1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IntrinsicsRISCV.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "riscv-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 46 const RISCVSubtarget &STI) 47 : TargetLowering(TM), Subtarget(STI) { 48 49 if (Subtarget.isRV32E()) 50 report_fatal_error("Codegen not yet implemented for RV32E"); 51 52 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 54 55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 56 !Subtarget.hasStdExtF()) { 57 errs() << "Hard-float 'f' ABI can't be used for a target that " 58 "doesn't support the F instruction set extension (ignoring " 59 "target-abi)\n"; 60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 62 !Subtarget.hasStdExtD()) { 63 errs() << "Hard-float 'd' ABI can't be used for a target that " 64 "doesn't support the D instruction set extension (ignoring " 65 "target-abi)\n"; 66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 67 } 68 69 switch (ABI) { 70 default: 71 report_fatal_error("Don't know how to lower this ABI"); 72 case RISCVABI::ABI_ILP32: 73 case RISCVABI::ABI_ILP32F: 74 case RISCVABI::ABI_ILP32D: 75 case RISCVABI::ABI_LP64: 76 case RISCVABI::ABI_LP64F: 77 case RISCVABI::ABI_LP64D: 78 break; 79 } 80 81 MVT XLenVT = Subtarget.getXLenVT(); 82 83 // Set up the register classes. 84 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 85 86 if (Subtarget.hasStdExtZfh()) 87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 88 if (Subtarget.hasStdExtF()) 89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 90 if (Subtarget.hasStdExtD()) 91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 92 93 static const MVT::SimpleValueType BoolVecVTs[] = { 94 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 95 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 96 static const MVT::SimpleValueType IntVecVTs[] = { 97 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 98 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 99 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 100 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 101 MVT::nxv4i64, MVT::nxv8i64}; 102 static const MVT::SimpleValueType F16VecVTs[] = { 103 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 104 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 105 static const MVT::SimpleValueType F32VecVTs[] = { 106 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 107 static const MVT::SimpleValueType F64VecVTs[] = { 108 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 109 110 if (Subtarget.hasStdExtV()) { 111 auto addRegClassForRVV = [this](MVT VT) { 112 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 113 assert(Size <= 512 && isPowerOf2_32(Size)); 114 const TargetRegisterClass *RC; 115 if (Size <= 64) 116 RC = &RISCV::VRRegClass; 117 else if (Size == 128) 118 RC = &RISCV::VRM2RegClass; 119 else if (Size == 256) 120 RC = &RISCV::VRM4RegClass; 121 else 122 RC = &RISCV::VRM8RegClass; 123 124 addRegisterClass(VT, RC); 125 }; 126 127 for (MVT VT : BoolVecVTs) 128 addRegClassForRVV(VT); 129 for (MVT VT : IntVecVTs) 130 addRegClassForRVV(VT); 131 132 if (Subtarget.hasStdExtZfh()) 133 for (MVT VT : F16VecVTs) 134 addRegClassForRVV(VT); 135 136 if (Subtarget.hasStdExtF()) 137 for (MVT VT : F32VecVTs) 138 addRegClassForRVV(VT); 139 140 if (Subtarget.hasStdExtD()) 141 for (MVT VT : F64VecVTs) 142 addRegClassForRVV(VT); 143 144 if (Subtarget.useRVVForFixedLengthVectors()) { 145 auto addRegClassForFixedVectors = [this](MVT VT) { 146 unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT); 147 const TargetRegisterClass *RC; 148 if (LMul == 1 || VT.getVectorElementType() == MVT::i1) 149 RC = &RISCV::VRRegClass; 150 else if (LMul == 2) 151 RC = &RISCV::VRM2RegClass; 152 else if (LMul == 4) 153 RC = &RISCV::VRM4RegClass; 154 else if (LMul == 8) 155 RC = &RISCV::VRM8RegClass; 156 else 157 llvm_unreachable("Unexpected LMul!"); 158 159 addRegisterClass(VT, RC); 160 }; 161 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 162 if (useRVVForFixedLengthVectorVT(VT)) 163 addRegClassForFixedVectors(VT); 164 165 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 166 if (useRVVForFixedLengthVectorVT(VT)) 167 addRegClassForFixedVectors(VT); 168 } 169 } 170 171 // Compute derived properties from the register classes. 172 computeRegisterProperties(STI.getRegisterInfo()); 173 174 setStackPointerRegisterToSaveRestore(RISCV::X2); 175 176 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 177 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 178 179 // TODO: add all necessary setOperationAction calls. 180 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 181 182 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 183 setOperationAction(ISD::BR_CC, XLenVT, Expand); 184 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 185 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 186 187 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 188 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 189 190 setOperationAction(ISD::VASTART, MVT::Other, Custom); 191 setOperationAction(ISD::VAARG, MVT::Other, Expand); 192 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 193 setOperationAction(ISD::VAEND, MVT::Other, Expand); 194 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 196 if (!Subtarget.hasStdExtZbb()) { 197 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 198 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 199 } 200 201 if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit()) 202 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 203 204 if (Subtarget.is64Bit()) { 205 setOperationAction(ISD::ADD, MVT::i32, Custom); 206 setOperationAction(ISD::SUB, MVT::i32, Custom); 207 setOperationAction(ISD::SHL, MVT::i32, Custom); 208 setOperationAction(ISD::SRA, MVT::i32, Custom); 209 setOperationAction(ISD::SRL, MVT::i32, Custom); 210 211 setOperationAction(ISD::UADDO, MVT::i32, Custom); 212 setOperationAction(ISD::USUBO, MVT::i32, Custom); 213 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 214 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 215 } 216 217 if (!Subtarget.hasStdExtM()) { 218 setOperationAction(ISD::MUL, XLenVT, Expand); 219 setOperationAction(ISD::MULHS, XLenVT, Expand); 220 setOperationAction(ISD::MULHU, XLenVT, Expand); 221 setOperationAction(ISD::SDIV, XLenVT, Expand); 222 setOperationAction(ISD::UDIV, XLenVT, Expand); 223 setOperationAction(ISD::SREM, XLenVT, Expand); 224 setOperationAction(ISD::UREM, XLenVT, Expand); 225 } else { 226 if (Subtarget.is64Bit()) { 227 setOperationAction(ISD::MUL, MVT::i32, Custom); 228 setOperationAction(ISD::MUL, MVT::i128, Custom); 229 230 setOperationAction(ISD::SDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UDIV, MVT::i8, Custom); 232 setOperationAction(ISD::UREM, MVT::i8, Custom); 233 setOperationAction(ISD::SDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UDIV, MVT::i16, Custom); 235 setOperationAction(ISD::UREM, MVT::i16, Custom); 236 setOperationAction(ISD::SDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UDIV, MVT::i32, Custom); 238 setOperationAction(ISD::UREM, MVT::i32, Custom); 239 } else { 240 setOperationAction(ISD::MUL, MVT::i64, Custom); 241 } 242 } 243 244 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 246 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 247 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 248 249 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 251 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 252 253 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 254 if (Subtarget.is64Bit()) { 255 setOperationAction(ISD::ROTL, MVT::i32, Custom); 256 setOperationAction(ISD::ROTR, MVT::i32, Custom); 257 } 258 } else { 259 setOperationAction(ISD::ROTL, XLenVT, Expand); 260 setOperationAction(ISD::ROTR, XLenVT, Expand); 261 } 262 263 if (Subtarget.hasStdExtZbp()) { 264 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 265 // more combining. 266 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 267 setOperationAction(ISD::BSWAP, XLenVT, Custom); 268 269 if (Subtarget.is64Bit()) { 270 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 271 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 272 } 273 } else { 274 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 275 // pattern match it directly in isel. 276 setOperationAction(ISD::BSWAP, XLenVT, 277 Subtarget.hasStdExtZbb() ? Legal : Expand); 278 } 279 280 if (Subtarget.hasStdExtZbb()) { 281 setOperationAction(ISD::SMIN, XLenVT, Legal); 282 setOperationAction(ISD::SMAX, XLenVT, Legal); 283 setOperationAction(ISD::UMIN, XLenVT, Legal); 284 setOperationAction(ISD::UMAX, XLenVT, Legal); 285 286 if (Subtarget.is64Bit()) { 287 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 288 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 289 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 290 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 291 } 292 } else { 293 setOperationAction(ISD::CTTZ, XLenVT, Expand); 294 setOperationAction(ISD::CTLZ, XLenVT, Expand); 295 setOperationAction(ISD::CTPOP, XLenVT, Expand); 296 } 297 298 if (Subtarget.hasStdExtZbt()) { 299 setOperationAction(ISD::FSHL, XLenVT, Custom); 300 setOperationAction(ISD::FSHR, XLenVT, Custom); 301 setOperationAction(ISD::SELECT, XLenVT, Legal); 302 303 if (Subtarget.is64Bit()) { 304 setOperationAction(ISD::FSHL, MVT::i32, Custom); 305 setOperationAction(ISD::FSHR, MVT::i32, Custom); 306 } 307 } else { 308 setOperationAction(ISD::SELECT, XLenVT, Custom); 309 } 310 311 ISD::CondCode FPCCToExpand[] = { 312 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 313 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 314 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 315 316 ISD::NodeType FPOpToExpand[] = { 317 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 318 ISD::FP_TO_FP16}; 319 320 if (Subtarget.hasStdExtZfh()) 321 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 322 323 if (Subtarget.hasStdExtZfh()) { 324 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 325 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 326 for (auto CC : FPCCToExpand) 327 setCondCodeAction(CC, MVT::f16, Expand); 328 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 329 setOperationAction(ISD::SELECT, MVT::f16, Custom); 330 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 331 for (auto Op : FPOpToExpand) 332 setOperationAction(Op, MVT::f16, Expand); 333 } 334 335 if (Subtarget.hasStdExtF()) { 336 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 337 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 338 for (auto CC : FPCCToExpand) 339 setCondCodeAction(CC, MVT::f32, Expand); 340 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 341 setOperationAction(ISD::SELECT, MVT::f32, Custom); 342 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 343 for (auto Op : FPOpToExpand) 344 setOperationAction(Op, MVT::f32, Expand); 345 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 346 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 347 } 348 349 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 350 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 351 352 if (Subtarget.hasStdExtD()) { 353 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 354 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 355 for (auto CC : FPCCToExpand) 356 setCondCodeAction(CC, MVT::f64, Expand); 357 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 358 setOperationAction(ISD::SELECT, MVT::f64, Custom); 359 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 360 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 361 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 362 for (auto Op : FPOpToExpand) 363 setOperationAction(Op, MVT::f64, Expand); 364 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 365 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 366 } 367 368 if (Subtarget.is64Bit()) { 369 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 370 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 371 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 372 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 373 } 374 375 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 376 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 377 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 378 setOperationAction(ISD::JumpTable, XLenVT, Custom); 379 380 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 381 382 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 383 // Unfortunately this can't be determined just from the ISA naming string. 384 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 385 Subtarget.is64Bit() ? Legal : Custom); 386 387 setOperationAction(ISD::TRAP, MVT::Other, Legal); 388 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 389 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 390 391 if (Subtarget.hasStdExtA()) { 392 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 393 setMinCmpXchgSizeInBits(32); 394 } else { 395 setMaxAtomicSizeInBitsSupported(0); 396 } 397 398 setBooleanContents(ZeroOrOneBooleanContent); 399 400 if (Subtarget.hasStdExtV()) { 401 setBooleanVectorContents(ZeroOrOneBooleanContent); 402 403 setOperationAction(ISD::VSCALE, XLenVT, Custom); 404 405 // RVV intrinsics may have illegal operands. 406 // We also need to custom legalize vmv.x.s. 407 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 408 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 409 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 410 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 411 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 412 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 413 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 414 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 415 416 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 417 418 if (!Subtarget.is64Bit()) { 419 // We must custom-lower certain vXi64 operations on RV32 due to the vector 420 // element type being illegal. 421 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 422 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 423 424 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 425 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 426 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 427 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 428 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 429 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 430 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 431 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 432 } 433 434 for (MVT VT : BoolVecVTs) { 435 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 436 437 // Mask VTs are custom-expanded into a series of standard nodes 438 setOperationAction(ISD::TRUNCATE, VT, Custom); 439 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 440 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 441 442 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 443 444 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 445 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 446 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 447 448 // Expand all extending loads to types larger than this, and truncating 449 // stores from types larger than this. 450 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 451 setTruncStoreAction(OtherVT, VT, Expand); 452 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 453 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 454 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 455 } 456 } 457 458 for (MVT VT : IntVecVTs) { 459 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 460 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 461 462 setOperationAction(ISD::SMIN, VT, Legal); 463 setOperationAction(ISD::SMAX, VT, Legal); 464 setOperationAction(ISD::UMIN, VT, Legal); 465 setOperationAction(ISD::UMAX, VT, Legal); 466 467 setOperationAction(ISD::ROTL, VT, Expand); 468 setOperationAction(ISD::ROTR, VT, Expand); 469 470 // Custom-lower extensions and truncations from/to mask types. 471 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 472 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 473 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 474 475 // RVV has native int->float & float->int conversions where the 476 // element type sizes are within one power-of-two of each other. Any 477 // wider distances between type sizes have to be lowered as sequences 478 // which progressively narrow the gap in stages. 479 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 480 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 481 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 482 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 483 484 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 485 // nodes which truncate by one power of two at a time. 486 setOperationAction(ISD::TRUNCATE, VT, Custom); 487 488 // Custom-lower insert/extract operations to simplify patterns. 489 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 490 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 491 492 // Custom-lower reduction operations to set up the corresponding custom 493 // nodes' operands. 494 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 495 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 496 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 497 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 498 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 499 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 500 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 501 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 502 503 setOperationAction(ISD::MLOAD, VT, Custom); 504 setOperationAction(ISD::MSTORE, VT, Custom); 505 setOperationAction(ISD::MGATHER, VT, Custom); 506 setOperationAction(ISD::MSCATTER, VT, Custom); 507 508 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 509 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 510 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 511 512 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 513 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 514 515 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 516 setTruncStoreAction(VT, OtherVT, Expand); 517 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 518 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 519 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 520 } 521 } 522 523 // Expand various CCs to best match the RVV ISA, which natively supports UNE 524 // but no other unordered comparisons, and supports all ordered comparisons 525 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 526 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 527 // and we pattern-match those back to the "original", swapping operands once 528 // more. This way we catch both operations and both "vf" and "fv" forms with 529 // fewer patterns. 530 ISD::CondCode VFPCCToExpand[] = { 531 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 532 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 533 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 534 }; 535 536 // Sets common operation actions on RVV floating-point vector types. 537 const auto SetCommonVFPActions = [&](MVT VT) { 538 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 539 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 540 // sizes are within one power-of-two of each other. Therefore conversions 541 // between vXf16 and vXf64 must be lowered as sequences which convert via 542 // vXf32. 543 setOperationAction(ISD::FP_ROUND, VT, Custom); 544 setOperationAction(ISD::FP_EXTEND, VT, Custom); 545 // Custom-lower insert/extract operations to simplify patterns. 546 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 547 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 548 // Expand various condition codes (explained above). 549 for (auto CC : VFPCCToExpand) 550 setCondCodeAction(CC, VT, Expand); 551 552 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 553 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 554 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 555 556 setOperationAction(ISD::MLOAD, VT, Custom); 557 setOperationAction(ISD::MSTORE, VT, Custom); 558 setOperationAction(ISD::MGATHER, VT, Custom); 559 setOperationAction(ISD::MSCATTER, VT, Custom); 560 561 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 562 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 563 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 564 565 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 566 }; 567 568 // Sets common extload/truncstore actions on RVV floating-point vector 569 // types. 570 const auto SetCommonVFPExtLoadTruncStoreActions = 571 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 572 for (auto SmallVT : SmallerVTs) { 573 setTruncStoreAction(VT, SmallVT, Expand); 574 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 575 } 576 }; 577 578 if (Subtarget.hasStdExtZfh()) 579 for (MVT VT : F16VecVTs) 580 SetCommonVFPActions(VT); 581 582 for (MVT VT : F32VecVTs) { 583 if (Subtarget.hasStdExtF()) 584 SetCommonVFPActions(VT); 585 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 586 } 587 588 for (MVT VT : F64VecVTs) { 589 if (Subtarget.hasStdExtD()) 590 SetCommonVFPActions(VT); 591 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 592 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 593 } 594 595 if (Subtarget.useRVVForFixedLengthVectors()) { 596 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 597 if (!useRVVForFixedLengthVectorVT(VT)) 598 continue; 599 600 // By default everything must be expanded. 601 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 602 setOperationAction(Op, VT, Expand); 603 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 604 setTruncStoreAction(VT, OtherVT, Expand); 605 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 606 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 607 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 608 } 609 610 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 611 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 612 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 613 614 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 615 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 616 617 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 618 619 setOperationAction(ISD::LOAD, VT, Custom); 620 setOperationAction(ISD::STORE, VT, Custom); 621 622 setOperationAction(ISD::SETCC, VT, Custom); 623 624 setOperationAction(ISD::TRUNCATE, VT, Custom); 625 626 setOperationAction(ISD::BITCAST, VT, Custom); 627 628 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 629 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 630 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 631 632 // Operations below are different for between masks and other vectors. 633 if (VT.getVectorElementType() == MVT::i1) { 634 setOperationAction(ISD::AND, VT, Custom); 635 setOperationAction(ISD::OR, VT, Custom); 636 setOperationAction(ISD::XOR, VT, Custom); 637 continue; 638 } 639 640 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 641 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 642 643 setOperationAction(ISD::MLOAD, VT, Custom); 644 setOperationAction(ISD::MSTORE, VT, Custom); 645 setOperationAction(ISD::MGATHER, VT, Custom); 646 setOperationAction(ISD::MSCATTER, VT, Custom); 647 setOperationAction(ISD::ADD, VT, Custom); 648 setOperationAction(ISD::MUL, VT, Custom); 649 setOperationAction(ISD::SUB, VT, Custom); 650 setOperationAction(ISD::AND, VT, Custom); 651 setOperationAction(ISD::OR, VT, Custom); 652 setOperationAction(ISD::XOR, VT, Custom); 653 setOperationAction(ISD::SDIV, VT, Custom); 654 setOperationAction(ISD::SREM, VT, Custom); 655 setOperationAction(ISD::UDIV, VT, Custom); 656 setOperationAction(ISD::UREM, VT, Custom); 657 setOperationAction(ISD::SHL, VT, Custom); 658 setOperationAction(ISD::SRA, VT, Custom); 659 setOperationAction(ISD::SRL, VT, Custom); 660 661 setOperationAction(ISD::SMIN, VT, Custom); 662 setOperationAction(ISD::SMAX, VT, Custom); 663 setOperationAction(ISD::UMIN, VT, Custom); 664 setOperationAction(ISD::UMAX, VT, Custom); 665 setOperationAction(ISD::ABS, VT, Custom); 666 667 setOperationAction(ISD::MULHS, VT, Custom); 668 setOperationAction(ISD::MULHU, VT, Custom); 669 670 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 671 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 672 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 673 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 674 675 setOperationAction(ISD::VSELECT, VT, Custom); 676 677 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 678 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 679 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 680 681 // Custom-lower reduction operations to set up the corresponding custom 682 // nodes' operands. 683 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 684 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 685 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 686 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 687 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 688 } 689 690 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 691 if (!useRVVForFixedLengthVectorVT(VT)) 692 continue; 693 694 // By default everything must be expanded. 695 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 696 setOperationAction(Op, VT, Expand); 697 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 698 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 699 setTruncStoreAction(VT, OtherVT, Expand); 700 } 701 702 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 703 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 704 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 705 706 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 707 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 708 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 709 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 710 711 setOperationAction(ISD::LOAD, VT, Custom); 712 setOperationAction(ISD::STORE, VT, Custom); 713 setOperationAction(ISD::MLOAD, VT, Custom); 714 setOperationAction(ISD::MSTORE, VT, Custom); 715 setOperationAction(ISD::MGATHER, VT, Custom); 716 setOperationAction(ISD::MSCATTER, VT, Custom); 717 setOperationAction(ISD::FADD, VT, Custom); 718 setOperationAction(ISD::FSUB, VT, Custom); 719 setOperationAction(ISD::FMUL, VT, Custom); 720 setOperationAction(ISD::FDIV, VT, Custom); 721 setOperationAction(ISD::FNEG, VT, Custom); 722 setOperationAction(ISD::FABS, VT, Custom); 723 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 724 setOperationAction(ISD::FSQRT, VT, Custom); 725 setOperationAction(ISD::FMA, VT, Custom); 726 727 setOperationAction(ISD::FP_ROUND, VT, Custom); 728 setOperationAction(ISD::FP_EXTEND, VT, Custom); 729 730 for (auto CC : VFPCCToExpand) 731 setCondCodeAction(CC, VT, Expand); 732 733 setOperationAction(ISD::VSELECT, VT, Custom); 734 735 setOperationAction(ISD::BITCAST, VT, Custom); 736 737 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 738 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 739 } 740 741 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 742 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 743 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 744 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 745 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 746 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 747 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 748 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 749 } 750 } 751 752 // Function alignments. 753 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 754 setMinFunctionAlignment(FunctionAlignment); 755 setPrefFunctionAlignment(FunctionAlignment); 756 757 setMinimumJumpTableEntries(5); 758 759 // Jumps are expensive, compared to logic 760 setJumpIsExpensive(); 761 762 // We can use any register for comparisons 763 setHasMultipleConditionRegisters(); 764 765 if (Subtarget.hasStdExtZbp()) { 766 setTargetDAGCombine(ISD::OR); 767 } 768 if (Subtarget.hasStdExtV()) { 769 setTargetDAGCombine(ISD::FCOPYSIGN); 770 setTargetDAGCombine(ISD::MGATHER); 771 setTargetDAGCombine(ISD::MSCATTER); 772 } 773 } 774 775 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 776 LLVMContext &Context, 777 EVT VT) const { 778 if (!VT.isVector()) 779 return getPointerTy(DL); 780 if (Subtarget.hasStdExtV() && 781 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 782 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 783 return VT.changeVectorElementTypeToInteger(); 784 } 785 786 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 787 const CallInst &I, 788 MachineFunction &MF, 789 unsigned Intrinsic) const { 790 switch (Intrinsic) { 791 default: 792 return false; 793 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 794 case Intrinsic::riscv_masked_atomicrmw_add_i32: 795 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 796 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 797 case Intrinsic::riscv_masked_atomicrmw_max_i32: 798 case Intrinsic::riscv_masked_atomicrmw_min_i32: 799 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 800 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 801 case Intrinsic::riscv_masked_cmpxchg_i32: 802 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 803 Info.opc = ISD::INTRINSIC_W_CHAIN; 804 Info.memVT = MVT::getVT(PtrTy->getElementType()); 805 Info.ptrVal = I.getArgOperand(0); 806 Info.offset = 0; 807 Info.align = Align(4); 808 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 809 MachineMemOperand::MOVolatile; 810 return true; 811 } 812 } 813 814 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 815 const AddrMode &AM, Type *Ty, 816 unsigned AS, 817 Instruction *I) const { 818 // No global is ever allowed as a base. 819 if (AM.BaseGV) 820 return false; 821 822 // Require a 12-bit signed offset. 823 if (!isInt<12>(AM.BaseOffs)) 824 return false; 825 826 switch (AM.Scale) { 827 case 0: // "r+i" or just "i", depending on HasBaseReg. 828 break; 829 case 1: 830 if (!AM.HasBaseReg) // allow "r+i". 831 break; 832 return false; // disallow "r+r" or "r+r+i". 833 default: 834 return false; 835 } 836 837 return true; 838 } 839 840 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 841 return isInt<12>(Imm); 842 } 843 844 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 845 return isInt<12>(Imm); 846 } 847 848 // On RV32, 64-bit integers are split into their high and low parts and held 849 // in two different registers, so the trunc is free since the low register can 850 // just be used. 851 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 852 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 853 return false; 854 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 855 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 856 return (SrcBits == 64 && DestBits == 32); 857 } 858 859 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 860 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 861 !SrcVT.isInteger() || !DstVT.isInteger()) 862 return false; 863 unsigned SrcBits = SrcVT.getSizeInBits(); 864 unsigned DestBits = DstVT.getSizeInBits(); 865 return (SrcBits == 64 && DestBits == 32); 866 } 867 868 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 869 // Zexts are free if they can be combined with a load. 870 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 871 EVT MemVT = LD->getMemoryVT(); 872 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 873 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 874 (LD->getExtensionType() == ISD::NON_EXTLOAD || 875 LD->getExtensionType() == ISD::ZEXTLOAD)) 876 return true; 877 } 878 879 return TargetLowering::isZExtFree(Val, VT2); 880 } 881 882 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 883 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 884 } 885 886 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 887 return Subtarget.hasStdExtZbb(); 888 } 889 890 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 891 return Subtarget.hasStdExtZbb(); 892 } 893 894 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 895 bool ForCodeSize) const { 896 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 897 return false; 898 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 899 return false; 900 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 901 return false; 902 if (Imm.isNegZero()) 903 return false; 904 return Imm.isZero(); 905 } 906 907 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 908 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 909 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 910 (VT == MVT::f64 && Subtarget.hasStdExtD()); 911 } 912 913 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 914 CallingConv::ID CC, 915 EVT VT) const { 916 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 917 // end up using a GPR but that will be decided based on ABI. 918 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 919 return MVT::f32; 920 921 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 922 } 923 924 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 925 CallingConv::ID CC, 926 EVT VT) const { 927 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 928 // end up using a GPR but that will be decided based on ABI. 929 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 930 return 1; 931 932 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 933 } 934 935 // Changes the condition code and swaps operands if necessary, so the SetCC 936 // operation matches one of the comparisons supported directly by branches 937 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 938 // with 1/-1. 939 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 940 ISD::CondCode &CC, SelectionDAG &DAG) { 941 // Convert X > -1 to X >= 0. 942 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 943 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 944 CC = ISD::SETGE; 945 return; 946 } 947 // Convert X < 1 to 0 >= X. 948 if (CC == ISD::SETLT && isOneConstant(RHS)) { 949 RHS = LHS; 950 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 951 CC = ISD::SETGE; 952 return; 953 } 954 955 switch (CC) { 956 default: 957 break; 958 case ISD::SETGT: 959 case ISD::SETLE: 960 case ISD::SETUGT: 961 case ISD::SETULE: 962 CC = ISD::getSetCCSwappedOperands(CC); 963 std::swap(LHS, RHS); 964 break; 965 } 966 } 967 968 // Return the RISC-V branch opcode that matches the given DAG integer 969 // condition code. The CondCode must be one of those supported by the RISC-V 970 // ISA (see translateSetCCForBranch). 971 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 972 switch (CC) { 973 default: 974 llvm_unreachable("Unsupported CondCode"); 975 case ISD::SETEQ: 976 return RISCV::BEQ; 977 case ISD::SETNE: 978 return RISCV::BNE; 979 case ISD::SETLT: 980 return RISCV::BLT; 981 case ISD::SETGE: 982 return RISCV::BGE; 983 case ISD::SETULT: 984 return RISCV::BLTU; 985 case ISD::SETUGE: 986 return RISCV::BGEU; 987 } 988 } 989 990 RISCVVLMUL RISCVTargetLowering::getLMUL(MVT VT) { 991 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 992 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 993 if (VT.getVectorElementType() == MVT::i1) 994 KnownSize *= 8; 995 996 switch (KnownSize) { 997 default: 998 llvm_unreachable("Invalid LMUL."); 999 case 8: 1000 return RISCVVLMUL::LMUL_F8; 1001 case 16: 1002 return RISCVVLMUL::LMUL_F4; 1003 case 32: 1004 return RISCVVLMUL::LMUL_F2; 1005 case 64: 1006 return RISCVVLMUL::LMUL_1; 1007 case 128: 1008 return RISCVVLMUL::LMUL_2; 1009 case 256: 1010 return RISCVVLMUL::LMUL_4; 1011 case 512: 1012 return RISCVVLMUL::LMUL_8; 1013 } 1014 } 1015 1016 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVVLMUL LMul) { 1017 switch (LMul) { 1018 default: 1019 llvm_unreachable("Invalid LMUL."); 1020 case RISCVVLMUL::LMUL_F8: 1021 case RISCVVLMUL::LMUL_F4: 1022 case RISCVVLMUL::LMUL_F2: 1023 case RISCVVLMUL::LMUL_1: 1024 return RISCV::VRRegClassID; 1025 case RISCVVLMUL::LMUL_2: 1026 return RISCV::VRM2RegClassID; 1027 case RISCVVLMUL::LMUL_4: 1028 return RISCV::VRM4RegClassID; 1029 case RISCVVLMUL::LMUL_8: 1030 return RISCV::VRM8RegClassID; 1031 } 1032 } 1033 1034 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1035 RISCVVLMUL LMUL = getLMUL(VT); 1036 if (LMUL == RISCVVLMUL::LMUL_F8 || LMUL == RISCVVLMUL::LMUL_F4 || 1037 LMUL == RISCVVLMUL::LMUL_F2 || LMUL == RISCVVLMUL::LMUL_1) { 1038 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1039 "Unexpected subreg numbering"); 1040 return RISCV::sub_vrm1_0 + Index; 1041 } 1042 if (LMUL == RISCVVLMUL::LMUL_2) { 1043 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1044 "Unexpected subreg numbering"); 1045 return RISCV::sub_vrm2_0 + Index; 1046 } 1047 if (LMUL == RISCVVLMUL::LMUL_4) { 1048 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1049 "Unexpected subreg numbering"); 1050 return RISCV::sub_vrm4_0 + Index; 1051 } 1052 llvm_unreachable("Invalid vector type."); 1053 } 1054 1055 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1056 if (VT.getVectorElementType() == MVT::i1) 1057 return RISCV::VRRegClassID; 1058 return getRegClassIDForLMUL(getLMUL(VT)); 1059 } 1060 1061 // Attempt to decompose a subvector insert/extract between VecVT and 1062 // SubVecVT via subregister indices. Returns the subregister index that 1063 // can perform the subvector insert/extract with the given element index, as 1064 // well as the index corresponding to any leftover subvectors that must be 1065 // further inserted/extracted within the register class for SubVecVT. 