1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IntrinsicsRISCV.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "riscv-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 46 const RISCVSubtarget &STI) 47 : TargetLowering(TM), Subtarget(STI) { 48 49 if (Subtarget.isRV32E()) 50 report_fatal_error("Codegen not yet implemented for RV32E"); 51 52 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 54 55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 56 !Subtarget.hasStdExtF()) { 57 errs() << "Hard-float 'f' ABI can't be used for a target that " 58 "doesn't support the F instruction set extension (ignoring " 59 "target-abi)\n"; 60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 62 !Subtarget.hasStdExtD()) { 63 errs() << "Hard-float 'd' ABI can't be used for a target that " 64 "doesn't support the D instruction set extension (ignoring " 65 "target-abi)\n"; 66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 67 } 68 69 switch (ABI) { 70 default: 71 report_fatal_error("Don't know how to lower this ABI"); 72 case RISCVABI::ABI_ILP32: 73 case RISCVABI::ABI_ILP32F: 74 case RISCVABI::ABI_ILP32D: 75 case RISCVABI::ABI_LP64: 76 case RISCVABI::ABI_LP64F: 77 case RISCVABI::ABI_LP64D: 78 break; 79 } 80 81 MVT XLenVT = Subtarget.getXLenVT(); 82 83 // Set up the register classes. 84 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 85 86 if (Subtarget.hasStdExtZfh()) 87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 88 if (Subtarget.hasStdExtF()) 89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 90 if (Subtarget.hasStdExtD()) 91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 92 93 static const MVT::SimpleValueType BoolVecVTs[] = { 94 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 95 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 96 static const MVT::SimpleValueType IntVecVTs[] = { 97 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 98 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 99 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 100 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 101 MVT::nxv4i64, MVT::nxv8i64}; 102 static const MVT::SimpleValueType F16VecVTs[] = { 103 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 104 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 105 static const MVT::SimpleValueType F32VecVTs[] = { 106 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 107 static const MVT::SimpleValueType F64VecVTs[] = { 108 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 109 110 if (Subtarget.hasStdExtV()) { 111 auto addRegClassForRVV = [this](MVT VT) { 112 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 113 assert(Size <= 512 && isPowerOf2_32(Size)); 114 const TargetRegisterClass *RC; 115 if (Size <= 64) 116 RC = &RISCV::VRRegClass; 117 else if (Size == 128) 118 RC = &RISCV::VRM2RegClass; 119 else if (Size == 256) 120 RC = &RISCV::VRM4RegClass; 121 else 122 RC = &RISCV::VRM8RegClass; 123 124 addRegisterClass(VT, RC); 125 }; 126 127 for (MVT VT : BoolVecVTs) 128 addRegClassForRVV(VT); 129 for (MVT VT : IntVecVTs) 130 addRegClassForRVV(VT); 131 132 if (Subtarget.hasStdExtZfh()) 133 for (MVT VT : F16VecVTs) 134 addRegClassForRVV(VT); 135 136 if (Subtarget.hasStdExtF()) 137 for (MVT VT : F32VecVTs) 138 addRegClassForRVV(VT); 139 140 if (Subtarget.hasStdExtD()) 141 for (MVT VT : F64VecVTs) 142 addRegClassForRVV(VT); 143 144 if (Subtarget.useRVVForFixedLengthVectors()) { 145 auto addRegClassForFixedVectors = [this](MVT VT) { 146 unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT); 147 const TargetRegisterClass *RC; 148 if (LMul == 1) 149 RC = &RISCV::VRRegClass; 150 else if (LMul == 2) 151 RC = &RISCV::VRM2RegClass; 152 else if (LMul == 4) 153 RC = &RISCV::VRM4RegClass; 154 else if (LMul == 8) 155 RC = &RISCV::VRM8RegClass; 156 else 157 llvm_unreachable("Unexpected LMul!"); 158 159 addRegisterClass(VT, RC); 160 }; 161 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 162 if (useRVVForFixedLengthVectorVT(VT)) 163 addRegClassForFixedVectors(VT); 164 165 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 166 if (useRVVForFixedLengthVectorVT(VT)) 167 addRegClassForFixedVectors(VT); 168 } 169 } 170 171 // Compute derived properties from the register classes. 172 computeRegisterProperties(STI.getRegisterInfo()); 173 174 setStackPointerRegisterToSaveRestore(RISCV::X2); 175 176 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 177 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 178 179 // TODO: add all necessary setOperationAction calls. 180 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 181 182 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 183 setOperationAction(ISD::BR_CC, XLenVT, Expand); 184 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 185 186 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 187 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 188 189 setOperationAction(ISD::VASTART, MVT::Other, Custom); 190 setOperationAction(ISD::VAARG, MVT::Other, Expand); 191 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 192 setOperationAction(ISD::VAEND, MVT::Other, Expand); 193 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 195 if (!Subtarget.hasStdExtZbb()) { 196 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 197 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 198 } 199 200 if (Subtarget.is64Bit()) { 201 setOperationAction(ISD::ADD, MVT::i32, Custom); 202 setOperationAction(ISD::SUB, MVT::i32, Custom); 203 setOperationAction(ISD::SHL, MVT::i32, Custom); 204 setOperationAction(ISD::SRA, MVT::i32, Custom); 205 setOperationAction(ISD::SRL, MVT::i32, Custom); 206 } 207 208 if (!Subtarget.hasStdExtM()) { 209 setOperationAction(ISD::MUL, XLenVT, Expand); 210 setOperationAction(ISD::MULHS, XLenVT, Expand); 211 setOperationAction(ISD::MULHU, XLenVT, Expand); 212 setOperationAction(ISD::SDIV, XLenVT, Expand); 213 setOperationAction(ISD::UDIV, XLenVT, Expand); 214 setOperationAction(ISD::SREM, XLenVT, Expand); 215 setOperationAction(ISD::UREM, XLenVT, Expand); 216 } 217 218 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 219 setOperationAction(ISD::MUL, MVT::i32, Custom); 220 221 setOperationAction(ISD::SDIV, MVT::i8, Custom); 222 setOperationAction(ISD::UDIV, MVT::i8, Custom); 223 setOperationAction(ISD::UREM, MVT::i8, Custom); 224 setOperationAction(ISD::SDIV, MVT::i16, Custom); 225 setOperationAction(ISD::UDIV, MVT::i16, Custom); 226 setOperationAction(ISD::UREM, MVT::i16, Custom); 227 setOperationAction(ISD::SDIV, MVT::i32, Custom); 228 setOperationAction(ISD::UDIV, MVT::i32, Custom); 229 setOperationAction(ISD::UREM, MVT::i32, Custom); 230 } 231 232 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 233 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 234 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 235 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 236 237 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 238 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 239 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 240 241 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 242 if (Subtarget.is64Bit()) { 243 setOperationAction(ISD::ROTL, MVT::i32, Custom); 244 setOperationAction(ISD::ROTR, MVT::i32, Custom); 245 } 246 } else { 247 setOperationAction(ISD::ROTL, XLenVT, Expand); 248 setOperationAction(ISD::ROTR, XLenVT, Expand); 249 } 250 251 if (Subtarget.hasStdExtZbp()) { 252 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 253 // more combining. 254 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 255 setOperationAction(ISD::BSWAP, XLenVT, Custom); 256 257 if (Subtarget.is64Bit()) { 258 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 259 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 260 } 261 } else { 262 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 263 // pattern match it directly in isel. 264 setOperationAction(ISD::BSWAP, XLenVT, 265 Subtarget.hasStdExtZbb() ? Legal : Expand); 266 } 267 268 if (Subtarget.hasStdExtZbb()) { 269 setOperationAction(ISD::SMIN, XLenVT, Legal); 270 setOperationAction(ISD::SMAX, XLenVT, Legal); 271 setOperationAction(ISD::UMIN, XLenVT, Legal); 272 setOperationAction(ISD::UMAX, XLenVT, Legal); 273 } else { 274 setOperationAction(ISD::CTTZ, XLenVT, Expand); 275 setOperationAction(ISD::CTLZ, XLenVT, Expand); 276 setOperationAction(ISD::CTPOP, XLenVT, Expand); 277 } 278 279 if (Subtarget.hasStdExtZbt()) { 280 setOperationAction(ISD::FSHL, XLenVT, Custom); 281 setOperationAction(ISD::FSHR, XLenVT, Custom); 282 setOperationAction(ISD::SELECT, XLenVT, Legal); 283 284 if (Subtarget.is64Bit()) { 285 setOperationAction(ISD::FSHL, MVT::i32, Custom); 286 setOperationAction(ISD::FSHR, MVT::i32, Custom); 287 } 288 } else { 289 setOperationAction(ISD::SELECT, XLenVT, Custom); 290 } 291 292 ISD::CondCode FPCCToExpand[] = { 293 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 294 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 295 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 296 297 ISD::NodeType FPOpToExpand[] = { 298 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 299 ISD::FP_TO_FP16}; 300 301 if (Subtarget.hasStdExtZfh()) 302 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 303 304 if (Subtarget.hasStdExtZfh()) { 305 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 306 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 307 for (auto CC : FPCCToExpand) 308 setCondCodeAction(CC, MVT::f16, Expand); 309 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 310 setOperationAction(ISD::SELECT, MVT::f16, Custom); 311 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 312 for (auto Op : FPOpToExpand) 313 setOperationAction(Op, MVT::f16, Expand); 314 } 315 316 if (Subtarget.hasStdExtF()) { 317 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 318 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 319 for (auto CC : FPCCToExpand) 320 setCondCodeAction(CC, MVT::f32, Expand); 321 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 322 setOperationAction(ISD::SELECT, MVT::f32, Custom); 323 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 324 for (auto Op : FPOpToExpand) 325 setOperationAction(Op, MVT::f32, Expand); 326 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 327 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 328 } 329 330 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 331 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 332 333 if (Subtarget.hasStdExtD()) { 334 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 335 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 336 for (auto CC : FPCCToExpand) 337 setCondCodeAction(CC, MVT::f64, Expand); 338 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 339 setOperationAction(ISD::SELECT, MVT::f64, Custom); 340 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 341 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 342 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 343 for (auto Op : FPOpToExpand) 344 setOperationAction(Op, MVT::f64, Expand); 345 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 346 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 347 } 348 349 if (Subtarget.is64Bit()) { 350 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 351 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 352 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 353 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 354 } 355 356 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 357 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 358 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 359 setOperationAction(ISD::JumpTable, XLenVT, Custom); 360 361 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 362 363 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 364 // Unfortunately this can't be determined just from the ISA naming string. 365 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 366 Subtarget.is64Bit() ? Legal : Custom); 367 368 setOperationAction(ISD::TRAP, MVT::Other, Legal); 369 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 370 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 371 372 if (Subtarget.hasStdExtA()) { 373 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 374 setMinCmpXchgSizeInBits(32); 375 } else { 376 setMaxAtomicSizeInBitsSupported(0); 377 } 378 379 setBooleanContents(ZeroOrOneBooleanContent); 380 381 if (Subtarget.hasStdExtV()) { 382 setBooleanVectorContents(ZeroOrOneBooleanContent); 383 384 setOperationAction(ISD::VSCALE, XLenVT, Custom); 385 386 // RVV intrinsics may have illegal operands. 387 // We also need to custom legalize vmv.x.s. 388 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 389 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 390 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 391 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 392 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 393 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 394 395 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 396 397 if (Subtarget.is64Bit()) { 398 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 399 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 400 } else { 401 // We must custom-lower certain vXi64 operations on RV32 due to the vector 402 // element type being illegal. 403 setOperationAction(ISD::SPLAT_VECTOR, MVT::i64, Custom); 404 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 405 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 406 407 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 408 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 409 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 410 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 411 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 412 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 413 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 414 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 415 } 416 417 for (MVT VT : BoolVecVTs) { 418 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 419 420 // Mask VTs are custom-expanded into a series of standard nodes 421 setOperationAction(ISD::TRUNCATE, VT, Custom); 422 } 423 424 for (MVT VT : IntVecVTs) { 425 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 426 427 setOperationAction(ISD::SMIN, VT, Legal); 428 setOperationAction(ISD::SMAX, VT, Legal); 429 setOperationAction(ISD::UMIN, VT, Legal); 430 setOperationAction(ISD::UMAX, VT, Legal); 431 432 setOperationAction(ISD::ROTL, VT, Expand); 433 setOperationAction(ISD::ROTR, VT, Expand); 434 435 // Custom-lower extensions and truncations from/to mask types. 436 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 437 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 438 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 439 440 // RVV has native int->float & float->int conversions where the 441 // element type sizes are within one power-of-two of each other. Any 442 // wider distances between type sizes have to be lowered as sequences 443 // which progressively narrow the gap in stages. 444 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 445 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 446 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 447 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 448 449 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR" 450 // nodes which truncate by one power of two at a time. 451 setOperationAction(ISD::TRUNCATE, VT, Custom); 452 453 // Custom-lower insert/extract operations to simplify patterns. 454 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 455 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 456 457 // Custom-lower reduction operations to set up the corresponding custom 458 // nodes' operands. 459 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 460 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 461 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 462 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 463 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 464 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 465 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 466 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 467 468 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 469 } 470 471 // Expand various CCs to best match the RVV ISA, which natively supports UNE 472 // but no other unordered comparisons, and supports all ordered comparisons 473 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 474 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 475 // and we pattern-match those back to the "original", swapping operands once 476 // more. This way we catch both operations and both "vf" and "fv" forms with 477 // fewer patterns. 478 ISD::CondCode VFPCCToExpand[] = { 479 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 480 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 481 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 482 }; 483 484 // Sets common operation actions on RVV floating-point vector types. 485 const auto SetCommonVFPActions = [&](MVT VT) { 486 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 487 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 488 // sizes are within one power-of-two of each other. Therefore conversions 489 // between vXf16 and vXf64 must be lowered as sequences which convert via 490 // vXf32. 491 setOperationAction(ISD::FP_ROUND, VT, Custom); 492 setOperationAction(ISD::FP_EXTEND, VT, Custom); 493 // Custom-lower insert/extract operations to simplify patterns. 494 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 495 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 496 // Expand various condition codes (explained above). 497 for (auto CC : VFPCCToExpand) 498 setCondCodeAction(CC, VT, Expand); 499 500 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 501 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 502 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 503 504 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 505 }; 506 507 if (Subtarget.hasStdExtZfh()) 508 for (MVT VT : F16VecVTs) 509 SetCommonVFPActions(VT); 510 511 if (Subtarget.hasStdExtF()) 512 for (MVT VT : F32VecVTs) 513 SetCommonVFPActions(VT); 514 515 if (Subtarget.hasStdExtD()) 516 for (MVT VT : F64VecVTs) 517 SetCommonVFPActions(VT); 518 519 if (Subtarget.useRVVForFixedLengthVectors()) { 520 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 521 if (!useRVVForFixedLengthVectorVT(VT)) 522 continue; 523 524 // By default everything must be expanded. 525 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 526 setOperationAction(Op, VT, Expand); 527 528 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 529 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal); 530 531 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 532 533 setOperationAction(ISD::LOAD, VT, Custom); 534 setOperationAction(ISD::STORE, VT, Custom); 535 536 // Operations below are different for between masks and other vectors. 537 if (VT.getVectorElementType() == MVT::i1) { 538 setOperationAction(ISD::AND, VT, Custom); 539 setOperationAction(ISD::OR, VT, Custom); 540 setOperationAction(ISD::XOR, VT, Custom); 541 setOperationAction(ISD::SETCC, VT, Custom); 542 continue; 543 } 544 545 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 546 547 setOperationAction(ISD::ADD, VT, Custom); 548 setOperationAction(ISD::MUL, VT, Custom); 549 setOperationAction(ISD::SUB, VT, Custom); 550 setOperationAction(ISD::AND, VT, Custom); 551 setOperationAction(ISD::OR, VT, Custom); 552 setOperationAction(ISD::XOR, VT, Custom); 553 setOperationAction(ISD::SDIV, VT, Custom); 554 setOperationAction(ISD::SREM, VT, Custom); 555 setOperationAction(ISD::UDIV, VT, Custom); 556 setOperationAction(ISD::UREM, VT, Custom); 557 setOperationAction(ISD::SHL, VT, Custom); 558 setOperationAction(ISD::SRA, VT, Custom); 559 setOperationAction(ISD::SRL, VT, Custom); 560 561 setOperationAction(ISD::SMIN, VT, Custom); 562 setOperationAction(ISD::SMAX, VT, Custom); 563 setOperationAction(ISD::UMIN, VT, Custom); 564 setOperationAction(ISD::UMAX, VT, Custom); 565 566 setOperationAction(ISD::MULHS, VT, Custom); 567 setOperationAction(ISD::MULHU, VT, Custom); 568 569 setOperationAction(ISD::VSELECT, VT, Custom); 570 571 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 572 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 573 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 574 575 setOperationAction(ISD::BITCAST, VT, Custom); 576 } 577 578 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 579 if (!useRVVForFixedLengthVectorVT(VT)) 580 continue; 581 582 // By default everything must be expanded. 583 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 584 setOperationAction(Op, VT, Expand); 585 586 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 587 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal); 588 589 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 590 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 591 592 setOperationAction(ISD::LOAD, VT, Custom); 593 setOperationAction(ISD::STORE, VT, Custom); 594 setOperationAction(ISD::FADD, VT, Custom); 595 setOperationAction(ISD::FSUB, VT, Custom); 596 setOperationAction(ISD::FMUL, VT, Custom); 597 setOperationAction(ISD::FDIV, VT, Custom); 598 setOperationAction(ISD::FNEG, VT, Custom); 599 setOperationAction(ISD::FABS, VT, Custom); 600 setOperationAction(ISD::FSQRT, VT, Custom); 601 setOperationAction(ISD::FMA, VT, Custom); 602 603 for (auto CC : VFPCCToExpand) 604 setCondCodeAction(CC, VT, Expand); 605 606 setOperationAction(ISD::VSELECT, VT, Custom); 607 608 setOperationAction(ISD::BITCAST, VT, Custom); 609 } 610 } 611 } 612 613 // Function alignments. 614 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 615 setMinFunctionAlignment(FunctionAlignment); 616 setPrefFunctionAlignment(FunctionAlignment); 617 618 setMinimumJumpTableEntries(5); 619 620 // Jumps are expensive, compared to logic 621 setJumpIsExpensive(); 622 623 // We can use any register for comparisons 624 setHasMultipleConditionRegisters(); 625 626 setTargetDAGCombine(ISD::SETCC); 627 if (Subtarget.hasStdExtZbp()) { 628 setTargetDAGCombine(ISD::OR); 629 } 630 if (Subtarget.hasStdExtV()) 631 setTargetDAGCombine(ISD::FCOPYSIGN); 632 } 633 634 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 635 LLVMContext &Context, 636 EVT VT) const { 637 if (!VT.isVector()) 638 return getPointerTy(DL); 639 if (Subtarget.hasStdExtV() && 640 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 641 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 642 return VT.changeVectorElementTypeToInteger(); 643 } 644 645 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 646 const CallInst &I, 647 MachineFunction &MF, 648 unsigned Intrinsic) const { 649 switch (Intrinsic) { 650 default: 651 return false; 652 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 653 case Intrinsic::riscv_masked_atomicrmw_add_i32: 654 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 655 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 656 case Intrinsic::riscv_masked_atomicrmw_max_i32: 657 case Intrinsic::riscv_masked_atomicrmw_min_i32: 658 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 659 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 660 case Intrinsic::riscv_masked_cmpxchg_i32: 661 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 662 Info.opc = ISD::INTRINSIC_W_CHAIN; 663 Info.memVT = MVT::getVT(PtrTy->getElementType()); 664 Info.ptrVal = I.getArgOperand(0); 665 Info.offset = 0; 666 Info.align = Align(4); 667 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 668 MachineMemOperand::MOVolatile; 669 return true; 670 } 671 } 672 673 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 674 const AddrMode &AM, Type *Ty, 675 unsigned AS, 676 Instruction *I) const { 677 // No global is ever allowed as a base. 678 if (AM.BaseGV) 679 return false; 680 681 // Require a 12-bit signed offset. 682 if (!isInt<12>(AM.BaseOffs)) 683 return false; 684 685 switch (AM.Scale) { 686 case 0: // "r+i" or just "i", depending on HasBaseReg. 687 break; 688 case 1: 689 if (!AM.HasBaseReg) // allow "r+i". 690 break; 691 return false; // disallow "r+r" or "r+r+i". 692 default: 693 return false; 694 } 695 696 return true; 697 } 698 699 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 700 return isInt<12>(Imm); 701 } 702 703 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 704 return isInt<12>(Imm); 705 } 706 707 // On RV32, 64-bit integers are split into their high and low parts and held 708 // in two different registers, so the trunc is free since the low register can 709 // just be used. 710 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 711 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 712 return false; 713 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 714 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 715 return (SrcBits == 64 && DestBits == 32); 716 } 717 718 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 719 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 720 !SrcVT.isInteger() || !DstVT.isInteger()) 721 return false; 722 unsigned SrcBits = SrcVT.getSizeInBits(); 723 unsigned DestBits = DstVT.getSizeInBits(); 724 return (SrcBits == 64 && DestBits == 32); 725 } 726 727 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 728 // Zexts are free if they can be combined with a load. 729 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 730 EVT MemVT = LD->getMemoryVT(); 731 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 732 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 733 (LD->getExtensionType() == ISD::NON_EXTLOAD || 734 LD->getExtensionType() == ISD::ZEXTLOAD)) 735 return true; 736 } 737 738 return TargetLowering::isZExtFree(Val, VT2); 739 } 740 741 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 742 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 743 } 744 745 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 746 return Subtarget.hasStdExtZbb(); 747 } 748 749 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 750 return Subtarget.hasStdExtZbb(); 751 } 752 753 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 754 bool ForCodeSize) const { 755 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 756 return false; 757 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 758 return false; 759 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 760 return false; 761 if (Imm.isNegZero()) 762 return false; 763 return Imm.isZero(); 764 } 765 766 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 767 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 768 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 769 (VT == MVT::f64 && Subtarget.hasStdExtD()); 770 } 771 772 // Changes the condition code and swaps operands if necessary, so the SetCC 773 // operation matches one of the comparisons supported directly in the RISC-V 774 // ISA. 775 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 776 switch (CC) { 777 default: 778 break; 779 case ISD::SETGT: 780 case ISD::SETLE: 781 case ISD::SETUGT: 782 case ISD::SETULE: 783 CC = ISD::getSetCCSwappedOperands(CC); 784 std::swap(LHS, RHS); 785 break; 786 } 787 } 788 789 // Return the RISC-V branch opcode that matches the given DAG integer 790 // condition code. The CondCode must be one of those supported by the RISC-V 791 // ISA (see normaliseSetCC). 