 
3374   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3375                      CondV, DAG.getConstant(0, DL, XLenVT),
3376                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3377 }
3378 
3379 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3380   MachineFunction &MF = DAG.getMachineFunction();
3381   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3382 
3383   SDLoc DL(Op);
3384   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3385                                  getPointerTy(MF.getDataLayout()));
3386 
3387   // vastart just stores the address of the VarArgsFrameIndex slot into the
3388   // memory location argument.
3389   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3390   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3391                       MachinePointerInfo(SV));
3392 }
3393 
3394 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3395                                             SelectionDAG &DAG) const {
3396   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3397   MachineFunction &MF = DAG.getMachineFunction();
3398   MachineFrameInfo &MFI = MF.getFrameInfo();
3399   MFI.setFrameAddressIsTaken(true);
3400   Register FrameReg = RI.getFrameRegister(MF);
3401   int XLenInBytes = Subtarget.getXLen() / 8;
3402 
3403   EVT VT = Op.getValueType();
3404   SDLoc DL(Op);
3405   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3406   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3407   while (Depth--) {
3408     int Offset = -(XLenInBytes * 2);
3409     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3410                               DAG.getIntPtrConstant(Offset, DL));
3411     FrameAddr =
3412         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3413   }
3414   return FrameAddr;
3415 }
3416 
3417 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3418                                              SelectionDAG &DAG) const {
3419   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3420   MachineFunction &MF = DAG.getMachineFunction();
3421   MachineFrameInfo &MFI = MF.getFrameInfo();
3422   MFI.setReturnAddressIsTaken(true);
3423   MVT XLenVT = Subtarget.getXLenVT();
3424   int XLenInBytes = Subtarget.getXLen() / 8;
3425 
3426   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3427     return SDValue();
3428 
3429   EVT VT = Op.getValueType();
3430   SDLoc DL(Op);
3431   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3432   if (Depth) {
3433     int Off = -XLenInBytes;
3434     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3435     SDValue Offset = DAG.getConstant(Off, DL, VT);
3436     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3437                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3438                        MachinePointerInfo());
3439   }
3440 
3441   // Return the value of the return address register, marking it an implicit
3442   // live-in.
3443   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3444   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3445 }
3446 
3447 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3448                                                  SelectionDAG &DAG) const {
3449   SDLoc DL(Op);
3450   SDValue Lo = Op.getOperand(0);
3451   SDValue Hi = Op.getOperand(1);
3452   SDValue Shamt = Op.getOperand(2);
3453   EVT VT = Lo.getValueType();
3454 
3455   // if Shamt-XLEN < 0: // Shamt < XLEN
3456   //   Lo = Lo << Shamt
3457   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
3458   // else:
3459   //   Lo = 0
3460   //   Hi = Lo << (Shamt-XLEN)
3461 
3462   SDValue Zero = DAG.getConstant(0, DL, VT);
3463   SDValue One = DAG.getConstant(1, DL, VT);
3464   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3465   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3466   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3467   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3468 
3469   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3470   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3471   SDValue ShiftRightLo =
3472       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
3473   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3474   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3475   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
3476 
3477   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3478 
3479   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3480   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3481 
3482   SDValue Parts[2] = {Lo, Hi};
3483   return DAG.getMergeValues(Parts, DL);
3484 }
3485 
3486 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
3487                                                   bool IsSRA) const {
3488   SDLoc DL(Op);
3489   SDValue Lo = Op.getOperand(0);
3490   SDValue Hi = Op.getOperand(1);
3491   SDValue Shamt = Op.getOperand(2);
3492   EVT VT = Lo.getValueType();
3493 
3494   // SRA expansion:
3495   //   if Shamt-XLEN < 0: // Shamt < XLEN
3496   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3497   //     Hi = Hi >>s Shamt
3498   //   else:
3499   //     Lo = Hi >>s (Shamt-XLEN);
3500   //     Hi = Hi >>s (XLEN-1)
3501   //
3502   // SRL expansion:
3503   //   if Shamt-XLEN < 0: // Shamt < XLEN
3504   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3505   //     Hi = Hi >>u Shamt
3506   //   else:
3507   //     Lo = Hi >>u (Shamt-XLEN);
3508   //     Hi = 0;
3509 
3510   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
3511 
3512   SDValue Zero = DAG.getConstant(0, DL, VT);
3513   SDValue One = DAG.getConstant(1, DL, VT);
3514   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3515   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3516   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3517   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3518 
3519   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
3520   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
3521   SDValue ShiftLeftHi =
3522       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
3523   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
3524   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
3525   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
3526   SDValue HiFalse =
3527       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
3528 
3529   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3530 
3531   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
3532   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3533 
3534   SDValue Parts[2] = {Lo, Hi};
3535   return DAG.getMergeValues(Parts, DL);
3536 }
3537 
3538 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
3539 // legal equivalently-sized i8 type, so we can use that as a go-between.
3540 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
3541                                                   SelectionDAG &DAG) const {
3542   SDLoc DL(Op);
3543   MVT VT = Op.getSimpleValueType();
3544   SDValue SplatVal = Op.getOperand(0);
3545   // All-zeros or all-ones splats are handled specially.
3546   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
3547     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3548     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
3549   }
3550   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
3551     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3552     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
3553   }
3554   MVT XLenVT = Subtarget.getXLenVT();
3555   assert(SplatVal.getValueType() == XLenVT &&
3556          "Unexpected type for i1 splat value");
3557   MVT InterVT = VT.changeVectorElementType(MVT::i8);
3558   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
3559                          DAG.getConstant(1, DL, XLenVT));
3560   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
3561   SDValue Zero = DAG.getConstant(0, DL, InterVT);
3562   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
3563 }
3564 
3565 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
3566 // illegal (currently only vXi64 RV32).
3567 // FIXME: We could also catch non-constant sign-extended i32 values and lower
3568 // them to SPLAT_VECTOR_I64
3569 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
3570                                                      SelectionDAG &DAG) const {
3571   SDLoc DL(Op);
3572   MVT VecVT = Op.getSimpleValueType();
3573   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
3574          "Unexpected SPLAT_VECTOR_PARTS lowering");
3575 
3576   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
3577   SDValue Lo = Op.getOperand(0);
3578   SDValue Hi = Op.getOperand(1);
3579 
3580   if (VecVT.isFixedLengthVector()) {
3581     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3582     SDLoc DL(Op);
3583     SDValue Mask, VL;
3584     std::tie(Mask, VL) =
3585         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3586 
3587     SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG);
3588     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
3589   }
3590 
3591   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
3592     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
3593     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
3594     // If Hi constant is all the same sign bit as Lo, lower this as a custom
3595     // node in order to try and match RVV vector/scalar instructions.
3596     if ((LoC >> 31) == HiC)
3597       return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3598   }
3599 
3600   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
3601   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
3602       isa<ConstantSDNode>(Hi.getOperand(1)) &&
3603       Hi.getConstantOperandVal(1) == 31)
3604     return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3605 
3606   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
3607   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi,
3608                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64));
3609 }
3610 
3611 // Custom-lower extensions from mask vectors by using a vselect either with 1
3612 // for zero/any-extension or -1 for sign-extension:
3613 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
3614 // Note that any-extension is lowered identically to zero-extension.
3615 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
3616                                                 int64_t ExtTrueVal) const {
3617   SDLoc DL(Op);
3618   MVT VecVT = Op.getSimpleValueType();
3619   SDValue Src = Op.getOperand(0);
3620   // Only custom-lower extensions from mask types
3621   assert(Src.getValueType().isVector() &&
3622          Src.getValueType().getVectorElementType() == MVT::i1);
3623 
3624   MVT XLenVT = Subtarget.getXLenVT();
3625   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
3626   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
3627 
3628   if (VecVT.isScalableVector()) {
3629     // Be careful not to introduce illegal scalar types at this stage, and be
3630     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
3631     // illegal and must be expanded. Since we know that the constants are
3632     // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
3633     bool IsRV32E64 =
3634         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
3635 
3636     if (!IsRV32E64) {
3637       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
3638       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
3639     } else {
3640       SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
3641       SplatTrueVal =
3642           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
3643     }
3644 
3645     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
3646   }
3647 
3648   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3649   MVT I1ContainerVT =
3650       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3651 
3652   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
3653 
3654   SDValue Mask, VL;
3655   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3656 
3657   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
3658   SplatTrueVal =
3659       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
3660   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
3661                                SplatTrueVal, SplatZero, VL);
3662 
3663   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
3664 }
3665 
3666 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
3667     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
3668   MVT ExtVT = Op.getSimpleValueType();
3669   // Only custom-lower extensions from fixed-length vector types.
3670   if (!ExtVT.isFixedLengthVector())
3671     return Op;
3672   MVT VT = Op.getOperand(0).getSimpleValueType();
3673   // Grab the canonical container type for the extended type. Infer the smaller
3674   // type from that to ensure the same number of vector elements, as we know
3675   // the LMUL will be sufficient to hold the smaller type.
3676   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
3677   // Get the extended container type manually to ensure the same number of
3678   // vector elements between source and dest.
3679   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
3680                                      ContainerExtVT.getVectorElementCount());
3681 
3682   SDValue Op1 =
3683       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
3684 
3685   SDLoc DL(Op);
3686   SDValue Mask, VL;
3687   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3688 
3689   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
3690 
3691   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
3692 }
3693 
3694 // Custom-lower truncations from vectors to mask vectors by using a mask and a
3695 // setcc operation:
3696 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
3697 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
3698                                                   SelectionDAG &DAG) const {
3699   SDLoc DL(Op);
3700   EVT MaskVT = Op.getValueType();
3701   // Only expect to custom-lower truncations to mask types
3702   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
3703          "Unexpected type for vector mask lowering");
3704   SDValue Src = Op.getOperand(0);
3705   MVT VecVT = Src.getSimpleValueType();
3706 
3707   // If this is a fixed vector, we need to convert it to a scalable vector.
3708   MVT ContainerVT = VecVT;
3709   if (VecVT.isFixedLengthVector()) {
3710     ContainerVT = getContainerForFixedLengthVector(VecVT);
3711     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3712   }
3713 
3714   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
3715   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
3716 
3717   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
3718   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
3719 
3720   if (VecVT.isScalableVector()) {
3721     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
3722     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
3723   }
3724 
3725   SDValue Mask, VL;
3726   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3727 
3728   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
3729   SDValue Trunc =
3730       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
3731   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
3732                       DAG.getCondCode(ISD::SETNE), Mask, VL);
3733   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
3734 }
3735 
3736 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
3737 // first position of a vector, and that vector is slid up to the insert index.
3738 // By limiting the active vector length to index+1 and merging with the
3739 // original vector (with an undisturbed tail policy for elements >= VL), we
3740 // achieve the desired result of leaving all elements untouched except the one
3741 // at VL-1, which is replaced with the desired value.
3742 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
3743                                                     SelectionDAG &DAG) const {
3744   SDLoc DL(Op);
3745   MVT VecVT = Op.getSimpleValueType();
3746   SDValue Vec = Op.getOperand(0);
3747   SDValue Val = Op.getOperand(1);
3748   SDValue Idx = Op.getOperand(2);
3749 
3750   if (VecVT.getVectorElementType() == MVT::i1) {
3751     // FIXME: For now we just promote to an i8 vector and insert into that,
3752     // but this is probably not optimal.
3753     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3754     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3755     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
3756     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
3757   }
3758 
3759   MVT ContainerVT = VecVT;
3760   // If the operand is a fixed-length vector, convert to a scalable one.
3761   if (VecVT.isFixedLengthVector()) {
3762     ContainerVT = getContainerForFixedLengthVector(VecVT);
3763     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3764   }
3765 
3766   MVT XLenVT = Subtarget.getXLenVT();
3767 
3768   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3769   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
3770   // Even i64-element vectors on RV32 can be lowered without scalar
3771   // legalization if the most-significant 32 bits of the value are not affected
3772   // by the sign-extension of the lower 32 bits.
3773   // TODO: We could also catch sign extensions of a 32-bit value.
3774   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
3775     const auto *CVal = cast<ConstantSDNode>(Val);
3776     if (isInt<32>(CVal->getSExtValue())) {
3777       IsLegalInsert = true;
3778       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3779     }
3780   }
3781 
3782   SDValue Mask, VL;
3783   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3784 
3785   SDValue ValInVec;
3786 
3787   if (IsLegalInsert) {
3788     unsigned Opc =
3789         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
3790     if (isNullConstant(Idx)) {
3791       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
3792       if (!VecVT.isFixedLengthVector())
3793         return Vec;
3794       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
3795     }
3796     ValInVec =
3797         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
3798   } else {
3799     // On RV32, i64-element vectors must be specially handled to place the
3800     // value at element 0, by using two vslide1up instructions in sequence on
3801     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
3802     // this.
3803     SDValue One = DAG.getConstant(1, DL, XLenVT);
3804     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
3805     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
3806     MVT I32ContainerVT =
3807         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
3808     SDValue I32Mask =
3809         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
3810     // Limit the active VL to two.
3811     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
3812     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
3813     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
3814     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
3815                            InsertI64VL);
3816     // First slide in the hi value, then the lo in underneath it.
3817     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3818                            ValHi, I32Mask, InsertI64VL);
3819     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3820                            ValLo, I32Mask, InsertI64VL);
3821     // Bitcast back to the right container type.
3822     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
3823   }
3824 
3825   // Now that the value is in a vector, slide it into position.
3826   SDValue InsertVL =
3827       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
3828   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3829                                 ValInVec, Idx, Mask, InsertVL);
3830   if (!VecVT.isFixedLengthVector())
3831     return Slideup;
3832   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3833 }
3834 
3835 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
3836 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
3837 // types this is done using VMV_X_S to allow us to glean information about the
3838 // sign bits of the result.
3839 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
3840                                                      SelectionDAG &DAG) const {
3841   SDLoc DL(Op);
3842   SDValue Idx = Op.getOperand(1);
3843   SDValue Vec = Op.getOperand(0);
3844   EVT EltVT = Op.getValueType();
3845   MVT VecVT = Vec.getSimpleValueType();
3846   MVT XLenVT = Subtarget.getXLenVT();
3847 
3848   if (VecVT.getVectorElementType() == MVT::i1) {
3849     // FIXME: For now we just promote to an i8 vector and extract from that,
3850     // but this is probably not optimal.
3851     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3852     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3853     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
3854   }
3855 
3856   // If this is a fixed vector, we need to convert it to a scalable vector.
3857   MVT ContainerVT = VecVT;
3858   if (VecVT.isFixedLengthVector()) {
3859     ContainerVT = getContainerForFixedLengthVector(VecVT);
3860     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3861   }
3862 
3863   // If the index is 0, the vector is already in the right position.
3864   if (!isNullConstant(Idx)) {
3865     // Use a VL of 1 to avoid processing more elements than we need.
3866     SDValue VL = DAG.getConstant(1, DL, XLenVT);
3867     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3868     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3869     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3870                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
3871   }
3872 
3873   if (!EltVT.isInteger()) {
3874     // Floating-point extracts are handled in TableGen.
3875     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
3876                        DAG.getConstant(0, DL, XLenVT));
3877   }
3878 
3879   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
3880   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
3881 }
3882 
3883 // Some RVV intrinsics may claim that they want an integer operand to be
3884 // promoted or expanded.
3885 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
3886                                           const RISCVSubtarget &Subtarget) {
3887   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3888           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
3889          "Unexpected opcode");
3890 
3891   if (!Subtarget.hasVInstructions())
3892     return SDValue();
3893 
3894   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
3895   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
3896   SDLoc DL(Op);
3897 
3898   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
3899       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
3900   if (!II || !II->SplatOperand)
3901     return SDValue();
3902 
3903   unsigned SplatOp = II->SplatOperand + HasChain;
3904   assert(SplatOp < Op.getNumOperands());
3905 
3906   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
3907   SDValue &ScalarOp = Operands[SplatOp];
3908   MVT OpVT = ScalarOp.getSimpleValueType();
3909   MVT XLenVT = Subtarget.getXLenVT();
3910 
3911   // If this isn't a scalar, or its type is XLenVT we're done.
3912   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
3913     return SDValue();
3914 
3915   // Simplest case is that the operand needs to be promoted to XLenVT.
3916   if (OpVT.bitsLT(XLenVT)) {
3917     // If the operand is a constant, sign extend to increase our chances
3918     // of being able to use a .vi instruction. ANY_EXTEND would become a
3919     // a zero extend and the simm5 check in isel would fail.
3920     // FIXME: Should we ignore the upper bits in isel instead?
3921     unsigned ExtOpc =
3922         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
3923     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
3924     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3925   }
3926 
3927   // Use the previous operand to get the vXi64 VT. The result might be a mask
3928   // VT for compares. Using the previous operand assumes that the previous
3929   // operand will never have a smaller element size than a scalar operand and
3930   // that a widening operation never uses SEW=64.
3931   // NOTE: If this fails the below assert, we can probably just find the
3932   // element count from any operand or result and use it to construct the VT.
3933   assert(II->SplatOperand > 1 && "Unexpected splat operand!");
3934   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
3935 
3936   // The more complex case is when the scalar is larger than XLenVT.
3937   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
3938          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
3939 
3940   // If this is a sign-extended 32-bit constant, we can truncate it and rely
3941   // on the instruction to sign-extend since SEW>XLEN.
3942   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
3943     if (isInt<32>(CVal->getSExtValue())) {
3944       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3945       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3946     }
3947   }
3948 
3949   // We need to convert the scalar to a splat vector.
3950   // FIXME: Can we implicitly truncate the scalar if it is known to
3951   // be sign extended?
3952   // VL should be the last operand.
3953   SDValue VL = Op.getOperand(Op.getNumOperands() - 1);
3954   assert(VL.getValueType() == XLenVT);
3955   ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
3956   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3957 }
3958 
3959 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3960                                                      SelectionDAG &DAG) const {
3961   unsigned IntNo = Op.getConstantOperandVal(0);
3962   SDLoc DL(Op);
3963   MVT XLenVT = Subtarget.getXLenVT();
3964 
3965   switch (IntNo) {
3966   default:
3967     break; // Don't custom lower most intrinsics.
3968   case Intrinsic::thread_pointer: {
3969     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3970     return DAG.getRegister(RISCV::X4, PtrVT);
3971   }
3972   case Intrinsic::riscv_orc_b:
3973     // Lower to the GORCI encoding for orc.b.
3974     return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1),
3975                        DAG.getConstant(7, DL, XLenVT));
3976   case Intrinsic::riscv_grev:
3977   case Intrinsic::riscv_gorc: {
3978     unsigned Opc =
3979         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
3980     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3981   }
3982   case Intrinsic::riscv_shfl:
3983   case Intrinsic::riscv_unshfl: {
3984     unsigned Opc =
3985         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
3986     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3987   }
3988   case Intrinsic::riscv_bcompress:
3989   case Intrinsic::riscv_bdecompress: {
3990     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
3991                                                        : RISCVISD::BDECOMPRESS;
3992     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3993   }
3994   case Intrinsic::riscv_vmv_x_s:
3995     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
3996     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
3997                        Op.getOperand(1));
3998   case Intrinsic::riscv_vmv_v_x:
3999     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4000                             Op.getSimpleValueType(), DL, DAG, Subtarget);
4001   case Intrinsic::riscv_vfmv_v_f:
4002     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4003                        Op.getOperand(1), Op.getOperand(2));
4004   case Intrinsic::riscv_vmv_s_x: {
4005     SDValue Scalar = Op.getOperand(2);
4006 
4007     if (Scalar.getValueType().bitsLE(XLenVT)) {
4008       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4009       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4010                          Op.getOperand(1), Scalar, Op.getOperand(3));
4011     }
4012 
4013     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4014 
4015     // This is an i64 value that lives in two scalar registers. We have to
4016     // insert this in a convoluted way. First we build vXi64 splat containing
4017     // the/ two values that we assemble using some bit math. Next we'll use
4018     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4019     // to merge element 0 from our splat into the source vector.
4020     // FIXME: This is probably not the best way to do this, but it is
4021     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4022     // point.
4023     //   sw lo, (a0)
4024     //   sw hi, 4(a0)
4025     //   vlse vX, (a0)
4026     //
4027     //   vid.v      vVid
4028     //   vmseq.vx   mMask, vVid, 0
4029     //   vmerge.vvm vDest, vSrc, vVal, mMask
4030     MVT VT = Op.getSimpleValueType();
4031     SDValue Vec = Op.getOperand(1);
4032     SDValue VL = Op.getOperand(3);
4033 
4034     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
4035     SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
4036                                       DAG.getConstant(0, DL, MVT::i32), VL);
4037 
4038     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
4039     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4040     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4041     SDValue SelectCond =
4042         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4043                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4044     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4045                        Vec, VL);
4046   }
4047   case Intrinsic::riscv_vslide1up:
4048   case Intrinsic::riscv_vslide1down:
4049   case Intrinsic::riscv_vslide1up_mask:
4050   case Intrinsic::riscv_vslide1down_mask: {
4051     // We need to special case these when the scalar is larger than XLen.
4052     unsigned NumOps = Op.getNumOperands();
4053     bool IsMasked = NumOps == 7;
4054     unsigned OpOffset = IsMasked ? 1 : 0;
4055     SDValue Scalar = Op.getOperand(2 + OpOffset);
4056     if (Scalar.getValueType().bitsLE(XLenVT))
4057       break;
4058 
4059     // Splatting a sign extended constant is fine.
4060     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
4061       if (isInt<32>(CVal->getSExtValue()))
4062         break;
4063 
4064     MVT VT = Op.getSimpleValueType();
4065     assert(VT.getVectorElementType() == MVT::i64 &&
4066            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
4067 
4068     // Convert the vector source to the equivalent nxvXi32 vector.
4069     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4070     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset));
4071 
4072     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4073                                    DAG.getConstant(0, DL, XLenVT));
4074     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4075                                    DAG.getConstant(1, DL, XLenVT));
4076 
4077     // Double the VL since we halved SEW.
4078     SDValue VL = Op.getOperand(NumOps - (1 + OpOffset));
4079     SDValue I32VL =
4080         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4081 
4082     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
4083     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
4084 
4085     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4086     // instructions.
4087     if (IntNo == Intrinsic::riscv_vslide1up ||
4088         IntNo == Intrinsic::riscv_vslide1up_mask) {
4089       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi,
4090                         I32Mask, I32VL);
4091       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo,
4092                         I32Mask, I32VL);
4093     } else {
4094       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo,
4095                         I32Mask, I32VL);
4096       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi,
4097                         I32Mask, I32VL);
4098     }
4099 
4100     // Convert back to nxvXi64.
4101     Vec = DAG.getBitcast(VT, Vec);
4102 
4103     if (!IsMasked)
4104       return Vec;
4105 
4106     // Apply mask after the operation.
4107     SDValue Mask = Op.getOperand(NumOps - 3);
4108     SDValue MaskedOff = Op.getOperand(1);
4109     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL);
4110   }
4111   }
4112 
4113   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4114 }
4115 
4116 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4117                                                     SelectionDAG &DAG) const {
4118   unsigned IntNo = Op.getConstantOperandVal(1);
4119   switch (IntNo) {
4120   default:
4121     break;
4122   case Intrinsic::riscv_masked_strided_load: {
4123     SDLoc DL(Op);
4124     MVT XLenVT = Subtarget.getXLenVT();
4125 
4126     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4127     // the selection of the masked intrinsics doesn't do this for us.
4128     SDValue Mask = Op.getOperand(5);
4129     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4130 
4131     MVT VT = Op->getSimpleValueType(0);
4132     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4133 
4134     SDValue PassThru = Op.getOperand(2);
4135     if (!IsUnmasked) {
4136       MVT MaskVT =
4137           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4138       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4139       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4140     }
4141 
4142     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4143 
4144     SDValue IntID = DAG.getTargetConstant(
4145         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4146         XLenVT);
4147 
4148     auto *Load = cast<MemIntrinsicSDNode>(Op);
4149     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4150     if (!IsUnmasked)
4151       Ops.push_back(PassThru);
4152     Ops.push_back(Op.getOperand(3)); // Ptr
4153     Ops.push_back(Op.getOperand(4)); // Stride
4154     if (!IsUnmasked)
4155       Ops.push_back(Mask);
4156     Ops.push_back(VL);
4157     if (!IsUnmasked) {
4158       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4159       Ops.push_back(Policy);
4160     }
4161 
4162     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4163     SDValue Result =
4164         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4165                                 Load->getMemoryVT(), Load->getMemOperand());
4166     SDValue Chain = Result.getValue(1);
4167     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4168     return DAG.getMergeValues({Result, Chain}, DL);
4169   }
4170   }
4171 
4172   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4173 }
4174 
4175 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4176                                                  SelectionDAG &DAG) const {
4177   unsigned IntNo = Op.getConstantOperandVal(1);
4178   switch (IntNo) {
4179   default:
4180     break;
4181   case Intrinsic::riscv_masked_strided_store: {
4182     SDLoc DL(Op);
4183     MVT XLenVT = Subtarget.getXLenVT();
4184 
4185     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4186     // the selection of the masked intrinsics doesn't do this for us.