1066 std::pair<unsigned, unsigned> 1067 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1068 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1069 const RISCVRegisterInfo *TRI) { 1070 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1071 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1072 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1073 "Register classes not ordered"); 1074 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1075 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1076 // Try to compose a subregister index that takes us from the incoming 1077 // LMUL>1 register class down to the outgoing one. At each step we half 1078 // the LMUL: 1079 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1080 // Note that this is not guaranteed to find a subregister index, such as 1081 // when we are extracting from one VR type to another. 1082 unsigned SubRegIdx = RISCV::NoSubRegister; 1083 for (const unsigned RCID : 1084 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1085 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1086 VecVT = VecVT.getHalfNumVectorElementsVT(); 1087 bool IsHi = 1088 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1089 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1090 getSubregIndexByMVT(VecVT, IsHi)); 1091 if (IsHi) 1092 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1093 } 1094 return {SubRegIdx, InsertExtractIdx}; 1095 } 1096 1097 // Return the largest legal scalable vector type that matches VT's element type. 1098 MVT RISCVTargetLowering::getContainerForFixedLengthVector( 1099 const TargetLowering &TLI, MVT VT, const RISCVSubtarget &Subtarget) { 1100 assert(VT.isFixedLengthVector() && TLI.isTypeLegal(VT) && 1101 "Expected legal fixed length vector!"); 1102 1103 unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT); 1104 assert(LMul <= 8 && isPowerOf2_32(LMul) && "Unexpected LMUL!"); 1105 1106 MVT EltVT = VT.getVectorElementType(); 1107 switch (EltVT.SimpleTy) { 1108 default: 1109 llvm_unreachable("unexpected element type for RVV container"); 1110 case MVT::i1: { 1111 // Masks are calculated assuming 8-bit elements since that's when we need 1112 // the most elements. 1113 unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / 8; 1114 return MVT::getScalableVectorVT(MVT::i1, LMul * EltsPerBlock); 1115 } 1116 case MVT::i8: 1117 case MVT::i16: 1118 case MVT::i32: 1119 case MVT::i64: 1120 case MVT::f16: 1121 case MVT::f32: 1122 case MVT::f64: { 1123 unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / EltVT.getSizeInBits(); 1124 return MVT::getScalableVectorVT(EltVT, LMul * EltsPerBlock); 1125 } 1126 } 1127 } 1128 1129 MVT RISCVTargetLowering::getContainerForFixedLengthVector( 1130 SelectionDAG &DAG, MVT VT, const RISCVSubtarget &Subtarget) { 1131 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1132 Subtarget); 1133 } 1134 1135 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1136 return getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1137 } 1138 1139 // Grow V to consume an entire RVV register. 1140 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1141 const RISCVSubtarget &Subtarget) { 1142 assert(VT.isScalableVector() && 1143 "Expected to convert into a scalable vector!"); 1144 assert(V.getValueType().isFixedLengthVector() && 1145 "Expected a fixed length vector operand!"); 1146 SDLoc DL(V); 1147 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1148 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1149 } 1150 1151 // Shrink V so it's just big enough to maintain a VT's worth of data. 1152 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1153 const RISCVSubtarget &Subtarget) { 1154 assert(VT.isFixedLengthVector() && 1155 "Expected to convert into a fixed length vector!"); 1156 assert(V.getValueType().isScalableVector() && 1157 "Expected a scalable vector operand!"); 1158 SDLoc DL(V); 1159 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1160 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1161 } 1162 1163 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1164 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1165 // the vector type that it is contained in. 1166 static std::pair<SDValue, SDValue> 1167 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1168 const RISCVSubtarget &Subtarget) { 1169 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1170 MVT XLenVT = Subtarget.getXLenVT(); 1171 SDValue VL = VecVT.isFixedLengthVector() 1172 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1173 : DAG.getRegister(RISCV::X0, XLenVT); 1174 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1175 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1176 return {Mask, VL}; 1177 } 1178 1179 // As above but assuming the given type is a scalable vector type. 1180 static std::pair<SDValue, SDValue> 1181 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1182 const RISCVSubtarget &Subtarget) { 1183 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1184 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1185 } 1186 1187 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1188 // of either is (currently) supported. This can get us into an infinite loop 1189 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1190 // as a ..., etc. 1191 // Until either (or both) of these can reliably lower any node, reporting that 1192 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1193 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1194 // which is not desirable. 1195 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1196 EVT VT, unsigned DefinedValues) const { 1197 return false; 1198 } 1199 1200 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1201 // Only splats are currently supported. 1202 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1203 return true; 1204 1205 return false; 1206 } 1207 1208 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1209 const RISCVSubtarget &Subtarget) { 1210 MVT VT = Op.getSimpleValueType(); 1211 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1212 1213 MVT ContainerVT = 1214 RISCVTargetLowering::getContainerForFixedLengthVector(DAG, VT, Subtarget); 1215 1216 SDLoc DL(Op); 1217 SDValue Mask, VL; 1218 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1219 1220 MVT XLenVT = Subtarget.getXLenVT(); 1221 unsigned NumElts = Op.getNumOperands(); 1222 1223 if (VT.getVectorElementType() == MVT::i1) { 1224 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1225 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1226 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1227 } 1228 1229 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1230 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1231 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1232 } 1233 1234 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1235 // scalar integer chunks whose bit-width depends on the number of mask 1236 // bits and XLEN. 1237 // First, determine the most appropriate scalar integer type to use. This 1238 // is at most XLenVT, but may be shrunk to a smaller vector element type 1239 // according to the size of the final vector - use i8 chunks rather than 1240 // XLenVT if we're producing a v8i1. This results in more consistent 1241 // codegen across RV32 and RV64. 1242 // If we have to use more than one INSERT_VECTOR_ELT then this optimization 1243 // is likely to increase code size; avoid peforming it in such a case. 1244 unsigned NumViaIntegerBits = 1245 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1246 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1247 (!DAG.shouldOptForSize() || NumElts <= NumViaIntegerBits)) { 1248 // Now we can create our integer vector type. Note that it may be larger 1249 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1250 MVT IntegerViaVecVT = 1251 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1252 divideCeil(NumElts, NumViaIntegerBits)); 1253 1254 uint64_t Bits = 0; 1255 unsigned BitPos = 0, IntegerEltIdx = 0; 1256 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1257 1258 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1259 // Once we accumulate enough bits to fill our scalar type, insert into 1260 // our vector and clear our accumulated data. 1261 if (I != 0 && I % NumViaIntegerBits == 0) { 1262 if (NumViaIntegerBits <= 32) 1263 Bits = SignExtend64(Bits, 32); 1264 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1265 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1266 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1267 Bits = 0; 1268 BitPos = 0; 1269 IntegerEltIdx++; 1270 } 1271 SDValue V = Op.getOperand(I); 1272 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1273 Bits |= ((uint64_t)BitValue << BitPos); 1274 } 1275 1276 // Insert the (remaining) scalar value into position in our integer 1277 // vector type. 1278 if (NumViaIntegerBits <= 32) 1279 Bits = SignExtend64(Bits, 32); 1280 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1281 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1282 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1283 1284 if (NumElts < NumViaIntegerBits) { 1285 // If we're producing a smaller vector than our minimum legal integer 1286 // type, bitcast to the equivalent (known-legal) mask type, and extract 1287 // our final mask. 1288 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1289 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1290 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1291 DAG.getConstant(0, DL, XLenVT)); 1292 } else { 1293 // Else we must have produced an integer type with the same size as the 1294 // mask type; bitcast for the final result. 1295 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1296 Vec = DAG.getBitcast(VT, Vec); 1297 } 1298 1299 return Vec; 1300 } 1301 1302 return SDValue(); 1303 } 1304 1305 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1306 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1307 : RISCVISD::VMV_V_X_VL; 1308 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1309 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1310 } 1311 1312 // Try and match an index sequence, which we can lower directly to the vid 1313 // instruction. An all-undef vector is matched by getSplatValue, above. 1314 if (VT.isInteger()) { 1315 bool IsVID = true; 1316 for (unsigned I = 0; I < NumElts && IsVID; I++) 1317 IsVID &= Op.getOperand(I).isUndef() || 1318 (isa<ConstantSDNode>(Op.getOperand(I)) && 1319 Op.getConstantOperandVal(I) == I); 1320 1321 if (IsVID) { 1322 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1323 return convertFromScalableVector(VT, VID, DAG, Subtarget); 1324 } 1325 } 1326 1327 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1328 // when re-interpreted as a vector with a larger element type. For example, 1329 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1330 // could be instead splat as 1331 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1332 // TODO: This optimization could also work on non-constant splats, but it 1333 // would require bit-manipulation instructions to construct the splat value. 1334 SmallVector<SDValue> Sequence; 1335 unsigned EltBitSize = VT.getScalarSizeInBits(); 1336 const auto *BV = cast<BuildVectorSDNode>(Op); 1337 if (VT.isInteger() && EltBitSize < 64 && 1338 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1339 BV->getRepeatedSequence(Sequence) && 1340 (Sequence.size() * EltBitSize) <= 64) { 1341 unsigned SeqLen = Sequence.size(); 1342 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1343 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1344 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1345 ViaIntVT == MVT::i64) && 1346 "Unexpected sequence type"); 1347 1348 unsigned EltIdx = 0; 1349 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1350 uint64_t SplatValue = 0; 1351 // Construct the amalgamated value which can be splatted as this larger 1352 // vector type. 1353 for (const auto &SeqV : Sequence) { 1354 if (!SeqV.isUndef()) 1355 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1356 << (EltIdx * EltBitSize)); 1357 EltIdx++; 1358 } 1359 1360 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1361 // achieve better constant materializion. 1362 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1363 SplatValue = SignExtend64(SplatValue, 32); 1364 1365 // Since we can't introduce illegal i64 types at this stage, we can only 1366 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1367 // way we can use RVV instructions to splat. 1368 assert((ViaIntVT.bitsLE(XLenVT) || 1369 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1370 "Unexpected bitcast sequence"); 1371 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1372 SDValue ViaVL = 1373 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1374 MVT ViaContainerVT = 1375 RISCVTargetLowering::getContainerForFixedLengthVector(DAG, ViaVecVT, 1376 Subtarget); 1377 SDValue Splat = 1378 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1379 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1380 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1381 return DAG.getBitcast(VT, Splat); 1382 } 1383 } 1384 1385 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1386 // which constitute a large proportion of the elements. In such cases we can 1387 // splat a vector with the dominant element and make up the shortfall with 1388 // INSERT_VECTOR_ELTs. 1389 // Note that this includes vectors of 2 elements by association. The 1390 // upper-most element is the "dominant" one, allowing us to use a splat to 1391 // "insert" the upper element, and an insert of the lower element at position 1392 // 0, which improves codegen. 1393 SDValue DominantValue; 1394 unsigned MostCommonCount = 0; 1395 DenseMap<SDValue, unsigned> ValueCounts; 1396 unsigned NumUndefElts = 1397 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1398 1399 for (SDValue V : Op->op_values()) { 1400 if (V.isUndef()) 1401 continue; 1402 1403 ValueCounts.insert(std::make_pair(V, 0)); 1404 unsigned &Count = ValueCounts[V]; 1405 1406 // Is this value dominant? In case of a tie, prefer the highest element as 1407 // it's cheaper to insert near the beginning of a vector than it is at the 1408 // end. 1409 if (++Count >= MostCommonCount) { 1410 DominantValue = V; 1411 MostCommonCount = Count; 1412 } 1413 } 1414 1415 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1416 unsigned NumDefElts = NumElts - NumUndefElts; 1417 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1418 1419 // Don't perform this optimization when optimizing for size, since 1420 // materializing elements and inserting them tends to cause code bloat. 1421 if (!DAG.shouldOptForSize() && 1422 ((MostCommonCount > DominantValueCountThreshold) || 1423 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1424 // Start by splatting the most common element. 1425 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1426 1427 DenseSet<SDValue> Processed{DominantValue}; 1428 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1429 for (const auto &OpIdx : enumerate(Op->ops())) { 1430 const SDValue &V = OpIdx.value(); 1431 if (V.isUndef() || !Processed.insert(V).second) 1432 continue; 1433 if (ValueCounts[V] == 1) { 1434 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1435 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1436 } else { 1437 // Blend in all instances of this value using a VSELECT, using a 1438 // mask where each bit signals whether that element is the one 1439 // we're after. 1440 SmallVector<SDValue> Ops; 1441 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1442 return DAG.getConstant(V == V1, DL, XLenVT); 1443 }); 1444 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 1445 DAG.getBuildVector(SelMaskTy, DL, Ops), 1446 DAG.getSplatBuildVector(VT, DL, V), Vec); 1447 } 1448 } 1449 1450 return Vec; 1451 } 1452 1453 return SDValue(); 1454 } 1455 1456 // Called by type legalization to handle splat of i64 on RV32. 1457 // FIXME: We can optimize this when the type has sign or zero bits in one 1458 // of the halves. 1459 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 1460 SDValue VL, SelectionDAG &DAG) { 1461 SDValue ThirtyTwoV = DAG.getConstant(32, DL, VT); 1462 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1463 DAG.getConstant(0, DL, MVT::i32)); 1464 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1465 DAG.getConstant(1, DL, MVT::i32)); 1466 1467 // vmv.v.x vX, hi 1468 // vsll.vx vX, vX, /*32*/ 1469 // vmv.v.x vY, lo 1470 // vsll.vx vY, vY, /*32*/ 1471 // vsrl.vx vY, vY, /*32*/ 1472 // vor.vv vX, vX, vY 1473 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1474 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1475 Lo = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 1476 Lo = DAG.getNode(RISCVISD::SHL_VL, DL, VT, Lo, ThirtyTwoV, Mask, VL); 1477 Lo = DAG.getNode(RISCVISD::SRL_VL, DL, VT, Lo, ThirtyTwoV, Mask, VL); 1478 1479 Hi = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Hi, VL); 1480 Hi = DAG.getNode(RISCVISD::SHL_VL, DL, VT, Hi, ThirtyTwoV, Mask, VL); 1481 1482 return DAG.getNode(RISCVISD::OR_VL, DL, VT, Lo, Hi, Mask, VL); 1483 } 1484 1485 // This function lowers a splat of a scalar operand Splat with the vector 1486 // length VL. It ensures the final sequence is type legal, which is useful when 1487 // lowering a splat after type legalization. 1488 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 1489 SelectionDAG &DAG, 1490 const RISCVSubtarget &Subtarget) { 1491 if (VT.isFloatingPoint()) 1492 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 1493 1494 MVT XLenVT = Subtarget.getXLenVT(); 1495 1496 // Simplest case is that the operand needs to be promoted to XLenVT. 1497 if (Scalar.getValueType().bitsLE(XLenVT)) { 1498 // If the operand is a constant, sign extend to increase our chances 1499 // of being able to use a .vi instruction. ANY_EXTEND would become a 1500 // a zero extend and the simm5 check in isel would fail. 1501 // FIXME: Should we ignore the upper bits in isel instead? 1502 unsigned ExtOpc = 1503 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 1504 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 1505 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 1506 } 1507 1508 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 1509 "Unexpected scalar for splat lowering!"); 1510 1511 // If this is a sign-extended 32-bit constant, we can truncate it and rely 1512 // on the instruction to sign-extend since SEW>XLEN. 1513 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) { 1514 if (isInt<32>(CVal->getSExtValue())) 1515 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 1516 DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32), 1517 VL); 1518 } 1519 1520 // Otherwise use the more complicated splatting algorithm. 1521 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 1522 } 1523 1524 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 1525 const RISCVSubtarget &Subtarget) { 1526 SDValue V1 = Op.getOperand(0); 1527 SDValue V2 = Op.getOperand(1); 1528 SDLoc DL(Op); 1529 MVT XLenVT = Subtarget.getXLenVT(); 1530 MVT VT = Op.getSimpleValueType(); 1531 unsigned NumElts = VT.getVectorNumElements(); 1532 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 1533 1534 MVT ContainerVT = 1535 RISCVTargetLowering::getContainerForFixedLengthVector(DAG, VT, Subtarget); 1536 1537 SDValue TrueMask, VL; 1538 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1539 1540 if (SVN->isSplat()) { 1541 int Lane = SVN->getSplatIndex(); 1542 if (Lane >= 0) { 1543 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1544 assert(Lane < (int)NumElts && "Unexpected lane!"); 1545 SDValue Gather = 1546 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 1547 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 1548 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1549 } 1550 } 1551 1552 // Detect shuffles which can be re-expressed as vector selects; these are 1553 // shuffles in which each element in the destination is taken from an element 1554 // at the corresponding index in either source vectors. 1555 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 1556 int MaskIndex = MaskIdx.value(); 1557 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 1558 }); 1559 1560 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 1561 1562 SmallVector<SDValue> MaskVals; 1563 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 1564 // merged with a second vrgather. 1565 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 1566 1567 // By default we preserve the original operand order, and use a mask to 1568 // select LHS as true and RHS as false. However, since RVV vector selects may 1569 // feature splats but only on the LHS, we may choose to invert our mask and 1570 // instead select between RHS and LHS. 1571 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 1572 bool InvertMask = IsSelect == SwapOps; 1573 1574 // Now construct the mask that will be used by the vselect or blended 1575 // vrgather operation. For vrgathers, construct the appropriate indices into 1576 // each vector. 1577 for (int MaskIndex : SVN->getMask()) { 1578 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 1579 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 1580 if (!IsSelect) { 1581 bool IsLHS = MaskIndex < (int)NumElts; 1582 // For "undef" elements of -1, shuffle in element 0 instead. 1583 GatherIndicesLHS.push_back( 1584 DAG.getConstant(IsLHS ? std::max(MaskIndex, 0) : 0, DL, XLenVT)); 1585 // TODO: If we're masking out unused elements anyway, it might produce 1586 // better code if we use the most-common element index instead of 0. 1587 GatherIndicesRHS.push_back( 1588 DAG.getConstant(IsLHS ? 0 : MaskIndex - NumElts, DL, XLenVT)); 1589 } 1590 } 1591 1592 if (SwapOps) { 1593 std::swap(V1, V2); 1594 std::swap(GatherIndicesLHS, GatherIndicesRHS); 1595 } 1596 1597 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 1598 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 1599 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 1600 1601 if (IsSelect) 1602 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 1603 1604 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 1605 // On such a large vector we're unable to use i8 as the index type. 1606 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 1607 // may involve vector splitting if we're already at LMUL=8, or our 1608 // user-supplied maximum fixed-length LMUL. 1609 return SDValue(); 1610 } 1611 1612 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 1613 MVT IndexVT = VT.changeTypeToInteger(); 1614 // Since we can't introduce illegal index types at this stage, use i16 and 1615 // vrgatherei16 if the corresponding index type for plain vrgather is greater 1616 // than XLenVT. 1617 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 1618 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 1619 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 1620 } 1621 1622 MVT IndexContainerVT = 1623 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 1624 1625 SDValue Gather; 1626 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 1627 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 1628 if (SDValue SplatValue = DAG.getSplatValue(V1)) { 1629 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 1630 } else { 1631 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 1632 LHSIndices = 1633 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 1634 1635 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1636 Gather = 1637 DAG.getNode(GatherOpc, DL, ContainerVT, V1, LHSIndices, TrueMask, VL); 1638 } 1639 1640 // If a second vector operand is used by this shuffle, blend it in with an 1641 // additional vrgather. 1642 if (!V2.isUndef()) { 1643 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 1644 SelectMask = 1645 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 1646 1647 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 1648 RHSIndices = 1649 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 1650 1651 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 1652 V2 = DAG.getNode(GatherOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, VL); 1653 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 1654 Gather, VL); 1655 } 1656 1657 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1658 } 1659 1660 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 1661 SDLoc DL, SelectionDAG &DAG, 1662 const RISCVSubtarget &Subtarget) { 1663 if (VT.isScalableVector()) 1664 return DAG.getFPExtendOrRound(Op, DL, VT); 1665 assert(VT.isFixedLengthVector() && 1666 "Unexpected value type for RVV FP extend/round lowering"); 1667 SDValue Mask, VL; 1668 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1669 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 1670 ? RISCVISD::FP_EXTEND_VL 1671 : RISCVISD::FP_ROUND_VL; 1672 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 1673 } 1674 1675 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 1676 SelectionDAG &DAG) const { 1677 switch (Op.getOpcode()) { 1678 default: 1679 report_fatal_error("unimplemented operand"); 1680 case ISD::GlobalAddress: 1681 return lowerGlobalAddress(Op, DAG); 1682 case ISD::BlockAddress: 1683 return lowerBlockAddress(Op, DAG); 1684 case ISD::ConstantPool: 1685 return lowerConstantPool(Op, DAG); 1686 case ISD::JumpTable: 1687 return lowerJumpTable(Op, DAG); 1688 case ISD::GlobalTLSAddress: 1689 return lowerGlobalTLSAddress(Op, DAG); 1690 case ISD::SELECT: 1691 return lowerSELECT(Op, DAG); 1692 case ISD::BRCOND: 1693 return lowerBRCOND(Op, DAG); 1694 case ISD::VASTART: 1695 return lowerVASTART(Op, DAG); 1696 case ISD::FRAMEADDR: 1697 return lowerFRAMEADDR(Op, DAG); 1698 case ISD::RETURNADDR: 1699 return lowerRETURNADDR(Op, DAG); 1700 case ISD::SHL_PARTS: 1701 return lowerShiftLeftParts(Op, DAG); 1702 case ISD::SRA_PARTS: 1703 return lowerShiftRightParts(Op, DAG, true); 1704 case ISD::SRL_PARTS: 1705 return lowerShiftRightParts(Op, DAG, false); 1706 case ISD::BITCAST: { 1707 SDLoc DL(Op); 1708 EVT VT = Op.getValueType(); 1709 SDValue Op0 = Op.getOperand(0); 1710 EVT Op0VT = Op0.getValueType(); 1711 MVT XLenVT = Subtarget.getXLenVT(); 1712 if (VT.isFixedLengthVector()) { 1713 // We can handle fixed length vector bitcasts with a simple replacement 1714 // in isel. 1715 if (Op0VT.isFixedLengthVector()) 1716 return Op; 1717 // When bitcasting from scalar to fixed-length vector, insert the scalar 1718 // into a one-element vector of the result type, and perform a vector 1719 // bitcast. 1720 if (!Op0VT.isVector()) { 1721 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 1722 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 1723 DAG.getUNDEF(BVT), Op0, 1724 DAG.getConstant(0, DL, XLenVT))); 1725 } 1726 return SDValue(); 1727 } 1728 // Custom-legalize bitcasts from fixed-length vector types to scalar types 1729 // thus: bitcast the vector to a one-element vector type whose element type 1730 // is the same as the result type, and extract the first element. 1731 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 1732 LLVMContext &Context = *DAG.getContext(); 1733 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 1734 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 1735 DAG.getConstant(0, DL, XLenVT)); 1736 } 1737 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 1738 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 1739 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 1740 return FPConv; 1741 } 1742 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 1743 Subtarget.hasStdExtF()) { 1744 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 1745 SDValue FPConv = 1746 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 1747 return FPConv; 1748 } 1749 return SDValue(); 1750 } 1751 case ISD::INTRINSIC_WO_CHAIN: 1752 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 1753 case ISD::INTRINSIC_W_CHAIN: 1754 return LowerINTRINSIC_W_CHAIN(Op, DAG); 1755 case ISD::BSWAP: 1756 case ISD::BITREVERSE: { 1757 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 1758 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 1759 MVT VT = Op.getSimpleValueType(); 1760 SDLoc DL(Op); 1761 // Start with the maximum immediate value which is the bitwidth - 1. 1762 unsigned Imm = VT.getSizeInBits() - 1; 1763 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 1764 if (Op.getOpcode() == ISD::BSWAP) 1765 Imm &= ~0x7U; 1766 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 1767 DAG.getConstant(Imm, DL, VT)); 1768 } 1769 case ISD::FSHL: 1770 case ISD::FSHR: { 1771 MVT VT = Op.getSimpleValueType(); 1772 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 1773 SDLoc DL(Op); 1774 if (Op.getOperand(2).getOpcode() == ISD::Constant) 1775 return Op; 1776 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 1777 // use log(XLen) bits. Mask the shift amount accordingly. 1778 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 1779 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 1780 DAG.getConstant(ShAmtWidth, DL, VT)); 1781 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 1782 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 1783 } 1784 case ISD::TRUNCATE: { 1785 SDLoc DL(Op); 1786 MVT VT = Op.getSimpleValueType(); 1787 // Only custom-lower vector truncates 1788 if (!VT.isVector()) 1789 return Op; 1790 1791 // Truncates to mask types are handled differently 1792 if (VT.getVectorElementType() == MVT::i1) 1793 return lowerVectorMaskTrunc(Op, DAG); 1794 1795 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 1796 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 1797 // truncate by one power of two at a time. 1798 MVT DstEltVT = VT.getVectorElementType(); 1799 1800 SDValue Src = Op.getOperand(0); 1801 MVT SrcVT = Src.getSimpleValueType(); 1802 MVT SrcEltVT = SrcVT.getVectorElementType(); 1803 1804 assert(DstEltVT.bitsLT(SrcEltVT) && 1805 isPowerOf2_64(DstEltVT.getSizeInBits()) && 1806 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 1807 "Unexpected vector truncate lowering"); 1808 1809 MVT ContainerVT = SrcVT; 1810 if (SrcVT.isFixedLengthVector()) { 1811 ContainerVT = getContainerForFixedLengthVector(SrcVT); 1812 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 1813 } 1814 1815 SDValue Result = Src; 1816 SDValue Mask, VL; 1817 std::tie(Mask, VL) = 1818 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 1819 LLVMContext &Context = *DAG.getContext(); 1820 const ElementCount Count = ContainerVT.getVectorElementCount(); 1821 do { 1822 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 1823 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 1824 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 1825 Mask, VL); 1826 } while (SrcEltVT != DstEltVT); 1827 1828 if (SrcVT.isFixedLengthVector()) 1829 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 1830 1831 return Result; 1832 } 1833 case ISD::ANY_EXTEND: 1834 case ISD::ZERO_EXTEND: 1835 if (Op.getOperand(0).getValueType().isVector() && 1836 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 1837 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 1838 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 1839 case ISD::SIGN_EXTEND: 1840 if (Op.getOperand(0).getValueType().isVector() && 1841 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 1842 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 1843 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 1844 case ISD::SPLAT_VECTOR_PARTS: 1845 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 1846 case ISD::INSERT_VECTOR_ELT: 1847 return lowerINSERT_VECTOR_ELT(Op, DAG); 1848 case ISD::EXTRACT_VECTOR_ELT: 1849 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 1850 case ISD::VSCALE: { 1851 MVT VT = Op.getSimpleValueType(); 1852 SDLoc DL(Op); 1853 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 1854 // We define our scalable vector types for lmul=1 to use a 64 bit known 1855 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 1856 // vscale as VLENB / 8. 1857 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 1858 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 1859 DAG.getConstant(3, DL, VT)); 1860 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 1861 } 1862 case ISD::FP_EXTEND: { 1863 // RVV can only do fp_extend to types double the size as the source. We 1864 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 1865 // via f32. 1866 SDLoc DL(Op); 1867 MVT VT = Op.getSimpleValueType(); 1868 SDValue Src = Op.getOperand(0); 1869 MVT SrcVT = Src.getSimpleValueType(); 1870 1871 // Prepare any fixed-length vector operands. 1872 MVT ContainerVT = VT; 1873 if (SrcVT.isFixedLengthVector()) { 1874 ContainerVT = getContainerForFixedLengthVector(VT); 1875 MVT SrcContainerVT = 1876 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 1877 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 1878 } 1879 1880 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 1881 SrcVT.getVectorElementType() != MVT::f16) { 1882 // For scalable vectors, we only need to close the gap between 1883 // vXf16->vXf64. 1884 if (!VT.isFixedLengthVector()) 1885 return Op; 1886 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 1887 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 1888 return convertFromScalableVector(VT, Src, DAG, Subtarget); 1889 } 1890 1891 MVT InterVT = VT.changeVectorElementType(MVT::f32); 1892 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 1893 SDValue IntermediateExtend = getRVVFPExtendOrRound( 1894 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 1895 1896 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 1897 DL, DAG, Subtarget); 1898 if (VT.isFixedLengthVector()) 1899 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 1900 return Extend; 1901 } 1902 case ISD::FP_ROUND: { 1903 // RVV can only do fp_round to types half the size as the source. We 1904 // custom-lower f64->f16 rounds via RVV's round-to-odd float 1905 // conversion instruction. 1906 SDLoc DL(Op); 1907 MVT VT = Op.getSimpleValueType(); 1908 SDValue Src = Op.getOperand(0); 1909 MVT SrcVT = Src.getSimpleValueType(); 1910 1911 // Prepare any fixed-length vector operands. 1912 MVT ContainerVT = VT; 1913 if (VT.isFixedLengthVector()) { 1914 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 1915 ContainerVT = 1916 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 1917 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 1918 } 1919 1920 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 1921 SrcVT.getVectorElementType() != MVT::f64) { 1922 // For scalable vectors, we only need to close the gap between 1923 // vXf64<->vXf16. 1924 if (!VT.isFixedLengthVector()) 1925 return Op; 1926 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 1927 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 1928 return convertFromScalableVector(VT, Src, DAG, Subtarget); 1929 } 1930 1931 SDValue Mask, VL; 1932 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1933 1934 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 1935 SDValue IntermediateRound = 1936 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 1937 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 1938 DL, DAG, Subtarget); 1939 1940 if (VT.isFixedLengthVector()) 1941 return convertFromScalableVector(VT, Round, DAG, Subtarget); 1942 return Round; 1943 } 1944 case ISD::FP_TO_SINT: 1945 case ISD::FP_TO_UINT: 1946 case ISD::SINT_TO_FP: 1947 case ISD::UINT_TO_FP: { 1948 // RVV can only do fp<->int conversions to types half/double the size as 1949 // the source. We custom-lower any conversions that do two hops into 1950 // sequences. 1951 MVT VT = Op.getSimpleValueType(); 1952 if (!VT.isVector()) 1953 return Op; 1954 SDLoc DL(Op); 1955 SDValue Src = Op.getOperand(0); 1956 MVT EltVT = VT.getVectorElementType(); 1957 MVT SrcVT = Src.getSimpleValueType(); 1958 MVT SrcEltVT = SrcVT.getVectorElementType(); 1959 unsigned EltSize = EltVT.getSizeInBits(); 1960 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 1961 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 1962 "Unexpected vector element types"); 1963 1964 bool IsInt2FP = SrcEltVT.isInteger(); 1965 // Widening conversions 1966 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 1967 if (IsInt2FP) { 1968 // Do a regular integer sign/zero extension then convert to float. 1969 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 1970 VT.getVectorElementCount()); 1971 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 1972 ? ISD::ZERO_EXTEND 1973 : ISD::SIGN_EXTEND; 1974 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 1975 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 1976 } 1977 // FP2Int 1978 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 1979 // Do one doubling fp_extend then complete the operation by converting 1980 // to int. 1981 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 1982 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 1983 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 1984 } 1985 1986 // Narrowing conversions 1987 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 1988 if (IsInt2FP) { 1989 // One narrowing int_to_fp, then an fp_round. 1990 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 1991 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 1992 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 1993 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 1994 } 1995 // FP2Int 1996 // One narrowing fp_to_int, then truncate the integer. If the float isn't 1997 // representable by the integer, the result is poison. 