792 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 793 switch (CC) { 794 default: 795 llvm_unreachable("Unsupported CondCode"); 796 case ISD::SETEQ: 797 return RISCV::BEQ; 798 case ISD::SETNE: 799 return RISCV::BNE; 800 case ISD::SETLT: 801 return RISCV::BLT; 802 case ISD::SETGE: 803 return RISCV::BGE; 804 case ISD::SETULT: 805 return RISCV::BLTU; 806 case ISD::SETUGE: 807 return RISCV::BGEU; 808 } 809 } 810 811 RISCVVLMUL RISCVTargetLowering::getLMUL(MVT VT) { 812 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 813 if (VT.getVectorElementType() == MVT::i1) 814 KnownSize *= 8; 815 816 switch (KnownSize) { 817 default: 818 llvm_unreachable("Invalid LMUL."); 819 case 8: 820 return RISCVVLMUL::LMUL_F8; 821 case 16: 822 return RISCVVLMUL::LMUL_F4; 823 case 32: 824 return RISCVVLMUL::LMUL_F2; 825 case 64: 826 return RISCVVLMUL::LMUL_1; 827 case 128: 828 return RISCVVLMUL::LMUL_2; 829 case 256: 830 return RISCVVLMUL::LMUL_4; 831 case 512: 832 return RISCVVLMUL::LMUL_8; 833 } 834 } 835 836 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVVLMUL LMul) { 837 switch (LMul) { 838 default: 839 llvm_unreachable("Invalid LMUL."); 840 case RISCVVLMUL::LMUL_F8: 841 case RISCVVLMUL::LMUL_F4: 842 case RISCVVLMUL::LMUL_F2: 843 case RISCVVLMUL::LMUL_1: 844 return RISCV::VRRegClassID; 845 case RISCVVLMUL::LMUL_2: 846 return RISCV::VRM2RegClassID; 847 case RISCVVLMUL::LMUL_4: 848 return RISCV::VRM4RegClassID; 849 case RISCVVLMUL::LMUL_8: 850 return RISCV::VRM8RegClassID; 851 } 852 } 853 854 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 855 RISCVVLMUL LMUL = getLMUL(VT); 856 if (LMUL == RISCVVLMUL::LMUL_F8 || LMUL == RISCVVLMUL::LMUL_F4 || 857 LMUL == RISCVVLMUL::LMUL_F2 || LMUL == RISCVVLMUL::LMUL_1) { 858 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 859 "Unexpected subreg numbering"); 860 return RISCV::sub_vrm1_0 + Index; 861 } 862 if (LMUL == RISCVVLMUL::LMUL_2) { 863 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 864 "Unexpected subreg numbering"); 865 return RISCV::sub_vrm2_0 + Index; 866 } 867 if (LMUL == RISCVVLMUL::LMUL_4) { 868 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 869 "Unexpected subreg numbering"); 870 return RISCV::sub_vrm4_0 + Index; 871 } 872 llvm_unreachable("Invalid vector type."); 873 } 874 875 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 876 if (VT.getVectorElementType() == MVT::i1) 877 return RISCV::VRRegClassID; 878 return getRegClassIDForLMUL(getLMUL(VT)); 879 } 880 881 // Attempt to decompose a subvector insert/extract between VecVT and 882 // SubVecVT via subregister indices. Returns the subregister index that 883 // can perform the subvector insert/extract with the given element index, as 884 // well as the index corresponding to any leftover subvectors that must be 885 // further inserted/extracted within the register class for SubVecVT. 886 std::pair<unsigned, unsigned> 887 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 888 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 889 const RISCVRegisterInfo *TRI) { 890 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 891 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 892 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 893 "Register classes not ordered"); 894 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 895 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 896 // Try to compose a subregister index that takes us from the incoming 897 // LMUL>1 register class down to the outgoing one. At each step we half 898 // the LMUL: 899 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 900 // Note that this is not guaranteed to find a subregister index, such as 901 // when we are extracting from one VR type to another. 902 unsigned SubRegIdx = RISCV::NoSubRegister; 903 for (const unsigned RCID : 904 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 905 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 906 VecVT = VecVT.getHalfNumVectorElementsVT(); 907 bool IsHi = 908 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 909 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 910 getSubregIndexByMVT(VecVT, IsHi)); 911 if (IsHi) 912 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 913 } 914 return {SubRegIdx, InsertExtractIdx}; 915 } 916 917 // Return the largest legal scalable vector type that matches VT's element type. 918 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 919 const RISCVSubtarget &Subtarget) { 920 assert(VT.isFixedLengthVector() && 921 DAG.getTargetLoweringInfo().isTypeLegal(VT) && 922 "Expected legal fixed length vector!"); 923 924 unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT); 925 assert(LMul <= 8 && isPowerOf2_32(LMul) && "Unexpected LMUL!"); 926 927 MVT EltVT = VT.getVectorElementType(); 928 switch (EltVT.SimpleTy) { 929 default: 930 llvm_unreachable("unexpected element type for RVV container"); 931 case MVT::i1: { 932 // Masks are calculated assuming 8-bit elements since that's when we need 933 // the most elements. 934 unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / 8; 935 return MVT::getScalableVectorVT(MVT::i1, LMul * EltsPerBlock); 936 } 937 case MVT::i8: 938 case MVT::i16: 939 case MVT::i32: 940 case MVT::i64: 941 case MVT::f16: 942 case MVT::f32: 943 case MVT::f64: { 944 unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / EltVT.getSizeInBits(); 945 return MVT::getScalableVectorVT(EltVT, LMul * EltsPerBlock); 946 } 947 } 948 } 949 950 // Grow V to consume an entire RVV register. 951 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 952 const RISCVSubtarget &Subtarget) { 953 assert(VT.isScalableVector() && 954 "Expected to convert into a scalable vector!"); 955 assert(V.getValueType().isFixedLengthVector() && 956 "Expected a fixed length vector operand!"); 957 SDLoc DL(V); 958 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 959 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 960 } 961 962 // Shrink V so it's just big enough to maintain a VT's worth of data. 963 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 964 const RISCVSubtarget &Subtarget) { 965 assert(VT.isFixedLengthVector() && 966 "Expected to convert into a fixed length vector!"); 967 assert(V.getValueType().isScalableVector() && 968 "Expected a scalable vector operand!"); 969 SDLoc DL(V); 970 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 971 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 972 } 973 974 // Gets the two common "VL" operands: an all-ones mask and the vector length. 975 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 976 // the vector type that it is contained in. 977 static std::pair<SDValue, SDValue> 978 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 979 const RISCVSubtarget &Subtarget) { 980 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 981 MVT XLenVT = Subtarget.getXLenVT(); 982 SDValue VL = VecVT.isFixedLengthVector() 983 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 984 : DAG.getRegister(RISCV::X0, XLenVT); 985 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 986 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 987 return {Mask, VL}; 988 } 989 990 // As above but assuming the given type is a scalable vector type. 991 static std::pair<SDValue, SDValue> 992 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 993 const RISCVSubtarget &Subtarget) { 994 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 995 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 996 } 997 998 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 999 const RISCVSubtarget &Subtarget) { 1000 MVT VT = Op.getSimpleValueType(); 1001 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1002 1003 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1004 1005 SDLoc DL(Op); 1006 SDValue Mask, VL; 1007 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1008 1009 if (VT.getVectorElementType() == MVT::i1) { 1010 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1011 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1012 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1013 } 1014 1015 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1016 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1017 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1018 } 1019 1020 return SDValue(); 1021 } 1022 1023 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1024 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1025 : RISCVISD::VMV_V_X_VL; 1026 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1027 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1028 } 1029 1030 // Try and match an index sequence, which we can lower directly to the vid 1031 // instruction. An all-undef vector is matched by getSplatValue, above. 1032 if (VT.isInteger()) { 1033 bool IsVID = true; 1034 for (unsigned i = 0, e = Op.getNumOperands(); i < e && IsVID; i++) 1035 IsVID &= Op.getOperand(i).isUndef() || 1036 (isa<ConstantSDNode>(Op.getOperand(i)) && 1037 Op.getConstantOperandVal(i) == i); 1038 1039 if (IsVID) { 1040 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1041 return convertFromScalableVector(VT, VID, DAG, Subtarget); 1042 } 1043 } 1044 1045 return SDValue(); 1046 } 1047 1048 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 1049 const RISCVSubtarget &Subtarget) { 1050 SDValue V1 = Op.getOperand(0); 1051 SDLoc DL(Op); 1052 MVT VT = Op.getSimpleValueType(); 1053 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 1054 1055 if (SVN->isSplat()) { 1056 int Lane = SVN->getSplatIndex(); 1057 if (Lane >= 0) { 1058 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1059 1060 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1061 assert(Lane < (int)VT.getVectorNumElements() && "Unexpected lane!"); 1062 1063 SDValue Mask, VL; 1064 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1065 MVT XLenVT = Subtarget.getXLenVT(); 1066 SDValue Gather = 1067 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 1068 DAG.getConstant(Lane, DL, XLenVT), Mask, VL); 1069 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1070 } 1071 } 1072 1073 return SDValue(); 1074 } 1075 1076 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 1077 SelectionDAG &DAG) const { 1078 switch (Op.getOpcode()) { 1079 default: 1080 report_fatal_error("unimplemented operand"); 1081 case ISD::GlobalAddress: 1082 return lowerGlobalAddress(Op, DAG); 1083 case ISD::BlockAddress: 1084 return lowerBlockAddress(Op, DAG); 1085 case ISD::ConstantPool: 1086 return lowerConstantPool(Op, DAG); 1087 case ISD::JumpTable: 1088 return lowerJumpTable(Op, DAG); 1089 case ISD::GlobalTLSAddress: 1090 return lowerGlobalTLSAddress(Op, DAG); 1091 case ISD::SELECT: 1092 return lowerSELECT(Op, DAG); 1093 case ISD::VASTART: 1094 return lowerVASTART(Op, DAG); 1095 case ISD::FRAMEADDR: 1096 return lowerFRAMEADDR(Op, DAG); 1097 case ISD::RETURNADDR: 1098 return lowerRETURNADDR(Op, DAG); 1099 case ISD::SHL_PARTS: 1100 return lowerShiftLeftParts(Op, DAG); 1101 case ISD::SRA_PARTS: 1102 return lowerShiftRightParts(Op, DAG, true); 1103 case ISD::SRL_PARTS: 1104 return lowerShiftRightParts(Op, DAG, false); 1105 case ISD::BITCAST: { 1106 SDValue Op0 = Op.getOperand(0); 1107 // We can handle fixed length vector bitcasts with a simple replacement 1108 // in isel. 1109 if (Op.getValueType().isFixedLengthVector()) { 1110 if (Op0.getValueType().isFixedLengthVector()) 1111 return Op; 1112 return SDValue(); 1113 } 1114 assert(((Subtarget.is64Bit() && Subtarget.hasStdExtF()) || 1115 Subtarget.hasStdExtZfh()) && 1116 "Unexpected custom legalisation"); 1117 SDLoc DL(Op); 1118 if (Op.getValueType() == MVT::f16 && Subtarget.hasStdExtZfh()) { 1119 if (Op0.getValueType() != MVT::i16) 1120 return SDValue(); 1121 SDValue NewOp0 = 1122 DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Op0); 1123 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 1124 return FPConv; 1125 } else if (Op.getValueType() == MVT::f32 && Subtarget.is64Bit() && 1126 Subtarget.hasStdExtF()) { 1127 if (Op0.getValueType() != MVT::i32) 1128 return SDValue(); 1129 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 1130 SDValue FPConv = 1131 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 1132 return FPConv; 1133 } 1134 return SDValue(); 1135 } 1136 case ISD::INTRINSIC_WO_CHAIN: 1137 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 1138 case ISD::INTRINSIC_W_CHAIN: 1139 return LowerINTRINSIC_W_CHAIN(Op, DAG); 1140 case ISD::BSWAP: 1141 case ISD::BITREVERSE: { 1142 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 1143 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 1144 MVT VT = Op.getSimpleValueType(); 1145 SDLoc DL(Op); 1146 // Start with the maximum immediate value which is the bitwidth - 1. 1147 unsigned Imm = VT.getSizeInBits() - 1; 1148 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 1149 if (Op.getOpcode() == ISD::BSWAP) 1150 Imm &= ~0x7U; 1151 return DAG.getNode(RISCVISD::GREVI, DL, VT, Op.getOperand(0), 1152 DAG.getTargetConstant(Imm, DL, Subtarget.getXLenVT())); 1153 } 1154 case ISD::FSHL: 1155 case ISD::FSHR: { 1156 MVT VT = Op.getSimpleValueType(); 1157 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 1158 SDLoc DL(Op); 1159 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 1160 // use log(XLen) bits. Mask the shift amount accordingly. 1161 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 1162 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 1163 DAG.getConstant(ShAmtWidth, DL, VT)); 1164 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 1165 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 1166 } 1167 case ISD::TRUNCATE: { 1168 SDLoc DL(Op); 1169 EVT VT = Op.getValueType(); 1170 // Only custom-lower vector truncates 1171 if (!VT.isVector()) 1172 return Op; 1173 1174 // Truncates to mask types are handled differently 1175 if (VT.getVectorElementType() == MVT::i1) 1176 return lowerVectorMaskTrunc(Op, DAG); 1177 1178 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 1179 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR" nodes which 1180 // truncate by one power of two at a time. 1181 EVT DstEltVT = VT.getVectorElementType(); 1182 1183 SDValue Src = Op.getOperand(0); 1184 EVT SrcVT = Src.getValueType(); 1185 EVT SrcEltVT = SrcVT.getVectorElementType(); 1186 1187 assert(DstEltVT.bitsLT(SrcEltVT) && 1188 isPowerOf2_64(DstEltVT.getSizeInBits()) && 1189 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 1190 "Unexpected vector truncate lowering"); 1191 1192 SDValue Result = Src; 1193 LLVMContext &Context = *DAG.getContext(); 1194 const ElementCount Count = SrcVT.getVectorElementCount(); 1195 do { 1196 SrcEltVT = EVT::getIntegerVT(Context, SrcEltVT.getSizeInBits() / 2); 1197 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 1198 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR, DL, ResultVT, Result); 1199 } while (SrcEltVT != DstEltVT); 1200 1201 return Result; 1202 } 1203 case ISD::ANY_EXTEND: 1204 case ISD::ZERO_EXTEND: 1205 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 1206 case ISD::SIGN_EXTEND: 1207 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 1208 case ISD::SPLAT_VECTOR: 1209 return lowerSPLATVECTOR(Op, DAG); 1210 case ISD::INSERT_VECTOR_ELT: 1211 return lowerINSERT_VECTOR_ELT(Op, DAG); 1212 case ISD::EXTRACT_VECTOR_ELT: 1213 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 1214 case ISD::VSCALE: { 1215 MVT VT = Op.getSimpleValueType(); 1216 SDLoc DL(Op); 1217 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 1218 // We define our scalable vector types for lmul=1 to use a 64 bit known 1219 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 1220 // vscale as VLENB / 8. 1221 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 1222 DAG.getConstant(3, DL, VT)); 1223 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 1224 } 1225 case ISD::FP_EXTEND: { 1226 // RVV can only do fp_extend to types double the size as the source. We 1227 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 1228 // via f32. 1229 MVT VT = Op.getSimpleValueType(); 1230 MVT SrcVT = Op.getOperand(0).getSimpleValueType(); 1231 // We only need to close the gap between vXf16->vXf64. 1232 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 1233 SrcVT.getVectorElementType() != MVT::f16) 1234 return Op; 1235 SDLoc DL(Op); 1236 MVT InterVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 1237 SDValue IntermediateRound = 1238 DAG.getFPExtendOrRound(Op.getOperand(0), DL, InterVT); 1239 return DAG.getFPExtendOrRound(IntermediateRound, DL, VT); 1240 } 1241 case ISD::FP_ROUND: { 1242 // RVV can only do fp_round to types half the size as the source. We 1243 // custom-lower f64->f16 rounds via RVV's round-to-odd float 1244 // conversion instruction. 1245 MVT VT = Op.getSimpleValueType(); 1246 MVT SrcVT = Op.getOperand(0).getSimpleValueType(); 1247 // We only need to close the gap between vXf64<->vXf16. 1248 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 1249 SrcVT.getVectorElementType() != MVT::f64) 1250 return Op; 1251 SDLoc DL(Op); 1252 MVT InterVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 1253 SDValue IntermediateRound = 1254 DAG.getNode(RISCVISD::VFNCVT_ROD, DL, InterVT, Op.getOperand(0)); 1255 return DAG.getFPExtendOrRound(IntermediateRound, DL, VT); 1256 } 1257 case ISD::FP_TO_SINT: 1258 case ISD::FP_TO_UINT: 1259 case ISD::SINT_TO_FP: 1260 case ISD::UINT_TO_FP: { 1261 // RVV can only do fp<->int conversions to types half/double the size as 1262 // the source. We custom-lower any conversions that do two hops into 1263 // sequences. 1264 MVT VT = Op.getSimpleValueType(); 1265 if (!VT.isVector()) 1266 return Op; 1267 SDLoc DL(Op); 1268 SDValue Src = Op.getOperand(0); 1269 MVT EltVT = VT.getVectorElementType(); 1270 MVT SrcEltVT = Src.getSimpleValueType().getVectorElementType(); 1271 unsigned EltSize = EltVT.getSizeInBits(); 1272 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 1273 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 1274 "Unexpected vector element types"); 1275 bool IsInt2FP = SrcEltVT.isInteger(); 1276 // Widening conversions 1277 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 1278 if (IsInt2FP) { 1279 // Do a regular integer sign/zero extension then convert to float. 1280 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 1281 VT.getVectorElementCount()); 1282 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 1283 ? ISD::ZERO_EXTEND 1284 : ISD::SIGN_EXTEND; 1285 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 1286 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 1287 } 1288 // FP2Int 1289 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 1290 // Do one doubling fp_extend then complete the operation by converting 1291 // to int. 1292 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 1293 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 1294 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 1295 } 1296 1297 // Narrowing conversions 1298 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 1299 if (IsInt2FP) { 1300 // One narrowing int_to_fp, then an fp_round. 1301 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 1302 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 1303 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 1304 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 1305 } 1306 // FP2Int 1307 // One narrowing fp_to_int, then truncate the integer. If the float isn't 1308 // representable by the integer, the result is poison. 1309 MVT IVecVT = 1310 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 1311 VT.getVectorElementCount()); 1312 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 1313 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 1314 } 1315 1316 return Op; 1317 } 1318 case ISD::VECREDUCE_ADD: 1319 case ISD::VECREDUCE_UMAX: 1320 case ISD::VECREDUCE_SMAX: 1321 case ISD::VECREDUCE_UMIN: 1322 case ISD::VECREDUCE_SMIN: 1323 case ISD::VECREDUCE_AND: 1324 case ISD::VECREDUCE_OR: 1325 case ISD::VECREDUCE_XOR: 1326 return lowerVECREDUCE(Op, DAG); 1327 case ISD::VECREDUCE_FADD: 1328 case ISD::VECREDUCE_SEQ_FADD: 1329 return lowerFPVECREDUCE(Op, DAG); 1330 case ISD::EXTRACT_SUBVECTOR: 1331 return lowerEXTRACT_SUBVECTOR(Op, DAG); 1332 case ISD::BUILD_VECTOR: 1333 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 1334 case ISD::VECTOR_SHUFFLE: 1335 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 1336 case ISD::LOAD: 1337 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 1338 case ISD::STORE: 1339 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 1340 case ISD::SETCC: 1341 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 1342 case ISD::ADD: 1343 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 1344 case ISD::SUB: 1345 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 1346 case ISD::MUL: 1347 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 1348 case ISD::MULHS: 1349 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 1350 case ISD::MULHU: 1351 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 1352 case ISD::AND: 1353 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 1354 RISCVISD::AND_VL); 1355 case ISD::OR: 1356 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 1357 RISCVISD::OR_VL); 1358 case ISD::XOR: 1359 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 1360 RISCVISD::XOR_VL); 1361 case ISD::SDIV: 1362 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 1363 case ISD::SREM: 1364 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 1365 case ISD::UDIV: 1366 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 1367 case ISD::UREM: 1368 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 1369 case ISD::SHL: 1370 return lowerToScalableOp(Op, DAG, RISCVISD::SHL_VL); 1371 case ISD::SRA: 1372 return lowerToScalableOp(Op, DAG, RISCVISD::SRA_VL); 1373 case ISD::SRL: 1374 return lowerToScalableOp(Op, DAG, RISCVISD::SRL_VL); 1375 case ISD::FADD: 1376 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 1377 case ISD::FSUB: 1378 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 1379 case ISD::FMUL: 1380 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 1381 case ISD::FDIV: 1382 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 1383 case ISD::FNEG: 1384 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 1385 case ISD::FABS: 1386 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 1387 case ISD::FSQRT: 1388 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 1389 case ISD::FMA: 1390 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 1391 case ISD::SMIN: 1392 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 1393 case ISD::SMAX: 1394 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 1395 case ISD::UMIN: 1396 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 1397 case ISD::UMAX: 1398 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 1399 case ISD::VSELECT: 1400 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 1401 } 1402 } 1403 1404 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 1405 SelectionDAG &DAG, unsigned Flags) { 1406 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 1407 } 1408 1409 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 1410 SelectionDAG &DAG, unsigned Flags) { 1411 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 1412 Flags); 1413 } 1414 1415 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 1416 SelectionDAG &DAG, unsigned Flags) { 1417 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 1418 N->getOffset(), Flags); 1419 } 1420 1421 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 1422 SelectionDAG &DAG, unsigned Flags) { 1423 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 1424 } 1425 1426 template <class NodeTy> 1427 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 1428 bool IsLocal) const { 1429 SDLoc DL(N); 1430 EVT Ty = getPointerTy(DAG.getDataLayout()); 1431 1432 if (isPositionIndependent()) { 1433 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 1434 if (IsLocal) 1435 // Use PC-relative addressing to access the symbol. This generates the 1436 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 1437 // %pcrel_lo(auipc)). 1438 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 1439 1440 // Use PC-relative addressing to access the GOT for this symbol, then load 1441 // the address from the GOT. This generates the pattern (PseudoLA sym), 1442 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 1443 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 1444 } 1445 1446 switch (getTargetMachine().getCodeModel()) { 1447 default: 1448 report_fatal_error("Unsupported code model for lowering"); 1449 case CodeModel::Small: { 1450 // Generate a sequence for accessing addresses within the first 2 GiB of 1451 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 1452 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 1453 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 1454 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 1455 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 1456 } 1457 case CodeModel::Medium: { 1458 // Generate a sequence for accessing addresses within any 2GiB range within 1459 // the address space. This generates the pattern (PseudoLLA sym), which 1460 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 1461 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 1462 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 1463 } 1464 } 1465 } 1466 1467 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 1468 SelectionDAG &DAG) const { 1469 SDLoc DL(Op); 1470 EVT Ty = Op.getValueType(); 1471 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 1472 int64_t Offset = N->getOffset(); 1473 MVT XLenVT = Subtarget.getXLenVT(); 1474 1475 const GlobalValue *GV = N->getGlobal(); 1476 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 1477 SDValue Addr = getAddr(N, DAG, IsLocal); 1478 1479 // In order to maximise the opportunity for common subexpression elimination, 1480 // emit a separate ADD node for the global address offset instead of folding 1481 // it in the global address node. Later peephole optimisations may choose to 1482 // fold it back in when profitable. 