4187     SDValue Mask = Op.getOperand(5);
4188     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4189 
4190     SDValue Val = Op.getOperand(2);
4191     MVT VT = Val.getSimpleValueType();
4192     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4193 
4194     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4195     if (!IsUnmasked) {
4196       MVT MaskVT =
4197           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4198       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4199     }
4200 
4201     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4202 
4203     SDValue IntID = DAG.getTargetConstant(
4204         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
4205         XLenVT);
4206 
4207     auto *Store = cast<MemIntrinsicSDNode>(Op);
4208     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
4209     Ops.push_back(Val);
4210     Ops.push_back(Op.getOperand(3)); // Ptr
4211     Ops.push_back(Op.getOperand(4)); // Stride
4212     if (!IsUnmasked)
4213       Ops.push_back(Mask);
4214     Ops.push_back(VL);
4215 
4216     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
4217                                    Ops, Store->getMemoryVT(),
4218                                    Store->getMemOperand());
4219   }
4220   }
4221 
4222   return SDValue();
4223 }
4224 
4225 static MVT getLMUL1VT(MVT VT) {
4226   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
4227          "Unexpected vector MVT");
4228   return MVT::getScalableVectorVT(
4229       VT.getVectorElementType(),
4230       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
4231 }
4232 
4233 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
4234   switch (ISDOpcode) {
4235   default:
4236     llvm_unreachable("Unhandled reduction");
4237   case ISD::VECREDUCE_ADD:
4238     return RISCVISD::VECREDUCE_ADD_VL;
4239   case ISD::VECREDUCE_UMAX:
4240     return RISCVISD::VECREDUCE_UMAX_VL;
4241   case ISD::VECREDUCE_SMAX:
4242     return RISCVISD::VECREDUCE_SMAX_VL;
4243   case ISD::VECREDUCE_UMIN:
4244     return RISCVISD::VECREDUCE_UMIN_VL;
4245   case ISD::VECREDUCE_SMIN:
4246     return RISCVISD::VECREDUCE_SMIN_VL;
4247   case ISD::VECREDUCE_AND:
4248     return RISCVISD::VECREDUCE_AND_VL;
4249   case ISD::VECREDUCE_OR:
4250     return RISCVISD::VECREDUCE_OR_VL;
4251   case ISD::VECREDUCE_XOR:
4252     return RISCVISD::VECREDUCE_XOR_VL;
4253   }
4254 }
4255 
4256 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
4257                                                          SelectionDAG &DAG,
4258                                                          bool IsVP) const {
4259   SDLoc DL(Op);
4260   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
4261   MVT VecVT = Vec.getSimpleValueType();
4262   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
4263           Op.getOpcode() == ISD::VECREDUCE_OR ||
4264           Op.getOpcode() == ISD::VECREDUCE_XOR ||
4265           Op.getOpcode() == ISD::VP_REDUCE_AND ||
4266           Op.getOpcode() == ISD::VP_REDUCE_OR ||
4267           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
4268          "Unexpected reduction lowering");
4269 
4270   MVT XLenVT = Subtarget.getXLenVT();
4271   assert(Op.getValueType() == XLenVT &&
4272          "Expected reduction output to be legalized to XLenVT");
4273 
4274   MVT ContainerVT = VecVT;
4275   if (VecVT.isFixedLengthVector()) {
4276     ContainerVT = getContainerForFixedLengthVector(VecVT);
4277     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4278   }
4279 
4280   SDValue Mask, VL;
4281   if (IsVP) {
4282     Mask = Op.getOperand(2);
4283     VL = Op.getOperand(3);
4284   } else {
4285     std::tie(Mask, VL) =
4286         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4287   }
4288 
4289   unsigned BaseOpc;
4290   ISD::CondCode CC;
4291   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4292 
4293   switch (Op.getOpcode()) {
4294   default:
4295     llvm_unreachable("Unhandled reduction");
4296   case ISD::VECREDUCE_AND:
4297   case ISD::VP_REDUCE_AND: {
4298     // vcpop ~x == 0
4299     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
4300     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
4301     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4302     CC = ISD::SETEQ;
4303     BaseOpc = ISD::AND;
4304     break;
4305   }
4306   case ISD::VECREDUCE_OR:
4307   case ISD::VP_REDUCE_OR:
4308     // vcpop x != 0
4309     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4310     CC = ISD::SETNE;
4311     BaseOpc = ISD::OR;
4312     break;
4313   case ISD::VECREDUCE_XOR:
4314   case ISD::VP_REDUCE_XOR: {
4315     // ((vcpop x) & 1) != 0
4316     SDValue One = DAG.getConstant(1, DL, XLenVT);
4317     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4318     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
4319     CC = ISD::SETNE;
4320     BaseOpc = ISD::XOR;
4321     break;
4322   }
4323   }
4324 
4325   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
4326 
4327   if (!IsVP)
4328     return SetCC;
4329 
4330   // Now include the start value in the operation.
4331   // Note that we must return the start value when no elements are operated
4332   // upon. The vcpop instructions we've emitted in each case above will return
4333   // 0 for an inactive vector, and so we've already received the neutral value:
4334   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
4335   // can simply include the start value.
4336   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
4337 }
4338 
4339 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
4340                                             SelectionDAG &DAG) const {
4341   SDLoc DL(Op);
4342   SDValue Vec = Op.getOperand(0);
4343   EVT VecEVT = Vec.getValueType();
4344 
4345   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
4346 
4347   // Due to ordering in legalize types we may have a vector type that needs to
4348   // be split. Do that manually so we can get down to a legal type.
4349   while (getTypeAction(*DAG.getContext(), VecEVT) ==
4350          TargetLowering::TypeSplitVector) {
4351     SDValue Lo, Hi;
4352     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
4353     VecEVT = Lo.getValueType();
4354     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
4355   }
4356 
4357   // TODO: The type may need to be widened rather than split. Or widened before
4358   // it can be split.
4359   if (!isTypeLegal(VecEVT))
4360     return SDValue();
4361 
4362   MVT VecVT = VecEVT.getSimpleVT();
4363   MVT VecEltVT = VecVT.getVectorElementType();
4364   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
4365 
4366   MVT ContainerVT = VecVT;
4367   if (VecVT.isFixedLengthVector()) {
4368     ContainerVT = getContainerForFixedLengthVector(VecVT);
4369     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4370   }
4371 
4372   MVT M1VT = getLMUL1VT(ContainerVT);
4373 
4374   SDValue Mask, VL;
4375   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4376 
4377   // FIXME: This is a VLMAX splat which might be too large and can prevent
4378   // vsetvli removal.
4379   SDValue NeutralElem =
4380       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
4381   SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem);
4382   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
4383                                   IdentitySplat, Mask, VL);
4384   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
4385                              DAG.getConstant(0, DL, Subtarget.getXLenVT()));
4386   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
4387 }
4388 
4389 // Given a reduction op, this function returns the matching reduction opcode,
4390 // the vector SDValue and the scalar SDValue required to lower this to a
4391 // RISCVISD node.
4392 static std::tuple<unsigned, SDValue, SDValue>
4393 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
4394   SDLoc DL(Op);
4395   auto Flags = Op->getFlags();
4396   unsigned Opcode = Op.getOpcode();
4397   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
4398   switch (Opcode) {
4399   default:
4400     llvm_unreachable("Unhandled reduction");
4401   case ISD::VECREDUCE_FADD:
4402     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0),
4403                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4404   case ISD::VECREDUCE_SEQ_FADD:
4405     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
4406                            Op.getOperand(0));
4407   case ISD::VECREDUCE_FMIN:
4408     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
4409                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4410   case ISD::VECREDUCE_FMAX:
4411     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
4412                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4413   }
4414 }
4415 
4416 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
4417                                               SelectionDAG &DAG) const {
4418   SDLoc DL(Op);
4419   MVT VecEltVT = Op.getSimpleValueType();
4420 
4421   unsigned RVVOpcode;
4422   SDValue VectorVal, ScalarVal;
4423   std::tie(RVVOpcode, VectorVal, ScalarVal) =
4424       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
4425   MVT VecVT = VectorVal.getSimpleValueType();
4426 
4427   MVT ContainerVT = VecVT;
4428   if (VecVT.isFixedLengthVector()) {
4429     ContainerVT = getContainerForFixedLengthVector(VecVT);
4430     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
4431   }
4432 
4433   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
4434 
4435   SDValue Mask, VL;
4436   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4437 
4438   // FIXME: This is a VLMAX splat which might be too large and can prevent
4439   // vsetvli removal.
4440   SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal);
4441   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
4442                                   VectorVal, ScalarSplat, Mask, VL);
4443   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
4444                      DAG.getConstant(0, DL, Subtarget.getXLenVT()));
4445 }
4446 
4447 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
4448   switch (ISDOpcode) {
4449   default:
4450     llvm_unreachable("Unhandled reduction");
4451   case ISD::VP_REDUCE_ADD:
4452     return RISCVISD::VECREDUCE_ADD_VL;
4453   case ISD::VP_REDUCE_UMAX:
4454     return RISCVISD::VECREDUCE_UMAX_VL;
4455   case ISD::VP_REDUCE_SMAX:
4456     return RISCVISD::VECREDUCE_SMAX_VL;
4457   case ISD::VP_REDUCE_UMIN:
4458     return RISCVISD::VECREDUCE_UMIN_VL;
4459   case ISD::VP_REDUCE_SMIN:
4460     return RISCVISD::VECREDUCE_SMIN_VL;
4461   case ISD::VP_REDUCE_AND:
4462     return RISCVISD::VECREDUCE_AND_VL;
4463   case ISD::VP_REDUCE_OR:
4464     return RISCVISD::VECREDUCE_OR_VL;
4465   case ISD::VP_REDUCE_XOR:
4466     return RISCVISD::VECREDUCE_XOR_VL;
4467   case ISD::VP_REDUCE_FADD:
4468     return RISCVISD::VECREDUCE_FADD_VL;
4469   case ISD::VP_REDUCE_SEQ_FADD:
4470     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
4471   case ISD::VP_REDUCE_FMAX:
4472     return RISCVISD::VECREDUCE_FMAX_VL;
4473   case ISD::VP_REDUCE_FMIN:
4474     return RISCVISD::VECREDUCE_FMIN_VL;
4475   }
4476 }
4477 
4478 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
4479                                            SelectionDAG &DAG) const {
4480   SDLoc DL(Op);
4481   SDValue Vec = Op.getOperand(1);
4482   EVT VecEVT = Vec.getValueType();
4483 
4484   // TODO: The type may need to be widened rather than split. Or widened before
4485   // it can be split.
4486   if (!isTypeLegal(VecEVT))
4487     return SDValue();
4488 
4489   MVT VecVT = VecEVT.getSimpleVT();
4490   MVT VecEltVT = VecVT.getVectorElementType();
4491   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
4492 
4493   MVT ContainerVT = VecVT;
4494   if (VecVT.isFixedLengthVector()) {
4495     ContainerVT = getContainerForFixedLengthVector(VecVT);
4496     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4497   }
4498 
4499   SDValue VL = Op.getOperand(3);
4500   SDValue Mask = Op.getOperand(2);
4501 
4502   MVT M1VT = getLMUL1VT(ContainerVT);
4503   MVT XLenVT = Subtarget.getXLenVT();
4504   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
4505 
4506   // FIXME: This is a VLMAX splat which might be too large and can prevent
4507   // vsetvli removal.
4508   SDValue StartSplat = DAG.getSplatVector(M1VT, DL, Op.getOperand(0));
4509   SDValue Reduction =
4510       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
4511   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
4512                              DAG.getConstant(0, DL, Subtarget.getXLenVT()));
4513   if (!VecVT.isInteger())
4514     return Elt0;
4515   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
4516 }
4517 
4518 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
4519                                                    SelectionDAG &DAG) const {
4520   SDValue Vec = Op.getOperand(0);
4521   SDValue SubVec = Op.getOperand(1);
4522   MVT VecVT = Vec.getSimpleValueType();
4523   MVT SubVecVT = SubVec.getSimpleValueType();
4524 
4525   SDLoc DL(Op);
4526   MVT XLenVT = Subtarget.getXLenVT();
4527   unsigned OrigIdx = Op.getConstantOperandVal(2);
4528   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4529 
4530   // We don't have the ability to slide mask vectors up indexed by their i1
4531   // elements; the smallest we can do is i8. Often we are able to bitcast to
4532   // equivalent i8 vectors. Note that when inserting a fixed-length vector
4533   // into a scalable one, we might not necessarily have enough scalable
4534   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
4535   if (SubVecVT.getVectorElementType() == MVT::i1 &&
4536       (OrigIdx != 0 || !Vec.isUndef())) {
4537     if (VecVT.getVectorMinNumElements() >= 8 &&
4538         SubVecVT.getVectorMinNumElements() >= 8) {
4539       assert(OrigIdx % 8 == 0 && "Invalid index");
4540       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4541              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4542              "Unexpected mask vector lowering");
4543       OrigIdx /= 8;
4544       SubVecVT =
4545           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4546                            SubVecVT.isScalableVector());
4547       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4548                                VecVT.isScalableVector());
4549       Vec = DAG.getBitcast(VecVT, Vec);
4550       SubVec = DAG.getBitcast(SubVecVT, SubVec);
4551     } else {
4552       // We can't slide this mask vector up indexed by its i1 elements.
4553       // This poses a problem when we wish to insert a scalable vector which
4554       // can't be re-expressed as a larger type. Just choose the slow path and
4555       // extend to a larger type, then truncate back down.
4556       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4557       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4558       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4559       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
4560       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
4561                         Op.getOperand(2));
4562       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
4563       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
4564     }
4565   }
4566 
4567   // If the subvector vector is a fixed-length type, we cannot use subregister
4568   // manipulation to simplify the codegen; we don't know which register of a
4569   // LMUL group contains the specific subvector as we only know the minimum
4570   // register size. Therefore we must slide the vector group up the full
4571   // amount.
4572   if (SubVecVT.isFixedLengthVector()) {
4573     if (OrigIdx == 0 && Vec.isUndef())
4574       return Op;
4575     MVT ContainerVT = VecVT;
4576     if (VecVT.isFixedLengthVector()) {
4577       ContainerVT = getContainerForFixedLengthVector(VecVT);
4578       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4579     }
4580     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
4581                          DAG.getUNDEF(ContainerVT), SubVec,
4582                          DAG.getConstant(0, DL, XLenVT));
4583     SDValue Mask =
4584         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4585     // Set the vector length to only the number of elements we care about. Note
4586     // that for slideup this includes the offset.
4587     SDValue VL =
4588         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
4589     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4590     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4591                                   SubVec, SlideupAmt, Mask, VL);
4592     if (VecVT.isFixedLengthVector())
4593       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4594     return DAG.getBitcast(Op.getValueType(), Slideup);
4595   }
4596 
4597   unsigned SubRegIdx, RemIdx;
4598   std::tie(SubRegIdx, RemIdx) =
4599       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4600           VecVT, SubVecVT, OrigIdx, TRI);
4601 
4602   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
4603   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
4604                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
4605                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
4606 
4607   // 1. If the Idx has been completely eliminated and this subvector's size is
4608   // a vector register or a multiple thereof, or the surrounding elements are
4609   // undef, then this is a subvector insert which naturally aligns to a vector
4610   // register. These can easily be handled using subregister manipulation.
4611   // 2. If the subvector is smaller than a vector register, then the insertion
4612   // must preserve the undisturbed elements of the register. We do this by
4613   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
4614   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
4615   // subvector within the vector register, and an INSERT_SUBVECTOR of that
4616   // LMUL=1 type back into the larger vector (resolving to another subregister
4617   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
4618   // to avoid allocating a large register group to hold our subvector.
4619   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
4620     return Op;
4621 
4622   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
4623   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
4624   // (in our case undisturbed). This means we can set up a subvector insertion
4625   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
4626   // size of the subvector.
4627   MVT InterSubVT = VecVT;
4628   SDValue AlignedExtract = Vec;
4629   unsigned AlignedIdx = OrigIdx - RemIdx;
4630   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4631     InterSubVT = getLMUL1VT(VecVT);
4632     // Extract a subvector equal to the nearest full vector register type. This
4633     // should resolve to a EXTRACT_SUBREG instruction.
4634     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4635                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
4636   }
4637 
4638   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4639   // For scalable vectors this must be further multiplied by vscale.
4640   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
4641 
4642   SDValue Mask, VL;
4643   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4644 
4645   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
4646   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
4647   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
4648   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
4649 
4650   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
4651                        DAG.getUNDEF(InterSubVT), SubVec,
4652                        DAG.getConstant(0, DL, XLenVT));
4653 
4654   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
4655                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
4656 
4657   // If required, insert this subvector back into the correct vector register.
4658   // This should resolve to an INSERT_SUBREG instruction.
4659   if (VecVT.bitsGT(InterSubVT))
4660     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
4661                           DAG.getConstant(AlignedIdx, DL, XLenVT));
4662 
4663   // We might have bitcast from a mask type: cast back to the original type if
4664   // required.
4665   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
4666 }
4667 
4668 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
4669                                                     SelectionDAG &DAG) const {
4670   SDValue Vec = Op.getOperand(0);
4671   MVT SubVecVT = Op.getSimpleValueType();
4672   MVT VecVT = Vec.getSimpleValueType();
4673 
4674   SDLoc DL(Op);
4675   MVT XLenVT = Subtarget.getXLenVT();
4676   unsigned OrigIdx = Op.getConstantOperandVal(1);
4677   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4678 
4679   // We don't have the ability to slide mask vectors down indexed by their i1
4680   // elements; the smallest we can do is i8. Often we are able to bitcast to
4681   // equivalent i8 vectors. Note that when extracting a fixed-length vector
4682   // from a scalable one, we might not necessarily have enough scalable
4683   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
4684   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
4685     if (VecVT.getVectorMinNumElements() >= 8 &&
4686         SubVecVT.getVectorMinNumElements() >= 8) {
4687       assert(OrigIdx % 8 == 0 && "Invalid index");
4688       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4689              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4690              "Unexpected mask vector lowering");
4691       OrigIdx /= 8;
4692       SubVecVT =
4693           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4694                            SubVecVT.isScalableVector());
4695       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4696                                VecVT.isScalableVector());
4697       Vec = DAG.getBitcast(VecVT, Vec);
4698     } else {
4699       // We can't slide this mask vector down, indexed by its i1 elements.
4700       // This poses a problem when we wish to extract a scalable vector which
4701       // can't be re-expressed as a larger type. Just choose the slow path and
4702       // extend to a larger type, then truncate back down.
4703       // TODO: We could probably improve this when extracting certain fixed
4704       // from fixed, where we can extract as i8 and shift the correct element
4705       // right to reach the desired subvector?
4706       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4707       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4708       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4709       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
4710                         Op.getOperand(1));
4711       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
4712       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
4713     }
4714   }
4715 
4716   // If the subvector vector is a fixed-length type, we cannot use subregister
4717   // manipulation to simplify the codegen; we don't know which register of a
4718   // LMUL group contains the specific subvector as we only know the minimum
4719   // register size. Therefore we must slide the vector group down the full
4720   // amount.
4721   if (SubVecVT.isFixedLengthVector()) {
4722     // With an index of 0 this is a cast-like subvector, which can be performed
4723     // with subregister operations.
4724     if (OrigIdx == 0)
4725       return Op;
4726     MVT ContainerVT = VecVT;
4727     if (VecVT.isFixedLengthVector()) {
4728       ContainerVT = getContainerForFixedLengthVector(VecVT);
4729       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4730     }
4731     SDValue Mask =
4732         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4733     // Set the vector length to only the number of elements we care about. This
4734     // avoids sliding down elements we're going to discard straight away.
4735     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
4736     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4737     SDValue Slidedown =
4738         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4739                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
4740     // Now we can use a cast-like subvector extract to get the result.
4741     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4742                             DAG.getConstant(0, DL, XLenVT));
4743     return DAG.getBitcast(Op.getValueType(), Slidedown);
4744   }
4745 
4746   unsigned SubRegIdx, RemIdx;
4747   std::tie(SubRegIdx, RemIdx) =
4748       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4749           VecVT, SubVecVT, OrigIdx, TRI);
4750 
4751   // If the Idx has been completely eliminated then this is a subvector extract
4752   // which naturally aligns to a vector register. These can easily be handled
4753   // using subregister manipulation.
4754   if (RemIdx == 0)
4755     return Op;
4756 
4757   // Else we must shift our vector register directly to extract the subvector.
4758   // Do this using VSLIDEDOWN.
4759 
4760   // If the vector type is an LMUL-group type, extract a subvector equal to the
4761   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
4762   // instruction.
4763   MVT InterSubVT = VecVT;
4764   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4765     InterSubVT = getLMUL1VT(VecVT);
4766     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4767                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
4768   }
4769 
4770   // Slide this vector register down by the desired number of elements in order
4771   // to place the desired subvector starting at element 0.
4772   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4773   // For scalable vectors this must be further multiplied by vscale.
4774   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
4775 
4776   SDValue Mask, VL;
4777   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
4778   SDValue Slidedown =
4779       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
4780                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
4781 
4782   // Now the vector is in the right position, extract our final subvector. This
4783   // should resolve to a COPY.
4784   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4785                           DAG.getConstant(0, DL, XLenVT));
4786 
4787   // We might have bitcast from a mask type: cast back to the original type if
4788   // required.
4789   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
4790 }
4791 
4792 // Lower step_vector to the vid instruction. Any non-identity step value must
4793 // be accounted for my manual expansion.
4794 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
4795                                               SelectionDAG &DAG) const {
4796   SDLoc DL(Op);
4797   MVT VT = Op.getSimpleValueType();
4798   MVT XLenVT = Subtarget.getXLenVT();
4799   SDValue Mask, VL;
4800   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
4801   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4802   uint64_t StepValImm = Op.getConstantOperandVal(0);
4803   if (StepValImm != 1) {
4804     if (isPowerOf2_64(StepValImm)) {
4805       SDValue StepVal =
4806           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
4807                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
4808       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
4809     } else {
4810       SDValue StepVal = lowerScalarSplat(
4811           DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT,
4812           DL, DAG, Subtarget);
4813       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
4814     }
4815   }
4816   return StepVec;
4817 }
4818 
4819 // Implement vector_reverse using vrgather.vv with indices determined by
4820 // subtracting the id of each element from (VLMAX-1). This will convert
4821 // the indices like so:
4822 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
4823 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
4824 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
4825                                                  SelectionDAG &DAG) const {
4826   SDLoc DL(Op);
4827   MVT VecVT = Op.getSimpleValueType();
4828   unsigned EltSize = VecVT.getScalarSizeInBits();
4829   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
4830 
4831   unsigned MaxVLMAX = 0;
4832   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
4833   if (VectorBitsMax != 0)
4834     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
4835 
4836   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
4837   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
4838 
4839   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
4840   // to use vrgatherei16.vv.
4841   // TODO: It's also possible to use vrgatherei16.vv for other types to
4842   // decrease register width for the index calculation.
4843   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
4844     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
4845     // Reverse each half, then reassemble them in reverse order.
4846     // NOTE: It's also possible that after splitting that VLMAX no longer
4847     // requires vrgatherei16.vv.
4848     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
4849       SDValue Lo, Hi;
4850       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4851       EVT LoVT, HiVT;
4852       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
4853       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
4854       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
4855       // Reassemble the low and high pieces reversed.
4856       // FIXME: This is a CONCAT_VECTORS.
4857       SDValue Res =
4858           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
4859                       DAG.getIntPtrConstant(0, DL));
4860       return DAG.getNode(
4861           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
4862           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
4863     }
4864 
4865     // Just promote the int type to i16 which will double the LMUL.
4866     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
4867     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
4868   }
4869 
4870   MVT XLenVT = Subtarget.getXLenVT();
4871   SDValue Mask, VL;
4872   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4873 
4874   // Calculate VLMAX-1 for the desired SEW.
4875   unsigned MinElts = VecVT.getVectorMinNumElements();
4876   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
4877                               DAG.getConstant(MinElts, DL, XLenVT));
4878   SDValue VLMinus1 =
4879       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
4880 
4881   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
4882   bool IsRV32E64 =
4883       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
4884   SDValue SplatVL;
4885   if (!IsRV32E64)
4886     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
4887   else
4888     SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1);
4889 
4890   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
4891   SDValue Indices =
4892       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
4893 
4894   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
4895 }
4896 
4897 SDValue
4898 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
4899                                                      SelectionDAG &DAG) const {
4900   SDLoc DL(Op);
4901   auto *Load = cast<LoadSDNode>(Op);
4902 
4903   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
4904                                         Load->getMemoryVT(),
4905                                         *Load->getMemOperand()) &&
4906          "Expecting a correctly-aligned load");
4907 
4908   MVT VT = Op.getSimpleValueType();
4909   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4910 
4911   SDValue VL =
4912       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4913 
4914   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4915   SDValue NewLoad = DAG.getMemIntrinsicNode(
4916       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
4917       Load->getMemoryVT(), Load->getMemOperand());
4918 
4919   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
4920   return DAG.getMergeValues({Result, Load->getChain()}, DL);
4921 }
4922 
4923 SDValue
4924 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
4925                                                       SelectionDAG &DAG) const {
4926   SDLoc DL(Op);
4927   auto *Store = cast<StoreSDNode>(Op);
4928 
4929   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
4930                                         Store->getMemoryVT(),
4931                                         *Store->getMemOperand()) &&
4932          "Expecting a correctly-aligned store");
4933 
4934   SDValue StoreVal = Store->getValue();
4935   MVT VT = StoreVal.getSimpleValueType();
4936 
4937   // If the size less than a byte, we need to pad with zeros to make a byte.
4938   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
4939     VT = MVT::v8i1;
4940     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
4941                            DAG.getConstant(0, DL, VT), StoreVal,
4942                            DAG.getIntPtrConstant(0, DL));
4943   }
4944 
4945   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4946 
4947   SDValue VL =
4948       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4949 
4950   SDValue NewValue =
4951       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
4952   return DAG.getMemIntrinsicNode(
4953       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
4954       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
4955       Store->getMemoryVT(), Store->getMemOperand());
4956 }
4957 
4958 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
4959                                              SelectionDAG &DAG) const {
4960   SDLoc DL(Op);
4961   MVT VT = Op.getSimpleValueType();
4962 
4963   const auto *MemSD = cast<MemSDNode>(Op);
4964   EVT MemVT = MemSD->getMemoryVT();
4965   MachineMemOperand *MMO = MemSD->getMemOperand();
4966   SDValue Chain = MemSD->getChain();
4967   SDValue BasePtr = MemSD->getBasePtr();
4968 
4969   SDValue Mask, PassThru, VL;
4970   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
4971     Mask = VPLoad->getMask();
4972     PassThru = DAG.getUNDEF(VT);
4973     VL = VPLoad->getVectorLength();
4974   } else {
4975     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
4976     Mask = MLoad->getMask();
4977     PassThru = MLoad->getPassThru();
4978   }
4979 
4980   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4981 
4982   MVT XLenVT = Subtarget.getXLenVT();
4983 
4984   MVT ContainerVT = VT;
4985   if (VT.isFixedLengthVector()) {
4986     ContainerVT = getContainerForFixedLengthVector(VT);
4987     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4988     if (!IsUnmasked) {
4989       MVT MaskVT =
4990           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4991       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4992     }
4993   }
4994 
4995   if (!VL)
4996     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
4997 
4998   unsigned IntID =
4999       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5000   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5001   if (!IsUnmasked)
5002     Ops.push_back(PassThru);
5003   Ops.push_back(BasePtr);
5004   if (!IsUnmasked)
5005     Ops.push_back(Mask);
5006   Ops.push_back(VL);
5007   if (!IsUnmasked)
5008     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5009 
5010   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5011 
5012   SDValue Result =
5013       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5014   Chain = Result.getValue(1);
5015 
5016   if (VT.isFixedLengthVector())
5017     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5018 
5019   return DAG.getMergeValues({Result, Chain}, DL);
5020 }
5021 
5022 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5023                                               SelectionDAG &DAG) const {
5024   SDLoc DL(Op);
5025 
5026   const auto *MemSD = cast<MemSDNode>(Op);
5027   EVT MemVT = MemSD->getMemoryVT();
5028   MachineMemOperand *MMO = MemSD->getMemOperand();
5029   SDValue Chain = MemSD->getChain();
5030   SDValue BasePtr = MemSD->getBasePtr();
5031   SDValue Val, Mask, VL;
5032 
5033   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5034     Val = VPStore->getValue();
5035     Mask = VPStore->getMask();
5036     VL = VPStore->getVectorLength();
5037   } else {
5038     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5039     Val = MStore->getValue();
5040     Mask = MStore->getMask();
5041   }
5042 
5043   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5044 
5045   MVT VT = Val.getSimpleValueType();
5046   MVT XLenVT = Subtarget.getXLenVT();
5047 
5048   MVT ContainerVT = VT;
5049   if (VT.isFixedLengthVector()) {
5050     ContainerVT = getContainerForFixedLengthVector(VT);
5051 
5052     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5053     if (!IsUnmasked) {
5054       MVT MaskVT =
5055           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5056       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5057     }
5058   }
5059 
5060   if (!VL)
5061     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5062 
5063   unsigned IntID =
5064       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5065   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5066   Ops.push_back(Val);
5067   Ops.push_back(BasePtr);
5068   if (!IsUnmasked)
5069     Ops.push_back(Mask);
5070   Ops.push_back(VL);
5071 
5072   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5073                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5074 }
5075 
5076 SDValue
5077 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5078                                                       SelectionDAG &DAG) const {
5079   MVT InVT = Op.getOperand(0).getSimpleValueType();
5080   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5081 
5082   MVT VT = Op.getSimpleValueType();
5083 
5084   SDValue Op1 =
5085       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5086   SDValue Op2 =
5087       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5088 
5089   SDLoc DL(Op);
5090   SDValue VL =
5091       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5092 
5093   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5094   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5095 
5096   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5097                             Op.getOperand(2), Mask, VL);
5098 
5099   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5100 }
5101 
5102 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5103     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5104   MVT VT = Op.getSimpleValueType();
5105 
5106   if (VT.getVectorElementType() == MVT::i1)
5107     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5108 
5109   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5110 }
5111 
5112 SDValue
5113 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5114                                                       SelectionDAG &DAG) const {
5115   unsigned Opc;
5116   switch (Op.getOpcode()) {
5117   default: llvm_unreachable("Unexpected opcode!");
5118   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5119   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5120   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5121   }
5122 
5123   return lowerToScalableOp(Op, DAG, Opc);
5124 }
5125 
5126 // Lower vector ABS to smax(X, sub(0, X)).