1998 MVT IVecVT = 1999 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2000 VT.getVectorElementCount()); 2001 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2002 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2003 } 2004 2005 // Scalable vectors can exit here. Patterns will handle equally-sized 2006 // conversions halving/doubling ones. 2007 if (!VT.isFixedLengthVector()) 2008 return Op; 2009 2010 // For fixed-length vectors we lower to a custom "VL" node. 2011 unsigned RVVOpc = 0; 2012 switch (Op.getOpcode()) { 2013 default: 2014 llvm_unreachable("Impossible opcode"); 2015 case ISD::FP_TO_SINT: 2016 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2017 break; 2018 case ISD::FP_TO_UINT: 2019 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2020 break; 2021 case ISD::SINT_TO_FP: 2022 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2023 break; 2024 case ISD::UINT_TO_FP: 2025 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2026 break; 2027 } 2028 2029 MVT ContainerVT, SrcContainerVT; 2030 // Derive the reference container type from the larger vector type. 2031 if (SrcEltSize > EltSize) { 2032 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2033 ContainerVT = 2034 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2035 } else { 2036 ContainerVT = getContainerForFixedLengthVector(VT); 2037 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2038 } 2039 2040 SDValue Mask, VL; 2041 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2042 2043 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2044 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2045 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2046 } 2047 case ISD::VECREDUCE_ADD: 2048 case ISD::VECREDUCE_UMAX: 2049 case ISD::VECREDUCE_SMAX: 2050 case ISD::VECREDUCE_UMIN: 2051 case ISD::VECREDUCE_SMIN: 2052 return lowerVECREDUCE(Op, DAG); 2053 case ISD::VECREDUCE_AND: 2054 case ISD::VECREDUCE_OR: 2055 case ISD::VECREDUCE_XOR: 2056 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2057 return lowerVectorMaskVECREDUCE(Op, DAG); 2058 return lowerVECREDUCE(Op, DAG); 2059 case ISD::VECREDUCE_FADD: 2060 case ISD::VECREDUCE_SEQ_FADD: 2061 return lowerFPVECREDUCE(Op, DAG); 2062 case ISD::INSERT_SUBVECTOR: 2063 return lowerINSERT_SUBVECTOR(Op, DAG); 2064 case ISD::EXTRACT_SUBVECTOR: 2065 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2066 case ISD::STEP_VECTOR: 2067 return lowerSTEP_VECTOR(Op, DAG); 2068 case ISD::VECTOR_REVERSE: 2069 return lowerVECTOR_REVERSE(Op, DAG); 2070 case ISD::BUILD_VECTOR: 2071 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2072 case ISD::VECTOR_SHUFFLE: 2073 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2074 case ISD::CONCAT_VECTORS: { 2075 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2076 // better than going through the stack, as the default expansion does. 2077 SDLoc DL(Op); 2078 MVT VT = Op.getSimpleValueType(); 2079 unsigned NumOpElts = 2080 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2081 SDValue Vec = DAG.getUNDEF(VT); 2082 for (const auto &OpIdx : enumerate(Op->ops())) 2083 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2084 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2085 return Vec; 2086 } 2087 case ISD::LOAD: 2088 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2089 case ISD::STORE: 2090 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2091 case ISD::MLOAD: 2092 return lowerMLOAD(Op, DAG); 2093 case ISD::MSTORE: 2094 return lowerMSTORE(Op, DAG); 2095 case ISD::SETCC: 2096 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2097 case ISD::ADD: 2098 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2099 case ISD::SUB: 2100 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2101 case ISD::MUL: 2102 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2103 case ISD::MULHS: 2104 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2105 case ISD::MULHU: 2106 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2107 case ISD::AND: 2108 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2109 RISCVISD::AND_VL); 2110 case ISD::OR: 2111 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2112 RISCVISD::OR_VL); 2113 case ISD::XOR: 2114 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2115 RISCVISD::XOR_VL); 2116 case ISD::SDIV: 2117 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2118 case ISD::SREM: 2119 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2120 case ISD::UDIV: 2121 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2122 case ISD::UREM: 2123 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2124 case ISD::SHL: 2125 return lowerToScalableOp(Op, DAG, RISCVISD::SHL_VL); 2126 case ISD::SRA: 2127 return lowerToScalableOp(Op, DAG, RISCVISD::SRA_VL); 2128 case ISD::SRL: 2129 return lowerToScalableOp(Op, DAG, RISCVISD::SRL_VL); 2130 case ISD::FADD: 2131 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2132 case ISD::FSUB: 2133 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2134 case ISD::FMUL: 2135 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2136 case ISD::FDIV: 2137 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2138 case ISD::FNEG: 2139 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2140 case ISD::FABS: 2141 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2142 case ISD::FSQRT: 2143 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2144 case ISD::FMA: 2145 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2146 case ISD::SMIN: 2147 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2148 case ISD::SMAX: 2149 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2150 case ISD::UMIN: 2151 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2152 case ISD::UMAX: 2153 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2154 case ISD::ABS: 2155 return lowerABS(Op, DAG); 2156 case ISD::VSELECT: 2157 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2158 case ISD::FCOPYSIGN: 2159 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2160 case ISD::MGATHER: 2161 return lowerMGATHER(Op, DAG); 2162 case ISD::MSCATTER: 2163 return lowerMSCATTER(Op, DAG); 2164 } 2165 } 2166 2167 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2168 SelectionDAG &DAG, unsigned Flags) { 2169 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2170 } 2171 2172 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2173 SelectionDAG &DAG, unsigned Flags) { 2174 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2175 Flags); 2176 } 2177 2178 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2179 SelectionDAG &DAG, unsigned Flags) { 2180 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2181 N->getOffset(), Flags); 2182 } 2183 2184 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2185 SelectionDAG &DAG, unsigned Flags) { 2186 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2187 } 2188 2189 template <class NodeTy> 2190 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 2191 bool IsLocal) const { 2192 SDLoc DL(N); 2193 EVT Ty = getPointerTy(DAG.getDataLayout()); 2194 2195 if (isPositionIndependent()) { 2196 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2197 if (IsLocal) 2198 // Use PC-relative addressing to access the symbol. This generates the 2199 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 2200 // %pcrel_lo(auipc)). 2201 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2202 2203 // Use PC-relative addressing to access the GOT for this symbol, then load 2204 // the address from the GOT. This generates the pattern (PseudoLA sym), 2205 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 2206 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 2207 } 2208 2209 switch (getTargetMachine().getCodeModel()) { 2210 default: 2211 report_fatal_error("Unsupported code model for lowering"); 2212 case CodeModel::Small: { 2213 // Generate a sequence for accessing addresses within the first 2 GiB of 2214 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 2215 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 2216 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 2217 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2218 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 2219 } 2220 case CodeModel::Medium: { 2221 // Generate a sequence for accessing addresses within any 2GiB range within 2222 // the address space. This generates the pattern (PseudoLLA sym), which 2223 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 2224 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2225 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2226 } 2227 } 2228 } 2229 2230 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 2231 SelectionDAG &DAG) const { 2232 SDLoc DL(Op); 2233 EVT Ty = Op.getValueType(); 2234 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2235 int64_t Offset = N->getOffset(); 2236 MVT XLenVT = Subtarget.getXLenVT(); 2237 2238 const GlobalValue *GV = N->getGlobal(); 2239 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 2240 SDValue Addr = getAddr(N, DAG, IsLocal); 2241 2242 // In order to maximise the opportunity for common subexpression elimination, 2243 // emit a separate ADD node for the global address offset instead of folding 2244 // it in the global address node. Later peephole optimisations may choose to 2245 // fold it back in when profitable. 2246 if (Offset != 0) 2247 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2248 DAG.getConstant(Offset, DL, XLenVT)); 2249 return Addr; 2250 } 2251 2252 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 2253 SelectionDAG &DAG) const { 2254 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 2255 2256 return getAddr(N, DAG); 2257 } 2258 2259 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 2260 SelectionDAG &DAG) const { 2261 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 2262 2263 return getAddr(N, DAG); 2264 } 2265 2266 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 2267 SelectionDAG &DAG) const { 2268 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 2269 2270 return getAddr(N, DAG); 2271 } 2272 2273 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 2274 SelectionDAG &DAG, 2275 bool UseGOT) const { 2276 SDLoc DL(N); 2277 EVT Ty = getPointerTy(DAG.getDataLayout()); 2278 const GlobalValue *GV = N->getGlobal(); 2279 MVT XLenVT = Subtarget.getXLenVT(); 2280 2281 if (UseGOT) { 2282 // Use PC-relative addressing to access the GOT for this TLS symbol, then 2283 // load the address from the GOT and add the thread pointer. This generates 2284 // the pattern (PseudoLA_TLS_IE sym), which expands to 2285 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 2286 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2287 SDValue Load = 2288 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 2289 2290 // Add the thread pointer. 2291 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2292 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 2293 } 2294 2295 // Generate a sequence for accessing the address relative to the thread 2296 // pointer, with the appropriate adjustment for the thread pointer offset. 2297 // This generates the pattern 2298 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 2299 SDValue AddrHi = 2300 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 2301 SDValue AddrAdd = 2302 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 2303 SDValue AddrLo = 2304 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 2305 2306 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2307 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2308 SDValue MNAdd = SDValue( 2309 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 2310 0); 2311 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 2312 } 2313 2314 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 2315 SelectionDAG &DAG) const { 2316 SDLoc DL(N); 2317 EVT Ty = getPointerTy(DAG.getDataLayout()); 2318 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 2319 const GlobalValue *GV = N->getGlobal(); 2320 2321 // Use a PC-relative addressing mode to access the global dynamic GOT address. 2322 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 2323 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 2324 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2325 SDValue Load = 2326 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 2327 2328 // Prepare argument list to generate call. 2329 ArgListTy Args; 2330 ArgListEntry Entry; 2331 Entry.Node = Load; 2332 Entry.Ty = CallTy; 2333 Args.push_back(Entry); 2334 2335 // Setup call to __tls_get_addr. 2336 TargetLowering::CallLoweringInfo CLI(DAG); 2337 CLI.setDebugLoc(DL) 2338 .setChain(DAG.getEntryNode()) 2339 .setLibCallee(CallingConv::C, CallTy, 2340 DAG.getExternalSymbol("__tls_get_addr", Ty), 2341 std::move(Args)); 2342 2343 return LowerCallTo(CLI).first; 2344 } 2345 2346 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 2347 SelectionDAG &DAG) const { 2348 SDLoc DL(Op); 2349 EVT Ty = Op.getValueType(); 2350 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2351 int64_t Offset = N->getOffset(); 2352 MVT XLenVT = Subtarget.getXLenVT(); 2353 2354 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 2355 2356 if (DAG.getMachineFunction().getFunction().getCallingConv() == 2357 CallingConv::GHC) 2358 report_fatal_error("In GHC calling convention TLS is not supported"); 2359 2360 SDValue Addr; 2361 switch (Model) { 2362 case TLSModel::LocalExec: 2363 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 2364 break; 2365 case TLSModel::InitialExec: 2366 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 2367 break; 2368 case TLSModel::LocalDynamic: 2369 case TLSModel::GeneralDynamic: 2370 Addr = getDynamicTLSAddr(N, DAG); 2371 break; 2372 } 2373 2374 // In order to maximise the opportunity for common subexpression elimination, 2375 // emit a separate ADD node for the global address offset instead of folding 2376 // it in the global address node. Later peephole optimisations may choose to 2377 // fold it back in when profitable. 2378 if (Offset != 0) 2379 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2380 DAG.getConstant(Offset, DL, XLenVT)); 2381 return Addr; 2382 } 2383 2384 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 2385 SDValue CondV = Op.getOperand(0); 2386 SDValue TrueV = Op.getOperand(1); 2387 SDValue FalseV = Op.getOperand(2); 2388 SDLoc DL(Op); 2389 MVT XLenVT = Subtarget.getXLenVT(); 2390 2391 // If the result type is XLenVT and CondV is the output of a SETCC node 2392 // which also operated on XLenVT inputs, then merge the SETCC node into the 2393 // lowered RISCVISD::SELECT_CC to take advantage of the integer 2394 // compare+branch instructions. i.e.: 2395 // (select (setcc lhs, rhs, cc), truev, falsev) 2396 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 2397 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 2398 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 2399 SDValue LHS = CondV.getOperand(0); 2400 SDValue RHS = CondV.getOperand(1); 2401 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 2402 ISD::CondCode CCVal = CC->get(); 2403 2404 // Special case for a select of 2 constants that have a diffence of 1. 2405 // Normally this is done by DAGCombine, but if the select is introduced by 2406 // type legalization or op legalization, we miss it. Restricting to SETLT 2407 // case for now because that is what signed saturating add/sub need. 2408 // FIXME: We don't need the condition to be SETLT or even a SETCC, 2409 // but we would probably want to swap the true/false values if the condition 2410 // is SETGE/SETLE to avoid an XORI. 2411 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 2412 CCVal == ISD::SETLT) { 2413 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 2414 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 2415 if (TrueVal - 1 == FalseVal) 2416 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 2417 if (TrueVal + 1 == FalseVal) 2418 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 2419 } 2420 2421 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2422 2423 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 2424 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 2425 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2426 } 2427 2428 // Otherwise: 2429 // (select condv, truev, falsev) 2430 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 2431 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 2432 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 2433 2434 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 2435 2436 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2437 } 2438 2439 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 2440 SDValue CondV = Op.getOperand(1); 2441 SDLoc DL(Op); 2442 MVT XLenVT = Subtarget.getXLenVT(); 2443 2444 if (CondV.getOpcode() == ISD::SETCC && 2445 CondV.getOperand(0).getValueType() == XLenVT) { 2446 SDValue LHS = CondV.getOperand(0); 2447 SDValue RHS = CondV.getOperand(1); 2448 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 2449 2450 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2451 2452 SDValue TargetCC = DAG.getCondCode(CCVal); 2453 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2454 LHS, RHS, TargetCC, Op.getOperand(2)); 2455 } 2456 2457 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2458 CondV, DAG.getConstant(0, DL, XLenVT), 2459 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 2460 } 2461 2462 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 2463 MachineFunction &MF = DAG.getMachineFunction(); 2464 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 2465 2466 SDLoc DL(Op); 2467 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2468 getPointerTy(MF.getDataLayout())); 2469 2470 // vastart just stores the address of the VarArgsFrameIndex slot into the 2471 // memory location argument. 2472 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2473 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 2474 MachinePointerInfo(SV)); 2475 } 2476 2477 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 2478 SelectionDAG &DAG) const { 2479 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 2480 MachineFunction &MF = DAG.getMachineFunction(); 2481 MachineFrameInfo &MFI = MF.getFrameInfo(); 2482 MFI.setFrameAddressIsTaken(true); 2483 Register FrameReg = RI.getFrameRegister(MF); 2484 int XLenInBytes = Subtarget.getXLen() / 8; 2485 2486 EVT VT = Op.getValueType(); 2487 SDLoc DL(Op); 2488 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 2489 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2490 while (Depth--) { 2491 int Offset = -(XLenInBytes * 2); 2492 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 2493 DAG.getIntPtrConstant(Offset, DL)); 2494 FrameAddr = 2495 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2496 } 2497 return FrameAddr; 2498 } 2499 2500 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 2501 SelectionDAG &DAG) const { 2502 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 2503 MachineFunction &MF = DAG.getMachineFunction(); 2504 MachineFrameInfo &MFI = MF.getFrameInfo(); 2505 MFI.setReturnAddressIsTaken(true); 2506 MVT XLenVT = Subtarget.getXLenVT(); 2507 int XLenInBytes = Subtarget.getXLen() / 8; 2508 2509 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2510 return SDValue(); 2511 2512 EVT VT = Op.getValueType(); 2513 SDLoc DL(Op); 2514 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2515 if (Depth) { 2516 int Off = -XLenInBytes; 2517 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 2518 SDValue Offset = DAG.getConstant(Off, DL, VT); 2519 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 2520 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 2521 MachinePointerInfo()); 2522 } 2523 2524 // Return the value of the return address register, marking it an implicit 2525 // live-in. 2526 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 2527 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 2528 } 2529 2530 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 2531 SelectionDAG &DAG) const { 2532 SDLoc DL(Op); 2533 SDValue Lo = Op.getOperand(0); 2534 SDValue Hi = Op.getOperand(1); 2535 SDValue Shamt = Op.getOperand(2); 2536 EVT VT = Lo.getValueType(); 2537 2538 // if Shamt-XLEN < 0: // Shamt < XLEN 2539 // Lo = Lo << Shamt 2540 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 2541 // else: 2542 // Lo = 0 2543 // Hi = Lo << (Shamt-XLEN) 2544 2545 SDValue Zero = DAG.getConstant(0, DL, VT); 2546 SDValue One = DAG.getConstant(1, DL, VT); 2547 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 2548 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 2549 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 2550 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 2551 2552 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 2553 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 2554 SDValue ShiftRightLo = 2555 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 2556 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 2557 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 2558 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 2559 2560 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2561 2562 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 2563 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2564 2565 SDValue Parts[2] = {Lo, Hi}; 2566 return DAG.getMergeValues(Parts, DL); 2567 } 2568 2569 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 2570 bool IsSRA) const { 2571 SDLoc DL(Op); 2572 SDValue Lo = Op.getOperand(0); 2573 SDValue Hi = Op.getOperand(1); 2574 SDValue Shamt = Op.getOperand(2); 2575 EVT VT = Lo.getValueType(); 2576 2577 // SRA expansion: 2578 // if Shamt-XLEN < 0: // Shamt < XLEN 2579 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 2580 // Hi = Hi >>s Shamt 2581 // else: 2582 // Lo = Hi >>s (Shamt-XLEN); 2583 // Hi = Hi >>s (XLEN-1) 2584 // 2585 // SRL expansion: 2586 // if Shamt-XLEN < 0: // Shamt < XLEN 2587 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 2588 // Hi = Hi >>u Shamt 2589 // else: 2590 // Lo = Hi >>u (Shamt-XLEN); 2591 // Hi = 0; 2592 2593 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 2594 2595 SDValue Zero = DAG.getConstant(0, DL, VT); 2596 SDValue One = DAG.getConstant(1, DL, VT); 2597 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 2598 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 2599 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 2600 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 2601 2602 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 2603 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 2604 SDValue ShiftLeftHi = 2605 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 2606 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 2607 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 2608 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 2609 SDValue HiFalse = 2610 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 2611 2612 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2613 2614 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 2615 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2616 2617 SDValue Parts[2] = {Lo, Hi}; 2618 return DAG.getMergeValues(Parts, DL); 2619 } 2620 2621 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 2622 // illegal (currently only vXi64 RV32). 2623 // FIXME: We could also catch non-constant sign-extended i32 values and lower 2624 // them to SPLAT_VECTOR_I64 2625 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 2626 SelectionDAG &DAG) const { 2627 SDLoc DL(Op); 2628 EVT VecVT = Op.getValueType(); 2629 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 2630 "Unexpected SPLAT_VECTOR_PARTS lowering"); 2631 2632 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 2633 SDValue Lo = Op.getOperand(0); 2634 SDValue Hi = Op.getOperand(1); 2635 2636 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2637 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2638 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2639 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2640 // node in order to try and match RVV vector/scalar instructions. 2641 if ((LoC >> 31) == HiC) 2642 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 2643 } 2644 2645 // Else, on RV32 we lower an i64-element SPLAT_VECTOR thus, being careful not 2646 // to accidentally sign-extend the 32-bit halves to the e64 SEW: 2647 // vmv.v.x vX, hi 2648 // vsll.vx vX, vX, /*32*/ 2649 // vmv.v.x vY, lo 2650 // vsll.vx vY, vY, /*32*/ 2651 // vsrl.vx vY, vY, /*32*/ 2652 // vor.vv vX, vX, vY 2653 SDValue ThirtyTwoV = DAG.getConstant(32, DL, VecVT); 2654 2655 Lo = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 2656 Lo = DAG.getNode(ISD::SHL, DL, VecVT, Lo, ThirtyTwoV); 2657 Lo = DAG.getNode(ISD::SRL, DL, VecVT, Lo, ThirtyTwoV); 2658 2659 if (isNullConstant(Hi)) 2660 return Lo; 2661 2662 Hi = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Hi); 2663 Hi = DAG.getNode(ISD::SHL, DL, VecVT, Hi, ThirtyTwoV); 2664 2665 return DAG.getNode(ISD::OR, DL, VecVT, Lo, Hi); 2666 } 2667 2668 // Custom-lower extensions from mask vectors by using a vselect either with 1 2669 // for zero/any-extension or -1 for sign-extension: 2670 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 2671 // Note that any-extension is lowered identically to zero-extension. 2672 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 2673 int64_t ExtTrueVal) const { 2674 SDLoc DL(Op); 2675 MVT VecVT = Op.getSimpleValueType(); 2676 SDValue Src = Op.getOperand(0); 2677 // Only custom-lower extensions from mask types 2678 assert(Src.getValueType().isVector() && 2679 Src.getValueType().getVectorElementType() == MVT::i1); 2680 2681 MVT XLenVT = Subtarget.getXLenVT(); 2682 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 2683 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 2684 2685 if (VecVT.isScalableVector()) { 2686 // Be careful not to introduce illegal scalar types at this stage, and be 2687 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 2688 // illegal and must be expanded. Since we know that the constants are 2689 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 2690 bool IsRV32E64 = 2691 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 2692 2693 if (!IsRV32E64) { 2694 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 2695 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 2696 } else { 2697 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 2698 SplatTrueVal = 2699 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 2700 } 2701 2702 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 2703 } 2704 2705 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 2706 MVT I1ContainerVT = 2707 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 2708 2709 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 2710 2711 SDValue Mask, VL; 2712 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 2713 2714 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 2715 SplatTrueVal = 2716 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 2717 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 2718 SplatTrueVal, SplatZero, VL); 2719 2720 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 2721 } 2722 2723 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 2724 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 2725 MVT ExtVT = Op.getSimpleValueType(); 2726 // Only custom-lower extensions from fixed-length vector types. 2727 if (!ExtVT.isFixedLengthVector()) 2728 return Op; 2729 MVT VT = Op.getOperand(0).getSimpleValueType(); 2730 // Grab the canonical container type for the extended type. Infer the smaller 2731 // type from that to ensure the same number of vector elements, as we know 2732 // the LMUL will be sufficient to hold the smaller type. 2733 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 2734 // Get the extended container type manually to ensure the same number of 2735 // vector elements between source and dest. 2736 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 2737 ContainerExtVT.getVectorElementCount()); 2738 2739 SDValue Op1 = 2740 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 2741 2742 SDLoc DL(Op); 2743 SDValue Mask, VL; 2744 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2745 2746 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 2747 2748 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 2749 } 2750 2751 // Custom-lower truncations from vectors to mask vectors by using a mask and a 2752 // setcc operation: 2753 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 2754 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 2755 SelectionDAG &DAG) const { 2756 SDLoc DL(Op); 2757 EVT MaskVT = Op.getValueType(); 2758 // Only expect to custom-lower truncations to mask types 2759 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 2760 "Unexpected type for vector mask lowering"); 2761 SDValue Src = Op.getOperand(0); 2762 MVT VecVT = Src.getSimpleValueType(); 2763 2764 // If this is a fixed vector, we need to convert it to a scalable vector. 2765 MVT ContainerVT = VecVT; 2766 if (VecVT.isFixedLengthVector()) { 2767 ContainerVT = getContainerForFixedLengthVector(VecVT); 2768 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2769 } 2770 2771 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 2772 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 2773 2774 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 2775 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 2776 2777 if (VecVT.isScalableVector()) { 2778 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 2779 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 2780 } 2781 2782 SDValue Mask, VL; 2783 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 2784 2785 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2786 SDValue Trunc = 2787 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 2788 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 2789 DAG.getCondCode(ISD::SETNE), Mask, VL); 2790 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 2791 } 2792 2793 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 2794 // first position of a vector, and that vector is slid up to the insert index. 2795 // By limiting the active vector length to index+1 and merging with the 2796 // original vector (with an undisturbed tail policy for elements >= VL), we 2797 // achieve the desired result of leaving all elements untouched except the one 2798 // at VL-1, which is replaced with the desired value. 2799 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 2800 SelectionDAG &DAG) const { 2801 SDLoc DL(Op); 2802 MVT VecVT = Op.getSimpleValueType(); 2803 SDValue Vec = Op.getOperand(0); 2804 SDValue Val = Op.getOperand(1); 2805 SDValue Idx = Op.getOperand(2); 2806 2807 MVT ContainerVT = VecVT; 2808 // If the operand is a fixed-length vector, convert to a scalable one. 2809 if (VecVT.isFixedLengthVector()) { 2810 ContainerVT = getContainerForFixedLengthVector(VecVT); 2811 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 2812 } 2813 2814 MVT XLenVT = Subtarget.getXLenVT(); 2815 2816 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 2817 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 2818 // Even i64-element vectors on RV32 can be lowered without scalar 2819 // legalization if the most-significant 32 bits of the value are not affected 2820 // by the sign-extension of the lower 32 bits. 2821 // TODO: We could also catch sign extensions of a 32-bit value. 2822 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 2823 const auto *CVal = cast<ConstantSDNode>(Val); 2824 if (isInt<32>(CVal->getSExtValue())) { 2825 IsLegalInsert = true; 2826 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 2827 } 2828 } 2829 2830 SDValue Mask, VL; 2831 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 2832 2833 SDValue ValInVec; 2834 2835 if (IsLegalInsert) { 2836 unsigned Opc = 2837 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 2838 if (isNullConstant(Idx)) { 2839 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 2840 if (!VecVT.isFixedLengthVector()) 2841 return Vec; 2842 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 2843 } 2844 ValInVec = 2845 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 2846 } else { 2847 // On RV32, i64-element vectors must be specially handled to place the 2848 // value at element 0, by using two vslide1up instructions in sequence on 2849 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 2850 // this. 2851 SDValue One = DAG.getConstant(1, DL, XLenVT); 2852 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 2853 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 2854 MVT I32ContainerVT = 2855 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 2856 SDValue I32Mask = 2857 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 2858 // Limit the active VL to two. 2859 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 2860 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 2861 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 2862 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 2863 InsertI64VL); 2864 // First slide in the hi value, then the lo in underneath it. 2865 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 2866 ValHi, I32Mask, InsertI64VL); 2867 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 2868 ValLo, I32Mask, InsertI64VL); 2869 // Bitcast back to the right container type. 2870 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 2871 } 2872 2873 // Now that the value is in a vector, slide it into position. 2874 SDValue InsertVL = 2875 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 2876 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 2877 ValInVec, Idx, Mask, InsertVL); 2878 if (!VecVT.isFixedLengthVector()) 2879 return Slideup; 2880 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 2881 } 2882 2883 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 2884 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 2885 // types this is done using VMV_X_S to allow us to glean information about the 2886 // sign bits of the result. 2887 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 2888 SelectionDAG &DAG) const { 2889 SDLoc DL(Op); 2890 SDValue Idx = Op.getOperand(1); 2891 SDValue Vec = Op.getOperand(0); 2892 EVT EltVT = Op.getValueType(); 2893 MVT VecVT = Vec.getSimpleValueType(); 2894 MVT XLenVT = Subtarget.getXLenVT(); 2895 2896 if (VecVT.getVectorElementType() == MVT::i1) { 2897 // FIXME: For now we just promote to an i8 vector and extract from that, 2898 // but this is probably not optimal. 2899 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 2900 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 2901 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 2902 } 2903 2904 // If this is a fixed vector, we need to convert it to a scalable vector. 2905 MVT ContainerVT = VecVT; 2906 if (VecVT.isFixedLengthVector()) { 2907 ContainerVT = getContainerForFixedLengthVector(VecVT); 2908 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 2909 } 2910 2911 // If the index is 0, the vector is already in the right position. 2912 if (!isNullConstant(Idx)) { 2913 // Use a VL of 1 to avoid processing more elements than we need. 2914 SDValue VL = DAG.getConstant(1, DL, XLenVT); 2915 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 2916 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2917 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 2918 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 2919 } 2920 2921 if (!EltVT.isInteger()) { 2922 // Floating-point extracts are handled in TableGen. 2923 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 2924 DAG.getConstant(0, DL, XLenVT)); 2925 } 2926 2927 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 2928 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 2929 } 2930 2931 // Some RVV intrinsics may claim that they want an integer operand to be 2932 // promoted or expanded. 2933 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 2934 const RISCVSubtarget &Subtarget) { 2935 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2936 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 2937 "Unexpected opcode"); 2938 2939 if (!Subtarget.hasStdExtV()) 2940 return SDValue(); 2941 2942 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 2943 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 2944 SDLoc DL(Op); 2945 2946 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 2947 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 2948 if (!II || !II->SplatOperand) 2949 return SDValue(); 2950 2951 unsigned SplatOp = II->SplatOperand + HasChain; 2952 assert(SplatOp < Op.getNumOperands()); 2953 2954 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 2955 SDValue &ScalarOp = Operands[SplatOp]; 2956 MVT OpVT = ScalarOp.getSimpleValueType(); 2957 MVT XLenVT = Subtarget.getXLenVT(); 2958 2959 // If this isn't a scalar, or its type is XLenVT we're done. 2960 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 2961 return SDValue(); 2962 2963 // Simplest case is that the operand needs to be promoted to XLenVT. 2964 if (OpVT.bitsLT(XLenVT)) { 2965 // If the operand is a constant, sign extend to increase our chances 2966 // of being able to use a .vi instruction. ANY_EXTEND would become a 2967 // a zero extend and the simm5 check in isel would fail. 2968 // FIXME: Should we ignore the upper bits in isel instead? 2969 unsigned ExtOpc = 2970 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2971 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 2972 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 2973 } 2974 2975 // Use the previous operand to get the vXi64 VT. The result might be a mask 2976 // VT for compares. Using the previous operand assumes that the previous 2977 // operand will never have a smaller element size than a scalar operand and 2978 // that a widening operation never uses SEW=64. 