1483 if (Offset != 0) 1484 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 1485 DAG.getConstant(Offset, DL, XLenVT)); 1486 return Addr; 1487 } 1488 1489 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 1490 SelectionDAG &DAG) const { 1491 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 1492 1493 return getAddr(N, DAG); 1494 } 1495 1496 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 1497 SelectionDAG &DAG) const { 1498 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 1499 1500 return getAddr(N, DAG); 1501 } 1502 1503 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 1504 SelectionDAG &DAG) const { 1505 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 1506 1507 return getAddr(N, DAG); 1508 } 1509 1510 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 1511 SelectionDAG &DAG, 1512 bool UseGOT) const { 1513 SDLoc DL(N); 1514 EVT Ty = getPointerTy(DAG.getDataLayout()); 1515 const GlobalValue *GV = N->getGlobal(); 1516 MVT XLenVT = Subtarget.getXLenVT(); 1517 1518 if (UseGOT) { 1519 // Use PC-relative addressing to access the GOT for this TLS symbol, then 1520 // load the address from the GOT and add the thread pointer. This generates 1521 // the pattern (PseudoLA_TLS_IE sym), which expands to 1522 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 1523 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 1524 SDValue Load = 1525 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 1526 1527 // Add the thread pointer. 1528 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 1529 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 1530 } 1531 1532 // Generate a sequence for accessing the address relative to the thread 1533 // pointer, with the appropriate adjustment for the thread pointer offset. 1534 // This generates the pattern 1535 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 1536 SDValue AddrHi = 1537 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 1538 SDValue AddrAdd = 1539 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 1540 SDValue AddrLo = 1541 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 1542 1543 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 1544 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 1545 SDValue MNAdd = SDValue( 1546 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 1547 0); 1548 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 1549 } 1550 1551 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 1552 SelectionDAG &DAG) const { 1553 SDLoc DL(N); 1554 EVT Ty = getPointerTy(DAG.getDataLayout()); 1555 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 1556 const GlobalValue *GV = N->getGlobal(); 1557 1558 // Use a PC-relative addressing mode to access the global dynamic GOT address. 1559 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 1560 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 1561 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 1562 SDValue Load = 1563 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 1564 1565 // Prepare argument list to generate call. 1566 ArgListTy Args; 1567 ArgListEntry Entry; 1568 Entry.Node = Load; 1569 Entry.Ty = CallTy; 1570 Args.push_back(Entry); 1571 1572 // Setup call to __tls_get_addr. 1573 TargetLowering::CallLoweringInfo CLI(DAG); 1574 CLI.setDebugLoc(DL) 1575 .setChain(DAG.getEntryNode()) 1576 .setLibCallee(CallingConv::C, CallTy, 1577 DAG.getExternalSymbol("__tls_get_addr", Ty), 1578 std::move(Args)); 1579 1580 return LowerCallTo(CLI).first; 1581 } 1582 1583 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 1584 SelectionDAG &DAG) const { 1585 SDLoc DL(Op); 1586 EVT Ty = Op.getValueType(); 1587 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 1588 int64_t Offset = N->getOffset(); 1589 MVT XLenVT = Subtarget.getXLenVT(); 1590 1591 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 1592 1593 if (DAG.getMachineFunction().getFunction().getCallingConv() == 1594 CallingConv::GHC) 1595 report_fatal_error("In GHC calling convention TLS is not supported"); 1596 1597 SDValue Addr; 1598 switch (Model) { 1599 case TLSModel::LocalExec: 1600 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 1601 break; 1602 case TLSModel::InitialExec: 1603 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 1604 break; 1605 case TLSModel::LocalDynamic: 1606 case TLSModel::GeneralDynamic: 1607 Addr = getDynamicTLSAddr(N, DAG); 1608 break; 1609 } 1610 1611 // In order to maximise the opportunity for common subexpression elimination, 1612 // emit a separate ADD node for the global address offset instead of folding 1613 // it in the global address node. Later peephole optimisations may choose to 1614 // fold it back in when profitable. 1615 if (Offset != 0) 1616 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 1617 DAG.getConstant(Offset, DL, XLenVT)); 1618 return Addr; 1619 } 1620 1621 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 1622 SDValue CondV = Op.getOperand(0); 1623 SDValue TrueV = Op.getOperand(1); 1624 SDValue FalseV = Op.getOperand(2); 1625 SDLoc DL(Op); 1626 MVT XLenVT = Subtarget.getXLenVT(); 1627 1628 // If the result type is XLenVT and CondV is the output of a SETCC node 1629 // which also operated on XLenVT inputs, then merge the SETCC node into the 1630 // lowered RISCVISD::SELECT_CC to take advantage of the integer 1631 // compare+branch instructions. i.e.: 1632 // (select (setcc lhs, rhs, cc), truev, falsev) 1633 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 1634 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 1635 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 1636 SDValue LHS = CondV.getOperand(0); 1637 SDValue RHS = CondV.getOperand(1); 1638 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 1639 ISD::CondCode CCVal = CC->get(); 1640 1641 normaliseSetCC(LHS, RHS, CCVal); 1642 1643 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 1644 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 1645 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 1646 } 1647 1648 // Otherwise: 1649 // (select condv, truev, falsev) 1650 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 1651 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 1652 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 1653 1654 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 1655 1656 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 1657 } 1658 1659 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1660 MachineFunction &MF = DAG.getMachineFunction(); 1661 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 1662 1663 SDLoc DL(Op); 1664 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1665 getPointerTy(MF.getDataLayout())); 1666 1667 // vastart just stores the address of the VarArgsFrameIndex slot into the 1668 // memory location argument. 1669 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1670 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 1671 MachinePointerInfo(SV)); 1672 } 1673 1674 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 1675 SelectionDAG &DAG) const { 1676 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 1677 MachineFunction &MF = DAG.getMachineFunction(); 1678 MachineFrameInfo &MFI = MF.getFrameInfo(); 1679 MFI.setFrameAddressIsTaken(true); 1680 Register FrameReg = RI.getFrameRegister(MF); 1681 int XLenInBytes = Subtarget.getXLen() / 8; 1682 1683 EVT VT = Op.getValueType(); 1684 SDLoc DL(Op); 1685 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 1686 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1687 while (Depth--) { 1688 int Offset = -(XLenInBytes * 2); 1689 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 1690 DAG.getIntPtrConstant(Offset, DL)); 1691 FrameAddr = 1692 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 1693 } 1694 return FrameAddr; 1695 } 1696 1697 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 1698 SelectionDAG &DAG) const { 1699 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 1700 MachineFunction &MF = DAG.getMachineFunction(); 1701 MachineFrameInfo &MFI = MF.getFrameInfo(); 1702 MFI.setReturnAddressIsTaken(true); 1703 MVT XLenVT = Subtarget.getXLenVT(); 1704 int XLenInBytes = Subtarget.getXLen() / 8; 1705 1706 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1707 return SDValue(); 1708 1709 EVT VT = Op.getValueType(); 1710 SDLoc DL(Op); 1711 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1712 if (Depth) { 1713 int Off = -XLenInBytes; 1714 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 1715 SDValue Offset = DAG.getConstant(Off, DL, VT); 1716 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 1717 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 1718 MachinePointerInfo()); 1719 } 1720 1721 // Return the value of the return address register, marking it an implicit 1722 // live-in. 1723 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 1724 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 1725 } 1726 1727 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 1728 SelectionDAG &DAG) const { 1729 SDLoc DL(Op); 1730 SDValue Lo = Op.getOperand(0); 1731 SDValue Hi = Op.getOperand(1); 1732 SDValue Shamt = Op.getOperand(2); 1733 EVT VT = Lo.getValueType(); 1734 1735 // if Shamt-XLEN < 0: // Shamt < XLEN 1736 // Lo = Lo << Shamt 1737 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 1738 // else: 1739 // Lo = 0 1740 // Hi = Lo << (Shamt-XLEN) 1741 1742 SDValue Zero = DAG.getConstant(0, DL, VT); 1743 SDValue One = DAG.getConstant(1, DL, VT); 1744 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 1745 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 1746 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 1747 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 1748 1749 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 1750 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 1751 SDValue ShiftRightLo = 1752 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 1753 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 1754 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 1755 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 1756 1757 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 1758 1759 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 1760 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 1761 1762 SDValue Parts[2] = {Lo, Hi}; 1763 return DAG.getMergeValues(Parts, DL); 1764 } 1765 1766 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 1767 bool IsSRA) const { 1768 SDLoc DL(Op); 1769 SDValue Lo = Op.getOperand(0); 1770 SDValue Hi = Op.getOperand(1); 1771 SDValue Shamt = Op.getOperand(2); 1772 EVT VT = Lo.getValueType(); 1773 1774 // SRA expansion: 1775 // if Shamt-XLEN < 0: // Shamt < XLEN 1776 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 1777 // Hi = Hi >>s Shamt 1778 // else: 1779 // Lo = Hi >>s (Shamt-XLEN); 1780 // Hi = Hi >>s (XLEN-1) 1781 // 1782 // SRL expansion: 1783 // if Shamt-XLEN < 0: // Shamt < XLEN 1784 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 1785 // Hi = Hi >>u Shamt 1786 // else: 1787 // Lo = Hi >>u (Shamt-XLEN); 1788 // Hi = 0; 1789 1790 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 1791 1792 SDValue Zero = DAG.getConstant(0, DL, VT); 1793 SDValue One = DAG.getConstant(1, DL, VT); 1794 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 1795 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 1796 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 1797 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 1798 1799 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 1800 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 1801 SDValue ShiftLeftHi = 1802 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 1803 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 1804 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 1805 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 1806 SDValue HiFalse = 1807 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 1808 1809 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 1810 1811 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 1812 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 1813 1814 SDValue Parts[2] = {Lo, Hi}; 1815 return DAG.getMergeValues(Parts, DL); 1816 } 1817 1818 // Custom-lower a SPLAT_VECTOR where XLEN<SEW, as the SEW element type is 1819 // illegal (currently only vXi64 RV32). 1820 // FIXME: We could also catch non-constant sign-extended i32 values and lower 1821 // them to SPLAT_VECTOR_I64 1822 SDValue RISCVTargetLowering::lowerSPLATVECTOR(SDValue Op, 1823 SelectionDAG &DAG) const { 1824 SDLoc DL(Op); 1825 EVT VecVT = Op.getValueType(); 1826 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 1827 "Unexpected SPLAT_VECTOR lowering"); 1828 SDValue SplatVal = Op.getOperand(0); 1829 1830 // If we can prove that the value is a sign-extended 32-bit value, lower this 1831 // as a custom node in order to try and match RVV vector/scalar instructions. 1832 if (auto *CVal = dyn_cast<ConstantSDNode>(SplatVal)) { 1833 if (isInt<32>(CVal->getSExtValue())) 1834 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, 1835 DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32)); 1836 } 1837 1838 if (SplatVal.getOpcode() == ISD::SIGN_EXTEND && 1839 SplatVal.getOperand(0).getValueType() == MVT::i32) { 1840 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, 1841 SplatVal.getOperand(0)); 1842 } 1843 1844 // Else, on RV32 we lower an i64-element SPLAT_VECTOR thus, being careful not 1845 // to accidentally sign-extend the 32-bit halves to the e64 SEW: 1846 // vmv.v.x vX, hi 1847 // vsll.vx vX, vX, /*32*/ 1848 // vmv.v.x vY, lo 1849 // vsll.vx vY, vY, /*32*/ 1850 // vsrl.vx vY, vY, /*32*/ 1851 // vor.vv vX, vX, vY 1852 SDValue One = DAG.getConstant(1, DL, MVT::i32); 1853 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 1854 SDValue ThirtyTwoV = DAG.getConstant(32, DL, VecVT); 1855 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, SplatVal, Zero); 1856 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, SplatVal, One); 1857 1858 Lo = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 1859 Lo = DAG.getNode(ISD::SHL, DL, VecVT, Lo, ThirtyTwoV); 1860 Lo = DAG.getNode(ISD::SRL, DL, VecVT, Lo, ThirtyTwoV); 1861 1862 if (isNullConstant(Hi)) 1863 return Lo; 1864 1865 Hi = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Hi); 1866 Hi = DAG.getNode(ISD::SHL, DL, VecVT, Hi, ThirtyTwoV); 1867 1868 return DAG.getNode(ISD::OR, DL, VecVT, Lo, Hi); 1869 } 1870 1871 // Custom-lower extensions from mask vectors by using a vselect either with 1 1872 // for zero/any-extension or -1 for sign-extension: 1873 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 1874 // Note that any-extension is lowered identically to zero-extension. 1875 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 1876 int64_t ExtTrueVal) const { 1877 SDLoc DL(Op); 1878 MVT VecVT = Op.getSimpleValueType(); 1879 SDValue Src = Op.getOperand(0); 1880 // Only custom-lower extensions from mask types 1881 if (!Src.getValueType().isVector() || 1882 Src.getValueType().getVectorElementType() != MVT::i1) 1883 return Op; 1884 1885 MVT XLenVT = Subtarget.getXLenVT(); 1886 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 1887 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 1888 1889 if (VecVT.isScalableVector()) { 1890 // Be careful not to introduce illegal scalar types at this stage, and be 1891 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 1892 // illegal and must be expanded. Since we know that the constants are 1893 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 1894 bool IsRV32E64 = 1895 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 1896 1897 if (!IsRV32E64) { 1898 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 1899 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 1900 } else { 1901 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 1902 SplatTrueVal = 1903 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 1904 } 1905 1906 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 1907 } 1908 1909 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VecVT, Subtarget); 1910 MVT I1ContainerVT = 1911 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1912 1913 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 1914 1915 SDValue Mask, VL; 1916 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 1917 1918 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 1919 SplatTrueVal = 1920 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 1921 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 1922 SplatTrueVal, SplatZero, VL); 1923 1924 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 1925 } 1926 1927 // Custom-lower truncations from vectors to mask vectors by using a mask and a 1928 // setcc operation: 1929 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 1930 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 1931 SelectionDAG &DAG) const { 1932 SDLoc DL(Op); 1933 EVT MaskVT = Op.getValueType(); 1934 // Only expect to custom-lower truncations to mask types 1935 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 1936 "Unexpected type for vector mask lowering"); 1937 SDValue Src = Op.getOperand(0); 1938 EVT VecVT = Src.getValueType(); 1939 1940 // Be careful not to introduce illegal scalar types at this stage, and be 1941 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 1942 // illegal and must be expanded. Since we know that the constants are 1943 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 1944 bool IsRV32E64 = 1945 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 1946 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 1947 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1948 1949 if (!IsRV32E64) { 1950 SplatOne = DAG.getSplatVector(VecVT, DL, SplatOne); 1951 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 1952 } else { 1953 SplatOne = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatOne); 1954 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 1955 } 1956 1957 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 1958 1959 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 1960 } 1961 1962 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 1963 SelectionDAG &DAG) const { 1964 SDLoc DL(Op); 1965 MVT VecVT = Op.getSimpleValueType(); 1966 SDValue Vec = Op.getOperand(0); 1967 SDValue Val = Op.getOperand(1); 1968 SDValue Idx = Op.getOperand(2); 1969 1970 // Custom-legalize INSERT_VECTOR_ELT where XLEN>=SEW, so that the vector is 1971 // first slid down into position, the value is inserted into the first 1972 // position, and the vector is slid back up. We do this to simplify patterns. 1973 // (slideup vec, (insertelt (slidedown impdef, vec, idx), val, 0), idx), 1974 if (Subtarget.is64Bit() || Val.getValueType() != MVT::i64) { 1975 if (isNullConstant(Idx)) 1976 return Op; 1977 SDValue Mask, VL; 1978 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 1979 SDValue Slidedown = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, 1980 DAG.getUNDEF(VecVT), Vec, Idx, Mask, VL); 1981 SDValue InsertElt0 = 1982 DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecVT, Slidedown, Val, 1983 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 1984 1985 return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, Vec, InsertElt0, Idx, 1986 Mask, VL); 1987 } 1988 1989 if (!VecVT.isScalableVector()) 1990 return SDValue(); 1991 1992 // Custom-legalize INSERT_VECTOR_ELT where XLEN<SEW, as the SEW element type 1993 // is illegal (currently only vXi64 RV32). 1994 // Since there is no easy way of getting a single element into a vector when 1995 // XLEN<SEW, we lower the operation to the following sequence: 1996 // splat vVal, rVal 1997 // vid.v vVid 1998 // vmseq.vx mMask, vVid, rIdx 1999 // vmerge.vvm vDest, vSrc, vVal, mMask 2000 // This essentially merges the original vector with the inserted element by 2001 // using a mask whose only set bit is that corresponding to the insert 2002 // index. 2003 SDValue SplattedVal = DAG.getSplatVector(VecVT, DL, Val); 2004 SDValue SplattedIdx = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Idx); 2005 2006 SDValue Mask, VL; 2007 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 2008 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VecVT, Mask, VL); 2009 auto SetCCVT = 2010 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VecVT); 2011 SDValue SelectCond = DAG.getSetCC(DL, SetCCVT, VID, SplattedIdx, ISD::SETEQ); 2012 2013 return DAG.getNode(ISD::VSELECT, DL, VecVT, SelectCond, SplattedVal, Vec); 2014 } 2015 2016 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 2017 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 2018 // types this is done using VMV_X_S to allow us to glean information about the 2019 // sign bits of the result. 2020 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 2021 SelectionDAG &DAG) const { 2022 SDLoc DL(Op); 2023 SDValue Idx = Op.getOperand(1); 2024 SDValue Vec = Op.getOperand(0); 2025 EVT EltVT = Op.getValueType(); 2026 MVT VecVT = Vec.getSimpleValueType(); 2027 MVT XLenVT = Subtarget.getXLenVT(); 2028 2029 // If the index is 0, the vector is already in the right position. 2030 if (!isNullConstant(Idx)) { 2031 SDValue Mask, VL; 2032 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 2033 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), 2034 Vec, Idx, Mask, VL); 2035 } 2036 2037 if (!EltVT.isInteger()) { 2038 // Floating-point extracts are handled in TableGen. 2039 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 2040 DAG.getConstant(0, DL, XLenVT)); 2041 } 2042 2043 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 2044 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 2045 } 2046 2047 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 2048 SelectionDAG &DAG) const { 2049 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2050 SDLoc DL(Op); 2051 2052 if (Subtarget.hasStdExtV()) { 2053 // Some RVV intrinsics may claim that they want an integer operand to be 2054 // extended. 2055 if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 2056 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) { 2057 if (II->ExtendedOperand) { 2058 assert(II->ExtendedOperand < Op.getNumOperands()); 2059 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 2060 SDValue &ScalarOp = Operands[II->ExtendedOperand]; 2061 EVT OpVT = ScalarOp.getValueType(); 2062 if (OpVT == MVT::i8 || OpVT == MVT::i16 || 2063 (OpVT == MVT::i32 && Subtarget.is64Bit())) { 2064 // If the operand is a constant, sign extend to increase our chances 2065 // of being able to use a .vi instruction. ANY_EXTEND would become a 2066 // a zero extend and the simm5 check in isel would fail. 2067 // FIXME: Should we ignore the upper bits in isel instead? 2068 unsigned ExtOpc = isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND 2069 : ISD::ANY_EXTEND; 2070 ScalarOp = DAG.getNode(ExtOpc, DL, Subtarget.getXLenVT(), ScalarOp); 2071 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(), 2072 Operands); 2073 } 2074 } 2075 } 2076 } 2077 2078 switch (IntNo) { 2079 default: 2080 return SDValue(); // Don't custom lower most intrinsics. 2081 case Intrinsic::thread_pointer: { 2082 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2083 return DAG.getRegister(RISCV::X4, PtrVT); 2084 } 2085 case Intrinsic::riscv_vmv_x_s: 2086 assert(Op.getValueType() == Subtarget.getXLenVT() && "Unexpected VT!"); 2087 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 2088 Op.getOperand(1)); 2089 case Intrinsic::riscv_vmv_v_x: { 2090 SDValue Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), 2091 Op.getOperand(1)); 2092 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, Op.getValueType(), 2093 Scalar, Op.getOperand(2)); 2094 } 2095 case Intrinsic::riscv_vfmv_v_f: 2096 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 2097 Op.getOperand(1), Op.getOperand(2)); 2098 } 2099 } 2100 2101 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 2102 SelectionDAG &DAG) const { 2103 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 2104 SDLoc DL(Op); 2105 2106 if (Subtarget.hasStdExtV()) { 2107 // Some RVV intrinsics may claim that they want an integer operand to be 2108 // extended. 2109 if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 2110 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) { 2111 if (II->ExtendedOperand) { 2112 // The operands start from the second argument in INTRINSIC_W_CHAIN. 2113 unsigned ExtendOp = II->ExtendedOperand + 1; 2114 assert(ExtendOp < Op.getNumOperands()); 2115 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 2116 SDValue &ScalarOp = Operands[ExtendOp]; 2117 EVT OpVT = ScalarOp.getValueType(); 2118 if (OpVT == MVT::i8 || OpVT == MVT::i16 || 2119 (OpVT == MVT::i32 && Subtarget.is64Bit())) { 2120 // If the operand is a constant, sign extend to increase our chances 2121 // of being able to use a .vi instruction. ANY_EXTEND would become a 2122 // a zero extend and the simm5 check in isel would fail. 2123 // FIXME: Should we ignore the upper bits in isel instead? 2124 unsigned ExtOpc = isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND 2125 : ISD::ANY_EXTEND; 2126 ScalarOp = DAG.getNode(ExtOpc, DL, Subtarget.getXLenVT(), ScalarOp); 2127 return DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, Op->getVTList(), 2128 Operands); 2129 } 2130 } 2131 } 2132 } 2133 2134 return SDValue(); // Don't custom lower most intrinsics. 2135 } 2136 2137 static std::pair<unsigned, uint64_t> 2138 getRVVReductionOpAndIdentityVal(unsigned ISDOpcode, unsigned EltSizeBits) { 2139 switch (ISDOpcode) { 2140 default: 2141 llvm_unreachable("Unhandled reduction"); 2142 case ISD::VECREDUCE_ADD: 2143 return {RISCVISD::VECREDUCE_ADD, 0}; 2144 case ISD::VECREDUCE_UMAX: 2145 return {RISCVISD::VECREDUCE_UMAX, 0}; 2146 case ISD::VECREDUCE_SMAX: 2147 return {RISCVISD::VECREDUCE_SMAX, minIntN(EltSizeBits)}; 2148 case ISD::VECREDUCE_UMIN: 2149 return {RISCVISD::VECREDUCE_UMIN, maxUIntN(EltSizeBits)}; 2150 case ISD::VECREDUCE_SMIN: 2151 return {RISCVISD::VECREDUCE_SMIN, maxIntN(EltSizeBits)}; 2152 case ISD::VECREDUCE_AND: 2153 return {RISCVISD::VECREDUCE_AND, -1}; 2154 case ISD::VECREDUCE_OR: 2155 return {RISCVISD::VECREDUCE_OR, 0}; 2156 case ISD::VECREDUCE_XOR: 2157 return {RISCVISD::VECREDUCE_XOR, 0}; 2158 } 2159 } 2160 2161 // Take a (supported) standard ISD reduction opcode and transform it to a RISCV 2162 // reduction opcode. Note that this returns a vector type, which must be 2163 // further processed to access the scalar result in element 0. 