1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 116 assert(Size <= 512 && isPowerOf2_32(Size)); 117 const TargetRegisterClass *RC; 118 if (Size <= 64) 119 RC = &RISCV::VRRegClass; 120 else if (Size == 128) 121 RC = &RISCV::VRM2RegClass; 122 else if (Size == 256) 123 RC = &RISCV::VRM4RegClass; 124 else 125 RC = &RISCV::VRM8RegClass; 126 127 addRegisterClass(VT, RC); 128 }; 129 130 for (MVT VT : BoolVecVTs) 131 addRegClassForRVV(VT); 132 for (MVT VT : IntVecVTs) { 133 if (VT.getVectorElementType() == MVT::i64 && 134 !Subtarget.hasVInstructionsI64()) 135 continue; 136 addRegClassForRVV(VT); 137 } 138 139 if (Subtarget.hasVInstructionsF16()) 140 for (MVT VT : F16VecVTs) 141 addRegClassForRVV(VT); 142 143 if (Subtarget.hasVInstructionsF32()) 144 for (MVT VT : F32VecVTs) 145 addRegClassForRVV(VT); 146 147 if (Subtarget.hasVInstructionsF64()) 148 for (MVT VT : F64VecVTs) 149 addRegClassForRVV(VT); 150 151 if (Subtarget.useRVVForFixedLengthVectors()) { 152 auto addRegClassForFixedVectors = [this](MVT VT) { 153 MVT ContainerVT = getContainerForFixedLengthVector(VT); 154 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 155 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 156 addRegisterClass(VT, TRI.getRegClass(RCID)); 157 }; 158 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 159 if (useRVVForFixedLengthVectorVT(VT)) 160 addRegClassForFixedVectors(VT); 161 162 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 163 if (useRVVForFixedLengthVectorVT(VT)) 164 addRegClassForFixedVectors(VT); 165 } 166 } 167 168 // Compute derived properties from the register classes. 169 computeRegisterProperties(STI.getRegisterInfo()); 170 171 setStackPointerRegisterToSaveRestore(RISCV::X2); 172 173 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 174 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 175 176 // TODO: add all necessary setOperationAction calls. 177 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 178 179 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 180 setOperationAction(ISD::BR_CC, XLenVT, Expand); 181 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 182 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 183 184 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 185 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 186 187 setOperationAction(ISD::VASTART, MVT::Other, Custom); 188 setOperationAction(ISD::VAARG, MVT::Other, Expand); 189 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 190 setOperationAction(ISD::VAEND, MVT::Other, Expand); 191 192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 193 if (!Subtarget.hasStdExtZbb()) { 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 196 } 197 198 if (Subtarget.is64Bit()) { 199 setOperationAction(ISD::ADD, MVT::i32, Custom); 200 setOperationAction(ISD::SUB, MVT::i32, Custom); 201 setOperationAction(ISD::SHL, MVT::i32, Custom); 202 setOperationAction(ISD::SRA, MVT::i32, Custom); 203 setOperationAction(ISD::SRL, MVT::i32, Custom); 204 205 setOperationAction(ISD::UADDO, MVT::i32, Custom); 206 setOperationAction(ISD::USUBO, MVT::i32, Custom); 207 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 208 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 209 } else { 210 setLibcallName(RTLIB::SHL_I128, nullptr); 211 setLibcallName(RTLIB::SRL_I128, nullptr); 212 setLibcallName(RTLIB::SRA_I128, nullptr); 213 setLibcallName(RTLIB::MUL_I128, nullptr); 214 setLibcallName(RTLIB::MULO_I64, nullptr); 215 } 216 217 if (!Subtarget.hasStdExtM()) { 218 setOperationAction(ISD::MUL, XLenVT, Expand); 219 setOperationAction(ISD::MULHS, XLenVT, Expand); 220 setOperationAction(ISD::MULHU, XLenVT, Expand); 221 setOperationAction(ISD::SDIV, XLenVT, Expand); 222 setOperationAction(ISD::UDIV, XLenVT, Expand); 223 setOperationAction(ISD::SREM, XLenVT, Expand); 224 setOperationAction(ISD::UREM, XLenVT, Expand); 225 } else { 226 if (Subtarget.is64Bit()) { 227 setOperationAction(ISD::MUL, MVT::i32, Custom); 228 setOperationAction(ISD::MUL, MVT::i128, Custom); 229 230 setOperationAction(ISD::SDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UDIV, MVT::i8, Custom); 232 setOperationAction(ISD::UREM, MVT::i8, Custom); 233 setOperationAction(ISD::SDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UDIV, MVT::i16, Custom); 235 setOperationAction(ISD::UREM, MVT::i16, Custom); 236 setOperationAction(ISD::SDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UDIV, MVT::i32, Custom); 238 setOperationAction(ISD::UREM, MVT::i32, Custom); 239 } else { 240 setOperationAction(ISD::MUL, MVT::i64, Custom); 241 } 242 } 243 244 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 246 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 247 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 248 249 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 251 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 252 253 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 254 Subtarget.hasStdExtZbkb()) { 255 if (Subtarget.is64Bit()) { 256 setOperationAction(ISD::ROTL, MVT::i32, Custom); 257 setOperationAction(ISD::ROTR, MVT::i32, Custom); 258 } 259 } else { 260 setOperationAction(ISD::ROTL, XLenVT, Expand); 261 setOperationAction(ISD::ROTR, XLenVT, Expand); 262 } 263 264 if (Subtarget.hasStdExtZbp()) { 265 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 266 // more combining. 267 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 268 setOperationAction(ISD::BSWAP, XLenVT, Custom); 269 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 270 // BSWAP i8 doesn't exist. 271 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 272 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 273 274 if (Subtarget.is64Bit()) { 275 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 276 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 277 } 278 } else { 279 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 280 // pattern match it directly in isel. 281 setOperationAction(ISD::BSWAP, XLenVT, 282 (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) 283 ? Legal 284 : Expand); 285 // Zbkb can use rev8+brev8 to implement bitreverse. 286 setOperationAction(ISD::BITREVERSE, XLenVT, 287 Subtarget.hasStdExtZbkb() ? Custom : Expand); 288 } 289 290 if (Subtarget.hasStdExtZbb()) { 291 setOperationAction(ISD::SMIN, XLenVT, Legal); 292 setOperationAction(ISD::SMAX, XLenVT, Legal); 293 setOperationAction(ISD::UMIN, XLenVT, Legal); 294 setOperationAction(ISD::UMAX, XLenVT, Legal); 295 296 if (Subtarget.is64Bit()) { 297 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 298 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 299 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 300 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 301 } 302 } else { 303 setOperationAction(ISD::CTTZ, XLenVT, Expand); 304 setOperationAction(ISD::CTLZ, XLenVT, Expand); 305 setOperationAction(ISD::CTPOP, XLenVT, Expand); 306 307 if (Subtarget.is64Bit()) 308 setOperationAction(ISD::ABS, MVT::i32, Custom); 309 } 310 311 if (Subtarget.hasStdExtZbt()) { 312 setOperationAction(ISD::FSHL, XLenVT, Custom); 313 setOperationAction(ISD::FSHR, XLenVT, Custom); 314 setOperationAction(ISD::SELECT, XLenVT, Legal); 315 316 if (Subtarget.is64Bit()) { 317 setOperationAction(ISD::FSHL, MVT::i32, Custom); 318 setOperationAction(ISD::FSHR, MVT::i32, Custom); 319 } 320 } else { 321 setOperationAction(ISD::SELECT, XLenVT, Custom); 322 } 323 324 static constexpr ISD::NodeType FPLegalNodeTypes[] = { 325 ISD::FMINNUM, ISD::FMAXNUM, ISD::LRINT, 326 ISD::LLRINT, ISD::LROUND, ISD::LLROUND, 327 ISD::STRICT_LRINT, ISD::STRICT_LLRINT, ISD::STRICT_LROUND, 328 ISD::STRICT_LLROUND, ISD::STRICT_FMA, ISD::STRICT_FADD, 329 ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, 330 ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS}; 331 332 static const ISD::CondCode FPCCToExpand[] = { 333 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 334 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 335 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 336 337 static const ISD::NodeType FPOpToExpand[] = { 338 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 339 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 340 341 if (Subtarget.hasStdExtZfh()) 342 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 343 344 if (Subtarget.hasStdExtZfh()) { 345 for (auto NT : FPLegalNodeTypes) 346 setOperationAction(NT, MVT::f16, Legal); 347 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 348 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 349 for (auto CC : FPCCToExpand) 350 setCondCodeAction(CC, MVT::f16, Expand); 351 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 352 setOperationAction(ISD::SELECT, MVT::f16, Custom); 353 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 354 355 setOperationAction(ISD::FREM, MVT::f16, Promote); 356 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 357 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 358 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 359 setOperationAction(ISD::FRINT, MVT::f16, Promote); 360 setOperationAction(ISD::FROUND, MVT::f16, Promote); 361 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 362 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 363 setOperationAction(ISD::FPOW, MVT::f16, Promote); 364 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 365 setOperationAction(ISD::FCOS, MVT::f16, Promote); 366 setOperationAction(ISD::FSIN, MVT::f16, Promote); 367 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 368 setOperationAction(ISD::FEXP, MVT::f16, Promote); 369 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 370 setOperationAction(ISD::FLOG, MVT::f16, Promote); 371 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 372 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 373 374 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 375 // complete support for all operations in LegalizeDAG. 376 377 // We need to custom promote this. 378 if (Subtarget.is64Bit()) 379 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 380 } 381 382 if (Subtarget.hasStdExtF()) { 383 for (auto NT : FPLegalNodeTypes) 384 setOperationAction(NT, MVT::f32, Legal); 385 for (auto CC : FPCCToExpand) 386 setCondCodeAction(CC, MVT::f32, Expand); 387 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 388 setOperationAction(ISD::SELECT, MVT::f32, Custom); 389 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 390 for (auto Op : FPOpToExpand) 391 setOperationAction(Op, MVT::f32, Expand); 392 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 393 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 394 } 395 396 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 397 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 398 399 if (Subtarget.hasStdExtD()) { 400 for (auto NT : FPLegalNodeTypes) 401 setOperationAction(NT, MVT::f64, Legal); 402 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 403 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 404 for (auto CC : FPCCToExpand) 405 setCondCodeAction(CC, MVT::f64, Expand); 406 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 407 setOperationAction(ISD::SELECT, MVT::f64, Custom); 408 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 409 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 410 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 411 for (auto Op : FPOpToExpand) 412 setOperationAction(Op, MVT::f64, Expand); 413 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 414 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 415 } 416 417 if (Subtarget.is64Bit()) { 418 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 419 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 420 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 421 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 422 } 423 424 if (Subtarget.hasStdExtF()) { 425 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 426 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 427 428 setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal); 429 setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal); 430 setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal); 431 setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal); 432 433 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 434 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 435 } 436 437 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 438 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 439 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 440 setOperationAction(ISD::JumpTable, XLenVT, Custom); 441 442 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 443 444 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 445 // Unfortunately this can't be determined just from the ISA naming string. 446 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 447 Subtarget.is64Bit() ? Legal : Custom); 448 449 setOperationAction(ISD::TRAP, MVT::Other, Legal); 450 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 451 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 452 if (Subtarget.is64Bit()) 453 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 454 455 if (Subtarget.hasStdExtA()) { 456 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 457 setMinCmpXchgSizeInBits(32); 458 } else { 459 setMaxAtomicSizeInBitsSupported(0); 460 } 461 462 setBooleanContents(ZeroOrOneBooleanContent); 463 464 if (Subtarget.hasVInstructions()) { 465 setBooleanVectorContents(ZeroOrOneBooleanContent); 466 467 setOperationAction(ISD::VSCALE, XLenVT, Custom); 468 469 // RVV intrinsics may have illegal operands. 470 // We also need to custom legalize vmv.x.s. 471 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 472 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 473 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 474 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 475 if (Subtarget.is64Bit()) { 476 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 477 } else { 478 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 479 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 480 } 481 482 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 483 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 484 485 static const unsigned IntegerVPOps[] = { 486 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 487 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 488 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 489 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 490 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 491 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 492 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 493 ISD::VP_MERGE, ISD::VP_SELECT, ISD::VP_FPTOSI, 494 ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_SEXT, 495 ISD::VP_ZEXT}; 496 497 static const unsigned FloatingPointVPOps[] = { 498 ISD::VP_FADD, ISD::VP_FSUB, 499 ISD::VP_FMUL, ISD::VP_FDIV, 500 ISD::VP_FNEG, ISD::VP_FMA, 501 ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 502 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, 503 ISD::VP_MERGE, ISD::VP_SELECT, 504 ISD::VP_SITOFP, ISD::VP_UITOFP, 505 ISD::VP_SETCC}; 506 507 if (!Subtarget.is64Bit()) { 508 // We must custom-lower certain vXi64 operations on RV32 due to the vector 509 // element type being illegal. 510 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 511 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 512 513 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 514 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 515 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 516 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 517 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 518 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 519 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 520 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 521 522 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 523 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 524 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 525 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 526 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 527 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 528 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 529 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 530 } 531 532 for (MVT VT : BoolVecVTs) { 533 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 534 535 // Mask VTs are custom-expanded into a series of standard nodes 536 setOperationAction(ISD::TRUNCATE, VT, Custom); 537 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 538 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 539 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 540 541 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 542 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 543 544 setOperationAction(ISD::SELECT, VT, Custom); 545 setOperationAction(ISD::SELECT_CC, VT, Expand); 546 setOperationAction(ISD::VSELECT, VT, Expand); 547 setOperationAction(ISD::VP_MERGE, VT, Expand); 548 setOperationAction(ISD::VP_SELECT, VT, Expand); 549 550 setOperationAction(ISD::VP_AND, VT, Custom); 551 setOperationAction(ISD::VP_OR, VT, Custom); 552 setOperationAction(ISD::VP_XOR, VT, Custom); 553 554 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 555 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 556 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 557 558 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 559 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 560 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 561 562 // RVV has native int->float & float->int conversions where the 563 // element type sizes are within one power-of-two of each other. Any 564 // wider distances between type sizes have to be lowered as sequences 565 // which progressively narrow the gap in stages. 566 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 567 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 568 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 569 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 570 571 // Expand all extending loads to types larger than this, and truncating 572 // stores from types larger than this. 573 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 574 setTruncStoreAction(OtherVT, VT, Expand); 575 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 576 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 577 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 578 } 579 580 setOperationAction(ISD::VP_FPTOSI, VT, Custom); 581 setOperationAction(ISD::VP_FPTOUI, VT, Custom); 582 } 583 584 for (MVT VT : IntVecVTs) { 585 if (VT.getVectorElementType() == MVT::i64 && 586 !Subtarget.hasVInstructionsI64()) 587 continue; 588 589 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 590 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 591 592 // Vectors implement MULHS/MULHU. 593 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 594 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 595 596 // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. 597 if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) { 598 setOperationAction(ISD::MULHU, VT, Expand); 599 setOperationAction(ISD::MULHS, VT, Expand); 600 } 601 602 setOperationAction(ISD::SMIN, VT, Legal); 603 setOperationAction(ISD::SMAX, VT, Legal); 604 setOperationAction(ISD::UMIN, VT, Legal); 605 setOperationAction(ISD::UMAX, VT, Legal); 606 607 setOperationAction(ISD::ROTL, VT, Expand); 608 setOperationAction(ISD::ROTR, VT, Expand); 609 610 setOperationAction(ISD::CTTZ, VT, Expand); 611 setOperationAction(ISD::CTLZ, VT, Expand); 612 setOperationAction(ISD::CTPOP, VT, Expand); 613 614 setOperationAction(ISD::BSWAP, VT, Expand); 615 616 // Custom-lower extensions and truncations from/to mask types. 617 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 618 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 619 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 620 621 // RVV has native int->float & float->int conversions where the 622 // element type sizes are within one power-of-two of each other. Any 623 // wider distances between type sizes have to be lowered as sequences 624 // which progressively narrow the gap in stages. 625 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 626 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 627 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 628 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 629 630 setOperationAction(ISD::SADDSAT, VT, Legal); 631 setOperationAction(ISD::UADDSAT, VT, Legal); 632 setOperationAction(ISD::SSUBSAT, VT, Legal); 633 setOperationAction(ISD::USUBSAT, VT, Legal); 634 635 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 636 // nodes which truncate by one power of two at a time. 637 setOperationAction(ISD::TRUNCATE, VT, Custom); 638 639 // Custom-lower insert/extract operations to simplify patterns. 640 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 641 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 642 643 // Custom-lower reduction operations to set up the corresponding custom 644 // nodes' operands. 645 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 646 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 647 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 648 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 649 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 650 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 651 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 652 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 653 654 for (unsigned VPOpc : IntegerVPOps) 655 setOperationAction(VPOpc, VT, Custom); 656 657 setOperationAction(ISD::LOAD, VT, Custom); 658 setOperationAction(ISD::STORE, VT, Custom); 659 660 setOperationAction(ISD::MLOAD, VT, Custom); 661 setOperationAction(ISD::MSTORE, VT, Custom); 662 setOperationAction(ISD::MGATHER, VT, Custom); 663 setOperationAction(ISD::MSCATTER, VT, Custom); 664 665 setOperationAction(ISD::VP_LOAD, VT, Custom); 666 setOperationAction(ISD::VP_STORE, VT, Custom); 667 setOperationAction(ISD::VP_GATHER, VT, Custom); 668 setOperationAction(ISD::VP_SCATTER, VT, Custom); 669 670 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 671 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 672 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 673 674 setOperationAction(ISD::SELECT, VT, Custom); 675 setOperationAction(ISD::SELECT_CC, VT, Expand); 676 677 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 678 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 679 680 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 681 setTruncStoreAction(VT, OtherVT, Expand); 682 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 683 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 684 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 685 } 686 687 // Splice 688 setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); 689 690 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 691 // type that can represent the value exactly. 692 if (VT.getVectorElementType() != MVT::i64) { 693 MVT FloatEltVT = 694 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 695 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 696 if (isTypeLegal(FloatVT)) { 697 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 698 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 699 } 700 } 701 } 702 703 // Expand various CCs to best match the RVV ISA, which natively supports UNE 704 // but no other unordered comparisons, and supports all ordered comparisons 705 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 706 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 707 // and we pattern-match those back to the "original", swapping operands once 708 // more. This way we catch both operations and both "vf" and "fv" forms with 709 // fewer patterns. 710 static const ISD::CondCode VFPCCToExpand[] = { 711 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 712 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 713 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 714 }; 715 716 // Sets common operation actions on RVV floating-point vector types. 717 const auto SetCommonVFPActions = [&](MVT VT) { 718 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 719 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 720 // sizes are within one power-of-two of each other. Therefore conversions 721 // between vXf16 and vXf64 must be lowered as sequences which convert via 722 // vXf32. 723 setOperationAction(ISD::FP_ROUND, VT, Custom); 724 setOperationAction(ISD::FP_EXTEND, VT, Custom); 725 // Custom-lower insert/extract operations to simplify patterns. 726 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 727 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 728 // Expand various condition codes (explained above). 729 for (auto CC : VFPCCToExpand) 730 setCondCodeAction(CC, VT, Expand); 731 732 setOperationAction(ISD::FMINNUM, VT, Legal); 733 setOperationAction(ISD::FMAXNUM, VT, Legal); 734 735 setOperationAction(ISD::FTRUNC, VT, Custom); 736 setOperationAction(ISD::FCEIL, VT, Custom); 737 setOperationAction(ISD::FFLOOR, VT, Custom); 738 setOperationAction(ISD::FROUND, VT, Custom); 739 740 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 741 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 742 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 743 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 744 745 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 746 747 setOperationAction(ISD::LOAD, VT, Custom); 748 setOperationAction(ISD::STORE, VT, Custom); 749 750 setOperationAction(ISD::MLOAD, VT, Custom); 751 setOperationAction(ISD::MSTORE, VT, Custom); 752 setOperationAction(ISD::MGATHER, VT, Custom); 753 setOperationAction(ISD::MSCATTER, VT, Custom); 754 755 setOperationAction(ISD::VP_LOAD, VT, Custom); 756 setOperationAction(ISD::VP_STORE, VT, Custom); 757 setOperationAction(ISD::VP_GATHER, VT, Custom); 758 setOperationAction(ISD::VP_SCATTER, VT, Custom); 759 760 setOperationAction(ISD::SELECT, VT, Custom); 761 setOperationAction(ISD::SELECT_CC, VT, Expand); 762 763 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 764 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 765 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 766 767 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 768 setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); 769 770 for (unsigned VPOpc : FloatingPointVPOps) 771 setOperationAction(VPOpc, VT, Custom); 772 }; 773 774 // Sets common extload/truncstore actions on RVV floating-point vector 775 // types. 776 const auto SetCommonVFPExtLoadTruncStoreActions = 777 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 778 for (auto SmallVT : SmallerVTs) { 779 setTruncStoreAction(VT, SmallVT, Expand); 780 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 781 } 782 }; 783 784 if (Subtarget.hasVInstructionsF16()) 785 for (MVT VT : F16VecVTs) 786 SetCommonVFPActions(VT); 787 788 for (MVT VT : F32VecVTs) { 789 if (Subtarget.hasVInstructionsF32()) 790 SetCommonVFPActions(VT); 791 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 792 } 793 794 for (MVT VT : F64VecVTs) { 795 if (Subtarget.hasVInstructionsF64()) 796 SetCommonVFPActions(VT); 797 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 798 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 799 } 800 801 if (Subtarget.useRVVForFixedLengthVectors()) { 802 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 803 if (!useRVVForFixedLengthVectorVT(VT)) 804 continue; 805 806 // By default everything must be expanded. 807 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 808 setOperationAction(Op, VT, Expand); 809 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 810 setTruncStoreAction(VT, OtherVT, Expand); 811 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 812 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 813 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 814 } 815 816 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 817 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 818 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 819 820 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 821 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 822 823 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 824 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 825 826 setOperationAction(ISD::LOAD, VT, Custom); 827 setOperationAction(ISD::STORE, VT, Custom); 828 829 setOperationAction(ISD::SETCC, VT, Custom); 830 831 setOperationAction(ISD::SELECT, VT, Custom); 832 833 setOperationAction(ISD::TRUNCATE, VT, Custom); 834 835 setOperationAction(ISD::BITCAST, VT, Custom); 836 837 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 838 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 839 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 840 841 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 842 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 843 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 844 845 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 846 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 847 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 848 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 849 850 // Operations below are different for between masks and other vectors. 851 if (VT.getVectorElementType() == MVT::i1) { 852 setOperationAction(ISD::VP_AND, VT, Custom); 853 setOperationAction(ISD::VP_OR, VT, Custom); 854 setOperationAction(ISD::VP_XOR, VT, Custom); 855 setOperationAction(ISD::AND, VT, Custom); 856 setOperationAction(ISD::OR, VT, Custom); 857 setOperationAction(ISD::XOR, VT, Custom); 858 859 setOperationAction(ISD::VP_FPTOSI, VT, Custom); 860 setOperationAction(ISD::VP_FPTOUI, VT, Custom); 861 setOperationAction(ISD::VP_SETCC, VT, Custom); 862 continue; 863 } 864 865 // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to 866 // it before type legalization for i64 vectors on RV32. It will then be 867 // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle. 868 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 869 // improvements first. 870 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 871 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 872 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 873 } 874 875 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 876 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 877 878 setOperationAction(ISD::MLOAD, VT, Custom); 879 setOperationAction(ISD::MSTORE, VT, Custom); 880 setOperationAction(ISD::MGATHER, VT, Custom); 881 setOperationAction(ISD::MSCATTER, VT, Custom); 882 883 setOperationAction(ISD::VP_LOAD, VT, Custom); 884 setOperationAction(ISD::VP_STORE, VT, Custom); 885 setOperationAction(ISD::VP_GATHER, VT, Custom); 886 setOperationAction(ISD::VP_SCATTER, VT, Custom); 887 888 setOperationAction(ISD::ADD, VT, Custom); 889 setOperationAction(ISD::MUL, VT, Custom); 890 setOperationAction(ISD::SUB, VT, Custom); 891 setOperationAction(ISD::AND, VT, Custom); 892 setOperationAction(ISD::OR, VT, Custom); 893 setOperationAction(ISD::XOR, VT, Custom); 894 setOperationAction(ISD::SDIV, VT, Custom); 895 setOperationAction(ISD::SREM, VT, Custom); 896 setOperationAction(ISD::UDIV, VT, Custom); 897 setOperationAction(ISD::UREM, VT, Custom); 898 setOperationAction(ISD::SHL, VT, Custom); 899 setOperationAction(ISD::SRA, VT, Custom); 900 setOperationAction(ISD::SRL, VT, Custom); 901 902 setOperationAction(ISD::SMIN, VT, Custom); 903 setOperationAction(ISD::SMAX, VT, Custom); 904 setOperationAction(ISD::UMIN, VT, Custom); 905 setOperationAction(ISD::UMAX, VT, Custom); 906 setOperationAction(ISD::ABS, VT, Custom); 907 908 // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. 909 if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) { 910 setOperationAction(ISD::MULHS, VT, Custom); 911 setOperationAction(ISD::MULHU, VT, Custom); 912 } 913 914 setOperationAction(ISD::SADDSAT, VT, Custom); 915 setOperationAction(ISD::UADDSAT, VT, Custom); 916 setOperationAction(ISD::SSUBSAT, VT, Custom); 917 setOperationAction(ISD::USUBSAT, VT, Custom); 918 919 setOperationAction(ISD::VSELECT, VT, Custom); 920 setOperationAction(ISD::SELECT_CC, VT, Expand); 921 922 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 923 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 924 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 925 926 // Custom-lower reduction operations to set up the corresponding custom 927 // nodes' operands. 928 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 929 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 930 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 931 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 932 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 933 934 for (unsigned VPOpc : IntegerVPOps) 935 setOperationAction(VPOpc, VT, Custom); 936 937 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 938 // type that can represent the value exactly. 939 if (VT.getVectorElementType() != MVT::i64) { 940 MVT FloatEltVT = 941 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 942 EVT FloatVT = 943 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 944 if (isTypeLegal(FloatVT)) { 945 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 946 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 947 } 948 } 949 } 950 951 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 952 if (!useRVVForFixedLengthVectorVT(VT)) 953 continue; 954 955 // By default everything must be expanded. 956 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 957 setOperationAction(Op, VT, Expand); 958 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 959 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 960 setTruncStoreAction(VT, OtherVT, Expand); 961 } 962 963 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 964 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 965 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 966 967 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 968 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 969 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 970 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 971 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 972 973 setOperationAction(ISD::LOAD, VT, Custom); 974 setOperationAction(ISD::STORE, VT, Custom); 975 setOperationAction(ISD::MLOAD, VT, Custom); 976 setOperationAction(ISD::MSTORE, VT, Custom); 977 setOperationAction(ISD::MGATHER, VT, Custom); 978 setOperationAction(ISD::MSCATTER, VT, Custom); 979 980 setOperationAction(ISD::VP_LOAD, VT, Custom); 981 setOperationAction(ISD::VP_STORE, VT, Custom); 982 setOperationAction(ISD::VP_GATHER, VT, Custom); 983 setOperationAction(ISD::VP_SCATTER, VT, Custom); 984 985 setOperationAction(ISD::FADD, VT, Custom); 986 setOperationAction(ISD::FSUB, VT, Custom); 987 setOperationAction(ISD::FMUL, VT, Custom); 988 setOperationAction(ISD::FDIV, VT, Custom); 989 setOperationAction(ISD::FNEG, VT, Custom); 990 setOperationAction(ISD::FABS, VT, Custom); 991 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 992 setOperationAction(ISD::FSQRT, VT, Custom); 993 setOperationAction(ISD::FMA, VT, Custom); 994 setOperationAction(ISD::FMINNUM, VT, Custom); 995 setOperationAction(ISD::FMAXNUM, VT, Custom); 996 997 setOperationAction(ISD::FP_ROUND, VT, Custom); 998 setOperationAction(ISD::FP_EXTEND, VT, Custom); 999 1000 setOperationAction(ISD::FTRUNC, VT, Custom); 1001 setOperationAction(ISD::FCEIL, VT, Custom); 1002 setOperationAction(ISD::FFLOOR, VT, Custom); 1003 setOperationAction(ISD::FROUND, VT, Custom); 1004 1005 for (auto CC : VFPCCToExpand) 1006 setCondCodeAction(CC, VT, Expand); 1007 1008 setOperationAction(ISD::VSELECT, VT, Custom); 1009 setOperationAction(ISD::SELECT, VT, Custom); 1010 setOperationAction(ISD::SELECT_CC, VT, Expand); 1011 1012 setOperationAction(ISD::BITCAST, VT, Custom); 1013 1014 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 1015 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 1016 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 1017 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 1018 1019 for (unsigned VPOpc : FloatingPointVPOps) 1020 setOperationAction(VPOpc, VT, Custom); 1021 } 1022 1023 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 1024 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1025 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 1026 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 1027 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 1028 if (Subtarget.hasStdExtZfh()) 1029 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 1030 if (Subtarget.hasStdExtF()) 1031 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 1032 if (Subtarget.hasStdExtD()) 1033 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 1034 } 1035 } 1036 1037 // Function alignments. 1038 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 1039 setMinFunctionAlignment(FunctionAlignment); 1040 setPrefFunctionAlignment(FunctionAlignment); 1041 1042 setMinimumJumpTableEntries(5); 1043 1044 // Jumps are expensive, compared to logic 1045 setJumpIsExpensive(); 1046 1047 setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND, 1048 ISD::OR, ISD::XOR}); 1049 1050 if (Subtarget.hasStdExtZbp()) 1051 setTargetDAGCombine({ISD::ROTL, ISD::ROTR}); 1052 if (Subtarget.hasStdExtZbkb()) 1053 setTargetDAGCombine(ISD::BITREVERSE); 1054 if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb()) 1055 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 1056 if (Subtarget.hasStdExtF()) 1057 setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT, 1058 ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}); 1059 if (Subtarget.hasVInstructions()) 1060 setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER, 1061 ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL, 1062 ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR}); 1063 1064 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 1065 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 1066 } 1067 1068 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1069 LLVMContext &Context, 1070 EVT VT) const { 1071 if (!VT.isVector()) 1072 return getPointerTy(DL); 1073 if (Subtarget.hasVInstructions() && 1074 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1075 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1076 return VT.changeVectorElementTypeToInteger(); 1077 } 1078 1079 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1080 return Subtarget.getXLenVT(); 1081 } 1082 1083 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1084 const CallInst &I, 1085 MachineFunction &MF, 1086 unsigned Intrinsic) const { 1087 auto &DL = I.getModule()->getDataLayout(); 1088 switch (Intrinsic) { 1089 default: 1090 return false; 1091 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1092 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1093 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1094 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1095 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1096 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1097 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1098 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1099 case Intrinsic::riscv_masked_cmpxchg_i32: 1100 Info.opc = ISD::INTRINSIC_W_CHAIN; 1101 Info.memVT = MVT::i32; 1102 Info.ptrVal = I.getArgOperand(0); 1103 Info.offset = 0; 1104 Info.align = Align(4); 1105 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1106 MachineMemOperand::MOVolatile; 1107 return true; 1108 case Intrinsic::riscv_masked_strided_load: 1109 Info.opc = ISD::INTRINSIC_W_CHAIN; 1110 Info.ptrVal = I.getArgOperand(1); 1111 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1112 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1113 Info.size = MemoryLocation::UnknownSize; 1114 Info.flags |= MachineMemOperand::MOLoad; 1115 return true; 1116 case Intrinsic::riscv_masked_strided_store: 1117 Info.opc = ISD::INTRINSIC_VOID; 1118 Info.ptrVal = I.getArgOperand(1); 1119 Info.memVT = 1120 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1121 Info.align = Align( 1122 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1123 8); 1124 Info.size = MemoryLocation::UnknownSize; 1125 Info.flags |= MachineMemOperand::MOStore; 1126 return true; 1127 case Intrinsic::riscv_seg2_load: 1128 case Intrinsic::riscv_seg3_load: 1129 case Intrinsic::riscv_seg4_load: 1130 case Intrinsic::riscv_seg5_load: 1131 case Intrinsic::riscv_seg6_load: 1132 case Intrinsic::riscv_seg7_load: 1133 case Intrinsic::riscv_seg8_load: 1134 Info.opc = ISD::INTRINSIC_W_CHAIN; 1135 Info.ptrVal = I.getArgOperand(0); 1136 Info.memVT = 1137 getValueType(DL, I.getType()->getStructElementType(0)->getScalarType()); 1138 Info.align = 1139 Align(DL.getTypeSizeInBits( 1140 I.getType()->getStructElementType(0)->getScalarType()) / 1141 8); 1142 Info.size = MemoryLocation::UnknownSize; 1143 Info.flags |= MachineMemOperand::MOLoad; 1144 return true; 1145 } 1146 } 1147 1148 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1149 const AddrMode &AM, Type *Ty, 1150 unsigned AS, 1151 Instruction *I) const { 1152 // No global is ever allowed as a base. 1153 if (AM.BaseGV) 1154 return false; 1155 1156 // Require a 12-bit signed offset. 1157 if (!isInt<12>(AM.BaseOffs)) 1158 return false; 1159 1160 switch (AM.Scale) { 1161 case 0: // "r+i" or just "i", depending on HasBaseReg. 1162 break; 1163 case 1: 1164 if (!AM.HasBaseReg) // allow "r+i". 1165 break; 1166 return false; // disallow "r+r" or "r+r+i". 1167 default: 1168 return false; 1169 } 1170 1171 return true; 1172 } 1173 1174 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1175 return isInt<12>(Imm); 1176 } 1177 1178 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1179 return isInt<12>(Imm); 1180 } 1181 1182 // On RV32, 64-bit integers are split into their high and low parts and held 1183 // in two different registers, so the trunc is free since the low register can 1184 // just be used. 1185 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1186 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1187 return false; 1188 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1189 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1190 return (SrcBits == 64 && DestBits == 32); 1191 } 1192 1193 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1194 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1195 !SrcVT.isInteger() || !DstVT.isInteger()) 1196 return false; 1197 unsigned SrcBits = SrcVT.getSizeInBits(); 1198 unsigned DestBits = DstVT.getSizeInBits(); 1199 return (SrcBits == 64 && DestBits == 32); 1200 } 1201 1202 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1203 // Zexts are free if they can be combined with a load. 1204 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1205 // poorly with type legalization of compares preferring sext. 1206 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1207 EVT MemVT = LD->getMemoryVT(); 1208 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1209 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1210 LD->getExtensionType() == ISD::ZEXTLOAD)) 1211 return true; 1212 } 1213 1214 return TargetLowering::isZExtFree(Val, VT2); 1215 } 1216 1217 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1218 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1219 } 1220 1221 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1222 return Subtarget.hasStdExtZbb(); 1223 } 1224 1225 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1226 return Subtarget.hasStdExtZbb(); 1227 } 1228 1229 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1230 EVT VT = Y.getValueType(); 1231 1232 // FIXME: Support vectors once we have tests. 1233 if (VT.isVector()) 1234 return false; 1235 1236 return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 1237 Subtarget.hasStdExtZbkb()) && 1238 !isa<ConstantSDNode>(Y); 1239 } 1240 1241 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const { 1242 // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position. 1243 auto *C = dyn_cast<ConstantSDNode>(Y); 1244 return C && C->getAPIntValue().ule(10); 1245 } 1246 1247 /// Check if sinking \p I's operands to I's basic block is profitable, because 1248 /// the operands can be folded into a target instruction, e.g. 1249 /// splats of scalars can fold into vector instructions. 