2979 // NOTE: If this fails the below assert, we can probably just find the 2980 // element count from any operand or result and use it to construct the VT. 2981 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 2982 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 2983 2984 // The more complex case is when the scalar is larger than XLenVT. 2985 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 2986 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 2987 2988 // If this is a sign-extended 32-bit constant, we can truncate it and rely 2989 // on the instruction to sign-extend since SEW>XLEN. 2990 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 2991 if (isInt<32>(CVal->getSExtValue())) { 2992 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 2993 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 2994 } 2995 } 2996 2997 // We need to convert the scalar to a splat vector. 2998 // FIXME: Can we implicitly truncate the scalar if it is known to 2999 // be sign extended? 3000 // VL should be the last operand. 3001 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3002 assert(VL.getValueType() == XLenVT); 3003 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3004 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3005 } 3006 3007 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3008 SelectionDAG &DAG) const { 3009 unsigned IntNo = Op.getConstantOperandVal(0); 3010 SDLoc DL(Op); 3011 MVT XLenVT = Subtarget.getXLenVT(); 3012 3013 switch (IntNo) { 3014 default: 3015 break; // Don't custom lower most intrinsics. 3016 case Intrinsic::thread_pointer: { 3017 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3018 return DAG.getRegister(RISCV::X4, PtrVT); 3019 } 3020 case Intrinsic::riscv_orc_b: 3021 // Lower to the GORCI encoding for orc.b. 3022 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3023 DAG.getConstant(7, DL, XLenVT)); 3024 case Intrinsic::riscv_vmv_x_s: 3025 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3026 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3027 Op.getOperand(1)); 3028 case Intrinsic::riscv_vmv_v_x: 3029 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3030 Op.getSimpleValueType(), DL, DAG, Subtarget); 3031 case Intrinsic::riscv_vfmv_v_f: 3032 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3033 Op.getOperand(1), Op.getOperand(2)); 3034 case Intrinsic::riscv_vmv_s_x: { 3035 SDValue Scalar = Op.getOperand(2); 3036 3037 if (Scalar.getValueType().bitsLE(XLenVT)) { 3038 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3039 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3040 Op.getOperand(1), Scalar, Op.getOperand(3)); 3041 } 3042 3043 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3044 3045 // This is an i64 value that lives in two scalar registers. We have to 3046 // insert this in a convoluted way. First we build vXi64 splat containing 3047 // the/ two values that we assemble using some bit math. Next we'll use 3048 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3049 // to merge element 0 from our splat into the source vector. 3050 // FIXME: This is probably not the best way to do this, but it is 3051 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3052 // point. 3053 // vmv.v.x vX, hi 3054 // vsll.vx vX, vX, /*32*/ 3055 // vmv.v.x vY, lo 3056 // vsll.vx vY, vY, /*32*/ 3057 // vsrl.vx vY, vY, /*32*/ 3058 // vor.vv vX, vX, vY 3059 // 3060 // vid.v vVid 3061 // vmseq.vx mMask, vVid, 0 3062 // vmerge.vvm vDest, vSrc, vVal, mMask 3063 MVT VT = Op.getSimpleValueType(); 3064 SDValue Vec = Op.getOperand(1); 3065 SDValue VL = Op.getOperand(3); 3066 3067 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3068 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3069 DAG.getConstant(0, DL, MVT::i32), VL); 3070 3071 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3072 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3073 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3074 SDValue SelectCond = 3075 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3076 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3077 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3078 Vec, VL); 3079 } 3080 case Intrinsic::riscv_vslide1up: 3081 case Intrinsic::riscv_vslide1down: 3082 case Intrinsic::riscv_vslide1up_mask: 3083 case Intrinsic::riscv_vslide1down_mask: { 3084 // We need to special case these when the scalar is larger than XLen. 3085 unsigned NumOps = Op.getNumOperands(); 3086 bool IsMasked = NumOps == 6; 3087 unsigned OpOffset = IsMasked ? 1 : 0; 3088 SDValue Scalar = Op.getOperand(2 + OpOffset); 3089 if (Scalar.getValueType().bitsLE(XLenVT)) 3090 break; 3091 3092 // Splatting a sign extended constant is fine. 3093 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3094 if (isInt<32>(CVal->getSExtValue())) 3095 break; 3096 3097 MVT VT = Op.getSimpleValueType(); 3098 assert(VT.getVectorElementType() == MVT::i64 && 3099 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3100 3101 // Convert the vector source to the equivalent nxvXi32 vector. 3102 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3103 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3104 3105 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3106 DAG.getConstant(0, DL, XLenVT)); 3107 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3108 DAG.getConstant(1, DL, XLenVT)); 3109 3110 // Double the VL since we halved SEW. 3111 SDValue VL = Op.getOperand(NumOps - 1); 3112 SDValue I32VL = 3113 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 3114 3115 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 3116 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 3117 3118 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 3119 // instructions. 3120 if (IntNo == Intrinsic::riscv_vslide1up || 3121 IntNo == Intrinsic::riscv_vslide1up_mask) { 3122 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 3123 I32Mask, I32VL); 3124 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 3125 I32Mask, I32VL); 3126 } else { 3127 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 3128 I32Mask, I32VL); 3129 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 3130 I32Mask, I32VL); 3131 } 3132 3133 // Convert back to nxvXi64. 3134 Vec = DAG.getBitcast(VT, Vec); 3135 3136 if (!IsMasked) 3137 return Vec; 3138 3139 // Apply mask after the operation. 3140 SDValue Mask = Op.getOperand(NumOps - 2); 3141 SDValue MaskedOff = Op.getOperand(1); 3142 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 3143 } 3144 } 3145 3146 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3147 } 3148 3149 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 3150 SelectionDAG &DAG) const { 3151 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3152 } 3153 3154 static MVT getLMUL1VT(MVT VT) { 3155 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 3156 "Unexpected vector MVT"); 3157 return MVT::getScalableVectorVT( 3158 VT.getVectorElementType(), 3159 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 3160 } 3161 3162 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 3163 switch (ISDOpcode) { 3164 default: 3165 llvm_unreachable("Unhandled reduction"); 3166 case ISD::VECREDUCE_ADD: 3167 return RISCVISD::VECREDUCE_ADD_VL; 3168 case ISD::VECREDUCE_UMAX: 3169 return RISCVISD::VECREDUCE_UMAX_VL; 3170 case ISD::VECREDUCE_SMAX: 3171 return RISCVISD::VECREDUCE_SMAX_VL; 3172 case ISD::VECREDUCE_UMIN: 3173 return RISCVISD::VECREDUCE_UMIN_VL; 3174 case ISD::VECREDUCE_SMIN: 3175 return RISCVISD::VECREDUCE_SMIN_VL; 3176 case ISD::VECREDUCE_AND: 3177 return RISCVISD::VECREDUCE_AND_VL; 3178 case ISD::VECREDUCE_OR: 3179 return RISCVISD::VECREDUCE_OR_VL; 3180 case ISD::VECREDUCE_XOR: 3181 return RISCVISD::VECREDUCE_XOR_VL; 3182 } 3183 } 3184 3185 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op, 3186 SelectionDAG &DAG) const { 3187 SDLoc DL(Op); 3188 SDValue Vec = Op.getOperand(0); 3189 MVT VecVT = Vec.getSimpleValueType(); 3190 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 3191 Op.getOpcode() == ISD::VECREDUCE_OR || 3192 Op.getOpcode() == ISD::VECREDUCE_XOR) && 3193 "Unexpected reduction lowering"); 3194 3195 MVT XLenVT = Subtarget.getXLenVT(); 3196 assert(Op.getValueType() == XLenVT && 3197 "Expected reduction output to be legalized to XLenVT"); 3198 3199 MVT ContainerVT = VecVT; 3200 if (VecVT.isFixedLengthVector()) { 3201 ContainerVT = getContainerForFixedLengthVector(VecVT); 3202 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3203 } 3204 3205 SDValue Mask, VL; 3206 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3207 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3208 3209 switch (Op.getOpcode()) { 3210 default: 3211 llvm_unreachable("Unhandled reduction"); 3212 case ISD::VECREDUCE_AND: 3213 // vpopc ~x == 0 3214 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL); 3215 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3216 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ); 3217 case ISD::VECREDUCE_OR: 3218 // vpopc x != 0 3219 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3220 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3221 case ISD::VECREDUCE_XOR: { 3222 // ((vpopc x) & 1) != 0 3223 SDValue One = DAG.getConstant(1, DL, XLenVT); 3224 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3225 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 3226 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3227 } 3228 } 3229 } 3230 3231 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 3232 SelectionDAG &DAG) const { 3233 SDLoc DL(Op); 3234 SDValue Vec = Op.getOperand(0); 3235 EVT VecEVT = Vec.getValueType(); 3236 3237 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 3238 3239 // Due to ordering in legalize types we may have a vector type that needs to 3240 // be split. Do that manually so we can get down to a legal type. 3241 while (getTypeAction(*DAG.getContext(), VecEVT) == 3242 TargetLowering::TypeSplitVector) { 3243 SDValue Lo, Hi; 3244 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 3245 VecEVT = Lo.getValueType(); 3246 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 3247 } 3248 3249 // TODO: The type may need to be widened rather than split. Or widened before 3250 // it can be split. 3251 if (!isTypeLegal(VecEVT)) 3252 return SDValue(); 3253 3254 MVT VecVT = VecEVT.getSimpleVT(); 3255 MVT VecEltVT = VecVT.getVectorElementType(); 3256 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 3257 3258 MVT ContainerVT = VecVT; 3259 if (VecVT.isFixedLengthVector()) { 3260 ContainerVT = getContainerForFixedLengthVector(VecVT); 3261 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3262 } 3263 3264 MVT M1VT = getLMUL1VT(ContainerVT); 3265 3266 SDValue Mask, VL; 3267 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3268 3269 // FIXME: This is a VLMAX splat which might be too large and can prevent 3270 // vsetvli removal. 3271 SDValue NeutralElem = 3272 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 3273 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 3274 SDValue Reduction = 3275 DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL); 3276 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3277 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3278 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 3279 } 3280 3281 // Given a reduction op, this function returns the matching reduction opcode, 3282 // the vector SDValue and the scalar SDValue required to lower this to a 3283 // RISCVISD node. 3284 static std::tuple<unsigned, SDValue, SDValue> 3285 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 3286 SDLoc DL(Op); 3287 switch (Op.getOpcode()) { 3288 default: 3289 llvm_unreachable("Unhandled reduction"); 3290 case ISD::VECREDUCE_FADD: 3291 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 3292 DAG.getConstantFP(0.0, DL, EltVT)); 3293 case ISD::VECREDUCE_SEQ_FADD: 3294 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 3295 Op.getOperand(0)); 3296 } 3297 } 3298 3299 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 3300 SelectionDAG &DAG) const { 3301 SDLoc DL(Op); 3302 MVT VecEltVT = Op.getSimpleValueType(); 3303 3304 unsigned RVVOpcode; 3305 SDValue VectorVal, ScalarVal; 3306 std::tie(RVVOpcode, VectorVal, ScalarVal) = 3307 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 3308 MVT VecVT = VectorVal.getSimpleValueType(); 3309 3310 MVT ContainerVT = VecVT; 3311 if (VecVT.isFixedLengthVector()) { 3312 ContainerVT = getContainerForFixedLengthVector(VecVT); 3313 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 3314 } 3315 3316 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 3317 3318 SDValue Mask, VL; 3319 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3320 3321 // FIXME: This is a VLMAX splat which might be too large and can prevent 3322 // vsetvli removal. 3323 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 3324 SDValue Reduction = 3325 DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL); 3326 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3327 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3328 } 3329 3330 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 3331 SelectionDAG &DAG) const { 3332 SDValue Vec = Op.getOperand(0); 3333 SDValue SubVec = Op.getOperand(1); 3334 MVT VecVT = Vec.getSimpleValueType(); 3335 MVT SubVecVT = SubVec.getSimpleValueType(); 3336 3337 SDLoc DL(Op); 3338 MVT XLenVT = Subtarget.getXLenVT(); 3339 unsigned OrigIdx = Op.getConstantOperandVal(2); 3340 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3341 3342 // We don't have the ability to slide mask vectors up indexed by their i1 3343 // elements; the smallest we can do is i8. Often we are able to bitcast to 3344 // equivalent i8 vectors. Note that when inserting a fixed-length vector 3345 // into a scalable one, we might not necessarily have enough scalable 3346 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 3347 if (SubVecVT.getVectorElementType() == MVT::i1 && 3348 (OrigIdx != 0 || !Vec.isUndef())) { 3349 if (VecVT.getVectorMinNumElements() >= 8 && 3350 SubVecVT.getVectorMinNumElements() >= 8) { 3351 assert(OrigIdx % 8 == 0 && "Invalid index"); 3352 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3353 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3354 "Unexpected mask vector lowering"); 3355 OrigIdx /= 8; 3356 SubVecVT = 3357 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3358 SubVecVT.isScalableVector()); 3359 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3360 VecVT.isScalableVector()); 3361 Vec = DAG.getBitcast(VecVT, Vec); 3362 SubVec = DAG.getBitcast(SubVecVT, SubVec); 3363 } else { 3364 // We can't slide this mask vector up indexed by its i1 elements. 3365 // This poses a problem when we wish to insert a scalable vector which 3366 // can't be re-expressed as a larger type. Just choose the slow path and 3367 // extend to a larger type, then truncate back down. 3368 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3369 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3370 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3371 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 3372 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 3373 Op.getOperand(2)); 3374 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 3375 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 3376 } 3377 } 3378 3379 // If the subvector vector is a fixed-length type, we cannot use subregister 3380 // manipulation to simplify the codegen; we don't know which register of a 3381 // LMUL group contains the specific subvector as we only know the minimum 3382 // register size. Therefore we must slide the vector group up the full 3383 // amount. 3384 if (SubVecVT.isFixedLengthVector()) { 3385 if (OrigIdx == 0 && Vec.isUndef()) 3386 return Op; 3387 MVT ContainerVT = VecVT; 3388 if (VecVT.isFixedLengthVector()) { 3389 ContainerVT = getContainerForFixedLengthVector(VecVT); 3390 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3391 } 3392 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 3393 DAG.getUNDEF(ContainerVT), SubVec, 3394 DAG.getConstant(0, DL, XLenVT)); 3395 SDValue Mask = 3396 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3397 // Set the vector length to only the number of elements we care about. Note 3398 // that for slideup this includes the offset. 3399 SDValue VL = 3400 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 3401 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3402 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3403 SubVec, SlideupAmt, Mask, VL); 3404 if (VecVT.isFixedLengthVector()) 3405 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3406 return DAG.getBitcast(Op.getValueType(), Slideup); 3407 } 3408 3409 unsigned SubRegIdx, RemIdx; 3410 std::tie(SubRegIdx, RemIdx) = 3411 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3412 VecVT, SubVecVT, OrigIdx, TRI); 3413 3414 RISCVVLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 3415 bool IsSubVecPartReg = SubVecLMUL == RISCVVLMUL::LMUL_F2 || 3416 SubVecLMUL == RISCVVLMUL::LMUL_F4 || 3417 SubVecLMUL == RISCVVLMUL::LMUL_F8; 3418 3419 // 1. If the Idx has been completely eliminated and this subvector's size is 3420 // a vector register or a multiple thereof, or the surrounding elements are 3421 // undef, then this is a subvector insert which naturally aligns to a vector 3422 // register. These can easily be handled using subregister manipulation. 3423 // 2. If the subvector is smaller than a vector register, then the insertion 3424 // must preserve the undisturbed elements of the register. We do this by 3425 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 3426 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 3427 // subvector within the vector register, and an INSERT_SUBVECTOR of that 3428 // LMUL=1 type back into the larger vector (resolving to another subregister 3429 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 3430 // to avoid allocating a large register group to hold our subvector. 3431 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 3432 return Op; 3433 3434 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 3435 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 3436 // (in our case undisturbed). This means we can set up a subvector insertion 3437 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 3438 // size of the subvector. 3439 MVT InterSubVT = VecVT; 3440 SDValue AlignedExtract = Vec; 3441 unsigned AlignedIdx = OrigIdx - RemIdx; 3442 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 3443 InterSubVT = getLMUL1VT(VecVT); 3444 // Extract a subvector equal to the nearest full vector register type. This 3445 // should resolve to a EXTRACT_SUBREG instruction. 3446 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 3447 DAG.getConstant(AlignedIdx, DL, XLenVT)); 3448 } 3449 3450 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 3451 // For scalable vectors this must be further multiplied by vscale. 3452 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 3453 3454 SDValue Mask, VL; 3455 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 3456 3457 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 3458 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 3459 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 3460 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 3461 3462 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 3463 DAG.getUNDEF(InterSubVT), SubVec, 3464 DAG.getConstant(0, DL, XLenVT)); 3465 3466 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 3467 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 3468 3469 // If required, insert this subvector back into the correct vector register. 3470 // This should resolve to an INSERT_SUBREG instruction. 3471 if (VecVT.bitsGT(InterSubVT)) 3472 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 3473 DAG.getConstant(AlignedIdx, DL, XLenVT)); 3474 3475 // We might have bitcast from a mask type: cast back to the original type if 3476 // required. 3477 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 3478 } 3479 3480 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 3481 SelectionDAG &DAG) const { 3482 SDValue Vec = Op.getOperand(0); 3483 MVT SubVecVT = Op.getSimpleValueType(); 3484 MVT VecVT = Vec.getSimpleValueType(); 3485 3486 SDLoc DL(Op); 3487 MVT XLenVT = Subtarget.getXLenVT(); 3488 unsigned OrigIdx = Op.getConstantOperandVal(1); 3489 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3490 3491 // We don't have the ability to slide mask vectors down indexed by their i1 3492 // elements; the smallest we can do is i8. Often we are able to bitcast to 3493 // equivalent i8 vectors. Note that when extracting a fixed-length vector 3494 // from a scalable one, we might not necessarily have enough scalable 3495 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 3496 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 3497 if (VecVT.getVectorMinNumElements() >= 8 && 3498 SubVecVT.getVectorMinNumElements() >= 8) { 3499 assert(OrigIdx % 8 == 0 && "Invalid index"); 3500 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3501 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3502 "Unexpected mask vector lowering"); 3503 OrigIdx /= 8; 3504 SubVecVT = 3505 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3506 SubVecVT.isScalableVector()); 3507 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3508 VecVT.isScalableVector()); 3509 Vec = DAG.getBitcast(VecVT, Vec); 3510 } else { 3511 // We can't slide this mask vector down, indexed by its i1 elements. 3512 // This poses a problem when we wish to extract a scalable vector which 3513 // can't be re-expressed as a larger type. Just choose the slow path and 3514 // extend to a larger type, then truncate back down. 3515 // TODO: We could probably improve this when extracting certain fixed 3516 // from fixed, where we can extract as i8 and shift the correct element 3517 // right to reach the desired subvector? 3518 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3519 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3520 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3521 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 3522 Op.getOperand(1)); 3523 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 3524 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 3525 } 3526 } 3527 3528 // If the subvector vector is a fixed-length type, we cannot use subregister 3529 // manipulation to simplify the codegen; we don't know which register of a 3530 // LMUL group contains the specific subvector as we only know the minimum 3531 // register size. Therefore we must slide the vector group down the full 3532 // amount. 3533 if (SubVecVT.isFixedLengthVector()) { 3534 // With an index of 0 this is a cast-like subvector, which can be performed 3535 // with subregister operations. 3536 if (OrigIdx == 0) 3537 return Op; 3538 MVT ContainerVT = VecVT; 3539 if (VecVT.isFixedLengthVector()) { 3540 ContainerVT = getContainerForFixedLengthVector(VecVT); 3541 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3542 } 3543 SDValue Mask = 3544 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3545 // Set the vector length to only the number of elements we care about. This 3546 // avoids sliding down elements we're going to discard straight away. 3547 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 3548 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3549 SDValue Slidedown = 3550 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3551 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 3552 // Now we can use a cast-like subvector extract to get the result. 3553 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 3554 DAG.getConstant(0, DL, XLenVT)); 3555 return DAG.getBitcast(Op.getValueType(), Slidedown); 3556 } 3557 3558 unsigned SubRegIdx, RemIdx; 3559 std::tie(SubRegIdx, RemIdx) = 3560 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3561 VecVT, SubVecVT, OrigIdx, TRI); 3562 3563 // If the Idx has been completely eliminated then this is a subvector extract 3564 // which naturally aligns to a vector register. These can easily be handled 3565 // using subregister manipulation. 3566 if (RemIdx == 0) 3567 return Op; 3568 3569 // Else we must shift our vector register directly to extract the subvector. 3570 // Do this using VSLIDEDOWN. 3571 3572 // If the vector type is an LMUL-group type, extract a subvector equal to the 3573 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 3574 // instruction. 3575 MVT InterSubVT = VecVT; 3576 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 3577 InterSubVT = getLMUL1VT(VecVT); 3578 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 3579 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 3580 } 3581 3582 // Slide this vector register down by the desired number of elements in order 3583 // to place the desired subvector starting at element 0. 3584 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 3585 // For scalable vectors this must be further multiplied by vscale. 3586 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 3587 3588 SDValue Mask, VL; 3589 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 3590 SDValue Slidedown = 3591 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 3592 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 3593 3594 // Now the vector is in the right position, extract our final subvector. This 3595 // should resolve to a COPY. 3596 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 3597 DAG.getConstant(0, DL, XLenVT)); 3598 3599 // We might have bitcast from a mask type: cast back to the original type if 3600 // required. 3601 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 3602 } 3603 3604 // Implement step_vector to the vid instruction. 3605 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 3606 SelectionDAG &DAG) const { 3607 SDLoc DL(Op); 3608 assert(Op.getConstantOperandAPInt(0) == 1 && "Unexpected step value"); 3609 MVT VT = Op.getSimpleValueType(); 3610 SDValue Mask, VL; 3611 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 3612 return DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3613 } 3614 3615 // Implement vector_reverse using vrgather.vv with indices determined by 3616 // subtracting the id of each element from (VLMAX-1). This will convert 3617 // the indices like so: 3618 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 3619 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 3620 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 3621 SelectionDAG &DAG) const { 3622 SDLoc DL(Op); 3623 MVT VecVT = Op.getSimpleValueType(); 3624 unsigned EltSize = VecVT.getScalarSizeInBits(); 3625 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 3626 3627 unsigned MaxVLMAX = 0; 3628 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 3629 if (VectorBitsMax != 0) 3630 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 3631 3632 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 3633 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 3634 3635 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 3636 // to use vrgatherei16.vv. 3637 // TODO: It's also possible to use vrgatherei16.vv for other types to 3638 // decrease register width for the index calculation. 3639 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 3640 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 3641 // Reverse each half, then reassemble them in reverse order. 3642 // NOTE: It's also possible that after splitting that VLMAX no longer 3643 // requires vrgatherei16.vv. 3644 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 3645 SDValue Lo, Hi; 3646 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 3647 EVT LoVT, HiVT; 3648 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 3649 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 3650 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 3651 // Reassemble the low and high pieces reversed. 3652 // FIXME: This is a CONCAT_VECTORS. 3653 SDValue Res = 3654 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 3655 DAG.getIntPtrConstant(0, DL)); 3656 return DAG.getNode( 3657 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 3658 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 3659 } 3660 3661 // Just promote the int type to i16 which will double the LMUL. 3662 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 3663 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 3664 } 3665 3666 MVT XLenVT = Subtarget.getXLenVT(); 3667 SDValue Mask, VL; 3668 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 3669 3670 // Calculate VLMAX-1 for the desired SEW. 3671 unsigned MinElts = VecVT.getVectorMinNumElements(); 3672 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 3673 DAG.getConstant(MinElts, DL, XLenVT)); 3674 SDValue VLMinus1 = 3675 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 3676 3677 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 3678 bool IsRV32E64 = 3679 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 3680 SDValue SplatVL; 3681 if (!IsRV32E64) 3682 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 3683 else 3684 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 3685 3686 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 3687 SDValue Indices = 3688 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 3689 3690 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 3691 } 3692 3693 SDValue 3694 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 3695 SelectionDAG &DAG) const { 3696 auto *Load = cast<LoadSDNode>(Op); 3697 3698 SDLoc DL(Op); 3699 MVT VT = Op.getSimpleValueType(); 3700 MVT ContainerVT = getContainerForFixedLengthVector(VT); 3701 3702 SDValue VL = 3703 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 3704 3705 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 3706 SDValue NewLoad = DAG.getMemIntrinsicNode( 3707 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 3708 Load->getMemoryVT(), Load->getMemOperand()); 3709 3710 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 3711 return DAG.getMergeValues({Result, Load->getChain()}, DL); 3712 } 3713 3714 SDValue 3715 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 3716 SelectionDAG &DAG) const { 3717 auto *Store = cast<StoreSDNode>(Op); 3718 3719 SDLoc DL(Op); 3720 SDValue StoreVal = Store->getValue(); 3721 MVT VT = StoreVal.getSimpleValueType(); 3722 3723 // If the size less than a byte, we need to pad with zeros to make a byte. 3724 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 3725 VT = MVT::v8i1; 3726 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 3727 DAG.getConstant(0, DL, VT), StoreVal, 3728 DAG.getIntPtrConstant(0, DL)); 3729 } 3730 3731 MVT ContainerVT = getContainerForFixedLengthVector(VT); 3732 3733 SDValue VL = 3734 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 3735 3736 SDValue NewValue = 3737 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 3738 return DAG.getMemIntrinsicNode( 3739 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 3740 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 3741 Store->getMemoryVT(), Store->getMemOperand()); 3742 } 3743 3744 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const { 3745 auto *Load = cast<MaskedLoadSDNode>(Op); 3746 3747 SDLoc DL(Op); 3748 MVT VT = Op.getSimpleValueType(); 3749 MVT XLenVT = Subtarget.getXLenVT(); 3750 3751 SDValue Mask = Load->getMask(); 3752 SDValue PassThru = Load->getPassThru(); 3753 SDValue VL; 3754 3755 MVT ContainerVT = VT; 3756 if (VT.isFixedLengthVector()) { 3757 ContainerVT = getContainerForFixedLengthVector(VT); 3758 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3759 3760 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 3761 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 3762 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 3763 } else 3764 VL = DAG.getRegister(RISCV::X0, XLenVT); 3765 3766 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 3767 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT); 3768 SDValue Ops[] = {Load->getChain(), IntID, PassThru, 3769 Load->getBasePtr(), Mask, VL}; 3770 SDValue Result = 3771 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 3772 Load->getMemoryVT(), Load->getMemOperand()); 3773 SDValue Chain = Result.getValue(1); 3774 3775 if (VT.isFixedLengthVector()) 3776 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 3777 3778 return DAG.getMergeValues({Result, Chain}, DL); 3779 } 3780 3781 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const { 3782 auto *Store = cast<MaskedStoreSDNode>(Op); 3783 3784 SDLoc DL(Op); 3785 SDValue Val = Store->getValue(); 3786 SDValue Mask = Store->getMask(); 3787 MVT VT = Val.getSimpleValueType(); 3788 MVT XLenVT = Subtarget.getXLenVT(); 3789 SDValue VL; 3790 3791 MVT ContainerVT = VT; 3792 if (VT.isFixedLengthVector()) { 3793 ContainerVT = getContainerForFixedLengthVector(VT); 3794 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3795 3796 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 3797 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 3798 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 3799 } else 3800 VL = DAG.getRegister(RISCV::X0, XLenVT); 3801 3802 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT); 3803 return DAG.getMemIntrinsicNode( 3804 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 3805 {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL}, 3806 Store->getMemoryVT(), Store->getMemOperand()); 3807 } 3808 3809 SDValue 3810 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 3811 SelectionDAG &DAG) const { 3812 MVT InVT = Op.getOperand(0).getSimpleValueType(); 3813 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 3814 3815 MVT VT = Op.getSimpleValueType(); 3816 3817 SDValue Op1 = 3818 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3819 SDValue Op2 = 3820 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 3821 3822 SDLoc DL(Op); 3823 SDValue VL = 3824 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 3825 3826 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3827 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3828 3829 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 3830 Op.getOperand(2), Mask, VL); 3831 3832 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 3833 } 3834 3835 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 3836 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 3837 MVT VT = Op.getSimpleValueType(); 3838 3839 if (VT.getVectorElementType() == MVT::i1) 3840 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 3841 3842 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 3843 } 3844 3845 // Lower vector ABS to smax(X, sub(0, X)). 3846 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 3847 SDLoc DL(Op); 3848 MVT VT = Op.getSimpleValueType(); 3849 SDValue X = Op.getOperand(0); 3850 3851 assert(VT.isFixedLengthVector() && "Unexpected type"); 3852 3853 MVT ContainerVT = getContainerForFixedLengthVector(VT); 3854 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 3855 3856 SDValue Mask, VL; 3857 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3858 3859 SDValue SplatZero = 3860 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 3861 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3862 SDValue NegX = 3863 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 3864 SDValue Max = 3865 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 3866 3867 return convertFromScalableVector(VT, Max, DAG, Subtarget); 3868 } 3869 3870 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 3871 SDValue Op, SelectionDAG &DAG) const { 3872 SDLoc DL(Op); 3873 MVT VT = Op.getSimpleValueType(); 3874 SDValue Mag = Op.getOperand(0); 3875 SDValue Sign = Op.getOperand(1); 3876 assert(Mag.getValueType() == Sign.getValueType() && 3877 "Can only handle COPYSIGN with matching types."); 3878 3879 MVT ContainerVT = getContainerForFixedLengthVector(VT); 3880 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 3881 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 3882 3883 SDValue Mask, VL; 3884 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3885 3886 SDValue CopySign = 3887 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 3888 3889 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 3890 } 3891 3892 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 3893 SDValue Op, SelectionDAG &DAG) const { 3894 MVT VT = Op.getSimpleValueType(); 3895 MVT ContainerVT = getContainerForFixedLengthVector(VT); 3896 3897 MVT I1ContainerVT = 3898 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3899 3900 SDValue CC = 3901 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 3902 SDValue Op1 = 3903 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 3904 SDValue Op2 = 3905 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 3906 3907 SDLoc DL(Op); 3908 SDValue Mask, VL; 3909 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3910 3911 SDValue Select = 3912 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 3913 3914 return convertFromScalableVector(VT, Select, DAG, Subtarget); 3915 } 3916 3917 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 3918 unsigned NewOpc, 3919 bool HasMask) const { 3920 MVT VT = Op.getSimpleValueType(); 3921 assert(useRVVForFixedLengthVectorVT(VT) && 3922 "Only expected to lower fixed length vector operation!"); 3923 MVT ContainerVT = getContainerForFixedLengthVector(VT); 3924 3925 // Create list of operands by converting existing ones to scalable types. 3926 SmallVector<SDValue, 6> Ops; 3927 for (const SDValue &V : Op->op_values()) { 3928 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 3929 3930 // Pass through non-vector operands. 