5127 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5128   SDLoc DL(Op);
5129   MVT VT = Op.getSimpleValueType();
5130   SDValue X = Op.getOperand(0);
5131 
5132   assert(VT.isFixedLengthVector() && "Unexpected type");
5133 
5134   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5135   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5136 
5137   SDValue Mask, VL;
5138   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5139 
5140   SDValue SplatZero =
5141       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
5142                   DAG.getConstant(0, DL, Subtarget.getXLenVT()));
5143   SDValue NegX =
5144       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
5145   SDValue Max =
5146       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
5147 
5148   return convertFromScalableVector(VT, Max, DAG, Subtarget);
5149 }
5150 
5151 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
5152     SDValue Op, SelectionDAG &DAG) const {
5153   SDLoc DL(Op);
5154   MVT VT = Op.getSimpleValueType();
5155   SDValue Mag = Op.getOperand(0);
5156   SDValue Sign = Op.getOperand(1);
5157   assert(Mag.getValueType() == Sign.getValueType() &&
5158          "Can only handle COPYSIGN with matching types.");
5159 
5160   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5161   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
5162   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
5163 
5164   SDValue Mask, VL;
5165   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5166 
5167   SDValue CopySign =
5168       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
5169 
5170   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
5171 }
5172 
5173 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
5174     SDValue Op, SelectionDAG &DAG) const {
5175   MVT VT = Op.getSimpleValueType();
5176   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5177 
5178   MVT I1ContainerVT =
5179       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5180 
5181   SDValue CC =
5182       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
5183   SDValue Op1 =
5184       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5185   SDValue Op2 =
5186       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
5187 
5188   SDLoc DL(Op);
5189   SDValue Mask, VL;
5190   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5191 
5192   SDValue Select =
5193       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
5194 
5195   return convertFromScalableVector(VT, Select, DAG, Subtarget);
5196 }
5197 
5198 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
5199                                                unsigned NewOpc,
5200                                                bool HasMask) const {
5201   MVT VT = Op.getSimpleValueType();
5202   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5203 
5204   // Create list of operands by converting existing ones to scalable types.
5205   SmallVector<SDValue, 6> Ops;
5206   for (const SDValue &V : Op->op_values()) {
5207     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5208 
5209     // Pass through non-vector operands.
5210     if (!V.getValueType().isVector()) {
5211       Ops.push_back(V);
5212       continue;
5213     }
5214 
5215     // "cast" fixed length vector to a scalable vector.
5216     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
5217            "Only fixed length vectors are supported!");
5218     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5219   }
5220 
5221   SDLoc DL(Op);
5222   SDValue Mask, VL;
5223   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5224   if (HasMask)
5225     Ops.push_back(Mask);
5226   Ops.push_back(VL);
5227 
5228   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
5229   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
5230 }
5231 
5232 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
5233 // * Operands of each node are assumed to be in the same order.
5234 // * The EVL operand is promoted from i32 to i64 on RV64.
5235 // * Fixed-length vectors are converted to their scalable-vector container
5236 //   types.
5237 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
5238                                        unsigned RISCVISDOpc) const {
5239   SDLoc DL(Op);
5240   MVT VT = Op.getSimpleValueType();
5241   SmallVector<SDValue, 4> Ops;
5242 
5243   for (const auto &OpIdx : enumerate(Op->ops())) {
5244     SDValue V = OpIdx.value();
5245     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5246     // Pass through operands which aren't fixed-length vectors.
5247     if (!V.getValueType().isFixedLengthVector()) {
5248       Ops.push_back(V);
5249       continue;
5250     }
5251     // "cast" fixed length vector to a scalable vector.
5252     MVT OpVT = V.getSimpleValueType();
5253     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
5254     assert(useRVVForFixedLengthVectorVT(OpVT) &&
5255            "Only fixed length vectors are supported!");
5256     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5257   }
5258 
5259   if (!VT.isFixedLengthVector())
5260     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
5261 
5262   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5263 
5264   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
5265 
5266   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
5267 }
5268 
5269 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
5270 // matched to a RVV indexed load. The RVV indexed load instructions only
5271 // support the "unsigned unscaled" addressing mode; indices are implicitly
5272 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
5273 // signed or scaled indexing is extended to the XLEN value type and scaled
5274 // accordingly.
5275 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
5276                                                SelectionDAG &DAG) const {
5277   SDLoc DL(Op);
5278   MVT VT = Op.getSimpleValueType();
5279 
5280   const auto *MemSD = cast<MemSDNode>(Op.getNode());
5281   EVT MemVT = MemSD->getMemoryVT();
5282   MachineMemOperand *MMO = MemSD->getMemOperand();
5283   SDValue Chain = MemSD->getChain();
5284   SDValue BasePtr = MemSD->getBasePtr();
5285 
5286   ISD::LoadExtType LoadExtType;
5287   SDValue Index, Mask, PassThru, VL;
5288 
5289   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
5290     Index = VPGN->getIndex();
5291     Mask = VPGN->getMask();
5292     PassThru = DAG.getUNDEF(VT);
5293     VL = VPGN->getVectorLength();
5294     // VP doesn't support extending loads.
5295     LoadExtType = ISD::NON_EXTLOAD;
5296   } else {
5297     // Else it must be a MGATHER.
5298     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
5299     Index = MGN->getIndex();
5300     Mask = MGN->getMask();
5301     PassThru = MGN->getPassThru();
5302     LoadExtType = MGN->getExtensionType();
5303   }
5304 
5305   MVT IndexVT = Index.getSimpleValueType();
5306   MVT XLenVT = Subtarget.getXLenVT();
5307 
5308   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
5309          "Unexpected VTs!");
5310   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
5311   // Targets have to explicitly opt-in for extending vector loads.
5312   assert(LoadExtType == ISD::NON_EXTLOAD &&
5313          "Unexpected extending MGATHER/VP_GATHER");
5314   (void)LoadExtType;
5315 
5316   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5317   // the selection of the masked intrinsics doesn't do this for us.
5318   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5319 
5320   MVT ContainerVT = VT;
5321   if (VT.isFixedLengthVector()) {
5322     // We need to use the larger of the result and index type to determine the
5323     // scalable type to use so we don't increase LMUL for any operand/result.
5324     if (VT.bitsGE(IndexVT)) {
5325       ContainerVT = getContainerForFixedLengthVector(VT);
5326       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
5327                                  ContainerVT.getVectorElementCount());
5328     } else {
5329       IndexVT = getContainerForFixedLengthVector(IndexVT);
5330       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
5331                                      IndexVT.getVectorElementCount());
5332     }
5333 
5334     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
5335 
5336     if (!IsUnmasked) {
5337       MVT MaskVT =
5338           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5339       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5340       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5341     }
5342   }
5343 
5344   if (!VL)
5345     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5346 
5347   unsigned IntID =
5348       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
5349   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5350   if (!IsUnmasked)
5351     Ops.push_back(PassThru);
5352   Ops.push_back(BasePtr);
5353   Ops.push_back(Index);
5354   if (!IsUnmasked)
5355     Ops.push_back(Mask);
5356   Ops.push_back(VL);
5357   if (!IsUnmasked)
5358     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5359 
5360   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5361   SDValue Result =
5362       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5363   Chain = Result.getValue(1);
5364 
5365   if (VT.isFixedLengthVector())
5366     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5367 
5368   return DAG.getMergeValues({Result, Chain}, DL);
5369 }
5370 
5371 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
5372 // matched to a RVV indexed store. The RVV indexed store instructions only
5373 // support the "unsigned unscaled" addressing mode; indices are implicitly
5374 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
5375 // signed or scaled indexing is extended to the XLEN value type and scaled
5376 // accordingly.
5377 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
5378                                                 SelectionDAG &DAG) const {
5379   SDLoc DL(Op);
5380   const auto *MemSD = cast<MemSDNode>(Op.getNode());
5381   EVT MemVT = MemSD->getMemoryVT();
5382   MachineMemOperand *MMO = MemSD->getMemOperand();
5383   SDValue Chain = MemSD->getChain();
5384   SDValue BasePtr = MemSD->getBasePtr();
5385 
5386   bool IsTruncatingStore = false;
5387   SDValue Index, Mask, Val, VL;
5388 
5389   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
5390     Index = VPSN->getIndex();
5391     Mask = VPSN->getMask();
5392     Val = VPSN->getValue();
5393     VL = VPSN->getVectorLength();
5394     // VP doesn't support truncating stores.
5395     IsTruncatingStore = false;
5396   } else {
5397     // Else it must be a MSCATTER.
5398     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
5399     Index = MSN->getIndex();
5400     Mask = MSN->getMask();
5401     Val = MSN->getValue();
5402     IsTruncatingStore = MSN->isTruncatingStore();
5403   }
5404 
5405   MVT VT = Val.getSimpleValueType();
5406   MVT IndexVT = Index.getSimpleValueType();
5407   MVT XLenVT = Subtarget.getXLenVT();
5408 
5409   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
5410          "Unexpected VTs!");
5411   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
5412   // Targets have to explicitly opt-in for extending vector loads and
5413   // truncating vector stores.
5414   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
5415   (void)IsTruncatingStore;
5416 
5417   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5418   // the selection of the masked intrinsics doesn't do this for us.
5419   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5420 
5421   MVT ContainerVT = VT;
5422   if (VT.isFixedLengthVector()) {
5423     // We need to use the larger of the value and index type to determine the
5424     // scalable type to use so we don't increase LMUL for any operand/result.
5425     if (VT.bitsGE(IndexVT)) {
5426       ContainerVT = getContainerForFixedLengthVector(VT);
5427       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
5428                                  ContainerVT.getVectorElementCount());
5429     } else {
5430       IndexVT = getContainerForFixedLengthVector(IndexVT);
5431       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
5432                                      IndexVT.getVectorElementCount());
5433     }
5434 
5435     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
5436     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5437 
5438     if (!IsUnmasked) {
5439       MVT MaskVT =
5440           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5441       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5442     }
5443   }
5444 
5445   if (!VL)
5446     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5447 
5448   unsigned IntID =
5449       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
5450   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5451   Ops.push_back(Val);
5452   Ops.push_back(BasePtr);
5453   Ops.push_back(Index);
5454   if (!IsUnmasked)
5455     Ops.push_back(Mask);
5456   Ops.push_back(VL);
5457 
5458   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5459                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5460 }
5461 
5462 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
5463                                                SelectionDAG &DAG) const {
5464   const MVT XLenVT = Subtarget.getXLenVT();
5465   SDLoc DL(Op);
5466   SDValue Chain = Op->getOperand(0);
5467   SDValue SysRegNo = DAG.getTargetConstant(
5468       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
5469   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
5470   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
5471 
5472   // Encoding used for rounding mode in RISCV differs from that used in
5473   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
5474   // table, which consists of a sequence of 4-bit fields, each representing
5475   // corresponding FLT_ROUNDS mode.
5476   static const int Table =
5477       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
5478       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
5479       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
5480       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
5481       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
5482 
5483   SDValue Shift =
5484       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
5485   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
5486                                 DAG.getConstant(Table, DL, XLenVT), Shift);
5487   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
5488                                DAG.getConstant(7, DL, XLenVT));
5489 
5490   return DAG.getMergeValues({Masked, Chain}, DL);
5491 }
5492 
5493 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
5494                                                SelectionDAG &DAG) const {
5495   const MVT XLenVT = Subtarget.getXLenVT();
5496   SDLoc DL(Op);
5497   SDValue Chain = Op->getOperand(0);
5498   SDValue RMValue = Op->getOperand(1);
5499   SDValue SysRegNo = DAG.getTargetConstant(
5500       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
5501 
5502   // Encoding used for rounding mode in RISCV differs from that used in
5503   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
5504   // a table, which consists of a sequence of 4-bit fields, each representing
5505   // corresponding RISCV mode.
5506   static const unsigned Table =
5507       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
5508       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
5509       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
5510       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
5511       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
5512 
5513   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
5514                               DAG.getConstant(2, DL, XLenVT));
5515   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
5516                                 DAG.getConstant(Table, DL, XLenVT), Shift);
5517   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
5518                         DAG.getConstant(0x7, DL, XLenVT));
5519   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
5520                      RMValue);
5521 }
5522 
5523 // Returns the opcode of the target-specific SDNode that implements the 32-bit
5524 // form of the given Opcode.
5525 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
5526   switch (Opcode) {
5527   default:
5528     llvm_unreachable("Unexpected opcode");
5529   case ISD::SHL:
5530     return RISCVISD::SLLW;
5531   case ISD::SRA:
5532     return RISCVISD::SRAW;
5533   case ISD::SRL:
5534     return RISCVISD::SRLW;
5535   case ISD::SDIV:
5536     return RISCVISD::DIVW;
5537   case ISD::UDIV:
5538     return RISCVISD::DIVUW;
5539   case ISD::UREM:
5540     return RISCVISD::REMUW;
5541   case ISD::ROTL:
5542     return RISCVISD::ROLW;
5543   case ISD::ROTR:
5544     return RISCVISD::RORW;
5545   case RISCVISD::GREV:
5546     return RISCVISD::GREVW;
5547   case RISCVISD::GORC:
5548     return RISCVISD::GORCW;
5549   }
5550 }
5551 
5552 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
5553 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
5554 // otherwise be promoted to i64, making it difficult to select the
5555 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
5556 // type i8/i16/i32 is lost.
5557 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
5558                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
5559   SDLoc DL(N);
5560   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
5561   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
5562   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
5563   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
5564   // ReplaceNodeResults requires we maintain the same type for the return value.
5565   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
5566 }
5567 
5568 // Converts the given 32-bit operation to a i64 operation with signed extension
5569 // semantic to reduce the signed extension instructions.
5570 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
5571   SDLoc DL(N);
5572   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5573   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5574   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
5575   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
5576                                DAG.getValueType(MVT::i32));
5577   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
5578 }
5579 
5580 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
5581                                              SmallVectorImpl<SDValue> &Results,
5582                                              SelectionDAG &DAG) const {
5583   SDLoc DL(N);
5584   switch (N->getOpcode()) {
5585   default:
5586     llvm_unreachable("Don't know how to custom type legalize this operation!");
5587   case ISD::STRICT_FP_TO_SINT:
5588   case ISD::STRICT_FP_TO_UINT:
5589   case ISD::FP_TO_SINT:
5590   case ISD::FP_TO_UINT: {
5591     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5592            "Unexpected custom legalisation");
5593     bool IsStrict = N->isStrictFPOpcode();
5594     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
5595                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
5596     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
5597     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
5598         TargetLowering::TypeSoftenFloat) {
5599       // FIXME: Support strict FP.
5600       if (IsStrict)
5601         return;
5602       if (!isTypeLegal(Op0.getValueType()))
5603         return;
5604       unsigned Opc =
5605           IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64;
5606       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0);
5607       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5608       return;
5609     }
5610     // If the FP type needs to be softened, emit a library call using the 'si'
5611     // version. If we left it to default legalization we'd end up with 'di'. If
5612     // the FP type doesn't need to be softened just let generic type
5613     // legalization promote the result type.
5614     RTLIB::Libcall LC;
5615     if (IsSigned)
5616       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
5617     else
5618       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
5619     MakeLibCallOptions CallOptions;
5620     EVT OpVT = Op0.getValueType();
5621     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
5622     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
5623     SDValue Result;
5624     std::tie(Result, Chain) =
5625         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
5626     Results.push_back(Result);
5627     if (IsStrict)
5628       Results.push_back(Chain);
5629     break;
5630   }
5631   case ISD::READCYCLECOUNTER: {
5632     assert(!Subtarget.is64Bit() &&
5633            "READCYCLECOUNTER only has custom type legalization on riscv32");
5634 
5635     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5636     SDValue RCW =
5637         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
5638 
5639     Results.push_back(
5640         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
5641     Results.push_back(RCW.getValue(2));
5642     break;
5643   }
5644   case ISD::MUL: {
5645     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
5646     unsigned XLen = Subtarget.getXLen();
5647     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
5648     if (Size > XLen) {
5649       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
5650       SDValue LHS = N->getOperand(0);
5651       SDValue RHS = N->getOperand(1);
5652       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
5653 
5654       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
5655       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
5656       // We need exactly one side to be unsigned.
5657       if (LHSIsU == RHSIsU)
5658         return;
5659 
5660       auto MakeMULPair = [&](SDValue S, SDValue U) {
5661         MVT XLenVT = Subtarget.getXLenVT();
5662         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
5663         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
5664         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
5665         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
5666         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
5667       };
5668 
5669       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
5670       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
5671 
5672       // The other operand should be signed, but still prefer MULH when
5673       // possible.
5674       if (RHSIsU && LHSIsS && !RHSIsS)
5675         Results.push_back(MakeMULPair(LHS, RHS));
5676       else if (LHSIsU && RHSIsS && !LHSIsS)
5677         Results.push_back(MakeMULPair(RHS, LHS));
5678 
5679       return;
5680     }
5681     LLVM_FALLTHROUGH;
5682   }
5683   case ISD::ADD:
5684   case ISD::SUB:
5685     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5686            "Unexpected custom legalisation");
5687     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
5688     break;
5689   case ISD::SHL:
5690   case ISD::SRA:
5691   case ISD::SRL:
5692     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5693            "Unexpected custom legalisation");
5694     if (N->getOperand(1).getOpcode() != ISD::Constant) {
5695       Results.push_back(customLegalizeToWOp(N, DAG));
5696       break;
5697     }
5698 
5699     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
5700     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
5701     // shift amount.
5702     if (N->getOpcode() == ISD::SHL) {
5703       SDLoc DL(N);
5704       SDValue NewOp0 =
5705           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5706       SDValue NewOp1 =
5707           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
5708       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
5709       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
5710                                    DAG.getValueType(MVT::i32));
5711       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5712     }
5713 
5714     break;
5715   case ISD::ROTL:
5716   case ISD::ROTR:
5717     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5718            "Unexpected custom legalisation");
5719     Results.push_back(customLegalizeToWOp(N, DAG));
5720     break;
5721   case ISD::CTTZ:
5722   case ISD::CTTZ_ZERO_UNDEF:
5723   case ISD::CTLZ:
5724   case ISD::CTLZ_ZERO_UNDEF: {
5725     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5726            "Unexpected custom legalisation");
5727 
5728     SDValue NewOp0 =
5729         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5730     bool IsCTZ =
5731         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
5732     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
5733     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
5734     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5735     return;
5736   }
5737   case ISD::SDIV:
5738   case ISD::UDIV:
5739   case ISD::UREM: {
5740     MVT VT = N->getSimpleValueType(0);
5741     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
5742            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
5743            "Unexpected custom legalisation");
5744     // Don't promote division/remainder by constant since we should expand those
5745     // to multiply by magic constant.
5746     // FIXME: What if the expansion is disabled for minsize.
5747     if (N->getOperand(1).getOpcode() == ISD::Constant)
5748       return;
5749 
5750     // If the input is i32, use ANY_EXTEND since the W instructions don't read
5751     // the upper 32 bits. For other types we need to sign or zero extend
5752     // based on the opcode.
5753     unsigned ExtOpc = ISD::ANY_EXTEND;
5754     if (VT != MVT::i32)
5755       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
5756                                            : ISD::ZERO_EXTEND;
5757 
5758     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
5759     break;
5760   }
5761   case ISD::UADDO:
5762   case ISD::USUBO: {
5763     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5764            "Unexpected custom legalisation");
5765     bool IsAdd = N->getOpcode() == ISD::UADDO;
5766     // Create an ADDW or SUBW.
5767     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5768     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5769     SDValue Res =
5770         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
5771     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
5772                       DAG.getValueType(MVT::i32));
5773 
5774     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
5775     // Since the inputs are sign extended from i32, this is equivalent to
5776     // comparing the lower 32 bits.
5777     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
5778     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
5779                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
5780 
5781     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5782     Results.push_back(Overflow);
5783     return;
5784   }
5785   case ISD::UADDSAT:
5786   case ISD::USUBSAT: {
5787     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5788            "Unexpected custom legalisation");
5789     if (Subtarget.hasStdExtZbb()) {
5790       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
5791       // sign extend allows overflow of the lower 32 bits to be detected on
5792       // the promoted size.
5793       SDValue LHS =
5794           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
5795       SDValue RHS =
5796           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
5797       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
5798       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5799       return;
5800     }
5801 
5802     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
5803     // promotion for UADDO/USUBO.
5804     Results.push_back(expandAddSubSat(N, DAG));
5805     return;
5806   }
5807   case ISD::BITCAST: {
5808     EVT VT = N->getValueType(0);
5809     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
5810     SDValue Op0 = N->getOperand(0);
5811     EVT Op0VT = Op0.getValueType();
5812     MVT XLenVT = Subtarget.getXLenVT();
5813     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
5814       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
5815       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
5816     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
5817                Subtarget.hasStdExtF()) {
5818       SDValue FPConv =
5819           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
5820       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
5821     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
5822                isTypeLegal(Op0VT)) {
5823       // Custom-legalize bitcasts from fixed-length vector types to illegal
5824       // scalar types in order to improve codegen. Bitcast the vector to a
5825       // one-element vector type whose element type is the same as the result
5826       // type, and extract the first element.
5827       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
5828       if (isTypeLegal(BVT)) {
5829         SDValue BVec = DAG.getBitcast(BVT, Op0);
5830         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
5831                                       DAG.getConstant(0, DL, XLenVT)));
5832       }
5833     }
5834     break;
5835   }
5836   case RISCVISD::GREV:
5837   case RISCVISD::GORC: {
5838     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5839            "Unexpected custom legalisation");
5840     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
5841     // This is similar to customLegalizeToWOp, except that we pass the second
5842     // operand (a TargetConstant) straight through: it is already of type
5843     // XLenVT.
5844     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
5845     SDValue NewOp0 =
5846         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5847     SDValue NewOp1 =
5848         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5849     SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
5850     // ReplaceNodeResults requires we maintain the same type for the return
5851     // value.
5852     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5853     break;
5854   }
5855   case RISCVISD::SHFL: {
5856     // There is no SHFLIW instruction, but we can just promote the operation.
5857     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5858            "Unexpected custom legalisation");
5859     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
5860     SDValue NewOp0 =
5861         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5862     SDValue NewOp1 =
5863         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5864     SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
5865     // ReplaceNodeResults requires we maintain the same type for the return
5866     // value.
5867     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5868     break;
5869   }
5870   case ISD::BSWAP:
5871   case ISD::BITREVERSE: {
5872     MVT VT = N->getSimpleValueType(0);
5873     MVT XLenVT = Subtarget.getXLenVT();
5874     assert((VT == MVT::i8 || VT == MVT::i16 ||
5875             (VT == MVT::i32 && Subtarget.is64Bit())) &&
5876            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
5877     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
5878     unsigned Imm = VT.getSizeInBits() - 1;
5879     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
5880     if (N->getOpcode() == ISD::BSWAP)
5881       Imm &= ~0x7U;
5882     unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV;
5883     SDValue GREVI =
5884         DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT));
5885     // ReplaceNodeResults requires we maintain the same type for the return
5886     // value.
5887     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
5888     break;
5889   }
5890   case ISD::FSHL:
5891   case ISD::FSHR: {
5892     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5893            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
5894     SDValue NewOp0 =
5895         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5896     SDValue NewOp1 =
5897         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5898     SDValue NewOp2 =
5899         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5900     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
5901     // Mask the shift amount to 5 bits.
5902     NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
5903                          DAG.getConstant(0x1f, DL, MVT::i64));
5904     unsigned Opc =
5905         N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
5906     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
5907     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
5908     break;
5909   }
5910   case ISD::EXTRACT_VECTOR_ELT: {
5911     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
5912     // type is illegal (currently only vXi64 RV32).
5913     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
5914     // transferred to the destination register. We issue two of these from the
5915     // upper- and lower- halves of the SEW-bit vector element, slid down to the
5916     // first element.
5917     SDValue Vec = N->getOperand(0);
5918     SDValue Idx = N->getOperand(1);
5919 
5920     // The vector type hasn't been legalized yet so we can't issue target
5921     // specific nodes if it needs legalization.
5922     // FIXME: We would manually legalize if it's important.
5923     if (!isTypeLegal(Vec.getValueType()))
5924       return;
5925 
5926     MVT VecVT = Vec.getSimpleValueType();
5927 
5928     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
5929            VecVT.getVectorElementType() == MVT::i64 &&
5930            "Unexpected EXTRACT_VECTOR_ELT legalization");
5931 
5932     // If this is a fixed vector, we need to convert it to a scalable vector.
5933     MVT ContainerVT = VecVT;
5934     if (VecVT.isFixedLengthVector()) {
5935       ContainerVT = getContainerForFixedLengthVector(VecVT);
5936       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5937     }
5938 
5939     MVT XLenVT = Subtarget.getXLenVT();
5940 
5941     // Use a VL of 1 to avoid processing more elements than we need.
5942     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5943     SDValue VL = DAG.getConstant(1, DL, XLenVT);
5944     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5945 
5946     // Unless the index is known to be 0, we must slide the vector down to get
5947     // the desired element into index 0.
5948     if (!isNullConstant(Idx)) {
5949       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5950                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
5951     }
5952 
5953     // Extract the lower XLEN bits of the correct vector element.
5954     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
5955 
5956     // To extract the upper XLEN bits of the vector element, shift the first
5957     // element right by 32 bits and re-extract the lower XLEN bits.
5958     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
5959                                      DAG.getConstant(32, DL, XLenVT), VL);
5960     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
5961                                  ThirtyTwoV, Mask, VL);
5962 
5963     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
5964 
5965     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
5966     break;
5967   }
5968   case ISD::INTRINSIC_WO_CHAIN: {
5969     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5970     switch (IntNo) {
5971     default:
5972       llvm_unreachable(
5973           "Don't know how to custom type legalize this intrinsic!");
5974     case Intrinsic::riscv_orc_b: {
5975       // Lower to the GORCI encoding for orc.b with the operand extended.