1250 bool RISCVTargetLowering::shouldSinkOperands( 1251 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1252 using namespace llvm::PatternMatch; 1253 1254 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1255 return false; 1256 1257 auto IsSinker = [&](Instruction *I, int Operand) { 1258 switch (I->getOpcode()) { 1259 case Instruction::Add: 1260 case Instruction::Sub: 1261 case Instruction::Mul: 1262 case Instruction::And: 1263 case Instruction::Or: 1264 case Instruction::Xor: 1265 case Instruction::FAdd: 1266 case Instruction::FSub: 1267 case Instruction::FMul: 1268 case Instruction::FDiv: 1269 case Instruction::ICmp: 1270 case Instruction::FCmp: 1271 return true; 1272 case Instruction::Shl: 1273 case Instruction::LShr: 1274 case Instruction::AShr: 1275 case Instruction::UDiv: 1276 case Instruction::SDiv: 1277 case Instruction::URem: 1278 case Instruction::SRem: 1279 return Operand == 1; 1280 case Instruction::Call: 1281 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1282 switch (II->getIntrinsicID()) { 1283 case Intrinsic::fma: 1284 case Intrinsic::vp_fma: 1285 return Operand == 0 || Operand == 1; 1286 // FIXME: Our patterns can only match vx/vf instructions when the splat 1287 // it on the RHS, because TableGen doesn't recognize our VP operations 1288 // as commutative. 1289 case Intrinsic::vp_add: 1290 case Intrinsic::vp_mul: 1291 case Intrinsic::vp_and: 1292 case Intrinsic::vp_or: 1293 case Intrinsic::vp_xor: 1294 case Intrinsic::vp_fadd: 1295 case Intrinsic::vp_fmul: 1296 case Intrinsic::vp_shl: 1297 case Intrinsic::vp_lshr: 1298 case Intrinsic::vp_ashr: 1299 case Intrinsic::vp_udiv: 1300 case Intrinsic::vp_sdiv: 1301 case Intrinsic::vp_urem: 1302 case Intrinsic::vp_srem: 1303 return Operand == 1; 1304 // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have 1305 // explicit patterns for both LHS and RHS (as 'vr' versions). 1306 case Intrinsic::vp_sub: 1307 case Intrinsic::vp_fsub: 1308 case Intrinsic::vp_fdiv: 1309 return Operand == 0 || Operand == 1; 1310 default: 1311 return false; 1312 } 1313 } 1314 return false; 1315 default: 1316 return false; 1317 } 1318 }; 1319 1320 for (auto OpIdx : enumerate(I->operands())) { 1321 if (!IsSinker(I, OpIdx.index())) 1322 continue; 1323 1324 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1325 // Make sure we are not already sinking this operand 1326 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1327 continue; 1328 1329 // We are looking for a splat that can be sunk. 1330 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1331 m_Undef(), m_ZeroMask()))) 1332 continue; 1333 1334 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1335 // and vector registers 1336 for (Use &U : Op->uses()) { 1337 Instruction *Insn = cast<Instruction>(U.getUser()); 1338 if (!IsSinker(Insn, U.getOperandNo())) 1339 return false; 1340 } 1341 1342 Ops.push_back(&Op->getOperandUse(0)); 1343 Ops.push_back(&OpIdx.value()); 1344 } 1345 return true; 1346 } 1347 1348 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1349 bool ForCodeSize) const { 1350 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1351 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1352 return false; 1353 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1354 return false; 1355 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1356 return false; 1357 return Imm.isZero(); 1358 } 1359 1360 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1361 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1362 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1363 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1364 } 1365 1366 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1367 CallingConv::ID CC, 1368 EVT VT) const { 1369 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1370 // We might still end up using a GPR but that will be decided based on ABI. 1371 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1372 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1373 return MVT::f32; 1374 1375 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1376 } 1377 1378 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1379 CallingConv::ID CC, 1380 EVT VT) const { 1381 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1382 // We might still end up using a GPR but that will be decided based on ABI. 1383 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1384 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1385 return 1; 1386 1387 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1388 } 1389 1390 // Changes the condition code and swaps operands if necessary, so the SetCC 1391 // operation matches one of the comparisons supported directly by branches 1392 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1393 // with 1/-1. 1394 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1395 ISD::CondCode &CC, SelectionDAG &DAG) { 1396 // Convert X > -1 to X >= 0. 1397 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1398 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1399 CC = ISD::SETGE; 1400 return; 1401 } 1402 // Convert X < 1 to 0 >= X. 1403 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1404 RHS = LHS; 1405 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1406 CC = ISD::SETGE; 1407 return; 1408 } 1409 1410 switch (CC) { 1411 default: 1412 break; 1413 case ISD::SETGT: 1414 case ISD::SETLE: 1415 case ISD::SETUGT: 1416 case ISD::SETULE: 1417 CC = ISD::getSetCCSwappedOperands(CC); 1418 std::swap(LHS, RHS); 1419 break; 1420 } 1421 } 1422 1423 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1424 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1425 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1426 if (VT.getVectorElementType() == MVT::i1) 1427 KnownSize *= 8; 1428 1429 switch (KnownSize) { 1430 default: 1431 llvm_unreachable("Invalid LMUL."); 1432 case 8: 1433 return RISCVII::VLMUL::LMUL_F8; 1434 case 16: 1435 return RISCVII::VLMUL::LMUL_F4; 1436 case 32: 1437 return RISCVII::VLMUL::LMUL_F2; 1438 case 64: 1439 return RISCVII::VLMUL::LMUL_1; 1440 case 128: 1441 return RISCVII::VLMUL::LMUL_2; 1442 case 256: 1443 return RISCVII::VLMUL::LMUL_4; 1444 case 512: 1445 return RISCVII::VLMUL::LMUL_8; 1446 } 1447 } 1448 1449 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1450 switch (LMul) { 1451 default: 1452 llvm_unreachable("Invalid LMUL."); 1453 case RISCVII::VLMUL::LMUL_F8: 1454 case RISCVII::VLMUL::LMUL_F4: 1455 case RISCVII::VLMUL::LMUL_F2: 1456 case RISCVII::VLMUL::LMUL_1: 1457 return RISCV::VRRegClassID; 1458 case RISCVII::VLMUL::LMUL_2: 1459 return RISCV::VRM2RegClassID; 1460 case RISCVII::VLMUL::LMUL_4: 1461 return RISCV::VRM4RegClassID; 1462 case RISCVII::VLMUL::LMUL_8: 1463 return RISCV::VRM8RegClassID; 1464 } 1465 } 1466 1467 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1468 RISCVII::VLMUL LMUL = getLMUL(VT); 1469 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1470 LMUL == RISCVII::VLMUL::LMUL_F4 || 1471 LMUL == RISCVII::VLMUL::LMUL_F2 || 1472 LMUL == RISCVII::VLMUL::LMUL_1) { 1473 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1474 "Unexpected subreg numbering"); 1475 return RISCV::sub_vrm1_0 + Index; 1476 } 1477 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1478 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1479 "Unexpected subreg numbering"); 1480 return RISCV::sub_vrm2_0 + Index; 1481 } 1482 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1483 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1484 "Unexpected subreg numbering"); 1485 return RISCV::sub_vrm4_0 + Index; 1486 } 1487 llvm_unreachable("Invalid vector type."); 1488 } 1489 1490 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1491 if (VT.getVectorElementType() == MVT::i1) 1492 return RISCV::VRRegClassID; 1493 return getRegClassIDForLMUL(getLMUL(VT)); 1494 } 1495 1496 // Attempt to decompose a subvector insert/extract between VecVT and 1497 // SubVecVT via subregister indices. Returns the subregister index that 1498 // can perform the subvector insert/extract with the given element index, as 1499 // well as the index corresponding to any leftover subvectors that must be 1500 // further inserted/extracted within the register class for SubVecVT. 1501 std::pair<unsigned, unsigned> 1502 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1503 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1504 const RISCVRegisterInfo *TRI) { 1505 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1506 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1507 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1508 "Register classes not ordered"); 1509 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1510 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1511 // Try to compose a subregister index that takes us from the incoming 1512 // LMUL>1 register class down to the outgoing one. At each step we half 1513 // the LMUL: 1514 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1515 // Note that this is not guaranteed to find a subregister index, such as 1516 // when we are extracting from one VR type to another. 1517 unsigned SubRegIdx = RISCV::NoSubRegister; 1518 for (const unsigned RCID : 1519 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1520 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1521 VecVT = VecVT.getHalfNumVectorElementsVT(); 1522 bool IsHi = 1523 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1524 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1525 getSubregIndexByMVT(VecVT, IsHi)); 1526 if (IsHi) 1527 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1528 } 1529 return {SubRegIdx, InsertExtractIdx}; 1530 } 1531 1532 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1533 // stores for those types. 1534 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1535 return !Subtarget.useRVVForFixedLengthVectors() || 1536 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1537 } 1538 1539 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1540 if (ScalarTy->isPointerTy()) 1541 return true; 1542 1543 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1544 ScalarTy->isIntegerTy(32)) 1545 return true; 1546 1547 if (ScalarTy->isIntegerTy(64)) 1548 return Subtarget.hasVInstructionsI64(); 1549 1550 if (ScalarTy->isHalfTy()) 1551 return Subtarget.hasVInstructionsF16(); 1552 if (ScalarTy->isFloatTy()) 1553 return Subtarget.hasVInstructionsF32(); 1554 if (ScalarTy->isDoubleTy()) 1555 return Subtarget.hasVInstructionsF64(); 1556 1557 return false; 1558 } 1559 1560 static SDValue getVLOperand(SDValue Op) { 1561 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1562 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 1563 "Unexpected opcode"); 1564 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 1565 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 1566 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1567 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 1568 if (!II) 1569 return SDValue(); 1570 return Op.getOperand(II->VLOperand + 1 + HasChain); 1571 } 1572 1573 static bool useRVVForFixedLengthVectorVT(MVT VT, 1574 const RISCVSubtarget &Subtarget) { 1575 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1576 if (!Subtarget.useRVVForFixedLengthVectors()) 1577 return false; 1578 1579 // We only support a set of vector types with a consistent maximum fixed size 1580 // across all supported vector element types to avoid legalization issues. 1581 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1582 // fixed-length vector type we support is 1024 bytes. 1583 if (VT.getFixedSizeInBits() > 1024 * 8) 1584 return false; 1585 1586 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1587 1588 MVT EltVT = VT.getVectorElementType(); 1589 1590 // Don't use RVV for vectors we cannot scalarize if required. 1591 switch (EltVT.SimpleTy) { 1592 // i1 is supported but has different rules. 1593 default: 1594 return false; 1595 case MVT::i1: 1596 // Masks can only use a single register. 1597 if (VT.getVectorNumElements() > MinVLen) 1598 return false; 1599 MinVLen /= 8; 1600 break; 1601 case MVT::i8: 1602 case MVT::i16: 1603 case MVT::i32: 1604 break; 1605 case MVT::i64: 1606 if (!Subtarget.hasVInstructionsI64()) 1607 return false; 1608 break; 1609 case MVT::f16: 1610 if (!Subtarget.hasVInstructionsF16()) 1611 return false; 1612 break; 1613 case MVT::f32: 1614 if (!Subtarget.hasVInstructionsF32()) 1615 return false; 1616 break; 1617 case MVT::f64: 1618 if (!Subtarget.hasVInstructionsF64()) 1619 return false; 1620 break; 1621 } 1622 1623 // Reject elements larger than ELEN. 1624 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1625 return false; 1626 1627 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1628 // Don't use RVV for types that don't fit. 1629 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1630 return false; 1631 1632 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1633 // the base fixed length RVV support in place. 1634 if (!VT.isPow2VectorType()) 1635 return false; 1636 1637 return true; 1638 } 1639 1640 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1641 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1642 } 1643 1644 // Return the largest legal scalable vector type that matches VT's element type. 1645 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1646 const RISCVSubtarget &Subtarget) { 1647 // This may be called before legal types are setup. 1648 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1649 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1650 "Expected legal fixed length vector!"); 1651 1652 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1653 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1654 1655 MVT EltVT = VT.getVectorElementType(); 1656 switch (EltVT.SimpleTy) { 1657 default: 1658 llvm_unreachable("unexpected element type for RVV container"); 1659 case MVT::i1: 1660 case MVT::i8: 1661 case MVT::i16: 1662 case MVT::i32: 1663 case MVT::i64: 1664 case MVT::f16: 1665 case MVT::f32: 1666 case MVT::f64: { 1667 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1668 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1669 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1670 unsigned NumElts = 1671 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1672 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1673 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1674 return MVT::getScalableVectorVT(EltVT, NumElts); 1675 } 1676 } 1677 } 1678 1679 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1680 const RISCVSubtarget &Subtarget) { 1681 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1682 Subtarget); 1683 } 1684 1685 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1686 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1687 } 1688 1689 // Grow V to consume an entire RVV register. 1690 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1691 const RISCVSubtarget &Subtarget) { 1692 assert(VT.isScalableVector() && 1693 "Expected to convert into a scalable vector!"); 1694 assert(V.getValueType().isFixedLengthVector() && 1695 "Expected a fixed length vector operand!"); 1696 SDLoc DL(V); 1697 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1698 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1699 } 1700 1701 // Shrink V so it's just big enough to maintain a VT's worth of data. 1702 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1703 const RISCVSubtarget &Subtarget) { 1704 assert(VT.isFixedLengthVector() && 1705 "Expected to convert into a fixed length vector!"); 1706 assert(V.getValueType().isScalableVector() && 1707 "Expected a scalable vector operand!"); 1708 SDLoc DL(V); 1709 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1710 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1711 } 1712 1713 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1714 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1715 // the vector type that it is contained in. 1716 static std::pair<SDValue, SDValue> 1717 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1718 const RISCVSubtarget &Subtarget) { 1719 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1720 MVT XLenVT = Subtarget.getXLenVT(); 1721 SDValue VL = VecVT.isFixedLengthVector() 1722 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1723 : DAG.getRegister(RISCV::X0, XLenVT); 1724 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1725 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1726 return {Mask, VL}; 1727 } 1728 1729 // As above but assuming the given type is a scalable vector type. 1730 static std::pair<SDValue, SDValue> 1731 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1732 const RISCVSubtarget &Subtarget) { 1733 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1734 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1735 } 1736 1737 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1738 // of either is (currently) supported. This can get us into an infinite loop 1739 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1740 // as a ..., etc. 1741 // Until either (or both) of these can reliably lower any node, reporting that 1742 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1743 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1744 // which is not desirable. 1745 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1746 EVT VT, unsigned DefinedValues) const { 1747 return false; 1748 } 1749 1750 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1751 const RISCVSubtarget &Subtarget) { 1752 // RISCV FP-to-int conversions saturate to the destination register size, but 1753 // don't produce 0 for nan. We can use a conversion instruction and fix the 1754 // nan case with a compare and a select. 1755 SDValue Src = Op.getOperand(0); 1756 1757 EVT DstVT = Op.getValueType(); 1758 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1759 1760 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1761 unsigned Opc; 1762 if (SatVT == DstVT) 1763 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1764 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1765 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1766 else 1767 return SDValue(); 1768 // FIXME: Support other SatVTs by clamping before or after the conversion. 1769 1770 SDLoc DL(Op); 1771 SDValue FpToInt = DAG.getNode( 1772 Opc, DL, DstVT, Src, 1773 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1774 1775 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1776 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1777 } 1778 1779 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1780 // and back. Taking care to avoid converting values that are nan or already 1781 // correct. 1782 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1783 // have FRM dependencies modeled yet. 1784 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1785 MVT VT = Op.getSimpleValueType(); 1786 assert(VT.isVector() && "Unexpected type"); 1787 1788 SDLoc DL(Op); 1789 1790 // Freeze the source since we are increasing the number of uses. 1791 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1792 1793 // Truncate to integer and convert back to FP. 1794 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1795 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1796 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1797 1798 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1799 1800 if (Op.getOpcode() == ISD::FCEIL) { 1801 // If the truncated value is the greater than or equal to the original 1802 // value, we've computed the ceil. Otherwise, we went the wrong way and 1803 // need to increase by 1. 1804 // FIXME: This should use a masked operation. Handle here or in isel? 1805 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1806 DAG.getConstantFP(1.0, DL, VT)); 1807 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1808 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1809 } else if (Op.getOpcode() == ISD::FFLOOR) { 1810 // If the truncated value is the less than or equal to the original value, 1811 // we've computed the floor. Otherwise, we went the wrong way and need to 1812 // decrease by 1. 1813 // FIXME: This should use a masked operation. Handle here or in isel? 1814 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1815 DAG.getConstantFP(1.0, DL, VT)); 1816 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1817 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1818 } 1819 1820 // Restore the original sign so that -0.0 is preserved. 1821 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1822 1823 // Determine the largest integer that can be represented exactly. This and 1824 // values larger than it don't have any fractional bits so don't need to 1825 // be converted. 1826 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1827 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1828 APFloat MaxVal = APFloat(FltSem); 1829 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1830 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1831 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1832 1833 // If abs(Src) was larger than MaxVal or nan, keep it. 1834 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1835 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1836 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1837 } 1838 1839 // ISD::FROUND is defined to round to nearest with ties rounding away from 0. 1840 // This mode isn't supported in vector hardware on RISCV. But as long as we 1841 // aren't compiling with trapping math, we can emulate this with 1842 // floor(X + copysign(nextafter(0.5, 0.0), X)). 1843 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM 1844 // dependencies modeled yet. 1845 // FIXME: Use masked operations to avoid final merge. 1846 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) { 1847 MVT VT = Op.getSimpleValueType(); 1848 assert(VT.isVector() && "Unexpected type"); 1849 1850 SDLoc DL(Op); 1851 1852 // Freeze the source since we are increasing the number of uses. 1853 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1854 1855 // We do the conversion on the absolute value and fix the sign at the end. 1856 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1857 1858 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1859 bool Ignored; 1860 APFloat Point5Pred = APFloat(0.5f); 1861 Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored); 1862 Point5Pred.next(/*nextDown*/ true); 1863 1864 // Add the adjustment. 1865 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs, 1866 DAG.getConstantFP(Point5Pred, DL, VT)); 1867 1868 // Truncate to integer and convert back to fp. 1869 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1870 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust); 1871 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1872 1873 // Restore the original sign. 1874 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1875 1876 // Determine the largest integer that can be represented exactly. This and 1877 // values larger than it don't have any fractional bits so don't need to 1878 // be converted. 1879 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1880 APFloat MaxVal = APFloat(FltSem); 1881 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1882 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1883 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1884 1885 // If abs(Src) was larger than MaxVal or nan, keep it. 1886 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1887 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1888 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1889 } 1890 1891 struct VIDSequence { 1892 int64_t StepNumerator; 1893 unsigned StepDenominator; 1894 int64_t Addend; 1895 }; 1896 1897 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1898 // to the (non-zero) step S and start value X. This can be then lowered as the 1899 // RVV sequence (VID * S) + X, for example. 1900 // The step S is represented as an integer numerator divided by a positive 1901 // denominator. Note that the implementation currently only identifies 1902 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1903 // cannot detect 2/3, for example. 1904 // Note that this method will also match potentially unappealing index 1905 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1906 // determine whether this is worth generating code for. 1907 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1908 unsigned NumElts = Op.getNumOperands(); 1909 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1910 if (!Op.getValueType().isInteger()) 1911 return None; 1912 1913 Optional<unsigned> SeqStepDenom; 1914 Optional<int64_t> SeqStepNum, SeqAddend; 1915 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1916 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1917 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1918 // Assume undef elements match the sequence; we just have to be careful 1919 // when interpolating across them. 1920 if (Op.getOperand(Idx).isUndef()) 1921 continue; 1922 // The BUILD_VECTOR must be all constants. 1923 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1924 return None; 1925 1926 uint64_t Val = Op.getConstantOperandVal(Idx) & 1927 maskTrailingOnes<uint64_t>(EltSizeInBits); 1928 1929 if (PrevElt) { 1930 // Calculate the step since the last non-undef element, and ensure 1931 // it's consistent across the entire sequence. 1932 unsigned IdxDiff = Idx - PrevElt->second; 1933 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1934 1935 // A zero-value value difference means that we're somewhere in the middle 1936 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1937 // step change before evaluating the sequence. 1938 if (ValDiff != 0) { 1939 int64_t Remainder = ValDiff % IdxDiff; 1940 // Normalize the step if it's greater than 1. 1941 if (Remainder != ValDiff) { 1942 // The difference must cleanly divide the element span. 1943 if (Remainder != 0) 1944 return None; 1945 ValDiff /= IdxDiff; 1946 IdxDiff = 1; 1947 } 1948 1949 if (!SeqStepNum) 1950 SeqStepNum = ValDiff; 1951 else if (ValDiff != SeqStepNum) 1952 return None; 1953 1954 if (!SeqStepDenom) 1955 SeqStepDenom = IdxDiff; 1956 else if (IdxDiff != *SeqStepDenom) 1957 return None; 1958 } 1959 } 1960 1961 // Record and/or check any addend. 1962 if (SeqStepNum && SeqStepDenom) { 1963 uint64_t ExpectedVal = 1964 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1965 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1966 if (!SeqAddend) 1967 SeqAddend = Addend; 1968 else if (SeqAddend != Addend) 1969 return None; 1970 } 1971 1972 // Record this non-undef element for later. 1973 if (!PrevElt || PrevElt->first != Val) 1974 PrevElt = std::make_pair(Val, Idx); 1975 } 1976 // We need to have logged both a step and an addend for this to count as 1977 // a legal index sequence. 1978 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1979 return None; 1980 1981 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1982 } 1983 1984 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT 1985 // and lower it as a VRGATHER_VX_VL from the source vector. 1986 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL, 1987 SelectionDAG &DAG, 1988 const RISCVSubtarget &Subtarget) { 1989 if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1990 return SDValue(); 1991 SDValue Vec = SplatVal.getOperand(0); 1992 // Only perform this optimization on vectors of the same size for simplicity. 1993 if (Vec.getValueType() != VT) 1994 return SDValue(); 1995 SDValue Idx = SplatVal.getOperand(1); 1996 // The index must be a legal type. 1997 if (Idx.getValueType() != Subtarget.getXLenVT()) 1998 return SDValue(); 1999 2000 MVT ContainerVT = VT; 2001 if (VT.isFixedLengthVector()) { 2002 ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2003 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 2004 } 2005 2006 SDValue Mask, VL; 2007 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2008 2009 SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec, 2010 Idx, Mask, VL); 2011 2012 if (!VT.isFixedLengthVector()) 2013 return Gather; 2014 2015 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2016 } 2017 2018 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 2019 const RISCVSubtarget &Subtarget) { 2020 MVT VT = Op.getSimpleValueType(); 2021 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 2022 2023 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2024 2025 SDLoc DL(Op); 2026 SDValue Mask, VL; 2027 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2028 2029 MVT XLenVT = Subtarget.getXLenVT(); 2030 unsigned NumElts = Op.getNumOperands(); 2031 2032 if (VT.getVectorElementType() == MVT::i1) { 2033 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 2034 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 2035 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 2036 } 2037 2038 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 2039 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 2040 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 2041 } 2042 2043 // Lower constant mask BUILD_VECTORs via an integer vector type, in 2044 // scalar integer chunks whose bit-width depends on the number of mask 2045 // bits and XLEN. 2046 // First, determine the most appropriate scalar integer type to use. This 2047 // is at most XLenVT, but may be shrunk to a smaller vector element type 2048 // according to the size of the final vector - use i8 chunks rather than 2049 // XLenVT if we're producing a v8i1. This results in more consistent 2050 // codegen across RV32 and RV64. 2051 unsigned NumViaIntegerBits = 2052 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 2053 NumViaIntegerBits = std::min(NumViaIntegerBits, 2054 Subtarget.getMaxELENForFixedLengthVectors()); 2055 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 2056 // If we have to use more than one INSERT_VECTOR_ELT then this 2057 // optimization is likely to increase code size; avoid peforming it in 2058 // such a case. We can use a load from a constant pool in this case. 2059 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 2060 return SDValue(); 2061 // Now we can create our integer vector type. Note that it may be larger 2062 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 2063 MVT IntegerViaVecVT = 2064 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 2065 divideCeil(NumElts, NumViaIntegerBits)); 2066 2067 uint64_t Bits = 0; 2068 unsigned BitPos = 0, IntegerEltIdx = 0; 2069 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 2070 2071 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 2072 // Once we accumulate enough bits to fill our scalar type, insert into 2073 // our vector and clear our accumulated data. 2074 if (I != 0 && I % NumViaIntegerBits == 0) { 2075 if (NumViaIntegerBits <= 32) 2076 Bits = SignExtend64(Bits, 32); 2077 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2078 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 2079 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2080 Bits = 0; 2081 BitPos = 0; 2082 IntegerEltIdx++; 2083 } 2084 SDValue V = Op.getOperand(I); 2085 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 2086 Bits |= ((uint64_t)BitValue << BitPos); 2087 } 2088 2089 // Insert the (remaining) scalar value into position in our integer 2090 // vector type. 2091 if (NumViaIntegerBits <= 32) 2092 Bits = SignExtend64(Bits, 32); 2093 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2094 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 2095 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2096 2097 if (NumElts < NumViaIntegerBits) { 2098 // If we're producing a smaller vector than our minimum legal integer 2099 // type, bitcast to the equivalent (known-legal) mask type, and extract 2100 // our final mask. 2101 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 2102 Vec = DAG.getBitcast(MVT::v8i1, Vec); 2103 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 2104 DAG.getConstant(0, DL, XLenVT)); 2105 } else { 2106 // Else we must have produced an integer type with the same size as the 2107 // mask type; bitcast for the final result. 2108 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 2109 Vec = DAG.getBitcast(VT, Vec); 2110 } 2111 2112 return Vec; 2113 } 2114 2115 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 2116 // vector type, we have a legal equivalently-sized i8 type, so we can use 2117 // that. 2118 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 2119 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 2120 2121 SDValue WideVec; 2122 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2123 // For a splat, perform a scalar truncate before creating the wider 2124 // vector. 2125 assert(Splat.getValueType() == XLenVT && 2126 "Unexpected type for i1 splat value"); 2127 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2128 DAG.getConstant(1, DL, XLenVT)); 2129 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2130 } else { 2131 SmallVector<SDValue, 8> Ops(Op->op_values()); 2132 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2133 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2134 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2135 } 2136 2137 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2138 } 2139 2140 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2141 if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget)) 2142 return Gather; 2143 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2144 : RISCVISD::VMV_V_X_VL; 2145 Splat = 2146 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL); 2147 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2148 } 2149 2150 // Try and match index sequences, which we can lower to the vid instruction 2151 // with optional modifications. An all-undef vector is matched by 2152 // getSplatValue, above. 2153 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2154 int64_t StepNumerator = SimpleVID->StepNumerator; 2155 unsigned StepDenominator = SimpleVID->StepDenominator; 2156 int64_t Addend = SimpleVID->Addend; 2157 2158 assert(StepNumerator != 0 && "Invalid step"); 2159 bool Negate = false; 2160 int64_t SplatStepVal = StepNumerator; 2161 unsigned StepOpcode = ISD::MUL; 2162 if (StepNumerator != 1) { 2163 if (isPowerOf2_64(std::abs(StepNumerator))) { 2164 Negate = StepNumerator < 0; 2165 StepOpcode = ISD::SHL; 2166 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2167 } 2168 } 2169 2170 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2171 // threshold since it's the immediate value many RVV instructions accept. 2172 // There is no vmul.vi instruction so ensure multiply constant can fit in 2173 // a single addi instruction. 2174 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2175 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2176 isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) { 2177 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2178 // Convert right out of the scalable type so we can use standard ISD 2179 // nodes for the rest of the computation. If we used scalable types with 2180 // these, we'd lose the fixed-length vector info and generate worse 2181 // vsetvli code. 2182 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2183 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2184 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2185 SDValue SplatStep = DAG.getSplatBuildVector( 2186 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2187 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2188 } 2189 if (StepDenominator != 1) { 2190 SDValue SplatStep = DAG.getSplatBuildVector( 2191 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2192 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2193 } 2194 if (Addend != 0 || Negate) { 2195 SDValue SplatAddend = DAG.getSplatBuildVector( 2196 VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2197 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2198 } 2199 return VID; 2200 } 2201 } 2202 2203 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2204 // when re-interpreted as a vector with a larger element type. For example, 2205 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2206 // could be instead splat as 2207 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2208 // TODO: This optimization could also work on non-constant splats, but it 2209 // would require bit-manipulation instructions to construct the splat value. 2210 SmallVector<SDValue> Sequence; 2211 unsigned EltBitSize = VT.getScalarSizeInBits(); 2212 const auto *BV = cast<BuildVectorSDNode>(Op); 2213 if (VT.isInteger() && EltBitSize < 64 && 2214 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2215 BV->getRepeatedSequence(Sequence) && 2216 (Sequence.size() * EltBitSize) <= 64) { 2217 unsigned SeqLen = Sequence.size(); 2218 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2219 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2220 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2221 ViaIntVT == MVT::i64) && 2222 "Unexpected sequence type"); 2223 2224 unsigned EltIdx = 0; 2225 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2226 uint64_t SplatValue = 0; 2227 // Construct the amalgamated value which can be splatted as this larger 2228 // vector type. 2229 for (const auto &SeqV : Sequence) { 2230 if (!SeqV.isUndef()) 2231 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2232 << (EltIdx * EltBitSize)); 2233 EltIdx++; 2234 } 2235 2236 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2237 // achieve better constant materializion. 2238 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2239 SplatValue = SignExtend64(SplatValue, 32); 2240 2241 // Since we can't introduce illegal i64 types at this stage, we can only 2242 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2243 // way we can use RVV instructions to splat. 2244 assert((ViaIntVT.bitsLE(XLenVT) || 2245 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2246 "Unexpected bitcast sequence"); 2247 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2248 SDValue ViaVL = 2249 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2250 MVT ViaContainerVT = 2251 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2252 SDValue Splat = 2253 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2254 DAG.getUNDEF(ViaContainerVT), 2255 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2256 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2257 return DAG.getBitcast(VT, Splat); 2258 } 2259 } 2260 2261 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2262 // which constitute a large proportion of the elements. In such cases we can 2263 // splat a vector with the dominant element and make up the shortfall with 2264 // INSERT_VECTOR_ELTs. 2265 // Note that this includes vectors of 2 elements by association. The 2266 // upper-most element is the "dominant" one, allowing us to use a splat to 2267 // "insert" the upper element, and an insert of the lower element at position 2268 // 0, which improves codegen. 2269 SDValue DominantValue; 2270 unsigned MostCommonCount = 0; 2271 DenseMap<SDValue, unsigned> ValueCounts; 2272 unsigned NumUndefElts = 2273 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2274 2275 // Track the number of scalar loads we know we'd be inserting, estimated as 2276 // any non-zero floating-point constant. Other kinds of element are either 2277 // already in registers or are materialized on demand. The threshold at which 2278 // a vector load is more desirable than several scalar materializion and 2279 // vector-insertion instructions is not known. 2280 unsigned NumScalarLoads = 0; 2281 2282 for (SDValue V : Op->op_values()) { 2283 if (V.isUndef()) 2284 continue; 2285 2286 ValueCounts.insert(std::make_pair(V, 0)); 2287 unsigned &Count = ValueCounts[V]; 2288 2289 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2290 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2291 2292 // Is this value dominant? In case of a tie, prefer the highest element as 2293 // it's cheaper to insert near the beginning of a vector than it is at the 2294 // end. 2295 if (++Count >= MostCommonCount) { 2296 DominantValue = V; 2297 MostCommonCount = Count; 2298 } 2299 } 2300 2301 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2302 unsigned NumDefElts = NumElts - NumUndefElts; 2303 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2304 2305 // Don't perform this optimization when optimizing for size, since 2306 // materializing elements and inserting them tends to cause code bloat. 2307 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2308 ((MostCommonCount > DominantValueCountThreshold) || 2309 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2310 // Start by splatting the most common element. 2311 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2312 2313 DenseSet<SDValue> Processed{DominantValue}; 2314 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2315 for (const auto &OpIdx : enumerate(Op->ops())) { 2316 const SDValue &V = OpIdx.value(); 2317 if (V.isUndef() || !Processed.insert(V).second) 2318 continue; 2319 if (ValueCounts[V] == 1) { 2320 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2321 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2322 } else { 2323 // Blend in all instances of this value using a VSELECT, using a 2324 // mask where each bit signals whether that element is the one 2325 // we're after. 2326 SmallVector<SDValue> Ops; 2327 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2328 return DAG.getConstant(V == V1, DL, XLenVT); 2329 }); 2330 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2331 DAG.getBuildVector(SelMaskTy, DL, Ops), 2332 DAG.getSplatBuildVector(VT, DL, V), Vec); 2333 } 2334 } 2335 2336 return Vec; 2337 } 2338 2339 return SDValue(); 2340 } 2341 2342 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2343 SDValue Lo, SDValue Hi, SDValue VL, 2344 SelectionDAG &DAG) { 2345 if (!Passthru) 2346 Passthru = DAG.getUNDEF(VT); 2347 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2348 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2349 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2350 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2351 // node in order to try and match RVV vector/scalar instructions. 2352 if ((LoC >> 31) == HiC) 2353 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL); 2354 2355 // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use 2356 // vmv.v.x whose EEW = 32 to lower it. 2357 auto *Const = dyn_cast<ConstantSDNode>(VL); 2358 if (LoC == HiC && Const && Const->isAllOnesValue()) { 2359 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2360 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2361 // access the subtarget here now. 2362 auto InterVec = DAG.getNode( 2363 RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo, 2364 DAG.getRegister(RISCV::X0, MVT::i32)); 2365 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2366 } 2367 } 2368 2369 // Fall back to a stack store and stride x0 vector load. 2370 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo, 2371 Hi, VL); 2372 } 2373 2374 // Called by type legalization to handle splat of i64 on RV32. 2375 // FIXME: We can optimize this when the type has sign or zero bits in one 2376 // of the halves. 2377 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2378 SDValue Scalar, SDValue VL, 2379 SelectionDAG &DAG) { 2380 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2381 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2382 DAG.getConstant(0, DL, MVT::i32)); 2383 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2384 DAG.getConstant(1, DL, MVT::i32)); 2385 return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG); 2386 } 2387 2388 // This function lowers a splat of a scalar operand Splat with the vector 2389 // length VL. It ensures the final sequence is type legal, which is useful when 2390 // lowering a splat after type legalization. 2391 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL, 2392 MVT VT, SDLoc DL, SelectionDAG &DAG, 2393 const RISCVSubtarget &Subtarget) { 2394 bool HasPassthru = Passthru && !Passthru.isUndef(); 2395 if (!HasPassthru && !Passthru) 2396 Passthru = DAG.getUNDEF(VT); 2397 if (VT.isFloatingPoint()) { 2398 // If VL is 1, we could use vfmv.s.f. 2399 if (isOneConstant(VL)) 2400 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL); 2401 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL); 2402 } 2403 2404 MVT XLenVT = Subtarget.getXLenVT(); 2405 2406 // Simplest case is that the operand needs to be promoted to XLenVT. 2407 if (Scalar.getValueType().bitsLE(XLenVT)) { 2408 // If the operand is a constant, sign extend to increase our chances 2409 // of being able to use a .vi instruction. ANY_EXTEND would become a 2410 // a zero extend and the simm5 check in isel would fail. 2411 // FIXME: Should we ignore the upper bits in isel instead? 2412 unsigned ExtOpc = 2413 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2414 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2415 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2416 // If VL is 1 and the scalar value won't benefit from immediate, we could 2417 // use vmv.s.x. 2418 if (isOneConstant(VL) && 2419 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2420 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL); 2421 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL); 2422 } 2423 2424 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2425 "Unexpected scalar for splat lowering!"); 2426 2427 if (isOneConstant(VL) && isNullConstant(Scalar)) 2428 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, 2429 DAG.getConstant(0, DL, XLenVT), VL); 2430 2431 // Otherwise use the more complicated splatting algorithm. 