3931 if (!V.getValueType().isVector()) { 3932 Ops.push_back(V); 3933 continue; 3934 } 3935 3936 // "cast" fixed length vector to a scalable vector. 3937 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 3938 "Only fixed length vectors are supported!"); 3939 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 3940 } 3941 3942 SDLoc DL(Op); 3943 SDValue Mask, VL; 3944 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3945 if (HasMask) 3946 Ops.push_back(Mask); 3947 Ops.push_back(VL); 3948 3949 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 3950 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 3951 } 3952 3953 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to 3954 // a RVV indexed load. The RVV indexed load instructions only support the 3955 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 3956 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 3957 // indexing is extended to the XLEN value type and scaled accordingly. 3958 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const { 3959 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 3960 SDLoc DL(Op); 3961 3962 SDValue Index = MGN->getIndex(); 3963 SDValue Mask = MGN->getMask(); 3964 SDValue PassThru = MGN->getPassThru(); 3965 3966 MVT VT = Op.getSimpleValueType(); 3967 MVT IndexVT = Index.getSimpleValueType(); 3968 MVT XLenVT = Subtarget.getXLenVT(); 3969 3970 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 3971 "Unexpected VTs!"); 3972 assert(MGN->getBasePtr().getSimpleValueType() == XLenVT && 3973 "Unexpected pointer type"); 3974 // Targets have to explicitly opt-in for extending vector loads. 3975 assert(MGN->getExtensionType() == ISD::NON_EXTLOAD && 3976 "Unexpected extending MGATHER"); 3977 3978 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 3979 // the selection of the masked intrinsics doesn't do this for us. 3980 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 3981 3982 SDValue VL; 3983 MVT ContainerVT = VT; 3984 if (VT.isFixedLengthVector()) { 3985 // We need to use the larger of the result and index type to determine the 3986 // scalable type to use so we don't increase LMUL for any operand/result. 3987 if (VT.bitsGE(IndexVT)) { 3988 ContainerVT = getContainerForFixedLengthVector(VT); 3989 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 3990 ContainerVT.getVectorElementCount()); 3991 } else { 3992 IndexVT = getContainerForFixedLengthVector(IndexVT); 3993 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 3994 IndexVT.getVectorElementCount()); 3995 } 3996 3997 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 3998 3999 if (!IsUnmasked) { 4000 MVT MaskVT = 4001 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4002 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4003 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4004 } 4005 4006 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4007 } else 4008 VL = DAG.getRegister(RISCV::X0, XLenVT); 4009 4010 unsigned IntID = 4011 IsUnmasked ? Intrinsic::riscv_vloxei : Intrinsic::riscv_vloxei_mask; 4012 SmallVector<SDValue, 8> Ops{MGN->getChain(), 4013 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4014 if (!IsUnmasked) 4015 Ops.push_back(PassThru); 4016 Ops.push_back(MGN->getBasePtr()); 4017 Ops.push_back(Index); 4018 if (!IsUnmasked) 4019 Ops.push_back(Mask); 4020 Ops.push_back(VL); 4021 4022 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4023 SDValue Result = 4024 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4025 MGN->getMemoryVT(), MGN->getMemOperand()); 4026 SDValue Chain = Result.getValue(1); 4027 4028 if (VT.isFixedLengthVector()) 4029 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4030 4031 return DAG.getMergeValues({Result, Chain}, DL); 4032 } 4033 4034 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to 4035 // a RVV indexed store. The RVV indexed store instructions only support the 4036 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4037 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4038 // indexing is extended to the XLEN value type and scaled accordingly. 4039 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op, 4040 SelectionDAG &DAG) const { 4041 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 4042 SDLoc DL(Op); 4043 SDValue Index = MSN->getIndex(); 4044 SDValue Mask = MSN->getMask(); 4045 SDValue Val = MSN->getValue(); 4046 4047 MVT VT = Val.getSimpleValueType(); 4048 MVT IndexVT = Index.getSimpleValueType(); 4049 MVT XLenVT = Subtarget.getXLenVT(); 4050 4051 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4052 "Unexpected VTs!"); 4053 assert(MSN->getBasePtr().getSimpleValueType() == XLenVT && 4054 "Unexpected pointer type"); 4055 // Targets have to explicitly opt-in for extending vector loads and 4056 // truncating vector stores. 4057 assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER"); 4058 4059 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4060 // the selection of the masked intrinsics doesn't do this for us. 4061 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4062 4063 SDValue VL; 4064 if (VT.isFixedLengthVector()) { 4065 // We need to use the larger of the value and index type to determine the 4066 // scalable type to use so we don't increase LMUL for any operand/result. 4067 if (VT.bitsGE(IndexVT)) { 4068 VT = getContainerForFixedLengthVector(VT); 4069 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4070 VT.getVectorElementCount()); 4071 } else { 4072 IndexVT = getContainerForFixedLengthVector(IndexVT); 4073 VT = MVT::getVectorVT(VT.getVectorElementType(), 4074 IndexVT.getVectorElementCount()); 4075 } 4076 4077 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4078 Val = convertToScalableVector(VT, Val, DAG, Subtarget); 4079 4080 if (!IsUnmasked) { 4081 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4082 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4083 } 4084 4085 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4086 } else 4087 VL = DAG.getRegister(RISCV::X0, XLenVT); 4088 4089 unsigned IntID = 4090 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 4091 SmallVector<SDValue, 8> Ops{MSN->getChain(), 4092 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4093 Ops.push_back(Val); 4094 Ops.push_back(MSN->getBasePtr()); 4095 Ops.push_back(Index); 4096 if (!IsUnmasked) 4097 Ops.push_back(Mask); 4098 Ops.push_back(VL); 4099 4100 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops, 4101 MSN->getMemoryVT(), MSN->getMemOperand()); 4102 } 4103 4104 // Returns the opcode of the target-specific SDNode that implements the 32-bit 4105 // form of the given Opcode. 4106 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 4107 switch (Opcode) { 4108 default: 4109 llvm_unreachable("Unexpected opcode"); 4110 case ISD::SHL: 4111 return RISCVISD::SLLW; 4112 case ISD::SRA: 4113 return RISCVISD::SRAW; 4114 case ISD::SRL: 4115 return RISCVISD::SRLW; 4116 case ISD::SDIV: 4117 return RISCVISD::DIVW; 4118 case ISD::UDIV: 4119 return RISCVISD::DIVUW; 4120 case ISD::UREM: 4121 return RISCVISD::REMUW; 4122 case ISD::ROTL: 4123 return RISCVISD::ROLW; 4124 case ISD::ROTR: 4125 return RISCVISD::RORW; 4126 case RISCVISD::GREV: 4127 return RISCVISD::GREVW; 4128 case RISCVISD::GORC: 4129 return RISCVISD::GORCW; 4130 } 4131 } 4132 4133 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 4134 // Because i32 isn't a legal type for RV64, these operations would otherwise 4135 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 4136 // later one because the fact the operation was originally of type i32 is 4137 // lost. 4138 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 4139 unsigned ExtOpc = ISD::ANY_EXTEND) { 4140 SDLoc DL(N); 4141 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4142 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 4143 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 4144 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 4145 // ReplaceNodeResults requires we maintain the same type for the return value. 4146 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 4147 } 4148 4149 // Converts the given 32-bit operation to a i64 operation with signed extension 4150 // semantic to reduce the signed extension instructions. 4151 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 4152 SDLoc DL(N); 4153 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4154 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4155 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 4156 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 4157 DAG.getValueType(MVT::i32)); 4158 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 4159 } 4160 4161 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 4162 SmallVectorImpl<SDValue> &Results, 4163 SelectionDAG &DAG) const { 4164 SDLoc DL(N); 4165 switch (N->getOpcode()) { 4166 default: 4167 llvm_unreachable("Don't know how to custom type legalize this operation!"); 4168 case ISD::STRICT_FP_TO_SINT: 4169 case ISD::STRICT_FP_TO_UINT: 4170 case ISD::FP_TO_SINT: 4171 case ISD::FP_TO_UINT: { 4172 bool IsStrict = N->isStrictFPOpcode(); 4173 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4174 "Unexpected custom legalisation"); 4175 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 4176 // If the FP type needs to be softened, emit a library call using the 'si' 4177 // version. If we left it to default legalization we'd end up with 'di'. If 4178 // the FP type doesn't need to be softened just let generic type 4179 // legalization promote the result type. 4180 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 4181 TargetLowering::TypeSoftenFloat) 4182 return; 4183 RTLIB::Libcall LC; 4184 if (N->getOpcode() == ISD::FP_TO_SINT || 4185 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 4186 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 4187 else 4188 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 4189 MakeLibCallOptions CallOptions; 4190 EVT OpVT = Op0.getValueType(); 4191 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 4192 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 4193 SDValue Result; 4194 std::tie(Result, Chain) = 4195 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 4196 Results.push_back(Result); 4197 if (IsStrict) 4198 Results.push_back(Chain); 4199 break; 4200 } 4201 case ISD::READCYCLECOUNTER: { 4202 assert(!Subtarget.is64Bit() && 4203 "READCYCLECOUNTER only has custom type legalization on riscv32"); 4204 4205 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 4206 SDValue RCW = 4207 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 4208 4209 Results.push_back( 4210 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 4211 Results.push_back(RCW.getValue(2)); 4212 break; 4213 } 4214 case ISD::MUL: { 4215 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 4216 unsigned XLen = Subtarget.getXLen(); 4217 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 4218 if (Size > XLen) { 4219 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 4220 SDValue LHS = N->getOperand(0); 4221 SDValue RHS = N->getOperand(1); 4222 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 4223 4224 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 4225 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 4226 // We need exactly one side to be unsigned. 4227 if (LHSIsU == RHSIsU) 4228 return; 4229 4230 auto MakeMULPair = [&](SDValue S, SDValue U) { 4231 MVT XLenVT = Subtarget.getXLenVT(); 4232 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 4233 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 4234 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 4235 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 4236 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 4237 }; 4238 4239 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 4240 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 4241 4242 // The other operand should be signed, but still prefer MULH when 4243 // possible. 4244 if (RHSIsU && LHSIsS && !RHSIsS) 4245 Results.push_back(MakeMULPair(LHS, RHS)); 4246 else if (LHSIsU && RHSIsS && !LHSIsS) 4247 Results.push_back(MakeMULPair(RHS, LHS)); 4248 4249 return; 4250 } 4251 LLVM_FALLTHROUGH; 4252 } 4253 case ISD::ADD: 4254 case ISD::SUB: 4255 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4256 "Unexpected custom legalisation"); 4257 if (N->getOperand(1).getOpcode() == ISD::Constant) 4258 return; 4259 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 4260 break; 4261 case ISD::SHL: 4262 case ISD::SRA: 4263 case ISD::SRL: 4264 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4265 "Unexpected custom legalisation"); 4266 if (N->getOperand(1).getOpcode() == ISD::Constant) 4267 return; 4268 Results.push_back(customLegalizeToWOp(N, DAG)); 4269 break; 4270 case ISD::ROTL: 4271 case ISD::ROTR: 4272 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4273 "Unexpected custom legalisation"); 4274 Results.push_back(customLegalizeToWOp(N, DAG)); 4275 break; 4276 case ISD::CTTZ: 4277 case ISD::CTTZ_ZERO_UNDEF: 4278 case ISD::CTLZ: 4279 case ISD::CTLZ_ZERO_UNDEF: { 4280 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4281 "Unexpected custom legalisation"); 4282 4283 SDValue NewOp0 = 4284 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4285 bool IsCTZ = 4286 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 4287 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 4288 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 4289 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4290 return; 4291 } 4292 case ISD::SDIV: 4293 case ISD::UDIV: 4294 case ISD::UREM: { 4295 MVT VT = N->getSimpleValueType(0); 4296 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 4297 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 4298 "Unexpected custom legalisation"); 4299 if (N->getOperand(0).getOpcode() == ISD::Constant || 4300 N->getOperand(1).getOpcode() == ISD::Constant) 4301 return; 4302 4303 // If the input is i32, use ANY_EXTEND since the W instructions don't read 4304 // the upper 32 bits. For other types we need to sign or zero extend 4305 // based on the opcode. 4306 unsigned ExtOpc = ISD::ANY_EXTEND; 4307 if (VT != MVT::i32) 4308 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 4309 : ISD::ZERO_EXTEND; 4310 4311 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 4312 break; 4313 } 4314 case ISD::UADDO: 4315 case ISD::USUBO: { 4316 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4317 "Unexpected custom legalisation"); 4318 bool IsAdd = N->getOpcode() == ISD::UADDO; 4319 // Create an ADDW or SUBW. 4320 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4321 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4322 SDValue Res = 4323 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 4324 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 4325 DAG.getValueType(MVT::i32)); 4326 4327 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 4328 // Since the inputs are sign extended from i32, this is equivalent to 4329 // comparing the lower 32 bits. 4330 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 4331 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 4332 IsAdd ? ISD::SETULT : ISD::SETUGT); 4333 4334 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4335 Results.push_back(Overflow); 4336 return; 4337 } 4338 case ISD::UADDSAT: 4339 case ISD::USUBSAT: { 4340 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4341 "Unexpected custom legalisation"); 4342 if (Subtarget.hasStdExtZbb()) { 4343 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 4344 // sign extend allows overflow of the lower 32 bits to be detected on 4345 // the promoted size. 4346 SDValue LHS = 4347 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 4348 SDValue RHS = 4349 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 4350 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 4351 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4352 return; 4353 } 4354 4355 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 4356 // promotion for UADDO/USUBO. 4357 Results.push_back(expandAddSubSat(N, DAG)); 4358 return; 4359 } 4360 case ISD::BITCAST: { 4361 EVT VT = N->getValueType(0); 4362 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 4363 SDValue Op0 = N->getOperand(0); 4364 EVT Op0VT = Op0.getValueType(); 4365 MVT XLenVT = Subtarget.getXLenVT(); 4366 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 4367 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 4368 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 4369 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 4370 Subtarget.hasStdExtF()) { 4371 SDValue FPConv = 4372 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 4373 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 4374 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 4375 isTypeLegal(Op0VT)) { 4376 // Custom-legalize bitcasts from fixed-length vector types to illegal 4377 // scalar types in order to improve codegen. Bitcast the vector to a 4378 // one-element vector type whose element type is the same as the result 4379 // type, and extract the first element. 4380 LLVMContext &Context = *DAG.getContext(); 4381 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 4382 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 4383 DAG.getConstant(0, DL, XLenVT))); 4384 } 4385 break; 4386 } 4387 case RISCVISD::GREV: 4388 case RISCVISD::GORC: { 4389 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4390 "Unexpected custom legalisation"); 4391 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 4392 // This is similar to customLegalizeToWOp, except that we pass the second 4393 // operand (a TargetConstant) straight through: it is already of type 4394 // XLenVT. 4395 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4396 SDValue NewOp0 = 4397 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4398 SDValue NewOp1 = 4399 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4400 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 4401 // ReplaceNodeResults requires we maintain the same type for the return 4402 // value. 4403 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 4404 break; 4405 } 4406 case RISCVISD::SHFL: { 4407 // There is no SHFLIW instruction, but we can just promote the operation. 4408 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4409 "Unexpected custom legalisation"); 4410 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 4411 SDValue NewOp0 = 4412 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4413 SDValue NewOp1 = 4414 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4415 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 4416 // ReplaceNodeResults requires we maintain the same type for the return 4417 // value. 4418 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 4419 break; 4420 } 4421 case ISD::BSWAP: 4422 case ISD::BITREVERSE: { 4423 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4424 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 4425 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 4426 N->getOperand(0)); 4427 unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24; 4428 SDValue GREVIW = DAG.getNode(RISCVISD::GREVW, DL, MVT::i64, NewOp0, 4429 DAG.getConstant(Imm, DL, MVT::i64)); 4430 // ReplaceNodeResults requires we maintain the same type for the return 4431 // value. 4432 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW)); 4433 break; 4434 } 4435 case ISD::FSHL: 4436 case ISD::FSHR: { 4437 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4438 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 4439 SDValue NewOp0 = 4440 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4441 SDValue NewOp1 = 4442 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4443 SDValue NewOp2 = 4444 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 4445 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 4446 // Mask the shift amount to 5 bits. 4447 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 4448 DAG.getConstant(0x1f, DL, MVT::i64)); 4449 unsigned Opc = 4450 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 4451 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 4452 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 4453 break; 4454 } 4455 case ISD::EXTRACT_VECTOR_ELT: { 4456 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 4457 // type is illegal (currently only vXi64 RV32). 4458 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 4459 // transferred to the destination register. We issue two of these from the 4460 // upper- and lower- halves of the SEW-bit vector element, slid down to the 4461 // first element. 4462 SDValue Vec = N->getOperand(0); 4463 SDValue Idx = N->getOperand(1); 4464 4465 // The vector type hasn't been legalized yet so we can't issue target 4466 // specific nodes if it needs legalization. 4467 // FIXME: We would manually legalize if it's important. 4468 if (!isTypeLegal(Vec.getValueType())) 4469 return; 4470 4471 MVT VecVT = Vec.getSimpleValueType(); 4472 4473 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 4474 VecVT.getVectorElementType() == MVT::i64 && 4475 "Unexpected EXTRACT_VECTOR_ELT legalization"); 4476 4477 // If this is a fixed vector, we need to convert it to a scalable vector. 4478 MVT ContainerVT = VecVT; 4479 if (VecVT.isFixedLengthVector()) { 4480 ContainerVT = getContainerForFixedLengthVector(VecVT); 4481 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4482 } 4483 4484 MVT XLenVT = Subtarget.getXLenVT(); 4485 4486 // Use a VL of 1 to avoid processing more elements than we need. 4487 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 4488 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4489 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4490 4491 // Unless the index is known to be 0, we must slide the vector down to get 4492 // the desired element into index 0. 4493 if (!isNullConstant(Idx)) { 4494 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4495 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4496 } 4497 4498 // Extract the lower XLEN bits of the correct vector element. 4499 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4500 4501 // To extract the upper XLEN bits of the vector element, shift the first 4502 // element right by 32 bits and re-extract the lower XLEN bits. 4503 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4504 DAG.getConstant(32, DL, XLenVT), VL); 4505 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 4506 ThirtyTwoV, Mask, VL); 4507 4508 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 4509 4510 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 4511 break; 4512 } 4513 case ISD::INTRINSIC_WO_CHAIN: { 4514 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 4515 switch (IntNo) { 4516 default: 4517 llvm_unreachable( 4518 "Don't know how to custom type legalize this intrinsic!"); 4519 case Intrinsic::riscv_orc_b: { 4520 // Lower to the GORCI encoding for orc.b with the operand extended. 4521 SDValue NewOp = 4522 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4523 // If Zbp is enabled, use GORCIW which will sign extend the result. 4524 unsigned Opc = 4525 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 4526 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 4527 DAG.getConstant(7, DL, MVT::i64)); 4528 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4529 return; 4530 } 4531 case Intrinsic::riscv_vmv_x_s: { 4532 EVT VT = N->getValueType(0); 4533 MVT XLenVT = Subtarget.getXLenVT(); 4534 if (VT.bitsLT(XLenVT)) { 4535 // Simple case just extract using vmv.x.s and truncate. 4536 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 4537 Subtarget.getXLenVT(), N->getOperand(1)); 4538 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 4539 return; 4540 } 4541 4542 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 4543 "Unexpected custom legalization"); 4544 4545 // We need to do the move in two steps. 4546 SDValue Vec = N->getOperand(1); 4547 MVT VecVT = Vec.getSimpleValueType(); 4548 4549 // First extract the lower XLEN bits of the element. 4550 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4551 4552 // To extract the upper XLEN bits of the vector element, shift the first 4553 // element right by 32 bits and re-extract the lower XLEN bits. 4554 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4555 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 4556 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4557 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 4558 DAG.getConstant(32, DL, XLenVT), VL); 4559 SDValue LShr32 = 4560 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 4561 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 4562 4563 Results.push_back( 4564 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 4565 break; 4566 } 4567 } 4568 break; 4569 } 4570 case ISD::VECREDUCE_ADD: 4571 case ISD::VECREDUCE_AND: 4572 case ISD::VECREDUCE_OR: 4573 case ISD::VECREDUCE_XOR: 4574 case ISD::VECREDUCE_SMAX: 4575 case ISD::VECREDUCE_UMAX: 4576 case ISD::VECREDUCE_SMIN: 4577 case ISD::VECREDUCE_UMIN: 4578 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 4579 Results.push_back(V); 4580 break; 4581 } 4582 } 4583 4584 // A structure to hold one of the bit-manipulation patterns below. Together, a 4585 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 4586 // (or (and (shl x, 1), 0xAAAAAAAA), 4587 // (and (srl x, 1), 0x55555555)) 4588 struct RISCVBitmanipPat { 4589 SDValue Op; 4590 unsigned ShAmt; 4591 bool IsSHL; 4592 4593 bool formsPairWith(const RISCVBitmanipPat &Other) const { 4594 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 4595 } 4596 }; 4597 4598 // Matches patterns of the form 4599 // (and (shl x, C2), (C1 << C2)) 4600 // (and (srl x, C2), C1) 4601 // (shl (and x, C1), C2) 4602 // (srl (and x, (C1 << C2)), C2) 4603 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 4604 // The expected masks for each shift amount are specified in BitmanipMasks where 4605 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 4606 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 4607 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 4608 // XLen is 64. 4609 static Optional<RISCVBitmanipPat> 4610 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 4611 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 4612 "Unexpected number of masks"); 4613 Optional<uint64_t> Mask; 4614 // Optionally consume a mask around the shift operation. 4615 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 4616 Mask = Op.getConstantOperandVal(1); 4617 Op = Op.getOperand(0); 4618 } 4619 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 4620 return None; 4621 bool IsSHL = Op.getOpcode() == ISD::SHL; 4622 4623 if (!isa<ConstantSDNode>(Op.getOperand(1))) 4624 return None; 4625 uint64_t ShAmt = Op.getConstantOperandVal(1); 4626 4627 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 4628 if (ShAmt >= Width && !isPowerOf2_64(ShAmt)) 4629 return None; 4630 // If we don't have enough masks for 64 bit, then we must be trying to 4631 // match SHFL so we're only allowed to shift 1/4 of the width. 4632 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 4633 return None; 4634 4635 SDValue Src = Op.getOperand(0); 4636 4637 // The expected mask is shifted left when the AND is found around SHL 4638 // patterns. 4639 // ((x >> 1) & 0x55555555) 4640 // ((x << 1) & 0xAAAAAAAA) 4641 bool SHLExpMask = IsSHL; 4642 4643 if (!Mask) { 4644 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 4645 // the mask is all ones: consume that now. 4646 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 4647 Mask = Src.getConstantOperandVal(1); 4648 Src = Src.getOperand(0); 4649 // The expected mask is now in fact shifted left for SRL, so reverse the 4650 // decision. 4651 // ((x & 0xAAAAAAAA) >> 1) 4652 // ((x & 0x55555555) << 1) 4653 SHLExpMask = !SHLExpMask; 4654 } else { 4655 // Use a default shifted mask of all-ones if there's no AND, truncated 4656 // down to the expected width. This simplifies the logic later on. 4657 Mask = maskTrailingOnes<uint64_t>(Width); 4658 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 4659 } 4660 } 4661 4662 unsigned MaskIdx = Log2_32(ShAmt); 4663 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 4664 4665 if (SHLExpMask) 4666 ExpMask <<= ShAmt; 4667 4668 if (Mask != ExpMask) 4669 return None; 4670 4671 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 4672 } 4673 4674 // Matches any of the following bit-manipulation patterns: 4675 // (and (shl x, 1), (0x55555555 << 1)) 4676 // (and (srl x, 1), 0x55555555) 4677 // (shl (and x, 0x55555555), 1) 4678 // (srl (and x, (0x55555555 << 1)), 1) 4679 // where the shift amount and mask may vary thus: 4680 // [1] = 0x55555555 / 0xAAAAAAAA 4681 // [2] = 0x33333333 / 0xCCCCCCCC 4682 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 4683 // [8] = 0x00FF00FF / 0xFF00FF00 4684 // [16] = 0x0000FFFF / 0xFFFFFFFF 4685 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 4686 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 4687 // These are the unshifted masks which we use to match bit-manipulation 4688 // patterns. They may be shifted left in certain circumstances. 4689 static const uint64_t BitmanipMasks[] = { 4690 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 4691 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 4692 4693 return matchRISCVBitmanipPat(Op, BitmanipMasks); 4694 } 4695 4696 // Match the following pattern as a GREVI(W) operation 4697 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 4698 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 4699 const RISCVSubtarget &Subtarget) { 4700 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 4701 EVT VT = Op.getValueType(); 4702 4703 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 4704 auto LHS = matchGREVIPat(Op.getOperand(0)); 4705 auto RHS = matchGREVIPat(Op.getOperand(1)); 4706 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 4707 SDLoc DL(Op); 4708 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 4709 DAG.getConstant(LHS->ShAmt, DL, VT)); 4710 } 4711 } 4712 return SDValue(); 4713 } 4714 4715 // Matches any the following pattern as a GORCI(W) operation 4716 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 4717 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 4718 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 4719 // Note that with the variant of 3., 4720 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 4721 // the inner pattern will first be matched as GREVI and then the outer 4722 // pattern will be matched to GORC via the first rule above. 4723 // 4. (or (rotl/rotr x, bitwidth/2), x) 4724 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 4725 const RISCVSubtarget &Subtarget) { 4726 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 4727 EVT VT = Op.getValueType(); 4728 4729 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 4730 SDLoc DL(Op); 4731 SDValue Op0 = Op.getOperand(0); 4732 SDValue Op1 = Op.getOperand(1); 4733 4734 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 4735 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 4736 isa<ConstantSDNode>(Reverse.getOperand(1)) && 4737 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 4738 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 4739 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 4740 if ((Reverse.getOpcode() == ISD::ROTL || 4741 Reverse.getOpcode() == ISD::ROTR) && 4742 Reverse.getOperand(0) == X && 4743 isa<ConstantSDNode>(Reverse.getOperand(1))) { 4744 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 4745 if (RotAmt == (VT.getSizeInBits() / 2)) 4746 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 4747 DAG.getConstant(RotAmt, DL, VT)); 4748 } 4749 return SDValue(); 4750 }; 4751 4752 // Check for either commutable permutation of (or (GREVI x, shamt), x) 4753 if (SDValue V = MatchOROfReverse(Op0, Op1)) 4754 return V; 4755 if (SDValue V = MatchOROfReverse(Op1, Op0)) 4756 return V; 4757 4758 // OR is commutable so canonicalize its OR operand to the left 4759 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 4760 std::swap(Op0, Op1); 4761 if (Op0.getOpcode() != ISD::OR) 4762 return SDValue(); 4763 SDValue OrOp0 = Op0.getOperand(0); 4764 SDValue OrOp1 = Op0.getOperand(1); 4765 auto LHS = matchGREVIPat(OrOp0); 4766 // OR is commutable so swap the operands and try again: x might have been 4767 // on the left 4768 if (!LHS) { 4769 std::swap(OrOp0, OrOp1); 4770 LHS = matchGREVIPat(OrOp0); 4771 } 4772 auto RHS = matchGREVIPat(Op1); 4773 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 4774 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 4775 DAG.getConstant(LHS->ShAmt, DL, VT)); 4776 } 4777 } 4778 return SDValue(); 4779 } 4780 4781 // Matches any of the following bit-manipulation patterns: 4782 // (and (shl x, 1), (0x22222222 << 1)) 4783 // (and (srl x, 1), 0x22222222) 4784 // (shl (and x, 0x22222222), 1) 4785 // (srl (and x, (0x22222222 << 1)), 1) 4786 // where the shift amount and mask may vary thus: 4787 // [1] = 0x22222222 / 0x44444444 4788 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 4789 // [4] = 0x00F000F0 / 0x0F000F00 4790 // [8] = 0x0000FF00 / 0x00FF0000 4791 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 4792 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 4793 // These are the unshifted masks which we use to match bit-manipulation 4794 // patterns. They may be shifted left in certain circumstances. 4795 static const uint64_t BitmanipMasks[] = { 4796 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 4797 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 4798 4799 return matchRISCVBitmanipPat(Op, BitmanipMasks); 4800 } 4801 4802 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 4803 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 4804 const RISCVSubtarget &Subtarget) { 4805 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 4806 EVT VT = Op.getValueType(); 4807 4808 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 4809 return SDValue(); 4810 4811 SDValue Op0 = Op.getOperand(0); 4812 SDValue Op1 = Op.getOperand(1); 4813 4814 // Or is commutable so canonicalize the second OR to the LHS. 4815 if (Op0.getOpcode() != ISD::OR) 4816 std::swap(Op0, Op1); 4817 if (Op0.getOpcode() != ISD::OR) 4818 return SDValue(); 4819 4820 // We found an inner OR, so our operands are the operands of the inner OR 4821 // and the other operand of the outer OR. 4822 SDValue A = Op0.getOperand(0); 4823 SDValue B = Op0.getOperand(1); 4824 SDValue C = Op1; 4825 4826 auto Match1 = matchSHFLPat(A); 4827 auto Match2 = matchSHFLPat(B); 4828 4829 // If neither matched, we failed. 4830 if (!Match1 && !Match2) 4831 return SDValue(); 4832 4833 // We had at least one match. if one failed, try the remaining C operand. 4834 if (!Match1) { 4835 std::swap(A, C); 4836 Match1 = matchSHFLPat(A); 4837 if (!Match1) 4838 return SDValue(); 4839 } else if (!Match2) { 4840 std::swap(B, C); 4841 Match2 = matchSHFLPat(B); 4842 if (!Match2) 4843 return SDValue(); 4844 } 4845 assert(Match1 && Match2); 4846 4847 // Make sure our matches pair up. 4848 if (!Match1->formsPairWith(*Match2)) 4849 return SDValue(); 4850 4851 // All the remains is to make sure C is an AND with the same input, that masks 4852 // out the bits that are being shuffled. 4853 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 4854 C.getOperand(0) != Match1->Op) 4855 return SDValue(); 4856 4857 uint64_t Mask = C.getConstantOperandVal(1); 4858 4859 static const uint64_t BitmanipMasks[] = { 4860 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 4861 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 4862 }; 4863 4864 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 4865 unsigned MaskIdx = Log2_32(Match1->ShAmt); 4866 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 4867 4868 if (Mask != ExpMask) 4869 return SDValue(); 4870 4871 SDLoc DL(Op); 4872 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 4873 DAG.getConstant(Match1->ShAmt, DL, VT)); 4874 } 4875 4876 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 4877 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 4878 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 4879 // not undo itself, but they are redundant. 4880 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 4881 SDValue Src = N->getOperand(0); 4882 4883 if (Src.getOpcode() != N->getOpcode()) 4884 return SDValue(); 4885 4886 if (!isa<ConstantSDNode>(N->getOperand(1)) || 4887 !isa<ConstantSDNode>(Src.getOperand(1))) 4888 return SDValue(); 4889 4890 unsigned ShAmt1 = N->getConstantOperandVal(1); 4891 unsigned ShAmt2 = Src.getConstantOperandVal(1); 4892 Src = Src.getOperand(0); 4893 4894 unsigned CombinedShAmt; 4895 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 4896 CombinedShAmt = ShAmt1 | ShAmt2; 4897 else 4898 CombinedShAmt = ShAmt1 ^ ShAmt2; 4899 4900 if (CombinedShAmt == 0) 4901 return Src; 4902 4903 SDLoc DL(N); 4904 return DAG.getNode( 4905 N->getOpcode(), DL, N->getValueType(0), Src, 4906 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 4907 } 4908 4909 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 4910 DAGCombinerInfo &DCI) const { 4911 SelectionDAG &DAG = DCI.DAG; 4912 4913 switch (N->getOpcode()) { 4914 default: 4915 break; 4916 case RISCVISD::SplitF64: { 4917 SDValue Op0 = N->getOperand(0); 4918 // If the input to SplitF64 is just BuildPairF64 then the operation is 4919 // redundant. Instead, use BuildPairF64's operands directly. 4920 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 4921 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 4922 4923 SDLoc DL(N); 4924 4925 // It's cheaper to materialise two 32-bit integers than to load a double 4926 // from the constant pool and transfer it to integer registers through the 4927 // stack. 