2164 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 2165 SelectionDAG &DAG) const { 2166 SDLoc DL(Op); 2167 assert(Op.getValueType().isSimple() && 2168 Op.getOperand(0).getValueType().isSimple() && 2169 "Unexpected vector-reduce lowering"); 2170 MVT VecEltVT = Op.getOperand(0).getSimpleValueType().getVectorElementType(); 2171 unsigned RVVOpcode; 2172 uint64_t IdentityVal; 2173 std::tie(RVVOpcode, IdentityVal) = 2174 getRVVReductionOpAndIdentityVal(Op.getOpcode(), VecEltVT.getSizeInBits()); 2175 // We have to perform a bit of a dance to get from our vector type to the 2176 // correct LMUL=1 vector type. We divide our minimum VLEN (64) by the vector 2177 // element type to find the type which fills a single register. Be careful to 2178 // use the operand's vector element type rather than the reduction's value 2179 // type, as that has likely been extended to XLEN. 2180 unsigned NumElts = 64 / VecEltVT.getSizeInBits(); 2181 MVT M1VT = MVT::getScalableVectorVT(VecEltVT, NumElts); 2182 SDValue IdentitySplat = 2183 DAG.getSplatVector(M1VT, DL, DAG.getConstant(IdentityVal, DL, VecEltVT)); 2184 SDValue Reduction = 2185 DAG.getNode(RVVOpcode, DL, M1VT, Op.getOperand(0), IdentitySplat); 2186 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 2187 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 2188 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 2189 } 2190 2191 // Given a reduction op, this function returns the matching reduction opcode, 2192 // the vector SDValue and the scalar SDValue required to lower this to a 2193 // RISCVISD node. 2194 static std::tuple<unsigned, SDValue, SDValue> 2195 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 2196 SDLoc DL(Op); 2197 switch (Op.getOpcode()) { 2198 default: 2199 llvm_unreachable("Unhandled reduction"); 2200 case ISD::VECREDUCE_FADD: 2201 return std::make_tuple(RISCVISD::VECREDUCE_FADD, Op.getOperand(0), 2202 DAG.getConstantFP(0.0, DL, EltVT)); 2203 case ISD::VECREDUCE_SEQ_FADD: 2204 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD, Op.getOperand(1), 2205 Op.getOperand(0)); 2206 } 2207 } 2208 2209 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 2210 SelectionDAG &DAG) const { 2211 SDLoc DL(Op); 2212 MVT VecEltVT = Op.getSimpleValueType(); 2213 // We have to perform a bit of a dance to get from our vector type to the 2214 // correct LMUL=1 vector type. See above for an explanation. 2215 unsigned NumElts = 64 / VecEltVT.getSizeInBits(); 2216 MVT M1VT = MVT::getScalableVectorVT(VecEltVT, NumElts); 2217 2218 unsigned RVVOpcode; 2219 SDValue VectorVal, ScalarVal; 2220 std::tie(RVVOpcode, VectorVal, ScalarVal) = 2221 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 2222 2223 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 2224 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat); 2225 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 2226 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 2227 } 2228 2229 static MVT getLMUL1VT(MVT VT) { 2230 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 2231 "Unexpected vector MVT"); 2232 return MVT::getScalableVectorVT( 2233 VT.getVectorElementType(), 2234 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 2235 } 2236 2237 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 2238 SelectionDAG &DAG) const { 2239 SDValue Vec = Op.getOperand(0); 2240 MVT SubVecVT = Op.getSimpleValueType(); 2241 MVT VecVT = Vec.getSimpleValueType(); 2242 2243 // TODO: Only handle scalable->scalable extracts for now, and revisit this 2244 // for fixed-length vectors later. 2245 if (!SubVecVT.isScalableVector() || !VecVT.isScalableVector()) 2246 return Op; 2247 2248 SDLoc DL(Op); 2249 unsigned OrigIdx = Op.getConstantOperandVal(1); 2250 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2251 2252 unsigned SubRegIdx, RemIdx; 2253 std::tie(SubRegIdx, RemIdx) = 2254 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 2255 VecVT, SubVecVT, OrigIdx, TRI); 2256 2257 // If the Idx has been completely eliminated then this is a subvector extract 2258 // which naturally aligns to a vector register. These can easily be handled 2259 // using subregister manipulation. 2260 if (RemIdx == 0) 2261 return Op; 2262 2263 // Else we must shift our vector register directly to extract the subvector. 2264 // Do this using VSLIDEDOWN. 2265 MVT XLenVT = Subtarget.getXLenVT(); 2266 2267 // Extract a subvector equal to the nearest full vector register type. This 2268 // should resolve to a EXTRACT_SUBREG instruction. 2269 unsigned AlignedIdx = OrigIdx - RemIdx; 2270 MVT InterSubVT = getLMUL1VT(VecVT); 2271 SDValue AlignedExtract = 2272 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 2273 DAG.getConstant(AlignedIdx, DL, XLenVT)); 2274 2275 // Slide this vector register down by the desired number of elements in order 2276 // to place the desired subvector starting at element 0. 2277 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 2278 // For scalable vectors this must be further multiplied by vscale. 2279 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 2280 2281 SDValue Mask, VL; 2282 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 2283 SDValue Slidedown = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 2284 DAG.getUNDEF(InterSubVT), AlignedExtract, 2285 SlidedownAmt, Mask, VL); 2286 2287 // Now the vector is in the right position, extract our final subvector. This 2288 // should resolve to a COPY. 2289 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 2290 DAG.getConstant(0, DL, XLenVT)); 2291 } 2292 2293 SDValue 2294 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 2295 SelectionDAG &DAG) const { 2296 auto *Load = cast<LoadSDNode>(Op); 2297 2298 SDLoc DL(Op); 2299 MVT VT = Op.getSimpleValueType(); 2300 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2301 2302 SDValue VL = 2303 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 2304 2305 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2306 SDValue NewLoad = DAG.getMemIntrinsicNode( 2307 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 2308 Load->getMemoryVT(), Load->getMemOperand()); 2309 2310 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2311 return DAG.getMergeValues({Result, Load->getChain()}, DL); 2312 } 2313 2314 SDValue 2315 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 2316 SelectionDAG &DAG) const { 2317 auto *Store = cast<StoreSDNode>(Op); 2318 2319 SDLoc DL(Op); 2320 MVT VT = Store->getValue().getSimpleValueType(); 2321 2322 // FIXME: We probably need to zero any extra bits in a byte for mask stores. 2323 // This is tricky to do. 2324 2325 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2326 2327 SDValue VL = 2328 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 2329 2330 SDValue NewValue = 2331 convertToScalableVector(ContainerVT, Store->getValue(), DAG, Subtarget); 2332 return DAG.getMemIntrinsicNode( 2333 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 2334 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 2335 Store->getMemoryVT(), Store->getMemOperand()); 2336 } 2337 2338 SDValue 2339 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 2340 SelectionDAG &DAG) const { 2341 MVT InVT = Op.getOperand(0).getSimpleValueType(); 2342 MVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT, Subtarget); 2343 2344 MVT VT = Op.getSimpleValueType(); 2345 2346 SDValue Op1 = 2347 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 2348 SDValue Op2 = 2349 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 2350 2351 SDLoc DL(Op); 2352 SDValue VL = 2353 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 2354 2355 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2356 2357 bool Invert = false; 2358 Optional<unsigned> LogicOpc; 2359 if (ContainerVT.isFloatingPoint()) { 2360 bool Swap = false; 2361 switch (CC) { 2362 default: 2363 break; 2364 case ISD::SETULE: 2365 case ISD::SETULT: 2366 Swap = true; 2367 LLVM_FALLTHROUGH; 2368 case ISD::SETUGE: 2369 case ISD::SETUGT: 2370 CC = getSetCCInverse(CC, ContainerVT); 2371 Invert = true; 2372 break; 2373 case ISD::SETOGE: 2374 case ISD::SETOGT: 2375 case ISD::SETGE: 2376 case ISD::SETGT: 2377 Swap = true; 2378 break; 2379 case ISD::SETUEQ: 2380 // Use !((OLT Op1, Op2) || (OLT Op2, Op1)) 2381 Invert = true; 2382 LogicOpc = RISCVISD::VMOR_VL; 2383 CC = ISD::SETOLT; 2384 break; 2385 case ISD::SETONE: 2386 // Use ((OLT Op1, Op2) || (OLT Op2, Op1)) 2387 LogicOpc = RISCVISD::VMOR_VL; 2388 CC = ISD::SETOLT; 2389 break; 2390 case ISD::SETO: 2391 // Use (OEQ Op1, Op1) && (OEQ Op2, Op2) 2392 LogicOpc = RISCVISD::VMAND_VL; 2393 CC = ISD::SETOEQ; 2394 break; 2395 case ISD::SETUO: 2396 // Use (UNE Op1, Op1) || (UNE Op2, Op2) 2397 LogicOpc = RISCVISD::VMOR_VL; 2398 CC = ISD::SETUNE; 2399 break; 2400 } 2401 2402 if (Swap) { 2403 CC = getSetCCSwappedOperands(CC); 2404 std::swap(Op1, Op2); 2405 } 2406 } 2407 2408 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 2409 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2410 2411 // There are 3 cases we need to emit. 2412 // 1. For (OEQ Op1, Op1) && (OEQ Op2, Op2) or (UNE Op1, Op1) || (UNE Op2, Op2) 2413 // we need to compare each operand with itself. 2414 // 2. For (OLT Op1, Op2) || (OLT Op2, Op1) we need to compare Op1 and Op2 in 2415 // both orders. 2416 // 3. For any other case we just need one compare with Op1 and Op2. 2417 SDValue Cmp; 2418 if (LogicOpc && (CC == ISD::SETOEQ || CC == ISD::SETUNE)) { 2419 Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op1, 2420 DAG.getCondCode(CC), Mask, VL); 2421 SDValue Cmp2 = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op2, Op2, 2422 DAG.getCondCode(CC), Mask, VL); 2423 Cmp = DAG.getNode(*LogicOpc, DL, MaskVT, Cmp, Cmp2, VL); 2424 } else { 2425 Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 2426 DAG.getCondCode(CC), Mask, VL); 2427 if (LogicOpc) { 2428 SDValue Cmp2 = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op2, Op1, 2429 DAG.getCondCode(CC), Mask, VL); 2430 Cmp = DAG.getNode(*LogicOpc, DL, MaskVT, Cmp, Cmp2, VL); 2431 } 2432 } 2433 2434 if (Invert) { 2435 SDValue AllOnes = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2436 Cmp = DAG.getNode(RISCVISD::VMXOR_VL, DL, MaskVT, Cmp, AllOnes, VL); 2437 } 2438 2439 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 2440 } 2441 2442 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 2443 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 2444 MVT VT = Op.getSimpleValueType(); 2445 2446 if (VT.getVectorElementType() == MVT::i1) 2447 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 2448 2449 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 2450 } 2451 2452 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 2453 SDValue Op, SelectionDAG &DAG) const { 2454 MVT VT = Op.getSimpleValueType(); 2455 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2456 2457 MVT I1ContainerVT = 2458 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 2459 2460 SDValue CC = 2461 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 2462 SDValue Op1 = 2463 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 2464 SDValue Op2 = 2465 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 2466 2467 SDLoc DL(Op); 2468 SDValue Mask, VL; 2469 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2470 2471 SDValue Select = 2472 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 2473 2474 return convertFromScalableVector(VT, Select, DAG, Subtarget); 2475 } 2476 2477 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 2478 unsigned NewOpc, 2479 bool HasMask) const { 2480 MVT VT = Op.getSimpleValueType(); 2481 assert(useRVVForFixedLengthVectorVT(VT) && 2482 "Only expected to lower fixed length vector operation!"); 2483 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2484 2485 // Create list of operands by converting existing ones to scalable types. 2486 SmallVector<SDValue, 6> Ops; 2487 for (const SDValue &V : Op->op_values()) { 2488 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 2489 2490 // Pass through non-vector operands. 2491 if (!V.getValueType().isVector()) { 2492 Ops.push_back(V); 2493 continue; 2494 } 2495 2496 // "cast" fixed length vector to a scalable vector. 2497 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 2498 "Only fixed length vectors are supported!"); 2499 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 2500 } 2501 2502 SDLoc DL(Op); 2503 SDValue Mask, VL; 2504 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2505 if (HasMask) 2506 Ops.push_back(Mask); 2507 Ops.push_back(VL); 2508 2509 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 2510 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 2511 } 2512 2513 // Returns the opcode of the target-specific SDNode that implements the 32-bit 2514 // form of the given Opcode. 2515 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 2516 switch (Opcode) { 2517 default: 2518 llvm_unreachable("Unexpected opcode"); 2519 case ISD::SHL: 2520 return RISCVISD::SLLW; 2521 case ISD::SRA: 2522 return RISCVISD::SRAW; 2523 case ISD::SRL: 2524 return RISCVISD::SRLW; 2525 case ISD::SDIV: 2526 return RISCVISD::DIVW; 2527 case ISD::UDIV: 2528 return RISCVISD::DIVUW; 2529 case ISD::UREM: 2530 return RISCVISD::REMUW; 2531 case ISD::ROTL: 2532 return RISCVISD::ROLW; 2533 case ISD::ROTR: 2534 return RISCVISD::RORW; 2535 case RISCVISD::GREVI: 2536 return RISCVISD::GREVIW; 2537 case RISCVISD::GORCI: 2538 return RISCVISD::GORCIW; 2539 } 2540 } 2541 2542 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 2543 // Because i32 isn't a legal type for RV64, these operations would otherwise 2544 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 2545 // later one because the fact the operation was originally of type i32 is 2546 // lost. 2547 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 2548 unsigned ExtOpc = ISD::ANY_EXTEND) { 2549 SDLoc DL(N); 2550 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 2551 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 2552 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 2553 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 2554 // ReplaceNodeResults requires we maintain the same type for the return value. 2555 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 2556 } 2557 2558 // Converts the given 32-bit operation to a i64 operation with signed extension 2559 // semantic to reduce the signed extension instructions. 2560 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 2561 SDLoc DL(N); 2562 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 2563 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 2564 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 2565 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 2566 DAG.getValueType(MVT::i32)); 2567 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 2568 } 2569 2570 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 2571 SmallVectorImpl<SDValue> &Results, 2572 SelectionDAG &DAG) const { 2573 SDLoc DL(N); 2574 switch (N->getOpcode()) { 2575 default: 2576 llvm_unreachable("Don't know how to custom type legalize this operation!"); 2577 case ISD::STRICT_FP_TO_SINT: 2578 case ISD::STRICT_FP_TO_UINT: 2579 case ISD::FP_TO_SINT: 2580 case ISD::FP_TO_UINT: { 2581 bool IsStrict = N->isStrictFPOpcode(); 2582 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 2583 "Unexpected custom legalisation"); 2584 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 2585 // If the FP type needs to be softened, emit a library call using the 'si' 2586 // version. If we left it to default legalization we'd end up with 'di'. If 2587 // the FP type doesn't need to be softened just let generic type 2588 // legalization promote the result type. 2589 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 2590 TargetLowering::TypeSoftenFloat) 2591 return; 2592 RTLIB::Libcall LC; 2593 if (N->getOpcode() == ISD::FP_TO_SINT || 2594 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 2595 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 2596 else 2597 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 2598 MakeLibCallOptions CallOptions; 2599 EVT OpVT = Op0.getValueType(); 2600 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 2601 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 2602 SDValue Result; 2603 std::tie(Result, Chain) = 2604 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 2605 Results.push_back(Result); 2606 if (IsStrict) 2607 Results.push_back(Chain); 2608 break; 2609 } 2610 case ISD::READCYCLECOUNTER: { 2611 assert(!Subtarget.is64Bit() && 2612 "READCYCLECOUNTER only has custom type legalization on riscv32"); 2613 2614 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 2615 SDValue RCW = 2616 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 2617 2618 Results.push_back( 2619 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 2620 Results.push_back(RCW.getValue(2)); 2621 break; 2622 } 2623 case ISD::ADD: 2624 case ISD::SUB: 2625 case ISD::MUL: 2626 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 2627 "Unexpected custom legalisation"); 2628 if (N->getOperand(1).getOpcode() == ISD::Constant) 2629 return; 2630 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 2631 break; 2632 case ISD::SHL: 2633 case ISD::SRA: 2634 case ISD::SRL: 2635 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 2636 "Unexpected custom legalisation"); 2637 if (N->getOperand(1).getOpcode() == ISD::Constant) 2638 return; 2639 Results.push_back(customLegalizeToWOp(N, DAG)); 2640 break; 2641 case ISD::ROTL: 2642 case ISD::ROTR: 2643 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 2644 "Unexpected custom legalisation"); 2645 Results.push_back(customLegalizeToWOp(N, DAG)); 2646 break; 2647 case ISD::SDIV: 2648 case ISD::UDIV: 2649 case ISD::UREM: { 2650 MVT VT = N->getSimpleValueType(0); 2651 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 2652 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 2653 "Unexpected custom legalisation"); 2654 if (N->getOperand(0).getOpcode() == ISD::Constant || 2655 N->getOperand(1).getOpcode() == ISD::Constant) 2656 return; 2657 2658 // If the input is i32, use ANY_EXTEND since the W instructions don't read 2659 // the upper 32 bits. For other types we need to sign or zero extend 2660 // based on the opcode. 2661 unsigned ExtOpc = ISD::ANY_EXTEND; 2662 if (VT != MVT::i32) 2663 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 2664 : ISD::ZERO_EXTEND; 2665 2666 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 2667 break; 2668 } 2669 case ISD::BITCAST: { 2670 assert(((N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 2671 Subtarget.hasStdExtF()) || 2672 (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh())) && 2673 "Unexpected custom legalisation"); 2674 SDValue Op0 = N->getOperand(0); 2675 if (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh()) { 2676 if (Op0.getValueType() != MVT::f16) 2677 return; 2678 SDValue FPConv = 2679 DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, Subtarget.getXLenVT(), Op0); 2680 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 2681 } else if (N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 2682 Subtarget.hasStdExtF()) { 2683 if (Op0.getValueType() != MVT::f32) 2684 return; 2685 SDValue FPConv = 2686 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 2687 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 2688 } 2689 break; 2690 } 2691 case RISCVISD::GREVI: 2692 case RISCVISD::GORCI: { 2693 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 2694 "Unexpected custom legalisation"); 2695 // This is similar to customLegalizeToWOp, except that we pass the second 2696 // operand (a TargetConstant) straight through: it is already of type 2697 // XLenVT. 2698 SDLoc DL(N); 2699 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 2700 SDValue NewOp0 = 2701 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 2702 SDValue NewRes = 2703 DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, N->getOperand(1)); 2704 // ReplaceNodeResults requires we maintain the same type for the return 2705 // value. 2706 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 2707 break; 2708 } 2709 case RISCVISD::SHFLI: { 2710 // There is no SHFLIW instruction, but we can just promote the operation. 2711 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 2712 "Unexpected custom legalisation"); 2713 SDLoc DL(N); 2714 SDValue NewOp0 = 2715 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 2716 SDValue NewRes = 2717 DAG.getNode(RISCVISD::SHFLI, DL, MVT::i64, NewOp0, N->getOperand(1)); 2718 // ReplaceNodeResults requires we maintain the same type for the return 2719 // value. 2720 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 2721 break; 2722 } 2723 case ISD::BSWAP: 2724 case ISD::BITREVERSE: { 2725 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 2726 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2727 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 2728 N->getOperand(0)); 2729 unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24; 2730 SDValue GREVIW = DAG.getNode(RISCVISD::GREVIW, DL, MVT::i64, NewOp0, 2731 DAG.getTargetConstant(Imm, DL, 2732 Subtarget.getXLenVT())); 2733 // ReplaceNodeResults requires we maintain the same type for the return 2734 // value. 2735 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW)); 2736 break; 2737 } 2738 case ISD::FSHL: 2739 case ISD::FSHR: { 2740 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 2741 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 2742 SDValue NewOp0 = 2743 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 2744 SDValue NewOp1 = 2745 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 2746 SDValue NewOp2 = 2747 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 2748 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 2749 // Mask the shift amount to 5 bits. 2750 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 2751 DAG.getConstant(0x1f, DL, MVT::i64)); 2752 unsigned Opc = 2753 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 2754 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 2755 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 2756 break; 2757 } 2758 case ISD::EXTRACT_VECTOR_ELT: { 2759 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 2760 // type is illegal (currently only vXi64 RV32). 2761 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 2762 // transferred to the destination register. We issue two of these from the 2763 // upper- and lower- halves of the SEW-bit vector element, slid down to the 2764 // first element. 2765 SDLoc DL(N); 2766 SDValue Vec = N->getOperand(0); 2767 SDValue Idx = N->getOperand(1); 2768 EVT VecVT = Vec.getValueType(); 2769 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 2770 VecVT.getVectorElementType() == MVT::i64 && 2771 "Unexpected EXTRACT_VECTOR_ELT legalization"); 2772 2773 if (!VecVT.isScalableVector()) 2774 return; 2775 2776 SDValue Slidedown = Vec; 2777 MVT XLenVT = Subtarget.getXLenVT(); 2778 // Unless the index is known to be 0, we must slide the vector down to get 2779 // the desired element into index 0. 2780 if (!isNullConstant(Idx)) { 2781 SDValue Mask, VL; 2782 std::tie(Mask, VL) = 2783 getDefaultScalableVLOps(VecVT.getSimpleVT(), DL, DAG, Subtarget); 2784 Slidedown = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, 2785 DAG.getUNDEF(VecVT), Vec, Idx, Mask, VL); 2786 } 2787 2788 // Extract the lower XLEN bits of the correct vector element. 2789 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Slidedown, Idx); 2790 2791 // To extract the upper XLEN bits of the vector element, shift the first 2792 // element right by 32 bits and re-extract the lower XLEN bits. 2793 SDValue ThirtyTwoV = 2794 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, 2795 DAG.getConstant(32, DL, Subtarget.getXLenVT())); 2796 SDValue LShr32 = DAG.getNode(ISD::SRL, DL, VecVT, Slidedown, ThirtyTwoV); 2797 2798 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32, Idx); 2799 2800 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 2801 break; 2802 } 2803 case ISD::INTRINSIC_WO_CHAIN: { 2804 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2805 switch (IntNo) { 2806 default: 2807 llvm_unreachable( 2808 "Don't know how to custom type legalize this intrinsic!"); 2809 case Intrinsic::riscv_vmv_x_s: { 2810 EVT VT = N->getValueType(0); 2811 assert((VT == MVT::i8 || VT == MVT::i16 || 2812 (Subtarget.is64Bit() && VT == MVT::i32)) && 2813 "Unexpected custom legalisation!"); 2814 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 2815 Subtarget.getXLenVT(), N->getOperand(1)); 2816 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 2817 break; 2818 } 2819 } 2820 break; 2821 } 2822 case ISD::VECREDUCE_ADD: 2823 case ISD::VECREDUCE_AND: 2824 case ISD::VECREDUCE_OR: 2825 case ISD::VECREDUCE_XOR: 2826 case ISD::VECREDUCE_SMAX: 2827 case ISD::VECREDUCE_UMAX: 2828 case ISD::VECREDUCE_SMIN: 2829 case ISD::VECREDUCE_UMIN: 2830 // The custom-lowering for these nodes returns a vector whose first element 2831 // is the result of the reduction. Extract its first element and let the 2832 // legalization for EXTRACT_VECTOR_ELT do the rest of the job. 2833 Results.push_back(lowerVECREDUCE(SDValue(N, 0), DAG)); 2834 break; 2835 } 2836 } 2837 2838 // A structure to hold one of the bit-manipulation patterns below. Together, a 2839 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 2840 // (or (and (shl x, 1), 0xAAAAAAAA), 2841 // (and (srl x, 1), 0x55555555)) 2842 struct RISCVBitmanipPat { 2843 SDValue Op; 2844 unsigned ShAmt; 2845 bool IsSHL; 2846 2847 bool formsPairWith(const RISCVBitmanipPat &Other) const { 2848 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 2849 } 2850 }; 2851 2852 // Matches patterns of the form 2853 // (and (shl x, C2), (C1 << C2)) 2854 // (and (srl x, C2), C1) 2855 // (shl (and x, C1), C2) 2856 // (srl (and x, (C1 << C2)), C2) 2857 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 2858 // The expected masks for each shift amount are specified in BitmanipMasks where 2859 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 2860 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 2861 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 2862 // XLen is 64. 2863 static Optional<RISCVBitmanipPat> 2864 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 2865 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 2866 "Unexpected number of masks"); 2867 Optional<uint64_t> Mask; 2868 // Optionally consume a mask around the shift operation. 2869 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 2870 Mask = Op.getConstantOperandVal(1); 2871 Op = Op.getOperand(0); 2872 } 2873 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 2874 return None; 2875 bool IsSHL = Op.getOpcode() == ISD::SHL; 2876 2877 if (!isa<ConstantSDNode>(Op.getOperand(1))) 2878 return None; 2879 uint64_t ShAmt = Op.getConstantOperandVal(1); 2880 2881 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 2882 if (ShAmt >= Width && !isPowerOf2_64(ShAmt)) 2883 return None; 2884 // If we don't have enough masks for 64 bit, then we must be trying to 2885 // match SHFL so we're only allowed to shift 1/4 of the width. 2886 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 2887 return None; 2888 2889 SDValue Src = Op.getOperand(0); 2890 2891 // The expected mask is shifted left when the AND is found around SHL 2892 // patterns. 2893 // ((x >> 1) & 0x55555555) 2894 // ((x << 1) & 0xAAAAAAAA) 2895 bool SHLExpMask = IsSHL; 2896 2897 if (!Mask) { 2898 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 2899 // the mask is all ones: consume that now. 2900 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 2901 Mask = Src.getConstantOperandVal(1); 2902 Src = Src.getOperand(0); 2903 // The expected mask is now in fact shifted left for SRL, so reverse the 2904 // decision. 