2432 return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG); 2433 } 2434 2435 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, 2436 const RISCVSubtarget &Subtarget) { 2437 // We need to be able to widen elements to the next larger integer type. 2438 if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors()) 2439 return false; 2440 2441 int Size = Mask.size(); 2442 assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); 2443 2444 int Srcs[] = {-1, -1}; 2445 for (int i = 0; i != Size; ++i) { 2446 // Ignore undef elements. 2447 if (Mask[i] < 0) 2448 continue; 2449 2450 // Is this an even or odd element. 2451 int Pol = i % 2; 2452 2453 // Ensure we consistently use the same source for this element polarity. 2454 int Src = Mask[i] / Size; 2455 if (Srcs[Pol] < 0) 2456 Srcs[Pol] = Src; 2457 if (Srcs[Pol] != Src) 2458 return false; 2459 2460 // Make sure the element within the source is appropriate for this element 2461 // in the destination. 2462 int Elt = Mask[i] % Size; 2463 if (Elt != i / 2) 2464 return false; 2465 } 2466 2467 // We need to find a source for each polarity and they can't be the same. 2468 if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) 2469 return false; 2470 2471 // Swap the sources if the second source was in the even polarity. 2472 SwapSources = Srcs[0] > Srcs[1]; 2473 2474 return true; 2475 } 2476 2477 /// Match shuffles that concatenate two vectors, rotate the concatenation, 2478 /// and then extract the original number of elements from the rotated result. 2479 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The 2480 /// returned rotation amount is for a rotate right, where elements move from 2481 /// higher elements to lower elements. \p LoSrc indicates the first source 2482 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector 2483 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be 2484 /// 0 or 1 if a rotation is found. 2485 /// 2486 /// NOTE: We talk about rotate to the right which matches how bit shift and 2487 /// rotate instructions are described where LSBs are on the right, but LLVM IR 2488 /// and the table below write vectors with the lowest elements on the left. 2489 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) { 2490 int Size = Mask.size(); 2491 2492 // We need to detect various ways of spelling a rotation: 2493 // [11, 12, 13, 14, 15, 0, 1, 2] 2494 // [-1, 12, 13, 14, -1, -1, 1, -1] 2495 // [-1, -1, -1, -1, -1, -1, 1, 2] 2496 // [ 3, 4, 5, 6, 7, 8, 9, 10] 2497 // [-1, 4, 5, 6, -1, -1, 9, -1] 2498 // [-1, 4, 5, 6, -1, -1, -1, -1] 2499 int Rotation = 0; 2500 LoSrc = -1; 2501 HiSrc = -1; 2502 for (int i = 0; i != Size; ++i) { 2503 int M = Mask[i]; 2504 if (M < 0) 2505 continue; 2506 2507 // Determine where a rotate vector would have started. 2508 int StartIdx = i - (M % Size); 2509 // The identity rotation isn't interesting, stop. 2510 if (StartIdx == 0) 2511 return -1; 2512 2513 // If we found the tail of a vector the rotation must be the missing 2514 // front. If we found the head of a vector, it must be how much of the 2515 // head. 2516 int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx; 2517 2518 if (Rotation == 0) 2519 Rotation = CandidateRotation; 2520 else if (Rotation != CandidateRotation) 2521 // The rotations don't match, so we can't match this mask. 2522 return -1; 2523 2524 // Compute which value this mask is pointing at. 2525 int MaskSrc = M < Size ? 0 : 1; 2526 2527 // Compute which of the two target values this index should be assigned to. 2528 // This reflects whether the high elements are remaining or the low elemnts 2529 // are remaining. 2530 int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc; 2531 2532 // Either set up this value if we've not encountered it before, or check 2533 // that it remains consistent. 2534 if (TargetSrc < 0) 2535 TargetSrc = MaskSrc; 2536 else if (TargetSrc != MaskSrc) 2537 // This may be a rotation, but it pulls from the inputs in some 2538 // unsupported interleaving. 2539 return -1; 2540 } 2541 2542 // Check that we successfully analyzed the mask, and normalize the results. 2543 assert(Rotation != 0 && "Failed to locate a viable rotation!"); 2544 assert((LoSrc >= 0 || HiSrc >= 0) && 2545 "Failed to find a rotated input vector!"); 2546 2547 return Rotation; 2548 } 2549 2550 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2551 const RISCVSubtarget &Subtarget) { 2552 SDValue V1 = Op.getOperand(0); 2553 SDValue V2 = Op.getOperand(1); 2554 SDLoc DL(Op); 2555 MVT XLenVT = Subtarget.getXLenVT(); 2556 MVT VT = Op.getSimpleValueType(); 2557 unsigned NumElts = VT.getVectorNumElements(); 2558 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2559 2560 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2561 2562 SDValue TrueMask, VL; 2563 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2564 2565 if (SVN->isSplat()) { 2566 const int Lane = SVN->getSplatIndex(); 2567 if (Lane >= 0) { 2568 MVT SVT = VT.getVectorElementType(); 2569 2570 // Turn splatted vector load into a strided load with an X0 stride. 2571 SDValue V = V1; 2572 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2573 // with undef. 2574 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2575 int Offset = Lane; 2576 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2577 int OpElements = 2578 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2579 V = V.getOperand(Offset / OpElements); 2580 Offset %= OpElements; 2581 } 2582 2583 // We need to ensure the load isn't atomic or volatile. 2584 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2585 auto *Ld = cast<LoadSDNode>(V); 2586 Offset *= SVT.getStoreSize(); 2587 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2588 TypeSize::Fixed(Offset), DL); 2589 2590 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2591 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2592 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2593 SDValue IntID = 2594 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2595 SDValue Ops[] = {Ld->getChain(), 2596 IntID, 2597 DAG.getUNDEF(ContainerVT), 2598 NewAddr, 2599 DAG.getRegister(RISCV::X0, XLenVT), 2600 VL}; 2601 SDValue NewLoad = DAG.getMemIntrinsicNode( 2602 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2603 DAG.getMachineFunction().getMachineMemOperand( 2604 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2605 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2606 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2607 } 2608 2609 // Otherwise use a scalar load and splat. This will give the best 2610 // opportunity to fold a splat into the operation. ISel can turn it into 2611 // the x0 strided load if we aren't able to fold away the select. 2612 if (SVT.isFloatingPoint()) 2613 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2614 Ld->getPointerInfo().getWithOffset(Offset), 2615 Ld->getOriginalAlign(), 2616 Ld->getMemOperand()->getFlags()); 2617 else 2618 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2619 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2620 Ld->getOriginalAlign(), 2621 Ld->getMemOperand()->getFlags()); 2622 DAG.makeEquivalentMemoryOrdering(Ld, V); 2623 2624 unsigned Opc = 2625 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2626 SDValue Splat = 2627 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL); 2628 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2629 } 2630 2631 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2632 assert(Lane < (int)NumElts && "Unexpected lane!"); 2633 SDValue Gather = 2634 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2635 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2636 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2637 } 2638 } 2639 2640 ArrayRef<int> Mask = SVN->getMask(); 2641 2642 // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may 2643 // be undef which can be handled with a single SLIDEDOWN/UP. 2644 int LoSrc, HiSrc; 2645 int Rotation = isElementRotate(LoSrc, HiSrc, Mask); 2646 if (Rotation > 0) { 2647 SDValue LoV, HiV; 2648 if (LoSrc >= 0) { 2649 LoV = LoSrc == 0 ? V1 : V2; 2650 LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget); 2651 } 2652 if (HiSrc >= 0) { 2653 HiV = HiSrc == 0 ? V1 : V2; 2654 HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget); 2655 } 2656 2657 // We found a rotation. We need to slide HiV down by Rotation. Then we need 2658 // to slide LoV up by (NumElts - Rotation). 2659 unsigned InvRotate = NumElts - Rotation; 2660 2661 SDValue Res = DAG.getUNDEF(ContainerVT); 2662 if (HiV) { 2663 // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN. 2664 // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it 2665 // causes multiple vsetvlis in some test cases such as lowering 2666 // reduce.mul 2667 SDValue DownVL = VL; 2668 if (LoV) 2669 DownVL = DAG.getConstant(InvRotate, DL, XLenVT); 2670 Res = 2671 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV, 2672 DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL); 2673 } 2674 if (LoV) 2675 Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV, 2676 DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL); 2677 2678 return convertFromScalableVector(VT, Res, DAG, Subtarget); 2679 } 2680 2681 // Detect an interleave shuffle and lower to 2682 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) 2683 bool SwapSources; 2684 if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { 2685 // Swap sources if needed. 2686 if (SwapSources) 2687 std::swap(V1, V2); 2688 2689 // Extract the lower half of the vectors. 2690 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 2691 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, 2692 DAG.getConstant(0, DL, XLenVT)); 2693 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, 2694 DAG.getConstant(0, DL, XLenVT)); 2695 2696 // Double the element width and halve the number of elements in an int type. 2697 unsigned EltBits = VT.getScalarSizeInBits(); 2698 MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); 2699 MVT WideIntVT = 2700 MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); 2701 // Convert this to a scalable vector. We need to base this on the 2702 // destination size to ensure there's always a type with a smaller LMUL. 2703 MVT WideIntContainerVT = 2704 getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); 2705 2706 // Convert sources to scalable vectors with the same element count as the 2707 // larger type. 2708 MVT HalfContainerVT = MVT::getVectorVT( 2709 VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); 2710 V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); 2711 V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); 2712 2713 // Cast sources to integer. 2714 MVT IntEltVT = MVT::getIntegerVT(EltBits); 2715 MVT IntHalfVT = 2716 MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); 2717 V1 = DAG.getBitcast(IntHalfVT, V1); 2718 V2 = DAG.getBitcast(IntHalfVT, V2); 2719 2720 // Freeze V2 since we use it twice and we need to be sure that the add and 2721 // multiply see the same value. 2722 V2 = DAG.getFreeze(V2); 2723 2724 // Recreate TrueMask using the widened type's element count. 2725 MVT MaskVT = 2726 MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount()); 2727 TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2728 2729 // Widen V1 and V2 with 0s and add one copy of V2 to V1. 2730 SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, 2731 V2, TrueMask, VL); 2732 // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. 2733 SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, 2734 DAG.getUNDEF(IntHalfVT), 2735 DAG.getAllOnesConstant(DL, XLenVT)); 2736 SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, 2737 V2, Multiplier, TrueMask, VL); 2738 // Add the new copies to our previous addition giving us 2^eltbits copies of 2739 // V2. This is equivalent to shifting V2 left by eltbits. This should 2740 // combine with the vwmulu.vv above to form vwmaccu.vv. 2741 Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, 2742 TrueMask, VL); 2743 // Cast back to ContainerVT. We need to re-create a new ContainerVT in case 2744 // WideIntContainerVT is a larger fractional LMUL than implied by the fixed 2745 // vector VT. 2746 ContainerVT = 2747 MVT::getVectorVT(VT.getVectorElementType(), 2748 WideIntContainerVT.getVectorElementCount() * 2); 2749 Add = DAG.getBitcast(ContainerVT, Add); 2750 return convertFromScalableVector(VT, Add, DAG, Subtarget); 2751 } 2752 2753 // Detect shuffles which can be re-expressed as vector selects; these are 2754 // shuffles in which each element in the destination is taken from an element 2755 // at the corresponding index in either source vectors. 2756 bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { 2757 int MaskIndex = MaskIdx.value(); 2758 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2759 }); 2760 2761 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2762 2763 SmallVector<SDValue> MaskVals; 2764 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2765 // merged with a second vrgather. 2766 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2767 2768 // By default we preserve the original operand order, and use a mask to 2769 // select LHS as true and RHS as false. However, since RVV vector selects may 2770 // feature splats but only on the LHS, we may choose to invert our mask and 2771 // instead select between RHS and LHS. 2772 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2773 bool InvertMask = IsSelect == SwapOps; 2774 2775 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2776 // half. 2777 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2778 2779 // Now construct the mask that will be used by the vselect or blended 2780 // vrgather operation. For vrgathers, construct the appropriate indices into 2781 // each vector. 2782 for (int MaskIndex : Mask) { 2783 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2784 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2785 if (!IsSelect) { 2786 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2787 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2788 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2789 : DAG.getUNDEF(XLenVT)); 2790 GatherIndicesRHS.push_back( 2791 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2792 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2793 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2794 ++LHSIndexCounts[MaskIndex]; 2795 if (!IsLHSOrUndefIndex) 2796 ++RHSIndexCounts[MaskIndex - NumElts]; 2797 } 2798 } 2799 2800 if (SwapOps) { 2801 std::swap(V1, V2); 2802 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2803 } 2804 2805 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2806 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2807 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2808 2809 if (IsSelect) 2810 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2811 2812 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2813 // On such a large vector we're unable to use i8 as the index type. 2814 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2815 // may involve vector splitting if we're already at LMUL=8, or our 2816 // user-supplied maximum fixed-length LMUL. 2817 return SDValue(); 2818 } 2819 2820 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2821 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2822 MVT IndexVT = VT.changeTypeToInteger(); 2823 // Since we can't introduce illegal index types at this stage, use i16 and 2824 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2825 // than XLenVT. 2826 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2827 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2828 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2829 } 2830 2831 MVT IndexContainerVT = 2832 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2833 2834 SDValue Gather; 2835 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2836 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2837 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2838 Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG, 2839 Subtarget); 2840 } else { 2841 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2842 // If only one index is used, we can use a "splat" vrgather. 2843 // TODO: We can splat the most-common index and fix-up any stragglers, if 2844 // that's beneficial. 2845 if (LHSIndexCounts.size() == 1) { 2846 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2847 Gather = 2848 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2849 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2850 } else { 2851 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2852 LHSIndices = 2853 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2854 2855 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2856 TrueMask, VL); 2857 } 2858 } 2859 2860 // If a second vector operand is used by this shuffle, blend it in with an 2861 // additional vrgather. 2862 if (!V2.isUndef()) { 2863 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2864 // If only one index is used, we can use a "splat" vrgather. 2865 // TODO: We can splat the most-common index and fix-up any stragglers, if 2866 // that's beneficial. 2867 if (RHSIndexCounts.size() == 1) { 2868 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2869 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2870 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2871 } else { 2872 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2873 RHSIndices = 2874 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2875 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2876 VL); 2877 } 2878 2879 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2880 SelectMask = 2881 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2882 2883 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2884 Gather, VL); 2885 } 2886 2887 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2888 } 2889 2890 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 2891 // Support splats for any type. These should type legalize well. 2892 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 2893 return true; 2894 2895 // Only support legal VTs for other shuffles for now. 2896 if (!isTypeLegal(VT)) 2897 return false; 2898 2899 MVT SVT = VT.getSimpleVT(); 2900 2901 bool SwapSources; 2902 int LoSrc, HiSrc; 2903 return (isElementRotate(LoSrc, HiSrc, M) > 0) || 2904 isInterleaveShuffle(M, SVT, SwapSources, Subtarget); 2905 } 2906 2907 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2908 SDLoc DL, SelectionDAG &DAG, 2909 const RISCVSubtarget &Subtarget) { 2910 if (VT.isScalableVector()) 2911 return DAG.getFPExtendOrRound(Op, DL, VT); 2912 assert(VT.isFixedLengthVector() && 2913 "Unexpected value type for RVV FP extend/round lowering"); 2914 SDValue Mask, VL; 2915 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2916 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2917 ? RISCVISD::FP_EXTEND_VL 2918 : RISCVISD::FP_ROUND_VL; 2919 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2920 } 2921 2922 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2923 // the exponent. 2924 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2925 MVT VT = Op.getSimpleValueType(); 2926 unsigned EltSize = VT.getScalarSizeInBits(); 2927 SDValue Src = Op.getOperand(0); 2928 SDLoc DL(Op); 2929 2930 // We need a FP type that can represent the value. 2931 // TODO: Use f16 for i8 when possible? 2932 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2933 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2934 2935 // Legal types should have been checked in the RISCVTargetLowering 2936 // constructor. 2937 // TODO: Splitting may make sense in some cases. 2938 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2939 "Expected legal float type!"); 2940 2941 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2942 // The trailing zero count is equal to log2 of this single bit value. 2943 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2944 SDValue Neg = 2945 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2946 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2947 } 2948 2949 // We have a legal FP type, convert to it. 2950 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2951 // Bitcast to integer and shift the exponent to the LSB. 2952 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2953 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2954 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2955 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2956 DAG.getConstant(ShiftAmt, DL, IntVT)); 2957 // Truncate back to original type to allow vnsrl. 2958 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2959 // The exponent contains log2 of the value in biased form. 2960 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2961 2962 // For trailing zeros, we just need to subtract the bias. 2963 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2964 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2965 DAG.getConstant(ExponentBias, DL, VT)); 2966 2967 // For leading zeros, we need to remove the bias and convert from log2 to 2968 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2969 unsigned Adjust = ExponentBias + (EltSize - 1); 2970 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2971 } 2972 2973 // While RVV has alignment restrictions, we should always be able to load as a 2974 // legal equivalently-sized byte-typed vector instead. This method is 2975 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2976 // the load is already correctly-aligned, it returns SDValue(). 2977 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2978 SelectionDAG &DAG) const { 2979 auto *Load = cast<LoadSDNode>(Op); 2980 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2981 2982 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2983 Load->getMemoryVT(), 2984 *Load->getMemOperand())) 2985 return SDValue(); 2986 2987 SDLoc DL(Op); 2988 MVT VT = Op.getSimpleValueType(); 2989 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2990 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2991 "Unexpected unaligned RVV load type"); 2992 MVT NewVT = 2993 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2994 assert(NewVT.isValid() && 2995 "Expecting equally-sized RVV vector types to be legal"); 2996 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2997 Load->getPointerInfo(), Load->getOriginalAlign(), 2998 Load->getMemOperand()->getFlags()); 2999 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 3000 } 3001 3002 // While RVV has alignment restrictions, we should always be able to store as a 3003 // legal equivalently-sized byte-typed vector instead. This method is 3004 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 3005 // returns SDValue() if the store is already correctly aligned. 3006 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 3007 SelectionDAG &DAG) const { 3008 auto *Store = cast<StoreSDNode>(Op); 3009 assert(Store && Store->getValue().getValueType().isVector() && 3010 "Expected vector store"); 3011 3012 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 3013 Store->getMemoryVT(), 3014 *Store->getMemOperand())) 3015 return SDValue(); 3016 3017 SDLoc DL(Op); 3018 SDValue StoredVal = Store->getValue(); 3019 MVT VT = StoredVal.getSimpleValueType(); 3020 unsigned EltSizeBits = VT.getScalarSizeInBits(); 3021 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 3022 "Unexpected unaligned RVV store type"); 3023 MVT NewVT = 3024 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 3025 assert(NewVT.isValid() && 3026 "Expecting equally-sized RVV vector types to be legal"); 3027 StoredVal = DAG.getBitcast(NewVT, StoredVal); 3028 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 3029 Store->getPointerInfo(), Store->getOriginalAlign(), 3030 Store->getMemOperand()->getFlags()); 3031 } 3032 3033 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 3034 SelectionDAG &DAG) const { 3035 switch (Op.getOpcode()) { 3036 default: 3037 report_fatal_error("unimplemented operand"); 3038 case ISD::GlobalAddress: 3039 return lowerGlobalAddress(Op, DAG); 3040 case ISD::BlockAddress: 3041 return lowerBlockAddress(Op, DAG); 3042 case ISD::ConstantPool: 3043 return lowerConstantPool(Op, DAG); 3044 case ISD::JumpTable: 3045 return lowerJumpTable(Op, DAG); 3046 case ISD::GlobalTLSAddress: 3047 return lowerGlobalTLSAddress(Op, DAG); 3048 case ISD::SELECT: 3049 return lowerSELECT(Op, DAG); 3050 case ISD::BRCOND: 3051 return lowerBRCOND(Op, DAG); 3052 case ISD::VASTART: 3053 return lowerVASTART(Op, DAG); 3054 case ISD::FRAMEADDR: 3055 return lowerFRAMEADDR(Op, DAG); 3056 case ISD::RETURNADDR: 3057 return lowerRETURNADDR(Op, DAG); 3058 case ISD::SHL_PARTS: 3059 return lowerShiftLeftParts(Op, DAG); 3060 case ISD::SRA_PARTS: 3061 return lowerShiftRightParts(Op, DAG, true); 3062 case ISD::SRL_PARTS: 3063 return lowerShiftRightParts(Op, DAG, false); 3064 case ISD::BITCAST: { 3065 SDLoc DL(Op); 3066 EVT VT = Op.getValueType(); 3067 SDValue Op0 = Op.getOperand(0); 3068 EVT Op0VT = Op0.getValueType(); 3069 MVT XLenVT = Subtarget.getXLenVT(); 3070 if (VT.isFixedLengthVector()) { 3071 // We can handle fixed length vector bitcasts with a simple replacement 3072 // in isel. 3073 if (Op0VT.isFixedLengthVector()) 3074 return Op; 3075 // When bitcasting from scalar to fixed-length vector, insert the scalar 3076 // into a one-element vector of the result type, and perform a vector 3077 // bitcast. 3078 if (!Op0VT.isVector()) { 3079 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 3080 if (!isTypeLegal(BVT)) 3081 return SDValue(); 3082 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 3083 DAG.getUNDEF(BVT), Op0, 3084 DAG.getConstant(0, DL, XLenVT))); 3085 } 3086 return SDValue(); 3087 } 3088 // Custom-legalize bitcasts from fixed-length vector types to scalar types 3089 // thus: bitcast the vector to a one-element vector type whose element type 3090 // is the same as the result type, and extract the first element. 3091 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 3092 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 3093 if (!isTypeLegal(BVT)) 3094 return SDValue(); 3095 SDValue BVec = DAG.getBitcast(BVT, Op0); 3096 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 3097 DAG.getConstant(0, DL, XLenVT)); 3098 } 3099 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 3100 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 3101 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 3102 return FPConv; 3103 } 3104 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 3105 Subtarget.hasStdExtF()) { 3106 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3107 SDValue FPConv = 3108 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 3109 return FPConv; 3110 } 3111 return SDValue(); 3112 } 3113 case ISD::INTRINSIC_WO_CHAIN: 3114 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3115 case ISD::INTRINSIC_W_CHAIN: 3116 return LowerINTRINSIC_W_CHAIN(Op, DAG); 3117 case ISD::INTRINSIC_VOID: 3118 return LowerINTRINSIC_VOID(Op, DAG); 3119 case ISD::BSWAP: 3120 case ISD::BITREVERSE: { 3121 MVT VT = Op.getSimpleValueType(); 3122 SDLoc DL(Op); 3123 if (Subtarget.hasStdExtZbp()) { 3124 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 3125 // Start with the maximum immediate value which is the bitwidth - 1. 3126 unsigned Imm = VT.getSizeInBits() - 1; 3127 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 3128 if (Op.getOpcode() == ISD::BSWAP) 3129 Imm &= ~0x7U; 3130 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 3131 DAG.getConstant(Imm, DL, VT)); 3132 } 3133 assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization"); 3134 assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode"); 3135 // Expand bitreverse to a bswap(rev8) followed by brev8. 3136 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0)); 3137 // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized 3138 // as brev8 by an isel pattern. 3139 return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap, 3140 DAG.getConstant(7, DL, VT)); 3141 } 3142 case ISD::FSHL: 3143 case ISD::FSHR: { 3144 MVT VT = Op.getSimpleValueType(); 3145 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 3146 SDLoc DL(Op); 3147 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 3148 // use log(XLen) bits. Mask the shift amount accordingly to prevent 3149 // accidentally setting the extra bit. 3150 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 3151 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 3152 DAG.getConstant(ShAmtWidth, DL, VT)); 3153 // fshl and fshr concatenate their operands in the same order. fsr and fsl 3154 // instruction use different orders. fshl will return its first operand for 3155 // shift of zero, fshr will return its second operand. fsl and fsr both 3156 // return rs1 so the ISD nodes need to have different operand orders. 3157 // Shift amount is in rs2. 3158 SDValue Op0 = Op.getOperand(0); 3159 SDValue Op1 = Op.getOperand(1); 3160 unsigned Opc = RISCVISD::FSL; 3161 if (Op.getOpcode() == ISD::FSHR) { 3162 std::swap(Op0, Op1); 3163 Opc = RISCVISD::FSR; 3164 } 3165 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); 3166 } 3167 case ISD::TRUNCATE: { 3168 SDLoc DL(Op); 3169 MVT VT = Op.getSimpleValueType(); 3170 // Only custom-lower vector truncates 3171 if (!VT.isVector()) 3172 return Op; 3173 3174 // Truncates to mask types are handled differently 3175 if (VT.getVectorElementType() == MVT::i1) 3176 return lowerVectorMaskTrunc(Op, DAG); 3177 3178 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 3179 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 3180 // truncate by one power of two at a time. 3181 MVT DstEltVT = VT.getVectorElementType(); 3182 3183 SDValue Src = Op.getOperand(0); 3184 MVT SrcVT = Src.getSimpleValueType(); 3185 MVT SrcEltVT = SrcVT.getVectorElementType(); 3186 3187 assert(DstEltVT.bitsLT(SrcEltVT) && 3188 isPowerOf2_64(DstEltVT.getSizeInBits()) && 3189 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 3190 "Unexpected vector truncate lowering"); 3191 3192 MVT ContainerVT = SrcVT; 3193 if (SrcVT.isFixedLengthVector()) { 3194 ContainerVT = getContainerForFixedLengthVector(SrcVT); 3195 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3196 } 3197 3198 SDValue Result = Src; 3199 SDValue Mask, VL; 3200 std::tie(Mask, VL) = 3201 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 3202 LLVMContext &Context = *DAG.getContext(); 3203 const ElementCount Count = ContainerVT.getVectorElementCount(); 3204 do { 3205 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 3206 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 3207 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 3208 Mask, VL); 3209 } while (SrcEltVT != DstEltVT); 3210 3211 if (SrcVT.isFixedLengthVector()) 3212 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 3213 3214 return Result; 3215 } 3216 case ISD::ANY_EXTEND: 3217 case ISD::ZERO_EXTEND: 3218 if (Op.getOperand(0).getValueType().isVector() && 3219 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3220 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 3221 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 3222 case ISD::SIGN_EXTEND: 3223 if (Op.getOperand(0).getValueType().isVector() && 3224 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3225 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 3226 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 3227 case ISD::SPLAT_VECTOR_PARTS: 3228 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 3229 case ISD::INSERT_VECTOR_ELT: 3230 return lowerINSERT_VECTOR_ELT(Op, DAG); 3231 case ISD::EXTRACT_VECTOR_ELT: 3232 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 3233 case ISD::VSCALE: { 3234 MVT VT = Op.getSimpleValueType(); 3235 SDLoc DL(Op); 3236 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 3237 // We define our scalable vector types for lmul=1 to use a 64 bit known 3238 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 3239 // vscale as VLENB / 8. 3240 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 3241 if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock) 3242 report_fatal_error("Support for VLEN==32 is incomplete."); 3243 if (isa<ConstantSDNode>(Op.getOperand(0))) { 3244 // We assume VLENB is a multiple of 8. We manually choose the best shift 3245 // here because SimplifyDemandedBits isn't always able to simplify it. 3246 uint64_t Val = Op.getConstantOperandVal(0); 3247 if (isPowerOf2_64(Val)) { 3248 uint64_t Log2 = Log2_64(Val); 3249 if (Log2 < 3) 3250 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 3251 DAG.getConstant(3 - Log2, DL, VT)); 3252 if (Log2 > 3) 3253 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 3254 DAG.getConstant(Log2 - 3, DL, VT)); 3255 return VLENB; 3256 } 3257 // If the multiplier is a multiple of 8, scale it down to avoid needing 3258 // to shift the VLENB value. 3259 if ((Val % 8) == 0) 3260 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 3261 DAG.getConstant(Val / 8, DL, VT)); 3262 } 3263 3264 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 3265 DAG.getConstant(3, DL, VT)); 3266 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 3267 } 3268 case ISD::FPOWI: { 3269 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 3270 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 3271 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 3272 Op.getOperand(1).getValueType() == MVT::i32) { 3273 SDLoc DL(Op); 3274 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 3275 SDValue Powi = 3276 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 3277 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 3278 DAG.getIntPtrConstant(0, DL)); 3279 } 3280 return SDValue(); 3281 } 3282 case ISD::FP_EXTEND: { 3283 // RVV can only do fp_extend to types double the size as the source. We 3284 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 3285 // via f32. 3286 SDLoc DL(Op); 3287 MVT VT = Op.getSimpleValueType(); 3288 SDValue Src = Op.getOperand(0); 3289 MVT SrcVT = Src.getSimpleValueType(); 3290 3291 // Prepare any fixed-length vector operands. 3292 MVT ContainerVT = VT; 3293 if (SrcVT.isFixedLengthVector()) { 3294 ContainerVT = getContainerForFixedLengthVector(VT); 3295 MVT SrcContainerVT = 3296 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 3297 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3298 } 3299 3300 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 3301 SrcVT.getVectorElementType() != MVT::f16) { 3302 // For scalable vectors, we only need to close the gap between 3303 // vXf16->vXf64. 3304 if (!VT.isFixedLengthVector()) 3305 return Op; 3306 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 3307 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3308 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3309 } 3310 3311 MVT InterVT = VT.changeVectorElementType(MVT::f32); 3312 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 3313 SDValue IntermediateExtend = getRVVFPExtendOrRound( 3314 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 3315 3316 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 3317 DL, DAG, Subtarget); 3318 if (VT.isFixedLengthVector()) 3319 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 3320 return Extend; 3321 } 3322 case ISD::FP_ROUND: { 3323 // RVV can only do fp_round to types half the size as the source. We 3324 // custom-lower f64->f16 rounds via RVV's round-to-odd float 3325 // conversion instruction. 3326 SDLoc DL(Op); 3327 MVT VT = Op.getSimpleValueType(); 3328 SDValue Src = Op.getOperand(0); 3329 MVT SrcVT = Src.getSimpleValueType(); 3330 3331 // Prepare any fixed-length vector operands. 3332 MVT ContainerVT = VT; 3333 if (VT.isFixedLengthVector()) { 3334 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3335 ContainerVT = 3336 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3337 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3338 } 3339 3340 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 3341 SrcVT.getVectorElementType() != MVT::f64) { 3342 // For scalable vectors, we only need to close the gap between 3343 // vXf64<->vXf16. 3344 if (!VT.isFixedLengthVector()) 3345 return Op; 3346 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 3347 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3348 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3349 } 3350 3351 SDValue Mask, VL; 3352 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3353 3354 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 3355 SDValue IntermediateRound = 3356 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 3357 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 3358 DL, DAG, Subtarget); 3359 3360 if (VT.isFixedLengthVector()) 3361 return convertFromScalableVector(VT, Round, DAG, Subtarget); 3362 return Round; 3363 } 3364 case ISD::FP_TO_SINT: 3365 case ISD::FP_TO_UINT: 3366 case ISD::SINT_TO_FP: 3367 case ISD::UINT_TO_FP: { 3368 // RVV can only do fp<->int conversions to types half/double the size as 3369 // the source. We custom-lower any conversions that do two hops into 3370 // sequences. 3371 MVT VT = Op.getSimpleValueType(); 3372 if (!VT.isVector()) 3373 return Op; 3374 SDLoc DL(Op); 3375 SDValue Src = Op.getOperand(0); 3376 MVT EltVT = VT.getVectorElementType(); 3377 MVT SrcVT = Src.getSimpleValueType(); 3378 MVT SrcEltVT = SrcVT.getVectorElementType(); 3379 unsigned EltSize = EltVT.getSizeInBits(); 3380 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3381 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3382 "Unexpected vector element types"); 3383 3384 bool IsInt2FP = SrcEltVT.isInteger(); 3385 // Widening conversions 3386 if (EltSize > (2 * SrcEltSize)) { 3387 if (IsInt2FP) { 3388 // Do a regular integer sign/zero extension then convert to float. 3389 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), 3390 VT.getVectorElementCount()); 3391 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3392 ? ISD::ZERO_EXTEND 3393 : ISD::SIGN_EXTEND; 3394 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3395 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3396 } 3397 // FP2Int 3398 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3399 // Do one doubling fp_extend then complete the operation by converting 3400 // to int. 3401 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3402 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3403 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3404 } 3405 3406 // Narrowing conversions 3407 if (SrcEltSize > (2 * EltSize)) { 3408 if (IsInt2FP) { 3409 // One narrowing int_to_fp, then an fp_round. 3410 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3411 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3412 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3413 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3414 } 3415 // FP2Int 3416 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3417 // representable by the integer, the result is poison. 3418 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 3419 VT.getVectorElementCount()); 3420 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3421 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3422 } 3423 3424 // Scalable vectors can exit here. Patterns will handle equally-sized 3425 // conversions halving/doubling ones. 3426 if (!VT.isFixedLengthVector()) 3427 return Op; 3428 3429 // For fixed-length vectors we lower to a custom "VL" node. 3430 unsigned RVVOpc = 0; 3431 switch (Op.getOpcode()) { 3432 default: 3433 llvm_unreachable("Impossible opcode"); 3434 case ISD::FP_TO_SINT: 3435 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3436 break; 3437 case ISD::FP_TO_UINT: 3438 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3439 break; 3440 case ISD::SINT_TO_FP: 3441 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3442 break; 3443 case ISD::UINT_TO_FP: 3444 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3445 break; 3446 } 3447 3448 MVT ContainerVT, SrcContainerVT; 3449 // Derive the reference container type from the larger vector type. 3450 if (SrcEltSize > EltSize) { 3451 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3452 ContainerVT = 3453 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3454 } else { 3455 ContainerVT = getContainerForFixedLengthVector(VT); 3456 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3457 } 3458 3459 SDValue Mask, VL; 3460 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3461 3462 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3463 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3464 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3465 } 3466 case ISD::FP_TO_SINT_SAT: 3467 case ISD::FP_TO_UINT_SAT: 3468 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3469 case ISD::FTRUNC: 3470 case ISD::FCEIL: 3471 case ISD::FFLOOR: 3472 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3473 case ISD::FROUND: 3474 return lowerFROUND(Op, DAG); 3475 case ISD::VECREDUCE_ADD: 3476 case ISD::VECREDUCE_UMAX: 3477 case ISD::VECREDUCE_SMAX: 3478 case ISD::VECREDUCE_UMIN: 3479 case ISD::VECREDUCE_SMIN: 3480 return lowerVECREDUCE(Op, DAG); 3481 case ISD::VECREDUCE_AND: 3482 case ISD::VECREDUCE_OR: 3483 case ISD::VECREDUCE_XOR: 3484 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3485 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3486 return lowerVECREDUCE(Op, DAG); 3487 case ISD::VECREDUCE_FADD: 3488 case ISD::VECREDUCE_SEQ_FADD: 3489 case ISD::VECREDUCE_FMIN: 3490 case ISD::VECREDUCE_FMAX: 3491 return lowerFPVECREDUCE(Op, DAG); 3492 case ISD::VP_REDUCE_ADD: 3493 case ISD::VP_REDUCE_UMAX: 3494 case ISD::VP_REDUCE_SMAX: 3495 case ISD::VP_REDUCE_UMIN: 3496 case ISD::VP_REDUCE_SMIN: 3497 case ISD::VP_REDUCE_FADD: 3498 case ISD::VP_REDUCE_SEQ_FADD: 3499 case ISD::VP_REDUCE_FMIN: 3500 case ISD::VP_REDUCE_FMAX: 3501 return lowerVPREDUCE(Op, DAG); 3502 case ISD::VP_REDUCE_AND: 3503 case ISD::VP_REDUCE_OR: 3504 case ISD::VP_REDUCE_XOR: 3505 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3506 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3507 return lowerVPREDUCE(Op, DAG); 3508 case ISD::INSERT_SUBVECTOR: 3509 return lowerINSERT_SUBVECTOR(Op, DAG); 3510 case ISD::EXTRACT_SUBVECTOR: 3511 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3512 case ISD::STEP_VECTOR: 3513 return lowerSTEP_VECTOR(Op, DAG); 3514 case ISD::VECTOR_REVERSE: 3515 return lowerVECTOR_REVERSE(Op, DAG); 3516 case ISD::VECTOR_SPLICE: 3517 return lowerVECTOR_SPLICE(Op, DAG); 3518 case ISD::BUILD_VECTOR: 3519 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3520 case ISD::SPLAT_VECTOR: 3521 if (Op.getValueType().getVectorElementType() == MVT::i1) 3522 return lowerVectorMaskSplat(Op, DAG); 3523 return SDValue(); 3524 case ISD::VECTOR_SHUFFLE: 3525 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3526 case ISD::CONCAT_VECTORS: { 3527 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3528 // better than going through the stack, as the default expansion does. 3529 SDLoc DL(Op); 3530 MVT VT = Op.getSimpleValueType(); 3531 unsigned NumOpElts = 3532 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3533 SDValue Vec = DAG.getUNDEF(VT); 3534 for (const auto &OpIdx : enumerate(Op->ops())) { 3535 SDValue SubVec = OpIdx.value(); 3536 // Don't insert undef subvectors. 3537 if (SubVec.isUndef()) 3538 continue; 3539 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 3540 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3541 } 3542 return Vec; 3543 } 3544 case ISD::LOAD: 3545 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3546 return V; 3547 if (Op.getValueType().isFixedLengthVector()) 3548 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3549 return Op; 3550 case ISD::STORE: 3551 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3552 return V; 3553 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3554 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3555 return Op; 3556 case ISD::MLOAD: 3557 case ISD::VP_LOAD: 3558 return lowerMaskedLoad(Op, DAG); 3559 case ISD::MSTORE: 3560 case ISD::VP_STORE: 3561 return lowerMaskedStore(Op, DAG); 3562 case ISD::SETCC: 3563 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3564 case ISD::ADD: 3565 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3566 case ISD::SUB: 3567 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3568 case ISD::MUL: 3569 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3570 case ISD::MULHS: 3571 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3572 case ISD::MULHU: 3573 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3574 case ISD::AND: 3575 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3576 RISCVISD::AND_VL); 3577 case ISD::OR: 3578 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3579 RISCVISD::OR_VL); 3580 case ISD::XOR: 3581 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3582 RISCVISD::XOR_VL); 3583 case ISD::SDIV: 3584 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3585 case ISD::SREM: 3586 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3587 case ISD::UDIV: 3588 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3589 case ISD::UREM: 3590 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3591 case ISD::SHL: 3592 case ISD::SRA: 3593 case ISD::SRL: 3594 if (Op.getSimpleValueType().isFixedLengthVector()) 3595 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3596 // This can be called for an i32 shift amount that needs to be promoted. 