4928 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 4929 APInt V = C->getValueAPF().bitcastToAPInt(); 4930 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 4931 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 4932 return DCI.CombineTo(N, Lo, Hi); 4933 } 4934 4935 // This is a target-specific version of a DAGCombine performed in 4936 // DAGCombiner::visitBITCAST. It performs the equivalent of: 4937 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 4938 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 4939 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 4940 !Op0.getNode()->hasOneUse()) 4941 break; 4942 SDValue NewSplitF64 = 4943 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 4944 Op0.getOperand(0)); 4945 SDValue Lo = NewSplitF64.getValue(0); 4946 SDValue Hi = NewSplitF64.getValue(1); 4947 APInt SignBit = APInt::getSignMask(32); 4948 if (Op0.getOpcode() == ISD::FNEG) { 4949 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 4950 DAG.getConstant(SignBit, DL, MVT::i32)); 4951 return DCI.CombineTo(N, Lo, NewHi); 4952 } 4953 assert(Op0.getOpcode() == ISD::FABS); 4954 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 4955 DAG.getConstant(~SignBit, DL, MVT::i32)); 4956 return DCI.CombineTo(N, Lo, NewHi); 4957 } 4958 case RISCVISD::SLLW: 4959 case RISCVISD::SRAW: 4960 case RISCVISD::SRLW: 4961 case RISCVISD::ROLW: 4962 case RISCVISD::RORW: { 4963 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 4964 SDValue LHS = N->getOperand(0); 4965 SDValue RHS = N->getOperand(1); 4966 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 4967 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 4968 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 4969 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 4970 if (N->getOpcode() != ISD::DELETED_NODE) 4971 DCI.AddToWorklist(N); 4972 return SDValue(N, 0); 4973 } 4974 break; 4975 } 4976 case RISCVISD::CLZW: 4977 case RISCVISD::CTZW: { 4978 // Only the lower 32 bits of the first operand are read 4979 SDValue Op0 = N->getOperand(0); 4980 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 4981 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 4982 if (N->getOpcode() != ISD::DELETED_NODE) 4983 DCI.AddToWorklist(N); 4984 return SDValue(N, 0); 4985 } 4986 break; 4987 } 4988 case RISCVISD::FSL: 4989 case RISCVISD::FSR: { 4990 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 4991 SDValue ShAmt = N->getOperand(2); 4992 unsigned BitWidth = ShAmt.getValueSizeInBits(); 4993 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 4994 APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1); 4995 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 4996 if (N->getOpcode() != ISD::DELETED_NODE) 4997 DCI.AddToWorklist(N); 4998 return SDValue(N, 0); 4999 } 5000 break; 5001 } 5002 case RISCVISD::FSLW: 5003 case RISCVISD::FSRW: { 5004 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 5005 // read. 5006 SDValue Op0 = N->getOperand(0); 5007 SDValue Op1 = N->getOperand(1); 5008 SDValue ShAmt = N->getOperand(2); 5009 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 5010 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 5011 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 5012 SimplifyDemandedBits(Op1, OpMask, DCI) || 5013 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5014 if (N->getOpcode() != ISD::DELETED_NODE) 5015 DCI.AddToWorklist(N); 5016 return SDValue(N, 0); 5017 } 5018 break; 5019 } 5020 case RISCVISD::GREVW: 5021 case RISCVISD::GORCW: { 5022 // Only the lower 32 bits of the first operand are read 5023 SDValue Op0 = N->getOperand(0); 5024 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 5025 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 5026 if (N->getOpcode() != ISD::DELETED_NODE) 5027 DCI.AddToWorklist(N); 5028 return SDValue(N, 0); 5029 } 5030 5031 return combineGREVI_GORCI(N, DCI.DAG); 5032 } 5033 case RISCVISD::FMV_X_ANYEXTW_RV64: { 5034 SDLoc DL(N); 5035 SDValue Op0 = N->getOperand(0); 5036 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 5037 // conversion is unnecessary and can be replaced with an ANY_EXTEND 5038 // of the FMV_W_X_RV64 operand. 5039 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 5040 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 5041 "Unexpected value type!"); 5042 return Op0.getOperand(0); 5043 } 5044 5045 // This is a target-specific version of a DAGCombine performed in 5046 // DAGCombiner::visitBITCAST. It performs the equivalent of: 5047 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 5048 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 5049 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 5050 !Op0.getNode()->hasOneUse()) 5051 break; 5052 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 5053 Op0.getOperand(0)); 5054 APInt SignBit = APInt::getSignMask(32).sext(64); 5055 if (Op0.getOpcode() == ISD::FNEG) 5056 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 5057 DAG.getConstant(SignBit, DL, MVT::i64)); 5058 5059 assert(Op0.getOpcode() == ISD::FABS); 5060 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 5061 DAG.getConstant(~SignBit, DL, MVT::i64)); 5062 } 5063 case RISCVISD::GREV: 5064 case RISCVISD::GORC: 5065 return combineGREVI_GORCI(N, DCI.DAG); 5066 case ISD::OR: 5067 if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget)) 5068 return GREV; 5069 if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget)) 5070 return GORC; 5071 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DCI.DAG, Subtarget)) 5072 return SHFL; 5073 break; 5074 case RISCVISD::SELECT_CC: { 5075 // Transform 5076 SDValue LHS = N->getOperand(0); 5077 SDValue RHS = N->getOperand(1); 5078 auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2)); 5079 if (!ISD::isIntEqualitySetCC(CCVal)) 5080 break; 5081 5082 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 5083 // (select_cc X, Y, lt, trueV, falseV) 5084 // Sometimes the setcc is introduced after select_cc has been formed. 5085 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 5086 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 5087 // If we're looking for eq 0 instead of ne 0, we need to invert the 5088 // condition. 5089 bool Invert = CCVal == ISD::SETEQ; 5090 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 5091 if (Invert) 5092 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5093 5094 SDLoc DL(N); 5095 RHS = LHS.getOperand(1); 5096 LHS = LHS.getOperand(0); 5097 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 5098 5099 SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT()); 5100 return DAG.getNode( 5101 RISCVISD::SELECT_CC, DL, N->getValueType(0), 5102 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 5103 } 5104 5105 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 5106 // (select_cc X, Y, eq/ne, trueV, falseV) 5107 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 5108 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 5109 {LHS.getOperand(0), LHS.getOperand(1), 5110 N->getOperand(2), N->getOperand(3), 5111 N->getOperand(4)}); 5112 // (select_cc X, 1, setne, trueV, falseV) -> 5113 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 5114 // This can occur when legalizing some floating point comparisons. 5115 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 5116 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 5117 SDLoc DL(N); 5118 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5119 SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT()); 5120 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 5121 return DAG.getNode( 5122 RISCVISD::SELECT_CC, DL, N->getValueType(0), 5123 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 5124 } 5125 5126 break; 5127 } 5128 case RISCVISD::BR_CC: { 5129 SDValue LHS = N->getOperand(1); 5130 SDValue RHS = N->getOperand(2); 5131 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 5132 if (!ISD::isIntEqualitySetCC(CCVal)) 5133 break; 5134 5135 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 5136 // (br_cc X, Y, lt, dest) 5137 // Sometimes the setcc is introduced after br_cc has been formed. 5138 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 5139 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 5140 // If we're looking for eq 0 instead of ne 0, we need to invert the 5141 // condition. 5142 bool Invert = CCVal == ISD::SETEQ; 5143 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 5144 if (Invert) 5145 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5146 5147 SDLoc DL(N); 5148 RHS = LHS.getOperand(1); 5149 LHS = LHS.getOperand(0); 5150 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 5151 5152 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 5153 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 5154 N->getOperand(4)); 5155 } 5156 5157 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 5158 // (br_cc X, Y, eq/ne, trueV, falseV) 5159 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 5160 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 5161 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 5162 N->getOperand(3), N->getOperand(4)); 5163 5164 // (br_cc X, 1, setne, br_cc) -> 5165 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 5166 // This can occur when legalizing some floating point comparisons. 5167 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 5168 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 5169 SDLoc DL(N); 5170 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5171 SDValue TargetCC = DAG.getCondCode(CCVal); 5172 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 5173 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 5174 N->getOperand(0), LHS, RHS, TargetCC, 5175 N->getOperand(4)); 5176 } 5177 break; 5178 } 5179 case ISD::FCOPYSIGN: { 5180 EVT VT = N->getValueType(0); 5181 if (!VT.isVector()) 5182 break; 5183 // There is a form of VFSGNJ which injects the negated sign of its second 5184 // operand. Try and bubble any FNEG up after the extend/round to produce 5185 // this optimized pattern. Avoid modifying cases where FP_ROUND and 5186 // TRUNC=1. 5187 SDValue In2 = N->getOperand(1); 5188 // Avoid cases where the extend/round has multiple uses, as duplicating 5189 // those is typically more expensive than removing a fneg. 5190 if (!In2.hasOneUse()) 5191 break; 5192 if (In2.getOpcode() != ISD::FP_EXTEND && 5193 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 5194 break; 5195 In2 = In2.getOperand(0); 5196 if (In2.getOpcode() != ISD::FNEG) 5197 break; 5198 SDLoc DL(N); 5199 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 5200 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 5201 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 5202 } 5203 case ISD::MGATHER: 5204 case ISD::MSCATTER: { 5205 if (!DCI.isBeforeLegalize()) 5206 break; 5207 MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N); 5208 SDValue Index = MGSN->getIndex(); 5209 EVT IndexVT = Index.getValueType(); 5210 MVT XLenVT = Subtarget.getXLenVT(); 5211 // RISCV indexed loads only support the "unsigned unscaled" addressing 5212 // mode, so anything else must be manually legalized. 5213 bool NeedsIdxLegalization = MGSN->isIndexScaled() || 5214 (MGSN->isIndexSigned() && 5215 IndexVT.getVectorElementType().bitsLT(XLenVT)); 5216 if (!NeedsIdxLegalization) 5217 break; 5218 5219 SDLoc DL(N); 5220 5221 // Any index legalization should first promote to XLenVT, so we don't lose 5222 // bits when scaling. This may create an illegal index type so we let 5223 // LLVM's legalization take care of the splitting. 5224 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 5225 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5226 Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND 5227 : ISD::ZERO_EXTEND, 5228 DL, IndexVT, Index); 5229 } 5230 5231 unsigned Scale = N->getConstantOperandVal(5); 5232 if (MGSN->isIndexScaled() && Scale != 1) { 5233 // Manually scale the indices by the element size. 5234 // TODO: Sanitize the scale operand here? 5235 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 5236 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 5237 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 5238 } 5239 5240 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 5241 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) { 5242 return DAG.getMaskedGather( 5243 N->getVTList(), MGSN->getMemoryVT(), DL, 5244 {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(), 5245 MGSN->getBasePtr(), Index, MGN->getScale()}, 5246 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 5247 } 5248 const auto *MSN = cast<MaskedScatterSDNode>(N); 5249 return DAG.getMaskedScatter( 5250 N->getVTList(), MGSN->getMemoryVT(), DL, 5251 {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(), 5252 Index, MGSN->getScale()}, 5253 MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 5254 } 5255 } 5256 5257 return SDValue(); 5258 } 5259 5260 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 5261 const SDNode *N, CombineLevel Level) const { 5262 // The following folds are only desirable if `(OP _, c1 << c2)` can be 5263 // materialised in fewer instructions than `(OP _, c1)`: 5264 // 5265 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 5266 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 5267 SDValue N0 = N->getOperand(0); 5268 EVT Ty = N0.getValueType(); 5269 if (Ty.isScalarInteger() && 5270 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 5271 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 5272 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5273 if (C1 && C2) { 5274 const APInt &C1Int = C1->getAPIntValue(); 5275 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 5276 5277 // We can materialise `c1 << c2` into an add immediate, so it's "free", 5278 // and the combine should happen, to potentially allow further combines 5279 // later. 5280 if (ShiftedC1Int.getMinSignedBits() <= 64 && 5281 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 5282 return true; 5283 5284 // We can materialise `c1` in an add immediate, so it's "free", and the 5285 // combine should be prevented. 5286 if (C1Int.getMinSignedBits() <= 64 && 5287 isLegalAddImmediate(C1Int.getSExtValue())) 5288 return false; 5289 5290 // Neither constant will fit into an immediate, so find materialisation 5291 // costs. 5292 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 5293 Subtarget.is64Bit()); 5294 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 5295 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 5296 5297 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 5298 // combine should be prevented. 5299 if (C1Cost < ShiftedC1Cost) 5300 return false; 5301 } 5302 } 5303 return true; 5304 } 5305 5306 bool RISCVTargetLowering::targetShrinkDemandedConstant( 5307 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 5308 TargetLoweringOpt &TLO) const { 5309 // Delay this optimization as late as possible. 5310 if (!TLO.LegalOps) 5311 return false; 5312 5313 EVT VT = Op.getValueType(); 5314 if (VT.isVector()) 5315 return false; 5316 5317 // Only handle AND for now. 5318 if (Op.getOpcode() != ISD::AND) 5319 return false; 5320 5321 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 5322 if (!C) 5323 return false; 5324 5325 const APInt &Mask = C->getAPIntValue(); 5326 5327 // Clear all non-demanded bits initially. 5328 APInt ShrunkMask = Mask & DemandedBits; 5329 5330 // Try to make a smaller immediate by setting undemanded bits. 5331 5332 APInt ExpandedMask = Mask | ~DemandedBits; 5333 5334 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 5335 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 5336 }; 5337 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 5338 if (NewMask == Mask) 5339 return true; 5340 SDLoc DL(Op); 5341 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 5342 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 5343 return TLO.CombineTo(Op, NewOp); 5344 }; 5345 5346 // If the shrunk mask fits in sign extended 12 bits, let the target 5347 // independent code apply it. 5348 if (ShrunkMask.isSignedIntN(12)) 5349 return false; 5350 5351 // Preserve (and X, 0xffff) when zext.h is supported. 5352 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 5353 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 5354 if (IsLegalMask(NewMask)) 5355 return UseMask(NewMask); 5356 } 5357 5358 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 5359 if (VT == MVT::i64) { 5360 APInt NewMask = APInt(64, 0xffffffff); 5361 if (IsLegalMask(NewMask)) 5362 return UseMask(NewMask); 5363 } 5364 5365 // For the remaining optimizations, we need to be able to make a negative 5366 // number through a combination of mask and undemanded bits. 5367 if (!ExpandedMask.isNegative()) 5368 return false; 5369 5370 // What is the fewest number of bits we need to represent the negative number. 5371 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 5372 5373 // Try to make a 12 bit negative immediate. If that fails try to make a 32 5374 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 5375 APInt NewMask = ShrunkMask; 5376 if (MinSignedBits <= 12) 5377 NewMask.setBitsFrom(11); 5378 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 5379 NewMask.setBitsFrom(31); 5380 else 5381 return false; 5382 5383 // Sanity check that our new mask is a subset of the demanded mask. 5384 assert(IsLegalMask(NewMask)); 5385 return UseMask(NewMask); 5386 } 5387 5388 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 5389 KnownBits &Known, 5390 const APInt &DemandedElts, 5391 const SelectionDAG &DAG, 5392 unsigned Depth) const { 5393 unsigned BitWidth = Known.getBitWidth(); 5394 unsigned Opc = Op.getOpcode(); 5395 assert((Opc >= ISD::BUILTIN_OP_END || 5396 Opc == ISD::INTRINSIC_WO_CHAIN || 5397 Opc == ISD::INTRINSIC_W_CHAIN || 5398 Opc == ISD::INTRINSIC_VOID) && 5399 "Should use MaskedValueIsZero if you don't know whether Op" 5400 " is a target node!"); 5401 5402 Known.resetAll(); 5403 switch (Opc) { 5404 default: break; 5405 case RISCVISD::SELECT_CC: { 5406 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 5407 // If we don't know any bits, early out. 5408 if (Known.isUnknown()) 5409 break; 5410 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 5411 5412 // Only known if known in both the LHS and RHS. 5413 Known = KnownBits::commonBits(Known, Known2); 5414 break; 5415 } 5416 case RISCVISD::REMUW: { 5417 KnownBits Known2; 5418 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 5419 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 5420 // We only care about the lower 32 bits. 5421 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 5422 // Restore the original width by sign extending. 5423 Known = Known.sext(BitWidth); 5424 break; 5425 } 5426 case RISCVISD::DIVUW: { 5427 KnownBits Known2; 5428 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 5429 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 5430 // We only care about the lower 32 bits. 5431 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 5432 // Restore the original width by sign extending. 5433 Known = Known.sext(BitWidth); 5434 break; 5435 } 5436 case RISCVISD::CTZW: { 5437 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 5438 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 5439 unsigned LowBits = Log2_32(PossibleTZ) + 1; 5440 Known.Zero.setBitsFrom(LowBits); 5441 break; 5442 } 5443 case RISCVISD::CLZW: { 5444 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 5445 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 5446 unsigned LowBits = Log2_32(PossibleLZ) + 1; 5447 Known.Zero.setBitsFrom(LowBits); 5448 break; 5449 } 5450 case RISCVISD::READ_VLENB: 5451 // We assume VLENB is at least 16 bytes. 5452 Known.Zero.setLowBits(4); 5453 break; 5454 } 5455 } 5456 5457 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 5458 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 5459 unsigned Depth) const { 5460 switch (Op.getOpcode()) { 5461 default: 5462 break; 5463 case RISCVISD::SLLW: 5464 case RISCVISD::SRAW: 5465 case RISCVISD::SRLW: 5466 case RISCVISD::DIVW: 5467 case RISCVISD::DIVUW: 5468 case RISCVISD::REMUW: 5469 case RISCVISD::ROLW: 5470 case RISCVISD::RORW: 5471 case RISCVISD::GREVW: 5472 case RISCVISD::GORCW: 5473 case RISCVISD::FSLW: 5474 case RISCVISD::FSRW: 5475 // TODO: As the result is sign-extended, this is conservatively correct. A 5476 // more precise answer could be calculated for SRAW depending on known 5477 // bits in the shift amount. 5478 return 33; 5479 case RISCVISD::SHFL: { 5480 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 5481 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 5482 // will stay within the upper 32 bits. If there were more than 32 sign bits 5483 // before there will be at least 33 sign bits after. 5484 if (Op.getValueType() == MVT::i64 && 5485 isa<ConstantSDNode>(Op.getOperand(1)) && 5486 (Op.getConstantOperandVal(1) & 0x10) == 0) { 5487 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 5488 if (Tmp > 32) 5489 return 33; 5490 } 5491 break; 5492 } 5493 case RISCVISD::VMV_X_S: 5494 // The number of sign bits of the scalar result is computed by obtaining the 5495 // element type of the input vector operand, subtracting its width from the 5496 // XLEN, and then adding one (sign bit within the element type). If the 5497 // element type is wider than XLen, the least-significant XLEN bits are 5498 // taken. 5499 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 5500 return 1; 5501 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 5502 } 5503 5504 return 1; 5505 } 5506 5507 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 5508 MachineBasicBlock *BB) { 5509 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 5510 5511 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 5512 // Should the count have wrapped while it was being read, we need to try 5513 // again. 5514 // ... 5515 // read: 5516 // rdcycleh x3 # load high word of cycle 5517 // rdcycle x2 # load low word of cycle 5518 // rdcycleh x4 # load high word of cycle 5519 // bne x3, x4, read # check if high word reads match, otherwise try again 5520 // ... 5521 5522 MachineFunction &MF = *BB->getParent(); 5523 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 5524 MachineFunction::iterator It = ++BB->getIterator(); 5525 5526 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 5527 MF.insert(It, LoopMBB); 5528 5529 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 5530 MF.insert(It, DoneMBB); 5531 5532 // Transfer the remainder of BB and its successor edges to DoneMBB. 5533 DoneMBB->splice(DoneMBB->begin(), BB, 5534 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 5535 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 5536 5537 BB->addSuccessor(LoopMBB); 5538 5539 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5540 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 5541 Register LoReg = MI.getOperand(0).getReg(); 5542 Register HiReg = MI.getOperand(1).getReg(); 5543 DebugLoc DL = MI.getDebugLoc(); 5544 5545 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 5546 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 5547 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 5548 .addReg(RISCV::X0); 5549 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 5550 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 5551 .addReg(RISCV::X0); 5552 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 5553 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 5554 .addReg(RISCV::X0); 5555 5556 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 5557 .addReg(HiReg) 5558 .addReg(ReadAgainReg) 5559 .addMBB(LoopMBB); 5560 5561 LoopMBB->addSuccessor(LoopMBB); 5562 LoopMBB->addSuccessor(DoneMBB); 5563 5564 MI.eraseFromParent(); 5565 5566 return DoneMBB; 5567 } 5568 5569 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 5570 MachineBasicBlock *BB) { 5571 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 5572 5573 MachineFunction &MF = *BB->getParent(); 5574 DebugLoc DL = MI.getDebugLoc(); 5575 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 5576 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 5577 Register LoReg = MI.getOperand(0).getReg(); 5578 Register HiReg = MI.getOperand(1).getReg(); 5579 Register SrcReg = MI.getOperand(2).getReg(); 5580 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 5581 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 5582 5583 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 5584 RI); 5585 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 5586 MachineMemOperand *MMOLo = 5587 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 5588 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 5589 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 5590 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 5591 .addFrameIndex(FI) 5592 .addImm(0) 5593 .addMemOperand(MMOLo); 5594 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 5595 .addFrameIndex(FI) 5596 .addImm(4) 5597 .addMemOperand(MMOHi); 5598 MI.eraseFromParent(); // The pseudo instruction is gone now. 5599 return BB; 5600 } 5601 5602 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 5603 MachineBasicBlock *BB) { 5604 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 5605 "Unexpected instruction"); 5606 5607 MachineFunction &MF = *BB->getParent(); 5608 DebugLoc DL = MI.getDebugLoc(); 5609 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 5610 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 5611 Register DstReg = MI.getOperand(0).getReg(); 5612 Register LoReg = MI.getOperand(1).getReg(); 5613 Register HiReg = MI.getOperand(2).getReg(); 5614 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 5615 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 5616 5617 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 5618 MachineMemOperand *MMOLo = 5619 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 5620 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 5621 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 5622 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 5623 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 5624 .addFrameIndex(FI) 5625 .addImm(0) 5626 .addMemOperand(MMOLo); 5627 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 5628 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 5629 .addFrameIndex(FI) 5630 .addImm(4) 5631 .addMemOperand(MMOHi); 5632 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 5633 MI.eraseFromParent(); // The pseudo instruction is gone now. 5634 return BB; 5635 } 5636 5637 static bool isSelectPseudo(MachineInstr &MI) { 5638 switch (MI.getOpcode()) { 5639 default: 5640 return false; 5641 case RISCV::Select_GPR_Using_CC_GPR: 5642 case RISCV::Select_FPR16_Using_CC_GPR: 5643 case RISCV::Select_FPR32_Using_CC_GPR: 5644 case RISCV::Select_FPR64_Using_CC_GPR: 5645 return true; 5646 } 5647 } 5648 5649 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 5650 MachineBasicBlock *BB) { 5651 // To "insert" Select_* instructions, we actually have to insert the triangle 5652 // control-flow pattern. The incoming instructions know the destination vreg 5653 // to set, the condition code register to branch on, the true/false values to 5654 // select between, and the condcode to use to select the appropriate branch. 5655 // 5656 // We produce the following control flow: 5657 // HeadMBB 5658 // | \ 5659 // | IfFalseMBB 5660 // | / 5661 // TailMBB 5662 // 5663 // When we find a sequence of selects we attempt to optimize their emission 5664 // by sharing the control flow. Currently we only handle cases where we have 5665 // multiple selects with the exact same condition (same LHS, RHS and CC). 5666 // The selects may be interleaved with other instructions if the other 5667 // instructions meet some requirements we deem safe: 5668 // - They are debug instructions. Otherwise, 5669 // - They do not have side-effects, do not access memory and their inputs do 5670 // not depend on the results of the select pseudo-instructions. 5671 // The TrueV/FalseV operands of the selects cannot depend on the result of 5672 // previous selects in the sequence. 5673 // These conditions could be further relaxed. See the X86 target for a 5674 // related approach and more information. 5675 Register LHS = MI.getOperand(1).getReg(); 5676 Register RHS = MI.getOperand(2).getReg(); 5677 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 5678 5679 SmallVector<MachineInstr *, 4> SelectDebugValues; 5680 SmallSet<Register, 4> SelectDests; 5681 SelectDests.insert(MI.getOperand(0).getReg()); 5682 5683 MachineInstr *LastSelectPseudo = &MI; 5684 5685 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 5686 SequenceMBBI != E; ++SequenceMBBI) { 5687 if (SequenceMBBI->isDebugInstr()) 5688 continue; 5689 else if (isSelectPseudo(*SequenceMBBI)) { 5690 if (SequenceMBBI->getOperand(1).getReg() != LHS || 5691 SequenceMBBI->getOperand(2).getReg() != RHS || 5692 SequenceMBBI->getOperand(3).getImm() != CC || 5693 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 5694 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 5695 break; 5696 LastSelectPseudo = &*SequenceMBBI; 5697 SequenceMBBI->collectDebugValues(SelectDebugValues); 5698 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 5699 } else { 5700 if (SequenceMBBI->hasUnmodeledSideEffects() || 5701 SequenceMBBI->mayLoadOrStore()) 5702 break; 5703 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 5704 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 5705 })) 5706 break; 5707 } 5708 } 5709 5710 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 5711 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 5712 DebugLoc DL = MI.getDebugLoc(); 5713 MachineFunction::iterator I = ++BB->getIterator(); 5714 5715 MachineBasicBlock *HeadMBB = BB; 5716 MachineFunction *F = BB->getParent(); 5717 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 5718 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 5719 5720 F->insert(I, IfFalseMBB); 5721 F->insert(I, TailMBB); 5722 5723 // Transfer debug instructions associated with the selects to TailMBB. 5724 for (MachineInstr *DebugInstr : SelectDebugValues) { 5725 TailMBB->push_back(DebugInstr->removeFromParent()); 5726 } 5727 5728 // Move all instructions after the sequence to TailMBB. 5729 TailMBB->splice(TailMBB->end(), HeadMBB, 5730 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 5731 // Update machine-CFG edges by transferring all successors of the current 5732 // block to the new block which will contain the Phi nodes for the selects. 5733 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 5734 // Set the successors for HeadMBB. 5735 HeadMBB->addSuccessor(IfFalseMBB); 5736 HeadMBB->addSuccessor(TailMBB); 5737 5738 // Insert appropriate branch. 5739 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 5740 5741 BuildMI(HeadMBB, DL, TII.get(Opcode)) 5742 .addReg(LHS) 5743 .addReg(RHS) 5744 .addMBB(TailMBB); 5745 5746 // IfFalseMBB just falls through to TailMBB. 5747 IfFalseMBB->addSuccessor(TailMBB); 5748 5749 // Create PHIs for all of the select pseudo-instructions. 5750 auto SelectMBBI = MI.getIterator(); 5751 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 5752 auto InsertionPoint = TailMBB->begin(); 5753 while (SelectMBBI != SelectEnd) { 5754 auto Next = std::next(SelectMBBI); 5755 if (isSelectPseudo(*SelectMBBI)) { 5756 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 5757 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 5758 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 5759 .addReg(SelectMBBI->getOperand(4).getReg()) 5760 .addMBB(HeadMBB) 5761 .addReg(SelectMBBI->getOperand(5).getReg()) 5762 .addMBB(IfFalseMBB); 5763 SelectMBBI->eraseFromParent(); 5764 } 5765 SelectMBBI = Next; 5766 } 5767 5768 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 5769 return TailMBB; 5770 } 5771 5772 static MachineInstr *elideCopies(MachineInstr *MI, 5773 const MachineRegisterInfo &MRI) { 5774 while (true) { 5775 if (!MI->isFullCopy()) 5776 return MI; 5777 if (!Register::isVirtualRegister(MI->getOperand(1).getReg())) 5778 return nullptr; 5779 MI = MRI.getVRegDef(MI->getOperand(1).getReg()); 5780 if (!MI) 5781 return nullptr; 5782 } 5783 } 5784 5785 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB, 5786 int VLIndex, unsigned SEWIndex, 5787 RISCVVLMUL VLMul, bool ForceTailAgnostic) { 5788 MachineFunction &MF = *BB->getParent(); 5789 DebugLoc DL = MI.getDebugLoc(); 5790 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 5791 5792 unsigned SEW = MI.getOperand(SEWIndex).getImm(); 5793 assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW"); 5794 RISCVVSEW ElementWidth = static_cast<RISCVVSEW>(Log2_32(SEW / 8)); 5795 5796 MachineRegisterInfo &MRI = MF.getRegInfo(); 5797 5798 auto BuildVSETVLI = [&]() { 5799 if (VLIndex >= 0) { 5800 Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass); 5801 Register VLReg = MI.getOperand(VLIndex).getReg(); 5802 5803 // VL might be a compile time constant, but isel would have to put it 5804 // in a register. See if VL comes from an ADDI X0, imm. 5805 if (VLReg.isVirtual()) { 5806 MachineInstr *Def = MRI.getVRegDef(VLReg); 5807 if (Def && Def->getOpcode() == RISCV::ADDI && 5808 Def->getOperand(1).getReg() == RISCV::X0 && 5809 Def->getOperand(2).isImm()) { 5810 uint64_t Imm = Def->getOperand(2).getImm(); 5811 // VSETIVLI allows a 5-bit zero extended immediate. 5812 if (isUInt<5>(Imm)) 5813 return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETIVLI)) 5814 .addReg(DestReg, RegState::Define | RegState::Dead) 5815 .addImm(Imm); 5816 } 5817 } 5818 5819 return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI)) 5820 .addReg(DestReg, RegState::Define | RegState::Dead) 5821 .addReg(VLReg); 5822 } 5823 5824 // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0). 5825 return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI)) 5826 .addReg(RISCV::X0, RegState::Define | RegState::Dead) 5827 .addReg(RISCV::X0, RegState::Kill); 5828 }; 5829 5830 MachineInstrBuilder MIB = BuildVSETVLI(); 5831 5832 // Default to tail agnostic unless the destination is tied to a source. In 5833 // that case the user would have some control over the tail values. The tail 5834 // policy is also ignored on instructions that only update element 0 like 5835 // vmv.s.x or reductions so use agnostic there to match the common case. 5836 // FIXME: This is conservatively correct, but we might want to detect that 5837 // the input is undefined. 5838 bool TailAgnostic = true; 5839 unsigned UseOpIdx; 5840 if (!ForceTailAgnostic && MI.isRegTiedToUseOperand(0, &UseOpIdx)) { 5841 TailAgnostic = false; 5842 // If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic. 5843 const MachineOperand &UseMO = MI.getOperand(UseOpIdx); 5844 MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg()); 5845 if (UseMI) { 5846 UseMI = elideCopies(UseMI, MRI); 5847 if (UseMI && UseMI->isImplicitDef()) 5848 TailAgnostic = true; 5849 } 5850 } 5851 5852 // For simplicity we reuse the vtype representation here. 5853 MIB.addImm(RISCVVType::encodeVTYPE(VLMul, ElementWidth, 5854 /*TailAgnostic*/ TailAgnostic, 5855 /*MaskAgnostic*/ false)); 5856 5857 // Remove (now) redundant operands from pseudo 5858 if (VLIndex >= 0) { 5859 MI.getOperand(VLIndex).setReg(RISCV::NoRegister); 5860 MI.getOperand(VLIndex).setIsKill(false); 5861 } 5862 5863 return BB; 5864 } 5865 5866 MachineBasicBlock * 5867 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 5868 MachineBasicBlock *BB) const { 5869 uint64_t TSFlags = MI.getDesc().TSFlags; 5870 5871 if (TSFlags & RISCVII::HasSEWOpMask) { 5872 unsigned NumOperands = MI.getNumExplicitOperands(); 5873 int VLIndex = (TSFlags & RISCVII::HasVLOpMask) ? NumOperands - 2 : -1; 5874 unsigned SEWIndex = NumOperands - 1; 5875 bool ForceTailAgnostic = TSFlags & RISCVII::ForceTailAgnosticMask; 5876 5877 RISCVVLMUL VLMul = static_cast<RISCVVLMUL>((TSFlags & RISCVII::VLMulMask) >> 5878 RISCVII::VLMulShift); 5879 return addVSetVL(MI, BB, VLIndex, SEWIndex, VLMul, ForceTailAgnostic); 5880 } 5881 5882 switch (MI.getOpcode()) { 5883 default: 5884 llvm_unreachable("Unexpected instr type to insert"); 5885 case RISCV::ReadCycleWide: 5886 assert(!Subtarget.is64Bit() && 5887 "ReadCycleWrite is only to be used on riscv32"); 5888 return emitReadCycleWidePseudo(MI, BB); 5889 case RISCV::Select_GPR_Using_CC_GPR: 5890 case RISCV::Select_FPR16_Using_CC_GPR: 5891 case RISCV::Select_FPR32_Using_CC_GPR: 5892 case RISCV::Select_FPR64_Using_CC_GPR: 5893 return emitSelectPseudo(MI, BB); 5894 case RISCV::BuildPairF64Pseudo: 5895 return emitBuildPairF64Pseudo(MI, BB); 5896 case RISCV::SplitF64Pseudo: 5897 return emitSplitF64Pseudo(MI, BB); 5898 } 5899 } 5900 5901 // Calling Convention Implementation. 5902 // The expectations for frontend ABI lowering vary from target to target. 5903 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 5904 // details, but this is a longer term goal. For now, we simply try to keep the 5905 // role of the frontend as simple and well-defined as possible. The rules can 5906 // be summarised as: 5907 // * Never split up large scalar arguments. We handle them here. 5908 // * If a hardfloat calling convention is being used, and the struct may be 5909 // passed in a pair of registers (fp+fp, int+fp), and both registers are 5910 // available, then pass as two separate arguments. If either the GPRs or FPRs 5911 // are exhausted, then pass according to the rule below. 5912 // * If a struct could never be passed in registers or directly in a stack 5913 // slot (as it is larger than 2*XLEN and the floating point rules don't 5914 // apply), then pass it using a pointer with the byval attribute. 5915 // * If a struct is less than 2*XLEN, then coerce to either a two-element 5916 // word-sized array or a 2*XLEN scalar (depending on alignment). 