5976       SDValue NewOp =
5977           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5978       // If Zbp is enabled, use GORCIW which will sign extend the result.
5979       unsigned Opc =
5980           Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
5981       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
5982                                 DAG.getConstant(7, DL, MVT::i64));
5983       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5984       return;
5985     }
5986     case Intrinsic::riscv_grev:
5987     case Intrinsic::riscv_gorc: {
5988       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5989              "Unexpected custom legalisation");
5990       SDValue NewOp1 =
5991           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5992       SDValue NewOp2 =
5993           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5994       unsigned Opc =
5995           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
5996       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5997       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5998       break;
5999     }
6000     case Intrinsic::riscv_shfl:
6001     case Intrinsic::riscv_unshfl: {
6002       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6003              "Unexpected custom legalisation");
6004       SDValue NewOp1 =
6005           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6006       SDValue NewOp2 =
6007           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6008       unsigned Opc =
6009           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
6010       if (isa<ConstantSDNode>(N->getOperand(2))) {
6011         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
6012                              DAG.getConstant(0xf, DL, MVT::i64));
6013         Opc =
6014             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
6015       }
6016       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6017       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6018       break;
6019     }
6020     case Intrinsic::riscv_bcompress:
6021     case Intrinsic::riscv_bdecompress: {
6022       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6023              "Unexpected custom legalisation");
6024       SDValue NewOp1 =
6025           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6026       SDValue NewOp2 =
6027           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6028       unsigned Opc = IntNo == Intrinsic::riscv_bcompress
6029                          ? RISCVISD::BCOMPRESSW
6030                          : RISCVISD::BDECOMPRESSW;
6031       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6032       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6033       break;
6034     }
6035     case Intrinsic::riscv_vmv_x_s: {
6036       EVT VT = N->getValueType(0);
6037       MVT XLenVT = Subtarget.getXLenVT();
6038       if (VT.bitsLT(XLenVT)) {
6039         // Simple case just extract using vmv.x.s and truncate.
6040         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
6041                                       Subtarget.getXLenVT(), N->getOperand(1));
6042         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
6043         return;
6044       }
6045 
6046       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
6047              "Unexpected custom legalization");
6048 
6049       // We need to do the move in two steps.
6050       SDValue Vec = N->getOperand(1);
6051       MVT VecVT = Vec.getSimpleValueType();
6052 
6053       // First extract the lower XLEN bits of the element.
6054       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6055 
6056       // To extract the upper XLEN bits of the vector element, shift the first
6057       // element right by 32 bits and re-extract the lower XLEN bits.
6058       SDValue VL = DAG.getConstant(1, DL, XLenVT);
6059       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
6060       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6061       SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
6062                                        DAG.getConstant(32, DL, XLenVT), VL);
6063       SDValue LShr32 =
6064           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
6065       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6066 
6067       Results.push_back(
6068           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6069       break;
6070     }
6071     }
6072     break;
6073   }
6074   case ISD::VECREDUCE_ADD:
6075   case ISD::VECREDUCE_AND:
6076   case ISD::VECREDUCE_OR:
6077   case ISD::VECREDUCE_XOR:
6078   case ISD::VECREDUCE_SMAX:
6079   case ISD::VECREDUCE_UMAX:
6080   case ISD::VECREDUCE_SMIN:
6081   case ISD::VECREDUCE_UMIN:
6082     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
6083       Results.push_back(V);
6084     break;
6085   case ISD::VP_REDUCE_ADD:
6086   case ISD::VP_REDUCE_AND:
6087   case ISD::VP_REDUCE_OR:
6088   case ISD::VP_REDUCE_XOR:
6089   case ISD::VP_REDUCE_SMAX:
6090   case ISD::VP_REDUCE_UMAX:
6091   case ISD::VP_REDUCE_SMIN:
6092   case ISD::VP_REDUCE_UMIN:
6093     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
6094       Results.push_back(V);
6095     break;
6096   case ISD::FLT_ROUNDS_: {
6097     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
6098     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
6099     Results.push_back(Res.getValue(0));
6100     Results.push_back(Res.getValue(1));
6101     break;
6102   }
6103   }
6104 }
6105 
6106 // A structure to hold one of the bit-manipulation patterns below. Together, a
6107 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
6108 //   (or (and (shl x, 1), 0xAAAAAAAA),
6109 //       (and (srl x, 1), 0x55555555))
6110 struct RISCVBitmanipPat {
6111   SDValue Op;
6112   unsigned ShAmt;
6113   bool IsSHL;
6114 
6115   bool formsPairWith(const RISCVBitmanipPat &Other) const {
6116     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
6117   }
6118 };
6119 
6120 // Matches patterns of the form
6121 //   (and (shl x, C2), (C1 << C2))
6122 //   (and (srl x, C2), C1)
6123 //   (shl (and x, C1), C2)
6124 //   (srl (and x, (C1 << C2)), C2)
6125 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
6126 // The expected masks for each shift amount are specified in BitmanipMasks where
6127 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
6128 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
6129 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
6130 // XLen is 64.
6131 static Optional<RISCVBitmanipPat>
6132 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
6133   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
6134          "Unexpected number of masks");
6135   Optional<uint64_t> Mask;
6136   // Optionally consume a mask around the shift operation.
6137   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
6138     Mask = Op.getConstantOperandVal(1);
6139     Op = Op.getOperand(0);
6140   }
6141   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
6142     return None;
6143   bool IsSHL = Op.getOpcode() == ISD::SHL;
6144 
6145   if (!isa<ConstantSDNode>(Op.getOperand(1)))
6146     return None;
6147   uint64_t ShAmt = Op.getConstantOperandVal(1);
6148 
6149   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
6150   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
6151     return None;
6152   // If we don't have enough masks for 64 bit, then we must be trying to
6153   // match SHFL so we're only allowed to shift 1/4 of the width.
6154   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
6155     return None;
6156 
6157   SDValue Src = Op.getOperand(0);
6158 
6159   // The expected mask is shifted left when the AND is found around SHL
6160   // patterns.
6161   //   ((x >> 1) & 0x55555555)
6162   //   ((x << 1) & 0xAAAAAAAA)
6163   bool SHLExpMask = IsSHL;
6164 
6165   if (!Mask) {
6166     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
6167     // the mask is all ones: consume that now.
6168     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
6169       Mask = Src.getConstantOperandVal(1);
6170       Src = Src.getOperand(0);
6171       // The expected mask is now in fact shifted left for SRL, so reverse the
6172       // decision.
6173       //   ((x & 0xAAAAAAAA) >> 1)
6174       //   ((x & 0x55555555) << 1)
6175       SHLExpMask = !SHLExpMask;
6176     } else {
6177       // Use a default shifted mask of all-ones if there's no AND, truncated
6178       // down to the expected width. This simplifies the logic later on.
6179       Mask = maskTrailingOnes<uint64_t>(Width);
6180       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
6181     }
6182   }
6183 
6184   unsigned MaskIdx = Log2_32(ShAmt);
6185   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
6186 
6187   if (SHLExpMask)
6188     ExpMask <<= ShAmt;
6189 
6190   if (Mask != ExpMask)
6191     return None;
6192 
6193   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
6194 }
6195 
6196 // Matches any of the following bit-manipulation patterns:
6197 //   (and (shl x, 1), (0x55555555 << 1))
6198 //   (and (srl x, 1), 0x55555555)
6199 //   (shl (and x, 0x55555555), 1)
6200 //   (srl (and x, (0x55555555 << 1)), 1)
6201 // where the shift amount and mask may vary thus:
6202 //   [1]  = 0x55555555 / 0xAAAAAAAA
6203 //   [2]  = 0x33333333 / 0xCCCCCCCC
6204 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
6205 //   [8]  = 0x00FF00FF / 0xFF00FF00
6206 //   [16] = 0x0000FFFF / 0xFFFFFFFF
6207 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
6208 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
6209   // These are the unshifted masks which we use to match bit-manipulation
6210   // patterns. They may be shifted left in certain circumstances.
6211   static const uint64_t BitmanipMasks[] = {
6212       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
6213       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
6214 
6215   return matchRISCVBitmanipPat(Op, BitmanipMasks);
6216 }
6217 
6218 // Match the following pattern as a GREVI(W) operation
6219 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
6220 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
6221                                const RISCVSubtarget &Subtarget) {
6222   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6223   EVT VT = Op.getValueType();
6224 
6225   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
6226     auto LHS = matchGREVIPat(Op.getOperand(0));
6227     auto RHS = matchGREVIPat(Op.getOperand(1));
6228     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
6229       SDLoc DL(Op);
6230       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
6231                          DAG.getConstant(LHS->ShAmt, DL, VT));
6232     }
6233   }
6234   return SDValue();
6235 }
6236 
6237 // Matches any the following pattern as a GORCI(W) operation
6238 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
6239 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
6240 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
6241 // Note that with the variant of 3.,
6242 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
6243 // the inner pattern will first be matched as GREVI and then the outer
6244 // pattern will be matched to GORC via the first rule above.
6245 // 4.  (or (rotl/rotr x, bitwidth/2), x)
6246 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
6247                                const RISCVSubtarget &Subtarget) {
6248   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6249   EVT VT = Op.getValueType();
6250 
6251   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
6252     SDLoc DL(Op);
6253     SDValue Op0 = Op.getOperand(0);
6254     SDValue Op1 = Op.getOperand(1);
6255 
6256     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
6257       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
6258           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
6259           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
6260         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
6261       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
6262       if ((Reverse.getOpcode() == ISD::ROTL ||
6263            Reverse.getOpcode() == ISD::ROTR) &&
6264           Reverse.getOperand(0) == X &&
6265           isa<ConstantSDNode>(Reverse.getOperand(1))) {
6266         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
6267         if (RotAmt == (VT.getSizeInBits() / 2))
6268           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
6269                              DAG.getConstant(RotAmt, DL, VT));
6270       }
6271       return SDValue();
6272     };
6273 
6274     // Check for either commutable permutation of (or (GREVI x, shamt), x)
6275     if (SDValue V = MatchOROfReverse(Op0, Op1))
6276       return V;
6277     if (SDValue V = MatchOROfReverse(Op1, Op0))
6278       return V;
6279 
6280     // OR is commutable so canonicalize its OR operand to the left
6281     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
6282       std::swap(Op0, Op1);
6283     if (Op0.getOpcode() != ISD::OR)
6284       return SDValue();
6285     SDValue OrOp0 = Op0.getOperand(0);
6286     SDValue OrOp1 = Op0.getOperand(1);
6287     auto LHS = matchGREVIPat(OrOp0);
6288     // OR is commutable so swap the operands and try again: x might have been
6289     // on the left
6290     if (!LHS) {
6291       std::swap(OrOp0, OrOp1);
6292       LHS = matchGREVIPat(OrOp0);
6293     }
6294     auto RHS = matchGREVIPat(Op1);
6295     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
6296       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
6297                          DAG.getConstant(LHS->ShAmt, DL, VT));
6298     }
6299   }
6300   return SDValue();
6301 }
6302 
6303 // Matches any of the following bit-manipulation patterns:
6304 //   (and (shl x, 1), (0x22222222 << 1))
6305 //   (and (srl x, 1), 0x22222222)
6306 //   (shl (and x, 0x22222222), 1)
6307 //   (srl (and x, (0x22222222 << 1)), 1)
6308 // where the shift amount and mask may vary thus:
6309 //   [1]  = 0x22222222 / 0x44444444
6310 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
6311 //   [4]  = 0x00F000F0 / 0x0F000F00
6312 //   [8]  = 0x0000FF00 / 0x00FF0000
6313 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
6314 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
6315   // These are the unshifted masks which we use to match bit-manipulation
6316   // patterns. They may be shifted left in certain circumstances.
6317   static const uint64_t BitmanipMasks[] = {
6318       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
6319       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
6320 
6321   return matchRISCVBitmanipPat(Op, BitmanipMasks);
6322 }
6323 
6324 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
6325 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
6326                                const RISCVSubtarget &Subtarget) {
6327   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6328   EVT VT = Op.getValueType();
6329 
6330   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
6331     return SDValue();
6332 
6333   SDValue Op0 = Op.getOperand(0);
6334   SDValue Op1 = Op.getOperand(1);
6335 
6336   // Or is commutable so canonicalize the second OR to the LHS.
6337   if (Op0.getOpcode() != ISD::OR)
6338     std::swap(Op0, Op1);
6339   if (Op0.getOpcode() != ISD::OR)
6340     return SDValue();
6341 
6342   // We found an inner OR, so our operands are the operands of the inner OR
6343   // and the other operand of the outer OR.
6344   SDValue A = Op0.getOperand(0);
6345   SDValue B = Op0.getOperand(1);
6346   SDValue C = Op1;
6347 
6348   auto Match1 = matchSHFLPat(A);
6349   auto Match2 = matchSHFLPat(B);
6350 
6351   // If neither matched, we failed.
6352   if (!Match1 && !Match2)
6353     return SDValue();
6354 
6355   // We had at least one match. if one failed, try the remaining C operand.
6356   if (!Match1) {
6357     std::swap(A, C);
6358     Match1 = matchSHFLPat(A);
6359     if (!Match1)
6360       return SDValue();
6361   } else if (!Match2) {
6362     std::swap(B, C);
6363     Match2 = matchSHFLPat(B);
6364     if (!Match2)
6365       return SDValue();
6366   }
6367   assert(Match1 && Match2);
6368 
6369   // Make sure our matches pair up.
6370   if (!Match1->formsPairWith(*Match2))
6371     return SDValue();
6372 
6373   // All the remains is to make sure C is an AND with the same input, that masks
6374   // out the bits that are being shuffled.
6375   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
6376       C.getOperand(0) != Match1->Op)
6377     return SDValue();
6378 
6379   uint64_t Mask = C.getConstantOperandVal(1);
6380 
6381   static const uint64_t BitmanipMasks[] = {
6382       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
6383       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
6384   };
6385 
6386   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
6387   unsigned MaskIdx = Log2_32(Match1->ShAmt);
6388   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
6389 
6390   if (Mask != ExpMask)
6391     return SDValue();
6392 
6393   SDLoc DL(Op);
6394   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
6395                      DAG.getConstant(Match1->ShAmt, DL, VT));
6396 }
6397 
6398 // Optimize (add (shl x, c0), (shl y, c1)) ->
6399 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
6400 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
6401                                   const RISCVSubtarget &Subtarget) {
6402   // Perform this optimization only in the zba extension.
6403   if (!Subtarget.hasStdExtZba())
6404     return SDValue();
6405 
6406   // Skip for vector types and larger types.
6407   EVT VT = N->getValueType(0);
6408   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
6409     return SDValue();
6410 
6411   // The two operand nodes must be SHL and have no other use.
6412   SDValue N0 = N->getOperand(0);
6413   SDValue N1 = N->getOperand(1);
6414   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
6415       !N0->hasOneUse() || !N1->hasOneUse())
6416     return SDValue();
6417 
6418   // Check c0 and c1.
6419   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
6420   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
6421   if (!N0C || !N1C)
6422     return SDValue();
6423   int64_t C0 = N0C->getSExtValue();
6424   int64_t C1 = N1C->getSExtValue();
6425   if (C0 <= 0 || C1 <= 0)
6426     return SDValue();
6427 
6428   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
6429   int64_t Bits = std::min(C0, C1);
6430   int64_t Diff = std::abs(C0 - C1);
6431   if (Diff != 1 && Diff != 2 && Diff != 3)
6432     return SDValue();
6433 
6434   // Build nodes.
6435   SDLoc DL(N);
6436   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
6437   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
6438   SDValue NA0 =
6439       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
6440   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
6441   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
6442 }
6443 
6444 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
6445 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
6446 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
6447 // not undo itself, but they are redundant.
6448 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
6449   SDValue Src = N->getOperand(0);
6450 
6451   if (Src.getOpcode() != N->getOpcode())
6452     return SDValue();
6453 
6454   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
6455       !isa<ConstantSDNode>(Src.getOperand(1)))
6456     return SDValue();
6457 
6458   unsigned ShAmt1 = N->getConstantOperandVal(1);
6459   unsigned ShAmt2 = Src.getConstantOperandVal(1);
6460   Src = Src.getOperand(0);
6461 
6462   unsigned CombinedShAmt;
6463   if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
6464     CombinedShAmt = ShAmt1 | ShAmt2;
6465   else
6466     CombinedShAmt = ShAmt1 ^ ShAmt2;
6467 
6468   if (CombinedShAmt == 0)
6469     return Src;
6470 
6471   SDLoc DL(N);
6472   return DAG.getNode(
6473       N->getOpcode(), DL, N->getValueType(0), Src,
6474       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
6475 }
6476 
6477 // Combine a constant select operand into its use:
6478 //
6479 // (and (select cond, -1, c), x)
6480 //   -> (select cond, x, (and x, c))  [AllOnes=1]
6481 // (or  (select cond, 0, c), x)
6482 //   -> (select cond, x, (or x, c))  [AllOnes=0]
6483 // (xor (select cond, 0, c), x)
6484 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
6485 // (add (select cond, 0, c), x)
6486 //   -> (select cond, x, (add x, c))  [AllOnes=0]
6487 // (sub x, (select cond, 0, c))
6488 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
6489 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
6490                                    SelectionDAG &DAG, bool AllOnes) {
6491   EVT VT = N->getValueType(0);
6492 
6493   // Skip vectors.
6494   if (VT.isVector())
6495     return SDValue();
6496 
6497   if ((Slct.getOpcode() != ISD::SELECT &&
6498        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
6499       !Slct.hasOneUse())
6500     return SDValue();
6501 
6502   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
6503     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
6504   };
6505 
6506   bool SwapSelectOps;
6507   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
6508   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
6509   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
6510   SDValue NonConstantVal;
6511   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
6512     SwapSelectOps = false;
6513     NonConstantVal = FalseVal;
6514   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
6515     SwapSelectOps = true;
6516     NonConstantVal = TrueVal;
6517   } else
6518     return SDValue();
6519 
6520   // Slct is now know to be the desired identity constant when CC is true.
6521   TrueVal = OtherOp;
6522   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
6523   // Unless SwapSelectOps says the condition should be false.
6524   if (SwapSelectOps)
6525     std::swap(TrueVal, FalseVal);
6526 
6527   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
6528     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
6529                        {Slct.getOperand(0), Slct.getOperand(1),
6530                         Slct.getOperand(2), TrueVal, FalseVal});
6531 
6532   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
6533                      {Slct.getOperand(0), TrueVal, FalseVal});
6534 }
6535 
6536 // Attempt combineSelectAndUse on each operand of a commutative operator N.
6537 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
6538                                               bool AllOnes) {
6539   SDValue N0 = N->getOperand(0);
6540   SDValue N1 = N->getOperand(1);
6541   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
6542     return Result;
6543   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
6544     return Result;
6545   return SDValue();
6546 }
6547 
6548 // Transform (add (mul x, c0), c1) ->
6549 //           (add (mul (add x, c1/c0), c0), c1%c0).
6550 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
6551 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
6552 // to an infinite loop in DAGCombine if transformed.
6553 // Or transform (add (mul x, c0), c1) ->
6554 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
6555 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
6556 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
6557 // lead to an infinite loop in DAGCombine if transformed.
6558 // Or transform (add (mul x, c0), c1) ->
6559 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
6560 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
6561 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
6562 // lead to an infinite loop in DAGCombine if transformed.
6563 // Or transform (add (mul x, c0), c1) ->
6564 //              (mul (add x, c1/c0), c0).
6565 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
6566 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
6567                                      const RISCVSubtarget &Subtarget) {
6568   // Skip for vector types and larger types.
6569   EVT VT = N->getValueType(0);
6570   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
6571     return SDValue();
6572   // The first operand node must be a MUL and has no other use.
6573   SDValue N0 = N->getOperand(0);
6574   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
6575     return SDValue();
6576   // Check if c0 and c1 match above conditions.
6577   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
6578   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6579   if (!N0C || !N1C)
6580     return SDValue();
6581   int64_t C0 = N0C->getSExtValue();
6582   int64_t C1 = N1C->getSExtValue();
6583   int64_t CA, CB;
6584   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
6585     return SDValue();
6586   // Search for proper CA (non-zero) and CB that both are simm12.
6587   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
6588       !isInt<12>(C0 * (C1 / C0))) {
6589     CA = C1 / C0;
6590     CB = C1 % C0;
6591   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
6592              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
6593     CA = C1 / C0 + 1;
6594     CB = C1 % C0 - C0;
6595   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
6596              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
6597     CA = C1 / C0 - 1;
6598     CB = C1 % C0 + C0;
6599   } else
6600     return SDValue();
6601   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
6602   SDLoc DL(N);
6603   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
6604                              DAG.getConstant(CA, DL, VT));
6605   SDValue New1 =
6606       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
6607   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
6608 }
6609 
6610 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
6611                                  const RISCVSubtarget &Subtarget) {
6612   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
6613     return V;
6614   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
6615     return V;
6616   // fold (add (select lhs, rhs, cc, 0, y), x) ->
6617   //      (select lhs, rhs, cc, x, (add x, y))
6618   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6619 }
6620 
6621 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
6622   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
6623   //      (select lhs, rhs, cc, x, (sub x, y))
6624   SDValue N0 = N->getOperand(0);
6625   SDValue N1 = N->getOperand(1);
6626   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
6627 }
6628 
6629 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
6630   // fold (and (select lhs, rhs, cc, -1, y), x) ->
6631   //      (select lhs, rhs, cc, x, (and x, y))
6632   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
6633 }
6634 
6635 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
6636                                 const RISCVSubtarget &Subtarget) {
6637   if (Subtarget.hasStdExtZbp()) {
6638     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
6639       return GREV;
6640     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
6641       return GORC;
6642     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
6643       return SHFL;
6644   }
6645 
6646   // fold (or (select cond, 0, y), x) ->
6647   //      (select cond, x, (or x, y))
6648   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6649 }
6650 
6651 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
6652   // fold (xor (select cond, 0, y), x) ->
6653   //      (select cond, x, (xor x, y))
6654   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6655 }
6656 
6657 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND
6658 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free
6659 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be
6660 // removed during type legalization leaving an ADD/SUB/MUL use that won't use
6661 // ADDW/SUBW/MULW.
6662 static SDValue performANY_EXTENDCombine(SDNode *N,
6663                                         TargetLowering::DAGCombinerInfo &DCI,
6664                                         const RISCVSubtarget &Subtarget) {
6665   if (!Subtarget.is64Bit())
6666     return SDValue();
6667 
6668   SelectionDAG &DAG = DCI.DAG;
6669 
6670   SDValue Src = N->getOperand(0);
6671   EVT VT = N->getValueType(0);
6672   if (VT != MVT::i64 || Src.getValueType() != MVT::i32)
6673     return SDValue();
6674 
6675   // The opcode must be one that can implicitly sign_extend.
6676   // FIXME: Additional opcodes.
6677   switch (Src.getOpcode()) {
6678   default:
6679     return SDValue();
6680   case ISD::MUL:
6681     if (!Subtarget.hasStdExtM())
6682       return SDValue();
6683     LLVM_FALLTHROUGH;
6684   case ISD::ADD:
6685   case ISD::SUB:
6686     break;
6687   }
6688 
6689   // Only handle cases where the result is used by a CopyToReg. That likely
6690   // means the value is a liveout of the basic block. This helps prevent
6691   // infinite combine loops like PR51206.
6692   if (none_of(N->uses(),
6693               [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; }))
6694     return SDValue();
6695 
6696   SmallVector<SDNode *, 4> SetCCs;
6697   for (SDNode::use_iterator UI = Src.getNode()->use_begin(),
6698                             UE = Src.getNode()->use_end();
6699        UI != UE; ++UI) {
6700     SDNode *User = *UI;
6701     if (User == N)
6702       continue;
6703     if (UI.getUse().getResNo() != Src.getResNo())
6704       continue;
6705     // All i32 setccs are legalized by sign extending operands.
6706     if (User->getOpcode() == ISD::SETCC) {
6707       SetCCs.push_back(User);
6708       continue;
6709     }
6710     // We don't know if we can extend this user.
6711     break;
6712   }
6713 
6714   // If we don't have any SetCCs, this isn't worthwhile.
6715   if (SetCCs.empty())
6716     return SDValue();
6717 
6718   SDLoc DL(N);
6719   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src);
6720   DCI.CombineTo(N, SExt);
6721 
6722   // Promote all the setccs.
6723   for (SDNode *SetCC : SetCCs) {
6724     SmallVector<SDValue, 4> Ops;
6725 
6726     for (unsigned j = 0; j != 2; ++j) {
6727       SDValue SOp = SetCC->getOperand(j);
6728       if (SOp == Src)
6729         Ops.push_back(SExt);
6730       else
6731         Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp));
6732     }
6733 
6734     Ops.push_back(SetCC->getOperand(2));
6735     DCI.CombineTo(SetCC,
6736                   DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
6737   }
6738   return SDValue(N, 0);
6739 }
6740 
6741 // Try to form VWMUL or VWMULU.
6742 // FIXME: Support VWMULSU.
6743 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1,
6744                                     SelectionDAG &DAG) {
6745   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
6746   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
6747   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
6748   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
6749     return SDValue();
6750 
6751   SDValue Mask = N->getOperand(2);
6752   SDValue VL = N->getOperand(3);
6753 
6754   // Make sure the mask and VL match.
6755   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
6756     return SDValue();
6757 
6758   MVT VT = N->getSimpleValueType(0);
6759 
6760   // Determine the narrow size for a widening multiply.
6761   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
6762   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
6763                                   VT.getVectorElementCount());
6764 
6765   SDLoc DL(N);
6766 
6767   // See if the other operand is the same opcode.
6768   if (Op0.getOpcode() == Op1.getOpcode()) {
6769     if (!Op1.hasOneUse())
6770       return SDValue();
6771 
6772     // Make sure the mask and VL match.
6773     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
6774       return SDValue();
6775 
6776     Op1 = Op1.getOperand(0);
6777   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
6778     // The operand is a splat of a scalar.
6779 
6780     // The VL must be the same.
6781     if (Op1.getOperand(1) != VL)
6782       return SDValue();
6783 
6784     // Get the scalar value.
6785     Op1 = Op1.getOperand(0);
6786 
6787     // See if have enough sign bits or zero bits in the scalar to use a
6788     // widening multiply by splatting to smaller element size.
6789     unsigned EltBits = VT.getScalarSizeInBits();
6790     unsigned ScalarBits = Op1.getValueSizeInBits();
6791     // Make sure we're getting all element bits from the scalar register.
6792     // FIXME: Support implicit sign extension of vmv.v.x?
6793     if (ScalarBits < EltBits)
6794       return SDValue();
6795 
6796     if (IsSignExt) {
6797       if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize))
6798         return SDValue();
6799     } else {
6800       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
6801       if (!DAG.MaskedValueIsZero(Op1, Mask))
6802         return SDValue();
6803     }
6804 
6805     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL);
6806   } else
6807     return SDValue();
6808 
6809   Op0 = Op0.getOperand(0);
6810 
6811   // Re-introduce narrower extends if needed.