3597 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3598 "Unexpected custom legalisation"); 3599 return SDValue(); 3600 case ISD::SADDSAT: 3601 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3602 case ISD::UADDSAT: 3603 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3604 case ISD::SSUBSAT: 3605 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3606 case ISD::USUBSAT: 3607 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3608 case ISD::FADD: 3609 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3610 case ISD::FSUB: 3611 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3612 case ISD::FMUL: 3613 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3614 case ISD::FDIV: 3615 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3616 case ISD::FNEG: 3617 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3618 case ISD::FABS: 3619 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3620 case ISD::FSQRT: 3621 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3622 case ISD::FMA: 3623 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3624 case ISD::SMIN: 3625 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3626 case ISD::SMAX: 3627 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3628 case ISD::UMIN: 3629 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3630 case ISD::UMAX: 3631 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3632 case ISD::FMINNUM: 3633 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3634 case ISD::FMAXNUM: 3635 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3636 case ISD::ABS: 3637 return lowerABS(Op, DAG); 3638 case ISD::CTLZ_ZERO_UNDEF: 3639 case ISD::CTTZ_ZERO_UNDEF: 3640 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3641 case ISD::VSELECT: 3642 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3643 case ISD::FCOPYSIGN: 3644 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3645 case ISD::MGATHER: 3646 case ISD::VP_GATHER: 3647 return lowerMaskedGather(Op, DAG); 3648 case ISD::MSCATTER: 3649 case ISD::VP_SCATTER: 3650 return lowerMaskedScatter(Op, DAG); 3651 case ISD::FLT_ROUNDS_: 3652 return lowerGET_ROUNDING(Op, DAG); 3653 case ISD::SET_ROUNDING: 3654 return lowerSET_ROUNDING(Op, DAG); 3655 case ISD::VP_SELECT: 3656 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3657 case ISD::VP_MERGE: 3658 return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL); 3659 case ISD::VP_ADD: 3660 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3661 case ISD::VP_SUB: 3662 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3663 case ISD::VP_MUL: 3664 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3665 case ISD::VP_SDIV: 3666 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3667 case ISD::VP_UDIV: 3668 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3669 case ISD::VP_SREM: 3670 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3671 case ISD::VP_UREM: 3672 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3673 case ISD::VP_AND: 3674 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3675 case ISD::VP_OR: 3676 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3677 case ISD::VP_XOR: 3678 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3679 case ISD::VP_ASHR: 3680 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3681 case ISD::VP_LSHR: 3682 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3683 case ISD::VP_SHL: 3684 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3685 case ISD::VP_FADD: 3686 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3687 case ISD::VP_FSUB: 3688 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3689 case ISD::VP_FMUL: 3690 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3691 case ISD::VP_FDIV: 3692 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3693 case ISD::VP_FNEG: 3694 return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL); 3695 case ISD::VP_FMA: 3696 return lowerVPOp(Op, DAG, RISCVISD::FMA_VL); 3697 case ISD::VP_SEXT: 3698 case ISD::VP_ZEXT: 3699 if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1) 3700 return lowerVPExtMaskOp(Op, DAG); 3701 return lowerVPOp(Op, DAG, 3702 Op.getOpcode() == ISD::VP_SEXT ? RISCVISD::VSEXT_VL 3703 : RISCVISD::VZEXT_VL); 3704 case ISD::VP_FPTOSI: 3705 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_SINT_VL); 3706 case ISD::VP_FPTOUI: 3707 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_UINT_VL); 3708 case ISD::VP_SITOFP: 3709 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL); 3710 case ISD::VP_UITOFP: 3711 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL); 3712 case ISD::VP_SETCC: 3713 return lowerVPOp(Op, DAG, RISCVISD::SETCC_VL); 3714 } 3715 } 3716 3717 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3718 SelectionDAG &DAG, unsigned Flags) { 3719 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3720 } 3721 3722 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3723 SelectionDAG &DAG, unsigned Flags) { 3724 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3725 Flags); 3726 } 3727 3728 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3729 SelectionDAG &DAG, unsigned Flags) { 3730 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3731 N->getOffset(), Flags); 3732 } 3733 3734 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3735 SelectionDAG &DAG, unsigned Flags) { 3736 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3737 } 3738 3739 template <class NodeTy> 3740 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3741 bool IsLocal) const { 3742 SDLoc DL(N); 3743 EVT Ty = getPointerTy(DAG.getDataLayout()); 3744 3745 if (isPositionIndependent()) { 3746 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3747 if (IsLocal) 3748 // Use PC-relative addressing to access the symbol. This generates the 3749 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3750 // %pcrel_lo(auipc)). 3751 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3752 3753 // Use PC-relative addressing to access the GOT for this symbol, then load 3754 // the address from the GOT. This generates the pattern (PseudoLA sym), 3755 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3756 SDValue Load = 3757 SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3758 MachineFunction &MF = DAG.getMachineFunction(); 3759 MachineMemOperand *MemOp = MF.getMachineMemOperand( 3760 MachinePointerInfo::getGOT(MF), 3761 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 3762 MachineMemOperand::MOInvariant, 3763 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 3764 DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp}); 3765 return Load; 3766 } 3767 3768 switch (getTargetMachine().getCodeModel()) { 3769 default: 3770 report_fatal_error("Unsupported code model for lowering"); 3771 case CodeModel::Small: { 3772 // Generate a sequence for accessing addresses within the first 2 GiB of 3773 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3774 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3775 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3776 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3777 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3778 } 3779 case CodeModel::Medium: { 3780 // Generate a sequence for accessing addresses within any 2GiB range within 3781 // the address space. This generates the pattern (PseudoLLA sym), which 3782 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3783 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3784 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3785 } 3786 } 3787 } 3788 3789 template SDValue RISCVTargetLowering::getAddr<GlobalAddressSDNode>( 3790 GlobalAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const; 3791 template SDValue RISCVTargetLowering::getAddr<BlockAddressSDNode>( 3792 BlockAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const; 3793 template SDValue RISCVTargetLowering::getAddr<ConstantPoolSDNode>( 3794 ConstantPoolSDNode *N, SelectionDAG &DAG, bool IsLocal) const; 3795 template SDValue RISCVTargetLowering::getAddr<JumpTableSDNode>( 3796 JumpTableSDNode *N, SelectionDAG &DAG, bool IsLocal) const; 3797 3798 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3799 SelectionDAG &DAG) const { 3800 SDLoc DL(Op); 3801 EVT Ty = Op.getValueType(); 3802 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3803 int64_t Offset = N->getOffset(); 3804 MVT XLenVT = Subtarget.getXLenVT(); 3805 3806 const GlobalValue *GV = N->getGlobal(); 3807 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3808 SDValue Addr = getAddr(N, DAG, IsLocal); 3809 3810 // In order to maximise the opportunity for common subexpression elimination, 3811 // emit a separate ADD node for the global address offset instead of folding 3812 // it in the global address node. Later peephole optimisations may choose to 3813 // fold it back in when profitable. 3814 if (Offset != 0) 3815 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3816 DAG.getConstant(Offset, DL, XLenVT)); 3817 return Addr; 3818 } 3819 3820 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3821 SelectionDAG &DAG) const { 3822 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3823 3824 return getAddr(N, DAG); 3825 } 3826 3827 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3828 SelectionDAG &DAG) const { 3829 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3830 3831 return getAddr(N, DAG); 3832 } 3833 3834 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3835 SelectionDAG &DAG) const { 3836 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3837 3838 return getAddr(N, DAG); 3839 } 3840 3841 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3842 SelectionDAG &DAG, 3843 bool UseGOT) const { 3844 SDLoc DL(N); 3845 EVT Ty = getPointerTy(DAG.getDataLayout()); 3846 const GlobalValue *GV = N->getGlobal(); 3847 MVT XLenVT = Subtarget.getXLenVT(); 3848 3849 if (UseGOT) { 3850 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3851 // load the address from the GOT and add the thread pointer. This generates 3852 // the pattern (PseudoLA_TLS_IE sym), which expands to 3853 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3854 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3855 SDValue Load = 3856 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3857 MachineFunction &MF = DAG.getMachineFunction(); 3858 MachineMemOperand *MemOp = MF.getMachineMemOperand( 3859 MachinePointerInfo::getGOT(MF), 3860 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 3861 MachineMemOperand::MOInvariant, 3862 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 3863 DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp}); 3864 3865 // Add the thread pointer. 3866 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3867 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3868 } 3869 3870 // Generate a sequence for accessing the address relative to the thread 3871 // pointer, with the appropriate adjustment for the thread pointer offset. 3872 // This generates the pattern 3873 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3874 SDValue AddrHi = 3875 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3876 SDValue AddrAdd = 3877 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3878 SDValue AddrLo = 3879 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3880 3881 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3882 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3883 SDValue MNAdd = SDValue( 3884 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3885 0); 3886 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3887 } 3888 3889 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3890 SelectionDAG &DAG) const { 3891 SDLoc DL(N); 3892 EVT Ty = getPointerTy(DAG.getDataLayout()); 3893 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3894 const GlobalValue *GV = N->getGlobal(); 3895 3896 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3897 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3898 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3899 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3900 SDValue Load = 3901 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3902 3903 // Prepare argument list to generate call. 3904 ArgListTy Args; 3905 ArgListEntry Entry; 3906 Entry.Node = Load; 3907 Entry.Ty = CallTy; 3908 Args.push_back(Entry); 3909 3910 // Setup call to __tls_get_addr. 3911 TargetLowering::CallLoweringInfo CLI(DAG); 3912 CLI.setDebugLoc(DL) 3913 .setChain(DAG.getEntryNode()) 3914 .setLibCallee(CallingConv::C, CallTy, 3915 DAG.getExternalSymbol("__tls_get_addr", Ty), 3916 std::move(Args)); 3917 3918 return LowerCallTo(CLI).first; 3919 } 3920 3921 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3922 SelectionDAG &DAG) const { 3923 SDLoc DL(Op); 3924 EVT Ty = Op.getValueType(); 3925 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3926 int64_t Offset = N->getOffset(); 3927 MVT XLenVT = Subtarget.getXLenVT(); 3928 3929 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3930 3931 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3932 CallingConv::GHC) 3933 report_fatal_error("In GHC calling convention TLS is not supported"); 3934 3935 SDValue Addr; 3936 switch (Model) { 3937 case TLSModel::LocalExec: 3938 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3939 break; 3940 case TLSModel::InitialExec: 3941 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3942 break; 3943 case TLSModel::LocalDynamic: 3944 case TLSModel::GeneralDynamic: 3945 Addr = getDynamicTLSAddr(N, DAG); 3946 break; 3947 } 3948 3949 // In order to maximise the opportunity for common subexpression elimination, 3950 // emit a separate ADD node for the global address offset instead of folding 3951 // it in the global address node. Later peephole optimisations may choose to 3952 // fold it back in when profitable. 3953 if (Offset != 0) 3954 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3955 DAG.getConstant(Offset, DL, XLenVT)); 3956 return Addr; 3957 } 3958 3959 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3960 SDValue CondV = Op.getOperand(0); 3961 SDValue TrueV = Op.getOperand(1); 3962 SDValue FalseV = Op.getOperand(2); 3963 SDLoc DL(Op); 3964 MVT VT = Op.getSimpleValueType(); 3965 MVT XLenVT = Subtarget.getXLenVT(); 3966 3967 // Lower vector SELECTs to VSELECTs by splatting the condition. 3968 if (VT.isVector()) { 3969 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3970 SDValue CondSplat = VT.isScalableVector() 3971 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3972 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3973 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3974 } 3975 3976 // If the result type is XLenVT and CondV is the output of a SETCC node 3977 // which also operated on XLenVT inputs, then merge the SETCC node into the 3978 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3979 // compare+branch instructions. i.e.: 3980 // (select (setcc lhs, rhs, cc), truev, falsev) 3981 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3982 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3983 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3984 SDValue LHS = CondV.getOperand(0); 3985 SDValue RHS = CondV.getOperand(1); 3986 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3987 ISD::CondCode CCVal = CC->get(); 3988 3989 // Special case for a select of 2 constants that have a diffence of 1. 3990 // Normally this is done by DAGCombine, but if the select is introduced by 3991 // type legalization or op legalization, we miss it. Restricting to SETLT 3992 // case for now because that is what signed saturating add/sub need. 3993 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3994 // but we would probably want to swap the true/false values if the condition 3995 // is SETGE/SETLE to avoid an XORI. 3996 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3997 CCVal == ISD::SETLT) { 3998 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3999 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 4000 if (TrueVal - 1 == FalseVal) 4001 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 4002 if (TrueVal + 1 == FalseVal) 4003 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 4004 } 4005 4006 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 4007 4008 SDValue TargetCC = DAG.getCondCode(CCVal); 4009 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 4010 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 4011 } 4012 4013 // Otherwise: 4014 // (select condv, truev, falsev) 4015 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 4016 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4017 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 4018 4019 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 4020 4021 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 4022 } 4023 4024 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 4025 SDValue CondV = Op.getOperand(1); 4026 SDLoc DL(Op); 4027 MVT XLenVT = Subtarget.getXLenVT(); 4028 4029 if (CondV.getOpcode() == ISD::SETCC && 4030 CondV.getOperand(0).getValueType() == XLenVT) { 4031 SDValue LHS = CondV.getOperand(0); 4032 SDValue RHS = CondV.getOperand(1); 4033 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 4034 4035 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 4036 4037 SDValue TargetCC = DAG.getCondCode(CCVal); 4038 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 4039 LHS, RHS, TargetCC, Op.getOperand(2)); 4040 } 4041 4042 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 4043 CondV, DAG.getConstant(0, DL, XLenVT), 4044 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 4045 } 4046 4047 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 4048 MachineFunction &MF = DAG.getMachineFunction(); 4049 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 4050 4051 SDLoc DL(Op); 4052 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 4053 getPointerTy(MF.getDataLayout())); 4054 4055 // vastart just stores the address of the VarArgsFrameIndex slot into the 4056 // memory location argument. 4057 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 4058 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 4059 MachinePointerInfo(SV)); 4060 } 4061 4062 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 4063 SelectionDAG &DAG) const { 4064 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 4065 MachineFunction &MF = DAG.getMachineFunction(); 4066 MachineFrameInfo &MFI = MF.getFrameInfo(); 4067 MFI.setFrameAddressIsTaken(true); 4068 Register FrameReg = RI.getFrameRegister(MF); 4069 int XLenInBytes = Subtarget.getXLen() / 8; 4070 4071 EVT VT = Op.getValueType(); 4072 SDLoc DL(Op); 4073 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 4074 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4075 while (Depth--) { 4076 int Offset = -(XLenInBytes * 2); 4077 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 4078 DAG.getIntPtrConstant(Offset, DL)); 4079 FrameAddr = 4080 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 4081 } 4082 return FrameAddr; 4083 } 4084 4085 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 4086 SelectionDAG &DAG) const { 4087 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 4088 MachineFunction &MF = DAG.getMachineFunction(); 4089 MachineFrameInfo &MFI = MF.getFrameInfo(); 4090 MFI.setReturnAddressIsTaken(true); 4091 MVT XLenVT = Subtarget.getXLenVT(); 4092 int XLenInBytes = Subtarget.getXLen() / 8; 4093 4094 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 4095 return SDValue(); 4096 4097 EVT VT = Op.getValueType(); 4098 SDLoc DL(Op); 4099 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4100 if (Depth) { 4101 int Off = -XLenInBytes; 4102 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 4103 SDValue Offset = DAG.getConstant(Off, DL, VT); 4104 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 4105 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 4106 MachinePointerInfo()); 4107 } 4108 4109 // Return the value of the return address register, marking it an implicit 4110 // live-in. 4111 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 4112 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 4113 } 4114 4115 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 4116 SelectionDAG &DAG) const { 4117 SDLoc DL(Op); 4118 SDValue Lo = Op.getOperand(0); 4119 SDValue Hi = Op.getOperand(1); 4120 SDValue Shamt = Op.getOperand(2); 4121 EVT VT = Lo.getValueType(); 4122 4123 // if Shamt-XLEN < 0: // Shamt < XLEN 4124 // Lo = Lo << Shamt 4125 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt)) 4126 // else: 4127 // Lo = 0 4128 // Hi = Lo << (Shamt-XLEN) 4129 4130 SDValue Zero = DAG.getConstant(0, DL, VT); 4131 SDValue One = DAG.getConstant(1, DL, VT); 4132 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4133 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4134 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4135 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 4136 4137 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 4138 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 4139 SDValue ShiftRightLo = 4140 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 4141 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 4142 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 4143 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 4144 4145 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4146 4147 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 4148 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4149 4150 SDValue Parts[2] = {Lo, Hi}; 4151 return DAG.getMergeValues(Parts, DL); 4152 } 4153 4154 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 4155 bool IsSRA) const { 4156 SDLoc DL(Op); 4157 SDValue Lo = Op.getOperand(0); 4158 SDValue Hi = Op.getOperand(1); 4159 SDValue Shamt = Op.getOperand(2); 4160 EVT VT = Lo.getValueType(); 4161 4162 // SRA expansion: 4163 // if Shamt-XLEN < 0: // Shamt < XLEN 4164 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4165 // Hi = Hi >>s Shamt 4166 // else: 4167 // Lo = Hi >>s (Shamt-XLEN); 4168 // Hi = Hi >>s (XLEN-1) 4169 // 4170 // SRL expansion: 4171 // if Shamt-XLEN < 0: // Shamt < XLEN 4172 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4173 // Hi = Hi >>u Shamt 4174 // else: 4175 // Lo = Hi >>u (Shamt-XLEN); 4176 // Hi = 0; 4177 4178 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 4179 4180 SDValue Zero = DAG.getConstant(0, DL, VT); 4181 SDValue One = DAG.getConstant(1, DL, VT); 4182 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4183 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4184 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4185 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 4186 4187 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 4188 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 4189 SDValue ShiftLeftHi = 4190 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 4191 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 4192 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 4193 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 4194 SDValue HiFalse = 4195 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 4196 4197 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4198 4199 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 4200 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4201 4202 SDValue Parts[2] = {Lo, Hi}; 4203 return DAG.getMergeValues(Parts, DL); 4204 } 4205 4206 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 4207 // legal equivalently-sized i8 type, so we can use that as a go-between. 4208 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 4209 SelectionDAG &DAG) const { 4210 SDLoc DL(Op); 4211 MVT VT = Op.getSimpleValueType(); 4212 SDValue SplatVal = Op.getOperand(0); 4213 // All-zeros or all-ones splats are handled specially. 4214 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 4215 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4216 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 4217 } 4218 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 4219 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4220 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 4221 } 4222 MVT XLenVT = Subtarget.getXLenVT(); 4223 assert(SplatVal.getValueType() == XLenVT && 4224 "Unexpected type for i1 splat value"); 4225 MVT InterVT = VT.changeVectorElementType(MVT::i8); 4226 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 4227 DAG.getConstant(1, DL, XLenVT)); 4228 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 4229 SDValue Zero = DAG.getConstant(0, DL, InterVT); 4230 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 4231 } 4232 4233 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 4234 // illegal (currently only vXi64 RV32). 4235 // FIXME: We could also catch non-constant sign-extended i32 values and lower 4236 // them to VMV_V_X_VL. 4237 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 4238 SelectionDAG &DAG) const { 4239 SDLoc DL(Op); 4240 MVT VecVT = Op.getSimpleValueType(); 4241 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 4242 "Unexpected SPLAT_VECTOR_PARTS lowering"); 4243 4244 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 4245 SDValue Lo = Op.getOperand(0); 4246 SDValue Hi = Op.getOperand(1); 4247 4248 if (VecVT.isFixedLengthVector()) { 4249 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4250 SDLoc DL(Op); 4251 SDValue Mask, VL; 4252 std::tie(Mask, VL) = 4253 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4254 4255 SDValue Res = 4256 splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG); 4257 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 4258 } 4259 4260 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 4261 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 4262 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 4263 // If Hi constant is all the same sign bit as Lo, lower this as a custom 4264 // node in order to try and match RVV vector/scalar instructions. 4265 if ((LoC >> 31) == HiC) 4266 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 4267 Lo, DAG.getRegister(RISCV::X0, MVT::i32)); 4268 } 4269 4270 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 4271 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 4272 isa<ConstantSDNode>(Hi.getOperand(1)) && 4273 Hi.getConstantOperandVal(1) == 31) 4274 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo, 4275 DAG.getRegister(RISCV::X0, MVT::i32)); 4276 4277 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 4278 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, 4279 DAG.getUNDEF(VecVT), Lo, Hi, 4280 DAG.getRegister(RISCV::X0, MVT::i32)); 4281 } 4282 4283 // Custom-lower extensions from mask vectors by using a vselect either with 1 4284 // for zero/any-extension or -1 for sign-extension: 4285 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 4286 // Note that any-extension is lowered identically to zero-extension. 4287 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 4288 int64_t ExtTrueVal) const { 4289 SDLoc DL(Op); 4290 MVT VecVT = Op.getSimpleValueType(); 4291 SDValue Src = Op.getOperand(0); 4292 // Only custom-lower extensions from mask types 4293 assert(Src.getValueType().isVector() && 4294 Src.getValueType().getVectorElementType() == MVT::i1); 4295 4296 if (VecVT.isScalableVector()) { 4297 SDValue SplatZero = DAG.getConstant(0, DL, VecVT); 4298 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT); 4299 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 4300 } 4301 4302 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4303 MVT I1ContainerVT = 4304 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4305 4306 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 4307 4308 SDValue Mask, VL; 4309 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4310 4311 MVT XLenVT = Subtarget.getXLenVT(); 4312 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 4313 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 4314 4315 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4316 DAG.getUNDEF(ContainerVT), SplatZero, VL); 4317 SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4318 DAG.getUNDEF(ContainerVT), SplatTrueVal, VL); 4319 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 4320 SplatTrueVal, SplatZero, VL); 4321 4322 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 4323 } 4324 4325 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 4326 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 4327 MVT ExtVT = Op.getSimpleValueType(); 4328 // Only custom-lower extensions from fixed-length vector types. 4329 if (!ExtVT.isFixedLengthVector()) 4330 return Op; 4331 MVT VT = Op.getOperand(0).getSimpleValueType(); 4332 // Grab the canonical container type for the extended type. Infer the smaller 4333 // type from that to ensure the same number of vector elements, as we know 4334 // the LMUL will be sufficient to hold the smaller type. 4335 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 4336 // Get the extended container type manually to ensure the same number of 4337 // vector elements between source and dest. 4338 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4339 ContainerExtVT.getVectorElementCount()); 4340 4341 SDValue Op1 = 4342 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4343 4344 SDLoc DL(Op); 4345 SDValue Mask, VL; 4346 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4347 4348 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 4349 4350 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 4351 } 4352 4353 // Custom-lower truncations from vectors to mask vectors by using a mask and a 4354 // setcc operation: 4355 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 4356 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 4357 SelectionDAG &DAG) const { 4358 SDLoc DL(Op); 4359 EVT MaskVT = Op.getValueType(); 4360 // Only expect to custom-lower truncations to mask types 4361 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 4362 "Unexpected type for vector mask lowering"); 4363 SDValue Src = Op.getOperand(0); 4364 MVT VecVT = Src.getSimpleValueType(); 4365 4366 // If this is a fixed vector, we need to convert it to a scalable vector. 4367 MVT ContainerVT = VecVT; 4368 if (VecVT.isFixedLengthVector()) { 4369 ContainerVT = getContainerForFixedLengthVector(VecVT); 4370 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4371 } 4372 4373 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 4374 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 4375 4376 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4377 DAG.getUNDEF(ContainerVT), SplatOne); 4378 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4379 DAG.getUNDEF(ContainerVT), SplatZero); 4380 4381 if (VecVT.isScalableVector()) { 4382 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 4383 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 4384 } 4385 4386 SDValue Mask, VL; 4387 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4388 4389 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 4390 SDValue Trunc = 4391 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 4392 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 4393 DAG.getCondCode(ISD::SETNE), Mask, VL); 4394 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 4395 } 4396 4397 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 4398 // first position of a vector, and that vector is slid up to the insert index. 4399 // By limiting the active vector length to index+1 and merging with the 4400 // original vector (with an undisturbed tail policy for elements >= VL), we 4401 // achieve the desired result of leaving all elements untouched except the one 4402 // at VL-1, which is replaced with the desired value. 4403 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4404 SelectionDAG &DAG) const { 4405 SDLoc DL(Op); 4406 MVT VecVT = Op.getSimpleValueType(); 4407 SDValue Vec = Op.getOperand(0); 4408 SDValue Val = Op.getOperand(1); 4409 SDValue Idx = Op.getOperand(2); 4410 4411 if (VecVT.getVectorElementType() == MVT::i1) { 4412 // FIXME: For now we just promote to an i8 vector and insert into that, 4413 // but this is probably not optimal. 4414 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4415 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4416 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4417 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4418 } 4419 4420 MVT ContainerVT = VecVT; 4421 // If the operand is a fixed-length vector, convert to a scalable one. 4422 if (VecVT.isFixedLengthVector()) { 4423 ContainerVT = getContainerForFixedLengthVector(VecVT); 4424 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4425 } 4426 4427 MVT XLenVT = Subtarget.getXLenVT(); 4428 4429 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4430 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4431 // Even i64-element vectors on RV32 can be lowered without scalar 4432 // legalization if the most-significant 32 bits of the value are not affected 4433 // by the sign-extension of the lower 32 bits. 4434 // TODO: We could also catch sign extensions of a 32-bit value. 4435 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4436 const auto *CVal = cast<ConstantSDNode>(Val); 4437 if (isInt<32>(CVal->getSExtValue())) { 4438 IsLegalInsert = true; 4439 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4440 } 4441 } 4442 4443 SDValue Mask, VL; 4444 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4445 4446 SDValue ValInVec; 4447 4448 if (IsLegalInsert) { 4449 unsigned Opc = 4450 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4451 if (isNullConstant(Idx)) { 4452 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4453 if (!VecVT.isFixedLengthVector()) 4454 return Vec; 4455 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4456 } 4457 ValInVec = 4458 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4459 } else { 4460 // On RV32, i64-element vectors must be specially handled to place the 4461 // value at element 0, by using two vslide1up instructions in sequence on 4462 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4463 // this. 4464 SDValue One = DAG.getConstant(1, DL, XLenVT); 4465 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4466 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4467 MVT I32ContainerVT = 4468 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4469 SDValue I32Mask = 4470 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4471 // Limit the active VL to two. 4472 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4473 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4474 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4475 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, 4476 DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL); 4477 // First slide in the hi value, then the lo in underneath it. 4478 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4479 DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi, 4480 I32Mask, InsertI64VL); 4481 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4482 DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo, 4483 I32Mask, InsertI64VL); 4484 // Bitcast back to the right container type. 4485 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4486 } 4487 4488 // Now that the value is in a vector, slide it into position. 4489 SDValue InsertVL = 4490 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4491 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4492 ValInVec, Idx, Mask, InsertVL); 4493 if (!VecVT.isFixedLengthVector()) 4494 return Slideup; 4495 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4496 } 4497 4498 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4499 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4500 // types this is done using VMV_X_S to allow us to glean information about the 4501 // sign bits of the result. 4502 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4503 SelectionDAG &DAG) const { 4504 SDLoc DL(Op); 4505 SDValue Idx = Op.getOperand(1); 4506 SDValue Vec = Op.getOperand(0); 4507 EVT EltVT = Op.getValueType(); 4508 MVT VecVT = Vec.getSimpleValueType(); 4509 MVT XLenVT = Subtarget.getXLenVT(); 4510 4511 if (VecVT.getVectorElementType() == MVT::i1) { 4512 if (VecVT.isFixedLengthVector()) { 4513 unsigned NumElts = VecVT.getVectorNumElements(); 4514 if (NumElts >= 8) { 4515 MVT WideEltVT; 4516 unsigned WidenVecLen; 4517 SDValue ExtractElementIdx; 4518 SDValue ExtractBitIdx; 4519 unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors(); 4520 MVT LargestEltVT = MVT::getIntegerVT( 4521 std::min(MaxEEW, unsigned(XLenVT.getSizeInBits()))); 4522 if (NumElts <= LargestEltVT.getSizeInBits()) { 4523 assert(isPowerOf2_32(NumElts) && 4524 "the number of elements should be power of 2"); 4525 WideEltVT = MVT::getIntegerVT(NumElts); 4526 WidenVecLen = 1; 4527 ExtractElementIdx = DAG.getConstant(0, DL, XLenVT); 4528 ExtractBitIdx = Idx; 4529 } else { 4530 WideEltVT = LargestEltVT; 4531 WidenVecLen = NumElts / WideEltVT.getSizeInBits(); 4532 // extract element index = index / element width 4533 ExtractElementIdx = DAG.getNode( 4534 ISD::SRL, DL, XLenVT, Idx, 4535 DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT)); 4536 // mask bit index = index % element width 4537 ExtractBitIdx = DAG.getNode( 4538 ISD::AND, DL, XLenVT, Idx, 4539 DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT)); 4540 } 4541 MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen); 4542 Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec); 4543 SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT, 4544 Vec, ExtractElementIdx); 4545 // Extract the bit from GPR. 4546 SDValue ShiftRight = 4547 DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx); 4548 return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight, 4549 DAG.getConstant(1, DL, XLenVT)); 4550 } 4551 } 4552 // Otherwise, promote to an i8 vector and extract from that. 4553 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4554 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4555 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4556 } 4557 4558 // If this is a fixed vector, we need to convert it to a scalable vector. 4559 MVT ContainerVT = VecVT; 4560 if (VecVT.isFixedLengthVector()) { 4561 ContainerVT = getContainerForFixedLengthVector(VecVT); 4562 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4563 } 4564 4565 // If the index is 0, the vector is already in the right position. 4566 if (!isNullConstant(Idx)) { 4567 // Use a VL of 1 to avoid processing more elements than we need. 4568 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4569 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4570 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4571 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4572 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4573 } 4574 4575 if (!EltVT.isInteger()) { 4576 // Floating-point extracts are handled in TableGen. 4577 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4578 DAG.getConstant(0, DL, XLenVT)); 4579 } 4580 4581 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4582 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4583 } 4584 4585 // Some RVV intrinsics may claim that they want an integer operand to be 4586 // promoted or expanded. 4587 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG, 4588 const RISCVSubtarget &Subtarget) { 4589 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4590 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4591 "Unexpected opcode"); 4592 4593 if (!Subtarget.hasVInstructions()) 4594 return SDValue(); 4595 4596 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4597 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4598 SDLoc DL(Op); 4599 4600 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4601 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4602 if (!II || !II->hasScalarOperand()) 4603 return SDValue(); 4604 4605 unsigned SplatOp = II->ScalarOperand + 1 + HasChain; 4606 assert(SplatOp < Op.getNumOperands()); 4607 4608 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4609 SDValue &ScalarOp = Operands[SplatOp]; 4610 MVT OpVT = ScalarOp.getSimpleValueType(); 4611 MVT XLenVT = Subtarget.getXLenVT(); 4612 4613 // If this isn't a scalar, or its type is XLenVT we're done. 4614 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4615 return SDValue(); 4616 4617 // Simplest case is that the operand needs to be promoted to XLenVT. 4618 if (OpVT.bitsLT(XLenVT)) { 4619 // If the operand is a constant, sign extend to increase our chances 4620 // of being able to use a .vi instruction. ANY_EXTEND would become a 4621 // a zero extend and the simm5 check in isel would fail. 4622 // FIXME: Should we ignore the upper bits in isel instead? 4623 unsigned ExtOpc = 4624 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4625 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4626 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4627 } 4628 4629 // Use the previous operand to get the vXi64 VT. The result might be a mask 4630 // VT for compares. Using the previous operand assumes that the previous 4631 // operand will never have a smaller element size than a scalar operand and 4632 // that a widening operation never uses SEW=64. 4633 // NOTE: If this fails the below assert, we can probably just find the 4634 // element count from any operand or result and use it to construct the VT. 4635 assert(II->ScalarOperand > 0 && "Unexpected splat operand!"); 4636 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4637 4638 // The more complex case is when the scalar is larger than XLenVT. 4639 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4640 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4641 4642 // If this is a sign-extended 32-bit value, we can truncate it and rely on the 4643 // instruction to sign-extend since SEW>XLEN. 4644 if (DAG.ComputeNumSignBits(ScalarOp) > 32) { 4645 ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp); 4646 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4647 } 4648 4649 switch (IntNo) { 4650 case Intrinsic::riscv_vslide1up: 4651 case Intrinsic::riscv_vslide1down: 4652 case Intrinsic::riscv_vslide1up_mask: 4653 case Intrinsic::riscv_vslide1down_mask: { 4654 // We need to special case these when the scalar is larger than XLen. 4655 unsigned NumOps = Op.getNumOperands(); 4656 bool IsMasked = NumOps == 7; 4657 4658 // Convert the vector source to the equivalent nxvXi32 vector. 4659 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4660 SDValue Vec = DAG.getBitcast(I32VT, Operands[2]); 4661 4662 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4663 DAG.getConstant(0, DL, XLenVT)); 4664 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4665 DAG.getConstant(1, DL, XLenVT)); 4666 4667 // Double the VL since we halved SEW. 4668 SDValue AVL = getVLOperand(Op); 4669 SDValue I32VL; 4670 4671 // Optimize for constant AVL 4672 if (isa<ConstantSDNode>(AVL)) { 4673 unsigned EltSize = VT.getScalarSizeInBits(); 4674 unsigned MinSize = VT.getSizeInBits().getKnownMinValue(); 4675 4676 unsigned VectorBitsMax = Subtarget.getRealMaxVLen(); 4677 unsigned MaxVLMAX = 4678 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 4679 4680 unsigned VectorBitsMin = Subtarget.getRealMinVLen(); 4681 unsigned MinVLMAX = 4682 RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize); 4683 4684 uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue(); 4685 if (AVLInt <= MinVLMAX) { 4686 I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT); 4687 } else if (AVLInt >= 2 * MaxVLMAX) { 4688 // Just set vl to VLMAX in this situation 4689 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT); 4690 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4691 unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits()); 4692 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4693 SDValue SETVLMAX = DAG.getTargetConstant( 4694 Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32); 4695 I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW, 4696 LMUL); 4697 } else { 4698 // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl 4699 // is related to the hardware implementation. 