5917 // * The frontend can determine whether a struct is returned by reference or 5918 // not based on its size and fields. If it will be returned by reference, the 5919 // frontend must modify the prototype so a pointer with the sret annotation is 5920 // passed as the first argument. This is not necessary for large scalar 5921 // returns. 5922 // * Struct return values and varargs should be coerced to structs containing 5923 // register-size fields in the same situations they would be for fixed 5924 // arguments. 5925 5926 static const MCPhysReg ArgGPRs[] = { 5927 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 5928 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 5929 }; 5930 static const MCPhysReg ArgFPR16s[] = { 5931 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 5932 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 5933 }; 5934 static const MCPhysReg ArgFPR32s[] = { 5935 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 5936 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 5937 }; 5938 static const MCPhysReg ArgFPR64s[] = { 5939 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 5940 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 5941 }; 5942 // This is an interim calling convention and it may be changed in the future. 5943 static const MCPhysReg ArgVRs[] = { 5944 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 5945 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 5946 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 5947 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 5948 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 5949 RISCV::V20M2, RISCV::V22M2}; 5950 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 5951 RISCV::V20M4}; 5952 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 5953 5954 // Pass a 2*XLEN argument that has been split into two XLEN values through 5955 // registers or the stack as necessary. 5956 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 5957 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 5958 MVT ValVT2, MVT LocVT2, 5959 ISD::ArgFlagsTy ArgFlags2) { 5960 unsigned XLenInBytes = XLen / 8; 5961 if (Register Reg = State.AllocateReg(ArgGPRs)) { 5962 // At least one half can be passed via register. 5963 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 5964 VA1.getLocVT(), CCValAssign::Full)); 5965 } else { 5966 // Both halves must be passed on the stack, with proper alignment. 5967 Align StackAlign = 5968 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 5969 State.addLoc( 5970 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 5971 State.AllocateStack(XLenInBytes, StackAlign), 5972 VA1.getLocVT(), CCValAssign::Full)); 5973 State.addLoc(CCValAssign::getMem( 5974 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 5975 LocVT2, CCValAssign::Full)); 5976 return false; 5977 } 5978 5979 if (Register Reg = State.AllocateReg(ArgGPRs)) { 5980 // The second half can also be passed via register. 5981 State.addLoc( 5982 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 5983 } else { 5984 // The second half is passed via the stack, without additional alignment. 5985 State.addLoc(CCValAssign::getMem( 5986 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 5987 LocVT2, CCValAssign::Full)); 5988 } 5989 5990 return false; 5991 } 5992 5993 // Implements the RISC-V calling convention. Returns true upon failure. 5994 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 5995 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 5996 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 5997 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 5998 Optional<unsigned> FirstMaskArgument) { 5999 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 6000 assert(XLen == 32 || XLen == 64); 6001 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 6002 6003 // Any return value split in to more than two values can't be returned 6004 // directly. Vectors are returned via the available vector registers. 6005 if (!LocVT.isVector() && IsRet && ValNo > 1) 6006 return true; 6007 6008 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 6009 // variadic argument, or if no F16/F32 argument registers are available. 6010 bool UseGPRForF16_F32 = true; 6011 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 6012 // variadic argument, or if no F64 argument registers are available. 6013 bool UseGPRForF64 = true; 6014 6015 switch (ABI) { 6016 default: 6017 llvm_unreachable("Unexpected ABI"); 6018 case RISCVABI::ABI_ILP32: 6019 case RISCVABI::ABI_LP64: 6020 break; 6021 case RISCVABI::ABI_ILP32F: 6022 case RISCVABI::ABI_LP64F: 6023 UseGPRForF16_F32 = !IsFixed; 6024 break; 6025 case RISCVABI::ABI_ILP32D: 6026 case RISCVABI::ABI_LP64D: 6027 UseGPRForF16_F32 = !IsFixed; 6028 UseGPRForF64 = !IsFixed; 6029 break; 6030 } 6031 6032 // FPR16, FPR32, and FPR64 alias each other. 6033 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 6034 UseGPRForF16_F32 = true; 6035 UseGPRForF64 = true; 6036 } 6037 6038 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 6039 // similar local variables rather than directly checking against the target 6040 // ABI. 6041 6042 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 6043 LocVT = XLenVT; 6044 LocInfo = CCValAssign::BCvt; 6045 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 6046 LocVT = MVT::i64; 6047 LocInfo = CCValAssign::BCvt; 6048 } 6049 6050 // If this is a variadic argument, the RISC-V calling convention requires 6051 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 6052 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 6053 // be used regardless of whether the original argument was split during 6054 // legalisation or not. The argument will not be passed by registers if the 6055 // original type is larger than 2*XLEN, so the register alignment rule does 6056 // not apply. 6057 unsigned TwoXLenInBytes = (2 * XLen) / 8; 6058 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 6059 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 6060 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 6061 // Skip 'odd' register if necessary. 6062 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 6063 State.AllocateReg(ArgGPRs); 6064 } 6065 6066 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 6067 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 6068 State.getPendingArgFlags(); 6069 6070 assert(PendingLocs.size() == PendingArgFlags.size() && 6071 "PendingLocs and PendingArgFlags out of sync"); 6072 6073 // Handle passing f64 on RV32D with a soft float ABI or when floating point 6074 // registers are exhausted. 6075 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 6076 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 6077 "Can't lower f64 if it is split"); 6078 // Depending on available argument GPRS, f64 may be passed in a pair of 6079 // GPRs, split between a GPR and the stack, or passed completely on the 6080 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 6081 // cases. 6082 Register Reg = State.AllocateReg(ArgGPRs); 6083 LocVT = MVT::i32; 6084 if (!Reg) { 6085 unsigned StackOffset = State.AllocateStack(8, Align(8)); 6086 State.addLoc( 6087 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 6088 return false; 6089 } 6090 if (!State.AllocateReg(ArgGPRs)) 6091 State.AllocateStack(4, Align(4)); 6092 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6093 return false; 6094 } 6095 6096 // Fixed-length vectors are located in the corresponding scalable-vector 6097 // container types. 6098 if (ValVT.isFixedLengthVector()) 6099 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 6100 6101 // Split arguments might be passed indirectly, so keep track of the pending 6102 // values. Split vectors are passed via a mix of registers and indirectly, so 6103 // treat them as we would any other argument. 6104 if (!LocVT.isVector() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 6105 LocVT = XLenVT; 6106 LocInfo = CCValAssign::Indirect; 6107 PendingLocs.push_back( 6108 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 6109 PendingArgFlags.push_back(ArgFlags); 6110 if (!ArgFlags.isSplitEnd()) { 6111 return false; 6112 } 6113 } 6114 6115 // If the split argument only had two elements, it should be passed directly 6116 // in registers or on the stack. 6117 if (!LocVT.isVector() && ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 6118 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 6119 // Apply the normal calling convention rules to the first half of the 6120 // split argument. 6121 CCValAssign VA = PendingLocs[0]; 6122 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 6123 PendingLocs.clear(); 6124 PendingArgFlags.clear(); 6125 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 6126 ArgFlags); 6127 } 6128 6129 // Allocate to a register if possible, or else a stack slot. 6130 Register Reg; 6131 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 6132 Reg = State.AllocateReg(ArgFPR16s); 6133 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 6134 Reg = State.AllocateReg(ArgFPR32s); 6135 else if (ValVT == MVT::f64 && !UseGPRForF64) 6136 Reg = State.AllocateReg(ArgFPR64s); 6137 else if (ValVT.isVector()) { 6138 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 6139 if (RC == &RISCV::VRRegClass) { 6140 // Assign the first mask argument to V0. 6141 // This is an interim calling convention and it may be changed in the 6142 // future. 6143 if (FirstMaskArgument.hasValue() && 6144 ValNo == FirstMaskArgument.getValue()) { 6145 Reg = State.AllocateReg(RISCV::V0); 6146 } else { 6147 Reg = State.AllocateReg(ArgVRs); 6148 } 6149 } else if (RC == &RISCV::VRM2RegClass) { 6150 Reg = State.AllocateReg(ArgVRM2s); 6151 } else if (RC == &RISCV::VRM4RegClass) { 6152 Reg = State.AllocateReg(ArgVRM4s); 6153 } else if (RC == &RISCV::VRM8RegClass) { 6154 Reg = State.AllocateReg(ArgVRM8s); 6155 } else { 6156 llvm_unreachable("Unhandled class register for ValueType"); 6157 } 6158 if (!Reg) { 6159 // For return values, the vector must be passed fully via registers or 6160 // via the stack. 6161 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 6162 // but we're using all of them. 6163 if (IsRet) 6164 return true; 6165 LocInfo = CCValAssign::Indirect; 6166 // Try using a GPR to pass the address 6167 Reg = State.AllocateReg(ArgGPRs); 6168 LocVT = XLenVT; 6169 } 6170 } else 6171 Reg = State.AllocateReg(ArgGPRs); 6172 unsigned StackOffset = 6173 Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8)); 6174 6175 // If we reach this point and PendingLocs is non-empty, we must be at the 6176 // end of a split argument that must be passed indirectly. 6177 if (!PendingLocs.empty()) { 6178 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 6179 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 6180 6181 for (auto &It : PendingLocs) { 6182 if (Reg) 6183 It.convertToReg(Reg); 6184 else 6185 It.convertToMem(StackOffset); 6186 State.addLoc(It); 6187 } 6188 PendingLocs.clear(); 6189 PendingArgFlags.clear(); 6190 return false; 6191 } 6192 6193 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 6194 (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) && 6195 "Expected an XLenVT or vector types at this stage"); 6196 6197 if (Reg) { 6198 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6199 return false; 6200 } 6201 6202 // When a floating-point value is passed on the stack, no bit-conversion is 6203 // needed. 6204 if (ValVT.isFloatingPoint()) { 6205 LocVT = ValVT; 6206 LocInfo = CCValAssign::Full; 6207 } 6208 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 6209 return false; 6210 } 6211 6212 template <typename ArgTy> 6213 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 6214 for (const auto &ArgIdx : enumerate(Args)) { 6215 MVT ArgVT = ArgIdx.value().VT; 6216 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 6217 return ArgIdx.index(); 6218 } 6219 return None; 6220 } 6221 6222 void RISCVTargetLowering::analyzeInputArgs( 6223 MachineFunction &MF, CCState &CCInfo, 6224 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 6225 unsigned NumArgs = Ins.size(); 6226 FunctionType *FType = MF.getFunction().getFunctionType(); 6227 6228 Optional<unsigned> FirstMaskArgument; 6229 if (Subtarget.hasStdExtV()) 6230 FirstMaskArgument = preAssignMask(Ins); 6231 6232 for (unsigned i = 0; i != NumArgs; ++i) { 6233 MVT ArgVT = Ins[i].VT; 6234 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 6235 6236 Type *ArgTy = nullptr; 6237 if (IsRet) 6238 ArgTy = FType->getReturnType(); 6239 else if (Ins[i].isOrigArg()) 6240 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 6241 6242 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 6243 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 6244 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 6245 FirstMaskArgument)) { 6246 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 6247 << EVT(ArgVT).getEVTString() << '\n'); 6248 llvm_unreachable(nullptr); 6249 } 6250 } 6251 } 6252 6253 void RISCVTargetLowering::analyzeOutputArgs( 6254 MachineFunction &MF, CCState &CCInfo, 6255 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 6256 CallLoweringInfo *CLI) const { 6257 unsigned NumArgs = Outs.size(); 6258 6259 Optional<unsigned> FirstMaskArgument; 6260 if (Subtarget.hasStdExtV()) 6261 FirstMaskArgument = preAssignMask(Outs); 6262 6263 for (unsigned i = 0; i != NumArgs; i++) { 6264 MVT ArgVT = Outs[i].VT; 6265 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 6266 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 6267 6268 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 6269 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 6270 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 6271 FirstMaskArgument)) { 6272 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 6273 << EVT(ArgVT).getEVTString() << "\n"); 6274 llvm_unreachable(nullptr); 6275 } 6276 } 6277 } 6278 6279 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 6280 // values. 6281 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 6282 const CCValAssign &VA, const SDLoc &DL, 6283 const RISCVSubtarget &Subtarget) { 6284 switch (VA.getLocInfo()) { 6285 default: 6286 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 6287 case CCValAssign::Full: 6288 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 6289 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 6290 break; 6291 case CCValAssign::BCvt: 6292 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 6293 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 6294 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 6295 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 6296 else 6297 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 6298 break; 6299 } 6300 return Val; 6301 } 6302 6303 // The caller is responsible for loading the full value if the argument is 6304 // passed with CCValAssign::Indirect. 6305 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 6306 const CCValAssign &VA, const SDLoc &DL, 6307 const RISCVTargetLowering &TLI) { 6308 MachineFunction &MF = DAG.getMachineFunction(); 6309 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6310 EVT LocVT = VA.getLocVT(); 6311 SDValue Val; 6312 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 6313 Register VReg = RegInfo.createVirtualRegister(RC); 6314 RegInfo.addLiveIn(VA.getLocReg(), VReg); 6315 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 6316 6317 if (VA.getLocInfo() == CCValAssign::Indirect) 6318 return Val; 6319 6320 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 6321 } 6322 6323 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 6324 const CCValAssign &VA, const SDLoc &DL, 6325 const RISCVSubtarget &Subtarget) { 6326 EVT LocVT = VA.getLocVT(); 6327 6328 switch (VA.getLocInfo()) { 6329 default: 6330 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 6331 case CCValAssign::Full: 6332 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 6333 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 6334 break; 6335 case CCValAssign::BCvt: 6336 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 6337 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 6338 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 6339 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 6340 else 6341 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 6342 break; 6343 } 6344 return Val; 6345 } 6346 6347 // The caller is responsible for loading the full value if the argument is 6348 // passed with CCValAssign::Indirect. 6349 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 6350 const CCValAssign &VA, const SDLoc &DL) { 6351 MachineFunction &MF = DAG.getMachineFunction(); 6352 MachineFrameInfo &MFI = MF.getFrameInfo(); 6353 EVT LocVT = VA.getLocVT(); 6354 EVT ValVT = VA.getValVT(); 6355 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 6356 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 6357 VA.getLocMemOffset(), /*Immutable=*/true); 6358 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6359 SDValue Val; 6360 6361 ISD::LoadExtType ExtType; 6362 switch (VA.getLocInfo()) { 6363 default: 6364 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 6365 case CCValAssign::Full: 6366 case CCValAssign::Indirect: 6367 case CCValAssign::BCvt: 6368 ExtType = ISD::NON_EXTLOAD; 6369 break; 6370 } 6371 Val = DAG.getExtLoad( 6372 ExtType, DL, LocVT, Chain, FIN, 6373 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 6374 return Val; 6375 } 6376 6377 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 6378 const CCValAssign &VA, const SDLoc &DL) { 6379 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 6380 "Unexpected VA"); 6381 MachineFunction &MF = DAG.getMachineFunction(); 6382 MachineFrameInfo &MFI = MF.getFrameInfo(); 6383 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6384 6385 if (VA.isMemLoc()) { 6386 // f64 is passed on the stack. 6387 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 6388 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 6389 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 6390 MachinePointerInfo::getFixedStack(MF, FI)); 6391 } 6392 6393 assert(VA.isRegLoc() && "Expected register VA assignment"); 6394 6395 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 6396 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 6397 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 6398 SDValue Hi; 6399 if (VA.getLocReg() == RISCV::X17) { 6400 // Second half of f64 is passed on the stack. 6401 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 6402 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 6403 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 6404 MachinePointerInfo::getFixedStack(MF, FI)); 6405 } else { 6406 // Second half of f64 is passed in another GPR. 6407 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 6408 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 6409 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 6410 } 6411 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 6412 } 6413 6414 // FastCC has less than 1% performance improvement for some particular 6415 // benchmark. But theoretically, it may has benenfit for some cases. 6416 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 6417 CCValAssign::LocInfo LocInfo, 6418 ISD::ArgFlagsTy ArgFlags, CCState &State) { 6419 6420 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 6421 // X5 and X6 might be used for save-restore libcall. 6422 static const MCPhysReg GPRList[] = { 6423 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 6424 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 6425 RISCV::X29, RISCV::X30, RISCV::X31}; 6426 if (unsigned Reg = State.AllocateReg(GPRList)) { 6427 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6428 return false; 6429 } 6430 } 6431 6432 if (LocVT == MVT::f16) { 6433 static const MCPhysReg FPR16List[] = { 6434 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 6435 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 6436 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 6437 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 6438 if (unsigned Reg = State.AllocateReg(FPR16List)) { 6439 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6440 return false; 6441 } 6442 } 6443 6444 if (LocVT == MVT::f32) { 6445 static const MCPhysReg FPR32List[] = { 6446 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 6447 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 6448 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 6449 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 6450 if (unsigned Reg = State.AllocateReg(FPR32List)) { 6451 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6452 return false; 6453 } 6454 } 6455 6456 if (LocVT == MVT::f64) { 6457 static const MCPhysReg FPR64List[] = { 6458 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 6459 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 6460 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 6461 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 6462 if (unsigned Reg = State.AllocateReg(FPR64List)) { 6463 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6464 return false; 6465 } 6466 } 6467 6468 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 6469 unsigned Offset4 = State.AllocateStack(4, Align(4)); 6470 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 6471 return false; 6472 } 6473 6474 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 6475 unsigned Offset5 = State.AllocateStack(8, Align(8)); 6476 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 6477 return false; 6478 } 6479 6480 return true; // CC didn't match. 6481 } 6482 6483 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 6484 CCValAssign::LocInfo LocInfo, 6485 ISD::ArgFlagsTy ArgFlags, CCState &State) { 6486 6487 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 6488 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 6489 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 6490 static const MCPhysReg GPRList[] = { 6491 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 6492 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 6493 if (unsigned Reg = State.AllocateReg(GPRList)) { 6494 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6495 return false; 6496 } 6497 } 6498 6499 if (LocVT == MVT::f32) { 6500 // Pass in STG registers: F1, ..., F6 6501 // fs0 ... fs5 6502 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 6503 RISCV::F18_F, RISCV::F19_F, 6504 RISCV::F20_F, RISCV::F21_F}; 6505 if (unsigned Reg = State.AllocateReg(FPR32List)) { 6506 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6507 return false; 6508 } 6509 } 6510 6511 if (LocVT == MVT::f64) { 6512 // Pass in STG registers: D1, ..., D6 6513 // fs6 ... fs11 6514 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 6515 RISCV::F24_D, RISCV::F25_D, 6516 RISCV::F26_D, RISCV::F27_D}; 6517 if (unsigned Reg = State.AllocateReg(FPR64List)) { 6518 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6519 return false; 6520 } 6521 } 6522 6523 report_fatal_error("No registers left in GHC calling convention"); 6524 return true; 6525 } 6526 6527 // Transform physical registers into virtual registers. 6528 SDValue RISCVTargetLowering::LowerFormalArguments( 6529 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 6530 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 6531 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6532 6533 MachineFunction &MF = DAG.getMachineFunction(); 6534 6535 switch (CallConv) { 6536 default: 6537 report_fatal_error("Unsupported calling convention"); 6538 case CallingConv::C: 6539 case CallingConv::Fast: 6540 break; 6541 case CallingConv::GHC: 6542 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 6543 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 6544 report_fatal_error( 6545 "GHC calling convention requires the F and D instruction set extensions"); 6546 } 6547 6548 const Function &Func = MF.getFunction(); 6549 if (Func.hasFnAttribute("interrupt")) { 6550 if (!Func.arg_empty()) 6551 report_fatal_error( 6552 "Functions with the interrupt attribute cannot have arguments!"); 6553 6554 StringRef Kind = 6555 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 6556 6557 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 6558 report_fatal_error( 6559 "Function interrupt attribute argument not supported!"); 6560 } 6561 6562 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6563 MVT XLenVT = Subtarget.getXLenVT(); 6564 unsigned XLenInBytes = Subtarget.getXLen() / 8; 6565 // Used with vargs to acumulate store chains. 6566 std::vector<SDValue> OutChains; 6567 6568 // Assign locations to all of the incoming arguments. 6569 SmallVector<CCValAssign, 16> ArgLocs; 6570 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 6571 6572 if (CallConv == CallingConv::Fast) 6573 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 6574 else if (CallConv == CallingConv::GHC) 6575 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 6576 else 6577 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 6578 6579 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 6580 CCValAssign &VA = ArgLocs[i]; 6581 SDValue ArgValue; 6582 // Passing f64 on RV32D with a soft float ABI must be handled as a special 6583 // case. 6584 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 6585 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 6586 else if (VA.isRegLoc()) 6587 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 6588 else 6589 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 6590 6591 if (VA.getLocInfo() == CCValAssign::Indirect) { 6592 // If the original argument was split and passed by reference (e.g. i128 6593 // on RV32), we need to load all parts of it here (using the same 6594 // address). Vectors may be partly split to registers and partly to the 6595 // stack, in which case the base address is partly offset and subsequent 6596 // stores are relative to that. 6597 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 6598 MachinePointerInfo())); 6599 unsigned ArgIndex = Ins[i].OrigArgIndex; 6600 unsigned ArgPartOffset = Ins[i].PartOffset; 6601 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 6602 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 6603 CCValAssign &PartVA = ArgLocs[i + 1]; 6604 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 6605 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 6606 DAG.getIntPtrConstant(PartOffset, DL)); 6607 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 6608 MachinePointerInfo())); 6609 ++i; 6610 } 6611 continue; 6612 } 6613 InVals.push_back(ArgValue); 6614 } 6615 6616 if (IsVarArg) { 6617 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 6618 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 6619 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 6620 MachineFrameInfo &MFI = MF.getFrameInfo(); 6621 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6622 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 6623 6624 // Offset of the first variable argument from stack pointer, and size of 6625 // the vararg save area. For now, the varargs save area is either zero or 6626 // large enough to hold a0-a7. 6627 int VaArgOffset, VarArgsSaveSize; 6628 6629 // If all registers are allocated, then all varargs must be passed on the 6630 // stack and we don't need to save any argregs. 6631 if (ArgRegs.size() == Idx) { 6632 VaArgOffset = CCInfo.getNextStackOffset(); 6633 VarArgsSaveSize = 0; 6634 } else { 6635 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 6636 VaArgOffset = -VarArgsSaveSize; 6637 } 6638 6639 // Record the frame index of the first variable argument 6640 // which is a value necessary to VASTART. 6641 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 6642 RVFI->setVarArgsFrameIndex(FI); 6643 6644 // If saving an odd number of registers then create an extra stack slot to 6645 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 6646 // offsets to even-numbered registered remain 2*XLEN-aligned. 6647 if (Idx % 2) { 6648 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 6649 VarArgsSaveSize += XLenInBytes; 6650 } 6651 6652 // Copy the integer registers that may have been used for passing varargs 6653 // to the vararg save area. 6654 for (unsigned I = Idx; I < ArgRegs.size(); 6655 ++I, VaArgOffset += XLenInBytes) { 6656 const Register Reg = RegInfo.createVirtualRegister(RC); 6657 RegInfo.addLiveIn(ArgRegs[I], Reg); 6658 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 6659 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 6660 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 6661 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 6662 MachinePointerInfo::getFixedStack(MF, FI)); 6663 cast<StoreSDNode>(Store.getNode()) 6664 ->getMemOperand() 6665 ->setValue((Value *)nullptr); 6666 OutChains.push_back(Store); 6667 } 6668 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 6669 } 6670 6671 // All stores are grouped in one node to allow the matching between 6672 // the size of Ins and InVals. This only happens for vararg functions. 6673 if (!OutChains.empty()) { 6674 OutChains.push_back(Chain); 6675 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 6676 } 6677 6678 return Chain; 6679 } 6680 6681 /// isEligibleForTailCallOptimization - Check whether the call is eligible 6682 /// for tail call optimization. 6683 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 6684 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 6685 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 6686 const SmallVector<CCValAssign, 16> &ArgLocs) const { 6687 6688 auto &Callee = CLI.Callee; 6689 auto CalleeCC = CLI.CallConv; 6690 auto &Outs = CLI.Outs; 6691 auto &Caller = MF.getFunction(); 6692 auto CallerCC = Caller.getCallingConv(); 6693 6694 // Exception-handling functions need a special set of instructions to 6695 // indicate a return to the hardware. Tail-calling another function would 6696 // probably break this. 6697 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 6698 // should be expanded as new function attributes are introduced. 6699 if (Caller.hasFnAttribute("interrupt")) 6700 return false; 6701 6702 // Do not tail call opt if the stack is used to pass parameters. 6703 if (CCInfo.getNextStackOffset() != 0) 6704 return false; 6705 6706 // Do not tail call opt if any parameters need to be passed indirectly. 6707 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 6708 // passed indirectly. So the address of the value will be passed in a 6709 // register, or if not available, then the address is put on the stack. In 6710 // order to pass indirectly, space on the stack often needs to be allocated 6711 // in order to store the value. In this case the CCInfo.getNextStackOffset() 6712 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 6713 // are passed CCValAssign::Indirect. 6714 for (auto &VA : ArgLocs) 6715 if (VA.getLocInfo() == CCValAssign::Indirect) 6716 return false; 6717 6718 // Do not tail call opt if either caller or callee uses struct return 6719 // semantics. 6720 auto IsCallerStructRet = Caller.hasStructRetAttr(); 6721 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 6722 if (IsCallerStructRet || IsCalleeStructRet) 6723 return false; 6724 6725 // Externally-defined functions with weak linkage should not be 6726 // tail-called. The behaviour of branch instructions in this situation (as 6727 // used for tail calls) is implementation-defined, so we cannot rely on the 6728 // linker replacing the tail call with a return. 6729 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 6730 const GlobalValue *GV = G->getGlobal(); 6731 if (GV->hasExternalWeakLinkage()) 6732 return false; 6733 } 6734 6735 // The callee has to preserve all registers the caller needs to preserve. 6736 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 6737 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 6738 if (CalleeCC != CallerCC) { 6739 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 6740 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 6741 return false; 6742 } 6743 6744 // Byval parameters hand the function a pointer directly into the stack area 6745 // we want to reuse during a tail call. Working around this *is* possible 6746 // but less efficient and uglier in LowerCall. 6747 for (auto &Arg : Outs) 6748 if (Arg.Flags.isByVal()) 6749 return false; 6750 6751 return true; 6752 } 6753 6754 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 6755 // and output parameter nodes. 6756 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 6757 SmallVectorImpl<SDValue> &InVals) const { 6758 SelectionDAG &DAG = CLI.DAG; 6759 SDLoc &DL = CLI.DL; 6760 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 6761 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 6762 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 6763 SDValue Chain = CLI.Chain; 6764 SDValue Callee = CLI.Callee; 6765 bool &IsTailCall = CLI.IsTailCall; 6766 CallingConv::ID CallConv = CLI.CallConv; 6767 bool IsVarArg = CLI.IsVarArg; 6768 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6769 MVT XLenVT = Subtarget.getXLenVT(); 6770 6771 MachineFunction &MF = DAG.getMachineFunction(); 6772 6773 // Analyze the operands of the call, assigning locations to each operand. 6774 SmallVector<CCValAssign, 16> ArgLocs; 6775 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 6776 6777 if (CallConv == CallingConv::Fast) 6778 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 6779 else if (CallConv == CallingConv::GHC) 6780 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 6781 else 6782 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 6783 6784 // Check if it's really possible to do a tail call. 6785 if (IsTailCall) 6786 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 6787 6788 if (IsTailCall) 6789 ++NumTailCalls; 6790 else if (CLI.CB && CLI.CB->isMustTailCall()) 6791 report_fatal_error("failed to perform tail call elimination on a call " 6792 "site marked musttail"); 6793 6794 // Get a count of how many bytes are to be pushed on the stack. 6795 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 6796 6797 // Create local copies for byval args 6798 SmallVector<SDValue, 8> ByValArgs; 6799 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 6800 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6801 if (!Flags.isByVal()) 6802 continue; 6803 6804 SDValue Arg = OutVals[i]; 6805 unsigned Size = Flags.getByValSize(); 6806 Align Alignment = Flags.getNonZeroByValAlign(); 6807 6808 int FI = 6809 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 6810 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 6811 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 6812 6813 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 6814 /*IsVolatile=*/false, 6815 /*AlwaysInline=*/false, IsTailCall, 6816 MachinePointerInfo(), MachinePointerInfo()); 6817 ByValArgs.push_back(FIPtr); 6818 } 6819 6820 if (!IsTailCall) 6821 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 6822 6823 // Copy argument values to their designated locations. 6824 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 6825 SmallVector<SDValue, 8> MemOpChains; 6826 SDValue StackPtr; 6827 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 6828 CCValAssign &VA = ArgLocs[i]; 6829 SDValue ArgValue = OutVals[i]; 6830 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6831 6832 // Handle passing f64 on RV32D with a soft float ABI as a special case. 6833 bool IsF64OnRV32DSoftABI = 6834 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 6835 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 6836 SDValue SplitF64 = DAG.getNode( 6837 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 6838 SDValue Lo = SplitF64.getValue(0); 6839 SDValue Hi = SplitF64.getValue(1); 6840 6841 Register RegLo = VA.getLocReg(); 6842 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 6843 6844 if (RegLo == RISCV::X17) { 6845 // Second half of f64 is passed on the stack. 6846 // Work out the address of the stack slot. 6847 if (!StackPtr.getNode()) 6848 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 6849 // Emit the store. 6850 MemOpChains.push_back( 6851 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 6852 } else { 6853 // Second half of f64 is passed in another GPR. 6854 assert(RegLo < RISCV::X31 && "Invalid register pair"); 6855 Register RegHigh = RegLo + 1; 6856 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 6857 } 6858 continue; 6859 } 6860 6861 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 6862 // as any other MemLoc. 6863 6864 // Promote the value if needed. 6865 // For now, only handle fully promoted and indirect arguments. 6866 if (VA.getLocInfo() == CCValAssign::Indirect) { 6867 // Store the argument in a stack slot and pass its address. 6868 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 6869 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 6870 MemOpChains.push_back( 6871 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 6872 MachinePointerInfo::getFixedStack(MF, FI))); 6873 // If the original argument was split (e.g. i128), we need 6874 // to store the required parts of it here (and pass just one address). 