6812   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
6813   if (Op0.getValueType() != NarrowVT)
6814     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
6815   if (Op1.getValueType() != NarrowVT)
6816     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
6817 
6818   unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
6819   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
6820 }
6821 
6822 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
6823                                                DAGCombinerInfo &DCI) const {
6824   SelectionDAG &DAG = DCI.DAG;
6825 
6826   // Helper to call SimplifyDemandedBits on an operand of N where only some low
6827   // bits are demanded. N will be added to the Worklist if it was not deleted.
6828   // Caller should return SDValue(N, 0) if this returns true.
6829   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
6830     SDValue Op = N->getOperand(OpNo);
6831     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
6832     if (!SimplifyDemandedBits(Op, Mask, DCI))
6833       return false;
6834 
6835     if (N->getOpcode() != ISD::DELETED_NODE)
6836       DCI.AddToWorklist(N);
6837     return true;
6838   };
6839 
6840   switch (N->getOpcode()) {
6841   default:
6842     break;
6843   case RISCVISD::SplitF64: {
6844     SDValue Op0 = N->getOperand(0);
6845     // If the input to SplitF64 is just BuildPairF64 then the operation is
6846     // redundant. Instead, use BuildPairF64's operands directly.
6847     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
6848       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
6849 
6850     SDLoc DL(N);
6851 
6852     // It's cheaper to materialise two 32-bit integers than to load a double
6853     // from the constant pool and transfer it to integer registers through the
6854     // stack.
6855     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
6856       APInt V = C->getValueAPF().bitcastToAPInt();
6857       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
6858       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
6859       return DCI.CombineTo(N, Lo, Hi);
6860     }
6861 
6862     // This is a target-specific version of a DAGCombine performed in
6863     // DAGCombiner::visitBITCAST. It performs the equivalent of:
6864     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
6865     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
6866     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
6867         !Op0.getNode()->hasOneUse())
6868       break;
6869     SDValue NewSplitF64 =
6870         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
6871                     Op0.getOperand(0));
6872     SDValue Lo = NewSplitF64.getValue(0);
6873     SDValue Hi = NewSplitF64.getValue(1);
6874     APInt SignBit = APInt::getSignMask(32);
6875     if (Op0.getOpcode() == ISD::FNEG) {
6876       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
6877                                   DAG.getConstant(SignBit, DL, MVT::i32));
6878       return DCI.CombineTo(N, Lo, NewHi);
6879     }
6880     assert(Op0.getOpcode() == ISD::FABS);
6881     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
6882                                 DAG.getConstant(~SignBit, DL, MVT::i32));
6883     return DCI.CombineTo(N, Lo, NewHi);
6884   }
6885   case RISCVISD::SLLW:
6886   case RISCVISD::SRAW:
6887   case RISCVISD::SRLW:
6888   case RISCVISD::ROLW:
6889   case RISCVISD::RORW: {
6890     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
6891     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6892         SimplifyDemandedLowBitsHelper(1, 5))
6893       return SDValue(N, 0);
6894     break;
6895   }
6896   case RISCVISD::CLZW:
6897   case RISCVISD::CTZW: {
6898     // Only the lower 32 bits of the first operand are read
6899     if (SimplifyDemandedLowBitsHelper(0, 32))
6900       return SDValue(N, 0);
6901     break;
6902   }
6903   case RISCVISD::FSL:
6904   case RISCVISD::FSR: {
6905     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
6906     unsigned BitWidth = N->getOperand(2).getValueSizeInBits();
6907     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
6908     if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1))
6909       return SDValue(N, 0);
6910     break;
6911   }
6912   case RISCVISD::FSLW:
6913   case RISCVISD::FSRW: {
6914     // Only the lower 32 bits of Values and lower 6 bits of shift amount are
6915     // read.
6916     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6917         SimplifyDemandedLowBitsHelper(1, 32) ||
6918         SimplifyDemandedLowBitsHelper(2, 6))
6919       return SDValue(N, 0);
6920     break;
6921   }
6922   case RISCVISD::GREV:
6923   case RISCVISD::GORC: {
6924     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
6925     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
6926     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
6927     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
6928       return SDValue(N, 0);
6929 
6930     return combineGREVI_GORCI(N, DCI.DAG);
6931   }
6932   case RISCVISD::GREVW:
6933   case RISCVISD::GORCW: {
6934     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
6935     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6936         SimplifyDemandedLowBitsHelper(1, 5))
6937       return SDValue(N, 0);
6938 
6939     return combineGREVI_GORCI(N, DCI.DAG);
6940   }
6941   case RISCVISD::SHFL:
6942   case RISCVISD::UNSHFL: {
6943     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
6944     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
6945     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
6946     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
6947       return SDValue(N, 0);
6948 
6949     break;
6950   }
6951   case RISCVISD::SHFLW:
6952   case RISCVISD::UNSHFLW: {
6953     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
6954     SDValue LHS = N->getOperand(0);
6955     SDValue RHS = N->getOperand(1);
6956     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
6957     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4);
6958     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6959         SimplifyDemandedLowBitsHelper(1, 4))
6960       return SDValue(N, 0);
6961 
6962     break;
6963   }
6964   case RISCVISD::BCOMPRESSW:
6965   case RISCVISD::BDECOMPRESSW: {
6966     // Only the lower 32 bits of LHS and RHS are read.
6967     if (SimplifyDemandedLowBitsHelper(0, 32) ||
6968         SimplifyDemandedLowBitsHelper(1, 32))
6969       return SDValue(N, 0);
6970 
6971     break;
6972   }
6973   case RISCVISD::FMV_X_ANYEXTH:
6974   case RISCVISD::FMV_X_ANYEXTW_RV64: {
6975     SDLoc DL(N);
6976     SDValue Op0 = N->getOperand(0);
6977     MVT VT = N->getSimpleValueType(0);
6978     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
6979     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
6980     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
6981     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
6982          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
6983         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
6984          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
6985       assert(Op0.getOperand(0).getValueType() == VT &&
6986              "Unexpected value type!");
6987       return Op0.getOperand(0);
6988     }
6989 
6990     // This is a target-specific version of a DAGCombine performed in
6991     // DAGCombiner::visitBITCAST. It performs the equivalent of:
6992     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
6993     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
6994     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
6995         !Op0.getNode()->hasOneUse())
6996       break;
6997     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
6998     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
6999     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
7000     if (Op0.getOpcode() == ISD::FNEG)
7001       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
7002                          DAG.getConstant(SignBit, DL, VT));
7003 
7004     assert(Op0.getOpcode() == ISD::FABS);
7005     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
7006                        DAG.getConstant(~SignBit, DL, VT));
7007   }
7008   case ISD::ADD:
7009     return performADDCombine(N, DAG, Subtarget);
7010   case ISD::SUB:
7011     return performSUBCombine(N, DAG);
7012   case ISD::AND:
7013     return performANDCombine(N, DAG);
7014   case ISD::OR:
7015     return performORCombine(N, DAG, Subtarget);
7016   case ISD::XOR:
7017     return performXORCombine(N, DAG);
7018   case ISD::ANY_EXTEND:
7019     return performANY_EXTENDCombine(N, DCI, Subtarget);
7020   case ISD::ZERO_EXTEND:
7021     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
7022     // type legalization. This is safe because fp_to_uint produces poison if
7023     // it overflows.
7024     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() &&
7025         N->getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
7026         isTypeLegal(N->getOperand(0).getOperand(0).getValueType()))
7027       return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
7028                          N->getOperand(0).getOperand(0));
7029     return SDValue();
7030   case RISCVISD::SELECT_CC: {
7031     // Transform
7032     SDValue LHS = N->getOperand(0);
7033     SDValue RHS = N->getOperand(1);
7034     SDValue TrueV = N->getOperand(3);
7035     SDValue FalseV = N->getOperand(4);
7036 
7037     // If the True and False values are the same, we don't need a select_cc.
7038     if (TrueV == FalseV)
7039       return TrueV;
7040 
7041     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
7042     if (!ISD::isIntEqualitySetCC(CCVal))
7043       break;
7044 
7045     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
7046     //      (select_cc X, Y, lt, trueV, falseV)
7047     // Sometimes the setcc is introduced after select_cc has been formed.
7048     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
7049         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
7050       // If we're looking for eq 0 instead of ne 0, we need to invert the
7051       // condition.
7052       bool Invert = CCVal == ISD::SETEQ;
7053       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
7054       if (Invert)
7055         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7056 
7057       SDLoc DL(N);
7058       RHS = LHS.getOperand(1);
7059       LHS = LHS.getOperand(0);
7060       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
7061 
7062       SDValue TargetCC = DAG.getCondCode(CCVal);
7063       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
7064                          {LHS, RHS, TargetCC, TrueV, FalseV});
7065     }
7066 
7067     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
7068     //      (select_cc X, Y, eq/ne, trueV, falseV)
7069     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
7070       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
7071                          {LHS.getOperand(0), LHS.getOperand(1),
7072                           N->getOperand(2), TrueV, FalseV});
7073     // (select_cc X, 1, setne, trueV, falseV) ->
7074     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
7075     // This can occur when legalizing some floating point comparisons.
7076     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
7077     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
7078       SDLoc DL(N);
7079       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7080       SDValue TargetCC = DAG.getCondCode(CCVal);
7081       RHS = DAG.getConstant(0, DL, LHS.getValueType());
7082       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
7083                          {LHS, RHS, TargetCC, TrueV, FalseV});
7084     }
7085 
7086     break;
7087   }
7088   case RISCVISD::BR_CC: {
7089     SDValue LHS = N->getOperand(1);
7090     SDValue RHS = N->getOperand(2);
7091     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
7092     if (!ISD::isIntEqualitySetCC(CCVal))
7093       break;
7094 
7095     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
7096     //      (br_cc X, Y, lt, dest)
7097     // Sometimes the setcc is introduced after br_cc has been formed.
7098     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
7099         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
7100       // If we're looking for eq 0 instead of ne 0, we need to invert the
7101       // condition.
7102       bool Invert = CCVal == ISD::SETEQ;
7103       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
7104       if (Invert)
7105         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7106 
7107       SDLoc DL(N);
7108       RHS = LHS.getOperand(1);
7109       LHS = LHS.getOperand(0);
7110       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
7111 
7112       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
7113                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
7114                          N->getOperand(4));
7115     }
7116 
7117     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
7118     //      (br_cc X, Y, eq/ne, trueV, falseV)
7119     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
7120       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
7121                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
7122                          N->getOperand(3), N->getOperand(4));
7123 
7124     // (br_cc X, 1, setne, br_cc) ->
7125     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
7126     // This can occur when legalizing some floating point comparisons.
7127     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
7128     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
7129       SDLoc DL(N);
7130       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7131       SDValue TargetCC = DAG.getCondCode(CCVal);
7132       RHS = DAG.getConstant(0, DL, LHS.getValueType());
7133       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
7134                          N->getOperand(0), LHS, RHS, TargetCC,
7135                          N->getOperand(4));
7136     }
7137     break;
7138   }
7139   case ISD::FCOPYSIGN: {
7140     EVT VT = N->getValueType(0);
7141     if (!VT.isVector())
7142       break;
7143     // There is a form of VFSGNJ which injects the negated sign of its second
7144     // operand. Try and bubble any FNEG up after the extend/round to produce
7145     // this optimized pattern. Avoid modifying cases where FP_ROUND and
7146     // TRUNC=1.
7147     SDValue In2 = N->getOperand(1);
7148     // Avoid cases where the extend/round has multiple uses, as duplicating
7149     // those is typically more expensive than removing a fneg.
7150     if (!In2.hasOneUse())
7151       break;
7152     if (In2.getOpcode() != ISD::FP_EXTEND &&
7153         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
7154       break;
7155     In2 = In2.getOperand(0);
7156     if (In2.getOpcode() != ISD::FNEG)
7157       break;
7158     SDLoc DL(N);
7159     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
7160     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
7161                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
7162   }
7163   case ISD::MGATHER:
7164   case ISD::MSCATTER:
7165   case ISD::VP_GATHER:
7166   case ISD::VP_SCATTER: {
7167     if (!DCI.isBeforeLegalize())
7168       break;
7169     SDValue Index, ScaleOp;
7170     bool IsIndexScaled = false;
7171     bool IsIndexSigned = false;
7172     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
7173       Index = VPGSN->getIndex();
7174       ScaleOp = VPGSN->getScale();
7175       IsIndexScaled = VPGSN->isIndexScaled();
7176       IsIndexSigned = VPGSN->isIndexSigned();
7177     } else {
7178       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
7179       Index = MGSN->getIndex();
7180       ScaleOp = MGSN->getScale();
7181       IsIndexScaled = MGSN->isIndexScaled();
7182       IsIndexSigned = MGSN->isIndexSigned();
7183     }
7184     EVT IndexVT = Index.getValueType();
7185     MVT XLenVT = Subtarget.getXLenVT();
7186     // RISCV indexed loads only support the "unsigned unscaled" addressing
7187     // mode, so anything else must be manually legalized.
7188     bool NeedsIdxLegalization =
7189         IsIndexScaled ||
7190         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
7191     if (!NeedsIdxLegalization)
7192       break;
7193 
7194     SDLoc DL(N);
7195 
7196     // Any index legalization should first promote to XLenVT, so we don't lose
7197     // bits when scaling. This may create an illegal index type so we let
7198     // LLVM's legalization take care of the splitting.
7199     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
7200     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
7201       IndexVT = IndexVT.changeVectorElementType(XLenVT);
7202       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
7203                           DL, IndexVT, Index);
7204     }
7205 
7206     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
7207     if (IsIndexScaled && Scale != 1) {
7208       // Manually scale the indices by the element size.
7209       // TODO: Sanitize the scale operand here?
7210       // TODO: For VP nodes, should we use VP_SHL here?
7211       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
7212       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
7213       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
7214     }
7215 
7216     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
7217     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
7218       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
7219                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
7220                               VPGN->getScale(), VPGN->getMask(),
7221                               VPGN->getVectorLength()},
7222                              VPGN->getMemOperand(), NewIndexTy);
7223     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
7224       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
7225                               {VPSN->getChain(), VPSN->getValue(),
7226                                VPSN->getBasePtr(), Index, VPSN->getScale(),
7227                                VPSN->getMask(), VPSN->getVectorLength()},
7228                               VPSN->getMemOperand(), NewIndexTy);
7229     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
7230       return DAG.getMaskedGather(
7231           N->getVTList(), MGN->getMemoryVT(), DL,
7232           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
7233            MGN->getBasePtr(), Index, MGN->getScale()},
7234           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
7235     const auto *MSN = cast<MaskedScatterSDNode>(N);
7236     return DAG.getMaskedScatter(
7237         N->getVTList(), MSN->getMemoryVT(), DL,
7238         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
7239          Index, MSN->getScale()},
7240         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
7241   }
7242   case RISCVISD::SRA_VL:
7243   case RISCVISD::SRL_VL:
7244   case RISCVISD::SHL_VL: {
7245     SDValue ShAmt = N->getOperand(1);
7246     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
7247       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
7248       SDLoc DL(N);
7249       SDValue VL = N->getOperand(3);
7250       EVT VT = N->getValueType(0);
7251       ShAmt =
7252           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL);
7253       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
7254                          N->getOperand(2), N->getOperand(3));
7255     }
7256     break;
7257   }
7258   case ISD::SRA:
7259   case ISD::SRL:
7260   case ISD::SHL: {
7261     SDValue ShAmt = N->getOperand(1);
7262     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
7263       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
7264       SDLoc DL(N);
7265       EVT VT = N->getValueType(0);
7266       ShAmt =
7267           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0));
7268       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
7269     }
7270     break;
7271   }
7272   case RISCVISD::MUL_VL: {
7273     SDValue Op0 = N->getOperand(0);
7274     SDValue Op1 = N->getOperand(1);
7275     if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG))
7276       return V;
7277     if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG))
7278       return V;
7279     return SDValue();
7280   }
7281   case ISD::STORE: {
7282     auto *Store = cast<StoreSDNode>(N);
7283     SDValue Val = Store->getValue();
7284     // Combine store of vmv.x.s to vse with VL of 1.
7285     // FIXME: Support FP.
7286     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
7287       SDValue Src = Val.getOperand(0);
7288       EVT VecVT = Src.getValueType();
7289       EVT MemVT = Store->getMemoryVT();
7290       // The memory VT and the element type must match.
7291       if (VecVT.getVectorElementType() == MemVT) {
7292         SDLoc DL(N);
7293         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
7294         return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(),
7295                               DAG.getConstant(1, DL, MaskVT),
7296                               DAG.getConstant(1, DL, Subtarget.getXLenVT()),
7297                               Store->getPointerInfo(),
7298                               Store->getOriginalAlign(),
7299                               Store->getMemOperand()->getFlags());
7300       }
7301     }
7302 
7303     break;
7304   }
7305   }
7306 
7307   return SDValue();
7308 }
7309 
7310 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
7311     const SDNode *N, CombineLevel Level) const {
7312   // The following folds are only desirable if `(OP _, c1 << c2)` can be
7313   // materialised in fewer instructions than `(OP _, c1)`:
7314   //
7315   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
7316   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
7317   SDValue N0 = N->getOperand(0);
7318   EVT Ty = N0.getValueType();
7319   if (Ty.isScalarInteger() &&
7320       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
7321     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7322     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
7323     if (C1 && C2) {
7324       const APInt &C1Int = C1->getAPIntValue();
7325       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
7326 
7327       // We can materialise `c1 << c2` into an add immediate, so it's "free",
7328       // and the combine should happen, to potentially allow further combines
7329       // later.
7330       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
7331           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
7332         return true;
7333 
7334       // We can materialise `c1` in an add immediate, so it's "free", and the
7335       // combine should be prevented.
7336       if (C1Int.getMinSignedBits() <= 64 &&
7337           isLegalAddImmediate(C1Int.getSExtValue()))
7338         return false;
7339 
7340       // Neither constant will fit into an immediate, so find materialisation
7341       // costs.
7342       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
7343                                               Subtarget.getFeatureBits(),
7344                                               /*CompressionCost*/true);
7345       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
7346           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
7347           /*CompressionCost*/true);
7348 
7349       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
7350       // combine should be prevented.
7351       if (C1Cost < ShiftedC1Cost)
7352         return false;
7353     }
7354   }
7355   return true;
7356 }
7357 
7358 bool RISCVTargetLowering::targetShrinkDemandedConstant(
7359     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
7360     TargetLoweringOpt &TLO) const {
7361   // Delay this optimization as late as possible.
7362   if (!TLO.LegalOps)
7363     return false;
7364 
7365   EVT VT = Op.getValueType();
7366   if (VT.isVector())
7367     return false;
7368 
7369   // Only handle AND for now.
7370   if (Op.getOpcode() != ISD::AND)
7371     return false;
7372 
7373   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7374   if (!C)
7375     return false;
7376 
7377   const APInt &Mask = C->getAPIntValue();
7378 
7379   // Clear all non-demanded bits initially.
7380   APInt ShrunkMask = Mask & DemandedBits;
7381 
7382   // Try to make a smaller immediate by setting undemanded bits.
7383 
7384   APInt ExpandedMask = Mask | ~DemandedBits;
7385 
7386   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
7387     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
7388   };
7389   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
7390     if (NewMask == Mask)
7391       return true;
7392     SDLoc DL(Op);
7393     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
7394     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
7395     return TLO.CombineTo(Op, NewOp);
7396   };
7397 
7398   // If the shrunk mask fits in sign extended 12 bits, let the target
7399   // independent code apply it.
7400   if (ShrunkMask.isSignedIntN(12))
7401     return false;
7402 
7403   // Preserve (and X, 0xffff) when zext.h is supported.
7404   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
7405     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
7406     if (IsLegalMask(NewMask))
7407       return UseMask(NewMask);
7408   }
7409 
7410   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
7411   if (VT == MVT::i64) {
7412     APInt NewMask = APInt(64, 0xffffffff);
7413     if (IsLegalMask(NewMask))
7414       return UseMask(NewMask);
7415   }
7416 
7417   // For the remaining optimizations, we need to be able to make a negative
7418   // number through a combination of mask and undemanded bits.
7419   if (!ExpandedMask.isNegative())
7420     return false;
7421 
7422   // What is the fewest number of bits we need to represent the negative number.
7423   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
7424 
7425   // Try to make a 12 bit negative immediate. If that fails try to make a 32
7426   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
7427   APInt NewMask = ShrunkMask;
7428   if (MinSignedBits <= 12)
7429     NewMask.setBitsFrom(11);
7430   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
7431     NewMask.setBitsFrom(31);
7432   else
7433     return false;
7434 
7435   // Check that our new mask is a subset of the demanded mask.
7436   assert(IsLegalMask(NewMask));
7437   return UseMask(NewMask);
7438 }
7439 
7440 static void computeGREV(APInt &Src, unsigned ShAmt) {
7441   ShAmt &= Src.getBitWidth() - 1;
7442   uint64_t x = Src.getZExtValue();
7443   if (ShAmt & 1)
7444     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
7445   if (ShAmt & 2)
7446     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
7447   if (ShAmt & 4)
7448     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
7449   if (ShAmt & 8)
7450     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
7451   if (ShAmt & 16)
7452     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
7453   if (ShAmt & 32)
7454     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
7455   Src = x;
7456 }
7457 
7458 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
7459                                                         KnownBits &Known,
7460                                                         const APInt &DemandedElts,
7461                                                         const SelectionDAG &DAG,
7462                                                         unsigned Depth) const {
7463   unsigned BitWidth = Known.getBitWidth();
7464   unsigned Opc = Op.getOpcode();
7465   assert((Opc >= ISD::BUILTIN_OP_END ||
7466           Opc == ISD::INTRINSIC_WO_CHAIN ||
7467           Opc == ISD::INTRINSIC_W_CHAIN ||
7468           Opc == ISD::INTRINSIC_VOID) &&
7469          "Should use MaskedValueIsZero if you don't know whether Op"
7470          " is a target node!");
7471 
7472   Known.resetAll();
7473   switch (Opc) {
7474   default: break;
7475   case RISCVISD::SELECT_CC: {
7476     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
7477     // If we don't know any bits, early out.
7478     if (Known.isUnknown())
7479       break;
7480     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
7481 
7482     // Only known if known in both the LHS and RHS.
7483     Known = KnownBits::commonBits(Known, Known2);
7484     break;
7485   }
7486   case RISCVISD::REMUW: {
7487     KnownBits Known2;
7488     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
7489     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
7490     // We only care about the lower 32 bits.
7491     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
7492     // Restore the original width by sign extending.
7493     Known = Known.sext(BitWidth);
7494     break;
7495   }
7496   case RISCVISD::DIVUW: {
7497     KnownBits Known2;
7498     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
7499     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
7500     // We only care about the lower 32 bits.
7501     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
7502     // Restore the original width by sign extending.
7503     Known = Known.sext(BitWidth);
7504     break;
7505   }
7506   case RISCVISD::CTZW: {
7507     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7508     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
7509     unsigned LowBits = Log2_32(PossibleTZ) + 1;
7510     Known.Zero.setBitsFrom(LowBits);
7511     break;
7512   }
7513   case RISCVISD::CLZW: {
7514     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7515     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
7516     unsigned LowBits = Log2_32(PossibleLZ) + 1;
7517     Known.Zero.setBitsFrom(LowBits);
7518     break;
7519   }
7520   case RISCVISD::GREV:
7521   case RISCVISD::GREVW: {
7522     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7523       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7524       if (Opc == RISCVISD::GREVW)
7525         Known = Known.trunc(32);
7526       unsigned ShAmt = C->getZExtValue();
7527       computeGREV(Known.Zero, ShAmt);
7528       computeGREV(Known.One, ShAmt);
7529       if (Opc == RISCVISD::GREVW)
7530         Known = Known.sext(BitWidth);
7531     }
7532     break;
7533   }
7534   case RISCVISD::READ_VLENB:
7535     // We assume VLENB is at least 16 bytes.
7536     Known.Zero.setLowBits(4);
7537     // We assume VLENB is no more than 65536 / 8 bytes.
7538     Known.Zero.setBitsFrom(14);
7539     break;
7540   case ISD::INTRINSIC_W_CHAIN: {
7541     unsigned IntNo = Op.getConstantOperandVal(1);
7542     switch (IntNo) {
7543     default:
7544       // We can't do anything for most intrinsics.
7545       break;
7546     case Intrinsic::riscv_vsetvli:
7547     case Intrinsic::riscv_vsetvlimax:
7548       // Assume that VL output is positive and would fit in an int32_t.
7549       // TODO: VLEN might be capped at 16 bits in a future V spec update.
7550       if (BitWidth >= 32)
7551         Known.Zero.setBitsFrom(31);
7552       break;
7553     }
7554     break;
7555   }
7556   }
7557 }
7558 
7559 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
7560     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
7561     unsigned Depth) const {
7562   switch (Op.getOpcode()) {
7563   default:
7564     break;
7565   case RISCVISD::SELECT_CC: {
7566     unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
7567     if (Tmp == 1) return 1;  // Early out.
7568     unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
7569     return std::min(Tmp, Tmp2);
7570   }
7571   case RISCVISD::SLLW:
7572   case RISCVISD::SRAW:
7573   case RISCVISD::SRLW:
7574   case RISCVISD::DIVW:
7575   case RISCVISD::DIVUW:
7576   case RISCVISD::REMUW:
7577   case RISCVISD::ROLW:
7578   case RISCVISD::RORW:
7579   case RISCVISD::GREVW:
7580   case RISCVISD::GORCW:
7581   case RISCVISD::FSLW:
7582   case RISCVISD::FSRW:
7583   case RISCVISD::SHFLW:
7584   case RISCVISD::UNSHFLW:
7585   case RISCVISD::BCOMPRESSW:
7586   case RISCVISD::BDECOMPRESSW:
7587   case RISCVISD::FCVT_W_RTZ_RV64:
7588   case RISCVISD::FCVT_WU_RTZ_RV64:
7589     // TODO: As the result is sign-extended, this is conservatively correct. A
7590     // more precise answer could be calculated for SRAW depending on known
7591     // bits in the shift amount.
7592     return 33;
7593   case RISCVISD::SHFL:
7594   case RISCVISD::UNSHFL: {
7595     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
7596     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
7597     // will stay within the upper 32 bits. If there were more than 32 sign bits
7598     // before there will be at least 33 sign bits after.
7599     if (Op.getValueType() == MVT::i64 &&
7600         isa<ConstantSDNode>(Op.getOperand(1)) &&
7601         (Op.getConstantOperandVal(1) & 0x10) == 0) {
7602       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
7603       if (Tmp > 32)
7604         return 33;
7605     }
7606     break;
7607   }
7608   case RISCVISD::VMV_X_S:
7609     // The number of sign bits of the scalar result is computed by obtaining the
7610     // element type of the input vector operand, subtracting its width from the
7611     // XLEN, and then adding one (sign bit within the element type). If the
7612     // element type is wider than XLen, the least-significant XLEN bits are
7613     // taken.
7614     if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
7615       return 1;
7616     return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
7617   }
7618 
7619   return 1;
7620 }
7621 
7622 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
7623                                                   MachineBasicBlock *BB) {
7624   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
7625 
7626   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
7627   // Should the count have wrapped while it was being read, we need to try
7628   // again.
7629   // ...