4700 // So let the following code handle 4701 } 4702 } 4703 if (!I32VL) { 4704 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT); 4705 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4706 unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits()); 4707 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4708 SDValue SETVL = 4709 DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32); 4710 // Using vsetvli instruction to get actually used length which related to 4711 // the hardware implementation 4712 SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL, 4713 SEW, LMUL); 4714 I32VL = 4715 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4716 } 4717 4718 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4719 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, I32VL); 4720 4721 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4722 // instructions. 4723 SDValue Passthru; 4724 if (IsMasked) 4725 Passthru = DAG.getUNDEF(I32VT); 4726 else 4727 Passthru = DAG.getBitcast(I32VT, Operands[1]); 4728 4729 if (IntNo == Intrinsic::riscv_vslide1up || 4730 IntNo == Intrinsic::riscv_vslide1up_mask) { 4731 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4732 ScalarHi, I32Mask, I32VL); 4733 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4734 ScalarLo, I32Mask, I32VL); 4735 } else { 4736 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4737 ScalarLo, I32Mask, I32VL); 4738 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4739 ScalarHi, I32Mask, I32VL); 4740 } 4741 4742 // Convert back to nxvXi64. 4743 Vec = DAG.getBitcast(VT, Vec); 4744 4745 if (!IsMasked) 4746 return Vec; 4747 // Apply mask after the operation. 4748 SDValue Mask = Operands[NumOps - 3]; 4749 SDValue MaskedOff = Operands[1]; 4750 // Assume Policy operand is the last operand. 4751 uint64_t Policy = 4752 cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue(); 4753 // We don't need to select maskedoff if it's undef. 4754 if (MaskedOff.isUndef()) 4755 return Vec; 4756 // TAMU 4757 if (Policy == RISCVII::TAIL_AGNOSTIC) 4758 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, 4759 AVL); 4760 // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma. 4761 // It's fine because vmerge does not care mask policy. 4762 return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff, 4763 AVL); 4764 } 4765 } 4766 4767 // We need to convert the scalar to a splat vector. 4768 SDValue VL = getVLOperand(Op); 4769 assert(VL.getValueType() == XLenVT); 4770 ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG); 4771 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4772 } 4773 4774 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4775 SelectionDAG &DAG) const { 4776 unsigned IntNo = Op.getConstantOperandVal(0); 4777 SDLoc DL(Op); 4778 MVT XLenVT = Subtarget.getXLenVT(); 4779 4780 switch (IntNo) { 4781 default: 4782 break; // Don't custom lower most intrinsics. 4783 case Intrinsic::thread_pointer: { 4784 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4785 return DAG.getRegister(RISCV::X4, PtrVT); 4786 } 4787 case Intrinsic::riscv_orc_b: 4788 case Intrinsic::riscv_brev8: { 4789 // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8. 4790 unsigned Opc = 4791 IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC; 4792 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4793 DAG.getConstant(7, DL, XLenVT)); 4794 } 4795 case Intrinsic::riscv_grev: 4796 case Intrinsic::riscv_gorc: { 4797 unsigned Opc = 4798 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4799 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4800 } 4801 case Intrinsic::riscv_zip: 4802 case Intrinsic::riscv_unzip: { 4803 // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip. 4804 // For i32 the immediate is 15. For i64 the immediate is 31. 4805 unsigned Opc = 4806 IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4807 unsigned BitWidth = Op.getValueSizeInBits(); 4808 assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width"); 4809 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4810 DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT)); 4811 } 4812 case Intrinsic::riscv_shfl: 4813 case Intrinsic::riscv_unshfl: { 4814 unsigned Opc = 4815 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4816 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4817 } 4818 case Intrinsic::riscv_bcompress: 4819 case Intrinsic::riscv_bdecompress: { 4820 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4821 : RISCVISD::BDECOMPRESS; 4822 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4823 } 4824 case Intrinsic::riscv_bfp: 4825 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4826 Op.getOperand(2)); 4827 case Intrinsic::riscv_fsl: 4828 return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1), 4829 Op.getOperand(2), Op.getOperand(3)); 4830 case Intrinsic::riscv_fsr: 4831 return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1), 4832 Op.getOperand(2), Op.getOperand(3)); 4833 case Intrinsic::riscv_vmv_x_s: 4834 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4835 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4836 Op.getOperand(1)); 4837 case Intrinsic::riscv_vmv_v_x: 4838 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4839 Op.getOperand(3), Op.getSimpleValueType(), DL, DAG, 4840 Subtarget); 4841 case Intrinsic::riscv_vfmv_v_f: 4842 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4843 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4844 case Intrinsic::riscv_vmv_s_x: { 4845 SDValue Scalar = Op.getOperand(2); 4846 4847 if (Scalar.getValueType().bitsLE(XLenVT)) { 4848 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4849 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4850 Op.getOperand(1), Scalar, Op.getOperand(3)); 4851 } 4852 4853 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4854 4855 // This is an i64 value that lives in two scalar registers. We have to 4856 // insert this in a convoluted way. First we build vXi64 splat containing 4857 // the two values that we assemble using some bit math. Next we'll use 4858 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4859 // to merge element 0 from our splat into the source vector. 4860 // FIXME: This is probably not the best way to do this, but it is 4861 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4862 // point. 4863 // sw lo, (a0) 4864 // sw hi, 4(a0) 4865 // vlse vX, (a0) 4866 // 4867 // vid.v vVid 4868 // vmseq.vx mMask, vVid, 0 4869 // vmerge.vvm vDest, vSrc, vVal, mMask 4870 MVT VT = Op.getSimpleValueType(); 4871 SDValue Vec = Op.getOperand(1); 4872 SDValue VL = getVLOperand(Op); 4873 4874 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG); 4875 if (Op.getOperand(1).isUndef()) 4876 return SplattedVal; 4877 SDValue SplattedIdx = 4878 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 4879 DAG.getConstant(0, DL, MVT::i32), VL); 4880 4881 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4882 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4883 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4884 SDValue SelectCond = 4885 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4886 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4887 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4888 Vec, VL); 4889 } 4890 } 4891 4892 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 4893 } 4894 4895 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4896 SelectionDAG &DAG) const { 4897 unsigned IntNo = Op.getConstantOperandVal(1); 4898 switch (IntNo) { 4899 default: 4900 break; 4901 case Intrinsic::riscv_masked_strided_load: { 4902 SDLoc DL(Op); 4903 MVT XLenVT = Subtarget.getXLenVT(); 4904 4905 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4906 // the selection of the masked intrinsics doesn't do this for us. 4907 SDValue Mask = Op.getOperand(5); 4908 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4909 4910 MVT VT = Op->getSimpleValueType(0); 4911 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4912 4913 SDValue PassThru = Op.getOperand(2); 4914 if (!IsUnmasked) { 4915 MVT MaskVT = 4916 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4917 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4918 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4919 } 4920 4921 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4922 4923 SDValue IntID = DAG.getTargetConstant( 4924 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4925 XLenVT); 4926 4927 auto *Load = cast<MemIntrinsicSDNode>(Op); 4928 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4929 if (IsUnmasked) 4930 Ops.push_back(DAG.getUNDEF(ContainerVT)); 4931 else 4932 Ops.push_back(PassThru); 4933 Ops.push_back(Op.getOperand(3)); // Ptr 4934 Ops.push_back(Op.getOperand(4)); // Stride 4935 if (!IsUnmasked) 4936 Ops.push_back(Mask); 4937 Ops.push_back(VL); 4938 if (!IsUnmasked) { 4939 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4940 Ops.push_back(Policy); 4941 } 4942 4943 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4944 SDValue Result = 4945 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4946 Load->getMemoryVT(), Load->getMemOperand()); 4947 SDValue Chain = Result.getValue(1); 4948 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4949 return DAG.getMergeValues({Result, Chain}, DL); 4950 } 4951 case Intrinsic::riscv_seg2_load: 4952 case Intrinsic::riscv_seg3_load: 4953 case Intrinsic::riscv_seg4_load: 4954 case Intrinsic::riscv_seg5_load: 4955 case Intrinsic::riscv_seg6_load: 4956 case Intrinsic::riscv_seg7_load: 4957 case Intrinsic::riscv_seg8_load: { 4958 SDLoc DL(Op); 4959 static const Intrinsic::ID VlsegInts[7] = { 4960 Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3, 4961 Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5, 4962 Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7, 4963 Intrinsic::riscv_vlseg8}; 4964 unsigned NF = Op->getNumValues() - 1; 4965 assert(NF >= 2 && NF <= 8 && "Unexpected seg number"); 4966 MVT XLenVT = Subtarget.getXLenVT(); 4967 MVT VT = Op->getSimpleValueType(0); 4968 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4969 4970 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4971 SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT); 4972 auto *Load = cast<MemIntrinsicSDNode>(Op); 4973 SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT); 4974 ContainerVTs.push_back(MVT::Other); 4975 SDVTList VTs = DAG.getVTList(ContainerVTs); 4976 SDValue Result = 4977 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, 4978 {Load->getChain(), IntID, Op.getOperand(2), VL}, 4979 Load->getMemoryVT(), Load->getMemOperand()); 4980 SmallVector<SDValue, 9> Results; 4981 for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++) 4982 Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx), 4983 DAG, Subtarget)); 4984 Results.push_back(Result.getValue(NF)); 4985 return DAG.getMergeValues(Results, DL); 4986 } 4987 } 4988 4989 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 4990 } 4991 4992 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4993 SelectionDAG &DAG) const { 4994 unsigned IntNo = Op.getConstantOperandVal(1); 4995 switch (IntNo) { 4996 default: 4997 break; 4998 case Intrinsic::riscv_masked_strided_store: { 4999 SDLoc DL(Op); 5000 MVT XLenVT = Subtarget.getXLenVT(); 5001 5002 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5003 // the selection of the masked intrinsics doesn't do this for us. 5004 SDValue Mask = Op.getOperand(5); 5005 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5006 5007 SDValue Val = Op.getOperand(2); 5008 MVT VT = Val.getSimpleValueType(); 5009 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5010 5011 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5012 if (!IsUnmasked) { 5013 MVT MaskVT = 5014 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5015 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5016 } 5017 5018 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5019 5020 SDValue IntID = DAG.getTargetConstant( 5021 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 5022 XLenVT); 5023 5024 auto *Store = cast<MemIntrinsicSDNode>(Op); 5025 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 5026 Ops.push_back(Val); 5027 Ops.push_back(Op.getOperand(3)); // Ptr 5028 Ops.push_back(Op.getOperand(4)); // Stride 5029 if (!IsUnmasked) 5030 Ops.push_back(Mask); 5031 Ops.push_back(VL); 5032 5033 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 5034 Ops, Store->getMemoryVT(), 5035 Store->getMemOperand()); 5036 } 5037 } 5038 5039 return SDValue(); 5040 } 5041 5042 static MVT getLMUL1VT(MVT VT) { 5043 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 5044 "Unexpected vector MVT"); 5045 return MVT::getScalableVectorVT( 5046 VT.getVectorElementType(), 5047 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 5048 } 5049 5050 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 5051 switch (ISDOpcode) { 5052 default: 5053 llvm_unreachable("Unhandled reduction"); 5054 case ISD::VECREDUCE_ADD: 5055 return RISCVISD::VECREDUCE_ADD_VL; 5056 case ISD::VECREDUCE_UMAX: 5057 return RISCVISD::VECREDUCE_UMAX_VL; 5058 case ISD::VECREDUCE_SMAX: 5059 return RISCVISD::VECREDUCE_SMAX_VL; 5060 case ISD::VECREDUCE_UMIN: 5061 return RISCVISD::VECREDUCE_UMIN_VL; 5062 case ISD::VECREDUCE_SMIN: 5063 return RISCVISD::VECREDUCE_SMIN_VL; 5064 case ISD::VECREDUCE_AND: 5065 return RISCVISD::VECREDUCE_AND_VL; 5066 case ISD::VECREDUCE_OR: 5067 return RISCVISD::VECREDUCE_OR_VL; 5068 case ISD::VECREDUCE_XOR: 5069 return RISCVISD::VECREDUCE_XOR_VL; 5070 } 5071 } 5072 5073 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 5074 SelectionDAG &DAG, 5075 bool IsVP) const { 5076 SDLoc DL(Op); 5077 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 5078 MVT VecVT = Vec.getSimpleValueType(); 5079 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 5080 Op.getOpcode() == ISD::VECREDUCE_OR || 5081 Op.getOpcode() == ISD::VECREDUCE_XOR || 5082 Op.getOpcode() == ISD::VP_REDUCE_AND || 5083 Op.getOpcode() == ISD::VP_REDUCE_OR || 5084 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 5085 "Unexpected reduction lowering"); 5086 5087 MVT XLenVT = Subtarget.getXLenVT(); 5088 assert(Op.getValueType() == XLenVT && 5089 "Expected reduction output to be legalized to XLenVT"); 5090 5091 MVT ContainerVT = VecVT; 5092 if (VecVT.isFixedLengthVector()) { 5093 ContainerVT = getContainerForFixedLengthVector(VecVT); 5094 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5095 } 5096 5097 SDValue Mask, VL; 5098 if (IsVP) { 5099 Mask = Op.getOperand(2); 5100 VL = Op.getOperand(3); 5101 } else { 5102 std::tie(Mask, VL) = 5103 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5104 } 5105 5106 unsigned BaseOpc; 5107 ISD::CondCode CC; 5108 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 5109 5110 switch (Op.getOpcode()) { 5111 default: 5112 llvm_unreachable("Unhandled reduction"); 5113 case ISD::VECREDUCE_AND: 5114 case ISD::VP_REDUCE_AND: { 5115 // vcpop ~x == 0 5116 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 5117 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 5118 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5119 CC = ISD::SETEQ; 5120 BaseOpc = ISD::AND; 5121 break; 5122 } 5123 case ISD::VECREDUCE_OR: 5124 case ISD::VP_REDUCE_OR: 5125 // vcpop x != 0 5126 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5127 CC = ISD::SETNE; 5128 BaseOpc = ISD::OR; 5129 break; 5130 case ISD::VECREDUCE_XOR: 5131 case ISD::VP_REDUCE_XOR: { 5132 // ((vcpop x) & 1) != 0 5133 SDValue One = DAG.getConstant(1, DL, XLenVT); 5134 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5135 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 5136 CC = ISD::SETNE; 5137 BaseOpc = ISD::XOR; 5138 break; 5139 } 5140 } 5141 5142 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 5143 5144 if (!IsVP) 5145 return SetCC; 5146 5147 // Now include the start value in the operation. 5148 // Note that we must return the start value when no elements are operated 5149 // upon. The vcpop instructions we've emitted in each case above will return 5150 // 0 for an inactive vector, and so we've already received the neutral value: 5151 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 5152 // can simply include the start value. 5153 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 5154 } 5155 5156 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 5157 SelectionDAG &DAG) const { 5158 SDLoc DL(Op); 5159 SDValue Vec = Op.getOperand(0); 5160 EVT VecEVT = Vec.getValueType(); 5161 5162 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 5163 5164 // Due to ordering in legalize types we may have a vector type that needs to 5165 // be split. Do that manually so we can get down to a legal type. 5166 while (getTypeAction(*DAG.getContext(), VecEVT) == 5167 TargetLowering::TypeSplitVector) { 5168 SDValue Lo, Hi; 5169 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 5170 VecEVT = Lo.getValueType(); 5171 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 5172 } 5173 5174 // TODO: The type may need to be widened rather than split. Or widened before 5175 // it can be split. 5176 if (!isTypeLegal(VecEVT)) 5177 return SDValue(); 5178 5179 MVT VecVT = VecEVT.getSimpleVT(); 5180 MVT VecEltVT = VecVT.getVectorElementType(); 5181 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 5182 5183 MVT ContainerVT = VecVT; 5184 if (VecVT.isFixedLengthVector()) { 5185 ContainerVT = getContainerForFixedLengthVector(VecVT); 5186 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5187 } 5188 5189 MVT M1VT = getLMUL1VT(ContainerVT); 5190 MVT XLenVT = Subtarget.getXLenVT(); 5191 5192 SDValue Mask, VL; 5193 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5194 5195 SDValue NeutralElem = 5196 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 5197 SDValue IdentitySplat = 5198 lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT), 5199 M1VT, DL, DAG, Subtarget); 5200 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 5201 IdentitySplat, Mask, VL); 5202 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5203 DAG.getConstant(0, DL, XLenVT)); 5204 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5205 } 5206 5207 // Given a reduction op, this function returns the matching reduction opcode, 5208 // the vector SDValue and the scalar SDValue required to lower this to a 5209 // RISCVISD node. 5210 static std::tuple<unsigned, SDValue, SDValue> 5211 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 5212 SDLoc DL(Op); 5213 auto Flags = Op->getFlags(); 5214 unsigned Opcode = Op.getOpcode(); 5215 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 5216 switch (Opcode) { 5217 default: 5218 llvm_unreachable("Unhandled reduction"); 5219 case ISD::VECREDUCE_FADD: { 5220 // Use positive zero if we can. It is cheaper to materialize. 5221 SDValue Zero = 5222 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 5223 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 5224 } 5225 case ISD::VECREDUCE_SEQ_FADD: 5226 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 5227 Op.getOperand(0)); 5228 case ISD::VECREDUCE_FMIN: 5229 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 5230 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5231 case ISD::VECREDUCE_FMAX: 5232 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 5233 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5234 } 5235 } 5236 5237 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 5238 SelectionDAG &DAG) const { 5239 SDLoc DL(Op); 5240 MVT VecEltVT = Op.getSimpleValueType(); 5241 5242 unsigned RVVOpcode; 5243 SDValue VectorVal, ScalarVal; 5244 std::tie(RVVOpcode, VectorVal, ScalarVal) = 5245 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 5246 MVT VecVT = VectorVal.getSimpleValueType(); 5247 5248 MVT ContainerVT = VecVT; 5249 if (VecVT.isFixedLengthVector()) { 5250 ContainerVT = getContainerForFixedLengthVector(VecVT); 5251 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 5252 } 5253 5254 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 5255 MVT XLenVT = Subtarget.getXLenVT(); 5256 5257 SDValue Mask, VL; 5258 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5259 5260 SDValue ScalarSplat = 5261 lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT), 5262 M1VT, DL, DAG, Subtarget); 5263 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 5264 VectorVal, ScalarSplat, Mask, VL); 5265 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5266 DAG.getConstant(0, DL, XLenVT)); 5267 } 5268 5269 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 5270 switch (ISDOpcode) { 5271 default: 5272 llvm_unreachable("Unhandled reduction"); 5273 case ISD::VP_REDUCE_ADD: 5274 return RISCVISD::VECREDUCE_ADD_VL; 5275 case ISD::VP_REDUCE_UMAX: 5276 return RISCVISD::VECREDUCE_UMAX_VL; 5277 case ISD::VP_REDUCE_SMAX: 5278 return RISCVISD::VECREDUCE_SMAX_VL; 5279 case ISD::VP_REDUCE_UMIN: 5280 return RISCVISD::VECREDUCE_UMIN_VL; 5281 case ISD::VP_REDUCE_SMIN: 5282 return RISCVISD::VECREDUCE_SMIN_VL; 5283 case ISD::VP_REDUCE_AND: 5284 return RISCVISD::VECREDUCE_AND_VL; 5285 case ISD::VP_REDUCE_OR: 5286 return RISCVISD::VECREDUCE_OR_VL; 5287 case ISD::VP_REDUCE_XOR: 5288 return RISCVISD::VECREDUCE_XOR_VL; 5289 case ISD::VP_REDUCE_FADD: 5290 return RISCVISD::VECREDUCE_FADD_VL; 5291 case ISD::VP_REDUCE_SEQ_FADD: 5292 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 5293 case ISD::VP_REDUCE_FMAX: 5294 return RISCVISD::VECREDUCE_FMAX_VL; 5295 case ISD::VP_REDUCE_FMIN: 5296 return RISCVISD::VECREDUCE_FMIN_VL; 5297 } 5298 } 5299 5300 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 5301 SelectionDAG &DAG) const { 5302 SDLoc DL(Op); 5303 SDValue Vec = Op.getOperand(1); 5304 EVT VecEVT = Vec.getValueType(); 5305 5306 // TODO: The type may need to be widened rather than split. Or widened before 5307 // it can be split. 5308 if (!isTypeLegal(VecEVT)) 5309 return SDValue(); 5310 5311 MVT VecVT = VecEVT.getSimpleVT(); 5312 MVT VecEltVT = VecVT.getVectorElementType(); 5313 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 5314 5315 MVT ContainerVT = VecVT; 5316 if (VecVT.isFixedLengthVector()) { 5317 ContainerVT = getContainerForFixedLengthVector(VecVT); 5318 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5319 } 5320 5321 SDValue VL = Op.getOperand(3); 5322 SDValue Mask = Op.getOperand(2); 5323 5324 MVT M1VT = getLMUL1VT(ContainerVT); 5325 MVT XLenVT = Subtarget.getXLenVT(); 5326 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 5327 5328 SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0), 5329 DAG.getConstant(1, DL, XLenVT), M1VT, 5330 DL, DAG, Subtarget); 5331 SDValue Reduction = 5332 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 5333 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 5334 DAG.getConstant(0, DL, XLenVT)); 5335 if (!VecVT.isInteger()) 5336 return Elt0; 5337 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5338 } 5339 5340 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5341 SelectionDAG &DAG) const { 5342 SDValue Vec = Op.getOperand(0); 5343 SDValue SubVec = Op.getOperand(1); 5344 MVT VecVT = Vec.getSimpleValueType(); 5345 MVT SubVecVT = SubVec.getSimpleValueType(); 5346 5347 SDLoc DL(Op); 5348 MVT XLenVT = Subtarget.getXLenVT(); 5349 unsigned OrigIdx = Op.getConstantOperandVal(2); 5350 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5351 5352 // We don't have the ability to slide mask vectors up indexed by their i1 5353 // elements; the smallest we can do is i8. Often we are able to bitcast to 5354 // equivalent i8 vectors. Note that when inserting a fixed-length vector 5355 // into a scalable one, we might not necessarily have enough scalable 5356 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 5357 if (SubVecVT.getVectorElementType() == MVT::i1 && 5358 (OrigIdx != 0 || !Vec.isUndef())) { 5359 if (VecVT.getVectorMinNumElements() >= 8 && 5360 SubVecVT.getVectorMinNumElements() >= 8) { 5361 assert(OrigIdx % 8 == 0 && "Invalid index"); 5362 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5363 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5364 "Unexpected mask vector lowering"); 5365 OrigIdx /= 8; 5366 SubVecVT = 5367 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5368 SubVecVT.isScalableVector()); 5369 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5370 VecVT.isScalableVector()); 5371 Vec = DAG.getBitcast(VecVT, Vec); 5372 SubVec = DAG.getBitcast(SubVecVT, SubVec); 5373 } else { 5374 // We can't slide this mask vector up indexed by its i1 elements. 5375 // This poses a problem when we wish to insert a scalable vector which 5376 // can't be re-expressed as a larger type. Just choose the slow path and 5377 // extend to a larger type, then truncate back down. 5378 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5379 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5380 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5381 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 5382 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 5383 Op.getOperand(2)); 5384 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 5385 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 5386 } 5387 } 5388 5389 // If the subvector vector is a fixed-length type, we cannot use subregister 5390 // manipulation to simplify the codegen; we don't know which register of a 5391 // LMUL group contains the specific subvector as we only know the minimum 5392 // register size. Therefore we must slide the vector group up the full 5393 // amount. 5394 if (SubVecVT.isFixedLengthVector()) { 5395 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 5396 return Op; 5397 MVT ContainerVT = VecVT; 5398 if (VecVT.isFixedLengthVector()) { 5399 ContainerVT = getContainerForFixedLengthVector(VecVT); 5400 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5401 } 5402 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 5403 DAG.getUNDEF(ContainerVT), SubVec, 5404 DAG.getConstant(0, DL, XLenVT)); 5405 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 5406 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 5407 return DAG.getBitcast(Op.getValueType(), SubVec); 5408 } 5409 SDValue Mask = 5410 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5411 // Set the vector length to only the number of elements we care about. Note 5412 // that for slideup this includes the offset. 5413 SDValue VL = 5414 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 5415 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5416 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 5417 SubVec, SlideupAmt, Mask, VL); 5418 if (VecVT.isFixedLengthVector()) 5419 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 5420 return DAG.getBitcast(Op.getValueType(), Slideup); 5421 } 5422 5423 unsigned SubRegIdx, RemIdx; 5424 std::tie(SubRegIdx, RemIdx) = 5425 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5426 VecVT, SubVecVT, OrigIdx, TRI); 5427 5428 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 5429 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 5430 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 5431 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 5432 5433 // 1. If the Idx has been completely eliminated and this subvector's size is 5434 // a vector register or a multiple thereof, or the surrounding elements are 5435 // undef, then this is a subvector insert which naturally aligns to a vector 5436 // register. These can easily be handled using subregister manipulation. 5437 // 2. If the subvector is smaller than a vector register, then the insertion 5438 // must preserve the undisturbed elements of the register. We do this by 5439 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 5440 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 5441 // subvector within the vector register, and an INSERT_SUBVECTOR of that 5442 // LMUL=1 type back into the larger vector (resolving to another subregister 5443 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 5444 // to avoid allocating a large register group to hold our subvector. 5445 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 5446 return Op; 5447 5448 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 5449 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 5450 // (in our case undisturbed). This means we can set up a subvector insertion 5451 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 5452 // size of the subvector. 5453 MVT InterSubVT = VecVT; 5454 SDValue AlignedExtract = Vec; 5455 unsigned AlignedIdx = OrigIdx - RemIdx; 5456 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5457 InterSubVT = getLMUL1VT(VecVT); 5458 // Extract a subvector equal to the nearest full vector register type. This 5459 // should resolve to a EXTRACT_SUBREG instruction. 5460 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5461 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5462 } 5463 5464 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5465 // For scalable vectors this must be further multiplied by vscale. 5466 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 5467 5468 SDValue Mask, VL; 5469 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5470 5471 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 5472 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 5473 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 5474 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 5475 5476 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 5477 DAG.getUNDEF(InterSubVT), SubVec, 5478 DAG.getConstant(0, DL, XLenVT)); 5479 5480 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 5481 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 5482 5483 // If required, insert this subvector back into the correct vector register. 5484 // This should resolve to an INSERT_SUBREG instruction. 5485 if (VecVT.bitsGT(InterSubVT)) 5486 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 5487 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5488 5489 // We might have bitcast from a mask type: cast back to the original type if 5490 // required. 5491 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 5492 } 5493 5494 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 5495 SelectionDAG &DAG) const { 5496 SDValue Vec = Op.getOperand(0); 5497 MVT SubVecVT = Op.getSimpleValueType(); 5498 MVT VecVT = Vec.getSimpleValueType(); 5499 5500 SDLoc DL(Op); 5501 MVT XLenVT = Subtarget.getXLenVT(); 5502 unsigned OrigIdx = Op.getConstantOperandVal(1); 5503 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5504 5505 // We don't have the ability to slide mask vectors down indexed by their i1 5506 // elements; the smallest we can do is i8. Often we are able to bitcast to 5507 // equivalent i8 vectors. Note that when extracting a fixed-length vector 5508 // from a scalable one, we might not necessarily have enough scalable 5509 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 5510 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 5511 if (VecVT.getVectorMinNumElements() >= 8 && 5512 SubVecVT.getVectorMinNumElements() >= 8) { 5513 assert(OrigIdx % 8 == 0 && "Invalid index"); 5514 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5515 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5516 "Unexpected mask vector lowering"); 5517 OrigIdx /= 8; 5518 SubVecVT = 5519 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5520 SubVecVT.isScalableVector()); 5521 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5522 VecVT.isScalableVector()); 5523 Vec = DAG.getBitcast(VecVT, Vec); 5524 } else { 5525 // We can't slide this mask vector down, indexed by its i1 elements. 5526 // This poses a problem when we wish to extract a scalable vector which 5527 // can't be re-expressed as a larger type. Just choose the slow path and 5528 // extend to a larger type, then truncate back down. 5529 // TODO: We could probably improve this when extracting certain fixed 5530 // from fixed, where we can extract as i8 and shift the correct element 5531 // right to reach the desired subvector? 5532 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5533 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5534 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5535 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 5536 Op.getOperand(1)); 5537 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 5538 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 5539 } 5540 } 5541 5542 // If the subvector vector is a fixed-length type, we cannot use subregister 5543 // manipulation to simplify the codegen; we don't know which register of a 5544 // LMUL group contains the specific subvector as we only know the minimum 5545 // register size. Therefore we must slide the vector group down the full 5546 // amount. 5547 if (SubVecVT.isFixedLengthVector()) { 5548 // With an index of 0 this is a cast-like subvector, which can be performed 5549 // with subregister operations. 5550 if (OrigIdx == 0) 5551 return Op; 5552 MVT ContainerVT = VecVT; 5553 if (VecVT.isFixedLengthVector()) { 5554 ContainerVT = getContainerForFixedLengthVector(VecVT); 5555 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5556 } 5557 SDValue Mask = 5558 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5559 // Set the vector length to only the number of elements we care about. This 5560 // avoids sliding down elements we're going to discard straight away. 5561 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 5562 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5563 SDValue Slidedown = 5564 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5565 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 5566 // Now we can use a cast-like subvector extract to get the result. 5567 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5568 DAG.getConstant(0, DL, XLenVT)); 5569 return DAG.getBitcast(Op.getValueType(), Slidedown); 5570 } 5571 5572 unsigned SubRegIdx, RemIdx; 5573 std::tie(SubRegIdx, RemIdx) = 5574 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5575 VecVT, SubVecVT, OrigIdx, TRI); 5576 5577 // If the Idx has been completely eliminated then this is a subvector extract 5578 // which naturally aligns to a vector register. These can easily be handled 5579 // using subregister manipulation. 5580 if (RemIdx == 0) 5581 return Op; 5582 5583 // Else we must shift our vector register directly to extract the subvector. 5584 // Do this using VSLIDEDOWN. 5585 5586 // If the vector type is an LMUL-group type, extract a subvector equal to the 5587 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5588 // instruction. 5589 MVT InterSubVT = VecVT; 5590 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5591 InterSubVT = getLMUL1VT(VecVT); 5592 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5593 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5594 } 5595 5596 // Slide this vector register down by the desired number of elements in order 5597 // to place the desired subvector starting at element 0. 5598 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5599 // For scalable vectors this must be further multiplied by vscale. 5600 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5601 5602 SDValue Mask, VL; 5603 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5604 SDValue Slidedown = 5605 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5606 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5607 5608 // Now the vector is in the right position, extract our final subvector. This 5609 // should resolve to a COPY. 5610 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5611 DAG.getConstant(0, DL, XLenVT)); 5612 5613 // We might have bitcast from a mask type: cast back to the original type if 5614 // required. 5615 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5616 } 5617 5618 // Lower step_vector to the vid instruction. Any non-identity step value must 5619 // be accounted for my manual expansion. 5620 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5621 SelectionDAG &DAG) const { 5622 SDLoc DL(Op); 5623 MVT VT = Op.getSimpleValueType(); 5624 MVT XLenVT = Subtarget.getXLenVT(); 5625 SDValue Mask, VL; 5626 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5627 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5628 uint64_t StepValImm = Op.getConstantOperandVal(0); 5629 if (StepValImm != 1) { 5630 if (isPowerOf2_64(StepValImm)) { 5631 SDValue StepVal = 5632 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 5633 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5634 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5635 } else { 5636 SDValue StepVal = lowerScalarSplat( 5637 SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), 5638 VL, VT, DL, DAG, Subtarget); 5639 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5640 } 5641 } 5642 return StepVec; 5643 } 5644 5645 // Implement vector_reverse using vrgather.vv with indices determined by 5646 // subtracting the id of each element from (VLMAX-1). This will convert 5647 // the indices like so: 5648 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5649 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5650 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5651 SelectionDAG &DAG) const { 5652 SDLoc DL(Op); 5653 MVT VecVT = Op.getSimpleValueType(); 5654 unsigned EltSize = VecVT.getScalarSizeInBits(); 5655 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5656 5657 unsigned MaxVLMAX = 0; 5658 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5659 if (VectorBitsMax != 0) 5660 MaxVLMAX = 5661 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 5662 5663 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5664 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5665 5666 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5667 // to use vrgatherei16.vv. 5668 // TODO: It's also possible to use vrgatherei16.vv for other types to 5669 // decrease register width for the index calculation. 5670 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5671 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5672 // Reverse each half, then reassemble them in reverse order. 5673 // NOTE: It's also possible that after splitting that VLMAX no longer 5674 // requires vrgatherei16.vv. 5675 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5676 SDValue Lo, Hi; 5677 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5678 EVT LoVT, HiVT; 5679 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5680 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5681 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5682 // Reassemble the low and high pieces reversed. 5683 // FIXME: This is a CONCAT_VECTORS. 5684 SDValue Res = 5685 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5686 DAG.getIntPtrConstant(0, DL)); 5687 return DAG.getNode( 5688 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5689 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5690 } 5691 5692 // Just promote the int type to i16 which will double the LMUL. 5693 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5694 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5695 } 5696 5697 MVT XLenVT = Subtarget.getXLenVT(); 5698 SDValue Mask, VL; 5699 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5700 5701 // Calculate VLMAX-1 for the desired SEW. 5702 unsigned MinElts = VecVT.getVectorMinNumElements(); 5703 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5704 DAG.getConstant(MinElts, DL, XLenVT)); 5705 SDValue VLMinus1 = 5706 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5707 5708 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5709 bool IsRV32E64 = 5710 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5711 SDValue SplatVL; 5712 if (!IsRV32E64) 5713 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5714 else 5715 SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT), 5716 VLMinus1, DAG.getRegister(RISCV::X0, XLenVT)); 5717 5718 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5719 SDValue Indices = 5720 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5721 5722 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5723 } 5724 5725 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op, 5726 SelectionDAG &DAG) const { 5727 SDLoc DL(Op); 5728 SDValue V1 = Op.getOperand(0); 5729 SDValue V2 = Op.getOperand(1); 5730 MVT XLenVT = Subtarget.getXLenVT(); 5731 MVT VecVT = Op.getSimpleValueType(); 5732 5733 unsigned MinElts = VecVT.getVectorMinNumElements(); 5734 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5735 DAG.getConstant(MinElts, DL, XLenVT)); 5736 5737 int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue(); 5738 SDValue DownOffset, UpOffset; 5739 if (ImmValue >= 0) { 5740 // The operand is a TargetConstant, we need to rebuild it as a regular 5741 // constant. 5742 DownOffset = DAG.getConstant(ImmValue, DL, XLenVT); 5743 UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset); 5744 } else { 5745 // The operand is a TargetConstant, we need to rebuild it as a regular 5746 // constant rather than negating the original operand. 5747 UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT); 5748 DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset); 5749 } 5750 5751 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5752 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VLMax); 5753 5754 SDValue SlideDown = 5755 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1, 5756 DownOffset, TrueMask, UpOffset); 5757 return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset, 5758 TrueMask, 5759 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT)); 5760 } 5761 5762 SDValue 5763 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5764 SelectionDAG &DAG) const { 5765 SDLoc DL(Op); 5766 auto *Load = cast<LoadSDNode>(Op); 5767 5768 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5769 Load->getMemoryVT(), 5770 *Load->getMemOperand()) && 5771 "Expecting a correctly-aligned load"); 5772 5773 MVT VT = Op.getSimpleValueType(); 5774 MVT XLenVT = Subtarget.getXLenVT(); 5775 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5776 5777 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5778 5779 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5780 SDValue IntID = DAG.getTargetConstant( 5781 IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT); 5782 SmallVector<SDValue, 4> Ops{Load->getChain(), IntID}; 5783 if (!IsMaskOp) 5784 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5785 Ops.push_back(Load->getBasePtr()); 5786 Ops.push_back(VL); 5787 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5788 SDValue NewLoad = 5789 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 5790 Load->getMemoryVT(), Load->getMemOperand()); 5791 5792 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5793 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5794 } 5795 5796 SDValue 5797 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5798 SelectionDAG &DAG) const { 5799 SDLoc DL(Op); 5800 auto *Store = cast<StoreSDNode>(Op); 5801 5802 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5803 Store->getMemoryVT(), 5804 *Store->getMemOperand()) && 5805 "Expecting a correctly-aligned store"); 5806 5807 SDValue StoreVal = Store->getValue(); 5808 MVT VT = StoreVal.getSimpleValueType(); 5809 MVT XLenVT = Subtarget.getXLenVT(); 5810 5811 // If the size less than a byte, we need to pad with zeros to make a byte. 5812 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5813 VT = MVT::v8i1; 5814 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5815 DAG.getConstant(0, DL, VT), StoreVal, 5816 DAG.getIntPtrConstant(0, DL)); 5817 } 5818 5819 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5820 5821 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5822 5823 SDValue NewValue = 5824 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5825 5826 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5827 SDValue IntID = DAG.getTargetConstant( 5828 IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT); 5829 return DAG.getMemIntrinsicNode( 5830 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 5831 {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL}, 5832 Store->getMemoryVT(), Store->getMemOperand()); 5833 } 5834 5835 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5836 SelectionDAG &DAG) const { 5837 SDLoc DL(Op); 5838 MVT VT = Op.getSimpleValueType(); 5839 5840 const auto *MemSD = cast<MemSDNode>(Op); 5841 EVT MemVT = MemSD->getMemoryVT(); 5842 MachineMemOperand *MMO = MemSD->getMemOperand(); 5843 SDValue Chain = MemSD->getChain(); 5844 SDValue BasePtr = MemSD->getBasePtr(); 5845 5846 SDValue Mask, PassThru, VL; 5847 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5848 Mask = VPLoad->getMask(); 5849 PassThru = DAG.getUNDEF(VT); 5850 VL = VPLoad->getVectorLength(); 5851 } else { 5852 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5853 Mask = MLoad->getMask(); 5854 PassThru = MLoad->getPassThru(); 5855 } 5856 5857 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5858 5859 MVT XLenVT = Subtarget.getXLenVT(); 5860 5861 MVT ContainerVT = VT; 5862 if (VT.isFixedLengthVector()) { 5863 ContainerVT = getContainerForFixedLengthVector(VT); 5864 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5865 if (!IsUnmasked) { 5866 MVT MaskVT = 5867 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5868 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5869 } 5870 } 5871 5872 if (!VL) 5873 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5874 5875 unsigned IntID = 5876 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5877 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5878 if (IsUnmasked) 5879 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5880 else 5881 Ops.push_back(PassThru); 5882 Ops.push_back(BasePtr); 5883 if (!IsUnmasked) 5884 Ops.push_back(Mask); 5885 Ops.push_back(VL); 5886 if (!IsUnmasked) 5887 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5888 5889 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5890 5891 SDValue Result = 5892 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5893 Chain = Result.getValue(1); 5894 5895 if (VT.isFixedLengthVector()) 5896 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5897 5898 return DAG.getMergeValues({Result, Chain}, DL); 5899 } 5900 5901 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5902 SelectionDAG &DAG) const { 5903 SDLoc DL(Op); 5904 5905 const auto *MemSD = cast<MemSDNode>(Op); 5906 EVT MemVT = MemSD->getMemoryVT(); 5907 MachineMemOperand *MMO = MemSD->getMemOperand(); 5908 SDValue Chain = MemSD->getChain(); 5909 SDValue BasePtr = MemSD->getBasePtr(); 5910 SDValue Val, Mask, VL; 5911 5912 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5913 Val = VPStore->getValue(); 5914 Mask = VPStore->getMask(); 5915 VL = VPStore->getVectorLength(); 5916 } else { 5917 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5918 Val = MStore->getValue(); 5919 Mask = MStore->getMask(); 5920 } 5921 5922 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5923 5924 MVT VT = Val.getSimpleValueType(); 5925 MVT XLenVT = Subtarget.getXLenVT(); 5926 5927 MVT ContainerVT = VT; 5928 if (VT.isFixedLengthVector()) { 5929 ContainerVT = getContainerForFixedLengthVector(VT); 5930 5931 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5932 if (!IsUnmasked) { 5933 MVT MaskVT = 5934 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5935 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5936 } 5937 } 5938 5939 if (!VL) 5940 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5941 5942 unsigned IntID = 5943 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5944 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5945 Ops.push_back(Val); 5946 Ops.push_back(BasePtr); 5947 if (!IsUnmasked) 5948 Ops.push_back(Mask); 5949 Ops.push_back(VL); 5950 5951 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5952 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5953 } 5954 5955 SDValue 5956 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5957 SelectionDAG &DAG) const { 5958 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5959 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5960 5961 MVT VT = Op.getSimpleValueType(); 5962 5963 SDValue Op1 = 5964 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5965 SDValue Op2 = 5966 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5967 5968 SDLoc DL(Op); 5969 SDValue VL = 5970 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5971 5972 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5973 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5974 5975 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5976 Op.getOperand(2), Mask, VL); 5977 5978 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5979 } 5980 5981 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5982 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5983 MVT VT = Op.getSimpleValueType(); 5984 5985 if (VT.getVectorElementType() == MVT::i1) 5986 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5987 5988 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5989 } 5990 5991 SDValue 5992 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5993 SelectionDAG &DAG) const { 5994 unsigned Opc; 5995 switch (Op.getOpcode()) { 5996 default: llvm_unreachable("Unexpected opcode!"); 5997 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5998 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5999 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 6000 } 6001 6002 return lowerToScalableOp(Op, DAG, Opc); 6003 } 6004 6005 // Lower vector ABS to smax(X, sub(0, X)). 