6875 // Vectors may be partly split to registers and partly to the stack, in 6876 // which case the base address is partly offset and subsequent stores are 6877 // relative to that. 6878 unsigned ArgIndex = Outs[i].OrigArgIndex; 6879 unsigned ArgPartOffset = Outs[i].PartOffset; 6880 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 6881 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 6882 SDValue PartValue = OutVals[i + 1]; 6883 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 6884 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 6885 DAG.getIntPtrConstant(PartOffset, DL)); 6886 MemOpChains.push_back( 6887 DAG.getStore(Chain, DL, PartValue, Address, 6888 MachinePointerInfo::getFixedStack(MF, FI))); 6889 ++i; 6890 } 6891 ArgValue = SpillSlot; 6892 } else { 6893 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 6894 } 6895 6896 // Use local copy if it is a byval arg. 6897 if (Flags.isByVal()) 6898 ArgValue = ByValArgs[j++]; 6899 6900 if (VA.isRegLoc()) { 6901 // Queue up the argument copies and emit them at the end. 6902 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 6903 } else { 6904 assert(VA.isMemLoc() && "Argument not register or memory"); 6905 assert(!IsTailCall && "Tail call not allowed if stack is used " 6906 "for passing parameters"); 6907 6908 // Work out the address of the stack slot. 6909 if (!StackPtr.getNode()) 6910 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 6911 SDValue Address = 6912 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 6913 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 6914 6915 // Emit the store. 6916 MemOpChains.push_back( 6917 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 6918 } 6919 } 6920 6921 // Join the stores, which are independent of one another. 6922 if (!MemOpChains.empty()) 6923 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 6924 6925 SDValue Glue; 6926 6927 // Build a sequence of copy-to-reg nodes, chained and glued together. 6928 for (auto &Reg : RegsToPass) { 6929 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 6930 Glue = Chain.getValue(1); 6931 } 6932 6933 // Validate that none of the argument registers have been marked as 6934 // reserved, if so report an error. Do the same for the return address if this 6935 // is not a tailcall. 6936 validateCCReservedRegs(RegsToPass, MF); 6937 if (!IsTailCall && 6938 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 6939 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 6940 MF.getFunction(), 6941 "Return address register required, but has been reserved."}); 6942 6943 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 6944 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 6945 // split it and then direct call can be matched by PseudoCALL. 6946 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 6947 const GlobalValue *GV = S->getGlobal(); 6948 6949 unsigned OpFlags = RISCVII::MO_CALL; 6950 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 6951 OpFlags = RISCVII::MO_PLT; 6952 6953 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 6954 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 6955 unsigned OpFlags = RISCVII::MO_CALL; 6956 6957 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 6958 nullptr)) 6959 OpFlags = RISCVII::MO_PLT; 6960 6961 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 6962 } 6963 6964 // The first call operand is the chain and the second is the target address. 6965 SmallVector<SDValue, 8> Ops; 6966 Ops.push_back(Chain); 6967 Ops.push_back(Callee); 6968 6969 // Add argument registers to the end of the list so that they are 6970 // known live into the call. 6971 for (auto &Reg : RegsToPass) 6972 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 6973 6974 if (!IsTailCall) { 6975 // Add a register mask operand representing the call-preserved registers. 6976 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 6977 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 6978 assert(Mask && "Missing call preserved mask for calling convention"); 6979 Ops.push_back(DAG.getRegisterMask(Mask)); 6980 } 6981 6982 // Glue the call to the argument copies, if any. 6983 if (Glue.getNode()) 6984 Ops.push_back(Glue); 6985 6986 // Emit the call. 6987 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6988 6989 if (IsTailCall) { 6990 MF.getFrameInfo().setHasTailCall(); 6991 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 6992 } 6993 6994 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 6995 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 6996 Glue = Chain.getValue(1); 6997 6998 // Mark the end of the call, which is glued to the call itself. 6999 Chain = DAG.getCALLSEQ_END(Chain, 7000 DAG.getConstant(NumBytes, DL, PtrVT, true), 7001 DAG.getConstant(0, DL, PtrVT, true), 7002 Glue, DL); 7003 Glue = Chain.getValue(1); 7004 7005 // Assign locations to each value returned by this call. 7006 SmallVector<CCValAssign, 16> RVLocs; 7007 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 7008 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 7009 7010 // Copy all of the result registers out of their specified physreg. 7011 for (auto &VA : RVLocs) { 7012 // Copy the value out 7013 SDValue RetValue = 7014 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 7015 // Glue the RetValue to the end of the call sequence 7016 Chain = RetValue.getValue(1); 7017 Glue = RetValue.getValue(2); 7018 7019 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 7020 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 7021 SDValue RetValue2 = 7022 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 7023 Chain = RetValue2.getValue(1); 7024 Glue = RetValue2.getValue(2); 7025 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 7026 RetValue2); 7027 } 7028 7029 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 7030 7031 InVals.push_back(RetValue); 7032 } 7033 7034 return Chain; 7035 } 7036 7037 bool RISCVTargetLowering::CanLowerReturn( 7038 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 7039 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 7040 SmallVector<CCValAssign, 16> RVLocs; 7041 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 7042 7043 Optional<unsigned> FirstMaskArgument; 7044 if (Subtarget.hasStdExtV()) 7045 FirstMaskArgument = preAssignMask(Outs); 7046 7047 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 7048 MVT VT = Outs[i].VT; 7049 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 7050 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7051 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 7052 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 7053 *this, FirstMaskArgument)) 7054 return false; 7055 } 7056 return true; 7057 } 7058 7059 SDValue 7060 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7061 bool IsVarArg, 7062 const SmallVectorImpl<ISD::OutputArg> &Outs, 7063 const SmallVectorImpl<SDValue> &OutVals, 7064 const SDLoc &DL, SelectionDAG &DAG) const { 7065 const MachineFunction &MF = DAG.getMachineFunction(); 7066 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 7067 7068 // Stores the assignment of the return value to a location. 7069 SmallVector<CCValAssign, 16> RVLocs; 7070 7071 // Info about the registers and stack slot. 7072 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 7073 *DAG.getContext()); 7074 7075 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 7076 nullptr); 7077 7078 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 7079 report_fatal_error("GHC functions return void only"); 7080 7081 SDValue Glue; 7082 SmallVector<SDValue, 4> RetOps(1, Chain); 7083 7084 // Copy the result values into the output registers. 7085 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 7086 SDValue Val = OutVals[i]; 7087 CCValAssign &VA = RVLocs[i]; 7088 assert(VA.isRegLoc() && "Can only return in registers!"); 7089 7090 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 7091 // Handle returning f64 on RV32D with a soft float ABI. 7092 assert(VA.isRegLoc() && "Expected return via registers"); 7093 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 7094 DAG.getVTList(MVT::i32, MVT::i32), Val); 7095 SDValue Lo = SplitF64.getValue(0); 7096 SDValue Hi = SplitF64.getValue(1); 7097 Register RegLo = VA.getLocReg(); 7098 assert(RegLo < RISCV::X31 && "Invalid register pair"); 7099 Register RegHi = RegLo + 1; 7100 7101 if (STI.isRegisterReservedByUser(RegLo) || 7102 STI.isRegisterReservedByUser(RegHi)) 7103 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 7104 MF.getFunction(), 7105 "Return value register required, but has been reserved."}); 7106 7107 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 7108 Glue = Chain.getValue(1); 7109 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 7110 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 7111 Glue = Chain.getValue(1); 7112 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 7113 } else { 7114 // Handle a 'normal' return. 7115 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 7116 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 7117 7118 if (STI.isRegisterReservedByUser(VA.getLocReg())) 7119 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 7120 MF.getFunction(), 7121 "Return value register required, but has been reserved."}); 7122 7123 // Guarantee that all emitted copies are stuck together. 7124 Glue = Chain.getValue(1); 7125 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7126 } 7127 } 7128 7129 RetOps[0] = Chain; // Update chain. 7130 7131 // Add the glue node if we have it. 7132 if (Glue.getNode()) { 7133 RetOps.push_back(Glue); 7134 } 7135 7136 // Interrupt service routines use different return instructions. 7137 const Function &Func = DAG.getMachineFunction().getFunction(); 7138 if (Func.hasFnAttribute("interrupt")) { 7139 if (!Func.getReturnType()->isVoidTy()) 7140 report_fatal_error( 7141 "Functions with the interrupt attribute must have void return type!"); 7142 7143 MachineFunction &MF = DAG.getMachineFunction(); 7144 StringRef Kind = 7145 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 7146 7147 unsigned RetOpc; 7148 if (Kind == "user") 7149 RetOpc = RISCVISD::URET_FLAG; 7150 else if (Kind == "supervisor") 7151 RetOpc = RISCVISD::SRET_FLAG; 7152 else 7153 RetOpc = RISCVISD::MRET_FLAG; 7154 7155 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 7156 } 7157 7158 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 7159 } 7160 7161 void RISCVTargetLowering::validateCCReservedRegs( 7162 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 7163 MachineFunction &MF) const { 7164 const Function &F = MF.getFunction(); 7165 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 7166 7167 if (llvm::any_of(Regs, [&STI](auto Reg) { 7168 return STI.isRegisterReservedByUser(Reg.first); 7169 })) 7170 F.getContext().diagnose(DiagnosticInfoUnsupported{ 7171 F, "Argument register required, but has been reserved."}); 7172 } 7173 7174 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 7175 return CI->isTailCall(); 7176 } 7177 7178 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 7179 #define NODE_NAME_CASE(NODE) \ 7180 case RISCVISD::NODE: \ 7181 return "RISCVISD::" #NODE; 7182 // clang-format off 7183 switch ((RISCVISD::NodeType)Opcode) { 7184 case RISCVISD::FIRST_NUMBER: 7185 break; 7186 NODE_NAME_CASE(RET_FLAG) 7187 NODE_NAME_CASE(URET_FLAG) 7188 NODE_NAME_CASE(SRET_FLAG) 7189 NODE_NAME_CASE(MRET_FLAG) 7190 NODE_NAME_CASE(CALL) 7191 NODE_NAME_CASE(SELECT_CC) 7192 NODE_NAME_CASE(BR_CC) 7193 NODE_NAME_CASE(BuildPairF64) 7194 NODE_NAME_CASE(SplitF64) 7195 NODE_NAME_CASE(TAIL) 7196 NODE_NAME_CASE(MULHSU) 7197 NODE_NAME_CASE(SLLW) 7198 NODE_NAME_CASE(SRAW) 7199 NODE_NAME_CASE(SRLW) 7200 NODE_NAME_CASE(DIVW) 7201 NODE_NAME_CASE(DIVUW) 7202 NODE_NAME_CASE(REMUW) 7203 NODE_NAME_CASE(ROLW) 7204 NODE_NAME_CASE(RORW) 7205 NODE_NAME_CASE(CLZW) 7206 NODE_NAME_CASE(CTZW) 7207 NODE_NAME_CASE(FSLW) 7208 NODE_NAME_CASE(FSRW) 7209 NODE_NAME_CASE(FSL) 7210 NODE_NAME_CASE(FSR) 7211 NODE_NAME_CASE(FMV_H_X) 7212 NODE_NAME_CASE(FMV_X_ANYEXTH) 7213 NODE_NAME_CASE(FMV_W_X_RV64) 7214 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 7215 NODE_NAME_CASE(READ_CYCLE_WIDE) 7216 NODE_NAME_CASE(GREV) 7217 NODE_NAME_CASE(GREVW) 7218 NODE_NAME_CASE(GORC) 7219 NODE_NAME_CASE(GORCW) 7220 NODE_NAME_CASE(SHFL) 7221 NODE_NAME_CASE(VMV_V_X_VL) 7222 NODE_NAME_CASE(VFMV_V_F_VL) 7223 NODE_NAME_CASE(VMV_X_S) 7224 NODE_NAME_CASE(VMV_S_X_VL) 7225 NODE_NAME_CASE(VFMV_S_F_VL) 7226 NODE_NAME_CASE(SPLAT_VECTOR_I64) 7227 NODE_NAME_CASE(READ_VLENB) 7228 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 7229 NODE_NAME_CASE(VLEFF) 7230 NODE_NAME_CASE(VLEFF_MASK) 7231 NODE_NAME_CASE(VSLIDEUP_VL) 7232 NODE_NAME_CASE(VSLIDE1UP_VL) 7233 NODE_NAME_CASE(VSLIDEDOWN_VL) 7234 NODE_NAME_CASE(VSLIDE1DOWN_VL) 7235 NODE_NAME_CASE(VID_VL) 7236 NODE_NAME_CASE(VFNCVT_ROD_VL) 7237 NODE_NAME_CASE(VECREDUCE_ADD_VL) 7238 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 7239 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 7240 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 7241 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 7242 NODE_NAME_CASE(VECREDUCE_AND_VL) 7243 NODE_NAME_CASE(VECREDUCE_OR_VL) 7244 NODE_NAME_CASE(VECREDUCE_XOR_VL) 7245 NODE_NAME_CASE(VECREDUCE_FADD_VL) 7246 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 7247 NODE_NAME_CASE(ADD_VL) 7248 NODE_NAME_CASE(AND_VL) 7249 NODE_NAME_CASE(MUL_VL) 7250 NODE_NAME_CASE(OR_VL) 7251 NODE_NAME_CASE(SDIV_VL) 7252 NODE_NAME_CASE(SHL_VL) 7253 NODE_NAME_CASE(SREM_VL) 7254 NODE_NAME_CASE(SRA_VL) 7255 NODE_NAME_CASE(SRL_VL) 7256 NODE_NAME_CASE(SUB_VL) 7257 NODE_NAME_CASE(UDIV_VL) 7258 NODE_NAME_CASE(UREM_VL) 7259 NODE_NAME_CASE(XOR_VL) 7260 NODE_NAME_CASE(FADD_VL) 7261 NODE_NAME_CASE(FSUB_VL) 7262 NODE_NAME_CASE(FMUL_VL) 7263 NODE_NAME_CASE(FDIV_VL) 7264 NODE_NAME_CASE(FNEG_VL) 7265 NODE_NAME_CASE(FABS_VL) 7266 NODE_NAME_CASE(FSQRT_VL) 7267 NODE_NAME_CASE(FMA_VL) 7268 NODE_NAME_CASE(FCOPYSIGN_VL) 7269 NODE_NAME_CASE(SMIN_VL) 7270 NODE_NAME_CASE(SMAX_VL) 7271 NODE_NAME_CASE(UMIN_VL) 7272 NODE_NAME_CASE(UMAX_VL) 7273 NODE_NAME_CASE(MULHS_VL) 7274 NODE_NAME_CASE(MULHU_VL) 7275 NODE_NAME_CASE(FP_TO_SINT_VL) 7276 NODE_NAME_CASE(FP_TO_UINT_VL) 7277 NODE_NAME_CASE(SINT_TO_FP_VL) 7278 NODE_NAME_CASE(UINT_TO_FP_VL) 7279 NODE_NAME_CASE(FP_EXTEND_VL) 7280 NODE_NAME_CASE(FP_ROUND_VL) 7281 NODE_NAME_CASE(SETCC_VL) 7282 NODE_NAME_CASE(VSELECT_VL) 7283 NODE_NAME_CASE(VMAND_VL) 7284 NODE_NAME_CASE(VMOR_VL) 7285 NODE_NAME_CASE(VMXOR_VL) 7286 NODE_NAME_CASE(VMCLR_VL) 7287 NODE_NAME_CASE(VMSET_VL) 7288 NODE_NAME_CASE(VRGATHER_VX_VL) 7289 NODE_NAME_CASE(VRGATHER_VV_VL) 7290 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 7291 NODE_NAME_CASE(VSEXT_VL) 7292 NODE_NAME_CASE(VZEXT_VL) 7293 NODE_NAME_CASE(VPOPC_VL) 7294 NODE_NAME_CASE(VLE_VL) 7295 NODE_NAME_CASE(VSE_VL) 7296 NODE_NAME_CASE(READ_CSR) 7297 NODE_NAME_CASE(WRITE_CSR) 7298 NODE_NAME_CASE(SWAP_CSR) 7299 } 7300 // clang-format on 7301 return nullptr; 7302 #undef NODE_NAME_CASE 7303 } 7304 7305 /// getConstraintType - Given a constraint letter, return the type of 7306 /// constraint it is for this target. 7307 RISCVTargetLowering::ConstraintType 7308 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 7309 if (Constraint.size() == 1) { 7310 switch (Constraint[0]) { 7311 default: 7312 break; 7313 case 'f': 7314 case 'v': 7315 return C_RegisterClass; 7316 case 'I': 7317 case 'J': 7318 case 'K': 7319 return C_Immediate; 7320 case 'A': 7321 return C_Memory; 7322 } 7323 } 7324 return TargetLowering::getConstraintType(Constraint); 7325 } 7326 7327 std::pair<unsigned, const TargetRegisterClass *> 7328 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 7329 StringRef Constraint, 7330 MVT VT) const { 7331 // First, see if this is a constraint that directly corresponds to a 7332 // RISCV register class. 7333 if (Constraint.size() == 1) { 7334 switch (Constraint[0]) { 7335 case 'r': 7336 return std::make_pair(0U, &RISCV::GPRRegClass); 7337 case 'f': 7338 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 7339 return std::make_pair(0U, &RISCV::FPR16RegClass); 7340 if (Subtarget.hasStdExtF() && VT == MVT::f32) 7341 return std::make_pair(0U, &RISCV::FPR32RegClass); 7342 if (Subtarget.hasStdExtD() && VT == MVT::f64) 7343 return std::make_pair(0U, &RISCV::FPR64RegClass); 7344 break; 7345 case 'v': 7346 for (const auto *RC : 7347 {&RISCV::VMRegClass, &RISCV::VRRegClass, &RISCV::VRM2RegClass, 7348 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 7349 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 7350 return std::make_pair(0U, RC); 7351 } 7352 break; 7353 default: 7354 break; 7355 } 7356 } 7357 7358 // Clang will correctly decode the usage of register name aliases into their 7359 // official names. However, other frontends like `rustc` do not. This allows 7360 // users of these frontends to use the ABI names for registers in LLVM-style 7361 // register constraints. 7362 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 7363 .Case("{zero}", RISCV::X0) 7364 .Case("{ra}", RISCV::X1) 7365 .Case("{sp}", RISCV::X2) 7366 .Case("{gp}", RISCV::X3) 7367 .Case("{tp}", RISCV::X4) 7368 .Case("{t0}", RISCV::X5) 7369 .Case("{t1}", RISCV::X6) 7370 .Case("{t2}", RISCV::X7) 7371 .Cases("{s0}", "{fp}", RISCV::X8) 7372 .Case("{s1}", RISCV::X9) 7373 .Case("{a0}", RISCV::X10) 7374 .Case("{a1}", RISCV::X11) 7375 .Case("{a2}", RISCV::X12) 7376 .Case("{a3}", RISCV::X13) 7377 .Case("{a4}", RISCV::X14) 7378 .Case("{a5}", RISCV::X15) 7379 .Case("{a6}", RISCV::X16) 7380 .Case("{a7}", RISCV::X17) 7381 .Case("{s2}", RISCV::X18) 7382 .Case("{s3}", RISCV::X19) 7383 .Case("{s4}", RISCV::X20) 7384 .Case("{s5}", RISCV::X21) 7385 .Case("{s6}", RISCV::X22) 7386 .Case("{s7}", RISCV::X23) 7387 .Case("{s8}", RISCV::X24) 7388 .Case("{s9}", RISCV::X25) 7389 .Case("{s10}", RISCV::X26) 7390 .Case("{s11}", RISCV::X27) 7391 .Case("{t3}", RISCV::X28) 7392 .Case("{t4}", RISCV::X29) 7393 .Case("{t5}", RISCV::X30) 7394 .Case("{t6}", RISCV::X31) 7395 .Default(RISCV::NoRegister); 7396 if (XRegFromAlias != RISCV::NoRegister) 7397 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 7398 7399 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 7400 // TableGen record rather than the AsmName to choose registers for InlineAsm 7401 // constraints, plus we want to match those names to the widest floating point 7402 // register type available, manually select floating point registers here. 7403 // 7404 // The second case is the ABI name of the register, so that frontends can also 7405 // use the ABI names in register constraint lists. 7406 if (Subtarget.hasStdExtF()) { 7407 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 7408 .Cases("{f0}", "{ft0}", RISCV::F0_F) 7409 .Cases("{f1}", "{ft1}", RISCV::F1_F) 7410 .Cases("{f2}", "{ft2}", RISCV::F2_F) 7411 .Cases("{f3}", "{ft3}", RISCV::F3_F) 7412 .Cases("{f4}", "{ft4}", RISCV::F4_F) 7413 .Cases("{f5}", "{ft5}", RISCV::F5_F) 7414 .Cases("{f6}", "{ft6}", RISCV::F6_F) 7415 .Cases("{f7}", "{ft7}", RISCV::F7_F) 7416 .Cases("{f8}", "{fs0}", RISCV::F8_F) 7417 .Cases("{f9}", "{fs1}", RISCV::F9_F) 7418 .Cases("{f10}", "{fa0}", RISCV::F10_F) 7419 .Cases("{f11}", "{fa1}", RISCV::F11_F) 7420 .Cases("{f12}", "{fa2}", RISCV::F12_F) 7421 .Cases("{f13}", "{fa3}", RISCV::F13_F) 7422 .Cases("{f14}", "{fa4}", RISCV::F14_F) 7423 .Cases("{f15}", "{fa5}", RISCV::F15_F) 7424 .Cases("{f16}", "{fa6}", RISCV::F16_F) 7425 .Cases("{f17}", "{fa7}", RISCV::F17_F) 7426 .Cases("{f18}", "{fs2}", RISCV::F18_F) 7427 .Cases("{f19}", "{fs3}", RISCV::F19_F) 7428 .Cases("{f20}", "{fs4}", RISCV::F20_F) 7429 .Cases("{f21}", "{fs5}", RISCV::F21_F) 7430 .Cases("{f22}", "{fs6}", RISCV::F22_F) 7431 .Cases("{f23}", "{fs7}", RISCV::F23_F) 7432 .Cases("{f24}", "{fs8}", RISCV::F24_F) 7433 .Cases("{f25}", "{fs9}", RISCV::F25_F) 7434 .Cases("{f26}", "{fs10}", RISCV::F26_F) 7435 .Cases("{f27}", "{fs11}", RISCV::F27_F) 7436 .Cases("{f28}", "{ft8}", RISCV::F28_F) 7437 .Cases("{f29}", "{ft9}", RISCV::F29_F) 7438 .Cases("{f30}", "{ft10}", RISCV::F30_F) 7439 .Cases("{f31}", "{ft11}", RISCV::F31_F) 7440 .Default(RISCV::NoRegister); 7441 if (FReg != RISCV::NoRegister) { 7442 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 7443 if (Subtarget.hasStdExtD()) { 7444 unsigned RegNo = FReg - RISCV::F0_F; 7445 unsigned DReg = RISCV::F0_D + RegNo; 7446 return std::make_pair(DReg, &RISCV::FPR64RegClass); 7447 } 7448 return std::make_pair(FReg, &RISCV::FPR32RegClass); 7449 } 7450 } 7451 7452 if (Subtarget.hasStdExtV()) { 7453 Register VReg = StringSwitch<Register>(Constraint.lower()) 7454 .Case("{v0}", RISCV::V0) 7455 .Case("{v1}", RISCV::V1) 7456 .Case("{v2}", RISCV::V2) 7457 .Case("{v3}", RISCV::V3) 7458 .Case("{v4}", RISCV::V4) 7459 .Case("{v5}", RISCV::V5) 7460 .Case("{v6}", RISCV::V6) 7461 .Case("{v7}", RISCV::V7) 7462 .Case("{v8}", RISCV::V8) 7463 .Case("{v9}", RISCV::V9) 7464 .Case("{v10}", RISCV::V10) 7465 .Case("{v11}", RISCV::V11) 7466 .Case("{v12}", RISCV::V12) 7467 .Case("{v13}", RISCV::V13) 7468 .Case("{v14}", RISCV::V14) 7469 .Case("{v15}", RISCV::V15) 7470 .Case("{v16}", RISCV::V16) 7471 .Case("{v17}", RISCV::V17) 7472 .Case("{v18}", RISCV::V18) 7473 .Case("{v19}", RISCV::V19) 7474 .Case("{v20}", RISCV::V20) 7475 .Case("{v21}", RISCV::V21) 7476 .Case("{v22}", RISCV::V22) 7477 .Case("{v23}", RISCV::V23) 7478 .Case("{v24}", RISCV::V24) 7479 .Case("{v25}", RISCV::V25) 7480 .Case("{v26}", RISCV::V26) 7481 .Case("{v27}", RISCV::V27) 7482 .Case("{v28}", RISCV::V28) 7483 .Case("{v29}", RISCV::V29) 7484 .Case("{v30}", RISCV::V30) 7485 .Case("{v31}", RISCV::V31) 7486 .Default(RISCV::NoRegister); 7487 if (VReg != RISCV::NoRegister) { 7488 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 7489 return std::make_pair(VReg, &RISCV::VMRegClass); 7490 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 7491 return std::make_pair(VReg, &RISCV::VRRegClass); 7492 for (const auto *RC : 7493 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 7494 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 7495 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 7496 return std::make_pair(VReg, RC); 7497 } 7498 } 7499 } 7500 } 7501 7502 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 7503 } 7504 7505 unsigned 7506 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 7507 // Currently only support length 1 constraints. 7508 if (ConstraintCode.size() == 1) { 7509 switch (ConstraintCode[0]) { 7510 case 'A': 7511 return InlineAsm::Constraint_A; 7512 default: 7513 break; 7514 } 7515 } 7516 7517 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 7518 } 7519 7520 void RISCVTargetLowering::LowerAsmOperandForConstraint( 7521 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 7522 SelectionDAG &DAG) const { 7523 // Currently only support length 1 constraints. 7524 if (Constraint.length() == 1) { 7525 switch (Constraint[0]) { 7526 case 'I': 7527 // Validate & create a 12-bit signed immediate operand. 7528 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 7529 uint64_t CVal = C->getSExtValue(); 7530 if (isInt<12>(CVal)) 7531 Ops.push_back( 7532 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 7533 } 7534 return; 7535 case 'J': 7536 // Validate & create an integer zero operand. 7537 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 7538 if (C->getZExtValue() == 0) 7539 Ops.push_back( 7540 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 7541 return; 7542 case 'K': 7543 // Validate & create a 5-bit unsigned immediate operand. 7544 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 7545 uint64_t CVal = C->getZExtValue(); 7546 if (isUInt<5>(CVal)) 7547 Ops.push_back( 7548 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 7549 } 7550 return; 7551 default: 7552 break; 7553 } 7554 } 7555 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 7556 } 7557 7558 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 7559 Instruction *Inst, 7560 AtomicOrdering Ord) const { 7561 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 7562 return Builder.CreateFence(Ord); 7563 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 7564 return Builder.CreateFence(AtomicOrdering::Release); 7565 return nullptr; 7566 } 7567 7568 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 7569 Instruction *Inst, 7570 AtomicOrdering Ord) const { 7571 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 7572 return Builder.CreateFence(AtomicOrdering::Acquire); 7573 return nullptr; 7574 } 7575 7576 TargetLowering::AtomicExpansionKind 7577 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 7578 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 7579 // point operations can't be used in an lr/sc sequence without breaking the 7580 // forward-progress guarantee. 7581 if (AI->isFloatingPointOperation()) 7582 return AtomicExpansionKind::CmpXChg; 7583 7584 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 7585 if (Size == 8 || Size == 16) 7586 return AtomicExpansionKind::MaskedIntrinsic; 7587 return AtomicExpansionKind::None; 7588 } 7589 7590 static Intrinsic::ID 7591 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 7592 if (XLen == 32) { 7593 switch (BinOp) { 7594 default: 7595 llvm_unreachable("Unexpected AtomicRMW BinOp"); 7596 case AtomicRMWInst::Xchg: 7597 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 7598 case AtomicRMWInst::Add: 7599 return Intrinsic::riscv_masked_atomicrmw_add_i32; 7600 case AtomicRMWInst::Sub: 7601 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 7602 case AtomicRMWInst::Nand: 7603 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 7604 case AtomicRMWInst::Max: 7605 return Intrinsic::riscv_masked_atomicrmw_max_i32; 7606 case AtomicRMWInst::Min: 7607 return Intrinsic::riscv_masked_atomicrmw_min_i32; 7608 case AtomicRMWInst::UMax: 7609 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 7610 case AtomicRMWInst::UMin: 7611 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 7612 } 7613 } 7614 7615 if (XLen == 64) { 7616 switch (BinOp) { 7617 default: 7618 llvm_unreachable("Unexpected AtomicRMW BinOp"); 7619 case AtomicRMWInst::Xchg: 7620 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 7621 case AtomicRMWInst::Add: 7622 return Intrinsic::riscv_masked_atomicrmw_add_i64; 7623 case AtomicRMWInst::Sub: 7624 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 7625 case AtomicRMWInst::Nand: 7626 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 7627 case AtomicRMWInst::Max: 7628 return Intrinsic::riscv_masked_atomicrmw_max_i64; 7629 case AtomicRMWInst::Min: 7630 return Intrinsic::riscv_masked_atomicrmw_min_i64; 7631 case AtomicRMWInst::UMax: 7632 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 7633 case AtomicRMWInst::UMin: 7634 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 7635 } 7636 } 7637 7638 llvm_unreachable("Unexpected XLen\n"); 7639 } 7640 7641 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 7642 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 7643 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 7644 unsigned XLen = Subtarget.getXLen(); 7645 Value *Ordering = 7646 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 7647 Type *Tys[] = {AlignedAddr->getType()}; 7648 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 7649 AI->getModule(), 7650 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 7651 7652 if (XLen == 64) { 7653 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 7654 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 7655 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 7656 } 7657 7658 Value *Result; 7659 7660 // Must pass the shift amount needed to sign extend the loaded value prior 7661 // to performing a signed comparison for min/max. ShiftAmt is the number of 7662 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 7663 // is the number of bits to left+right shift the value in order to 7664 // sign-extend. 7665 if (AI->getOperation() == AtomicRMWInst::Min || 7666 AI->getOperation() == AtomicRMWInst::Max) { 7667 const DataLayout &DL = AI->getModule()->getDataLayout(); 7668 unsigned ValWidth = 7669 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 7670 Value *SextShamt = 7671 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 7672 Result = Builder.CreateCall(LrwOpScwLoop, 7673 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 7674 } else { 7675 Result = 7676 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 7677 } 7678 7679 if (XLen == 64) 7680 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 7681 return Result; 7682 } 7683 7684 TargetLowering::AtomicExpansionKind 7685 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 7686 AtomicCmpXchgInst *CI) const { 7687 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 7688 if (Size == 8 || Size == 16) 7689 return AtomicExpansionKind::MaskedIntrinsic; 7690 return AtomicExpansionKind::None; 7691 } 7692 7693 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 7694 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 7695 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 7696 unsigned XLen = Subtarget.getXLen(); 7697 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 7698 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 7699 if (XLen == 64) { 7700 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 7701 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 7702 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 7703 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 7704 } 7705 Type *Tys[] = {AlignedAddr->getType()}; 7706 Function *MaskedCmpXchg = 7707 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 7708 Value *Result = Builder.CreateCall( 7709 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 7710 if (XLen == 64) 7711 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 7712 return Result; 7713 } 7714 7715 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 7716 return false; 7717 } 7718 7719 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 7720 EVT VT) const { 7721 VT = VT.getScalarType(); 7722 7723 if (!VT.isSimple()) 7724 return false; 7725 7726 switch (VT.getSimpleVT().SimpleTy) { 7727 case MVT::f16: 7728 return Subtarget.hasStdExtZfh(); 7729 case MVT::f32: 7730 return Subtarget.hasStdExtF(); 7731 case MVT::f64: 7732 return Subtarget.hasStdExtD(); 7733 default: 7734 break; 7735 } 7736 7737 return false; 7738 } 7739 7740 Register RISCVTargetLowering::getExceptionPointerRegister( 7741 const Constant *PersonalityFn) const { 7742 return RISCV::X10; 7743 } 7744 7745 Register RISCVTargetLowering::getExceptionSelectorRegister( 7746 const Constant *PersonalityFn) const { 7747 return RISCV::X11; 7748 } 7749 7750 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 7751 // Return false to suppress the unnecessary extensions if the LibCall 7752 // arguments or return value is f32 type for LP64 ABI. 7753 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 7754 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 7755 return false; 7756 7757 return true; 7758 } 7759 7760 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 7761 if (Subtarget.is64Bit() && Type == MVT::i32) 7762 return true; 7763 7764 return IsSigned; 7765 } 7766 7767 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 7768 SDValue C) const { 7769 // Check integral scalar types. 7770 if (VT.isScalarInteger()) { 7771 // Omit the optimization if the sub target has the M extension and the data 7772 // size exceeds XLen. 7773 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 7774 return false; 7775 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 7776 // Break the MUL to a SLLI and an ADD/SUB. 7777 const APInt &Imm = ConstNode->getAPIntValue(); 7778 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 7779 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 7780 return true; 7781 // Omit the following optimization if the sub target has the M extension 7782 // and the data size >= XLen. 7783 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 7784 return false; 7785 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 7786 // a pair of LUI/ADDI. 7787 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 7788 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 7789 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 7790 (1 - ImmS).isPowerOf2()) 7791 return true; 7792 } 7793 } 7794 } 7795 7796 return false; 7797 } 7798 7799 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 7800 if (!Subtarget.useRVVForFixedLengthVectors()) 7801 return false; 7802 7803 if (!VT.isFixedLengthVector()) 7804 return false; 7805 7806 // Don't use RVV for vectors we cannot scalarize if required. 7807 switch (VT.getVectorElementType().SimpleTy) { 7808 // i1 is supported but has different rules. 7809 default: 7810 return false; 7811 case MVT::i1: 7812 // Masks can only use a single register. 7813 if (VT.getVectorNumElements() > Subtarget.getMinRVVVectorSizeInBits()) 7814 return false; 7815 break; 7816 case MVT::i8: 7817 case MVT::i16: 7818 case MVT::i32: 7819 case MVT::i64: 7820 break; 7821 case MVT::f16: 7822 if (!Subtarget.hasStdExtZfh()) 7823 return false; 7824 break; 7825 case MVT::f32: 7826 if (!Subtarget.hasStdExtF()) 7827 return false; 7828 break; 7829 case MVT::f64: 7830 if (!Subtarget.hasStdExtD()) 7831 return false; 7832 break; 7833 } 7834 7835 unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT); 7836 // Don't use RVV for types that don't fit. 7837 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 7838 return false; 7839 7840 // TODO: Perhaps an artificial restriction, but worth having whilst getting 7841 // the base fixed length RVV support in place. 7842 if (!VT.isPow2VectorType()) 7843 return false; 7844 7845 return true; 7846 } 7847 7848 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 7849 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 7850 bool *Fast) const { 7851 if (!VT.isScalableVector()) 7852 return false; 7853 7854 EVT ElemVT = VT.getVectorElementType(); 7855 if (Alignment >= ElemVT.getStoreSize()) { 7856 if (Fast) 7857 *Fast = true; 7858 return true; 7859 } 7860 7861 return false; 7862 } 7863 7864 bool RISCVTargetLowering::splitValueIntoRegisterParts( 7865 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 7866 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 7867 bool IsABIRegCopy = CC.hasValue(); 7868 EVT ValueVT = Val.getValueType(); 7869 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 7870 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 7871 // and cast to f32. 7872 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 7873 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 7874 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 7875 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 7876 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 7877 Parts[0] = Val; 7878 return true; 7879 } 7880 7881 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 7882 LLVMContext &Context = *DAG.getContext(); 7883 EVT ValueEltVT = ValueVT.getVectorElementType(); 7884 EVT PartEltVT = PartVT.getVectorElementType(); 7885 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 7886 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 7887 if (PartVTBitSize % ValueVTBitSize == 0) { 7888 // If the element types are different, bitcast to the same element type of 7889 // PartVT first. 7890 if (ValueEltVT != PartEltVT) { 7891 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 7892 assert(Count != 0 && "The number of element should not be zero."); 7893 EVT SameEltTypeVT = 7894 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 7895 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 7896 } 7897 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 7898 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 7899 Parts[0] = Val; 7900 return true; 7901 } 7902 } 7903 return false; 7904 } 7905 7906 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 7907 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 7908 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 7909 bool IsABIRegCopy = CC.hasValue(); 7910 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 7911 SDValue Val = Parts[0]; 7912 7913 // Cast the f32 to i32, truncate to i16, and cast back to f16. 7914 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 7915 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 7916 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 7917 return Val; 7918 } 7919 7920 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 7921 LLVMContext &Context = *DAG.getContext(); 7922 SDValue Val = Parts[0]; 7923 EVT ValueEltVT = ValueVT.getVectorElementType(); 7924 EVT PartEltVT = PartVT.getVectorElementType(); 7925 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 7926 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 7927 if (PartVTBitSize % ValueVTBitSize == 0) { 7928 EVT SameEltTypeVT = ValueVT; 7929 // If the element types are different, convert it to the same element type 7930 // of PartVT. 7931 if (ValueEltVT != PartEltVT) { 7932 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 7933 assert(Count != 0 && "The number of element should not be zero."); 7934 SameEltTypeVT = 7935 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 7936 } 7937 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 7938 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 7939 if (ValueEltVT != PartEltVT) 7940 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 7941 return Val; 7942 } 7943 } 7944 return SDValue(); 7945 } 7946 7947 #define GET_REGISTER_MATCHER 7948 #include "RISCVGenAsmMatcher.inc" 7949 7950 Register 7951 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 7952 const MachineFunction &MF) const { 7953 Register Reg = MatchRegisterAltName(RegName); 7954 if (Reg == RISCV::NoRegister) 7955 Reg = MatchRegisterName(RegName); 7956 if (Reg == RISCV::NoRegister) 7957 report_fatal_error( 7958 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 7959 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 7960 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 7961 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 7962 StringRef(RegName) + "\".")); 7963 return Reg; 7964 } 7965 7966 namespace llvm { 7967 namespace RISCVVIntrinsicsTable { 7968 7969 #define GET_RISCVVIntrinsicsTable_IMPL 7970 #include "RISCVGenSearchableTables.inc" 7971 7972 } // namespace RISCVVIntrinsicsTable 7973 7974 } // namespace llvm 7975