7630   // read:
7631   // rdcycleh x3 # load high word of cycle
7632   // rdcycle  x2 # load low word of cycle
7633   // rdcycleh x4 # load high word of cycle
7634   // bne x3, x4, read # check if high word reads match, otherwise try again
7635   // ...
7636 
7637   MachineFunction &MF = *BB->getParent();
7638   const BasicBlock *LLVM_BB = BB->getBasicBlock();
7639   MachineFunction::iterator It = ++BB->getIterator();
7640 
7641   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
7642   MF.insert(It, LoopMBB);
7643 
7644   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
7645   MF.insert(It, DoneMBB);
7646 
7647   // Transfer the remainder of BB and its successor edges to DoneMBB.
7648   DoneMBB->splice(DoneMBB->begin(), BB,
7649                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
7650   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
7651 
7652   BB->addSuccessor(LoopMBB);
7653 
7654   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7655   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
7656   Register LoReg = MI.getOperand(0).getReg();
7657   Register HiReg = MI.getOperand(1).getReg();
7658   DebugLoc DL = MI.getDebugLoc();
7659 
7660   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
7661   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
7662       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
7663       .addReg(RISCV::X0);
7664   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
7665       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
7666       .addReg(RISCV::X0);
7667   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
7668       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
7669       .addReg(RISCV::X0);
7670 
7671   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
7672       .addReg(HiReg)
7673       .addReg(ReadAgainReg)
7674       .addMBB(LoopMBB);
7675 
7676   LoopMBB->addSuccessor(LoopMBB);
7677   LoopMBB->addSuccessor(DoneMBB);
7678 
7679   MI.eraseFromParent();
7680 
7681   return DoneMBB;
7682 }
7683 
7684 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
7685                                              MachineBasicBlock *BB) {
7686   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
7687 
7688   MachineFunction &MF = *BB->getParent();
7689   DebugLoc DL = MI.getDebugLoc();
7690   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
7691   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
7692   Register LoReg = MI.getOperand(0).getReg();
7693   Register HiReg = MI.getOperand(1).getReg();
7694   Register SrcReg = MI.getOperand(2).getReg();
7695   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
7696   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
7697 
7698   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
7699                           RI);
7700   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
7701   MachineMemOperand *MMOLo =
7702       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
7703   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
7704       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
7705   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
7706       .addFrameIndex(FI)
7707       .addImm(0)
7708       .addMemOperand(MMOLo);
7709   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
7710       .addFrameIndex(FI)
7711       .addImm(4)
7712       .addMemOperand(MMOHi);
7713   MI.eraseFromParent(); // The pseudo instruction is gone now.
7714   return BB;
7715 }
7716 
7717 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
7718                                                  MachineBasicBlock *BB) {
7719   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
7720          "Unexpected instruction");
7721 
7722   MachineFunction &MF = *BB->getParent();
7723   DebugLoc DL = MI.getDebugLoc();
7724   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
7725   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
7726   Register DstReg = MI.getOperand(0).getReg();
7727   Register LoReg = MI.getOperand(1).getReg();
7728   Register HiReg = MI.getOperand(2).getReg();
7729   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
7730   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
7731 
7732   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
7733   MachineMemOperand *MMOLo =
7734       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
7735   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
7736       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
7737   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
7738       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
7739       .addFrameIndex(FI)
7740       .addImm(0)
7741       .addMemOperand(MMOLo);
7742   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
7743       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
7744       .addFrameIndex(FI)
7745       .addImm(4)
7746       .addMemOperand(MMOHi);
7747   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
7748   MI.eraseFromParent(); // The pseudo instruction is gone now.
7749   return BB;
7750 }
7751 
7752 static bool isSelectPseudo(MachineInstr &MI) {
7753   switch (MI.getOpcode()) {
7754   default:
7755     return false;
7756   case RISCV::Select_GPR_Using_CC_GPR:
7757   case RISCV::Select_FPR16_Using_CC_GPR:
7758   case RISCV::Select_FPR32_Using_CC_GPR:
7759   case RISCV::Select_FPR64_Using_CC_GPR:
7760     return true;
7761   }
7762 }
7763 
7764 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
7765                                            MachineBasicBlock *BB,
7766                                            const RISCVSubtarget &Subtarget) {
7767   // To "insert" Select_* instructions, we actually have to insert the triangle
7768   // control-flow pattern.  The incoming instructions know the destination vreg
7769   // to set, the condition code register to branch on, the true/false values to
7770   // select between, and the condcode to use to select the appropriate branch.
7771   //
7772   // We produce the following control flow:
7773   //     HeadMBB
7774   //     |  \
7775   //     |  IfFalseMBB
7776   //     | /
7777   //    TailMBB
7778   //
7779   // When we find a sequence of selects we attempt to optimize their emission
7780   // by sharing the control flow. Currently we only handle cases where we have
7781   // multiple selects with the exact same condition (same LHS, RHS and CC).
7782   // The selects may be interleaved with other instructions if the other
7783   // instructions meet some requirements we deem safe:
7784   // - They are debug instructions. Otherwise,
7785   // - They do not have side-effects, do not access memory and their inputs do
7786   //   not depend on the results of the select pseudo-instructions.
7787   // The TrueV/FalseV operands of the selects cannot depend on the result of
7788   // previous selects in the sequence.
7789   // These conditions could be further relaxed. See the X86 target for a
7790   // related approach and more information.
7791   Register LHS = MI.getOperand(1).getReg();
7792   Register RHS = MI.getOperand(2).getReg();
7793   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
7794 
7795   SmallVector<MachineInstr *, 4> SelectDebugValues;
7796   SmallSet<Register, 4> SelectDests;
7797   SelectDests.insert(MI.getOperand(0).getReg());
7798 
7799   MachineInstr *LastSelectPseudo = &MI;
7800 
7801   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
7802        SequenceMBBI != E; ++SequenceMBBI) {
7803     if (SequenceMBBI->isDebugInstr())
7804       continue;
7805     else if (isSelectPseudo(*SequenceMBBI)) {
7806       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
7807           SequenceMBBI->getOperand(2).getReg() != RHS ||
7808           SequenceMBBI->getOperand(3).getImm() != CC ||
7809           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
7810           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
7811         break;
7812       LastSelectPseudo = &*SequenceMBBI;
7813       SequenceMBBI->collectDebugValues(SelectDebugValues);
7814       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
7815     } else {
7816       if (SequenceMBBI->hasUnmodeledSideEffects() ||
7817           SequenceMBBI->mayLoadOrStore())
7818         break;
7819       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
7820             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
7821           }))
7822         break;
7823     }
7824   }
7825 
7826   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
7827   const BasicBlock *LLVM_BB = BB->getBasicBlock();
7828   DebugLoc DL = MI.getDebugLoc();
7829   MachineFunction::iterator I = ++BB->getIterator();
7830 
7831   MachineBasicBlock *HeadMBB = BB;
7832   MachineFunction *F = BB->getParent();
7833   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
7834   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
7835 
7836   F->insert(I, IfFalseMBB);
7837   F->insert(I, TailMBB);
7838 
7839   // Transfer debug instructions associated with the selects to TailMBB.
7840   for (MachineInstr *DebugInstr : SelectDebugValues) {
7841     TailMBB->push_back(DebugInstr->removeFromParent());
7842   }
7843 
7844   // Move all instructions after the sequence to TailMBB.
7845   TailMBB->splice(TailMBB->end(), HeadMBB,
7846                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
7847   // Update machine-CFG edges by transferring all successors of the current
7848   // block to the new block which will contain the Phi nodes for the selects.
7849   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
7850   // Set the successors for HeadMBB.
7851   HeadMBB->addSuccessor(IfFalseMBB);
7852   HeadMBB->addSuccessor(TailMBB);
7853 
7854   // Insert appropriate branch.
7855   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
7856     .addReg(LHS)
7857     .addReg(RHS)
7858     .addMBB(TailMBB);
7859 
7860   // IfFalseMBB just falls through to TailMBB.
7861   IfFalseMBB->addSuccessor(TailMBB);
7862 
7863   // Create PHIs for all of the select pseudo-instructions.
7864   auto SelectMBBI = MI.getIterator();
7865   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
7866   auto InsertionPoint = TailMBB->begin();
7867   while (SelectMBBI != SelectEnd) {
7868     auto Next = std::next(SelectMBBI);
7869     if (isSelectPseudo(*SelectMBBI)) {
7870       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
7871       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
7872               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
7873           .addReg(SelectMBBI->getOperand(4).getReg())
7874           .addMBB(HeadMBB)
7875           .addReg(SelectMBBI->getOperand(5).getReg())
7876           .addMBB(IfFalseMBB);
7877       SelectMBBI->eraseFromParent();
7878     }
7879     SelectMBBI = Next;
7880   }
7881 
7882   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7883   return TailMBB;
7884 }
7885 
7886 MachineBasicBlock *
7887 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
7888                                                  MachineBasicBlock *BB) const {
7889   switch (MI.getOpcode()) {
7890   default:
7891     llvm_unreachable("Unexpected instr type to insert");
7892   case RISCV::ReadCycleWide:
7893     assert(!Subtarget.is64Bit() &&
7894            "ReadCycleWrite is only to be used on riscv32");
7895     return emitReadCycleWidePseudo(MI, BB);
7896   case RISCV::Select_GPR_Using_CC_GPR:
7897   case RISCV::Select_FPR16_Using_CC_GPR:
7898   case RISCV::Select_FPR32_Using_CC_GPR:
7899   case RISCV::Select_FPR64_Using_CC_GPR:
7900     return emitSelectPseudo(MI, BB, Subtarget);
7901   case RISCV::BuildPairF64Pseudo:
7902     return emitBuildPairF64Pseudo(MI, BB);
7903   case RISCV::SplitF64Pseudo:
7904     return emitSplitF64Pseudo(MI, BB);
7905   }
7906 }
7907 
7908 // Calling Convention Implementation.
7909 // The expectations for frontend ABI lowering vary from target to target.
7910 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
7911 // details, but this is a longer term goal. For now, we simply try to keep the
7912 // role of the frontend as simple and well-defined as possible. The rules can
7913 // be summarised as:
7914 // * Never split up large scalar arguments. We handle them here.
7915 // * If a hardfloat calling convention is being used, and the struct may be
7916 // passed in a pair of registers (fp+fp, int+fp), and both registers are
7917 // available, then pass as two separate arguments. If either the GPRs or FPRs
7918 // are exhausted, then pass according to the rule below.
7919 // * If a struct could never be passed in registers or directly in a stack
7920 // slot (as it is larger than 2*XLEN and the floating point rules don't
7921 // apply), then pass it using a pointer with the byval attribute.
7922 // * If a struct is less than 2*XLEN, then coerce to either a two-element
7923 // word-sized array or a 2*XLEN scalar (depending on alignment).
7924 // * The frontend can determine whether a struct is returned by reference or
7925 // not based on its size and fields. If it will be returned by reference, the
7926 // frontend must modify the prototype so a pointer with the sret annotation is
7927 // passed as the first argument. This is not necessary for large scalar
7928 // returns.
7929 // * Struct return values and varargs should be coerced to structs containing
7930 // register-size fields in the same situations they would be for fixed
7931 // arguments.
7932 
7933 static const MCPhysReg ArgGPRs[] = {
7934   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
7935   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
7936 };
7937 static const MCPhysReg ArgFPR16s[] = {
7938   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
7939   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
7940 };
7941 static const MCPhysReg ArgFPR32s[] = {
7942   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
7943   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
7944 };
7945 static const MCPhysReg ArgFPR64s[] = {
7946   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
7947   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
7948 };
7949 // This is an interim calling convention and it may be changed in the future.
7950 static const MCPhysReg ArgVRs[] = {
7951     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
7952     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
7953     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
7954 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
7955                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
7956                                      RISCV::V20M2, RISCV::V22M2};
7957 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
7958                                      RISCV::V20M4};
7959 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
7960 
7961 // Pass a 2*XLEN argument that has been split into two XLEN values through
7962 // registers or the stack as necessary.
7963 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
7964                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
7965                                 MVT ValVT2, MVT LocVT2,
7966                                 ISD::ArgFlagsTy ArgFlags2) {
7967   unsigned XLenInBytes = XLen / 8;
7968   if (Register Reg = State.AllocateReg(ArgGPRs)) {
7969     // At least one half can be passed via register.
7970     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
7971                                      VA1.getLocVT(), CCValAssign::Full));
7972   } else {
7973     // Both halves must be passed on the stack, with proper alignment.
7974     Align StackAlign =
7975         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
7976     State.addLoc(
7977         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
7978                             State.AllocateStack(XLenInBytes, StackAlign),
7979                             VA1.getLocVT(), CCValAssign::Full));
7980     State.addLoc(CCValAssign::getMem(
7981         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
7982         LocVT2, CCValAssign::Full));
7983     return false;
7984   }
7985 
7986   if (Register Reg = State.AllocateReg(ArgGPRs)) {
7987     // The second half can also be passed via register.
7988     State.addLoc(
7989         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
7990   } else {
7991     // The second half is passed via the stack, without additional alignment.
7992     State.addLoc(CCValAssign::getMem(
7993         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
7994         LocVT2, CCValAssign::Full));
7995   }
7996 
7997   return false;
7998 }
7999 
8000 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
8001                                Optional<unsigned> FirstMaskArgument,
8002                                CCState &State, const RISCVTargetLowering &TLI) {
8003   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
8004   if (RC == &RISCV::VRRegClass) {
8005     // Assign the first mask argument to V0.
8006     // This is an interim calling convention and it may be changed in the
8007     // future.
8008     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
8009       return State.AllocateReg(RISCV::V0);
8010     return State.AllocateReg(ArgVRs);
8011   }
8012   if (RC == &RISCV::VRM2RegClass)
8013     return State.AllocateReg(ArgVRM2s);
8014   if (RC == &RISCV::VRM4RegClass)
8015     return State.AllocateReg(ArgVRM4s);
8016   if (RC == &RISCV::VRM8RegClass)
8017     return State.AllocateReg(ArgVRM8s);
8018   llvm_unreachable("Unhandled register class for ValueType");
8019 }
8020 
8021 // Implements the RISC-V calling convention. Returns true upon failure.
8022 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
8023                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
8024                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
8025                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
8026                      Optional<unsigned> FirstMaskArgument) {
8027   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
8028   assert(XLen == 32 || XLen == 64);
8029   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
8030 
8031   // Any return value split in to more than two values can't be returned
8032   // directly. Vectors are returned via the available vector registers.
8033   if (!LocVT.isVector() && IsRet && ValNo > 1)
8034     return true;
8035 
8036   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
8037   // variadic argument, or if no F16/F32 argument registers are available.
8038   bool UseGPRForF16_F32 = true;
8039   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
8040   // variadic argument, or if no F64 argument registers are available.
8041   bool UseGPRForF64 = true;
8042 
8043   switch (ABI) {
8044   default:
8045     llvm_unreachable("Unexpected ABI");
8046   case RISCVABI::ABI_ILP32:
8047   case RISCVABI::ABI_LP64:
8048     break;
8049   case RISCVABI::ABI_ILP32F:
8050   case RISCVABI::ABI_LP64F:
8051     UseGPRForF16_F32 = !IsFixed;
8052     break;
8053   case RISCVABI::ABI_ILP32D:
8054   case RISCVABI::ABI_LP64D:
8055     UseGPRForF16_F32 = !IsFixed;
8056     UseGPRForF64 = !IsFixed;
8057     break;
8058   }
8059 
8060   // FPR16, FPR32, and FPR64 alias each other.
8061   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
8062     UseGPRForF16_F32 = true;
8063     UseGPRForF64 = true;
8064   }
8065 
8066   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
8067   // similar local variables rather than directly checking against the target
8068   // ABI.
8069 
8070   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
8071     LocVT = XLenVT;
8072     LocInfo = CCValAssign::BCvt;
8073   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
8074     LocVT = MVT::i64;
8075     LocInfo = CCValAssign::BCvt;
8076   }
8077 
8078   // If this is a variadic argument, the RISC-V calling convention requires
8079   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
8080   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
8081   // be used regardless of whether the original argument was split during
8082   // legalisation or not. The argument will not be passed by registers if the
8083   // original type is larger than 2*XLEN, so the register alignment rule does
8084   // not apply.
8085   unsigned TwoXLenInBytes = (2 * XLen) / 8;
8086   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
8087       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
8088     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
8089     // Skip 'odd' register if necessary.
8090     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
8091       State.AllocateReg(ArgGPRs);
8092   }
8093 
8094   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
8095   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
8096       State.getPendingArgFlags();
8097 
8098   assert(PendingLocs.size() == PendingArgFlags.size() &&
8099          "PendingLocs and PendingArgFlags out of sync");
8100 
8101   // Handle passing f64 on RV32D with a soft float ABI or when floating point
8102   // registers are exhausted.
8103   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
8104     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
8105            "Can't lower f64 if it is split");
8106     // Depending on available argument GPRS, f64 may be passed in a pair of
8107     // GPRs, split between a GPR and the stack, or passed completely on the
8108     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
8109     // cases.
8110     Register Reg = State.AllocateReg(ArgGPRs);
8111     LocVT = MVT::i32;
8112     if (!Reg) {
8113       unsigned StackOffset = State.AllocateStack(8, Align(8));
8114       State.addLoc(
8115           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8116       return false;
8117     }
8118     if (!State.AllocateReg(ArgGPRs))
8119       State.AllocateStack(4, Align(4));
8120     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8121     return false;
8122   }
8123 
8124   // Fixed-length vectors are located in the corresponding scalable-vector
8125   // container types.
8126   if (ValVT.isFixedLengthVector())
8127     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
8128 
8129   // Split arguments might be passed indirectly, so keep track of the pending
8130   // values. Split vectors are passed via a mix of registers and indirectly, so
8131   // treat them as we would any other argument.
8132   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
8133     LocVT = XLenVT;
8134     LocInfo = CCValAssign::Indirect;
8135     PendingLocs.push_back(
8136         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
8137     PendingArgFlags.push_back(ArgFlags);
8138     if (!ArgFlags.isSplitEnd()) {
8139       return false;
8140     }
8141   }
8142 
8143   // If the split argument only had two elements, it should be passed directly
8144   // in registers or on the stack.
8145   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
8146       PendingLocs.size() <= 2) {
8147     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
8148     // Apply the normal calling convention rules to the first half of the
8149     // split argument.
8150     CCValAssign VA = PendingLocs[0];
8151     ISD::ArgFlagsTy AF = PendingArgFlags[0];
8152     PendingLocs.clear();
8153     PendingArgFlags.clear();
8154     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
8155                                ArgFlags);
8156   }
8157 
8158   // Allocate to a register if possible, or else a stack slot.
8159   Register Reg;
8160   unsigned StoreSizeBytes = XLen / 8;
8161   Align StackAlign = Align(XLen / 8);
8162 
8163   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
8164     Reg = State.AllocateReg(ArgFPR16s);
8165   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
8166     Reg = State.AllocateReg(ArgFPR32s);
8167   else if (ValVT == MVT::f64 && !UseGPRForF64)
8168     Reg = State.AllocateReg(ArgFPR64s);
8169   else if (ValVT.isVector()) {
8170     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
8171     if (!Reg) {
8172       // For return values, the vector must be passed fully via registers or
8173       // via the stack.
8174       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
8175       // but we're using all of them.
8176       if (IsRet)
8177         return true;
8178       // Try using a GPR to pass the address
8179       if ((Reg = State.AllocateReg(ArgGPRs))) {
8180         LocVT = XLenVT;
8181         LocInfo = CCValAssign::Indirect;
8182       } else if (ValVT.isScalableVector()) {
8183         report_fatal_error("Unable to pass scalable vector types on the stack");
8184       } else {
8185         // Pass fixed-length vectors on the stack.
8186         LocVT = ValVT;
8187         StoreSizeBytes = ValVT.getStoreSize();
8188         // Align vectors to their element sizes, being careful for vXi1
8189         // vectors.
8190         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
8191       }
8192     }
8193   } else {
8194     Reg = State.AllocateReg(ArgGPRs);
8195   }
8196 
8197   unsigned StackOffset =
8198       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
8199 
8200   // If we reach this point and PendingLocs is non-empty, we must be at the
8201   // end of a split argument that must be passed indirectly.
8202   if (!PendingLocs.empty()) {
8203     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
8204     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
8205 
8206     for (auto &It : PendingLocs) {
8207       if (Reg)
8208         It.convertToReg(Reg);
8209       else
8210         It.convertToMem(StackOffset);
8211       State.addLoc(It);
8212     }
8213     PendingLocs.clear();
8214     PendingArgFlags.clear();
8215     return false;
8216   }
8217 
8218   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
8219           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
8220          "Expected an XLenVT or vector types at this stage");
8221 
8222   if (Reg) {
8223     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8224     return false;
8225   }
8226 
8227   // When a floating-point value is passed on the stack, no bit-conversion is
8228   // needed.
8229   if (ValVT.isFloatingPoint()) {
8230     LocVT = ValVT;
8231     LocInfo = CCValAssign::Full;
8232   }
8233   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8234   return false;
8235 }
8236 
8237 template <typename ArgTy>
8238 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
8239   for (const auto &ArgIdx : enumerate(Args)) {
8240     MVT ArgVT = ArgIdx.value().VT;
8241     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
8242       return ArgIdx.index();
8243   }
8244   return None;
8245 }
8246 
8247 void RISCVTargetLowering::analyzeInputArgs(
8248     MachineFunction &MF, CCState &CCInfo,
8249     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
8250     RISCVCCAssignFn Fn) const {
8251   unsigned NumArgs = Ins.size();
8252   FunctionType *FType = MF.getFunction().getFunctionType();
8253 
8254   Optional<unsigned> FirstMaskArgument;
8255   if (Subtarget.hasVInstructions())
8256     FirstMaskArgument = preAssignMask(Ins);
8257 
8258   for (unsigned i = 0; i != NumArgs; ++i) {
8259     MVT ArgVT = Ins[i].VT;
8260     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
8261 
8262     Type *ArgTy = nullptr;
8263     if (IsRet)
8264       ArgTy = FType->getReturnType();
8265     else if (Ins[i].isOrigArg())
8266       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
8267 
8268     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8269     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
8270            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
8271            FirstMaskArgument)) {
8272       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
8273                         << EVT(ArgVT).getEVTString() << '\n');
8274       llvm_unreachable(nullptr);
8275     }
8276   }
8277 }
8278 
8279 void RISCVTargetLowering::analyzeOutputArgs(
8280     MachineFunction &MF, CCState &CCInfo,
8281     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
8282     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
8283   unsigned NumArgs = Outs.size();
8284 
8285   Optional<unsigned> FirstMaskArgument;
8286   if (Subtarget.hasVInstructions())
8287     FirstMaskArgument = preAssignMask(Outs);
8288 
8289   for (unsigned i = 0; i != NumArgs; i++) {
8290     MVT ArgVT = Outs[i].VT;
8291     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
8292     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
8293 
8294     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8295     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
8296            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
8297            FirstMaskArgument)) {
8298       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
8299                         << EVT(ArgVT).getEVTString() << "\n");
8300       llvm_unreachable(nullptr);
8301     }
8302   }
8303 }
8304 
8305 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
8306 // values.
8307 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
8308                                    const CCValAssign &VA, const SDLoc &DL,
8309                                    const RISCVSubtarget &Subtarget) {
8310   switch (VA.getLocInfo()) {
8311   default:
8312     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8313   case CCValAssign::Full:
8314     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
8315       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
8316     break;
8317   case CCValAssign::BCvt:
8318     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
8319       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
8320     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
8321       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
8322     else
8323       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
8324     break;
8325   }
8326   return Val;
8327 }
8328 
8329 // The caller is responsible for loading the full value if the argument is
8330 // passed with CCValAssign::Indirect.
8331 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
8332                                 const CCValAssign &VA, const SDLoc &DL,
8333                                 const RISCVTargetLowering &TLI) {
8334   MachineFunction &MF = DAG.getMachineFunction();
8335   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8336   EVT LocVT = VA.getLocVT();
8337   SDValue Val;
8338   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
8339   Register VReg = RegInfo.createVirtualRegister(RC);
8340   RegInfo.addLiveIn(VA.getLocReg(), VReg);
8341   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
8342 
8343   if (VA.getLocInfo() == CCValAssign::Indirect)
8344     return Val;
8345 
8346   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
8347 }
8348 
8349 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
8350                                    const CCValAssign &VA, const SDLoc &DL,
8351                                    const RISCVSubtarget &Subtarget) {
8352   EVT LocVT = VA.getLocVT();
8353 
8354   switch (VA.getLocInfo()) {
8355   default:
8356     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8357   case CCValAssign::Full:
8358     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
8359       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
8360     break;
8361   case CCValAssign::BCvt:
8362     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
8363       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
8364     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
8365       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
8366     else
8367       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
8368     break;
8369   }
8370   return Val;
8371 }
8372 
8373 // The caller is responsible for loading the full value if the argument is
8374 // passed with CCValAssign::Indirect.
8375 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
8376                                 const CCValAssign &VA, const SDLoc &DL) {
8377   MachineFunction &MF = DAG.getMachineFunction();
8378   MachineFrameInfo &MFI = MF.getFrameInfo();
8379   EVT LocVT = VA.getLocVT();
8380   EVT ValVT = VA.getValVT();
8381   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
8382   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
8383                                  /*Immutable=*/true);
8384   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
8385   SDValue Val;
8386 
8387   ISD::LoadExtType ExtType;
8388   switch (VA.getLocInfo()) {
8389   default:
8390     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8391   case CCValAssign::Full:
8392   case CCValAssign::Indirect:
8393   case CCValAssign::BCvt:
8394     ExtType = ISD::NON_EXTLOAD;
8395     break;
8396   }
8397   Val = DAG.getExtLoad(
8398       ExtType, DL, LocVT, Chain, FIN,
8399       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
8400   return Val;
8401 }
8402 
8403 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
8404                                        const CCValAssign &VA, const SDLoc &DL) {
8405   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
8406          "Unexpected VA");
8407   MachineFunction &MF = DAG.getMachineFunction();
8408   MachineFrameInfo &MFI = MF.getFrameInfo();
8409   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8410 
8411   if (VA.isMemLoc()) {
8412     // f64 is passed on the stack.
8413     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
8414     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
8415     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
8416                        MachinePointerInfo::getFixedStack(MF, FI));
8417   }
8418 
8419   assert(VA.isRegLoc() && "Expected register VA assignment");
8420 
8421   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8422   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
8423   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
8424   SDValue Hi;
8425   if (VA.getLocReg() == RISCV::X17) {
8426     // Second half of f64 is passed on the stack.
8427     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
8428     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
8429     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
8430                      MachinePointerInfo::getFixedStack(MF, FI));
8431   } else {
8432     // Second half of f64 is passed in another GPR.
8433     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8434     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
8435     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
8436   }
8437   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
8438 }
8439 
8440 // FastCC has less than 1% performance improvement for some particular
8441 // benchmark. But theoretically, it may has benenfit for some cases.
8442 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
8443                             unsigned ValNo, MVT ValVT, MVT LocVT,
8444                             CCValAssign::LocInfo LocInfo,
8445                             ISD::ArgFlagsTy ArgFlags, CCState &State,
8446                             bool IsFixed, bool IsRet, Type *OrigTy,
8447                             const RISCVTargetLowering &TLI,
8448                             Optional<unsigned> FirstMaskArgument) {
8449 
8450   // X5 and X6 might be used for save-restore libcall.