2905 // ((x & 0xAAAAAAAA) >> 1) 2906 // ((x & 0x55555555) << 1) 2907 SHLExpMask = !SHLExpMask; 2908 } else { 2909 // Use a default shifted mask of all-ones if there's no AND, truncated 2910 // down to the expected width. This simplifies the logic later on. 2911 Mask = maskTrailingOnes<uint64_t>(Width); 2912 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 2913 } 2914 } 2915 2916 unsigned MaskIdx = Log2_32(ShAmt); 2917 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 2918 2919 if (SHLExpMask) 2920 ExpMask <<= ShAmt; 2921 2922 if (Mask != ExpMask) 2923 return None; 2924 2925 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 2926 } 2927 2928 // Matches any of the following bit-manipulation patterns: 2929 // (and (shl x, 1), (0x55555555 << 1)) 2930 // (and (srl x, 1), 0x55555555) 2931 // (shl (and x, 0x55555555), 1) 2932 // (srl (and x, (0x55555555 << 1)), 1) 2933 // where the shift amount and mask may vary thus: 2934 // [1] = 0x55555555 / 0xAAAAAAAA 2935 // [2] = 0x33333333 / 0xCCCCCCCC 2936 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 2937 // [8] = 0x00FF00FF / 0xFF00FF00 2938 // [16] = 0x0000FFFF / 0xFFFFFFFF 2939 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 2940 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 2941 // These are the unshifted masks which we use to match bit-manipulation 2942 // patterns. They may be shifted left in certain circumstances. 2943 static const uint64_t BitmanipMasks[] = { 2944 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 2945 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 2946 2947 return matchRISCVBitmanipPat(Op, BitmanipMasks); 2948 } 2949 2950 // Match the following pattern as a GREVI(W) operation 2951 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 2952 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 2953 const RISCVSubtarget &Subtarget) { 2954 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 2955 EVT VT = Op.getValueType(); 2956 2957 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 2958 auto LHS = matchGREVIPat(Op.getOperand(0)); 2959 auto RHS = matchGREVIPat(Op.getOperand(1)); 2960 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 2961 SDLoc DL(Op); 2962 return DAG.getNode( 2963 RISCVISD::GREVI, DL, VT, LHS->Op, 2964 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 2965 } 2966 } 2967 return SDValue(); 2968 } 2969 2970 // Matches any the following pattern as a GORCI(W) operation 2971 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 2972 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 2973 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 2974 // Note that with the variant of 3., 2975 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 2976 // the inner pattern will first be matched as GREVI and then the outer 2977 // pattern will be matched to GORC via the first rule above. 2978 // 4. (or (rotl/rotr x, bitwidth/2), x) 2979 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 2980 const RISCVSubtarget &Subtarget) { 2981 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 2982 EVT VT = Op.getValueType(); 2983 2984 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 2985 SDLoc DL(Op); 2986 SDValue Op0 = Op.getOperand(0); 2987 SDValue Op1 = Op.getOperand(1); 2988 2989 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 2990 if (Reverse.getOpcode() == RISCVISD::GREVI && Reverse.getOperand(0) == X && 2991 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 2992 return DAG.getNode(RISCVISD::GORCI, DL, VT, X, Reverse.getOperand(1)); 2993 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 2994 if ((Reverse.getOpcode() == ISD::ROTL || 2995 Reverse.getOpcode() == ISD::ROTR) && 2996 Reverse.getOperand(0) == X && 2997 isa<ConstantSDNode>(Reverse.getOperand(1))) { 2998 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 2999 if (RotAmt == (VT.getSizeInBits() / 2)) 3000 return DAG.getNode( 3001 RISCVISD::GORCI, DL, VT, X, 3002 DAG.getTargetConstant(RotAmt, DL, Subtarget.getXLenVT())); 3003 } 3004 return SDValue(); 3005 }; 3006 3007 // Check for either commutable permutation of (or (GREVI x, shamt), x) 3008 if (SDValue V = MatchOROfReverse(Op0, Op1)) 3009 return V; 3010 if (SDValue V = MatchOROfReverse(Op1, Op0)) 3011 return V; 3012 3013 // OR is commutable so canonicalize its OR operand to the left 3014 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 3015 std::swap(Op0, Op1); 3016 if (Op0.getOpcode() != ISD::OR) 3017 return SDValue(); 3018 SDValue OrOp0 = Op0.getOperand(0); 3019 SDValue OrOp1 = Op0.getOperand(1); 3020 auto LHS = matchGREVIPat(OrOp0); 3021 // OR is commutable so swap the operands and try again: x might have been 3022 // on the left 3023 if (!LHS) { 3024 std::swap(OrOp0, OrOp1); 3025 LHS = matchGREVIPat(OrOp0); 3026 } 3027 auto RHS = matchGREVIPat(Op1); 3028 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 3029 return DAG.getNode( 3030 RISCVISD::GORCI, DL, VT, LHS->Op, 3031 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 3032 } 3033 } 3034 return SDValue(); 3035 } 3036 3037 // Matches any of the following bit-manipulation patterns: 3038 // (and (shl x, 1), (0x22222222 << 1)) 3039 // (and (srl x, 1), 0x22222222) 3040 // (shl (and x, 0x22222222), 1) 3041 // (srl (and x, (0x22222222 << 1)), 1) 3042 // where the shift amount and mask may vary thus: 3043 // [1] = 0x22222222 / 0x44444444 3044 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 3045 // [4] = 0x00F000F0 / 0x0F000F00 3046 // [8] = 0x0000FF00 / 0x00FF0000 3047 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 3048 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 3049 // These are the unshifted masks which we use to match bit-manipulation 3050 // patterns. They may be shifted left in certain circumstances. 3051 static const uint64_t BitmanipMasks[] = { 3052 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 3053 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 3054 3055 return matchRISCVBitmanipPat(Op, BitmanipMasks); 3056 } 3057 3058 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 3059 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 3060 const RISCVSubtarget &Subtarget) { 3061 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 3062 EVT VT = Op.getValueType(); 3063 3064 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 3065 return SDValue(); 3066 3067 SDValue Op0 = Op.getOperand(0); 3068 SDValue Op1 = Op.getOperand(1); 3069 3070 // Or is commutable so canonicalize the second OR to the LHS. 3071 if (Op0.getOpcode() != ISD::OR) 3072 std::swap(Op0, Op1); 3073 if (Op0.getOpcode() != ISD::OR) 3074 return SDValue(); 3075 3076 // We found an inner OR, so our operands are the operands of the inner OR 3077 // and the other operand of the outer OR. 3078 SDValue A = Op0.getOperand(0); 3079 SDValue B = Op0.getOperand(1); 3080 SDValue C = Op1; 3081 3082 auto Match1 = matchSHFLPat(A); 3083 auto Match2 = matchSHFLPat(B); 3084 3085 // If neither matched, we failed. 3086 if (!Match1 && !Match2) 3087 return SDValue(); 3088 3089 // We had at least one match. if one failed, try the remaining C operand. 3090 if (!Match1) { 3091 std::swap(A, C); 3092 Match1 = matchSHFLPat(A); 3093 if (!Match1) 3094 return SDValue(); 3095 } else if (!Match2) { 3096 std::swap(B, C); 3097 Match2 = matchSHFLPat(B); 3098 if (!Match2) 3099 return SDValue(); 3100 } 3101 assert(Match1 && Match2); 3102 3103 // Make sure our matches pair up. 3104 if (!Match1->formsPairWith(*Match2)) 3105 return SDValue(); 3106 3107 // All the remains is to make sure C is an AND with the same input, that masks 3108 // out the bits that are being shuffled. 3109 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 3110 C.getOperand(0) != Match1->Op) 3111 return SDValue(); 3112 3113 uint64_t Mask = C.getConstantOperandVal(1); 3114 3115 static const uint64_t BitmanipMasks[] = { 3116 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 3117 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 3118 }; 3119 3120 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 3121 unsigned MaskIdx = Log2_32(Match1->ShAmt); 3122 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 3123 3124 if (Mask != ExpMask) 3125 return SDValue(); 3126 3127 SDLoc DL(Op); 3128 return DAG.getNode( 3129 RISCVISD::SHFLI, DL, VT, Match1->Op, 3130 DAG.getTargetConstant(Match1->ShAmt, DL, Subtarget.getXLenVT())); 3131 } 3132 3133 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 3134 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 3135 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 3136 // not undo itself, but they are redundant. 3137 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 3138 unsigned ShAmt1 = N->getConstantOperandVal(1); 3139 SDValue Src = N->getOperand(0); 3140 3141 if (Src.getOpcode() != N->getOpcode()) 3142 return SDValue(); 3143 3144 unsigned ShAmt2 = Src.getConstantOperandVal(1); 3145 Src = Src.getOperand(0); 3146 3147 unsigned CombinedShAmt; 3148 if (N->getOpcode() == RISCVISD::GORCI || N->getOpcode() == RISCVISD::GORCIW) 3149 CombinedShAmt = ShAmt1 | ShAmt2; 3150 else 3151 CombinedShAmt = ShAmt1 ^ ShAmt2; 3152 3153 if (CombinedShAmt == 0) 3154 return Src; 3155 3156 SDLoc DL(N); 3157 return DAG.getNode(N->getOpcode(), DL, N->getValueType(0), Src, 3158 DAG.getTargetConstant(CombinedShAmt, DL, 3159 N->getOperand(1).getValueType())); 3160 } 3161 3162 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 3163 DAGCombinerInfo &DCI) const { 3164 SelectionDAG &DAG = DCI.DAG; 3165 3166 switch (N->getOpcode()) { 3167 default: 3168 break; 3169 case RISCVISD::SplitF64: { 3170 SDValue Op0 = N->getOperand(0); 3171 // If the input to SplitF64 is just BuildPairF64 then the operation is 3172 // redundant. Instead, use BuildPairF64's operands directly. 3173 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 3174 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 3175 3176 SDLoc DL(N); 3177 3178 // It's cheaper to materialise two 32-bit integers than to load a double 3179 // from the constant pool and transfer it to integer registers through the 3180 // stack. 3181 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 3182 APInt V = C->getValueAPF().bitcastToAPInt(); 3183 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 3184 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 3185 return DCI.CombineTo(N, Lo, Hi); 3186 } 3187 3188 // This is a target-specific version of a DAGCombine performed in 3189 // DAGCombiner::visitBITCAST. It performs the equivalent of: 3190 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 3191 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 3192 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 3193 !Op0.getNode()->hasOneUse()) 3194 break; 3195 SDValue NewSplitF64 = 3196 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 3197 Op0.getOperand(0)); 3198 SDValue Lo = NewSplitF64.getValue(0); 3199 SDValue Hi = NewSplitF64.getValue(1); 3200 APInt SignBit = APInt::getSignMask(32); 3201 if (Op0.getOpcode() == ISD::FNEG) { 3202 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 3203 DAG.getConstant(SignBit, DL, MVT::i32)); 3204 return DCI.CombineTo(N, Lo, NewHi); 3205 } 3206 assert(Op0.getOpcode() == ISD::FABS); 3207 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 3208 DAG.getConstant(~SignBit, DL, MVT::i32)); 3209 return DCI.CombineTo(N, Lo, NewHi); 3210 } 3211 case RISCVISD::SLLW: 3212 case RISCVISD::SRAW: 3213 case RISCVISD::SRLW: 3214 case RISCVISD::ROLW: 3215 case RISCVISD::RORW: { 3216 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 3217 SDValue LHS = N->getOperand(0); 3218 SDValue RHS = N->getOperand(1); 3219 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 3220 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 3221 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 3222 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 3223 if (N->getOpcode() != ISD::DELETED_NODE) 3224 DCI.AddToWorklist(N); 3225 return SDValue(N, 0); 3226 } 3227 break; 3228 } 3229 case RISCVISD::FSL: 3230 case RISCVISD::FSR: { 3231 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 3232 SDValue ShAmt = N->getOperand(2); 3233 unsigned BitWidth = ShAmt.getValueSizeInBits(); 3234 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 3235 APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1); 3236 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 3237 if (N->getOpcode() != ISD::DELETED_NODE) 3238 DCI.AddToWorklist(N); 3239 return SDValue(N, 0); 3240 } 3241 break; 3242 } 3243 case RISCVISD::FSLW: 3244 case RISCVISD::FSRW: { 3245 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 3246 // read. 3247 SDValue Op0 = N->getOperand(0); 3248 SDValue Op1 = N->getOperand(1); 3249 SDValue ShAmt = N->getOperand(2); 3250 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 3251 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 3252 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 3253 SimplifyDemandedBits(Op1, OpMask, DCI) || 3254 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 3255 if (N->getOpcode() != ISD::DELETED_NODE) 3256 DCI.AddToWorklist(N); 3257 return SDValue(N, 0); 3258 } 3259 break; 3260 } 3261 case RISCVISD::GREVIW: 3262 case RISCVISD::GORCIW: { 3263 // Only the lower 32 bits of the first operand are read 3264 SDValue Op0 = N->getOperand(0); 3265 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 3266 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 3267 if (N->getOpcode() != ISD::DELETED_NODE) 3268 DCI.AddToWorklist(N); 3269 return SDValue(N, 0); 3270 } 3271 3272 return combineGREVI_GORCI(N, DCI.DAG); 3273 } 3274 case RISCVISD::FMV_X_ANYEXTW_RV64: { 3275 SDLoc DL(N); 3276 SDValue Op0 = N->getOperand(0); 3277 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 3278 // conversion is unnecessary and can be replaced with an ANY_EXTEND 3279 // of the FMV_W_X_RV64 operand. 3280 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 3281 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 3282 "Unexpected value type!"); 3283 return Op0.getOperand(0); 3284 } 3285 3286 // This is a target-specific version of a DAGCombine performed in 3287 // DAGCombiner::visitBITCAST. It performs the equivalent of: 3288 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 3289 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 3290 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 3291 !Op0.getNode()->hasOneUse()) 3292 break; 3293 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 3294 Op0.getOperand(0)); 3295 APInt SignBit = APInt::getSignMask(32).sext(64); 3296 if (Op0.getOpcode() == ISD::FNEG) 3297 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 3298 DAG.getConstant(SignBit, DL, MVT::i64)); 3299 3300 assert(Op0.getOpcode() == ISD::FABS); 3301 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 3302 DAG.getConstant(~SignBit, DL, MVT::i64)); 3303 } 3304 case RISCVISD::GREVI: 3305 case RISCVISD::GORCI: 3306 return combineGREVI_GORCI(N, DCI.DAG); 3307 case ISD::OR: 3308 if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget)) 3309 return GREV; 3310 if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget)) 3311 return GORC; 3312 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DCI.DAG, Subtarget)) 3313 return SHFL; 3314 break; 3315 case RISCVISD::SELECT_CC: { 3316 // Transform 3317 // (select_cc (xor X, 1), 0, setne, trueV, falseV) -> 3318 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 3319 // This can occur when legalizing some floating point comparisons. 3320 SDValue LHS = N->getOperand(0); 3321 SDValue RHS = N->getOperand(1); 3322 auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2)); 3323 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 3324 if (ISD::isIntEqualitySetCC(CCVal) && isNullConstant(RHS) && 3325 LHS.getOpcode() == ISD::XOR && isOneConstant(LHS.getOperand(1)) && 3326 DAG.MaskedValueIsZero(LHS.getOperand(0), Mask)) { 3327 SDLoc DL(N); 3328 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 3329 SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT()); 3330 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 3331 {LHS.getOperand(0), RHS, TargetCC, N->getOperand(3), 3332 N->getOperand(4)}); 3333 } 3334 break; 3335 } 3336 case ISD::SETCC: { 3337 // (setcc X, 1, setne) -> (setcc X, 0, seteq) if we can prove X is 0/1. 3338 // Comparing with 0 may allow us to fold into bnez/beqz. 3339 SDValue LHS = N->getOperand(0); 3340 SDValue RHS = N->getOperand(1); 3341 if (LHS.getValueType().isScalableVector()) 3342 break; 3343 auto CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 3344 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 3345 if (isOneConstant(RHS) && ISD::isIntEqualitySetCC(CC) && 3346 DAG.MaskedValueIsZero(LHS, Mask)) { 3347 SDLoc DL(N); 3348 SDValue Zero = DAG.getConstant(0, DL, LHS.getValueType()); 3349 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 3350 return DAG.getSetCC(DL, N->getValueType(0), LHS, Zero, CC); 3351 } 3352 break; 3353 } 3354 case ISD::FCOPYSIGN: { 3355 EVT VT = N->getValueType(0); 3356 if (!VT.isVector()) 3357 break; 3358 // There is a form of VFSGNJ which injects the negated sign of its second 3359 // operand. Try and bubble any FNEG up after the extend/round to produce 3360 // this optimized pattern. Avoid modifying cases where FP_ROUND and 3361 // TRUNC=1. 3362 SDValue In2 = N->getOperand(1); 3363 // Avoid cases where the extend/round has multiple uses, as duplicating 3364 // those is typically more expensive than removing a fneg. 3365 if (!In2.hasOneUse()) 3366 break; 3367 if (In2.getOpcode() != ISD::FP_EXTEND && 3368 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 3369 break; 3370 In2 = In2.getOperand(0); 3371 if (In2.getOpcode() != ISD::FNEG) 3372 break; 3373 SDLoc DL(N); 3374 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 3375 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 3376 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 3377 } 3378 } 3379 3380 return SDValue(); 3381 } 3382 3383 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 3384 const SDNode *N, CombineLevel Level) const { 3385 // The following folds are only desirable if `(OP _, c1 << c2)` can be 3386 // materialised in fewer instructions than `(OP _, c1)`: 3387 // 3388 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 3389 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 3390 SDValue N0 = N->getOperand(0); 3391 EVT Ty = N0.getValueType(); 3392 if (Ty.isScalarInteger() && 3393 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 3394 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 3395 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3396 if (C1 && C2) { 3397 const APInt &C1Int = C1->getAPIntValue(); 3398 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 3399 3400 // We can materialise `c1 << c2` into an add immediate, so it's "free", 3401 // and the combine should happen, to potentially allow further combines 3402 // later. 3403 if (ShiftedC1Int.getMinSignedBits() <= 64 && 3404 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 3405 return true; 3406 3407 // We can materialise `c1` in an add immediate, so it's "free", and the 3408 // combine should be prevented. 3409 if (C1Int.getMinSignedBits() <= 64 && 3410 isLegalAddImmediate(C1Int.getSExtValue())) 3411 return false; 3412 3413 // Neither constant will fit into an immediate, so find materialisation 3414 // costs. 3415 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 3416 Subtarget.is64Bit()); 3417 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 3418 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 3419 3420 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 3421 // combine should be prevented. 3422 if (C1Cost < ShiftedC1Cost) 3423 return false; 3424 } 3425 } 3426 return true; 3427 } 3428 3429 bool RISCVTargetLowering::targetShrinkDemandedConstant( 3430 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3431 TargetLoweringOpt &TLO) const { 3432 // Delay this optimization as late as possible. 3433 if (!TLO.LegalOps) 3434 return false; 3435 3436 EVT VT = Op.getValueType(); 3437 if (VT.isVector()) 3438 return false; 3439 3440 // Only handle AND for now. 3441 if (Op.getOpcode() != ISD::AND) 3442 return false; 3443 3444 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3445 if (!C) 3446 return false; 3447 3448 const APInt &Mask = C->getAPIntValue(); 3449 3450 // Clear all non-demanded bits initially. 3451 APInt ShrunkMask = Mask & DemandedBits; 3452 3453 // If the shrunk mask fits in sign extended 12 bits, let the target 3454 // independent code apply it. 3455 if (ShrunkMask.isSignedIntN(12)) 3456 return false; 3457 3458 // Try to make a smaller immediate by setting undemanded bits. 3459 3460 // We need to be able to make a negative number through a combination of mask 3461 // and undemanded bits. 3462 APInt ExpandedMask = Mask | ~DemandedBits; 3463 if (!ExpandedMask.isNegative()) 3464 return false; 3465 3466 // What is the fewest number of bits we need to represent the negative number. 3467 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 3468 3469 // Try to make a 12 bit negative immediate. If that fails try to make a 32 3470 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 3471 APInt NewMask = ShrunkMask; 3472 if (MinSignedBits <= 12) 3473 NewMask.setBitsFrom(11); 3474 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 3475 NewMask.setBitsFrom(31); 3476 else 3477 return false; 3478 3479 // Sanity check that our new mask is a subset of the demanded mask. 3480 assert(NewMask.isSubsetOf(ExpandedMask)); 3481 3482 // If we aren't changing the mask, just return true to keep it and prevent 3483 // the caller from optimizing. 3484 if (NewMask == Mask) 3485 return true; 3486 3487 // Replace the constant with the new mask. 3488 SDLoc DL(Op); 3489 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 3490 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 3491 return TLO.CombineTo(Op, NewOp); 3492 } 3493 3494 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3495 KnownBits &Known, 3496 const APInt &DemandedElts, 3497 const SelectionDAG &DAG, 3498 unsigned Depth) const { 3499 unsigned BitWidth = Known.getBitWidth(); 3500 unsigned Opc = Op.getOpcode(); 3501 assert((Opc >= ISD::BUILTIN_OP_END || 3502 Opc == ISD::INTRINSIC_WO_CHAIN || 3503 Opc == ISD::INTRINSIC_W_CHAIN || 3504 Opc == ISD::INTRINSIC_VOID) && 3505 "Should use MaskedValueIsZero if you don't know whether Op" 3506 " is a target node!"); 3507 3508 Known.resetAll(); 3509 switch (Opc) { 3510 default: break; 3511 case RISCVISD::REMUW: { 3512 KnownBits Known2; 3513 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3514 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3515 // We only care about the lower 32 bits. 3516 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 3517 // Restore the original width by sign extending. 3518 Known = Known.sext(BitWidth); 3519 break; 3520 } 3521 case RISCVISD::DIVUW: { 3522 KnownBits Known2; 3523 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3524 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3525 // We only care about the lower 32 bits. 3526 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 3527 // Restore the original width by sign extending. 3528 Known = Known.sext(BitWidth); 3529 break; 3530 } 3531 case RISCVISD::READ_VLENB: 3532 // We assume VLENB is at least 8 bytes. 3533 // FIXME: The 1.0 draft spec defines minimum VLEN as 128 bits. 3534 Known.Zero.setLowBits(3); 3535 break; 3536 } 3537 } 3538 3539 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 3540 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3541 unsigned Depth) const { 3542 switch (Op.getOpcode()) { 3543 default: 3544 break; 3545 case RISCVISD::SLLW: 3546 case RISCVISD::SRAW: 3547 case RISCVISD::SRLW: 3548 case RISCVISD::DIVW: 3549 case RISCVISD::DIVUW: 3550 case RISCVISD::REMUW: 3551 case RISCVISD::ROLW: 3552 case RISCVISD::RORW: 3553 case RISCVISD::GREVIW: 3554 case RISCVISD::GORCIW: 3555 case RISCVISD::FSLW: 3556 case RISCVISD::FSRW: 3557 // TODO: As the result is sign-extended, this is conservatively correct. A 3558 // more precise answer could be calculated for SRAW depending on known 3559 // bits in the shift amount. 3560 return 33; 3561 case RISCVISD::SHFLI: { 3562 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 3563 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 3564 // will stay within the upper 32 bits. If there were more than 32 sign bits 3565 // before there will be at least 33 sign bits after. 3566 if (Op.getValueType() == MVT::i64 && 3567 (Op.getConstantOperandVal(1) & 0x10) == 0) { 3568 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3569 if (Tmp > 32) 3570 return 33; 3571 } 3572 break; 3573 } 3574 case RISCVISD::VMV_X_S: 3575 // The number of sign bits of the scalar result is computed by obtaining the 3576 // element type of the input vector operand, subtracting its width from the 3577 // XLEN, and then adding one (sign bit within the element type). If the 3578 // element type is wider than XLen, the least-significant XLEN bits are 3579 // taken. 3580 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 3581 return 1; 3582 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 3583 } 3584 3585 return 1; 3586 } 3587 3588 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 3589 MachineBasicBlock *BB) { 3590 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 3591 3592 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 3593 // Should the count have wrapped while it was being read, we need to try 3594 // again. 3595 // ... 3596 // read: 3597 // rdcycleh x3 # load high word of cycle 3598 // rdcycle x2 # load low word of cycle 3599 // rdcycleh x4 # load high word of cycle 3600 // bne x3, x4, read # check if high word reads match, otherwise try again 3601 // ... 3602 3603 MachineFunction &MF = *BB->getParent(); 3604 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 3605 MachineFunction::iterator It = ++BB->getIterator(); 3606 3607 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 3608 MF.insert(It, LoopMBB); 3609 3610 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 3611 MF.insert(It, DoneMBB); 3612 3613 // Transfer the remainder of BB and its successor edges to DoneMBB. 