6006 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 6007 SDLoc DL(Op); 6008 MVT VT = Op.getSimpleValueType(); 6009 SDValue X = Op.getOperand(0); 6010 6011 assert(VT.isFixedLengthVector() && "Unexpected type"); 6012 6013 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6014 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 6015 6016 SDValue Mask, VL; 6017 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6018 6019 SDValue SplatZero = DAG.getNode( 6020 RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), 6021 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 6022 SDValue NegX = 6023 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 6024 SDValue Max = 6025 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 6026 6027 return convertFromScalableVector(VT, Max, DAG, Subtarget); 6028 } 6029 6030 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 6031 SDValue Op, SelectionDAG &DAG) const { 6032 SDLoc DL(Op); 6033 MVT VT = Op.getSimpleValueType(); 6034 SDValue Mag = Op.getOperand(0); 6035 SDValue Sign = Op.getOperand(1); 6036 assert(Mag.getValueType() == Sign.getValueType() && 6037 "Can only handle COPYSIGN with matching types."); 6038 6039 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6040 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 6041 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 6042 6043 SDValue Mask, VL; 6044 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6045 6046 SDValue CopySign = 6047 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 6048 6049 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 6050 } 6051 6052 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 6053 SDValue Op, SelectionDAG &DAG) const { 6054 MVT VT = Op.getSimpleValueType(); 6055 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6056 6057 MVT I1ContainerVT = 6058 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6059 6060 SDValue CC = 6061 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 6062 SDValue Op1 = 6063 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 6064 SDValue Op2 = 6065 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 6066 6067 SDLoc DL(Op); 6068 SDValue Mask, VL; 6069 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6070 6071 SDValue Select = 6072 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 6073 6074 return convertFromScalableVector(VT, Select, DAG, Subtarget); 6075 } 6076 6077 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 6078 unsigned NewOpc, 6079 bool HasMask) const { 6080 MVT VT = Op.getSimpleValueType(); 6081 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6082 6083 // Create list of operands by converting existing ones to scalable types. 6084 SmallVector<SDValue, 6> Ops; 6085 for (const SDValue &V : Op->op_values()) { 6086 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6087 6088 // Pass through non-vector operands. 6089 if (!V.getValueType().isVector()) { 6090 Ops.push_back(V); 6091 continue; 6092 } 6093 6094 // "cast" fixed length vector to a scalable vector. 6095 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 6096 "Only fixed length vectors are supported!"); 6097 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6098 } 6099 6100 SDLoc DL(Op); 6101 SDValue Mask, VL; 6102 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6103 if (HasMask) 6104 Ops.push_back(Mask); 6105 Ops.push_back(VL); 6106 6107 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 6108 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 6109 } 6110 6111 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 6112 // * Operands of each node are assumed to be in the same order. 6113 // * The EVL operand is promoted from i32 to i64 on RV64. 6114 // * Fixed-length vectors are converted to their scalable-vector container 6115 // types. 6116 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 6117 unsigned RISCVISDOpc) const { 6118 SDLoc DL(Op); 6119 MVT VT = Op.getSimpleValueType(); 6120 SmallVector<SDValue, 4> Ops; 6121 6122 for (const auto &OpIdx : enumerate(Op->ops())) { 6123 SDValue V = OpIdx.value(); 6124 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6125 // Pass through operands which aren't fixed-length vectors. 6126 if (!V.getValueType().isFixedLengthVector()) { 6127 Ops.push_back(V); 6128 continue; 6129 } 6130 // "cast" fixed length vector to a scalable vector. 6131 MVT OpVT = V.getSimpleValueType(); 6132 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 6133 assert(useRVVForFixedLengthVectorVT(OpVT) && 6134 "Only fixed length vectors are supported!"); 6135 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6136 } 6137 6138 if (!VT.isFixedLengthVector()) 6139 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 6140 6141 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6142 6143 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 6144 6145 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 6146 } 6147 6148 SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op, 6149 SelectionDAG &DAG) const { 6150 SDLoc DL(Op); 6151 MVT VT = Op.getSimpleValueType(); 6152 6153 SDValue Src = Op.getOperand(0); 6154 // NOTE: Mask is dropped. 6155 SDValue VL = Op.getOperand(2); 6156 6157 MVT ContainerVT = VT; 6158 if (VT.isFixedLengthVector()) { 6159 ContainerVT = getContainerForFixedLengthVector(VT); 6160 MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6161 Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget); 6162 } 6163 6164 MVT XLenVT = Subtarget.getXLenVT(); 6165 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 6166 SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6167 DAG.getUNDEF(ContainerVT), Zero, VL); 6168 6169 SDValue SplatValue = 6170 DAG.getConstant(Op.getOpcode() == ISD::VP_ZEXT ? 1 : -1, DL, XLenVT); 6171 SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6172 DAG.getUNDEF(ContainerVT), SplatValue, VL); 6173 6174 SDValue Result = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, Src, 6175 Splat, ZeroSplat, VL); 6176 if (!VT.isFixedLengthVector()) 6177 return Result; 6178 return convertFromScalableVector(VT, Result, DAG, Subtarget); 6179 } 6180 6181 // Lower Floating-Point/Integer Type-Convert VP SDNodes 6182 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG, 6183 unsigned RISCVISDOpc) const { 6184 SDLoc DL(Op); 6185 6186 SDValue Src = Op.getOperand(0); 6187 SDValue Mask = Op.getOperand(1); 6188 SDValue VL = Op.getOperand(2); 6189 6190 MVT DstVT = Op.getSimpleValueType(); 6191 MVT SrcVT = Src.getSimpleValueType(); 6192 if (DstVT.isFixedLengthVector()) { 6193 DstVT = getContainerForFixedLengthVector(DstVT); 6194 SrcVT = getContainerForFixedLengthVector(SrcVT); 6195 Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget); 6196 MVT MaskVT = MVT::getVectorVT(MVT::i1, DstVT.getVectorElementCount()); 6197 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6198 } 6199 6200 unsigned RISCVISDExtOpc = (RISCVISDOpc == RISCVISD::SINT_TO_FP_VL || 6201 RISCVISDOpc == RISCVISD::FP_TO_SINT_VL) 6202 ? RISCVISD::VSEXT_VL 6203 : RISCVISD::VZEXT_VL; 6204 6205 unsigned DstEltSize = DstVT.getScalarSizeInBits(); 6206 unsigned SrcEltSize = SrcVT.getScalarSizeInBits(); 6207 6208 SDValue Result; 6209 if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion. 6210 if (SrcVT.isInteger()) { 6211 assert(DstVT.isFloatingPoint() && "Wrong input/output vector types"); 6212 6213 // Do we need to do any pre-widening before converting? 6214 if (SrcEltSize == 1) { 6215 MVT IntVT = DstVT.changeVectorElementTypeToInteger(); 6216 MVT XLenVT = Subtarget.getXLenVT(); 6217 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 6218 SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, 6219 DAG.getUNDEF(IntVT), Zero, VL); 6220 SDValue One = DAG.getConstant( 6221 RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT); 6222 SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, 6223 DAG.getUNDEF(IntVT), One, VL); 6224 Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat, 6225 ZeroSplat, VL); 6226 } else if (DstEltSize > (2 * SrcEltSize)) { 6227 // Widen before converting. 6228 MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2), 6229 DstVT.getVectorElementCount()); 6230 Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL); 6231 } 6232 6233 Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL); 6234 } else { 6235 assert(SrcVT.isFloatingPoint() && DstVT.isInteger() && 6236 "Wrong input/output vector types"); 6237 6238 // Convert f16 to f32 then convert f32 to i64. 6239 if (DstEltSize > (2 * SrcEltSize)) { 6240 assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!"); 6241 MVT InterimFVT = 6242 MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount()); 6243 Src = 6244 DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL); 6245 } 6246 6247 Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL); 6248 } 6249 } else { // Narrowing + Conversion 6250 if (SrcVT.isInteger()) { 6251 assert(DstVT.isFloatingPoint() && "Wrong input/output vector types"); 6252 // First do a narrowing convert to an FP type half the size, then round 6253 // the FP type to a small FP type if needed. 6254 6255 MVT InterimFVT = DstVT; 6256 if (SrcEltSize > (2 * DstEltSize)) { 6257 assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!"); 6258 assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!"); 6259 InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount()); 6260 } 6261 6262 Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL); 6263 6264 if (InterimFVT != DstVT) { 6265 Src = Result; 6266 Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL); 6267 } 6268 } else { 6269 assert(SrcVT.isFloatingPoint() && DstVT.isInteger() && 6270 "Wrong input/output vector types"); 6271 // First do a narrowing conversion to an integer half the size, then 6272 // truncate if needed. 6273 6274 if (DstEltSize == 1) { 6275 // First convert to the same size integer, then convert to mask using 6276 // setcc. 6277 assert(SrcEltSize >= 16 && "Unexpected FP type!"); 6278 MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize), 6279 DstVT.getVectorElementCount()); 6280 Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL); 6281 6282 // Compare the integer result to 0. The integer should be 0 or 1/-1, 6283 // otherwise the conversion was undefined. 6284 MVT XLenVT = Subtarget.getXLenVT(); 6285 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 6286 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT, 6287 DAG.getUNDEF(InterimIVT), SplatZero); 6288 Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, Result, SplatZero, 6289 DAG.getCondCode(ISD::SETNE), Mask, VL); 6290 } else { 6291 MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 6292 DstVT.getVectorElementCount()); 6293 6294 Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL); 6295 6296 while (InterimIVT != DstVT) { 6297 SrcEltSize /= 2; 6298 Src = Result; 6299 InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), 6300 DstVT.getVectorElementCount()); 6301 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT, 6302 Src, Mask, VL); 6303 } 6304 } 6305 } 6306 } 6307 6308 MVT VT = Op.getSimpleValueType(); 6309 if (!VT.isFixedLengthVector()) 6310 return Result; 6311 return convertFromScalableVector(VT, Result, DAG, Subtarget); 6312 } 6313 6314 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 6315 unsigned MaskOpc, 6316 unsigned VecOpc) const { 6317 MVT VT = Op.getSimpleValueType(); 6318 if (VT.getVectorElementType() != MVT::i1) 6319 return lowerVPOp(Op, DAG, VecOpc); 6320 6321 // It is safe to drop mask parameter as masked-off elements are undef. 6322 SDValue Op1 = Op->getOperand(0); 6323 SDValue Op2 = Op->getOperand(1); 6324 SDValue VL = Op->getOperand(3); 6325 6326 MVT ContainerVT = VT; 6327 const bool IsFixed = VT.isFixedLengthVector(); 6328 if (IsFixed) { 6329 ContainerVT = getContainerForFixedLengthVector(VT); 6330 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 6331 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 6332 } 6333 6334 SDLoc DL(Op); 6335 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 6336 if (!IsFixed) 6337 return Val; 6338 return convertFromScalableVector(VT, Val, DAG, Subtarget); 6339 } 6340 6341 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 6342 // matched to a RVV indexed load. The RVV indexed load instructions only 6343 // support the "unsigned unscaled" addressing mode; indices are implicitly 6344 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6345 // signed or scaled indexing is extended to the XLEN value type and scaled 6346 // accordingly. 6347 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 6348 SelectionDAG &DAG) const { 6349 SDLoc DL(Op); 6350 MVT VT = Op.getSimpleValueType(); 6351 6352 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6353 EVT MemVT = MemSD->getMemoryVT(); 6354 MachineMemOperand *MMO = MemSD->getMemOperand(); 6355 SDValue Chain = MemSD->getChain(); 6356 SDValue BasePtr = MemSD->getBasePtr(); 6357 6358 ISD::LoadExtType LoadExtType; 6359 SDValue Index, Mask, PassThru, VL; 6360 6361 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 6362 Index = VPGN->getIndex(); 6363 Mask = VPGN->getMask(); 6364 PassThru = DAG.getUNDEF(VT); 6365 VL = VPGN->getVectorLength(); 6366 // VP doesn't support extending loads. 6367 LoadExtType = ISD::NON_EXTLOAD; 6368 } else { 6369 // Else it must be a MGATHER. 6370 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 6371 Index = MGN->getIndex(); 6372 Mask = MGN->getMask(); 6373 PassThru = MGN->getPassThru(); 6374 LoadExtType = MGN->getExtensionType(); 6375 } 6376 6377 MVT IndexVT = Index.getSimpleValueType(); 6378 MVT XLenVT = Subtarget.getXLenVT(); 6379 6380 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6381 "Unexpected VTs!"); 6382 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6383 // Targets have to explicitly opt-in for extending vector loads. 6384 assert(LoadExtType == ISD::NON_EXTLOAD && 6385 "Unexpected extending MGATHER/VP_GATHER"); 6386 (void)LoadExtType; 6387 6388 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6389 // the selection of the masked intrinsics doesn't do this for us. 6390 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6391 6392 MVT ContainerVT = VT; 6393 if (VT.isFixedLengthVector()) { 6394 // We need to use the larger of the result and index type to determine the 6395 // scalable type to use so we don't increase LMUL for any operand/result. 6396 if (VT.bitsGE(IndexVT)) { 6397 ContainerVT = getContainerForFixedLengthVector(VT); 6398 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6399 ContainerVT.getVectorElementCount()); 6400 } else { 6401 IndexVT = getContainerForFixedLengthVector(IndexVT); 6402 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 6403 IndexVT.getVectorElementCount()); 6404 } 6405 6406 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6407 6408 if (!IsUnmasked) { 6409 MVT MaskVT = 6410 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6411 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6412 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 6413 } 6414 } 6415 6416 if (!VL) 6417 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6418 6419 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6420 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6421 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6422 VL); 6423 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6424 TrueMask, VL); 6425 } 6426 6427 unsigned IntID = 6428 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 6429 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6430 if (IsUnmasked) 6431 Ops.push_back(DAG.getUNDEF(ContainerVT)); 6432 else 6433 Ops.push_back(PassThru); 6434 Ops.push_back(BasePtr); 6435 Ops.push_back(Index); 6436 if (!IsUnmasked) 6437 Ops.push_back(Mask); 6438 Ops.push_back(VL); 6439 if (!IsUnmasked) 6440 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 6441 6442 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 6443 SDValue Result = 6444 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 6445 Chain = Result.getValue(1); 6446 6447 if (VT.isFixedLengthVector()) 6448 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 6449 6450 return DAG.getMergeValues({Result, Chain}, DL); 6451 } 6452 6453 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 6454 // matched to a RVV indexed store. The RVV indexed store instructions only 6455 // support the "unsigned unscaled" addressing mode; indices are implicitly 6456 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6457 // signed or scaled indexing is extended to the XLEN value type and scaled 6458 // accordingly. 6459 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 6460 SelectionDAG &DAG) const { 6461 SDLoc DL(Op); 6462 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6463 EVT MemVT = MemSD->getMemoryVT(); 6464 MachineMemOperand *MMO = MemSD->getMemOperand(); 6465 SDValue Chain = MemSD->getChain(); 6466 SDValue BasePtr = MemSD->getBasePtr(); 6467 6468 bool IsTruncatingStore = false; 6469 SDValue Index, Mask, Val, VL; 6470 6471 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 6472 Index = VPSN->getIndex(); 6473 Mask = VPSN->getMask(); 6474 Val = VPSN->getValue(); 6475 VL = VPSN->getVectorLength(); 6476 // VP doesn't support truncating stores. 6477 IsTruncatingStore = false; 6478 } else { 6479 // Else it must be a MSCATTER. 6480 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 6481 Index = MSN->getIndex(); 6482 Mask = MSN->getMask(); 6483 Val = MSN->getValue(); 6484 IsTruncatingStore = MSN->isTruncatingStore(); 6485 } 6486 6487 MVT VT = Val.getSimpleValueType(); 6488 MVT IndexVT = Index.getSimpleValueType(); 6489 MVT XLenVT = Subtarget.getXLenVT(); 6490 6491 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6492 "Unexpected VTs!"); 6493 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6494 // Targets have to explicitly opt-in for extending vector loads and 6495 // truncating vector stores. 6496 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 6497 (void)IsTruncatingStore; 6498 6499 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6500 // the selection of the masked intrinsics doesn't do this for us. 6501 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6502 6503 MVT ContainerVT = VT; 6504 if (VT.isFixedLengthVector()) { 6505 // We need to use the larger of the value and index type to determine the 6506 // scalable type to use so we don't increase LMUL for any operand/result. 6507 if (VT.bitsGE(IndexVT)) { 6508 ContainerVT = getContainerForFixedLengthVector(VT); 6509 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6510 ContainerVT.getVectorElementCount()); 6511 } else { 6512 IndexVT = getContainerForFixedLengthVector(IndexVT); 6513 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 6514 IndexVT.getVectorElementCount()); 6515 } 6516 6517 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6518 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 6519 6520 if (!IsUnmasked) { 6521 MVT MaskVT = 6522 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6523 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6524 } 6525 } 6526 6527 if (!VL) 6528 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6529 6530 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6531 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6532 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6533 VL); 6534 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6535 TrueMask, VL); 6536 } 6537 6538 unsigned IntID = 6539 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 6540 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6541 Ops.push_back(Val); 6542 Ops.push_back(BasePtr); 6543 Ops.push_back(Index); 6544 if (!IsUnmasked) 6545 Ops.push_back(Mask); 6546 Ops.push_back(VL); 6547 6548 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 6549 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 6550 } 6551 6552 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 6553 SelectionDAG &DAG) const { 6554 const MVT XLenVT = Subtarget.getXLenVT(); 6555 SDLoc DL(Op); 6556 SDValue Chain = Op->getOperand(0); 6557 SDValue SysRegNo = DAG.getTargetConstant( 6558 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6559 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 6560 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 6561 6562 // Encoding used for rounding mode in RISCV differs from that used in 6563 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 6564 // table, which consists of a sequence of 4-bit fields, each representing 6565 // corresponding FLT_ROUNDS mode. 6566 static const int Table = 6567 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 6568 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 6569 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 6570 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 6571 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 6572 6573 SDValue Shift = 6574 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 6575 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6576 DAG.getConstant(Table, DL, XLenVT), Shift); 6577 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6578 DAG.getConstant(7, DL, XLenVT)); 6579 6580 return DAG.getMergeValues({Masked, Chain}, DL); 6581 } 6582 6583 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 6584 SelectionDAG &DAG) const { 6585 const MVT XLenVT = Subtarget.getXLenVT(); 6586 SDLoc DL(Op); 6587 SDValue Chain = Op->getOperand(0); 6588 SDValue RMValue = Op->getOperand(1); 6589 SDValue SysRegNo = DAG.getTargetConstant( 6590 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6591 6592 // Encoding used for rounding mode in RISCV differs from that used in 6593 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 6594 // a table, which consists of a sequence of 4-bit fields, each representing 6595 // corresponding RISCV mode. 6596 static const unsigned Table = 6597 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 6598 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 6599 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 6600 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 6601 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 6602 6603 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 6604 DAG.getConstant(2, DL, XLenVT)); 6605 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6606 DAG.getConstant(Table, DL, XLenVT), Shift); 6607 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6608 DAG.getConstant(0x7, DL, XLenVT)); 6609 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 6610 RMValue); 6611 } 6612 6613 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { 6614 switch (IntNo) { 6615 default: 6616 llvm_unreachable("Unexpected Intrinsic"); 6617 case Intrinsic::riscv_bcompress: 6618 return RISCVISD::BCOMPRESSW; 6619 case Intrinsic::riscv_bdecompress: 6620 return RISCVISD::BDECOMPRESSW; 6621 case Intrinsic::riscv_bfp: 6622 return RISCVISD::BFPW; 6623 case Intrinsic::riscv_fsl: 6624 return RISCVISD::FSLW; 6625 case Intrinsic::riscv_fsr: 6626 return RISCVISD::FSRW; 6627 } 6628 } 6629 6630 // Converts the given intrinsic to a i64 operation with any extension. 6631 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, 6632 unsigned IntNo) { 6633 SDLoc DL(N); 6634 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); 6635 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6636 SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6637 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2); 6638 // ReplaceNodeResults requires we maintain the same type for the return value. 6639 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6640 } 6641 6642 // Returns the opcode of the target-specific SDNode that implements the 32-bit 6643 // form of the given Opcode. 6644 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 6645 switch (Opcode) { 6646 default: 6647 llvm_unreachable("Unexpected opcode"); 6648 case ISD::SHL: 6649 return RISCVISD::SLLW; 6650 case ISD::SRA: 6651 return RISCVISD::SRAW; 6652 case ISD::SRL: 6653 return RISCVISD::SRLW; 6654 case ISD::SDIV: 6655 return RISCVISD::DIVW; 6656 case ISD::UDIV: 6657 return RISCVISD::DIVUW; 6658 case ISD::UREM: 6659 return RISCVISD::REMUW; 6660 case ISD::ROTL: 6661 return RISCVISD::ROLW; 6662 case ISD::ROTR: 6663 return RISCVISD::RORW; 6664 } 6665 } 6666 6667 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 6668 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 6669 // otherwise be promoted to i64, making it difficult to select the 6670 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 6671 // type i8/i16/i32 is lost. 6672 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 6673 unsigned ExtOpc = ISD::ANY_EXTEND) { 6674 SDLoc DL(N); 6675 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6676 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 6677 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 6678 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6679 // ReplaceNodeResults requires we maintain the same type for the return value. 6680 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6681 } 6682 6683 // Converts the given 32-bit operation to a i64 operation with signed extension 6684 // semantic to reduce the signed extension instructions. 6685 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 6686 SDLoc DL(N); 6687 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6688 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6689 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 6690 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6691 DAG.getValueType(MVT::i32)); 6692 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 6693 } 6694 6695 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 6696 SmallVectorImpl<SDValue> &Results, 6697 SelectionDAG &DAG) const { 6698 SDLoc DL(N); 6699 switch (N->getOpcode()) { 6700 default: 6701 llvm_unreachable("Don't know how to custom type legalize this operation!"); 6702 case ISD::STRICT_FP_TO_SINT: 6703 case ISD::STRICT_FP_TO_UINT: 6704 case ISD::FP_TO_SINT: 6705 case ISD::FP_TO_UINT: { 6706 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6707 "Unexpected custom legalisation"); 6708 bool IsStrict = N->isStrictFPOpcode(); 6709 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 6710 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 6711 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 6712 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 6713 TargetLowering::TypeSoftenFloat) { 6714 if (!isTypeLegal(Op0.getValueType())) 6715 return; 6716 if (IsStrict) { 6717 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 6718 : RISCVISD::STRICT_FCVT_WU_RV64; 6719 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 6720 SDValue Res = DAG.getNode( 6721 Opc, DL, VTs, N->getOperand(0), Op0, 6722 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6723 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6724 Results.push_back(Res.getValue(1)); 6725 return; 6726 } 6727 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 6728 SDValue Res = 6729 DAG.getNode(Opc, DL, MVT::i64, Op0, 6730 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6731 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6732 return; 6733 } 6734 // If the FP type needs to be softened, emit a library call using the 'si' 6735 // version. If we left it to default legalization we'd end up with 'di'. If 6736 // the FP type doesn't need to be softened just let generic type 6737 // legalization promote the result type. 6738 RTLIB::Libcall LC; 6739 if (IsSigned) 6740 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 6741 else 6742 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 6743 MakeLibCallOptions CallOptions; 6744 EVT OpVT = Op0.getValueType(); 6745 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 6746 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 6747 SDValue Result; 6748 std::tie(Result, Chain) = 6749 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 6750 Results.push_back(Result); 6751 if (IsStrict) 6752 Results.push_back(Chain); 6753 break; 6754 } 6755 case ISD::READCYCLECOUNTER: { 6756 assert(!Subtarget.is64Bit() && 6757 "READCYCLECOUNTER only has custom type legalization on riscv32"); 6758 6759 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 6760 SDValue RCW = 6761 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 6762 6763 Results.push_back( 6764 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 6765 Results.push_back(RCW.getValue(2)); 6766 break; 6767 } 6768 case ISD::MUL: { 6769 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 6770 unsigned XLen = Subtarget.getXLen(); 6771 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 6772 if (Size > XLen) { 6773 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 6774 SDValue LHS = N->getOperand(0); 6775 SDValue RHS = N->getOperand(1); 6776 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 6777 6778 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 6779 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 6780 // We need exactly one side to be unsigned. 6781 if (LHSIsU == RHSIsU) 6782 return; 6783 6784 auto MakeMULPair = [&](SDValue S, SDValue U) { 6785 MVT XLenVT = Subtarget.getXLenVT(); 6786 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 6787 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 6788 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 6789 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 6790 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 6791 }; 6792 6793 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 6794 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 6795 6796 // The other operand should be signed, but still prefer MULH when 6797 // possible. 6798 if (RHSIsU && LHSIsS && !RHSIsS) 6799 Results.push_back(MakeMULPair(LHS, RHS)); 6800 else if (LHSIsU && RHSIsS && !LHSIsS) 6801 Results.push_back(MakeMULPair(RHS, LHS)); 6802 6803 return; 6804 } 6805 LLVM_FALLTHROUGH; 6806 } 6807 case ISD::ADD: 6808 case ISD::SUB: 6809 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6810 "Unexpected custom legalisation"); 6811 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 6812 break; 6813 case ISD::SHL: 6814 case ISD::SRA: 6815 case ISD::SRL: 6816 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6817 "Unexpected custom legalisation"); 6818 if (N->getOperand(1).getOpcode() != ISD::Constant) { 6819 Results.push_back(customLegalizeToWOp(N, DAG)); 6820 break; 6821 } 6822 6823 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6824 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6825 // shift amount. 6826 if (N->getOpcode() == ISD::SHL) { 6827 SDLoc DL(N); 6828 SDValue NewOp0 = 6829 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6830 SDValue NewOp1 = 6831 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6832 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6833 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6834 DAG.getValueType(MVT::i32)); 6835 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6836 } 6837 6838 break; 6839 case ISD::ROTL: 6840 case ISD::ROTR: 6841 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6842 "Unexpected custom legalisation"); 6843 Results.push_back(customLegalizeToWOp(N, DAG)); 6844 break; 6845 case ISD::CTTZ: 6846 case ISD::CTTZ_ZERO_UNDEF: 6847 case ISD::CTLZ: 6848 case ISD::CTLZ_ZERO_UNDEF: { 6849 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6850 "Unexpected custom legalisation"); 6851 6852 SDValue NewOp0 = 6853 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6854 bool IsCTZ = 6855 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6856 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 6857 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 6858 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6859 return; 6860 } 6861 case ISD::SDIV: 6862 case ISD::UDIV: 6863 case ISD::UREM: { 6864 MVT VT = N->getSimpleValueType(0); 6865 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 6866 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 6867 "Unexpected custom legalisation"); 6868 // Don't promote division/remainder by constant since we should expand those 6869 // to multiply by magic constant. 6870 // FIXME: What if the expansion is disabled for minsize. 6871 if (N->getOperand(1).getOpcode() == ISD::Constant) 6872 return; 6873 6874 // If the input is i32, use ANY_EXTEND since the W instructions don't read 6875 // the upper 32 bits. For other types we need to sign or zero extend 6876 // based on the opcode. 6877 unsigned ExtOpc = ISD::ANY_EXTEND; 6878 if (VT != MVT::i32) 6879 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6880 : ISD::ZERO_EXTEND; 6881 6882 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6883 break; 6884 } 6885 case ISD::UADDO: 6886 case ISD::USUBO: { 6887 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6888 "Unexpected custom legalisation"); 6889 bool IsAdd = N->getOpcode() == ISD::UADDO; 6890 // Create an ADDW or SUBW. 6891 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6892 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6893 SDValue Res = 6894 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6895 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6896 DAG.getValueType(MVT::i32)); 6897 6898 SDValue Overflow; 6899 if (IsAdd && isOneConstant(RHS)) { 6900 // Special case uaddo X, 1 overflowed if the addition result is 0. 6901 // FIXME: We can do this for any constant RHS by using (X + C) < C. 6902 Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, 6903 DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ); 6904 } else { 6905 // Sign extend the LHS and perform an unsigned compare with the ADDW 6906 // result. Since the inputs are sign extended from i32, this is equivalent 6907 // to comparing the lower 32 bits. 6908 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6909 Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6910 IsAdd ? ISD::SETULT : ISD::SETUGT); 6911 } 6912 6913 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6914 Results.push_back(Overflow); 6915 return; 6916 } 6917 case ISD::UADDSAT: 6918 case ISD::USUBSAT: { 6919 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6920 "Unexpected custom legalisation"); 6921 if (Subtarget.hasStdExtZbb()) { 6922 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6923 // sign extend allows overflow of the lower 32 bits to be detected on 6924 // the promoted size. 6925 SDValue LHS = 6926 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6927 SDValue RHS = 6928 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 6929 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 6930 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6931 return; 6932 } 6933 6934 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6935 // promotion for UADDO/USUBO. 6936 Results.push_back(expandAddSubSat(N, DAG)); 6937 return; 6938 } 6939 case ISD::ABS: { 6940 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6941 "Unexpected custom legalisation"); 6942 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6943 6944 // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y) 6945 6946 SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6947 6948 // Freeze the source so we can increase it's use count. 6949 Src = DAG.getFreeze(Src); 6950 6951 // Copy sign bit to all bits using the sraiw pattern. 6952 SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src, 6953 DAG.getValueType(MVT::i32)); 6954 SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill, 6955 DAG.getConstant(31, DL, MVT::i64)); 6956 6957 SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill); 6958 NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill); 6959 6960 // NOTE: The result is only required to be anyextended, but sext is 6961 // consistent with type legalization of sub. 6962 NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes, 6963 DAG.getValueType(MVT::i32)); 6964 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6965 return; 6966 } 6967 case ISD::BITCAST: { 6968 EVT VT = N->getValueType(0); 6969 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 6970 SDValue Op0 = N->getOperand(0); 6971 EVT Op0VT = Op0.getValueType(); 6972 MVT XLenVT = Subtarget.getXLenVT(); 6973 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 6974 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 6975 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 6976 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 6977 Subtarget.hasStdExtF()) { 6978 SDValue FPConv = 6979 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 6980 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 6981 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 6982 isTypeLegal(Op0VT)) { 6983 // Custom-legalize bitcasts from fixed-length vector types to illegal 6984 // scalar types in order to improve codegen. Bitcast the vector to a 6985 // one-element vector type whose element type is the same as the result 6986 // type, and extract the first element. 6987 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 6988 if (isTypeLegal(BVT)) { 6989 SDValue BVec = DAG.getBitcast(BVT, Op0); 6990 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 6991 DAG.getConstant(0, DL, XLenVT))); 6992 } 6993 } 6994 break; 6995 } 6996 case RISCVISD::GREV: 6997 case RISCVISD::GORC: 6998 case RISCVISD::SHFL: { 6999 MVT VT = N->getSimpleValueType(0); 7000 MVT XLenVT = Subtarget.getXLenVT(); 7001 assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) && 7002 "Unexpected custom legalisation"); 7003 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 7004 assert((Subtarget.hasStdExtZbp() || 7005 (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV && 7006 N->getConstantOperandVal(1) == 7)) && 7007 "Unexpected extension"); 7008 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 7009 SDValue NewOp1 = 7010 DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1)); 7011 SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1); 7012 // ReplaceNodeResults requires we maintain the same type for the return 7013 // value. 7014 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes)); 7015 break; 7016 } 7017 case ISD::BSWAP: 7018 case ISD::BITREVERSE: { 7019 MVT VT = N->getSimpleValueType(0); 7020 MVT XLenVT = Subtarget.getXLenVT(); 7021 assert((VT == MVT::i8 || VT == MVT::i16 || 7022 (VT == MVT::i32 && Subtarget.is64Bit())) && 7023 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 7024 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 7025 unsigned Imm = VT.getSizeInBits() - 1; 7026 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 7027 if (N->getOpcode() == ISD::BSWAP) 7028 Imm &= ~0x7U; 7029 SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0, 7030 DAG.getConstant(Imm, DL, XLenVT)); 7031 // ReplaceNodeResults requires we maintain the same type for the return 7032 // value. 7033 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 7034 break; 7035 } 7036 case ISD::FSHL: 7037 case ISD::FSHR: { 7038 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7039 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 7040 SDValue NewOp0 = 7041 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 7042 SDValue NewOp1 = 7043 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7044 SDValue NewShAmt = 7045 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7046 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 7047 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. 7048 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, 7049 DAG.getConstant(0x1f, DL, MVT::i64)); 7050 // fshl and fshr concatenate their operands in the same order. fsrw and fslw 7051 // instruction use different orders. fshl will return its first operand for 7052 // shift of zero, fshr will return its second operand. fsl and fsr both 7053 // return rs1 so the ISD nodes need to have different operand orders. 7054 // Shift amount is in rs2. 7055 unsigned Opc = RISCVISD::FSLW; 7056 if (N->getOpcode() == ISD::FSHR) { 7057 std::swap(NewOp0, NewOp1); 7058 Opc = RISCVISD::FSRW; 7059 } 7060 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); 7061 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 7062 break; 7063 } 7064 case ISD::EXTRACT_VECTOR_ELT: { 7065 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 7066 // type is illegal (currently only vXi64 RV32). 7067 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 7068 // transferred to the destination register. We issue two of these from the 7069 // upper- and lower- halves of the SEW-bit vector element, slid down to the 7070 // first element. 7071 SDValue Vec = N->getOperand(0); 7072 SDValue Idx = N->getOperand(1); 7073 7074 // The vector type hasn't been legalized yet so we can't issue target 7075 // specific nodes if it needs legalization. 7076 // FIXME: We would manually legalize if it's important. 7077 if (!isTypeLegal(Vec.getValueType())) 7078 return; 7079 7080 MVT VecVT = Vec.getSimpleValueType(); 7081 7082 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 7083 VecVT.getVectorElementType() == MVT::i64 && 7084 "Unexpected EXTRACT_VECTOR_ELT legalization"); 7085 7086 // If this is a fixed vector, we need to convert it to a scalable vector. 