8451   static const MCPhysReg GPRList[] = {
8452       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
8453       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
8454       RISCV::X29, RISCV::X30, RISCV::X31};
8455 
8456   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
8457     if (unsigned Reg = State.AllocateReg(GPRList)) {
8458       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8459       return false;
8460     }
8461   }
8462 
8463   if (LocVT == MVT::f16) {
8464     static const MCPhysReg FPR16List[] = {
8465         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
8466         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
8467         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
8468         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
8469     if (unsigned Reg = State.AllocateReg(FPR16List)) {
8470       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8471       return false;
8472     }
8473   }
8474 
8475   if (LocVT == MVT::f32) {
8476     static const MCPhysReg FPR32List[] = {
8477         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
8478         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
8479         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
8480         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
8481     if (unsigned Reg = State.AllocateReg(FPR32List)) {
8482       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8483       return false;
8484     }
8485   }
8486 
8487   if (LocVT == MVT::f64) {
8488     static const MCPhysReg FPR64List[] = {
8489         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
8490         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
8491         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
8492         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
8493     if (unsigned Reg = State.AllocateReg(FPR64List)) {
8494       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8495       return false;
8496     }
8497   }
8498 
8499   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
8500     unsigned Offset4 = State.AllocateStack(4, Align(4));
8501     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
8502     return false;
8503   }
8504 
8505   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
8506     unsigned Offset5 = State.AllocateStack(8, Align(8));
8507     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
8508     return false;
8509   }
8510 
8511   if (LocVT.isVector()) {
8512     if (unsigned Reg =
8513             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
8514       // Fixed-length vectors are located in the corresponding scalable-vector
8515       // container types.
8516       if (ValVT.isFixedLengthVector())
8517         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
8518       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8519     } else {
8520       // Try and pass the address via a "fast" GPR.
8521       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
8522         LocInfo = CCValAssign::Indirect;
8523         LocVT = TLI.getSubtarget().getXLenVT();
8524         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
8525       } else if (ValVT.isFixedLengthVector()) {
8526         auto StackAlign =
8527             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
8528         unsigned StackOffset =
8529             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
8530         State.addLoc(
8531             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8532       } else {
8533         // Can't pass scalable vectors on the stack.
8534         return true;
8535       }
8536     }
8537 
8538     return false;
8539   }
8540 
8541   return true; // CC didn't match.
8542 }
8543 
8544 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
8545                          CCValAssign::LocInfo LocInfo,
8546                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
8547 
8548   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
8549     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
8550     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
8551     static const MCPhysReg GPRList[] = {
8552         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
8553         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
8554     if (unsigned Reg = State.AllocateReg(GPRList)) {
8555       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8556       return false;
8557     }
8558   }
8559 
8560   if (LocVT == MVT::f32) {
8561     // Pass in STG registers: F1, ..., F6
8562     //                        fs0 ... fs5
8563     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
8564                                           RISCV::F18_F, RISCV::F19_F,
8565                                           RISCV::F20_F, RISCV::F21_F};
8566     if (unsigned Reg = State.AllocateReg(FPR32List)) {
8567       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8568       return false;
8569     }
8570   }
8571 
8572   if (LocVT == MVT::f64) {
8573     // Pass in STG registers: D1, ..., D6
8574     //                        fs6 ... fs11
8575     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
8576                                           RISCV::F24_D, RISCV::F25_D,
8577                                           RISCV::F26_D, RISCV::F27_D};
8578     if (unsigned Reg = State.AllocateReg(FPR64List)) {
8579       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8580       return false;
8581     }
8582   }
8583 
8584   report_fatal_error("No registers left in GHC calling convention");
8585   return true;
8586 }
8587 
8588 // Transform physical registers into virtual registers.
8589 SDValue RISCVTargetLowering::LowerFormalArguments(
8590     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
8591     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
8592     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
8593 
8594   MachineFunction &MF = DAG.getMachineFunction();
8595 
8596   switch (CallConv) {
8597   default:
8598     report_fatal_error("Unsupported calling convention");
8599   case CallingConv::C:
8600   case CallingConv::Fast:
8601     break;
8602   case CallingConv::GHC:
8603     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
8604         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
8605       report_fatal_error(
8606         "GHC calling convention requires the F and D instruction set extensions");
8607   }
8608 
8609   const Function &Func = MF.getFunction();
8610   if (Func.hasFnAttribute("interrupt")) {
8611     if (!Func.arg_empty())
8612       report_fatal_error(
8613         "Functions with the interrupt attribute cannot have arguments!");
8614 
8615     StringRef Kind =
8616       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
8617 
8618     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
8619       report_fatal_error(
8620         "Function interrupt attribute argument not supported!");
8621   }
8622 
8623   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8624   MVT XLenVT = Subtarget.getXLenVT();
8625   unsigned XLenInBytes = Subtarget.getXLen() / 8;
8626   // Used with vargs to acumulate store chains.
8627   std::vector<SDValue> OutChains;
8628 
8629   // Assign locations to all of the incoming arguments.
8630   SmallVector<CCValAssign, 16> ArgLocs;
8631   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
8632 
8633   if (CallConv == CallingConv::GHC)
8634     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
8635   else
8636     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
8637                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
8638                                                    : CC_RISCV);
8639 
8640   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
8641     CCValAssign &VA = ArgLocs[i];
8642     SDValue ArgValue;
8643     // Passing f64 on RV32D with a soft float ABI must be handled as a special
8644     // case.
8645     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
8646       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
8647     else if (VA.isRegLoc())
8648       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
8649     else
8650       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
8651 
8652     if (VA.getLocInfo() == CCValAssign::Indirect) {
8653       // If the original argument was split and passed by reference (e.g. i128
8654       // on RV32), we need to load all parts of it here (using the same
8655       // address). Vectors may be partly split to registers and partly to the
8656       // stack, in which case the base address is partly offset and subsequent
8657       // stores are relative to that.
8658       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
8659                                    MachinePointerInfo()));
8660       unsigned ArgIndex = Ins[i].OrigArgIndex;
8661       unsigned ArgPartOffset = Ins[i].PartOffset;
8662       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
8663       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
8664         CCValAssign &PartVA = ArgLocs[i + 1];
8665         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
8666         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
8667         if (PartVA.getValVT().isScalableVector())
8668           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
8669         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
8670         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
8671                                      MachinePointerInfo()));
8672         ++i;
8673       }
8674       continue;
8675     }
8676     InVals.push_back(ArgValue);
8677   }
8678 
8679   if (IsVarArg) {
8680     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
8681     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
8682     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
8683     MachineFrameInfo &MFI = MF.getFrameInfo();
8684     MachineRegisterInfo &RegInfo = MF.getRegInfo();
8685     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
8686 
8687     // Offset of the first variable argument from stack pointer, and size of
8688     // the vararg save area. For now, the varargs save area is either zero or
8689     // large enough to hold a0-a7.
8690     int VaArgOffset, VarArgsSaveSize;
8691 
8692     // If all registers are allocated, then all varargs must be passed on the
8693     // stack and we don't need to save any argregs.
8694     if (ArgRegs.size() == Idx) {
8695       VaArgOffset = CCInfo.getNextStackOffset();
8696       VarArgsSaveSize = 0;
8697     } else {
8698       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
8699       VaArgOffset = -VarArgsSaveSize;
8700     }
8701 
8702     // Record the frame index of the first variable argument
8703     // which is a value necessary to VASTART.
8704     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
8705     RVFI->setVarArgsFrameIndex(FI);
8706 
8707     // If saving an odd number of registers then create an extra stack slot to
8708     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
8709     // offsets to even-numbered registered remain 2*XLEN-aligned.
8710     if (Idx % 2) {
8711       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
8712       VarArgsSaveSize += XLenInBytes;
8713     }
8714 
8715     // Copy the integer registers that may have been used for passing varargs
8716     // to the vararg save area.
8717     for (unsigned I = Idx; I < ArgRegs.size();
8718          ++I, VaArgOffset += XLenInBytes) {
8719       const Register Reg = RegInfo.createVirtualRegister(RC);
8720       RegInfo.addLiveIn(ArgRegs[I], Reg);
8721       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
8722       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
8723       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
8724       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
8725                                    MachinePointerInfo::getFixedStack(MF, FI));
8726       cast<StoreSDNode>(Store.getNode())
8727           ->getMemOperand()
8728           ->setValue((Value *)nullptr);
8729       OutChains.push_back(Store);
8730     }
8731     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
8732   }
8733 
8734   // All stores are grouped in one node to allow the matching between
8735   // the size of Ins and InVals. This only happens for vararg functions.
8736   if (!OutChains.empty()) {
8737     OutChains.push_back(Chain);
8738     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
8739   }
8740 
8741   return Chain;
8742 }
8743 
8744 /// isEligibleForTailCallOptimization - Check whether the call is eligible
8745 /// for tail call optimization.
8746 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
8747 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
8748     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
8749     const SmallVector<CCValAssign, 16> &ArgLocs) const {
8750 
8751   auto &Callee = CLI.Callee;
8752   auto CalleeCC = CLI.CallConv;
8753   auto &Outs = CLI.Outs;
8754   auto &Caller = MF.getFunction();
8755   auto CallerCC = Caller.getCallingConv();
8756 
8757   // Exception-handling functions need a special set of instructions to
8758   // indicate a return to the hardware. Tail-calling another function would
8759   // probably break this.
8760   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
8761   // should be expanded as new function attributes are introduced.
8762   if (Caller.hasFnAttribute("interrupt"))
8763     return false;
8764 
8765   // Do not tail call opt if the stack is used to pass parameters.
8766   if (CCInfo.getNextStackOffset() != 0)
8767     return false;
8768 
8769   // Do not tail call opt if any parameters need to be passed indirectly.
8770   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
8771   // passed indirectly. So the address of the value will be passed in a
8772   // register, or if not available, then the address is put on the stack. In
8773   // order to pass indirectly, space on the stack often needs to be allocated
8774   // in order to store the value. In this case the CCInfo.getNextStackOffset()
8775   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
8776   // are passed CCValAssign::Indirect.
8777   for (auto &VA : ArgLocs)
8778     if (VA.getLocInfo() == CCValAssign::Indirect)
8779       return false;
8780 
8781   // Do not tail call opt if either caller or callee uses struct return
8782   // semantics.
8783   auto IsCallerStructRet = Caller.hasStructRetAttr();
8784   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
8785   if (IsCallerStructRet || IsCalleeStructRet)
8786     return false;
8787 
8788   // Externally-defined functions with weak linkage should not be
8789   // tail-called. The behaviour of branch instructions in this situation (as
8790   // used for tail calls) is implementation-defined, so we cannot rely on the
8791   // linker replacing the tail call with a return.
8792   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
8793     const GlobalValue *GV = G->getGlobal();
8794     if (GV->hasExternalWeakLinkage())
8795       return false;
8796   }
8797 
8798   // The callee has to preserve all registers the caller needs to preserve.
8799   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
8800   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
8801   if (CalleeCC != CallerCC) {
8802     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
8803     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
8804       return false;
8805   }
8806 
8807   // Byval parameters hand the function a pointer directly into the stack area
8808   // we want to reuse during a tail call. Working around this *is* possible
8809   // but less efficient and uglier in LowerCall.
8810   for (auto &Arg : Outs)
8811     if (Arg.Flags.isByVal())
8812       return false;
8813 
8814   return true;
8815 }
8816 
8817 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
8818   return DAG.getDataLayout().getPrefTypeAlign(
8819       VT.getTypeForEVT(*DAG.getContext()));
8820 }
8821 
8822 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
8823 // and output parameter nodes.
8824 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
8825                                        SmallVectorImpl<SDValue> &InVals) const {
8826   SelectionDAG &DAG = CLI.DAG;
8827   SDLoc &DL = CLI.DL;
8828   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
8829   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
8830   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
8831   SDValue Chain = CLI.Chain;
8832   SDValue Callee = CLI.Callee;
8833   bool &IsTailCall = CLI.IsTailCall;
8834   CallingConv::ID CallConv = CLI.CallConv;
8835   bool IsVarArg = CLI.IsVarArg;
8836   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8837   MVT XLenVT = Subtarget.getXLenVT();
8838 
8839   MachineFunction &MF = DAG.getMachineFunction();
8840 
8841   // Analyze the operands of the call, assigning locations to each operand.
8842   SmallVector<CCValAssign, 16> ArgLocs;
8843   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
8844 
8845   if (CallConv == CallingConv::GHC)
8846     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
8847   else
8848     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
8849                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
8850                                                     : CC_RISCV);
8851 
8852   // Check if it's really possible to do a tail call.
8853   if (IsTailCall)
8854     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
8855 
8856   if (IsTailCall)
8857     ++NumTailCalls;
8858   else if (CLI.CB && CLI.CB->isMustTailCall())
8859     report_fatal_error("failed to perform tail call elimination on a call "
8860                        "site marked musttail");
8861 
8862   // Get a count of how many bytes are to be pushed on the stack.
8863   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
8864 
8865   // Create local copies for byval args
8866   SmallVector<SDValue, 8> ByValArgs;
8867   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
8868     ISD::ArgFlagsTy Flags = Outs[i].Flags;
8869     if (!Flags.isByVal())
8870       continue;
8871 
8872     SDValue Arg = OutVals[i];
8873     unsigned Size = Flags.getByValSize();
8874     Align Alignment = Flags.getNonZeroByValAlign();
8875 
8876     int FI =
8877         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
8878     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
8879     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
8880 
8881     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
8882                           /*IsVolatile=*/false,
8883                           /*AlwaysInline=*/false, IsTailCall,
8884                           MachinePointerInfo(), MachinePointerInfo());
8885     ByValArgs.push_back(FIPtr);
8886   }
8887 
8888   if (!IsTailCall)
8889     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
8890 
8891   // Copy argument values to their designated locations.
8892   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
8893   SmallVector<SDValue, 8> MemOpChains;
8894   SDValue StackPtr;
8895   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
8896     CCValAssign &VA = ArgLocs[i];
8897     SDValue ArgValue = OutVals[i];
8898     ISD::ArgFlagsTy Flags = Outs[i].Flags;
8899 
8900     // Handle passing f64 on RV32D with a soft float ABI as a special case.
8901     bool IsF64OnRV32DSoftABI =
8902         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
8903     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
8904       SDValue SplitF64 = DAG.getNode(
8905           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
8906       SDValue Lo = SplitF64.getValue(0);
8907       SDValue Hi = SplitF64.getValue(1);
8908 
8909       Register RegLo = VA.getLocReg();
8910       RegsToPass.push_back(std::make_pair(RegLo, Lo));
8911 
8912       if (RegLo == RISCV::X17) {
8913         // Second half of f64 is passed on the stack.
8914         // Work out the address of the stack slot.
8915         if (!StackPtr.getNode())
8916           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
8917         // Emit the store.
8918         MemOpChains.push_back(
8919             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
8920       } else {
8921         // Second half of f64 is passed in another GPR.
8922         assert(RegLo < RISCV::X31 && "Invalid register pair");
8923         Register RegHigh = RegLo + 1;
8924         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
8925       }
8926       continue;
8927     }
8928 
8929     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
8930     // as any other MemLoc.
8931 
8932     // Promote the value if needed.
8933     // For now, only handle fully promoted and indirect arguments.
8934     if (VA.getLocInfo() == CCValAssign::Indirect) {
8935       // Store the argument in a stack slot and pass its address.
8936       Align StackAlign =
8937           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
8938                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
8939       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
8940       // If the original argument was split (e.g. i128), we need
8941       // to store the required parts of it here (and pass just one address).
8942       // Vectors may be partly split to registers and partly to the stack, in
8943       // which case the base address is partly offset and subsequent stores are
8944       // relative to that.
8945       unsigned ArgIndex = Outs[i].OrigArgIndex;
8946       unsigned ArgPartOffset = Outs[i].PartOffset;
8947       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
8948       // Calculate the total size to store. We don't have access to what we're
8949       // actually storing other than performing the loop and collecting the
8950       // info.
8951       SmallVector<std::pair<SDValue, SDValue>> Parts;
8952       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
8953         SDValue PartValue = OutVals[i + 1];
8954         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
8955         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
8956         EVT PartVT = PartValue.getValueType();
8957         if (PartVT.isScalableVector())
8958           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
8959         StoredSize += PartVT.getStoreSize();
8960         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
8961         Parts.push_back(std::make_pair(PartValue, Offset));
8962         ++i;
8963       }
8964       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
8965       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
8966       MemOpChains.push_back(
8967           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
8968                        MachinePointerInfo::getFixedStack(MF, FI)));
8969       for (const auto &Part : Parts) {
8970         SDValue PartValue = Part.first;
8971         SDValue PartOffset = Part.second;
8972         SDValue Address =
8973             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
8974         MemOpChains.push_back(
8975             DAG.getStore(Chain, DL, PartValue, Address,
8976                          MachinePointerInfo::getFixedStack(MF, FI)));
8977       }
8978       ArgValue = SpillSlot;
8979     } else {
8980       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
8981     }
8982 
8983     // Use local copy if it is a byval arg.
8984     if (Flags.isByVal())
8985       ArgValue = ByValArgs[j++];
8986 
8987     if (VA.isRegLoc()) {
8988       // Queue up the argument copies and emit them at the end.
8989       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
8990     } else {
8991       assert(VA.isMemLoc() && "Argument not register or memory");
8992       assert(!IsTailCall && "Tail call not allowed if stack is used "
8993                             "for passing parameters");
8994 
8995       // Work out the address of the stack slot.
8996       if (!StackPtr.getNode())
8997         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
8998       SDValue Address =
8999           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
9000                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
9001 
9002       // Emit the store.
9003       MemOpChains.push_back(
9004           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
9005     }
9006   }
9007 
9008   // Join the stores, which are independent of one another.
9009   if (!MemOpChains.empty())
9010     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
9011 
9012   SDValue Glue;
9013 
9014   // Build a sequence of copy-to-reg nodes, chained and glued together.
9015   for (auto &Reg : RegsToPass) {
9016     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
9017     Glue = Chain.getValue(1);
9018   }
9019 
9020   // Validate that none of the argument registers have been marked as
9021   // reserved, if so report an error. Do the same for the return address if this
9022   // is not a tailcall.
9023   validateCCReservedRegs(RegsToPass, MF);
9024   if (!IsTailCall &&
9025       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
9026     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9027         MF.getFunction(),
9028         "Return address register required, but has been reserved."});
9029 
9030   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
9031   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
9032   // split it and then direct call can be matched by PseudoCALL.
9033   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
9034     const GlobalValue *GV = S->getGlobal();
9035 
9036     unsigned OpFlags = RISCVII::MO_CALL;
9037     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
9038       OpFlags = RISCVII::MO_PLT;
9039 
9040     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
9041   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
9042     unsigned OpFlags = RISCVII::MO_CALL;
9043 
9044     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
9045                                                  nullptr))
9046       OpFlags = RISCVII::MO_PLT;
9047 
9048     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
9049   }
9050 
9051   // The first call operand is the chain and the second is the target address.
9052   SmallVector<SDValue, 8> Ops;
9053   Ops.push_back(Chain);
9054   Ops.push_back(Callee);
9055 
9056   // Add argument registers to the end of the list so that they are
9057   // known live into the call.
9058   for (auto &Reg : RegsToPass)
9059     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
9060 
9061   if (!IsTailCall) {
9062     // Add a register mask operand representing the call-preserved registers.
9063     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
9064     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
9065     assert(Mask && "Missing call preserved mask for calling convention");
9066     Ops.push_back(DAG.getRegisterMask(Mask));
9067   }
9068 
9069   // Glue the call to the argument copies, if any.
9070   if (Glue.getNode())
9071     Ops.push_back(Glue);
9072 
9073   // Emit the call.
9074   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9075 
9076   if (IsTailCall) {
9077     MF.getFrameInfo().setHasTailCall();
9078     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
9079   }
9080 
9081   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
9082   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
9083   Glue = Chain.getValue(1);
9084 
9085   // Mark the end of the call, which is glued to the call itself.
9086   Chain = DAG.getCALLSEQ_END(Chain,
9087                              DAG.getConstant(NumBytes, DL, PtrVT, true),
9088                              DAG.getConstant(0, DL, PtrVT, true),
9089                              Glue, DL);
9090   Glue = Chain.getValue(1);
9091 
9092   // Assign locations to each value returned by this call.
9093   SmallVector<CCValAssign, 16> RVLocs;
9094   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
9095   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
9096 
9097   // Copy all of the result registers out of their specified physreg.
9098   for (auto &VA : RVLocs) {
9099     // Copy the value out
9100     SDValue RetValue =
9101         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
9102     // Glue the RetValue to the end of the call sequence
9103     Chain = RetValue.getValue(1);
9104     Glue = RetValue.getValue(2);
9105 
9106     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
9107       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
9108       SDValue RetValue2 =
9109           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
9110       Chain = RetValue2.getValue(1);
9111       Glue = RetValue2.getValue(2);
9112       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
9113                              RetValue2);
9114     }
9115 
9116     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
9117 
9118     InVals.push_back(RetValue);
9119   }
9120 
9121   return Chain;
9122 }
9123 
9124 bool RISCVTargetLowering::CanLowerReturn(
9125     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
9126     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
9127   SmallVector<CCValAssign, 16> RVLocs;
9128   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
9129 
9130   Optional<unsigned> FirstMaskArgument;
9131   if (Subtarget.hasVInstructions())
9132     FirstMaskArgument = preAssignMask(Outs);
9133 
9134   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
9135     MVT VT = Outs[i].VT;
9136     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
9137     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9138     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
9139                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
9140                  *this, FirstMaskArgument))
9141       return false;
9142   }
9143   return true;
9144 }
9145 
9146 SDValue
9147 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
9148                                  bool IsVarArg,
9149                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
9150                                  const SmallVectorImpl<SDValue> &OutVals,
9151                                  const SDLoc &DL, SelectionDAG &DAG) const {
9152   const MachineFunction &MF = DAG.getMachineFunction();
9153   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
9154 
9155   // Stores the assignment of the return value to a location.
9156   SmallVector<CCValAssign, 16> RVLocs;
9157 
9158   // Info about the registers and stack slot.
9159   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
9160                  *DAG.getContext());
9161 
9162   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
9163                     nullptr, CC_RISCV);
9164 
9165   if (CallConv == CallingConv::GHC && !RVLocs.empty())
9166     report_fatal_error("GHC functions return void only");
9167 
9168   SDValue Glue;
9169   SmallVector<SDValue, 4> RetOps(1, Chain);
9170 
9171   // Copy the result values into the output registers.
9172   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
9173     SDValue Val = OutVals[i];
9174     CCValAssign &VA = RVLocs[i];
9175     assert(VA.isRegLoc() && "Can only return in registers!");
9176 
9177     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
9178       // Handle returning f64 on RV32D with a soft float ABI.
9179       assert(VA.isRegLoc() && "Expected return via registers");
9180       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
9181                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
9182       SDValue Lo = SplitF64.getValue(0);
9183       SDValue Hi = SplitF64.getValue(1);
9184       Register RegLo = VA.getLocReg();
9185       assert(RegLo < RISCV::X31 && "Invalid register pair");
9186       Register RegHi = RegLo + 1;
9187 
9188       if (STI.isRegisterReservedByUser(RegLo) ||
9189           STI.isRegisterReservedByUser(RegHi))
9190         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9191             MF.getFunction(),
9192             "Return value register required, but has been reserved."});
9193 
9194       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
9195       Glue = Chain.getValue(1);
9196       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
9197       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
9198       Glue = Chain.getValue(1);
9199       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
9200     } else {
9201       // Handle a 'normal' return.
9202       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
9203       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
9204 
9205       if (STI.isRegisterReservedByUser(VA.getLocReg()))
9206         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9207             MF.getFunction(),
9208             "Return value register required, but has been reserved."});
9209 
9210       // Guarantee that all emitted copies are stuck together.
9211       Glue = Chain.getValue(1);
9212       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
9213     }
9214   }
9215 
9216   RetOps[0] = Chain; // Update chain.
9217 
9218   // Add the glue node if we have it.
9219   if (Glue.getNode()) {
9220     RetOps.push_back(Glue);
9221   }
9222 
9223   unsigned RetOpc = RISCVISD::RET_FLAG;
9224   // Interrupt service routines use different return instructions.