3614 DoneMBB->splice(DoneMBB->begin(), BB, 3615 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 3616 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 3617 3618 BB->addSuccessor(LoopMBB); 3619 3620 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3621 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 3622 Register LoReg = MI.getOperand(0).getReg(); 3623 Register HiReg = MI.getOperand(1).getReg(); 3624 DebugLoc DL = MI.getDebugLoc(); 3625 3626 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 3627 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 3628 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 3629 .addReg(RISCV::X0); 3630 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 3631 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 3632 .addReg(RISCV::X0); 3633 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 3634 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 3635 .addReg(RISCV::X0); 3636 3637 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 3638 .addReg(HiReg) 3639 .addReg(ReadAgainReg) 3640 .addMBB(LoopMBB); 3641 3642 LoopMBB->addSuccessor(LoopMBB); 3643 LoopMBB->addSuccessor(DoneMBB); 3644 3645 MI.eraseFromParent(); 3646 3647 return DoneMBB; 3648 } 3649 3650 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 3651 MachineBasicBlock *BB) { 3652 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 3653 3654 MachineFunction &MF = *BB->getParent(); 3655 DebugLoc DL = MI.getDebugLoc(); 3656 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 3657 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 3658 Register LoReg = MI.getOperand(0).getReg(); 3659 Register HiReg = MI.getOperand(1).getReg(); 3660 Register SrcReg = MI.getOperand(2).getReg(); 3661 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 3662 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 3663 3664 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 3665 RI); 3666 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 3667 MachineMemOperand *MMOLo = 3668 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 3669 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 3670 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 3671 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 3672 .addFrameIndex(FI) 3673 .addImm(0) 3674 .addMemOperand(MMOLo); 3675 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 3676 .addFrameIndex(FI) 3677 .addImm(4) 3678 .addMemOperand(MMOHi); 3679 MI.eraseFromParent(); // The pseudo instruction is gone now. 3680 return BB; 3681 } 3682 3683 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 3684 MachineBasicBlock *BB) { 3685 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 3686 "Unexpected instruction"); 3687 3688 MachineFunction &MF = *BB->getParent(); 3689 DebugLoc DL = MI.getDebugLoc(); 3690 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 3691 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 3692 Register DstReg = MI.getOperand(0).getReg(); 3693 Register LoReg = MI.getOperand(1).getReg(); 3694 Register HiReg = MI.getOperand(2).getReg(); 3695 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 3696 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 3697 3698 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 3699 MachineMemOperand *MMOLo = 3700 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 3701 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 3702 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 3703 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 3704 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 3705 .addFrameIndex(FI) 3706 .addImm(0) 3707 .addMemOperand(MMOLo); 3708 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 3709 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 3710 .addFrameIndex(FI) 3711 .addImm(4) 3712 .addMemOperand(MMOHi); 3713 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 3714 MI.eraseFromParent(); // The pseudo instruction is gone now. 3715 return BB; 3716 } 3717 3718 static bool isSelectPseudo(MachineInstr &MI) { 3719 switch (MI.getOpcode()) { 3720 default: 3721 return false; 3722 case RISCV::Select_GPR_Using_CC_GPR: 3723 case RISCV::Select_FPR16_Using_CC_GPR: 3724 case RISCV::Select_FPR32_Using_CC_GPR: 3725 case RISCV::Select_FPR64_Using_CC_GPR: 3726 return true; 3727 } 3728 } 3729 3730 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 3731 MachineBasicBlock *BB) { 3732 // To "insert" Select_* instructions, we actually have to insert the triangle 3733 // control-flow pattern. The incoming instructions know the destination vreg 3734 // to set, the condition code register to branch on, the true/false values to 3735 // select between, and the condcode to use to select the appropriate branch. 3736 // 3737 // We produce the following control flow: 3738 // HeadMBB 3739 // | \ 3740 // | IfFalseMBB 3741 // | / 3742 // TailMBB 3743 // 3744 // When we find a sequence of selects we attempt to optimize their emission 3745 // by sharing the control flow. Currently we only handle cases where we have 3746 // multiple selects with the exact same condition (same LHS, RHS and CC). 3747 // The selects may be interleaved with other instructions if the other 3748 // instructions meet some requirements we deem safe: 3749 // - They are debug instructions. Otherwise, 3750 // - They do not have side-effects, do not access memory and their inputs do 3751 // not depend on the results of the select pseudo-instructions. 3752 // The TrueV/FalseV operands of the selects cannot depend on the result of 3753 // previous selects in the sequence. 3754 // These conditions could be further relaxed. See the X86 target for a 3755 // related approach and more information. 3756 Register LHS = MI.getOperand(1).getReg(); 3757 Register RHS = MI.getOperand(2).getReg(); 3758 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 3759 3760 SmallVector<MachineInstr *, 4> SelectDebugValues; 3761 SmallSet<Register, 4> SelectDests; 3762 SelectDests.insert(MI.getOperand(0).getReg()); 3763 3764 MachineInstr *LastSelectPseudo = &MI; 3765 3766 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 3767 SequenceMBBI != E; ++SequenceMBBI) { 3768 if (SequenceMBBI->isDebugInstr()) 3769 continue; 3770 else if (isSelectPseudo(*SequenceMBBI)) { 3771 if (SequenceMBBI->getOperand(1).getReg() != LHS || 3772 SequenceMBBI->getOperand(2).getReg() != RHS || 3773 SequenceMBBI->getOperand(3).getImm() != CC || 3774 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 3775 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 3776 break; 3777 LastSelectPseudo = &*SequenceMBBI; 3778 SequenceMBBI->collectDebugValues(SelectDebugValues); 3779 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 3780 } else { 3781 if (SequenceMBBI->hasUnmodeledSideEffects() || 3782 SequenceMBBI->mayLoadOrStore()) 3783 break; 3784 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 3785 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 3786 })) 3787 break; 3788 } 3789 } 3790 3791 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 3792 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 3793 DebugLoc DL = MI.getDebugLoc(); 3794 MachineFunction::iterator I = ++BB->getIterator(); 3795 3796 MachineBasicBlock *HeadMBB = BB; 3797 MachineFunction *F = BB->getParent(); 3798 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 3799 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 3800 3801 F->insert(I, IfFalseMBB); 3802 F->insert(I, TailMBB); 3803 3804 // Transfer debug instructions associated with the selects to TailMBB. 3805 for (MachineInstr *DebugInstr : SelectDebugValues) { 3806 TailMBB->push_back(DebugInstr->removeFromParent()); 3807 } 3808 3809 // Move all instructions after the sequence to TailMBB. 3810 TailMBB->splice(TailMBB->end(), HeadMBB, 3811 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 3812 // Update machine-CFG edges by transferring all successors of the current 3813 // block to the new block which will contain the Phi nodes for the selects. 3814 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 3815 // Set the successors for HeadMBB. 3816 HeadMBB->addSuccessor(IfFalseMBB); 3817 HeadMBB->addSuccessor(TailMBB); 3818 3819 // Insert appropriate branch. 3820 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 3821 3822 BuildMI(HeadMBB, DL, TII.get(Opcode)) 3823 .addReg(LHS) 3824 .addReg(RHS) 3825 .addMBB(TailMBB); 3826 3827 // IfFalseMBB just falls through to TailMBB. 3828 IfFalseMBB->addSuccessor(TailMBB); 3829 3830 // Create PHIs for all of the select pseudo-instructions. 3831 auto SelectMBBI = MI.getIterator(); 3832 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 3833 auto InsertionPoint = TailMBB->begin(); 3834 while (SelectMBBI != SelectEnd) { 3835 auto Next = std::next(SelectMBBI); 3836 if (isSelectPseudo(*SelectMBBI)) { 3837 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 3838 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 3839 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 3840 .addReg(SelectMBBI->getOperand(4).getReg()) 3841 .addMBB(HeadMBB) 3842 .addReg(SelectMBBI->getOperand(5).getReg()) 3843 .addMBB(IfFalseMBB); 3844 SelectMBBI->eraseFromParent(); 3845 } 3846 SelectMBBI = Next; 3847 } 3848 3849 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 3850 return TailMBB; 3851 } 3852 3853 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB, 3854 int VLIndex, unsigned SEWIndex, 3855 RISCVVLMUL VLMul, bool ForceTailAgnostic) { 3856 MachineFunction &MF = *BB->getParent(); 3857 DebugLoc DL = MI.getDebugLoc(); 3858 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 3859 3860 unsigned SEW = MI.getOperand(SEWIndex).getImm(); 3861 assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW"); 3862 RISCVVSEW ElementWidth = static_cast<RISCVVSEW>(Log2_32(SEW / 8)); 3863 3864 MachineRegisterInfo &MRI = MF.getRegInfo(); 3865 3866 // VL and VTYPE are alive here. 3867 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI)); 3868 3869 if (VLIndex >= 0) { 3870 // Set VL (rs1 != X0). 3871 Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass); 3872 MIB.addReg(DestReg, RegState::Define | RegState::Dead) 3873 .addReg(MI.getOperand(VLIndex).getReg()); 3874 } else 3875 // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0). 3876 MIB.addReg(RISCV::X0, RegState::Define | RegState::Dead) 3877 .addReg(RISCV::X0, RegState::Kill); 3878 3879 // Default to tail agnostic unless the destination is tied to a source. In 3880 // that case the user would have some control over the tail values. The tail 3881 // policy is also ignored on instructions that only update element 0 like 3882 // vmv.s.x or reductions so use agnostic there to match the common case. 3883 // FIXME: This is conservatively correct, but we might want to detect that 3884 // the input is undefined. 3885 bool TailAgnostic = true; 3886 unsigned UseOpIdx; 3887 if (!ForceTailAgnostic && MI.isRegTiedToUseOperand(0, &UseOpIdx)) { 3888 TailAgnostic = false; 3889 // If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic. 3890 const MachineOperand &UseMO = MI.getOperand(UseOpIdx); 3891 MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg()); 3892 if (UseMI && UseMI->isImplicitDef()) 3893 TailAgnostic = true; 3894 } 3895 3896 // For simplicity we reuse the vtype representation here. 3897 MIB.addImm(RISCVVType::encodeVTYPE(VLMul, ElementWidth, 3898 /*TailAgnostic*/ TailAgnostic, 3899 /*MaskAgnostic*/ false)); 3900 3901 // Remove (now) redundant operands from pseudo 3902 MI.getOperand(SEWIndex).setImm(-1); 3903 if (VLIndex >= 0) { 3904 MI.getOperand(VLIndex).setReg(RISCV::NoRegister); 3905 MI.getOperand(VLIndex).setIsKill(false); 3906 } 3907 3908 return BB; 3909 } 3910 3911 MachineBasicBlock * 3912 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 3913 MachineBasicBlock *BB) const { 3914 uint64_t TSFlags = MI.getDesc().TSFlags; 3915 3916 if (TSFlags & RISCVII::HasSEWOpMask) { 3917 unsigned NumOperands = MI.getNumExplicitOperands(); 3918 int VLIndex = (TSFlags & RISCVII::HasVLOpMask) ? NumOperands - 2 : -1; 3919 unsigned SEWIndex = NumOperands - 1; 3920 bool ForceTailAgnostic = TSFlags & RISCVII::ForceTailAgnosticMask; 3921 3922 RISCVVLMUL VLMul = static_cast<RISCVVLMUL>((TSFlags & RISCVII::VLMulMask) >> 3923 RISCVII::VLMulShift); 3924 return addVSetVL(MI, BB, VLIndex, SEWIndex, VLMul, ForceTailAgnostic); 3925 } 3926 3927 switch (MI.getOpcode()) { 3928 default: 3929 llvm_unreachable("Unexpected instr type to insert"); 3930 case RISCV::ReadCycleWide: 3931 assert(!Subtarget.is64Bit() && 3932 "ReadCycleWrite is only to be used on riscv32"); 3933 return emitReadCycleWidePseudo(MI, BB); 3934 case RISCV::Select_GPR_Using_CC_GPR: 3935 case RISCV::Select_FPR16_Using_CC_GPR: 3936 case RISCV::Select_FPR32_Using_CC_GPR: 3937 case RISCV::Select_FPR64_Using_CC_GPR: 3938 return emitSelectPseudo(MI, BB); 3939 case RISCV::BuildPairF64Pseudo: 3940 return emitBuildPairF64Pseudo(MI, BB); 3941 case RISCV::SplitF64Pseudo: 3942 return emitSplitF64Pseudo(MI, BB); 3943 } 3944 } 3945 3946 // Calling Convention Implementation. 3947 // The expectations for frontend ABI lowering vary from target to target. 3948 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 3949 // details, but this is a longer term goal. For now, we simply try to keep the 3950 // role of the frontend as simple and well-defined as possible. The rules can 3951 // be summarised as: 3952 // * Never split up large scalar arguments. We handle them here. 3953 // * If a hardfloat calling convention is being used, and the struct may be 3954 // passed in a pair of registers (fp+fp, int+fp), and both registers are 3955 // available, then pass as two separate arguments. If either the GPRs or FPRs 3956 // are exhausted, then pass according to the rule below. 3957 // * If a struct could never be passed in registers or directly in a stack 3958 // slot (as it is larger than 2*XLEN and the floating point rules don't 3959 // apply), then pass it using a pointer with the byval attribute. 3960 // * If a struct is less than 2*XLEN, then coerce to either a two-element 3961 // word-sized array or a 2*XLEN scalar (depending on alignment). 3962 // * The frontend can determine whether a struct is returned by reference or 3963 // not based on its size and fields. If it will be returned by reference, the 3964 // frontend must modify the prototype so a pointer with the sret annotation is 3965 // passed as the first argument. This is not necessary for large scalar 3966 // returns. 3967 // * Struct return values and varargs should be coerced to structs containing 3968 // register-size fields in the same situations they would be for fixed 3969 // arguments. 3970 3971 static const MCPhysReg ArgGPRs[] = { 3972 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 3973 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 3974 }; 3975 static const MCPhysReg ArgFPR16s[] = { 3976 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 3977 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 3978 }; 3979 static const MCPhysReg ArgFPR32s[] = { 3980 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 3981 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 3982 }; 3983 static const MCPhysReg ArgFPR64s[] = { 3984 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 3985 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 3986 }; 3987 // This is an interim calling convention and it may be changed in the future. 3988 static const MCPhysReg ArgVRs[] = { 3989 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 3990 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 3991 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 3992 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 3993 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 3994 RISCV::V20M2, RISCV::V22M2}; 3995 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 3996 RISCV::V20M4}; 3997 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 3998 3999 // Pass a 2*XLEN argument that has been split into two XLEN values through 4000 // registers or the stack as necessary. 4001 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 4002 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 4003 MVT ValVT2, MVT LocVT2, 4004 ISD::ArgFlagsTy ArgFlags2) { 4005 unsigned XLenInBytes = XLen / 8; 4006 if (Register Reg = State.AllocateReg(ArgGPRs)) { 4007 // At least one half can be passed via register. 4008 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 4009 VA1.getLocVT(), CCValAssign::Full)); 4010 } else { 4011 // Both halves must be passed on the stack, with proper alignment. 4012 Align StackAlign = 4013 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 4014 State.addLoc( 4015 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 4016 State.AllocateStack(XLenInBytes, StackAlign), 4017 VA1.getLocVT(), CCValAssign::Full)); 4018 State.addLoc(CCValAssign::getMem( 4019 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 4020 LocVT2, CCValAssign::Full)); 4021 return false; 4022 } 4023 4024 if (Register Reg = State.AllocateReg(ArgGPRs)) { 4025 // The second half can also be passed via register. 4026 State.addLoc( 4027 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 4028 } else { 4029 // The second half is passed via the stack, without additional alignment. 4030 State.addLoc(CCValAssign::getMem( 4031 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 4032 LocVT2, CCValAssign::Full)); 4033 } 4034 4035 return false; 4036 } 4037 4038 // Implements the RISC-V calling convention. Returns true upon failure. 4039 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 4040 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 4041 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 4042 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 4043 Optional<unsigned> FirstMaskArgument) { 4044 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 4045 assert(XLen == 32 || XLen == 64); 4046 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 4047 4048 // Any return value split in to more than two values can't be returned 4049 // directly. 4050 if (IsRet && ValNo > 1) 4051 return true; 4052 4053 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 4054 // variadic argument, or if no F16/F32 argument registers are available. 4055 bool UseGPRForF16_F32 = true; 4056 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 4057 // variadic argument, or if no F64 argument registers are available. 4058 bool UseGPRForF64 = true; 4059 4060 switch (ABI) { 4061 default: 4062 llvm_unreachable("Unexpected ABI"); 4063 case RISCVABI::ABI_ILP32: 4064 case RISCVABI::ABI_LP64: 4065 break; 4066 case RISCVABI::ABI_ILP32F: 4067 case RISCVABI::ABI_LP64F: 4068 UseGPRForF16_F32 = !IsFixed; 4069 break; 4070 case RISCVABI::ABI_ILP32D: 4071 case RISCVABI::ABI_LP64D: 4072 UseGPRForF16_F32 = !IsFixed; 4073 UseGPRForF64 = !IsFixed; 4074 break; 4075 } 4076 4077 // FPR16, FPR32, and FPR64 alias each other. 4078 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 4079 UseGPRForF16_F32 = true; 4080 UseGPRForF64 = true; 4081 } 4082 4083 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 4084 // similar local variables rather than directly checking against the target 4085 // ABI. 4086 4087 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 4088 LocVT = XLenVT; 4089 LocInfo = CCValAssign::BCvt; 4090 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 4091 LocVT = MVT::i64; 4092 LocInfo = CCValAssign::BCvt; 4093 } 4094 4095 // If this is a variadic argument, the RISC-V calling convention requires 4096 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 4097 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 4098 // be used regardless of whether the original argument was split during 4099 // legalisation or not. The argument will not be passed by registers if the 4100 // original type is larger than 2*XLEN, so the register alignment rule does 4101 // not apply. 4102 unsigned TwoXLenInBytes = (2 * XLen) / 8; 4103 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 4104 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 4105 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 4106 // Skip 'odd' register if necessary. 4107 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 4108 State.AllocateReg(ArgGPRs); 4109 } 4110 4111 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 4112 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 4113 State.getPendingArgFlags(); 4114 4115 assert(PendingLocs.size() == PendingArgFlags.size() && 4116 "PendingLocs and PendingArgFlags out of sync"); 4117 4118 // Handle passing f64 on RV32D with a soft float ABI or when floating point 4119 // registers are exhausted. 4120 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 4121 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 4122 "Can't lower f64 if it is split"); 4123 // Depending on available argument GPRS, f64 may be passed in a pair of 4124 // GPRs, split between a GPR and the stack, or passed completely on the 4125 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 4126 // cases. 4127 Register Reg = State.AllocateReg(ArgGPRs); 4128 LocVT = MVT::i32; 4129 if (!Reg) { 4130 unsigned StackOffset = State.AllocateStack(8, Align(8)); 4131 State.addLoc( 4132 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 4133 return false; 4134 } 4135 if (!State.AllocateReg(ArgGPRs)) 4136 State.AllocateStack(4, Align(4)); 4137 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 4138 return false; 4139 } 4140 4141 // Split arguments might be passed indirectly, so keep track of the pending 4142 // values. 4143 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 4144 LocVT = XLenVT; 4145 LocInfo = CCValAssign::Indirect; 4146 PendingLocs.push_back( 4147 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 4148 PendingArgFlags.push_back(ArgFlags); 4149 if (!ArgFlags.isSplitEnd()) { 4150 return false; 4151 } 4152 } 4153 4154 // If the split argument only had two elements, it should be passed directly 4155 // in registers or on the stack. 4156 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 4157 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 4158 // Apply the normal calling convention rules to the first half of the 4159 // split argument. 4160 CCValAssign VA = PendingLocs[0]; 4161 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 4162 PendingLocs.clear(); 4163 PendingArgFlags.clear(); 4164 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 4165 ArgFlags); 4166 } 4167 4168 // Allocate to a register if possible, or else a stack slot. 4169 Register Reg; 4170 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 4171 Reg = State.AllocateReg(ArgFPR16s); 4172 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 4173 Reg = State.AllocateReg(ArgFPR32s); 4174 else if (ValVT == MVT::f64 && !UseGPRForF64) 4175 Reg = State.AllocateReg(ArgFPR64s); 4176 else if (ValVT.isScalableVector()) { 4177 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 4178 if (RC == &RISCV::VRRegClass) { 4179 // Assign the first mask argument to V0. 4180 // This is an interim calling convention and it may be changed in the 4181 // future. 4182 if (FirstMaskArgument.hasValue() && 4183 ValNo == FirstMaskArgument.getValue()) { 4184 Reg = State.AllocateReg(RISCV::V0); 4185 } else { 4186 Reg = State.AllocateReg(ArgVRs); 4187 } 4188 } else if (RC == &RISCV::VRM2RegClass) { 4189 Reg = State.AllocateReg(ArgVRM2s); 4190 } else if (RC == &RISCV::VRM4RegClass) { 4191 Reg = State.AllocateReg(ArgVRM4s); 4192 } else if (RC == &RISCV::VRM8RegClass) { 4193 Reg = State.AllocateReg(ArgVRM8s); 4194 } else { 4195 llvm_unreachable("Unhandled class register for ValueType"); 4196 } 4197 if (!Reg) { 4198 LocInfo = CCValAssign::Indirect; 4199 // Try using a GPR to pass the address 4200 Reg = State.AllocateReg(ArgGPRs); 4201 LocVT = XLenVT; 4202 } 4203 } else 4204 Reg = State.AllocateReg(ArgGPRs); 4205 unsigned StackOffset = 4206 Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8)); 4207 4208 // If we reach this point and PendingLocs is non-empty, we must be at the 4209 // end of a split argument that must be passed indirectly. 4210 if (!PendingLocs.empty()) { 4211 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 4212 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 4213 4214 for (auto &It : PendingLocs) { 4215 if (Reg) 4216 It.convertToReg(Reg); 4217 else 4218 It.convertToMem(StackOffset); 4219 State.addLoc(It); 4220 } 4221 PendingLocs.clear(); 4222 PendingArgFlags.clear(); 4223 return false; 4224 } 4225 4226 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 4227 (TLI.getSubtarget().hasStdExtV() && ValVT.isScalableVector())) && 4228 "Expected an XLenVT or scalable vector types at this stage"); 4229 4230 if (Reg) { 4231 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 4232 return false; 4233 } 4234 4235 // When a floating-point value is passed on the stack, no bit-conversion is 4236 // needed. 4237 if (ValVT.isFloatingPoint()) { 4238 LocVT = ValVT; 4239 LocInfo = CCValAssign::Full; 4240 } 4241 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 4242 return false; 4243 } 4244 4245 template <typename ArgTy> 4246 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 4247 for (const auto &ArgIdx : enumerate(Args)) { 4248 MVT ArgVT = ArgIdx.value().VT; 4249 if (ArgVT.isScalableVector() && 4250 ArgVT.getVectorElementType().SimpleTy == MVT::i1) 4251 return ArgIdx.index(); 4252 } 4253 return None; 4254 } 4255 4256 void RISCVTargetLowering::analyzeInputArgs( 4257 MachineFunction &MF, CCState &CCInfo, 4258 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 4259 unsigned NumArgs = Ins.size(); 4260 FunctionType *FType = MF.getFunction().getFunctionType(); 4261 4262 Optional<unsigned> FirstMaskArgument; 4263 if (Subtarget.hasStdExtV()) 4264 FirstMaskArgument = preAssignMask(Ins); 4265 4266 for (unsigned i = 0; i != NumArgs; ++i) { 4267 MVT ArgVT = Ins[i].VT; 4268 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 4269 4270 Type *ArgTy = nullptr; 4271 if (IsRet) 4272 ArgTy = FType->getReturnType(); 4273 else if (Ins[i].isOrigArg()) 4274 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 4275 4276 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 4277 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 4278 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 4279 FirstMaskArgument)) { 4280 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 4281 << EVT(ArgVT).getEVTString() << '\n'); 4282 llvm_unreachable(nullptr); 4283 } 4284 } 4285 } 4286 4287 void RISCVTargetLowering::analyzeOutputArgs( 4288 MachineFunction &MF, CCState &CCInfo, 4289 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 4290 CallLoweringInfo *CLI) const { 4291 unsigned NumArgs = Outs.size(); 4292 4293 Optional<unsigned> FirstMaskArgument; 4294 if (Subtarget.hasStdExtV()) 4295 FirstMaskArgument = preAssignMask(Outs); 4296 4297 for (unsigned i = 0; i != NumArgs; i++) { 4298 MVT ArgVT = Outs[i].VT; 4299 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 4300 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 4301 4302 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 4303 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 4304 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 4305 FirstMaskArgument)) { 4306 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 4307 << EVT(ArgVT).getEVTString() << "\n"); 4308 llvm_unreachable(nullptr); 4309 } 4310 } 4311 } 4312 4313 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 4314 // values. 