7087 MVT ContainerVT = VecVT; 7088 if (VecVT.isFixedLengthVector()) { 7089 ContainerVT = getContainerForFixedLengthVector(VecVT); 7090 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 7091 } 7092 7093 MVT XLenVT = Subtarget.getXLenVT(); 7094 7095 // Use a VL of 1 to avoid processing more elements than we need. 7096 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 7097 SDValue VL = DAG.getConstant(1, DL, XLenVT); 7098 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 7099 7100 // Unless the index is known to be 0, we must slide the vector down to get 7101 // the desired element into index 0. 7102 if (!isNullConstant(Idx)) { 7103 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 7104 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 7105 } 7106 7107 // Extract the lower XLEN bits of the correct vector element. 7108 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 7109 7110 // To extract the upper XLEN bits of the vector element, shift the first 7111 // element right by 32 bits and re-extract the lower XLEN bits. 7112 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 7113 DAG.getUNDEF(ContainerVT), 7114 DAG.getConstant(32, DL, XLenVT), VL); 7115 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 7116 ThirtyTwoV, Mask, VL); 7117 7118 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 7119 7120 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 7121 break; 7122 } 7123 case ISD::INTRINSIC_WO_CHAIN: { 7124 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 7125 switch (IntNo) { 7126 default: 7127 llvm_unreachable( 7128 "Don't know how to custom type legalize this intrinsic!"); 7129 case Intrinsic::riscv_grev: 7130 case Intrinsic::riscv_gorc: { 7131 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7132 "Unexpected custom legalisation"); 7133 SDValue NewOp1 = 7134 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7135 SDValue NewOp2 = 7136 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7137 unsigned Opc = 7138 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 7139 // If the control is a constant, promote the node by clearing any extra 7140 // bits bits in the control. isel will form greviw/gorciw if the result is 7141 // sign extended. 7142 if (isa<ConstantSDNode>(NewOp2)) { 7143 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 7144 DAG.getConstant(0x1f, DL, MVT::i64)); 7145 Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 7146 } 7147 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 7148 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7149 break; 7150 } 7151 case Intrinsic::riscv_bcompress: 7152 case Intrinsic::riscv_bdecompress: 7153 case Intrinsic::riscv_bfp: { 7154 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7155 "Unexpected custom legalisation"); 7156 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); 7157 break; 7158 } 7159 case Intrinsic::riscv_fsl: 7160 case Intrinsic::riscv_fsr: { 7161 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7162 "Unexpected custom legalisation"); 7163 SDValue NewOp1 = 7164 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7165 SDValue NewOp2 = 7166 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7167 SDValue NewOp3 = 7168 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3)); 7169 unsigned Opc = getRISCVWOpcodeByIntr(IntNo); 7170 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3); 7171 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7172 break; 7173 } 7174 case Intrinsic::riscv_orc_b: { 7175 // Lower to the GORCI encoding for orc.b with the operand extended. 7176 SDValue NewOp = 7177 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7178 SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp, 7179 DAG.getConstant(7, DL, MVT::i64)); 7180 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7181 return; 7182 } 7183 case Intrinsic::riscv_shfl: 7184 case Intrinsic::riscv_unshfl: { 7185 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 7186 "Unexpected custom legalisation"); 7187 SDValue NewOp1 = 7188 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 7189 SDValue NewOp2 = 7190 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 7191 unsigned Opc = 7192 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 7193 // There is no (UN)SHFLIW. If the control word is a constant, we can use 7194 // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half 7195 // will be shuffled the same way as the lower 32 bit half, but the two 7196 // halves won't cross. 7197 if (isa<ConstantSDNode>(NewOp2)) { 7198 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 7199 DAG.getConstant(0xf, DL, MVT::i64)); 7200 Opc = 7201 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 7202 } 7203 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 7204 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7205 break; 7206 } 7207 case Intrinsic::riscv_vmv_x_s: { 7208 EVT VT = N->getValueType(0); 7209 MVT XLenVT = Subtarget.getXLenVT(); 7210 if (VT.bitsLT(XLenVT)) { 7211 // Simple case just extract using vmv.x.s and truncate. 7212 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 7213 Subtarget.getXLenVT(), N->getOperand(1)); 7214 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 7215 return; 7216 } 7217 7218 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 7219 "Unexpected custom legalization"); 7220 7221 // We need to do the move in two steps. 7222 SDValue Vec = N->getOperand(1); 7223 MVT VecVT = Vec.getSimpleValueType(); 7224 7225 // First extract the lower XLEN bits of the element. 7226 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 7227 7228 // To extract the upper XLEN bits of the vector element, shift the first 7229 // element right by 32 bits and re-extract the lower XLEN bits. 7230 SDValue VL = DAG.getConstant(1, DL, XLenVT); 7231 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7232 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 7233 SDValue ThirtyTwoV = 7234 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 7235 DAG.getConstant(32, DL, XLenVT), VL); 7236 SDValue LShr32 = 7237 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 7238 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 7239 7240 Results.push_back( 7241 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 7242 break; 7243 } 7244 } 7245 break; 7246 } 7247 case ISD::VECREDUCE_ADD: 7248 case ISD::VECREDUCE_AND: 7249 case ISD::VECREDUCE_OR: 7250 case ISD::VECREDUCE_XOR: 7251 case ISD::VECREDUCE_SMAX: 7252 case ISD::VECREDUCE_UMAX: 7253 case ISD::VECREDUCE_SMIN: 7254 case ISD::VECREDUCE_UMIN: 7255 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 7256 Results.push_back(V); 7257 break; 7258 case ISD::VP_REDUCE_ADD: 7259 case ISD::VP_REDUCE_AND: 7260 case ISD::VP_REDUCE_OR: 7261 case ISD::VP_REDUCE_XOR: 7262 case ISD::VP_REDUCE_SMAX: 7263 case ISD::VP_REDUCE_UMAX: 7264 case ISD::VP_REDUCE_SMIN: 7265 case ISD::VP_REDUCE_UMIN: 7266 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 7267 Results.push_back(V); 7268 break; 7269 case ISD::FLT_ROUNDS_: { 7270 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 7271 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 7272 Results.push_back(Res.getValue(0)); 7273 Results.push_back(Res.getValue(1)); 7274 break; 7275 } 7276 } 7277 } 7278 7279 // A structure to hold one of the bit-manipulation patterns below. Together, a 7280 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 7281 // (or (and (shl x, 1), 0xAAAAAAAA), 7282 // (and (srl x, 1), 0x55555555)) 7283 struct RISCVBitmanipPat { 7284 SDValue Op; 7285 unsigned ShAmt; 7286 bool IsSHL; 7287 7288 bool formsPairWith(const RISCVBitmanipPat &Other) const { 7289 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 7290 } 7291 }; 7292 7293 // Matches patterns of the form 7294 // (and (shl x, C2), (C1 << C2)) 7295 // (and (srl x, C2), C1) 7296 // (shl (and x, C1), C2) 7297 // (srl (and x, (C1 << C2)), C2) 7298 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 7299 // The expected masks for each shift amount are specified in BitmanipMasks where 7300 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 7301 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 7302 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 7303 // XLen is 64. 7304 static Optional<RISCVBitmanipPat> 7305 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 7306 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 7307 "Unexpected number of masks"); 7308 Optional<uint64_t> Mask; 7309 // Optionally consume a mask around the shift operation. 7310 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 7311 Mask = Op.getConstantOperandVal(1); 7312 Op = Op.getOperand(0); 7313 } 7314 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 7315 return None; 7316 bool IsSHL = Op.getOpcode() == ISD::SHL; 7317 7318 if (!isa<ConstantSDNode>(Op.getOperand(1))) 7319 return None; 7320 uint64_t ShAmt = Op.getConstantOperandVal(1); 7321 7322 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7323 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 7324 return None; 7325 // If we don't have enough masks for 64 bit, then we must be trying to 7326 // match SHFL so we're only allowed to shift 1/4 of the width. 7327 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 7328 return None; 7329 7330 SDValue Src = Op.getOperand(0); 7331 7332 // The expected mask is shifted left when the AND is found around SHL 7333 // patterns. 7334 // ((x >> 1) & 0x55555555) 7335 // ((x << 1) & 0xAAAAAAAA) 7336 bool SHLExpMask = IsSHL; 7337 7338 if (!Mask) { 7339 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 7340 // the mask is all ones: consume that now. 7341 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 7342 Mask = Src.getConstantOperandVal(1); 7343 Src = Src.getOperand(0); 7344 // The expected mask is now in fact shifted left for SRL, so reverse the 7345 // decision. 7346 // ((x & 0xAAAAAAAA) >> 1) 7347 // ((x & 0x55555555) << 1) 7348 SHLExpMask = !SHLExpMask; 7349 } else { 7350 // Use a default shifted mask of all-ones if there's no AND, truncated 7351 // down to the expected width. This simplifies the logic later on. 7352 Mask = maskTrailingOnes<uint64_t>(Width); 7353 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 7354 } 7355 } 7356 7357 unsigned MaskIdx = Log2_32(ShAmt); 7358 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7359 7360 if (SHLExpMask) 7361 ExpMask <<= ShAmt; 7362 7363 if (Mask != ExpMask) 7364 return None; 7365 7366 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 7367 } 7368 7369 // Matches any of the following bit-manipulation patterns: 7370 // (and (shl x, 1), (0x55555555 << 1)) 7371 // (and (srl x, 1), 0x55555555) 7372 // (shl (and x, 0x55555555), 1) 7373 // (srl (and x, (0x55555555 << 1)), 1) 7374 // where the shift amount and mask may vary thus: 7375 // [1] = 0x55555555 / 0xAAAAAAAA 7376 // [2] = 0x33333333 / 0xCCCCCCCC 7377 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 7378 // [8] = 0x00FF00FF / 0xFF00FF00 7379 // [16] = 0x0000FFFF / 0xFFFFFFFF 7380 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 7381 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 7382 // These are the unshifted masks which we use to match bit-manipulation 7383 // patterns. They may be shifted left in certain circumstances. 7384 static const uint64_t BitmanipMasks[] = { 7385 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 7386 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 7387 7388 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7389 } 7390 7391 // Match the following pattern as a GREVI(W) operation 7392 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 7393 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 7394 const RISCVSubtarget &Subtarget) { 7395 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7396 EVT VT = Op.getValueType(); 7397 7398 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7399 auto LHS = matchGREVIPat(Op.getOperand(0)); 7400 auto RHS = matchGREVIPat(Op.getOperand(1)); 7401 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 7402 SDLoc DL(Op); 7403 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 7404 DAG.getConstant(LHS->ShAmt, DL, VT)); 7405 } 7406 } 7407 return SDValue(); 7408 } 7409 7410 // Matches any the following pattern as a GORCI(W) operation 7411 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 7412 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 7413 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 7414 // Note that with the variant of 3., 7415 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 7416 // the inner pattern will first be matched as GREVI and then the outer 7417 // pattern will be matched to GORC via the first rule above. 7418 // 4. (or (rotl/rotr x, bitwidth/2), x) 7419 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 7420 const RISCVSubtarget &Subtarget) { 7421 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7422 EVT VT = Op.getValueType(); 7423 7424 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7425 SDLoc DL(Op); 7426 SDValue Op0 = Op.getOperand(0); 7427 SDValue Op1 = Op.getOperand(1); 7428 7429 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 7430 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 7431 isa<ConstantSDNode>(Reverse.getOperand(1)) && 7432 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 7433 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 7434 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 7435 if ((Reverse.getOpcode() == ISD::ROTL || 7436 Reverse.getOpcode() == ISD::ROTR) && 7437 Reverse.getOperand(0) == X && 7438 isa<ConstantSDNode>(Reverse.getOperand(1))) { 7439 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 7440 if (RotAmt == (VT.getSizeInBits() / 2)) 7441 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 7442 DAG.getConstant(RotAmt, DL, VT)); 7443 } 7444 return SDValue(); 7445 }; 7446 7447 // Check for either commutable permutation of (or (GREVI x, shamt), x) 7448 if (SDValue V = MatchOROfReverse(Op0, Op1)) 7449 return V; 7450 if (SDValue V = MatchOROfReverse(Op1, Op0)) 7451 return V; 7452 7453 // OR is commutable so canonicalize its OR operand to the left 7454 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 7455 std::swap(Op0, Op1); 7456 if (Op0.getOpcode() != ISD::OR) 7457 return SDValue(); 7458 SDValue OrOp0 = Op0.getOperand(0); 7459 SDValue OrOp1 = Op0.getOperand(1); 7460 auto LHS = matchGREVIPat(OrOp0); 7461 // OR is commutable so swap the operands and try again: x might have been 7462 // on the left 7463 if (!LHS) { 7464 std::swap(OrOp0, OrOp1); 7465 LHS = matchGREVIPat(OrOp0); 7466 } 7467 auto RHS = matchGREVIPat(Op1); 7468 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 7469 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 7470 DAG.getConstant(LHS->ShAmt, DL, VT)); 7471 } 7472 } 7473 return SDValue(); 7474 } 7475 7476 // Matches any of the following bit-manipulation patterns: 7477 // (and (shl x, 1), (0x22222222 << 1)) 7478 // (and (srl x, 1), 0x22222222) 7479 // (shl (and x, 0x22222222), 1) 7480 // (srl (and x, (0x22222222 << 1)), 1) 7481 // where the shift amount and mask may vary thus: 7482 // [1] = 0x22222222 / 0x44444444 7483 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 7484 // [4] = 0x00F000F0 / 0x0F000F00 7485 // [8] = 0x0000FF00 / 0x00FF0000 7486 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 7487 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 7488 // These are the unshifted masks which we use to match bit-manipulation 7489 // patterns. They may be shifted left in certain circumstances. 7490 static const uint64_t BitmanipMasks[] = { 7491 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 7492 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 7493 7494 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7495 } 7496 7497 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 7498 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 7499 const RISCVSubtarget &Subtarget) { 7500 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7501 EVT VT = Op.getValueType(); 7502 7503 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 7504 return SDValue(); 7505 7506 SDValue Op0 = Op.getOperand(0); 7507 SDValue Op1 = Op.getOperand(1); 7508 7509 // Or is commutable so canonicalize the second OR to the LHS. 7510 if (Op0.getOpcode() != ISD::OR) 7511 std::swap(Op0, Op1); 7512 if (Op0.getOpcode() != ISD::OR) 7513 return SDValue(); 7514 7515 // We found an inner OR, so our operands are the operands of the inner OR 7516 // and the other operand of the outer OR. 7517 SDValue A = Op0.getOperand(0); 7518 SDValue B = Op0.getOperand(1); 7519 SDValue C = Op1; 7520 7521 auto Match1 = matchSHFLPat(A); 7522 auto Match2 = matchSHFLPat(B); 7523 7524 // If neither matched, we failed. 7525 if (!Match1 && !Match2) 7526 return SDValue(); 7527 7528 // We had at least one match. if one failed, try the remaining C operand. 7529 if (!Match1) { 7530 std::swap(A, C); 7531 Match1 = matchSHFLPat(A); 7532 if (!Match1) 7533 return SDValue(); 7534 } else if (!Match2) { 7535 std::swap(B, C); 7536 Match2 = matchSHFLPat(B); 7537 if (!Match2) 7538 return SDValue(); 7539 } 7540 assert(Match1 && Match2); 7541 7542 // Make sure our matches pair up. 7543 if (!Match1->formsPairWith(*Match2)) 7544 return SDValue(); 7545 7546 // All the remains is to make sure C is an AND with the same input, that masks 7547 // out the bits that are being shuffled. 7548 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 7549 C.getOperand(0) != Match1->Op) 7550 return SDValue(); 7551 7552 uint64_t Mask = C.getConstantOperandVal(1); 7553 7554 static const uint64_t BitmanipMasks[] = { 7555 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 7556 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 7557 }; 7558 7559 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7560 unsigned MaskIdx = Log2_32(Match1->ShAmt); 7561 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7562 7563 if (Mask != ExpMask) 7564 return SDValue(); 7565 7566 SDLoc DL(Op); 7567 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 7568 DAG.getConstant(Match1->ShAmt, DL, VT)); 7569 } 7570 7571 // Optimize (add (shl x, c0), (shl y, c1)) -> 7572 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 7573 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 7574 const RISCVSubtarget &Subtarget) { 7575 // Perform this optimization only in the zba extension. 7576 if (!Subtarget.hasStdExtZba()) 7577 return SDValue(); 7578 7579 // Skip for vector types and larger types. 7580 EVT VT = N->getValueType(0); 7581 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7582 return SDValue(); 7583 7584 // The two operand nodes must be SHL and have no other use. 7585 SDValue N0 = N->getOperand(0); 7586 SDValue N1 = N->getOperand(1); 7587 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 7588 !N0->hasOneUse() || !N1->hasOneUse()) 7589 return SDValue(); 7590 7591 // Check c0 and c1. 7592 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7593 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 7594 if (!N0C || !N1C) 7595 return SDValue(); 7596 int64_t C0 = N0C->getSExtValue(); 7597 int64_t C1 = N1C->getSExtValue(); 7598 if (C0 <= 0 || C1 <= 0) 7599 return SDValue(); 7600 7601 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 7602 int64_t Bits = std::min(C0, C1); 7603 int64_t Diff = std::abs(C0 - C1); 7604 if (Diff != 1 && Diff != 2 && Diff != 3) 7605 return SDValue(); 7606 7607 // Build nodes. 7608 SDLoc DL(N); 7609 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 7610 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 7611 SDValue NA0 = 7612 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 7613 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 7614 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 7615 } 7616 7617 // Combine 7618 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7619 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7620 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7621 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7622 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7623 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7624 // The grev patterns represents BSWAP. 7625 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB 7626 // off the grev. 7627 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG, 7628 const RISCVSubtarget &Subtarget) { 7629 bool IsWInstruction = 7630 N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW; 7631 assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL || 7632 IsWInstruction) && 7633 "Unexpected opcode!"); 7634 SDValue Src = N->getOperand(0); 7635 EVT VT = N->getValueType(0); 7636 SDLoc DL(N); 7637 7638 if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV) 7639 return SDValue(); 7640 7641 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7642 !isa<ConstantSDNode>(Src.getOperand(1))) 7643 return SDValue(); 7644 7645 unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits(); 7646 assert(isPowerOf2_32(BitWidth) && "Expected a power of 2"); 7647 7648 // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for 7649 // RORW/ROLW. And the grev should be the encoding for bswap for this width. 7650 unsigned ShAmt1 = N->getConstantOperandVal(1); 7651 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7652 if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8)) 7653 return SDValue(); 7654 7655 Src = Src.getOperand(0); 7656 7657 // Toggle bit the MSB of the shift. 7658 unsigned CombinedShAmt = ShAmt1 ^ ShAmt2; 7659 if (CombinedShAmt == 0) 7660 return Src; 7661 7662 SDValue Res = DAG.getNode( 7663 RISCVISD::GREV, DL, VT, Src, 7664 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7665 if (!IsWInstruction) 7666 return Res; 7667 7668 // Sign extend the result to match the behavior of the rotate. This will be 7669 // selected to GREVIW in isel. 7670 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res, 7671 DAG.getValueType(MVT::i32)); 7672 } 7673 7674 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 7675 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 7676 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 7677 // not undo itself, but they are redundant. 7678 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 7679 bool IsGORC = N->getOpcode() == RISCVISD::GORC; 7680 assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode"); 7681 SDValue Src = N->getOperand(0); 7682 7683 if (Src.getOpcode() != N->getOpcode()) 7684 return SDValue(); 7685 7686 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7687 !isa<ConstantSDNode>(Src.getOperand(1))) 7688 return SDValue(); 7689 7690 unsigned ShAmt1 = N->getConstantOperandVal(1); 7691 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7692 Src = Src.getOperand(0); 7693 7694 unsigned CombinedShAmt; 7695 if (IsGORC) 7696 CombinedShAmt = ShAmt1 | ShAmt2; 7697 else 7698 CombinedShAmt = ShAmt1 ^ ShAmt2; 7699 7700 if (CombinedShAmt == 0) 7701 return Src; 7702 7703 SDLoc DL(N); 7704 return DAG.getNode( 7705 N->getOpcode(), DL, N->getValueType(0), Src, 7706 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7707 } 7708 7709 // Combine a constant select operand into its use: 7710 // 7711 // (and (select cond, -1, c), x) 7712 // -> (select cond, x, (and x, c)) [AllOnes=1] 7713 // (or (select cond, 0, c), x) 7714 // -> (select cond, x, (or x, c)) [AllOnes=0] 7715 // (xor (select cond, 0, c), x) 7716 // -> (select cond, x, (xor x, c)) [AllOnes=0] 7717 // (add (select cond, 0, c), x) 7718 // -> (select cond, x, (add x, c)) [AllOnes=0] 7719 // (sub x, (select cond, 0, c)) 7720 // -> (select cond, x, (sub x, c)) [AllOnes=0] 7721 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 7722 SelectionDAG &DAG, bool AllOnes) { 7723 EVT VT = N->getValueType(0); 7724 7725 // Skip vectors. 7726 if (VT.isVector()) 7727 return SDValue(); 7728 7729 if ((Slct.getOpcode() != ISD::SELECT && 7730 Slct.getOpcode() != RISCVISD::SELECT_CC) || 7731 !Slct.hasOneUse()) 7732 return SDValue(); 7733 7734 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 7735 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 7736 }; 7737 7738 bool SwapSelectOps; 7739 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 7740 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 7741 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 7742 SDValue NonConstantVal; 7743 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 7744 SwapSelectOps = false; 7745 NonConstantVal = FalseVal; 7746 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 7747 SwapSelectOps = true; 7748 NonConstantVal = TrueVal; 7749 } else 7750 return SDValue(); 7751 7752 // Slct is now know to be the desired identity constant when CC is true. 7753 TrueVal = OtherOp; 7754 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 7755 // Unless SwapSelectOps says the condition should be false. 7756 if (SwapSelectOps) 7757 std::swap(TrueVal, FalseVal); 7758 7759 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 7760 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 7761 {Slct.getOperand(0), Slct.getOperand(1), 7762 Slct.getOperand(2), TrueVal, FalseVal}); 7763 7764 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 7765 {Slct.getOperand(0), TrueVal, FalseVal}); 7766 } 7767 7768 // Attempt combineSelectAndUse on each operand of a commutative operator N. 7769 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 7770 bool AllOnes) { 7771 SDValue N0 = N->getOperand(0); 7772 SDValue N1 = N->getOperand(1); 7773 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 7774 return Result; 7775 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 7776 return Result; 7777 return SDValue(); 7778 } 7779 7780 // Transform (add (mul x, c0), c1) -> 7781 // (add (mul (add x, c1/c0), c0), c1%c0). 7782 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 7783 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 7784 // to an infinite loop in DAGCombine if transformed. 7785 // Or transform (add (mul x, c0), c1) -> 7786 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 7787 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 7788 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 7789 // lead to an infinite loop in DAGCombine if transformed. 7790 // Or transform (add (mul x, c0), c1) -> 7791 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 7792 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 7793 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 7794 // lead to an infinite loop in DAGCombine if transformed. 7795 // Or transform (add (mul x, c0), c1) -> 7796 // (mul (add x, c1/c0), c0). 7797 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 7798 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 7799 const RISCVSubtarget &Subtarget) { 7800 // Skip for vector types and larger types. 7801 EVT VT = N->getValueType(0); 7802 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7803 return SDValue(); 7804 // The first operand node must be a MUL and has no other use. 7805 SDValue N0 = N->getOperand(0); 7806 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 7807 return SDValue(); 7808 // Check if c0 and c1 match above conditions. 7809 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7810 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7811 if (!N0C || !N1C) 7812 return SDValue(); 7813 // If N0C has multiple uses it's possible one of the cases in 7814 // DAGCombiner::isMulAddWithConstProfitable will be true, which would result 7815 // in an infinite loop. 7816 if (!N0C->hasOneUse()) 7817 return SDValue(); 7818 int64_t C0 = N0C->getSExtValue(); 7819 int64_t C1 = N1C->getSExtValue(); 7820 int64_t CA, CB; 7821 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 7822 return SDValue(); 7823 // Search for proper CA (non-zero) and CB that both are simm12. 7824 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 7825 !isInt<12>(C0 * (C1 / C0))) { 7826 CA = C1 / C0; 7827 CB = C1 % C0; 7828 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 7829 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 7830 CA = C1 / C0 + 1; 7831 CB = C1 % C0 - C0; 7832 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 7833 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 7834 CA = C1 / C0 - 1; 7835 CB = C1 % C0 + C0; 7836 } else 7837 return SDValue(); 7838 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 7839 SDLoc DL(N); 7840 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 7841 DAG.getConstant(CA, DL, VT)); 7842 SDValue New1 = 7843 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 7844 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 7845 } 7846 7847 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 7848 const RISCVSubtarget &Subtarget) { 7849 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 7850 return V; 7851 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 7852 return V; 7853 // fold (add (select lhs, rhs, cc, 0, y), x) -> 7854 // (select lhs, rhs, cc, x, (add x, y)) 7855 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7856 } 7857 7858 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 7859 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 7860 // (select lhs, rhs, cc, x, (sub x, y)) 7861 SDValue N0 = N->getOperand(0); 7862 SDValue N1 = N->getOperand(1); 7863 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 7864 } 7865 7866 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 7867 // fold (and (select lhs, rhs, cc, -1, y), x) -> 7868 // (select lhs, rhs, cc, x, (and x, y)) 7869 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 7870 } 7871 7872 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 7873 const RISCVSubtarget &Subtarget) { 7874 if (Subtarget.hasStdExtZbp()) { 7875 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 7876 return GREV; 7877 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 7878 return GORC; 7879 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 7880 return SHFL; 7881 } 7882 7883 // fold (or (select cond, 0, y), x) -> 7884 // (select cond, x, (or x, y)) 7885 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7886 } 7887 7888 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 7889 // fold (xor (select cond, 0, y), x) -> 7890 // (select cond, x, (xor x, y)) 7891 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7892 } 7893 7894 static SDValue 7895 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG, 7896 const RISCVSubtarget &Subtarget) { 7897 SDValue Src = N->getOperand(0); 7898 EVT VT = N->getValueType(0); 7899 7900 // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X) 7901 if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7902 cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16)) 7903 return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT, 7904 Src.getOperand(0)); 7905 7906 // Fold (i64 (sext_inreg (abs X), i32)) -> 7907 // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits. 7908 // The (sext_inreg (neg X), i32) will be selected to negw by isel. This 7909 // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user 7910 // of the (i32 (abs X)) is a sext or setcc or something else that causes type 7911 // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have 7912 // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg 7913 // may get combined into an earlier operation so we need to use 7914 // ComputeNumSignBits. 7915 // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for 7916 // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so 7917 // we can't assume that X has 33 sign bits. We must check. 7918 if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() && 7919 Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 && 7920 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 && 7921 DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) { 7922 SDLoc DL(N); 7923 SDValue Freeze = DAG.getFreeze(Src.getOperand(0)); 7924 SDValue Neg = 7925 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze); 7926 Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg, 7927 DAG.getValueType(MVT::i32)); 7928 return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg); 7929 } 7930 7931 return SDValue(); 7932 } 7933 7934 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to 7935 // vwadd(u).vv/vx or vwsub(u).vv/vx. 7936 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG, 7937 bool Commute = false) { 7938 assert((N->getOpcode() == RISCVISD::ADD_VL || 7939 N->getOpcode() == RISCVISD::SUB_VL) && 7940 "Unexpected opcode"); 7941 bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL; 7942 SDValue Op0 = N->getOperand(0); 7943 SDValue Op1 = N->getOperand(1); 7944 if (Commute) 7945 std::swap(Op0, Op1); 7946 7947 MVT VT = N->getSimpleValueType(0); 7948 7949 // Determine the narrow size for a widening add/sub. 7950 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7951 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7952 VT.getVectorElementCount()); 7953 7954 SDValue Mask = N->getOperand(2); 7955 SDValue VL = N->getOperand(3); 7956 7957 SDLoc DL(N); 7958 7959 // If the RHS is a sext or zext, we can form a widening op. 7960 if ((Op1.getOpcode() == RISCVISD::VZEXT_VL || 7961 Op1.getOpcode() == RISCVISD::VSEXT_VL) && 7962 Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) { 7963 unsigned ExtOpc = Op1.getOpcode(); 7964 Op1 = Op1.getOperand(0); 7965 // Re-introduce narrower extends if needed. 7966 if (Op1.getValueType() != NarrowVT) 7967 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7968 7969 unsigned WOpc; 7970 if (ExtOpc == RISCVISD::VSEXT_VL) 7971 WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL; 7972 else 7973 WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL; 7974 7975 return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL); 7976 } 7977 7978 // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar 7979 // sext/zext? 7980 7981 return SDValue(); 7982 } 7983 7984 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or 7985 // vwsub(u).vv/vx. 7986 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) { 7987 SDValue Op0 = N->getOperand(0); 7988 SDValue Op1 = N->getOperand(1); 7989 SDValue Mask = N->getOperand(2); 7990 SDValue VL = N->getOperand(3); 7991 7992 MVT VT = N->getSimpleValueType(0); 7993 MVT NarrowVT = Op1.getSimpleValueType(); 7994 unsigned NarrowSize = NarrowVT.getScalarSizeInBits(); 7995 7996 unsigned VOpc; 7997 switch (N->getOpcode()) { 7998 default: llvm_unreachable("Unexpected opcode"); 7999 case RISCVISD::VWADD_W_VL: VOpc = RISCVISD::VWADD_VL; break; 8000 case RISCVISD::VWSUB_W_VL: VOpc = RISCVISD::VWSUB_VL; break; 8001 case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break; 8002 case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break; 8003 } 8004 8005 bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL || 8006 N->getOpcode() == RISCVISD::VWSUB_W_VL; 8007 8008 SDLoc DL(N); 8009 8010 // If the LHS is a sext or zext, we can narrow this op to the same size as 8011 // the RHS. 8012 if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) || 8013 (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) && 8014 Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) { 8015 unsigned ExtOpc = Op0.getOpcode(); 8016 Op0 = Op0.getOperand(0); 8017 // Re-introduce narrower extends if needed. 8018 if (Op0.getValueType() != NarrowVT) 8019 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 8020 return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL); 8021 } 8022 8023 bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL || 8024 N->getOpcode() == RISCVISD::VWADDU_W_VL; 8025 8026 // Look for splats on the left hand side of a vwadd(u).wv. We might be able 8027 // to commute and use a vwadd(u).vx instead. 8028 if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL && 8029 Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) { 8030 Op0 = Op0.getOperand(1); 8031 8032 // See if have enough sign bits or zero bits in the scalar to use a 8033 // widening add/sub by splatting to smaller element size. 8034 unsigned EltBits = VT.getScalarSizeInBits(); 8035 unsigned ScalarBits = Op0.getValueSizeInBits(); 8036 // Make sure we're getting all element bits from the scalar register. 8037 // FIXME: Support implicit sign extension of vmv.v.x? 8038 if (ScalarBits < EltBits) 8039 return SDValue(); 8040 8041 if (IsSigned) { 8042 if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize)) 8043 return SDValue(); 8044 } else { 8045 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 8046 if (!DAG.MaskedValueIsZero(Op0, Mask)) 8047 return SDValue(); 8048 } 8049 8050 Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 8051 DAG.getUNDEF(NarrowVT), Op0, VL); 8052 return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL); 8053 } 8054 8055 return SDValue(); 8056 } 8057 8058 // Try to form VWMUL, VWMULU or VWMULSU. 8059 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op. 8060 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG, 8061 bool Commute) { 8062 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 8063 SDValue Op0 = N->getOperand(0); 8064 SDValue Op1 = N->getOperand(1); 8065 if (Commute) 8066 std::swap(Op0, Op1); 8067 8068 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 8069 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 8070 bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL; 8071 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 8072 return SDValue(); 8073 8074 SDValue Mask = N->getOperand(2); 8075 SDValue VL = N->getOperand(3); 8076 8077 // Make sure the mask and VL match. 8078 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 8079 return SDValue(); 8080 8081 MVT VT = N->getSimpleValueType(0); 8082 8083 // Determine the narrow size for a widening multiply. 8084 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 8085 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 8086 VT.getVectorElementCount()); 8087 8088 SDLoc DL(N); 8089 8090 // See if the other operand is the same opcode. 8091 if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) { 8092 if (!Op1.hasOneUse()) 8093 return SDValue(); 8094 8095 // Make sure the mask and VL match. 8096 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 8097 return SDValue(); 8098 8099 Op1 = Op1.getOperand(0); 8100 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 8101 // The operand is a splat of a scalar. 8102 8103 // The pasthru must be undef for tail agnostic 8104 if (!Op1.getOperand(0).isUndef()) 8105 return SDValue(); 8106 // The VL must be the same. 8107 if (Op1.getOperand(2) != VL) 8108 return SDValue(); 8109 8110 // Get the scalar value. 8111 Op1 = Op1.getOperand(1); 8112 8113 // See if have enough sign bits or zero bits in the scalar to use a 8114 // widening multiply by splatting to smaller element size. 8115 unsigned EltBits = VT.getScalarSizeInBits(); 8116 unsigned ScalarBits = Op1.getValueSizeInBits(); 8117 // Make sure we're getting all element bits from the scalar register. 8118 // FIXME: Support implicit sign extension of vmv.v.x? 8119 if (ScalarBits < EltBits) 8120 return SDValue(); 8121 8122 // If the LHS is a sign extend, try to use vwmul. 8123 if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) { 8124 // Can use vwmul. 8125 } else { 8126 // Otherwise try to use vwmulu or vwmulsu. 8127 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 8128 if (DAG.MaskedValueIsZero(Op1, Mask)) 8129 IsVWMULSU = IsSignExt; 8130 else 8131 return SDValue(); 8132 } 8133 8134 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 8135 DAG.getUNDEF(NarrowVT), Op1, VL); 8136 } else 8137 return SDValue(); 8138 8139 Op0 = Op0.getOperand(0); 8140 8141 // Re-introduce narrower extends if needed. 8142 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 8143 if (Op0.getValueType() != NarrowVT) 8144 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 8145 // vwmulsu requires second operand to be zero extended. 8146 ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc; 8147 if (Op1.getValueType() != NarrowVT) 8148 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 8149 8150 unsigned WMulOpc = RISCVISD::VWMULSU_VL; 8151 if (!IsVWMULSU) 8152 WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 8153 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 8154 } 8155 8156 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) { 8157 switch (Op.getOpcode()) { 8158 case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE; 8159 case ISD::FTRUNC: return RISCVFPRndMode::RTZ; 8160 case ISD::FFLOOR: return RISCVFPRndMode::RDN; 8161 case ISD::FCEIL: return RISCVFPRndMode::RUP; 8162 case ISD::FROUND: return RISCVFPRndMode::RMM; 8163 } 8164 8165 return RISCVFPRndMode::Invalid; 8166 } 8167 8168 // Fold 8169 // (fp_to_int (froundeven X)) -> fcvt X, rne 8170 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 8171 // (fp_to_int (ffloor X)) -> fcvt X, rdn 8172 // (fp_to_int (fceil X)) -> fcvt X, rup 8173 // (fp_to_int (fround X)) -> fcvt X, rmm 8174 static SDValue performFP_TO_INTCombine(SDNode *N, 8175 TargetLowering::DAGCombinerInfo &DCI, 8176 const RISCVSubtarget &Subtarget) { 8177 SelectionDAG &DAG = DCI.DAG; 8178 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8179 MVT XLenVT = Subtarget.getXLenVT(); 8180 8181 // Only handle XLen or i32 types. Other types narrower than XLen will 8182 // eventually be legalized to XLenVT. 8183 EVT VT = N->getValueType(0); 8184 if (VT != MVT::i32 && VT != XLenVT) 8185 return SDValue(); 8186 8187 SDValue Src = N->getOperand(0); 8188 8189 // Ensure the FP type is also legal. 8190 if (!TLI.isTypeLegal(Src.getValueType())) 8191 return SDValue(); 8192 8193 // Don't do this for f16 with Zfhmin and not Zfh. 8194 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8195 return SDValue(); 8196 8197 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8198 if (FRM == RISCVFPRndMode::Invalid) 8199 return SDValue(); 8200 8201 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 8202 8203 unsigned Opc; 8204 if (VT == XLenVT) 8205 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8206 else 8207 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8208 8209 SDLoc DL(N); 8210 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 8211 DAG.getTargetConstant(FRM, DL, XLenVT)); 8212 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 8213 } 8214 8215 // Fold 8216 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) 8217 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) 8218 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) 8219 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) 8220 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) 8221 static SDValue performFP_TO_INT_SATCombine(SDNode *N, 8222 TargetLowering::DAGCombinerInfo &DCI, 8223 const RISCVSubtarget &Subtarget) { 8224 SelectionDAG &DAG = DCI.DAG; 8225 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8226 MVT XLenVT = Subtarget.getXLenVT(); 8227 8228 // Only handle XLen types. Other types narrower than XLen will eventually be 8229 // legalized to XLenVT. 8230 EVT DstVT = N->getValueType(0); 8231 if (DstVT != XLenVT) 8232 return SDValue(); 8233 8234 SDValue Src = N->getOperand(0); 8235 8236 // Ensure the FP type is also legal. 8237 if (!TLI.isTypeLegal(Src.getValueType())) 8238 return SDValue(); 8239 8240 // Don't do this for f16 with Zfhmin and not Zfh. 8241 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8242 return SDValue(); 8243 8244 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 8245 8246 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8247 if (FRM == RISCVFPRndMode::Invalid) 8248 return SDValue(); 8249 8250 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; 8251 8252 unsigned Opc; 8253 if (SatVT == DstVT) 8254 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8255 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 8256 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8257 else 8258 return SDValue(); 8259 // FIXME: Support other SatVTs by clamping before or after the conversion. 8260 8261 Src = Src.getOperand(0); 8262 8263 SDLoc DL(N); 8264 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, 8265 DAG.getTargetConstant(FRM, DL, XLenVT)); 8266 8267 // RISCV FP-to-int conversions saturate to the destination register size, but 8268 // don't produce 0 for nan. 8269 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 8270 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 8271 } 8272 8273 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is 8274 // smaller than XLenVT. 8275 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG, 8276 const RISCVSubtarget &Subtarget) { 8277 assert(Subtarget.hasStdExtZbkb() && "Unexpected extension"); 8278 8279 SDValue Src = N->getOperand(0); 8280 if (Src.getOpcode() != ISD::BSWAP) 8281 return SDValue(); 8282 8283 EVT VT = N->getValueType(0); 8284 if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() || 8285 !isPowerOf2_32(VT.getSizeInBits())) 8286 return SDValue(); 8287 8288 SDLoc DL(N); 8289 return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0), 8290 DAG.getConstant(7, DL, VT)); 8291 } 8292 8293 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 8294 DAGCombinerInfo &DCI) const { 8295 SelectionDAG &DAG = DCI.DAG; 8296 8297 // Helper to call SimplifyDemandedBits on an operand of N where only some low 8298 // bits are demanded. N will be added to the Worklist if it was not deleted. 