9225   const Function &Func = DAG.getMachineFunction().getFunction();
9226   if (Func.hasFnAttribute("interrupt")) {
9227     if (!Func.getReturnType()->isVoidTy())
9228       report_fatal_error(
9229           "Functions with the interrupt attribute must have void return type!");
9230 
9231     MachineFunction &MF = DAG.getMachineFunction();
9232     StringRef Kind =
9233       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
9234 
9235     if (Kind == "user")
9236       RetOpc = RISCVISD::URET_FLAG;
9237     else if (Kind == "supervisor")
9238       RetOpc = RISCVISD::SRET_FLAG;
9239     else
9240       RetOpc = RISCVISD::MRET_FLAG;
9241   }
9242 
9243   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
9244 }
9245 
9246 void RISCVTargetLowering::validateCCReservedRegs(
9247     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
9248     MachineFunction &MF) const {
9249   const Function &F = MF.getFunction();
9250   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
9251 
9252   if (llvm::any_of(Regs, [&STI](auto Reg) {
9253         return STI.isRegisterReservedByUser(Reg.first);
9254       }))
9255     F.getContext().diagnose(DiagnosticInfoUnsupported{
9256         F, "Argument register required, but has been reserved."});
9257 }
9258 
9259 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
9260   return CI->isTailCall();
9261 }
9262 
9263 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
9264 #define NODE_NAME_CASE(NODE)                                                   \
9265   case RISCVISD::NODE:                                                         \
9266     return "RISCVISD::" #NODE;
9267   // clang-format off
9268   switch ((RISCVISD::NodeType)Opcode) {
9269   case RISCVISD::FIRST_NUMBER:
9270     break;
9271   NODE_NAME_CASE(RET_FLAG)
9272   NODE_NAME_CASE(URET_FLAG)
9273   NODE_NAME_CASE(SRET_FLAG)
9274   NODE_NAME_CASE(MRET_FLAG)
9275   NODE_NAME_CASE(CALL)
9276   NODE_NAME_CASE(SELECT_CC)
9277   NODE_NAME_CASE(BR_CC)
9278   NODE_NAME_CASE(BuildPairF64)
9279   NODE_NAME_CASE(SplitF64)
9280   NODE_NAME_CASE(TAIL)
9281   NODE_NAME_CASE(MULHSU)
9282   NODE_NAME_CASE(SLLW)
9283   NODE_NAME_CASE(SRAW)
9284   NODE_NAME_CASE(SRLW)
9285   NODE_NAME_CASE(DIVW)
9286   NODE_NAME_CASE(DIVUW)
9287   NODE_NAME_CASE(REMUW)
9288   NODE_NAME_CASE(ROLW)
9289   NODE_NAME_CASE(RORW)
9290   NODE_NAME_CASE(CLZW)
9291   NODE_NAME_CASE(CTZW)
9292   NODE_NAME_CASE(FSLW)
9293   NODE_NAME_CASE(FSRW)
9294   NODE_NAME_CASE(FSL)
9295   NODE_NAME_CASE(FSR)
9296   NODE_NAME_CASE(FMV_H_X)
9297   NODE_NAME_CASE(FMV_X_ANYEXTH)
9298   NODE_NAME_CASE(FMV_W_X_RV64)
9299   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
9300   NODE_NAME_CASE(FCVT_X_RTZ)
9301   NODE_NAME_CASE(FCVT_XU_RTZ)
9302   NODE_NAME_CASE(FCVT_W_RTZ_RV64)
9303   NODE_NAME_CASE(FCVT_WU_RTZ_RV64)
9304   NODE_NAME_CASE(READ_CYCLE_WIDE)
9305   NODE_NAME_CASE(GREV)
9306   NODE_NAME_CASE(GREVW)
9307   NODE_NAME_CASE(GORC)
9308   NODE_NAME_CASE(GORCW)
9309   NODE_NAME_CASE(SHFL)
9310   NODE_NAME_CASE(SHFLW)
9311   NODE_NAME_CASE(UNSHFL)
9312   NODE_NAME_CASE(UNSHFLW)
9313   NODE_NAME_CASE(BCOMPRESS)
9314   NODE_NAME_CASE(BCOMPRESSW)
9315   NODE_NAME_CASE(BDECOMPRESS)
9316   NODE_NAME_CASE(BDECOMPRESSW)
9317   NODE_NAME_CASE(VMV_V_X_VL)
9318   NODE_NAME_CASE(VFMV_V_F_VL)
9319   NODE_NAME_CASE(VMV_X_S)
9320   NODE_NAME_CASE(VMV_S_X_VL)
9321   NODE_NAME_CASE(VFMV_S_F_VL)
9322   NODE_NAME_CASE(SPLAT_VECTOR_I64)
9323   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
9324   NODE_NAME_CASE(READ_VLENB)
9325   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
9326   NODE_NAME_CASE(VSLIDEUP_VL)
9327   NODE_NAME_CASE(VSLIDE1UP_VL)
9328   NODE_NAME_CASE(VSLIDEDOWN_VL)
9329   NODE_NAME_CASE(VSLIDE1DOWN_VL)
9330   NODE_NAME_CASE(VID_VL)
9331   NODE_NAME_CASE(VFNCVT_ROD_VL)
9332   NODE_NAME_CASE(VECREDUCE_ADD_VL)
9333   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
9334   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
9335   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
9336   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
9337   NODE_NAME_CASE(VECREDUCE_AND_VL)
9338   NODE_NAME_CASE(VECREDUCE_OR_VL)
9339   NODE_NAME_CASE(VECREDUCE_XOR_VL)
9340   NODE_NAME_CASE(VECREDUCE_FADD_VL)
9341   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
9342   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
9343   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
9344   NODE_NAME_CASE(ADD_VL)
9345   NODE_NAME_CASE(AND_VL)
9346   NODE_NAME_CASE(MUL_VL)
9347   NODE_NAME_CASE(OR_VL)
9348   NODE_NAME_CASE(SDIV_VL)
9349   NODE_NAME_CASE(SHL_VL)
9350   NODE_NAME_CASE(SREM_VL)
9351   NODE_NAME_CASE(SRA_VL)
9352   NODE_NAME_CASE(SRL_VL)
9353   NODE_NAME_CASE(SUB_VL)
9354   NODE_NAME_CASE(UDIV_VL)
9355   NODE_NAME_CASE(UREM_VL)
9356   NODE_NAME_CASE(XOR_VL)
9357   NODE_NAME_CASE(SADDSAT_VL)
9358   NODE_NAME_CASE(UADDSAT_VL)
9359   NODE_NAME_CASE(SSUBSAT_VL)
9360   NODE_NAME_CASE(USUBSAT_VL)
9361   NODE_NAME_CASE(FADD_VL)
9362   NODE_NAME_CASE(FSUB_VL)
9363   NODE_NAME_CASE(FMUL_VL)
9364   NODE_NAME_CASE(FDIV_VL)
9365   NODE_NAME_CASE(FNEG_VL)
9366   NODE_NAME_CASE(FABS_VL)
9367   NODE_NAME_CASE(FSQRT_VL)
9368   NODE_NAME_CASE(FMA_VL)
9369   NODE_NAME_CASE(FCOPYSIGN_VL)
9370   NODE_NAME_CASE(SMIN_VL)
9371   NODE_NAME_CASE(SMAX_VL)
9372   NODE_NAME_CASE(UMIN_VL)
9373   NODE_NAME_CASE(UMAX_VL)
9374   NODE_NAME_CASE(FMINNUM_VL)
9375   NODE_NAME_CASE(FMAXNUM_VL)
9376   NODE_NAME_CASE(MULHS_VL)
9377   NODE_NAME_CASE(MULHU_VL)
9378   NODE_NAME_CASE(FP_TO_SINT_VL)
9379   NODE_NAME_CASE(FP_TO_UINT_VL)
9380   NODE_NAME_CASE(SINT_TO_FP_VL)
9381   NODE_NAME_CASE(UINT_TO_FP_VL)
9382   NODE_NAME_CASE(FP_EXTEND_VL)
9383   NODE_NAME_CASE(FP_ROUND_VL)
9384   NODE_NAME_CASE(VWMUL_VL)
9385   NODE_NAME_CASE(VWMULU_VL)
9386   NODE_NAME_CASE(SETCC_VL)
9387   NODE_NAME_CASE(VSELECT_VL)
9388   NODE_NAME_CASE(VMAND_VL)
9389   NODE_NAME_CASE(VMOR_VL)
9390   NODE_NAME_CASE(VMXOR_VL)
9391   NODE_NAME_CASE(VMCLR_VL)
9392   NODE_NAME_CASE(VMSET_VL)
9393   NODE_NAME_CASE(VRGATHER_VX_VL)
9394   NODE_NAME_CASE(VRGATHER_VV_VL)
9395   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
9396   NODE_NAME_CASE(VSEXT_VL)
9397   NODE_NAME_CASE(VZEXT_VL)
9398   NODE_NAME_CASE(VCPOP_VL)
9399   NODE_NAME_CASE(VLE_VL)
9400   NODE_NAME_CASE(VSE_VL)
9401   NODE_NAME_CASE(READ_CSR)
9402   NODE_NAME_CASE(WRITE_CSR)
9403   NODE_NAME_CASE(SWAP_CSR)
9404   }
9405   // clang-format on
9406   return nullptr;
9407 #undef NODE_NAME_CASE
9408 }
9409 
9410 /// getConstraintType - Given a constraint letter, return the type of
9411 /// constraint it is for this target.
9412 RISCVTargetLowering::ConstraintType
9413 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
9414   if (Constraint.size() == 1) {
9415     switch (Constraint[0]) {
9416     default:
9417       break;
9418     case 'f':
9419       return C_RegisterClass;
9420     case 'I':
9421     case 'J':
9422     case 'K':
9423       return C_Immediate;
9424     case 'A':
9425       return C_Memory;
9426     case 'S': // A symbolic address
9427       return C_Other;
9428     }
9429   } else {
9430     if (Constraint == "vr" || Constraint == "vm")
9431       return C_RegisterClass;
9432   }
9433   return TargetLowering::getConstraintType(Constraint);
9434 }
9435 
9436 std::pair<unsigned, const TargetRegisterClass *>
9437 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
9438                                                   StringRef Constraint,
9439                                                   MVT VT) const {
9440   // First, see if this is a constraint that directly corresponds to a
9441   // RISCV register class.
9442   if (Constraint.size() == 1) {
9443     switch (Constraint[0]) {
9444     case 'r':
9445       return std::make_pair(0U, &RISCV::GPRRegClass);
9446     case 'f':
9447       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
9448         return std::make_pair(0U, &RISCV::FPR16RegClass);
9449       if (Subtarget.hasStdExtF() && VT == MVT::f32)
9450         return std::make_pair(0U, &RISCV::FPR32RegClass);
9451       if (Subtarget.hasStdExtD() && VT == MVT::f64)
9452         return std::make_pair(0U, &RISCV::FPR64RegClass);
9453       break;
9454     default:
9455       break;
9456     }
9457   } else {
9458     if (Constraint == "vr") {
9459       for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
9460                              &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
9461         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
9462           return std::make_pair(0U, RC);
9463       }
9464     } else if (Constraint == "vm") {
9465       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
9466         return std::make_pair(0U, &RISCV::VMRegClass);
9467     }
9468   }
9469 
9470   // Clang will correctly decode the usage of register name aliases into their
9471   // official names. However, other frontends like `rustc` do not. This allows
9472   // users of these frontends to use the ABI names for registers in LLVM-style
9473   // register constraints.
9474   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
9475                                .Case("{zero}", RISCV::X0)
9476                                .Case("{ra}", RISCV::X1)
9477                                .Case("{sp}", RISCV::X2)
9478                                .Case("{gp}", RISCV::X3)
9479                                .Case("{tp}", RISCV::X4)
9480                                .Case("{t0}", RISCV::X5)
9481                                .Case("{t1}", RISCV::X6)
9482                                .Case("{t2}", RISCV::X7)
9483                                .Cases("{s0}", "{fp}", RISCV::X8)
9484                                .Case("{s1}", RISCV::X9)
9485                                .Case("{a0}", RISCV::X10)
9486                                .Case("{a1}", RISCV::X11)
9487                                .Case("{a2}", RISCV::X12)
9488                                .Case("{a3}", RISCV::X13)
9489                                .Case("{a4}", RISCV::X14)
9490                                .Case("{a5}", RISCV::X15)
9491                                .Case("{a6}", RISCV::X16)
9492                                .Case("{a7}", RISCV::X17)
9493                                .Case("{s2}", RISCV::X18)
9494                                .Case("{s3}", RISCV::X19)
9495                                .Case("{s4}", RISCV::X20)
9496                                .Case("{s5}", RISCV::X21)
9497                                .Case("{s6}", RISCV::X22)
9498                                .Case("{s7}", RISCV::X23)
9499                                .Case("{s8}", RISCV::X24)
9500                                .Case("{s9}", RISCV::X25)
9501                                .Case("{s10}", RISCV::X26)
9502                                .Case("{s11}", RISCV::X27)
9503                                .Case("{t3}", RISCV::X28)
9504                                .Case("{t4}", RISCV::X29)
9505                                .Case("{t5}", RISCV::X30)
9506                                .Case("{t6}", RISCV::X31)
9507                                .Default(RISCV::NoRegister);
9508   if (XRegFromAlias != RISCV::NoRegister)
9509     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
9510 
9511   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
9512   // TableGen record rather than the AsmName to choose registers for InlineAsm
9513   // constraints, plus we want to match those names to the widest floating point
9514   // register type available, manually select floating point registers here.
9515   //
9516   // The second case is the ABI name of the register, so that frontends can also
9517   // use the ABI names in register constraint lists.
9518   if (Subtarget.hasStdExtF()) {
9519     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
9520                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
9521                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
9522                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
9523                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
9524                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
9525                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
9526                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
9527                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
9528                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
9529                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
9530                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
9531                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
9532                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
9533                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
9534                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
9535                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
9536                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
9537                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
9538                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
9539                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
9540                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
9541                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
9542                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
9543                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
9544                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
9545                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
9546                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
9547                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
9548                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
9549                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
9550                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
9551                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
9552                         .Default(RISCV::NoRegister);
9553     if (FReg != RISCV::NoRegister) {
9554       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
9555       if (Subtarget.hasStdExtD()) {
9556         unsigned RegNo = FReg - RISCV::F0_F;
9557         unsigned DReg = RISCV::F0_D + RegNo;
9558         return std::make_pair(DReg, &RISCV::FPR64RegClass);
9559       }
9560       return std::make_pair(FReg, &RISCV::FPR32RegClass);
9561     }
9562   }
9563 
9564   if (Subtarget.hasVInstructions()) {
9565     Register VReg = StringSwitch<Register>(Constraint.lower())
9566                         .Case("{v0}", RISCV::V0)
9567                         .Case("{v1}", RISCV::V1)
9568                         .Case("{v2}", RISCV::V2)
9569                         .Case("{v3}", RISCV::V3)
9570                         .Case("{v4}", RISCV::V4)
9571                         .Case("{v5}", RISCV::V5)
9572                         .Case("{v6}", RISCV::V6)
9573                         .Case("{v7}", RISCV::V7)
9574                         .Case("{v8}", RISCV::V8)
9575                         .Case("{v9}", RISCV::V9)
9576                         .Case("{v10}", RISCV::V10)
9577                         .Case("{v11}", RISCV::V11)
9578                         .Case("{v12}", RISCV::V12)
9579                         .Case("{v13}", RISCV::V13)
9580                         .Case("{v14}", RISCV::V14)
9581                         .Case("{v15}", RISCV::V15)
9582                         .Case("{v16}", RISCV::V16)
9583                         .Case("{v17}", RISCV::V17)
9584                         .Case("{v18}", RISCV::V18)
9585                         .Case("{v19}", RISCV::V19)
9586                         .Case("{v20}", RISCV::V20)
9587                         .Case("{v21}", RISCV::V21)
9588                         .Case("{v22}", RISCV::V22)
9589                         .Case("{v23}", RISCV::V23)
9590                         .Case("{v24}", RISCV::V24)
9591                         .Case("{v25}", RISCV::V25)
9592                         .Case("{v26}", RISCV::V26)
9593                         .Case("{v27}", RISCV::V27)
9594                         .Case("{v28}", RISCV::V28)
9595                         .Case("{v29}", RISCV::V29)
9596                         .Case("{v30}", RISCV::V30)
9597                         .Case("{v31}", RISCV::V31)
9598                         .Default(RISCV::NoRegister);
9599     if (VReg != RISCV::NoRegister) {
9600       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
9601         return std::make_pair(VReg, &RISCV::VMRegClass);
9602       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
9603         return std::make_pair(VReg, &RISCV::VRRegClass);
9604       for (const auto *RC :
9605            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
9606         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
9607           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
9608           return std::make_pair(VReg, RC);
9609         }
9610       }
9611     }
9612   }
9613 
9614   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
9615 }
9616 
9617 unsigned
9618 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
9619   // Currently only support length 1 constraints.
9620   if (ConstraintCode.size() == 1) {
9621     switch (ConstraintCode[0]) {
9622     case 'A':
9623       return InlineAsm::Constraint_A;
9624     default:
9625       break;
9626     }
9627   }
9628 
9629   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
9630 }
9631 
9632 void RISCVTargetLowering::LowerAsmOperandForConstraint(
9633     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
9634     SelectionDAG &DAG) const {
9635   // Currently only support length 1 constraints.
9636   if (Constraint.length() == 1) {
9637     switch (Constraint[0]) {
9638     case 'I':
9639       // Validate & create a 12-bit signed immediate operand.
9640       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
9641         uint64_t CVal = C->getSExtValue();
9642         if (isInt<12>(CVal))
9643           Ops.push_back(
9644               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
9645       }
9646       return;
9647     case 'J':
9648       // Validate & create an integer zero operand.
9649       if (auto *C = dyn_cast<ConstantSDNode>(Op))
9650         if (C->getZExtValue() == 0)
9651           Ops.push_back(
9652               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
9653       return;
9654     case 'K':
9655       // Validate & create a 5-bit unsigned immediate operand.
9656       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
9657         uint64_t CVal = C->getZExtValue();
9658         if (isUInt<5>(CVal))
9659           Ops.push_back(
9660               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
9661       }
9662       return;
9663     case 'S':
9664       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9665         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
9666                                                  GA->getValueType(0)));
9667       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
9668         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
9669                                                 BA->getValueType(0)));
9670       }
9671       return;
9672     default:
9673       break;
9674     }
9675   }
9676   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
9677 }
9678 
9679 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
9680                                                    Instruction *Inst,
9681                                                    AtomicOrdering Ord) const {
9682   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
9683     return Builder.CreateFence(Ord);
9684   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
9685     return Builder.CreateFence(AtomicOrdering::Release);
9686   return nullptr;
9687 }
9688 
9689 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
9690                                                     Instruction *Inst,
9691                                                     AtomicOrdering Ord) const {
9692   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
9693     return Builder.CreateFence(AtomicOrdering::Acquire);
9694   return nullptr;
9695 }
9696 
9697 TargetLowering::AtomicExpansionKind
9698 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
9699   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
9700   // point operations can't be used in an lr/sc sequence without breaking the
9701   // forward-progress guarantee.
9702   if (AI->isFloatingPointOperation())
9703     return AtomicExpansionKind::CmpXChg;
9704 
9705   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
9706   if (Size == 8 || Size == 16)
9707     return AtomicExpansionKind::MaskedIntrinsic;
9708   return AtomicExpansionKind::None;
9709 }
9710 
9711 static Intrinsic::ID
9712 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
9713   if (XLen == 32) {
9714     switch (BinOp) {
9715     default:
9716       llvm_unreachable("Unexpected AtomicRMW BinOp");
9717     case AtomicRMWInst::Xchg:
9718       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
9719     case AtomicRMWInst::Add:
9720       return Intrinsic::riscv_masked_atomicrmw_add_i32;
9721     case AtomicRMWInst::Sub:
9722       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
9723     case AtomicRMWInst::Nand:
9724       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
9725     case AtomicRMWInst::Max:
9726       return Intrinsic::riscv_masked_atomicrmw_max_i32;
9727     case AtomicRMWInst::Min:
9728       return Intrinsic::riscv_masked_atomicrmw_min_i32;
9729     case AtomicRMWInst::UMax:
9730       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
9731     case AtomicRMWInst::UMin:
9732       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
9733     }
9734   }
9735 
9736   if (XLen == 64) {
9737     switch (BinOp) {
9738     default:
9739       llvm_unreachable("Unexpected AtomicRMW BinOp");
9740     case AtomicRMWInst::Xchg:
9741       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
9742     case AtomicRMWInst::Add:
9743       return Intrinsic::riscv_masked_atomicrmw_add_i64;
9744     case AtomicRMWInst::Sub:
9745       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
9746     case AtomicRMWInst::Nand:
9747       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
9748     case AtomicRMWInst::Max:
9749       return Intrinsic::riscv_masked_atomicrmw_max_i64;
9750     case AtomicRMWInst::Min:
9751       return Intrinsic::riscv_masked_atomicrmw_min_i64;
9752     case AtomicRMWInst::UMax:
9753       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
9754     case AtomicRMWInst::UMin:
9755       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
9756     }
9757   }
9758 
9759   llvm_unreachable("Unexpected XLen\n");
9760 }
9761 
9762 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
9763     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
9764     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
9765   unsigned XLen = Subtarget.getXLen();
9766   Value *Ordering =
9767       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
9768   Type *Tys[] = {AlignedAddr->getType()};
9769   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
9770       AI->getModule(),
9771       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
9772 
9773   if (XLen == 64) {
9774     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
9775     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
9776     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
9777   }
9778 
9779   Value *Result;
9780 
9781   // Must pass the shift amount needed to sign extend the loaded value prior
9782   // to performing a signed comparison for min/max. ShiftAmt is the number of
9783   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
9784   // is the number of bits to left+right shift the value in order to
9785   // sign-extend.
9786   if (AI->getOperation() == AtomicRMWInst::Min ||
9787       AI->getOperation() == AtomicRMWInst::Max) {
9788     const DataLayout &DL = AI->getModule()->getDataLayout();
9789     unsigned ValWidth =
9790         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
9791     Value *SextShamt =
9792         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
9793     Result = Builder.CreateCall(LrwOpScwLoop,
9794                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
9795   } else {
9796     Result =
9797         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
9798   }
9799 
9800   if (XLen == 64)
9801     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
9802   return Result;
9803 }
9804 
9805 TargetLowering::AtomicExpansionKind
9806 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
9807     AtomicCmpXchgInst *CI) const {
9808   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
9809   if (Size == 8 || Size == 16)
9810     return AtomicExpansionKind::MaskedIntrinsic;
9811   return AtomicExpansionKind::None;
9812 }
9813 
9814 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
9815     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
9816     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
9817   unsigned XLen = Subtarget.getXLen();
9818   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
9819   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
9820   if (XLen == 64) {
9821     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
9822     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
9823     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
9824     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
9825   }
9826   Type *Tys[] = {AlignedAddr->getType()};
9827   Function *MaskedCmpXchg =
9828       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
9829   Value *Result = Builder.CreateCall(
9830       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
9831   if (XLen == 64)
9832     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
9833   return Result;
9834 }
9835 
9836 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
9837   return false;
9838 }
9839 
9840 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
9841                                                      EVT VT) const {
9842   VT = VT.getScalarType();
9843 
9844   if (!VT.isSimple())
9845     return false;
9846 
9847   switch (VT.getSimpleVT().SimpleTy) {
9848   case MVT::f16:
9849     return Subtarget.hasStdExtZfh();
9850   case MVT::f32:
9851     return Subtarget.hasStdExtF();
9852   case MVT::f64:
9853     return Subtarget.hasStdExtD();
9854   default:
9855     break;
9856   }
9857 
9858   return false;
9859 }
9860 
9861 Register RISCVTargetLowering::getExceptionPointerRegister(
9862     const Constant *PersonalityFn) const {
9863   return RISCV::X10;
9864 }
9865 
9866 Register RISCVTargetLowering::getExceptionSelectorRegister(
9867     const Constant *PersonalityFn) const {
9868   return RISCV::X11;
9869 }
9870 
9871 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
9872   // Return false to suppress the unnecessary extensions if the LibCall
9873   // arguments or return value is f32 type for LP64 ABI.
9874   RISCVABI::ABI ABI = Subtarget.getTargetABI();
9875   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
9876     return false;
9877 
9878   return true;
9879 }
9880 
9881 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
9882   if (Subtarget.is64Bit() && Type == MVT::i32)
9883     return true;
9884 
9885   return IsSigned;
9886 }
9887 
9888 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
9889                                                  SDValue C) const {
9890   // Check integral scalar types.
9891   if (VT.isScalarInteger()) {
9892     // Omit the optimization if the sub target has the M extension and the data
9893     // size exceeds XLen.
9894     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
9895       return false;
9896     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
9897       // Break the MUL to a SLLI and an ADD/SUB.
9898       const APInt &Imm = ConstNode->getAPIntValue();
9899       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
9900           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
9901         return true;
9902       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
9903       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
9904           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
9905            (Imm - 8).isPowerOf2()))
9906         return true;
9907       // Omit the following optimization if the sub target has the M extension
9908       // and the data size >= XLen.
9909       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
9910         return false;
9911       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
9912       // a pair of LUI/ADDI.
9913       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
9914         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
9915         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
9916             (1 - ImmS).isPowerOf2())
9917         return true;
9918       }
9919     }
9920   }
9921 
9922   return false;
9923 }
9924 
9925 bool RISCVTargetLowering::isMulAddWithConstProfitable(
9926     const SDValue &AddNode, const SDValue &ConstNode) const {
9927   // Let the DAGCombiner decide for vectors.
9928   EVT VT = AddNode.getValueType();
9929   if (VT.isVector())
9930     return true;
9931 
9932   // Let the DAGCombiner decide for larger types.
9933   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
9934     return true;
9935 
9936   // It is worse if c1 is simm12 while c1*c2 is not.
9937   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
9938   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
9939   const APInt &C1 = C1Node->getAPIntValue();
9940   const APInt &C2 = C2Node->getAPIntValue();
9941   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
9942     return false;
9943 
9944   // Default to true and let the DAGCombiner decide.
9945   return true;
9946 }
9947 
9948 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
9949     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
9950     bool *Fast) const {
9951   if (!VT.isVector())
9952     return false;
9953 
9954   EVT ElemVT = VT.getVectorElementType();
9955   if (Alignment >= ElemVT.getStoreSize()) {
9956     if (Fast)
9957       *Fast = true;
9958     return true;
9959   }
9960 
9961   return false;
9962 }
9963 
9964 bool RISCVTargetLowering::splitValueIntoRegisterParts(
9965     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
9966     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
9967   bool IsABIRegCopy = CC.hasValue();
9968   EVT ValueVT = Val.getValueType();
9969   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
9970     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
9971     // and cast to f32.
9972     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
9973     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
9974     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
9975                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
9976     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
9977     Parts[0] = Val;
9978     return true;
9979   }
9980 
9981   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
9982     LLVMContext &Context = *DAG.getContext();
9983     EVT ValueEltVT = ValueVT.getVectorElementType();
9984     EVT PartEltVT = PartVT.getVectorElementType();
9985     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
9986     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
9987     if (PartVTBitSize % ValueVTBitSize == 0) {
9988       // If the element types are different, bitcast to the same element type of
9989       // PartVT first.
9990       if (ValueEltVT != PartEltVT) {
9991         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
9992         assert(Count != 0 && "The number of element should not be zero.");
9993         EVT SameEltTypeVT =
9994             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
9995         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
9996       }
9997       Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
9998                         Val, DAG.getConstant(0, DL, Subtarget.getXLenVT()));
9999       Parts[0] = Val;
10000       return true;
10001     }
10002   }
10003   return false;
10004 }
10005 
10006 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
10007     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
10008     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
10009   bool IsABIRegCopy = CC.hasValue();
10010   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
10011     SDValue Val = Parts[0];
10012 
10013     // Cast the f32 to i32, truncate to i16, and cast back to f16.
10014     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
10015     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
10016     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
10017     return Val;
10018   }
10019 
10020   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
10021     LLVMContext &Context = *DAG.getContext();
10022     SDValue Val = Parts[0];
10023     EVT ValueEltVT = ValueVT.getVectorElementType();
10024     EVT PartEltVT = PartVT.getVectorElementType();
10025     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
10026     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
10027     if (PartVTBitSize % ValueVTBitSize == 0) {
10028       EVT SameEltTypeVT = ValueVT;
10029       // If the element types are different, convert it to the same element type
10030       // of PartVT.
10031       if (ValueEltVT != PartEltVT) {
10032         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
10033         assert(Count != 0 && "The number of element should not be zero.");
10034         SameEltTypeVT =
10035             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
10036       }
10037       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val,
10038                         DAG.getConstant(0, DL, Subtarget.getXLenVT()));
10039       if (ValueEltVT != PartEltVT)
10040         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
10041       return Val;
10042     }
10043   }
10044   return SDValue();
10045 }
10046 
10047 #define GET_REGISTER_MATCHER
10048 #include "RISCVGenAsmMatcher.inc"
10049 
10050 Register
10051 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
10052                                        const MachineFunction &MF) const {
10053   Register Reg = MatchRegisterAltName(RegName);
10054   if (Reg == RISCV::NoRegister)
10055     Reg = MatchRegisterName(RegName);
10056   if (Reg == RISCV::NoRegister)
10057     report_fatal_error(
10058         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
10059   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
10060   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
10061     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
10062                              StringRef(RegName) + "\"."));
10063   return Reg;
10064 }
10065 
10066 namespace llvm {
10067 namespace RISCVVIntrinsicsTable {
10068 
10069 #define GET_RISCVVIntrinsicsTable_IMPL
10070 #include "RISCVGenSearchableTables.inc"
10071 
10072 } // namespace RISCVVIntrinsicsTable
10073 
10074 } // namespace llvm
10075