4315 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 4316 const CCValAssign &VA, const SDLoc &DL) { 4317 switch (VA.getLocInfo()) { 4318 default: 4319 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 4320 case CCValAssign::Full: 4321 break; 4322 case CCValAssign::BCvt: 4323 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 4324 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 4325 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 4326 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 4327 else 4328 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 4329 break; 4330 } 4331 return Val; 4332 } 4333 4334 // The caller is responsible for loading the full value if the argument is 4335 // passed with CCValAssign::Indirect. 4336 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 4337 const CCValAssign &VA, const SDLoc &DL, 4338 const RISCVTargetLowering &TLI) { 4339 MachineFunction &MF = DAG.getMachineFunction(); 4340 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4341 EVT LocVT = VA.getLocVT(); 4342 SDValue Val; 4343 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 4344 Register VReg = RegInfo.createVirtualRegister(RC); 4345 RegInfo.addLiveIn(VA.getLocReg(), VReg); 4346 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 4347 4348 if (VA.getLocInfo() == CCValAssign::Indirect) 4349 return Val; 4350 4351 return convertLocVTToValVT(DAG, Val, VA, DL); 4352 } 4353 4354 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 4355 const CCValAssign &VA, const SDLoc &DL) { 4356 EVT LocVT = VA.getLocVT(); 4357 4358 switch (VA.getLocInfo()) { 4359 default: 4360 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 4361 case CCValAssign::Full: 4362 break; 4363 case CCValAssign::BCvt: 4364 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 4365 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 4366 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 4367 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 4368 else 4369 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 4370 break; 4371 } 4372 return Val; 4373 } 4374 4375 // The caller is responsible for loading the full value if the argument is 4376 // passed with CCValAssign::Indirect. 4377 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 4378 const CCValAssign &VA, const SDLoc &DL) { 4379 MachineFunction &MF = DAG.getMachineFunction(); 4380 MachineFrameInfo &MFI = MF.getFrameInfo(); 4381 EVT LocVT = VA.getLocVT(); 4382 EVT ValVT = VA.getValVT(); 4383 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 4384 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 4385 VA.getLocMemOffset(), /*Immutable=*/true); 4386 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4387 SDValue Val; 4388 4389 ISD::LoadExtType ExtType; 4390 switch (VA.getLocInfo()) { 4391 default: 4392 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 4393 case CCValAssign::Full: 4394 case CCValAssign::Indirect: 4395 case CCValAssign::BCvt: 4396 ExtType = ISD::NON_EXTLOAD; 4397 break; 4398 } 4399 Val = DAG.getExtLoad( 4400 ExtType, DL, LocVT, Chain, FIN, 4401 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 4402 return Val; 4403 } 4404 4405 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 4406 const CCValAssign &VA, const SDLoc &DL) { 4407 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 4408 "Unexpected VA"); 4409 MachineFunction &MF = DAG.getMachineFunction(); 4410 MachineFrameInfo &MFI = MF.getFrameInfo(); 4411 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4412 4413 if (VA.isMemLoc()) { 4414 // f64 is passed on the stack. 4415 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 4416 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 4417 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 4418 MachinePointerInfo::getFixedStack(MF, FI)); 4419 } 4420 4421 assert(VA.isRegLoc() && "Expected register VA assignment"); 4422 4423 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 4424 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 4425 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 4426 SDValue Hi; 4427 if (VA.getLocReg() == RISCV::X17) { 4428 // Second half of f64 is passed on the stack. 4429 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 4430 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 4431 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 4432 MachinePointerInfo::getFixedStack(MF, FI)); 4433 } else { 4434 // Second half of f64 is passed in another GPR. 4435 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 4436 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 4437 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 4438 } 4439 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 4440 } 4441 4442 // FastCC has less than 1% performance improvement for some particular 4443 // benchmark. But theoretically, it may has benenfit for some cases. 4444 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 4445 CCValAssign::LocInfo LocInfo, 4446 ISD::ArgFlagsTy ArgFlags, CCState &State) { 4447 4448 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 4449 // X5 and X6 might be used for save-restore libcall. 4450 static const MCPhysReg GPRList[] = { 4451 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 4452 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 4453 RISCV::X29, RISCV::X30, RISCV::X31}; 4454 if (unsigned Reg = State.AllocateReg(GPRList)) { 4455 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 4456 return false; 4457 } 4458 } 4459 4460 if (LocVT == MVT::f16) { 4461 static const MCPhysReg FPR16List[] = { 4462 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 4463 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 4464 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 4465 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 4466 if (unsigned Reg = State.AllocateReg(FPR16List)) { 4467 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 4468 return false; 4469 } 4470 } 4471 4472 if (LocVT == MVT::f32) { 4473 static const MCPhysReg FPR32List[] = { 4474 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 4475 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 4476 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 4477 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 4478 if (unsigned Reg = State.AllocateReg(FPR32List)) { 4479 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 4480 return false; 4481 } 4482 } 4483 4484 if (LocVT == MVT::f64) { 4485 static const MCPhysReg FPR64List[] = { 4486 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 4487 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 4488 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 4489 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 4490 if (unsigned Reg = State.AllocateReg(FPR64List)) { 4491 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 4492 return false; 4493 } 4494 } 4495 4496 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 4497 unsigned Offset4 = State.AllocateStack(4, Align(4)); 4498 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 4499 return false; 4500 } 4501 4502 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 4503 unsigned Offset5 = State.AllocateStack(8, Align(8)); 4504 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 4505 return false; 4506 } 4507 4508 return true; // CC didn't match. 4509 } 4510 4511 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 4512 CCValAssign::LocInfo LocInfo, 4513 ISD::ArgFlagsTy ArgFlags, CCState &State) { 4514 4515 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 4516 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 4517 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 4518 static const MCPhysReg GPRList[] = { 4519 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 4520 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 4521 if (unsigned Reg = State.AllocateReg(GPRList)) { 4522 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 4523 return false; 4524 } 4525 } 4526 4527 if (LocVT == MVT::f32) { 4528 // Pass in STG registers: F1, ..., F6 4529 // fs0 ... fs5 4530 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 4531 RISCV::F18_F, RISCV::F19_F, 4532 RISCV::F20_F, RISCV::F21_F}; 4533 if (unsigned Reg = State.AllocateReg(FPR32List)) { 4534 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 4535 return false; 4536 } 4537 } 4538 4539 if (LocVT == MVT::f64) { 4540 // Pass in STG registers: D1, ..., D6 4541 // fs6 ... fs11 4542 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 4543 RISCV::F24_D, RISCV::F25_D, 4544 RISCV::F26_D, RISCV::F27_D}; 4545 if (unsigned Reg = State.AllocateReg(FPR64List)) { 4546 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 4547 return false; 4548 } 4549 } 4550 4551 report_fatal_error("No registers left in GHC calling convention"); 4552 return true; 4553 } 4554 4555 // Transform physical registers into virtual registers. 4556 SDValue RISCVTargetLowering::LowerFormalArguments( 4557 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 4558 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 4559 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4560 4561 MachineFunction &MF = DAG.getMachineFunction(); 4562 4563 switch (CallConv) { 4564 default: 4565 report_fatal_error("Unsupported calling convention"); 4566 case CallingConv::C: 4567 case CallingConv::Fast: 4568 break; 4569 case CallingConv::GHC: 4570 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 4571 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 4572 report_fatal_error( 4573 "GHC calling convention requires the F and D instruction set extensions"); 4574 } 4575 4576 const Function &Func = MF.getFunction(); 4577 if (Func.hasFnAttribute("interrupt")) { 4578 if (!Func.arg_empty()) 4579 report_fatal_error( 4580 "Functions with the interrupt attribute cannot have arguments!"); 4581 4582 StringRef Kind = 4583 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 4584 4585 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 4586 report_fatal_error( 4587 "Function interrupt attribute argument not supported!"); 4588 } 4589 4590 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4591 MVT XLenVT = Subtarget.getXLenVT(); 4592 unsigned XLenInBytes = Subtarget.getXLen() / 8; 4593 // Used with vargs to acumulate store chains. 4594 std::vector<SDValue> OutChains; 4595 4596 // Assign locations to all of the incoming arguments. 4597 SmallVector<CCValAssign, 16> ArgLocs; 4598 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 4599 4600 if (CallConv == CallingConv::Fast) 4601 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 4602 else if (CallConv == CallingConv::GHC) 4603 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 4604 else 4605 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 4606 4607 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 4608 CCValAssign &VA = ArgLocs[i]; 4609 SDValue ArgValue; 4610 // Passing f64 on RV32D with a soft float ABI must be handled as a special 4611 // case. 4612 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 4613 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 4614 else if (VA.isRegLoc()) 4615 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 4616 else 4617 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 4618 4619 if (VA.getLocInfo() == CCValAssign::Indirect) { 4620 // If the original argument was split and passed by reference (e.g. i128 4621 // on RV32), we need to load all parts of it here (using the same 4622 // address). 4623 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 4624 MachinePointerInfo())); 4625 unsigned ArgIndex = Ins[i].OrigArgIndex; 4626 assert(Ins[i].PartOffset == 0); 4627 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 4628 CCValAssign &PartVA = ArgLocs[i + 1]; 4629 unsigned PartOffset = Ins[i + 1].PartOffset; 4630 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 4631 DAG.getIntPtrConstant(PartOffset, DL)); 4632 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 4633 MachinePointerInfo())); 4634 ++i; 4635 } 4636 continue; 4637 } 4638 InVals.push_back(ArgValue); 4639 } 4640 4641 if (IsVarArg) { 4642 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 4643 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 4644 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 4645 MachineFrameInfo &MFI = MF.getFrameInfo(); 4646 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4647 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 4648 4649 // Offset of the first variable argument from stack pointer, and size of 4650 // the vararg save area. For now, the varargs save area is either zero or 4651 // large enough to hold a0-a7. 4652 int VaArgOffset, VarArgsSaveSize; 4653 4654 // If all registers are allocated, then all varargs must be passed on the 4655 // stack and we don't need to save any argregs. 4656 if (ArgRegs.size() == Idx) { 4657 VaArgOffset = CCInfo.getNextStackOffset(); 4658 VarArgsSaveSize = 0; 4659 } else { 4660 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 4661 VaArgOffset = -VarArgsSaveSize; 4662 } 4663 4664 // Record the frame index of the first variable argument 4665 // which is a value necessary to VASTART. 4666 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 4667 RVFI->setVarArgsFrameIndex(FI); 4668 4669 // If saving an odd number of registers then create an extra stack slot to 4670 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 4671 // offsets to even-numbered registered remain 2*XLEN-aligned. 4672 if (Idx % 2) { 4673 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 4674 VarArgsSaveSize += XLenInBytes; 4675 } 4676 4677 // Copy the integer registers that may have been used for passing varargs 4678 // to the vararg save area. 4679 for (unsigned I = Idx; I < ArgRegs.size(); 4680 ++I, VaArgOffset += XLenInBytes) { 4681 const Register Reg = RegInfo.createVirtualRegister(RC); 4682 RegInfo.addLiveIn(ArgRegs[I], Reg); 4683 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 4684 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 4685 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 4686 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 4687 MachinePointerInfo::getFixedStack(MF, FI)); 4688 cast<StoreSDNode>(Store.getNode()) 4689 ->getMemOperand() 4690 ->setValue((Value *)nullptr); 4691 OutChains.push_back(Store); 4692 } 4693 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 4694 } 4695 4696 // All stores are grouped in one node to allow the matching between 4697 // the size of Ins and InVals. This only happens for vararg functions. 4698 if (!OutChains.empty()) { 4699 OutChains.push_back(Chain); 4700 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 4701 } 4702 4703 return Chain; 4704 } 4705 4706 /// isEligibleForTailCallOptimization - Check whether the call is eligible 4707 /// for tail call optimization. 4708 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 4709 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 4710 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 4711 const SmallVector<CCValAssign, 16> &ArgLocs) const { 4712 4713 auto &Callee = CLI.Callee; 4714 auto CalleeCC = CLI.CallConv; 4715 auto &Outs = CLI.Outs; 4716 auto &Caller = MF.getFunction(); 4717 auto CallerCC = Caller.getCallingConv(); 4718 4719 // Exception-handling functions need a special set of instructions to 4720 // indicate a return to the hardware. Tail-calling another function would 4721 // probably break this. 4722 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 4723 // should be expanded as new function attributes are introduced. 4724 if (Caller.hasFnAttribute("interrupt")) 4725 return false; 4726 4727 // Do not tail call opt if the stack is used to pass parameters. 4728 if (CCInfo.getNextStackOffset() != 0) 4729 return false; 4730 4731 // Do not tail call opt if any parameters need to be passed indirectly. 4732 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 4733 // passed indirectly. So the address of the value will be passed in a 4734 // register, or if not available, then the address is put on the stack. In 4735 // order to pass indirectly, space on the stack often needs to be allocated 4736 // in order to store the value. In this case the CCInfo.getNextStackOffset() 4737 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 4738 // are passed CCValAssign::Indirect. 4739 for (auto &VA : ArgLocs) 4740 if (VA.getLocInfo() == CCValAssign::Indirect) 4741 return false; 4742 4743 // Do not tail call opt if either caller or callee uses struct return 4744 // semantics. 4745 auto IsCallerStructRet = Caller.hasStructRetAttr(); 4746 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 4747 if (IsCallerStructRet || IsCalleeStructRet) 4748 return false; 4749 4750 // Externally-defined functions with weak linkage should not be 4751 // tail-called. The behaviour of branch instructions in this situation (as 4752 // used for tail calls) is implementation-defined, so we cannot rely on the 4753 // linker replacing the tail call with a return. 4754 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4755 const GlobalValue *GV = G->getGlobal(); 4756 if (GV->hasExternalWeakLinkage()) 4757 return false; 4758 } 4759 4760 // The callee has to preserve all registers the caller needs to preserve. 4761 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4762 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 4763 if (CalleeCC != CallerCC) { 4764 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 4765 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 4766 return false; 4767 } 4768 4769 // Byval parameters hand the function a pointer directly into the stack area 4770 // we want to reuse during a tail call. Working around this *is* possible 4771 // but less efficient and uglier in LowerCall. 4772 for (auto &Arg : Outs) 4773 if (Arg.Flags.isByVal()) 4774 return false; 4775 4776 return true; 4777 } 4778 4779 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 4780 // and output parameter nodes. 4781 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 4782 SmallVectorImpl<SDValue> &InVals) const { 4783 SelectionDAG &DAG = CLI.DAG; 4784 SDLoc &DL = CLI.DL; 4785 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 4786 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 4787 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 4788 SDValue Chain = CLI.Chain; 4789 SDValue Callee = CLI.Callee; 4790 bool &IsTailCall = CLI.IsTailCall; 4791 CallingConv::ID CallConv = CLI.CallConv; 4792 bool IsVarArg = CLI.IsVarArg; 4793 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4794 MVT XLenVT = Subtarget.getXLenVT(); 4795 4796 MachineFunction &MF = DAG.getMachineFunction(); 4797 4798 // Analyze the operands of the call, assigning locations to each operand. 4799 SmallVector<CCValAssign, 16> ArgLocs; 4800 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 4801 4802 if (CallConv == CallingConv::Fast) 4803 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 4804 else if (CallConv == CallingConv::GHC) 4805 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 4806 else 4807 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 4808 4809 // Check if it's really possible to do a tail call. 4810 if (IsTailCall) 4811 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 4812 4813 if (IsTailCall) 4814 ++NumTailCalls; 4815 else if (CLI.CB && CLI.CB->isMustTailCall()) 4816 report_fatal_error("failed to perform tail call elimination on a call " 4817 "site marked musttail"); 4818 4819 // Get a count of how many bytes are to be pushed on the stack. 4820 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 4821 4822 // Create local copies for byval args 4823 SmallVector<SDValue, 8> ByValArgs; 4824 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 4825 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4826 if (!Flags.isByVal()) 4827 continue; 4828 4829 SDValue Arg = OutVals[i]; 4830 unsigned Size = Flags.getByValSize(); 4831 Align Alignment = Flags.getNonZeroByValAlign(); 4832 4833 int FI = 4834 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 4835 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 4836 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 4837 4838 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 4839 /*IsVolatile=*/false, 4840 /*AlwaysInline=*/false, IsTailCall, 4841 MachinePointerInfo(), MachinePointerInfo()); 4842 ByValArgs.push_back(FIPtr); 4843 } 4844 4845 if (!IsTailCall) 4846 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 4847 4848 // Copy argument values to their designated locations. 4849 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 4850 SmallVector<SDValue, 8> MemOpChains; 4851 SDValue StackPtr; 4852 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 4853 CCValAssign &VA = ArgLocs[i]; 4854 SDValue ArgValue = OutVals[i]; 4855 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4856 4857 // Handle passing f64 on RV32D with a soft float ABI as a special case. 4858 bool IsF64OnRV32DSoftABI = 4859 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 4860 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 4861 SDValue SplitF64 = DAG.getNode( 4862 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 4863 SDValue Lo = SplitF64.getValue(0); 4864 SDValue Hi = SplitF64.getValue(1); 4865 4866 Register RegLo = VA.getLocReg(); 4867 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 4868 4869 if (RegLo == RISCV::X17) { 4870 // Second half of f64 is passed on the stack. 4871 // Work out the address of the stack slot. 4872 if (!StackPtr.getNode()) 4873 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 4874 // Emit the store. 4875 MemOpChains.push_back( 4876 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 4877 } else { 4878 // Second half of f64 is passed in another GPR. 4879 assert(RegLo < RISCV::X31 && "Invalid register pair"); 4880 Register RegHigh = RegLo + 1; 4881 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 4882 } 4883 continue; 4884 } 4885 4886 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 4887 // as any other MemLoc. 4888 4889 // Promote the value if needed. 4890 // For now, only handle fully promoted and indirect arguments. 4891 if (VA.getLocInfo() == CCValAssign::Indirect) { 4892 // Store the argument in a stack slot and pass its address. 4893 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 4894 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 4895 MemOpChains.push_back( 4896 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 4897 MachinePointerInfo::getFixedStack(MF, FI))); 4898 // If the original argument was split (e.g. i128), we need 4899 // to store all parts of it here (and pass just one address). 4900 unsigned ArgIndex = Outs[i].OrigArgIndex; 4901 assert(Outs[i].PartOffset == 0); 4902 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 4903 SDValue PartValue = OutVals[i + 1]; 4904 unsigned PartOffset = Outs[i + 1].PartOffset; 4905 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 4906 DAG.getIntPtrConstant(PartOffset, DL)); 4907 MemOpChains.push_back( 4908 DAG.getStore(Chain, DL, PartValue, Address, 4909 MachinePointerInfo::getFixedStack(MF, FI))); 4910 ++i; 4911 } 4912 ArgValue = SpillSlot; 4913 } else { 4914 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 4915 } 4916 4917 // Use local copy if it is a byval arg. 4918 if (Flags.isByVal()) 4919 ArgValue = ByValArgs[j++]; 4920 4921 if (VA.isRegLoc()) { 4922 // Queue up the argument copies and emit them at the end. 4923 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 4924 } else { 4925 assert(VA.isMemLoc() && "Argument not register or memory"); 4926 assert(!IsTailCall && "Tail call not allowed if stack is used " 4927 "for passing parameters"); 4928 4929 // Work out the address of the stack slot. 4930 if (!StackPtr.getNode()) 4931 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 4932 SDValue Address = 4933 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 4934 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 4935 4936 // Emit the store. 4937 MemOpChains.push_back( 4938 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 4939 } 4940 } 4941 4942 // Join the stores, which are independent of one another. 4943 if (!MemOpChains.empty()) 4944 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 4945 4946 SDValue Glue; 4947 4948 // Build a sequence of copy-to-reg nodes, chained and glued together. 4949 for (auto &Reg : RegsToPass) { 4950 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 4951 Glue = Chain.getValue(1); 4952 } 4953 4954 // Validate that none of the argument registers have been marked as 4955 // reserved, if so report an error. Do the same for the return address if this 4956 // is not a tailcall. 4957 validateCCReservedRegs(RegsToPass, MF); 4958 if (!IsTailCall && 4959 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 4960 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 4961 MF.getFunction(), 4962 "Return address register required, but has been reserved."}); 4963 4964 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 4965 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 4966 // split it and then direct call can be matched by PseudoCALL. 4967 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 4968 const GlobalValue *GV = S->getGlobal(); 4969 4970 unsigned OpFlags = RISCVII::MO_CALL; 4971 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 4972 OpFlags = RISCVII::MO_PLT; 4973 4974 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 4975 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4976 unsigned OpFlags = RISCVII::MO_CALL; 4977 4978 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 4979 nullptr)) 4980 OpFlags = RISCVII::MO_PLT; 4981 4982 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 4983 } 4984 4985 // The first call operand is the chain and the second is the target address. 4986 SmallVector<SDValue, 8> Ops; 4987 Ops.push_back(Chain); 4988 Ops.push_back(Callee); 4989 4990 // Add argument registers to the end of the list so that they are 4991 // known live into the call. 4992 for (auto &Reg : RegsToPass) 4993 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 4994 4995 if (!IsTailCall) { 4996 // Add a register mask operand representing the call-preserved registers. 4997 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4998 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 4999 assert(Mask && "Missing call preserved mask for calling convention"); 5000 Ops.push_back(DAG.getRegisterMask(Mask)); 5001 } 5002 5003 // Glue the call to the argument copies, if any. 5004 if (Glue.getNode()) 5005 Ops.push_back(Glue); 5006 5007 // Emit the call. 5008 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 5009 5010 if (IsTailCall) { 5011 MF.getFrameInfo().setHasTailCall(); 5012 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 5013 } 5014 5015 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 5016 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 5017 Glue = Chain.getValue(1); 5018 5019 // Mark the end of the call, which is glued to the call itself. 5020 Chain = DAG.getCALLSEQ_END(Chain, 5021 DAG.getConstant(NumBytes, DL, PtrVT, true), 5022 DAG.getConstant(0, DL, PtrVT, true), 5023 Glue, DL); 5024 Glue = Chain.getValue(1); 5025 5026 // Assign locations to each value returned by this call. 5027 SmallVector<CCValAssign, 16> RVLocs; 5028 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 5029 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 5030 5031 // Copy all of the result registers out of their specified physreg. 5032 for (auto &VA : RVLocs) { 5033 // Copy the value out 5034 SDValue RetValue = 5035 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 5036 // Glue the RetValue to the end of the call sequence 5037 Chain = RetValue.getValue(1); 5038 Glue = RetValue.getValue(2); 5039 5040 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 5041 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 5042 SDValue RetValue2 = 5043 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 5044 Chain = RetValue2.getValue(1); 5045 Glue = RetValue2.getValue(2); 5046 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 5047 RetValue2); 5048 } 5049 5050 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 5051 5052 InVals.push_back(RetValue); 5053 } 5054 5055 return Chain; 5056 } 5057 5058 bool RISCVTargetLowering::CanLowerReturn( 5059 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 5060 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 5061 SmallVector<CCValAssign, 16> RVLocs; 5062 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 5063 5064 Optional<unsigned> FirstMaskArgument; 5065 if (Subtarget.hasStdExtV()) 5066 FirstMaskArgument = preAssignMask(Outs); 5067 5068 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 5069 MVT VT = Outs[i].VT; 5070 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5071 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 5072 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 5073 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 5074 *this, FirstMaskArgument)) 5075 return false; 5076 } 5077 return true; 5078 } 5079 5080 SDValue 5081 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 5082 bool IsVarArg, 5083 const SmallVectorImpl<ISD::OutputArg> &Outs, 5084 const SmallVectorImpl<SDValue> &OutVals, 5085 const SDLoc &DL, SelectionDAG &DAG) const { 5086 const MachineFunction &MF = DAG.getMachineFunction(); 5087 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 5088 5089 // Stores the assignment of the return value to a location. 5090 SmallVector<CCValAssign, 16> RVLocs; 5091 5092 // Info about the registers and stack slot. 5093 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 5094 *DAG.getContext()); 5095 5096 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 5097 nullptr); 5098 5099 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 5100 report_fatal_error("GHC functions return void only"); 5101 5102 SDValue Glue; 5103 SmallVector<SDValue, 4> RetOps(1, Chain); 5104 5105 // Copy the result values into the output registers. 5106 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 5107 SDValue Val = OutVals[i]; 5108 CCValAssign &VA = RVLocs[i]; 5109 assert(VA.isRegLoc() && "Can only return in registers!"); 5110 5111 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 5112 // Handle returning f64 on RV32D with a soft float ABI. 5113 assert(VA.isRegLoc() && "Expected return via registers"); 5114 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 5115 DAG.getVTList(MVT::i32, MVT::i32), Val); 5116 SDValue Lo = SplitF64.getValue(0); 5117 SDValue Hi = SplitF64.getValue(1); 5118 Register RegLo = VA.getLocReg(); 5119 assert(RegLo < RISCV::X31 && "Invalid register pair"); 5120 Register RegHi = RegLo + 1; 5121 5122 if (STI.isRegisterReservedByUser(RegLo) || 5123 STI.isRegisterReservedByUser(RegHi)) 5124 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 5125 MF.getFunction(), 5126 "Return value register required, but has been reserved."}); 5127 5128 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 5129 Glue = Chain.getValue(1); 5130 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 5131 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 5132 Glue = Chain.getValue(1); 5133 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 5134 } else { 5135 // Handle a 'normal' return. 5136 Val = convertValVTToLocVT(DAG, Val, VA, DL); 5137 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 5138 5139 if (STI.isRegisterReservedByUser(VA.getLocReg())) 5140 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 5141 MF.getFunction(), 5142 "Return value register required, but has been reserved."}); 5143 5144 // Guarantee that all emitted copies are stuck together. 5145 Glue = Chain.getValue(1); 5146 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 5147 } 5148 } 5149 5150 RetOps[0] = Chain; // Update chain. 5151 5152 // Add the glue node if we have it. 5153 if (Glue.getNode()) { 5154 RetOps.push_back(Glue); 5155 } 5156 5157 // Interrupt service routines use different return instructions. 5158 const Function &Func = DAG.getMachineFunction().getFunction(); 5159 if (Func.hasFnAttribute("interrupt")) { 5160 if (!Func.getReturnType()->isVoidTy()) 5161 report_fatal_error( 5162 "Functions with the interrupt attribute must have void return type!"); 5163 5164 MachineFunction &MF = DAG.getMachineFunction(); 5165 StringRef Kind = 5166 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 5167 5168 unsigned RetOpc; 5169 if (Kind == "user") 5170 RetOpc = RISCVISD::URET_FLAG; 5171 else if (Kind == "supervisor") 5172 RetOpc = RISCVISD::SRET_FLAG; 5173 else 5174 RetOpc = RISCVISD::MRET_FLAG; 5175 5176 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 5177 } 5178 5179 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 5180 } 5181 5182 void RISCVTargetLowering::validateCCReservedRegs( 5183 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 5184 MachineFunction &MF) const { 5185 const Function &F = MF.getFunction(); 5186 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 5187 5188 if (llvm::any_of(Regs, [&STI](auto Reg) { 5189 return STI.isRegisterReservedByUser(Reg.first); 5190 })) 5191 F.getContext().diagnose(DiagnosticInfoUnsupported{ 5192 F, "Argument register required, but has been reserved."}); 5193 } 5194 5195 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 5196 return CI->isTailCall(); 5197 } 5198 5199 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 5200 #define NODE_NAME_CASE(NODE) \ 5201 case RISCVISD::NODE: \ 5202 return "RISCVISD::" #NODE; 5203 // clang-format off 5204 switch ((RISCVISD::NodeType)Opcode) { 5205 case RISCVISD::FIRST_NUMBER: 5206 break; 5207 NODE_NAME_CASE(RET_FLAG) 5208 NODE_NAME_CASE(URET_FLAG) 5209 NODE_NAME_CASE(SRET_FLAG) 5210 NODE_NAME_CASE(MRET_FLAG) 5211 NODE_NAME_CASE(CALL) 5212 NODE_NAME_CASE(SELECT_CC) 5213 NODE_NAME_CASE(BuildPairF64) 5214 NODE_NAME_CASE(SplitF64) 5215 NODE_NAME_CASE(TAIL) 5216 NODE_NAME_CASE(SLLW) 5217 NODE_NAME_CASE(SRAW) 5218 NODE_NAME_CASE(SRLW) 5219 NODE_NAME_CASE(DIVW) 5220 NODE_NAME_CASE(DIVUW) 5221 NODE_NAME_CASE(REMUW) 5222 NODE_NAME_CASE(ROLW) 5223 NODE_NAME_CASE(RORW) 5224 NODE_NAME_CASE(FSLW) 5225 NODE_NAME_CASE(FSRW) 5226 NODE_NAME_CASE(FSL) 5227 NODE_NAME_CASE(FSR) 5228 NODE_NAME_CASE(FMV_H_X) 5229 NODE_NAME_CASE(FMV_X_ANYEXTH) 5230 NODE_NAME_CASE(FMV_W_X_RV64) 5231 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 5232 NODE_NAME_CASE(READ_CYCLE_WIDE) 5233 NODE_NAME_CASE(GREVI) 5234 NODE_NAME_CASE(GREVIW) 5235 NODE_NAME_CASE(GORCI) 5236 NODE_NAME_CASE(GORCIW) 5237 NODE_NAME_CASE(SHFLI) 5238 NODE_NAME_CASE(VMV_V_X_VL) 5239 NODE_NAME_CASE(VFMV_V_F_VL) 5240 NODE_NAME_CASE(VMV_X_S) 5241 NODE_NAME_CASE(SPLAT_VECTOR_I64) 5242 NODE_NAME_CASE(READ_VLENB) 5243 NODE_NAME_CASE(TRUNCATE_VECTOR) 5244 NODE_NAME_CASE(VSLIDEUP_VL) 5245 NODE_NAME_CASE(VSLIDEDOWN_VL) 5246 NODE_NAME_CASE(VID_VL) 5247 NODE_NAME_CASE(VFNCVT_ROD) 5248 NODE_NAME_CASE(VECREDUCE_ADD) 5249 NODE_NAME_CASE(VECREDUCE_UMAX) 5250 NODE_NAME_CASE(VECREDUCE_SMAX) 5251 NODE_NAME_CASE(VECREDUCE_UMIN) 5252 NODE_NAME_CASE(VECREDUCE_SMIN) 5253 NODE_NAME_CASE(VECREDUCE_AND) 5254 NODE_NAME_CASE(VECREDUCE_OR) 5255 NODE_NAME_CASE(VECREDUCE_XOR) 5256 NODE_NAME_CASE(VECREDUCE_FADD) 5257 NODE_NAME_CASE(VECREDUCE_SEQ_FADD) 5258 NODE_NAME_CASE(ADD_VL) 5259 NODE_NAME_CASE(AND_VL) 5260 NODE_NAME_CASE(MUL_VL) 5261 NODE_NAME_CASE(OR_VL) 5262 NODE_NAME_CASE(SDIV_VL) 5263 NODE_NAME_CASE(SHL_VL) 5264 NODE_NAME_CASE(SREM_VL) 5265 NODE_NAME_CASE(SRA_VL) 5266 NODE_NAME_CASE(SRL_VL) 5267 NODE_NAME_CASE(SUB_VL) 5268 NODE_NAME_CASE(UDIV_VL) 5269 NODE_NAME_CASE(UREM_VL) 5270 NODE_NAME_CASE(XOR_VL) 5271 NODE_NAME_CASE(FADD_VL) 5272 NODE_NAME_CASE(FSUB_VL) 5273 NODE_NAME_CASE(FMUL_VL) 5274 NODE_NAME_CASE(FDIV_VL) 5275 NODE_NAME_CASE(FNEG_VL) 5276 NODE_NAME_CASE(FABS_VL) 5277 NODE_NAME_CASE(FSQRT_VL) 5278 NODE_NAME_CASE(FMA_VL) 5279 NODE_NAME_CASE(SMIN_VL) 5280 NODE_NAME_CASE(SMAX_VL) 5281 NODE_NAME_CASE(UMIN_VL) 5282 NODE_NAME_CASE(UMAX_VL) 5283 NODE_NAME_CASE(MULHS_VL) 5284 NODE_NAME_CASE(MULHU_VL) 5285 NODE_NAME_CASE(SETCC_VL) 5286 NODE_NAME_CASE(VSELECT_VL) 5287 NODE_NAME_CASE(VMAND_VL) 5288 NODE_NAME_CASE(VMOR_VL) 5289 NODE_NAME_CASE(VMXOR_VL) 5290 NODE_NAME_CASE(VMCLR_VL) 5291 NODE_NAME_CASE(VMSET_VL) 5292 NODE_NAME_CASE(VRGATHER_VX_VL) 5293 NODE_NAME_CASE(VLE_VL) 5294 NODE_NAME_CASE(VSE_VL) 5295 } 5296 // clang-format on 5297 return nullptr; 5298 #undef NODE_NAME_CASE 5299 } 5300 5301 /// getConstraintType - Given a constraint letter, return the type of 5302 /// constraint it is for this target. 5303 RISCVTargetLowering::ConstraintType 5304 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 5305 if (Constraint.size() == 1) { 5306 switch (Constraint[0]) { 5307 default: 5308 break; 5309 case 'f': 5310 return C_RegisterClass; 5311 case 'I': 5312 case 'J': 5313 case 'K': 5314 return C_Immediate; 5315 case 'A': 5316 return C_Memory; 5317 } 5318 } 5319 return TargetLowering::getConstraintType(Constraint); 5320 } 5321 5322 std::pair<unsigned, const TargetRegisterClass *> 5323 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 5324 StringRef Constraint, 5325 MVT VT) const { 5326 // First, see if this is a constraint that directly corresponds to a 5327 // RISCV register class. 5328 if (Constraint.size() == 1) { 5329 switch (Constraint[0]) { 5330 case 'r': 5331 return std::make_pair(0U, &RISCV::GPRRegClass); 5332 case 'f': 5333 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 5334 return std::make_pair(0U, &RISCV::FPR16RegClass); 5335 if (Subtarget.hasStdExtF() && VT == MVT::f32) 5336 return std::make_pair(0U, &RISCV::FPR32RegClass); 5337 if (Subtarget.hasStdExtD() && VT == MVT::f64) 5338 return std::make_pair(0U, &RISCV::FPR64RegClass); 5339 break; 5340 default: 5341 break; 5342 } 5343 } 5344 5345 // Clang will correctly decode the usage of register name aliases into their 5346 // official names. However, other frontends like `rustc` do not. This allows 5347 // users of these frontends to use the ABI names for registers in LLVM-style 5348 // register constraints. 5349 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 5350 .Case("{zero}", RISCV::X0) 5351 .Case("{ra}", RISCV::X1) 5352 .Case("{sp}", RISCV::X2) 5353 .Case("{gp}", RISCV::X3) 5354 .Case("{tp}", RISCV::X4) 5355 .Case("{t0}", RISCV::X5) 5356 .Case("{t1}", RISCV::X6) 5357 .Case("{t2}", RISCV::X7) 5358 .Cases("{s0}", "{fp}", RISCV::X8) 5359 .Case("{s1}", RISCV::X9) 5360 .Case("{a0}", RISCV::X10) 5361 .Case("{a1}", RISCV::X11) 5362 .Case("{a2}", RISCV::X12) 5363 .Case("{a3}", RISCV::X13) 5364 .Case("{a4}", RISCV::X14) 5365 .Case("{a5}", RISCV::X15) 5366 .Case("{a6}", RISCV::X16) 5367 .Case("{a7}", RISCV::X17) 5368 .Case("{s2}", RISCV::X18) 5369 .Case("{s3}", RISCV::X19) 5370 .Case("{s4}", RISCV::X20) 5371 .Case("{s5}", RISCV::X21) 5372 .Case("{s6}", RISCV::X22) 5373 .Case("{s7}", RISCV::X23) 5374 .Case("{s8}", RISCV::X24) 5375 .Case("{s9}", RISCV::X25) 5376 .Case("{s10}", RISCV::X26) 5377 .Case("{s11}", RISCV::X27) 5378 .Case("{t3}", RISCV::X28) 5379 .Case("{t4}", RISCV::X29) 5380 .Case("{t5}", RISCV::X30) 5381 .Case("{t6}", RISCV::X31) 5382 .Default(RISCV::NoRegister); 5383 if (XRegFromAlias != RISCV::NoRegister) 5384 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 5385 5386 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 5387 // TableGen record rather than the AsmName to choose registers for InlineAsm 5388 // constraints, plus we want to match those names to the widest floating point 5389 // register type available, manually select floating point registers here. 5390 // 5391 // The second case is the ABI name of the register, so that frontends can also 5392 // use the ABI names in register constraint lists. 5393 if (Subtarget.hasStdExtF()) { 5394 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 5395 .Cases("{f0}", "{ft0}", RISCV::F0_F) 5396 .Cases("{f1}", "{ft1}", RISCV::F1_F) 5397 .Cases("{f2}", "{ft2}", RISCV::F2_F) 5398 .Cases("{f3}", "{ft3}", RISCV::F3_F) 5399 .Cases("{f4}", "{ft4}", RISCV::F4_F) 5400 .Cases("{f5}", "{ft5}", RISCV::F5_F) 5401 .Cases("{f6}", "{ft6}", RISCV::F6_F) 5402 .Cases("{f7}", "{ft7}", RISCV::F7_F) 5403 .Cases("{f8}", "{fs0}", RISCV::F8_F) 5404 .Cases("{f9}", "{fs1}", RISCV::F9_F) 5405 .Cases("{f10}", "{fa0}", RISCV::F10_F) 5406 .Cases("{f11}", "{fa1}", RISCV::F11_F) 5407 .Cases("{f12}", "{fa2}", RISCV::F12_F) 5408 .Cases("{f13}", "{fa3}", RISCV::F13_F) 5409 .Cases("{f14}", "{fa4}", RISCV::F14_F) 5410 .Cases("{f15}", "{fa5}", RISCV::F15_F) 5411 .Cases("{f16}", "{fa6}", RISCV::F16_F) 5412 .Cases("{f17}", "{fa7}", RISCV::F17_F) 5413 .Cases("{f18}", "{fs2}", RISCV::F18_F) 5414 .Cases("{f19}", "{fs3}", RISCV::F19_F) 5415 .Cases("{f20}", "{fs4}", RISCV::F20_F) 5416 .Cases("{f21}", "{fs5}", RISCV::F21_F) 5417 .Cases("{f22}", "{fs6}", RISCV::F22_F) 5418 .Cases("{f23}", "{fs7}", RISCV::F23_F) 5419 .Cases("{f24}", "{fs8}", RISCV::F24_F) 5420 .Cases("{f25}", "{fs9}", RISCV::F25_F) 5421 .Cases("{f26}", "{fs10}", RISCV::F26_F) 5422 .Cases("{f27}", "{fs11}", RISCV::F27_F) 5423 .Cases("{f28}", "{ft8}", RISCV::F28_F) 5424 .Cases("{f29}", "{ft9}", RISCV::F29_F) 5425 .Cases("{f30}", "{ft10}", RISCV::F30_F) 5426 .Cases("{f31}", "{ft11}", RISCV::F31_F) 5427 .Default(RISCV::NoRegister); 5428 if (FReg != RISCV::NoRegister) { 5429 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 5430 if (Subtarget.hasStdExtD()) { 5431 unsigned RegNo = FReg - RISCV::F0_F; 5432 unsigned DReg = RISCV::F0_D + RegNo; 5433 return std::make_pair(DReg, &RISCV::FPR64RegClass); 5434 } 5435 return std::make_pair(FReg, &RISCV::FPR32RegClass); 5436 } 5437 } 5438 5439 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 5440 } 5441 5442 unsigned 5443 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 5444 // Currently only support length 1 constraints. 5445 if (ConstraintCode.size() == 1) { 5446 switch (ConstraintCode[0]) { 5447 case 'A': 5448 return InlineAsm::Constraint_A; 5449 default: 5450 break; 5451 } 5452 } 5453 5454 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 5455 } 5456 5457 void RISCVTargetLowering::LowerAsmOperandForConstraint( 5458 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 5459 SelectionDAG &DAG) const { 5460 // Currently only support length 1 constraints. 5461 if (Constraint.length() == 1) { 5462 switch (Constraint[0]) { 5463 case 'I': 5464 // Validate & create a 12-bit signed immediate operand. 5465 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 5466 uint64_t CVal = C->getSExtValue(); 5467 if (isInt<12>(CVal)) 5468 Ops.push_back( 5469 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 5470 } 5471 return; 5472 case 'J': 5473 // Validate & create an integer zero operand. 5474 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 5475 if (C->getZExtValue() == 0) 5476 Ops.push_back( 5477 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 5478 return; 5479 case 'K': 5480 // Validate & create a 5-bit unsigned immediate operand. 5481 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 5482 uint64_t CVal = C->getZExtValue(); 5483 if (isUInt<5>(CVal)) 5484 Ops.push_back( 5485 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 5486 } 5487 return; 5488 default: 5489 break; 5490 } 5491 } 5492 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 5493 } 5494 5495 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 5496 Instruction *Inst, 5497 AtomicOrdering Ord) const { 5498 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 5499 return Builder.CreateFence(Ord); 5500 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 5501 return Builder.CreateFence(AtomicOrdering::Release); 5502 return nullptr; 5503 } 5504 5505 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 5506 Instruction *Inst, 5507 AtomicOrdering Ord) const { 5508 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 5509 return Builder.CreateFence(AtomicOrdering::Acquire); 5510 return nullptr; 5511 } 5512 5513 TargetLowering::AtomicExpansionKind 5514 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 5515 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 5516 // point operations can't be used in an lr/sc sequence without breaking the 5517 // forward-progress guarantee. 5518 if (AI->isFloatingPointOperation()) 5519 return AtomicExpansionKind::CmpXChg; 5520 5521 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 5522 if (Size == 8 || Size == 16) 5523 return AtomicExpansionKind::MaskedIntrinsic; 5524 return AtomicExpansionKind::None; 5525 } 5526 5527 static Intrinsic::ID 5528 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 5529 if (XLen == 32) { 5530 switch (BinOp) { 5531 default: 5532 llvm_unreachable("Unexpected AtomicRMW BinOp"); 5533 case AtomicRMWInst::Xchg: 5534 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 5535 case AtomicRMWInst::Add: 5536 return Intrinsic::riscv_masked_atomicrmw_add_i32; 5537 case AtomicRMWInst::Sub: 5538 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 5539 case AtomicRMWInst::Nand: 5540 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 5541 case AtomicRMWInst::Max: 5542 return Intrinsic::riscv_masked_atomicrmw_max_i32; 5543 case AtomicRMWInst::Min: 5544 return Intrinsic::riscv_masked_atomicrmw_min_i32; 5545 case AtomicRMWInst::UMax: 5546 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 5547 case AtomicRMWInst::UMin: 5548 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 5549 } 5550 } 5551 5552 if (XLen == 64) { 5553 switch (BinOp) { 5554 default: 5555 llvm_unreachable("Unexpected AtomicRMW BinOp"); 5556 case AtomicRMWInst::Xchg: 5557 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 5558 case AtomicRMWInst::Add: 5559 return Intrinsic::riscv_masked_atomicrmw_add_i64; 5560 case AtomicRMWInst::Sub: 5561 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 5562 case AtomicRMWInst::Nand: 5563 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 5564 case AtomicRMWInst::Max: 5565 return Intrinsic::riscv_masked_atomicrmw_max_i64; 5566 case AtomicRMWInst::Min: 5567 return Intrinsic::riscv_masked_atomicrmw_min_i64; 5568 case AtomicRMWInst::UMax: 5569 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 5570 case AtomicRMWInst::UMin: 5571 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 5572 } 5573 } 5574 5575 llvm_unreachable("Unexpected XLen\n"); 5576 } 5577 5578 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 5579 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 5580 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 5581 unsigned XLen = Subtarget.getXLen(); 5582 Value *Ordering = 5583 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 5584 Type *Tys[] = {AlignedAddr->getType()}; 5585 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 5586 AI->getModule(), 5587 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 5588 5589 if (XLen == 64) { 5590 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 5591 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 5592 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 5593 } 5594 5595 Value *Result; 5596 5597 // Must pass the shift amount needed to sign extend the loaded value prior 5598 // to performing a signed comparison for min/max. ShiftAmt is the number of 5599 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 5600 // is the number of bits to left+right shift the value in order to 5601 // sign-extend. 5602 if (AI->getOperation() == AtomicRMWInst::Min || 5603 AI->getOperation() == AtomicRMWInst::Max) { 5604 const DataLayout &DL = AI->getModule()->getDataLayout(); 5605 unsigned ValWidth = 5606 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 5607 Value *SextShamt = 5608 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 5609 Result = Builder.CreateCall(LrwOpScwLoop, 5610 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 5611 } else { 5612 Result = 5613 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 5614 } 5615 5616 if (XLen == 64) 5617 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 5618 return Result; 5619 } 5620 5621 TargetLowering::AtomicExpansionKind 5622 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 5623 AtomicCmpXchgInst *CI) const { 5624 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 5625 if (Size == 8 || Size == 16) 5626 return AtomicExpansionKind::MaskedIntrinsic; 5627 return AtomicExpansionKind::None; 5628 } 5629 5630 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 5631 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 5632 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 5633 unsigned XLen = Subtarget.getXLen(); 5634 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 5635 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 5636 if (XLen == 64) { 5637 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 5638 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 5639 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 5640 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 5641 } 5642 Type *Tys[] = {AlignedAddr->getType()}; 5643 Function *MaskedCmpXchg = 5644 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 5645 Value *Result = Builder.CreateCall( 5646 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 5647 if (XLen == 64) 5648 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 5649 return Result; 5650 } 5651 5652 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 5653 EVT VT) const { 5654 VT = VT.getScalarType(); 5655 5656 if (!VT.isSimple()) 5657 return false; 5658 5659 switch (VT.getSimpleVT().SimpleTy) { 5660 case MVT::f16: 5661 return Subtarget.hasStdExtZfh(); 5662 case MVT::f32: 5663 return Subtarget.hasStdExtF(); 5664 case MVT::f64: 5665 return Subtarget.hasStdExtD(); 5666 default: 5667 break; 5668 } 5669 5670 return false; 5671 } 5672 5673 Register RISCVTargetLowering::getExceptionPointerRegister( 5674 const Constant *PersonalityFn) const { 5675 return RISCV::X10; 5676 } 5677 5678 Register RISCVTargetLowering::getExceptionSelectorRegister( 5679 const Constant *PersonalityFn) const { 5680 return RISCV::X11; 5681 } 5682 5683 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 5684 // Return false to suppress the unnecessary extensions if the LibCall 5685 // arguments or return value is f32 type for LP64 ABI. 5686 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 5687 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 5688 return false; 5689 5690 return true; 5691 } 5692 5693 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 5694 if (Subtarget.is64Bit() && Type == MVT::i32) 5695 return true; 5696 5697 return IsSigned; 5698 } 5699 5700 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 5701 SDValue C) const { 5702 // Check integral scalar types. 5703 if (VT.isScalarInteger()) { 5704 // Omit the optimization if the sub target has the M extension and the data 5705 // size exceeds XLen. 5706 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 5707 return false; 5708 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 5709 // Break the MUL to a SLLI and an ADD/SUB. 5710 const APInt &Imm = ConstNode->getAPIntValue(); 5711 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 5712 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 5713 return true; 5714 // Omit the following optimization if the sub target has the M extension 5715 // and the data size >= XLen. 5716 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 5717 return false; 5718 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 5719 // a pair of LUI/ADDI. 5720 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 5721 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 5722 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 5723 (1 - ImmS).isPowerOf2()) 5724 return true; 5725 } 5726 } 5727 } 5728 5729 return false; 5730 } 5731 5732 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 5733 if (!Subtarget.useRVVForFixedLengthVectors()) 5734 return false; 5735 5736 if (!VT.isFixedLengthVector()) 5737 return false; 5738 5739 // Don't use RVV for vectors we cannot scalarize if required. 5740 switch (VT.getVectorElementType().SimpleTy) { 5741 // i1 is supported but has different rules. 5742 default: 5743 return false; 5744 case MVT::i1: 5745 // Masks can only use a single register. 5746 if (VT.getVectorNumElements() > Subtarget.getMinRVVVectorSizeInBits()) 5747 return false; 5748 break; 5749 case MVT::i8: 5750 case MVT::i16: 5751 case MVT::i32: 5752 case MVT::i64: 5753 break; 5754 case MVT::f16: 5755 if (!Subtarget.hasStdExtZfh()) 5756 return false; 5757 break; 5758 case MVT::f32: 5759 if (!Subtarget.hasStdExtF()) 5760 return false; 5761 break; 5762 case MVT::f64: 5763 if (!Subtarget.hasStdExtD()) 5764 return false; 5765 break; 5766 } 5767 5768 unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT); 5769 // Don't use RVV for types that don't fit. 5770 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 5771 return false; 5772 5773 // TODO: Perhaps an artificial restriction, but worth having whilst getting 5774 // the base fixed length RVV support in place. 5775 if (!VT.isPow2VectorType()) 5776 return false; 5777 5778 return true; 5779 } 5780 5781 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 5782 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 5783 bool *Fast) const { 5784 if (!VT.isScalableVector()) 5785 return false; 5786 5787 EVT ElemVT = VT.getVectorElementType(); 5788 if (Alignment >= ElemVT.getStoreSize()) { 5789 if (Fast) 5790 *Fast = true; 5791 return true; 5792 } 5793 5794 return false; 5795 } 5796 5797 #define GET_REGISTER_MATCHER 5798 #include "RISCVGenAsmMatcher.inc" 5799 5800 Register 5801 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 5802 const MachineFunction &MF) const { 5803 Register Reg = MatchRegisterAltName(RegName); 5804 if (Reg == RISCV::NoRegister) 5805 Reg = MatchRegisterName(RegName); 5806 if (Reg == RISCV::NoRegister) 5807 report_fatal_error( 5808 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 5809 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 5810 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 5811 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 5812 StringRef(RegName) + "\".")); 5813 return Reg; 5814 } 5815 5816 namespace llvm { 5817 namespace RISCVVIntrinsicsTable { 5818 5819 #define GET_RISCVVIntrinsicsTable_IMPL 5820 #include "RISCVGenSearchableTables.inc" 5821 5822 } // namespace RISCVVIntrinsicsTable 5823 5824 } // namespace llvm 5825