8299 // Caller should return SDValue(N, 0) if this returns true. 8300 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 8301 SDValue Op = N->getOperand(OpNo); 8302 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 8303 if (!SimplifyDemandedBits(Op, Mask, DCI)) 8304 return false; 8305 8306 if (N->getOpcode() != ISD::DELETED_NODE) 8307 DCI.AddToWorklist(N); 8308 return true; 8309 }; 8310 8311 switch (N->getOpcode()) { 8312 default: 8313 break; 8314 case RISCVISD::SplitF64: { 8315 SDValue Op0 = N->getOperand(0); 8316 // If the input to SplitF64 is just BuildPairF64 then the operation is 8317 // redundant. Instead, use BuildPairF64's operands directly. 8318 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 8319 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 8320 8321 if (Op0->isUndef()) { 8322 SDValue Lo = DAG.getUNDEF(MVT::i32); 8323 SDValue Hi = DAG.getUNDEF(MVT::i32); 8324 return DCI.CombineTo(N, Lo, Hi); 8325 } 8326 8327 SDLoc DL(N); 8328 8329 // It's cheaper to materialise two 32-bit integers than to load a double 8330 // from the constant pool and transfer it to integer registers through the 8331 // stack. 8332 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 8333 APInt V = C->getValueAPF().bitcastToAPInt(); 8334 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 8335 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 8336 return DCI.CombineTo(N, Lo, Hi); 8337 } 8338 8339 // This is a target-specific version of a DAGCombine performed in 8340 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8341 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8342 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8343 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8344 !Op0.getNode()->hasOneUse()) 8345 break; 8346 SDValue NewSplitF64 = 8347 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 8348 Op0.getOperand(0)); 8349 SDValue Lo = NewSplitF64.getValue(0); 8350 SDValue Hi = NewSplitF64.getValue(1); 8351 APInt SignBit = APInt::getSignMask(32); 8352 if (Op0.getOpcode() == ISD::FNEG) { 8353 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 8354 DAG.getConstant(SignBit, DL, MVT::i32)); 8355 return DCI.CombineTo(N, Lo, NewHi); 8356 } 8357 assert(Op0.getOpcode() == ISD::FABS); 8358 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 8359 DAG.getConstant(~SignBit, DL, MVT::i32)); 8360 return DCI.CombineTo(N, Lo, NewHi); 8361 } 8362 case RISCVISD::SLLW: 8363 case RISCVISD::SRAW: 8364 case RISCVISD::SRLW: { 8365 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8366 if (SimplifyDemandedLowBitsHelper(0, 32) || 8367 SimplifyDemandedLowBitsHelper(1, 5)) 8368 return SDValue(N, 0); 8369 8370 break; 8371 } 8372 case ISD::ROTR: 8373 case ISD::ROTL: 8374 case RISCVISD::RORW: 8375 case RISCVISD::ROLW: { 8376 if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) { 8377 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8378 if (SimplifyDemandedLowBitsHelper(0, 32) || 8379 SimplifyDemandedLowBitsHelper(1, 5)) 8380 return SDValue(N, 0); 8381 } 8382 8383 return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget); 8384 } 8385 case RISCVISD::CLZW: 8386 case RISCVISD::CTZW: { 8387 // Only the lower 32 bits of the first operand are read 8388 if (SimplifyDemandedLowBitsHelper(0, 32)) 8389 return SDValue(N, 0); 8390 break; 8391 } 8392 case RISCVISD::GREV: 8393 case RISCVISD::GORC: { 8394 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 8395 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8396 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8397 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 8398 return SDValue(N, 0); 8399 8400 return combineGREVI_GORCI(N, DAG); 8401 } 8402 case RISCVISD::GREVW: 8403 case RISCVISD::GORCW: { 8404 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8405 if (SimplifyDemandedLowBitsHelper(0, 32) || 8406 SimplifyDemandedLowBitsHelper(1, 5)) 8407 return SDValue(N, 0); 8408 8409 break; 8410 } 8411 case RISCVISD::SHFL: 8412 case RISCVISD::UNSHFL: { 8413 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 8414 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8415 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8416 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 8417 return SDValue(N, 0); 8418 8419 break; 8420 } 8421 case RISCVISD::SHFLW: 8422 case RISCVISD::UNSHFLW: { 8423 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 8424 if (SimplifyDemandedLowBitsHelper(0, 32) || 8425 SimplifyDemandedLowBitsHelper(1, 4)) 8426 return SDValue(N, 0); 8427 8428 break; 8429 } 8430 case RISCVISD::BCOMPRESSW: 8431 case RISCVISD::BDECOMPRESSW: { 8432 // Only the lower 32 bits of LHS and RHS are read. 8433 if (SimplifyDemandedLowBitsHelper(0, 32) || 8434 SimplifyDemandedLowBitsHelper(1, 32)) 8435 return SDValue(N, 0); 8436 8437 break; 8438 } 8439 case RISCVISD::FSR: 8440 case RISCVISD::FSL: 8441 case RISCVISD::FSRW: 8442 case RISCVISD::FSLW: { 8443 bool IsWInstruction = 8444 N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW; 8445 unsigned BitWidth = 8446 IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits(); 8447 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8448 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 8449 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1)) 8450 return SDValue(N, 0); 8451 8452 break; 8453 } 8454 case RISCVISD::FMV_X_ANYEXTH: 8455 case RISCVISD::FMV_X_ANYEXTW_RV64: { 8456 SDLoc DL(N); 8457 SDValue Op0 = N->getOperand(0); 8458 MVT VT = N->getSimpleValueType(0); 8459 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 8460 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 8461 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 8462 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 8463 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 8464 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 8465 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 8466 assert(Op0.getOperand(0).getValueType() == VT && 8467 "Unexpected value type!"); 8468 return Op0.getOperand(0); 8469 } 8470 8471 // This is a target-specific version of a DAGCombine performed in 8472 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8473 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8474 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8475 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8476 !Op0.getNode()->hasOneUse()) 8477 break; 8478 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 8479 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 8480 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 8481 if (Op0.getOpcode() == ISD::FNEG) 8482 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 8483 DAG.getConstant(SignBit, DL, VT)); 8484 8485 assert(Op0.getOpcode() == ISD::FABS); 8486 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 8487 DAG.getConstant(~SignBit, DL, VT)); 8488 } 8489 case ISD::ADD: 8490 return performADDCombine(N, DAG, Subtarget); 8491 case ISD::SUB: 8492 return performSUBCombine(N, DAG); 8493 case ISD::AND: 8494 return performANDCombine(N, DAG); 8495 case ISD::OR: 8496 return performORCombine(N, DAG, Subtarget); 8497 case ISD::XOR: 8498 return performXORCombine(N, DAG); 8499 case ISD::SIGN_EXTEND_INREG: 8500 return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget); 8501 case ISD::ZERO_EXTEND: 8502 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 8503 // type legalization. This is safe because fp_to_uint produces poison if 8504 // it overflows. 8505 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 8506 SDValue Src = N->getOperand(0); 8507 if (Src.getOpcode() == ISD::FP_TO_UINT && 8508 isTypeLegal(Src.getOperand(0).getValueType())) 8509 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 8510 Src.getOperand(0)); 8511 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 8512 isTypeLegal(Src.getOperand(1).getValueType())) { 8513 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 8514 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 8515 Src.getOperand(0), Src.getOperand(1)); 8516 DCI.CombineTo(N, Res); 8517 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 8518 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 8519 return SDValue(N, 0); // Return N so it doesn't get rechecked. 8520 } 8521 } 8522 return SDValue(); 8523 case RISCVISD::SELECT_CC: { 8524 // Transform 8525 SDValue LHS = N->getOperand(0); 8526 SDValue RHS = N->getOperand(1); 8527 SDValue TrueV = N->getOperand(3); 8528 SDValue FalseV = N->getOperand(4); 8529 8530 // If the True and False values are the same, we don't need a select_cc. 8531 if (TrueV == FalseV) 8532 return TrueV; 8533 8534 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 8535 if (!ISD::isIntEqualitySetCC(CCVal)) 8536 break; 8537 8538 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 8539 // (select_cc X, Y, lt, trueV, falseV) 8540 // Sometimes the setcc is introduced after select_cc has been formed. 8541 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8542 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8543 // If we're looking for eq 0 instead of ne 0, we need to invert the 8544 // condition. 8545 bool Invert = CCVal == ISD::SETEQ; 8546 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8547 if (Invert) 8548 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8549 8550 SDLoc DL(N); 8551 RHS = LHS.getOperand(1); 8552 LHS = LHS.getOperand(0); 8553 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8554 8555 SDValue TargetCC = DAG.getCondCode(CCVal); 8556 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8557 {LHS, RHS, TargetCC, TrueV, FalseV}); 8558 } 8559 8560 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 8561 // (select_cc X, Y, eq/ne, trueV, falseV) 8562 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8563 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 8564 {LHS.getOperand(0), LHS.getOperand(1), 8565 N->getOperand(2), TrueV, FalseV}); 8566 // (select_cc X, 1, setne, trueV, falseV) -> 8567 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 8568 // This can occur when legalizing some floating point comparisons. 8569 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8570 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8571 SDLoc DL(N); 8572 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8573 SDValue TargetCC = DAG.getCondCode(CCVal); 8574 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8575 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8576 {LHS, RHS, TargetCC, TrueV, FalseV}); 8577 } 8578 8579 break; 8580 } 8581 case RISCVISD::BR_CC: { 8582 SDValue LHS = N->getOperand(1); 8583 SDValue RHS = N->getOperand(2); 8584 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 8585 if (!ISD::isIntEqualitySetCC(CCVal)) 8586 break; 8587 8588 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 8589 // (br_cc X, Y, lt, dest) 8590 // Sometimes the setcc is introduced after br_cc has been formed. 8591 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8592 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8593 // If we're looking for eq 0 instead of ne 0, we need to invert the 8594 // condition. 8595 bool Invert = CCVal == ISD::SETEQ; 8596 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8597 if (Invert) 8598 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8599 8600 SDLoc DL(N); 8601 RHS = LHS.getOperand(1); 8602 LHS = LHS.getOperand(0); 8603 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8604 8605 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8606 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 8607 N->getOperand(4)); 8608 } 8609 8610 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 8611 // (br_cc X, Y, eq/ne, trueV, falseV) 8612 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8613 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 8614 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 8615 N->getOperand(3), N->getOperand(4)); 8616 8617 // (br_cc X, 1, setne, br_cc) -> 8618 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 8619 // This can occur when legalizing some floating point comparisons. 8620 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8621 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8622 SDLoc DL(N); 8623 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8624 SDValue TargetCC = DAG.getCondCode(CCVal); 8625 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8626 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8627 N->getOperand(0), LHS, RHS, TargetCC, 8628 N->getOperand(4)); 8629 } 8630 break; 8631 } 8632 case ISD::BITREVERSE: 8633 return performBITREVERSECombine(N, DAG, Subtarget); 8634 case ISD::FP_TO_SINT: 8635 case ISD::FP_TO_UINT: 8636 return performFP_TO_INTCombine(N, DCI, Subtarget); 8637 case ISD::FP_TO_SINT_SAT: 8638 case ISD::FP_TO_UINT_SAT: 8639 return performFP_TO_INT_SATCombine(N, DCI, Subtarget); 8640 case ISD::FCOPYSIGN: { 8641 EVT VT = N->getValueType(0); 8642 if (!VT.isVector()) 8643 break; 8644 // There is a form of VFSGNJ which injects the negated sign of its second 8645 // operand. Try and bubble any FNEG up after the extend/round to produce 8646 // this optimized pattern. Avoid modifying cases where FP_ROUND and 8647 // TRUNC=1. 8648 SDValue In2 = N->getOperand(1); 8649 // Avoid cases where the extend/round has multiple uses, as duplicating 8650 // those is typically more expensive than removing a fneg. 8651 if (!In2.hasOneUse()) 8652 break; 8653 if (In2.getOpcode() != ISD::FP_EXTEND && 8654 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 8655 break; 8656 In2 = In2.getOperand(0); 8657 if (In2.getOpcode() != ISD::FNEG) 8658 break; 8659 SDLoc DL(N); 8660 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 8661 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 8662 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 8663 } 8664 case ISD::MGATHER: 8665 case ISD::MSCATTER: 8666 case ISD::VP_GATHER: 8667 case ISD::VP_SCATTER: { 8668 if (!DCI.isBeforeLegalize()) 8669 break; 8670 SDValue Index, ScaleOp; 8671 bool IsIndexScaled = false; 8672 bool IsIndexSigned = false; 8673 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 8674 Index = VPGSN->getIndex(); 8675 ScaleOp = VPGSN->getScale(); 8676 IsIndexScaled = VPGSN->isIndexScaled(); 8677 IsIndexSigned = VPGSN->isIndexSigned(); 8678 } else { 8679 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 8680 Index = MGSN->getIndex(); 8681 ScaleOp = MGSN->getScale(); 8682 IsIndexScaled = MGSN->isIndexScaled(); 8683 IsIndexSigned = MGSN->isIndexSigned(); 8684 } 8685 EVT IndexVT = Index.getValueType(); 8686 MVT XLenVT = Subtarget.getXLenVT(); 8687 // RISCV indexed loads only support the "unsigned unscaled" addressing 8688 // mode, so anything else must be manually legalized. 8689 bool NeedsIdxLegalization = 8690 IsIndexScaled || 8691 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 8692 if (!NeedsIdxLegalization) 8693 break; 8694 8695 SDLoc DL(N); 8696 8697 // Any index legalization should first promote to XLenVT, so we don't lose 8698 // bits when scaling. This may create an illegal index type so we let 8699 // LLVM's legalization take care of the splitting. 8700 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 8701 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 8702 IndexVT = IndexVT.changeVectorElementType(XLenVT); 8703 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 8704 DL, IndexVT, Index); 8705 } 8706 8707 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 8708 if (IsIndexScaled && Scale != 1) { 8709 // Manually scale the indices by the element size. 8710 // TODO: Sanitize the scale operand here? 8711 // TODO: For VP nodes, should we use VP_SHL here? 8712 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 8713 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 8714 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 8715 } 8716 8717 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 8718 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 8719 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 8720 {VPGN->getChain(), VPGN->getBasePtr(), Index, 8721 VPGN->getScale(), VPGN->getMask(), 8722 VPGN->getVectorLength()}, 8723 VPGN->getMemOperand(), NewIndexTy); 8724 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 8725 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 8726 {VPSN->getChain(), VPSN->getValue(), 8727 VPSN->getBasePtr(), Index, VPSN->getScale(), 8728 VPSN->getMask(), VPSN->getVectorLength()}, 8729 VPSN->getMemOperand(), NewIndexTy); 8730 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 8731 return DAG.getMaskedGather( 8732 N->getVTList(), MGN->getMemoryVT(), DL, 8733 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 8734 MGN->getBasePtr(), Index, MGN->getScale()}, 8735 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 8736 const auto *MSN = cast<MaskedScatterSDNode>(N); 8737 return DAG.getMaskedScatter( 8738 N->getVTList(), MSN->getMemoryVT(), DL, 8739 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 8740 Index, MSN->getScale()}, 8741 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 8742 } 8743 case RISCVISD::SRA_VL: 8744 case RISCVISD::SRL_VL: 8745 case RISCVISD::SHL_VL: { 8746 SDValue ShAmt = N->getOperand(1); 8747 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8748 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8749 SDLoc DL(N); 8750 SDValue VL = N->getOperand(3); 8751 EVT VT = N->getValueType(0); 8752 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8753 ShAmt.getOperand(1), VL); 8754 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 8755 N->getOperand(2), N->getOperand(3)); 8756 } 8757 break; 8758 } 8759 case ISD::SRA: 8760 case ISD::SRL: 8761 case ISD::SHL: { 8762 SDValue ShAmt = N->getOperand(1); 8763 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8764 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8765 SDLoc DL(N); 8766 EVT VT = N->getValueType(0); 8767 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8768 ShAmt.getOperand(1), 8769 DAG.getRegister(RISCV::X0, Subtarget.getXLenVT())); 8770 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 8771 } 8772 break; 8773 } 8774 case RISCVISD::ADD_VL: 8775 if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false)) 8776 return V; 8777 return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true); 8778 case RISCVISD::SUB_VL: 8779 return combineADDSUB_VLToVWADDSUB_VL(N, DAG); 8780 case RISCVISD::VWADD_W_VL: 8781 case RISCVISD::VWADDU_W_VL: 8782 case RISCVISD::VWSUB_W_VL: 8783 case RISCVISD::VWSUBU_W_VL: 8784 return combineVWADD_W_VL_VWSUB_W_VL(N, DAG); 8785 case RISCVISD::MUL_VL: 8786 if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false)) 8787 return V; 8788 // Mul is commutative. 8789 return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true); 8790 case ISD::STORE: { 8791 auto *Store = cast<StoreSDNode>(N); 8792 SDValue Val = Store->getValue(); 8793 // Combine store of vmv.x.s to vse with VL of 1. 8794 // FIXME: Support FP. 8795 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 8796 SDValue Src = Val.getOperand(0); 8797 EVT VecVT = Src.getValueType(); 8798 EVT MemVT = Store->getMemoryVT(); 8799 // The memory VT and the element type must match. 8800 if (VecVT.getVectorElementType() == MemVT) { 8801 SDLoc DL(N); 8802 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 8803 return DAG.getStoreVP( 8804 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 8805 DAG.getConstant(1, DL, MaskVT), 8806 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 8807 Store->getMemOperand(), Store->getAddressingMode(), 8808 Store->isTruncatingStore(), /*IsCompress*/ false); 8809 } 8810 } 8811 8812 break; 8813 } 8814 case ISD::SPLAT_VECTOR: { 8815 EVT VT = N->getValueType(0); 8816 // Only perform this combine on legal MVT types. 8817 if (!isTypeLegal(VT)) 8818 break; 8819 if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N, 8820 DAG, Subtarget)) 8821 return Gather; 8822 break; 8823 } 8824 case RISCVISD::VMV_V_X_VL: { 8825 // Tail agnostic VMV.V.X only demands the vector element bitwidth from the 8826 // scalar input. 8827 unsigned ScalarSize = N->getOperand(1).getValueSizeInBits(); 8828 unsigned EltWidth = N->getValueType(0).getScalarSizeInBits(); 8829 if (ScalarSize > EltWidth && N->getOperand(0).isUndef()) 8830 if (SimplifyDemandedLowBitsHelper(1, EltWidth)) 8831 return SDValue(N, 0); 8832 8833 break; 8834 } 8835 case ISD::INTRINSIC_WO_CHAIN: { 8836 unsigned IntNo = N->getConstantOperandVal(0); 8837 switch (IntNo) { 8838 // By default we do not combine any intrinsic. 8839 default: 8840 return SDValue(); 8841 case Intrinsic::riscv_vcpop: 8842 case Intrinsic::riscv_vcpop_mask: 8843 case Intrinsic::riscv_vfirst: 8844 case Intrinsic::riscv_vfirst_mask: { 8845 SDValue VL = N->getOperand(2); 8846 if (IntNo == Intrinsic::riscv_vcpop_mask || 8847 IntNo == Intrinsic::riscv_vfirst_mask) 8848 VL = N->getOperand(3); 8849 if (!isNullConstant(VL)) 8850 return SDValue(); 8851 // If VL is 0, vcpop -> li 0, vfirst -> li -1. 8852 SDLoc DL(N); 8853 EVT VT = N->getValueType(0); 8854 if (IntNo == Intrinsic::riscv_vfirst || 8855 IntNo == Intrinsic::riscv_vfirst_mask) 8856 return DAG.getConstant(-1, DL, VT); 8857 return DAG.getConstant(0, DL, VT); 8858 } 8859 } 8860 } 8861 } 8862 8863 return SDValue(); 8864 } 8865 8866 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 8867 const SDNode *N, CombineLevel Level) const { 8868 // The following folds are only desirable if `(OP _, c1 << c2)` can be 8869 // materialised in fewer instructions than `(OP _, c1)`: 8870 // 8871 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 8872 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 8873 SDValue N0 = N->getOperand(0); 8874 EVT Ty = N0.getValueType(); 8875 if (Ty.isScalarInteger() && 8876 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 8877 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 8878 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 8879 if (C1 && C2) { 8880 const APInt &C1Int = C1->getAPIntValue(); 8881 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 8882 8883 // We can materialise `c1 << c2` into an add immediate, so it's "free", 8884 // and the combine should happen, to potentially allow further combines 8885 // later. 8886 if (ShiftedC1Int.getMinSignedBits() <= 64 && 8887 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 8888 return true; 8889 8890 // We can materialise `c1` in an add immediate, so it's "free", and the 8891 // combine should be prevented. 8892 if (C1Int.getMinSignedBits() <= 64 && 8893 isLegalAddImmediate(C1Int.getSExtValue())) 8894 return false; 8895 8896 // Neither constant will fit into an immediate, so find materialisation 8897 // costs. 8898 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 8899 Subtarget.getFeatureBits(), 8900 /*CompressionCost*/true); 8901 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 8902 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 8903 /*CompressionCost*/true); 8904 8905 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 8906 // combine should be prevented. 8907 if (C1Cost < ShiftedC1Cost) 8908 return false; 8909 } 8910 } 8911 return true; 8912 } 8913 8914 bool RISCVTargetLowering::targetShrinkDemandedConstant( 8915 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 8916 TargetLoweringOpt &TLO) const { 8917 // Delay this optimization as late as possible. 8918 if (!TLO.LegalOps) 8919 return false; 8920 8921 EVT VT = Op.getValueType(); 8922 if (VT.isVector()) 8923 return false; 8924 8925 // Only handle AND for now. 8926 if (Op.getOpcode() != ISD::AND) 8927 return false; 8928 8929 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 8930 if (!C) 8931 return false; 8932 8933 const APInt &Mask = C->getAPIntValue(); 8934 8935 // Clear all non-demanded bits initially. 8936 APInt ShrunkMask = Mask & DemandedBits; 8937 8938 // Try to make a smaller immediate by setting undemanded bits. 8939 8940 APInt ExpandedMask = Mask | ~DemandedBits; 8941 8942 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 8943 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 8944 }; 8945 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 8946 if (NewMask == Mask) 8947 return true; 8948 SDLoc DL(Op); 8949 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 8950 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 8951 return TLO.CombineTo(Op, NewOp); 8952 }; 8953 8954 // If the shrunk mask fits in sign extended 12 bits, let the target 8955 // independent code apply it. 8956 if (ShrunkMask.isSignedIntN(12)) 8957 return false; 8958 8959 // Preserve (and X, 0xffff) when zext.h is supported. 8960 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 8961 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 8962 if (IsLegalMask(NewMask)) 8963 return UseMask(NewMask); 8964 } 8965 8966 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 8967 if (VT == MVT::i64) { 8968 APInt NewMask = APInt(64, 0xffffffff); 8969 if (IsLegalMask(NewMask)) 8970 return UseMask(NewMask); 8971 } 8972 8973 // For the remaining optimizations, we need to be able to make a negative 8974 // number through a combination of mask and undemanded bits. 8975 if (!ExpandedMask.isNegative()) 8976 return false; 8977 8978 // What is the fewest number of bits we need to represent the negative number. 8979 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 8980 8981 // Try to make a 12 bit negative immediate. If that fails try to make a 32 8982 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 8983 APInt NewMask = ShrunkMask; 8984 if (MinSignedBits <= 12) 8985 NewMask.setBitsFrom(11); 8986 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 8987 NewMask.setBitsFrom(31); 8988 else 8989 return false; 8990 8991 // Check that our new mask is a subset of the demanded mask. 8992 assert(IsLegalMask(NewMask)); 8993 return UseMask(NewMask); 8994 } 8995 8996 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) { 8997 static const uint64_t GREVMasks[] = { 8998 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 8999 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 9000 9001 for (unsigned Stage = 0; Stage != 6; ++Stage) { 9002 unsigned Shift = 1 << Stage; 9003 if (ShAmt & Shift) { 9004 uint64_t Mask = GREVMasks[Stage]; 9005 uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask); 9006 if (IsGORC) 9007 Res |= x; 9008 x = Res; 9009 } 9010 } 9011 9012 return x; 9013 } 9014 9015 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 9016 KnownBits &Known, 9017 const APInt &DemandedElts, 9018 const SelectionDAG &DAG, 9019 unsigned Depth) const { 9020 unsigned BitWidth = Known.getBitWidth(); 9021 unsigned Opc = Op.getOpcode(); 9022 assert((Opc >= ISD::BUILTIN_OP_END || 9023 Opc == ISD::INTRINSIC_WO_CHAIN || 9024 Opc == ISD::INTRINSIC_W_CHAIN || 9025 Opc == ISD::INTRINSIC_VOID) && 9026 "Should use MaskedValueIsZero if you don't know whether Op" 9027 " is a target node!"); 9028 9029 Known.resetAll(); 9030 switch (Opc) { 9031 default: break; 9032 case RISCVISD::SELECT_CC: { 9033 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 9034 // If we don't know any bits, early out. 9035 if (Known.isUnknown()) 9036 break; 9037 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 9038 9039 // Only known if known in both the LHS and RHS. 9040 Known = KnownBits::commonBits(Known, Known2); 9041 break; 9042 } 9043 case RISCVISD::REMUW: { 9044 KnownBits Known2; 9045 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 9046 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 9047 // We only care about the lower 32 bits. 9048 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 9049 // Restore the original width by sign extending. 9050 Known = Known.sext(BitWidth); 9051 break; 9052 } 9053 case RISCVISD::DIVUW: { 9054 KnownBits Known2; 9055 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 9056 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 9057 // We only care about the lower 32 bits. 9058 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 9059 // Restore the original width by sign extending. 9060 Known = Known.sext(BitWidth); 9061 break; 9062 } 9063 case RISCVISD::CTZW: { 9064 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9065 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 9066 unsigned LowBits = Log2_32(PossibleTZ) + 1; 9067 Known.Zero.setBitsFrom(LowBits); 9068 break; 9069 } 9070 case RISCVISD::CLZW: { 9071 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9072 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 9073 unsigned LowBits = Log2_32(PossibleLZ) + 1; 9074 Known.Zero.setBitsFrom(LowBits); 9075 break; 9076 } 9077 case RISCVISD::GREV: 9078 case RISCVISD::GORC: { 9079 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 9080 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 9081 unsigned ShAmt = C->getZExtValue() & (Known.getBitWidth() - 1); 9082 bool IsGORC = Op.getOpcode() == RISCVISD::GORC; 9083 // To compute zeros, we need to invert the value and invert it back after. 9084 Known.Zero = 9085 ~computeGREVOrGORC(~Known.Zero.getZExtValue(), ShAmt, IsGORC); 9086 Known.One = computeGREVOrGORC(Known.One.getZExtValue(), ShAmt, IsGORC); 9087 } 9088 break; 9089 } 9090 case RISCVISD::READ_VLENB: { 9091 // If we know the minimum VLen from Zvl extensions, we can use that to 9092 // determine the trailing zeros of VLENB. 9093 // FIXME: Limit to 128 bit vectors until we have more testing. 9094 unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8; 9095 if (MinVLenB > 0) 9096 Known.Zero.setLowBits(Log2_32(MinVLenB)); 9097 // We assume VLENB is no more than 65536 / 8 bytes. 9098 Known.Zero.setBitsFrom(14); 9099 break; 9100 } 9101 case ISD::INTRINSIC_W_CHAIN: 9102 case ISD::INTRINSIC_WO_CHAIN: { 9103 unsigned IntNo = 9104 Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); 9105 switch (IntNo) { 9106 default: 9107 // We can't do anything for most intrinsics. 9108 break; 9109 case Intrinsic::riscv_vsetvli: 9110 case Intrinsic::riscv_vsetvlimax: 9111 case Intrinsic::riscv_vsetvli_opt: 9112 case Intrinsic::riscv_vsetvlimax_opt: 9113 // Assume that VL output is positive and would fit in an int32_t. 9114 // TODO: VLEN might be capped at 16 bits in a future V spec update. 9115 if (BitWidth >= 32) 9116 Known.Zero.setBitsFrom(31); 9117 break; 9118 } 9119 break; 9120 } 9121 } 9122 } 9123 9124 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 9125 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 9126 unsigned Depth) const { 9127 switch (Op.getOpcode()) { 9128 default: 9129 break; 9130 case RISCVISD::SELECT_CC: { 9131 unsigned Tmp = 9132 DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 9133 if (Tmp == 1) return 1; // Early out. 9134 unsigned Tmp2 = 9135 DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 9136 return std::min(Tmp, Tmp2); 9137 } 9138 case RISCVISD::SLLW: 9139 case RISCVISD::SRAW: 9140 case RISCVISD::SRLW: 9141 case RISCVISD::DIVW: 9142 case RISCVISD::DIVUW: 9143 case RISCVISD::REMUW: 9144 case RISCVISD::ROLW: 9145 case RISCVISD::RORW: 9146 case RISCVISD::GREVW: 9147 case RISCVISD::GORCW: 9148 case RISCVISD::FSLW: 9149 case RISCVISD::FSRW: 9150 case RISCVISD::SHFLW: 9151 case RISCVISD::UNSHFLW: 9152 case RISCVISD::BCOMPRESSW: 9153 case RISCVISD::BDECOMPRESSW: 9154 case RISCVISD::BFPW: 9155 case RISCVISD::FCVT_W_RV64: 9156 case RISCVISD::FCVT_WU_RV64: 9157 case RISCVISD::STRICT_FCVT_W_RV64: 9158 case RISCVISD::STRICT_FCVT_WU_RV64: 9159 // TODO: As the result is sign-extended, this is conservatively correct. A 9160 // more precise answer could be calculated for SRAW depending on known 9161 // bits in the shift amount. 9162 return 33; 9163 case RISCVISD::SHFL: 9164 case RISCVISD::UNSHFL: { 9165 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 9166 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 9167 // will stay within the upper 32 bits. If there were more than 32 sign bits 9168 // before there will be at least 33 sign bits after. 9169 if (Op.getValueType() == MVT::i64 && 9170 isa<ConstantSDNode>(Op.getOperand(1)) && 9171 (Op.getConstantOperandVal(1) & 0x10) == 0) { 9172 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 9173 if (Tmp > 32) 9174 return 33; 9175 } 9176 break; 9177 } 9178 case RISCVISD::VMV_X_S: { 9179 // The number of sign bits of the scalar result is computed by obtaining the 9180 // element type of the input vector operand, subtracting its width from the 9181 // XLEN, and then adding one (sign bit within the element type). If the 9182 // element type is wider than XLen, the least-significant XLEN bits are 9183 // taken. 9184 unsigned XLen = Subtarget.getXLen(); 9185 unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits(); 9186 if (EltBits <= XLen) 9187 return XLen - EltBits + 1; 9188 break; 9189 } 9190 } 9191 9192 return 1; 9193 } 9194 9195 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 9196 MachineBasicBlock *BB) { 9197 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 9198 9199 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 9200 // Should the count have wrapped while it was being read, we need to try 9201 // again. 9202 // ... 9203 // read: 9204 // rdcycleh x3 # load high word of cycle 9205 // rdcycle x2 # load low word of cycle 9206 // rdcycleh x4 # load high word of cycle 9207 // bne x3, x4, read # check if high word reads match, otherwise try again 9208 // ... 9209 9210 MachineFunction &MF = *BB->getParent(); 9211 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9212 MachineFunction::iterator It = ++BB->getIterator(); 9213 9214 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9215 MF.insert(It, LoopMBB); 9216 9217 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9218 MF.insert(It, DoneMBB); 9219 9220 // Transfer the remainder of BB and its successor edges to DoneMBB. 9221 DoneMBB->splice(DoneMBB->begin(), BB, 9222 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9223 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 9224 9225 BB->addSuccessor(LoopMBB); 9226 9227 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9228 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9229 Register LoReg = MI.getOperand(0).getReg(); 9230 Register HiReg = MI.getOperand(1).getReg(); 9231 DebugLoc DL = MI.getDebugLoc(); 9232 9233 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 9234 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 9235 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9236 .addReg(RISCV::X0); 9237 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 9238 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 9239 .addReg(RISCV::X0); 9240 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 9241 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9242 .addReg(RISCV::X0); 9243 9244 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 9245 .addReg(HiReg) 9246 .addReg(ReadAgainReg) 9247 .addMBB(LoopMBB); 9248 9249 LoopMBB->addSuccessor(LoopMBB); 9250 LoopMBB->addSuccessor(DoneMBB); 9251 9252 MI.eraseFromParent(); 9253 9254 return DoneMBB; 9255 } 9256 9257 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 9258 MachineBasicBlock *BB) { 9259 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 9260 9261 MachineFunction &MF = *BB->getParent(); 9262 DebugLoc DL = MI.getDebugLoc(); 9263 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9264 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9265 Register LoReg = MI.getOperand(0).getReg(); 9266 Register HiReg = MI.getOperand(1).getReg(); 9267 Register SrcReg = MI.getOperand(2).getReg(); 9268 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 9269 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9270 9271 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 9272 RI); 9273 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9274 MachineMemOperand *MMOLo = 9275 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 9276 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9277 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 9278 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 9279 .addFrameIndex(FI) 9280 .addImm(0) 9281 .addMemOperand(MMOLo); 9282 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 9283 .addFrameIndex(FI) 9284 .addImm(4) 9285 .addMemOperand(MMOHi); 9286 MI.eraseFromParent(); // The pseudo instruction is gone now. 9287 return BB; 9288 } 9289 9290 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 9291 MachineBasicBlock *BB) { 9292 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 9293 "Unexpected instruction"); 9294 9295 MachineFunction &MF = *BB->getParent(); 9296 DebugLoc DL = MI.getDebugLoc(); 9297 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9298 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9299 Register DstReg = MI.getOperand(0).getReg(); 9300 Register LoReg = MI.getOperand(1).getReg(); 9301 Register HiReg = MI.getOperand(2).getReg(); 9302 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 9303 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9304 9305 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9306 MachineMemOperand *MMOLo = 9307 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 9308 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9309 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 9310 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9311 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 9312 .addFrameIndex(FI) 9313 .addImm(0) 9314 .addMemOperand(MMOLo); 9315 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9316 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 9317 .addFrameIndex(FI) 9318 .addImm(4) 9319 .addMemOperand(MMOHi); 9320 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 9321 MI.eraseFromParent(); // The pseudo instruction is gone now. 9322 return BB; 9323 } 9324 9325 static bool isSelectPseudo(MachineInstr &MI) { 9326 switch (MI.getOpcode()) { 9327 default: 9328 return false; 9329 case RISCV::Select_GPR_Using_CC_GPR: 9330 case RISCV::Select_FPR16_Using_CC_GPR: 9331 case RISCV::Select_FPR32_Using_CC_GPR: 9332 case RISCV::Select_FPR64_Using_CC_GPR: 9333 return true; 9334 } 9335 } 9336 9337 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 9338 unsigned RelOpcode, unsigned EqOpcode, 9339 const RISCVSubtarget &Subtarget) { 9340 DebugLoc DL = MI.getDebugLoc(); 9341 Register DstReg = MI.getOperand(0).getReg(); 9342 Register Src1Reg = MI.getOperand(1).getReg(); 9343 Register Src2Reg = MI.getOperand(2).getReg(); 9344 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 9345 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 9346 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 9347 9348 // Save the current FFLAGS. 9349 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 9350 9351 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 9352 .addReg(Src1Reg) 9353 .addReg(Src2Reg); 9354 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9355 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 9356 9357 // Restore the FFLAGS. 9358 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 9359 .addReg(SavedFFlags, RegState::Kill); 9360 9361 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 9362 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 9363 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 9364 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 9365 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9366 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 9367 9368 // Erase the pseudoinstruction. 9369 MI.eraseFromParent(); 9370 return BB; 9371 } 9372 9373 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 9374 MachineBasicBlock *BB, 9375 const RISCVSubtarget &Subtarget) { 9376 // To "insert" Select_* instructions, we actually have to insert the triangle 9377 // control-flow pattern. The incoming instructions know the destination vreg 9378 // to set, the condition code register to branch on, the true/false values to 9379 // select between, and the condcode to use to select the appropriate branch. 9380 // 9381 // We produce the following control flow: 9382 // HeadMBB 9383 // | \ 9384 // | IfFalseMBB 9385 // | / 9386 // TailMBB 9387 // 9388 // When we find a sequence of selects we attempt to optimize their emission 9389 // by sharing the control flow. Currently we only handle cases where we have 9390 // multiple selects with the exact same condition (same LHS, RHS and CC). 9391 // The selects may be interleaved with other instructions if the other 9392 // instructions meet some requirements we deem safe: 9393 // - They are debug instructions. Otherwise, 9394 // - They do not have side-effects, do not access memory and their inputs do 9395 // not depend on the results of the select pseudo-instructions. 9396 // The TrueV/FalseV operands of the selects cannot depend on the result of 9397 // previous selects in the sequence. 9398 // These conditions could be further relaxed. See the X86 target for a 9399 // related approach and more information. 9400 Register LHS = MI.getOperand(1).getReg(); 9401 Register RHS = MI.getOperand(2).getReg(); 9402 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 9403 9404 SmallVector<MachineInstr *, 4> SelectDebugValues; 9405 SmallSet<Register, 4> SelectDests; 9406 SelectDests.insert(MI.getOperand(0).getReg()); 9407 9408 MachineInstr *LastSelectPseudo = &MI; 9409 9410 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 9411 SequenceMBBI != E; ++SequenceMBBI) { 9412 if (SequenceMBBI->isDebugInstr()) 9413 continue; 9414 else if (isSelectPseudo(*SequenceMBBI)) { 9415 if (SequenceMBBI->getOperand(1).getReg() != LHS || 9416 SequenceMBBI->getOperand(2).getReg() != RHS || 9417 SequenceMBBI->getOperand(3).getImm() != CC || 9418 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 9419 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 9420 break; 9421 LastSelectPseudo = &*SequenceMBBI; 9422 SequenceMBBI->collectDebugValues(SelectDebugValues); 9423 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 9424 } else { 9425 if (SequenceMBBI->hasUnmodeledSideEffects() || 9426 SequenceMBBI->mayLoadOrStore()) 9427 break; 9428 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 9429 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 9430 })) 9431 break; 9432 } 9433 } 9434 9435 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 9436 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9437 DebugLoc DL = MI.getDebugLoc(); 9438 MachineFunction::iterator I = ++BB->getIterator(); 9439 9440 MachineBasicBlock *HeadMBB = BB; 9441 MachineFunction *F = BB->getParent(); 9442 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 9443 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 9444 9445 F->insert(I, IfFalseMBB); 9446 F->insert(I, TailMBB); 9447 9448 // Transfer debug instructions associated with the selects to TailMBB. 9449 for (MachineInstr *DebugInstr : SelectDebugValues) { 9450 TailMBB->push_back(DebugInstr->removeFromParent()); 9451 } 9452 9453 // Move all instructions after the sequence to TailMBB. 9454 TailMBB->splice(TailMBB->end(), HeadMBB, 9455 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 9456 // Update machine-CFG edges by transferring all successors of the current 9457 // block to the new block which will contain the Phi nodes for the selects. 9458 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 9459 // Set the successors for HeadMBB. 9460 HeadMBB->addSuccessor(IfFalseMBB); 9461 HeadMBB->addSuccessor(TailMBB); 9462 9463 // Insert appropriate branch. 9464 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 9465 .addReg(LHS) 9466 .addReg(RHS) 9467 .addMBB(TailMBB); 9468 9469 // IfFalseMBB just falls through to TailMBB. 9470 IfFalseMBB->addSuccessor(TailMBB); 9471 9472 // Create PHIs for all of the select pseudo-instructions. 9473 auto SelectMBBI = MI.getIterator(); 9474 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 9475 auto InsertionPoint = TailMBB->begin(); 9476 while (SelectMBBI != SelectEnd) { 9477 auto Next = std::next(SelectMBBI); 9478 if (isSelectPseudo(*SelectMBBI)) { 9479 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 9480 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 9481 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 9482 .addReg(SelectMBBI->getOperand(4).getReg()) 9483 .addMBB(HeadMBB) 9484 .addReg(SelectMBBI->getOperand(5).getReg()) 9485 .addMBB(IfFalseMBB); 9486 SelectMBBI->eraseFromParent(); 9487 } 9488 SelectMBBI = Next; 9489 } 9490 9491 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 9492 return TailMBB; 9493 } 9494 9495 MachineBasicBlock * 9496 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 9497 MachineBasicBlock *BB) const { 9498 switch (MI.getOpcode()) { 9499 default: 9500 llvm_unreachable("Unexpected instr type to insert"); 9501 case RISCV::ReadCycleWide: 9502 assert(!Subtarget.is64Bit() && 9503 "ReadCycleWrite is only to be used on riscv32"); 9504 return emitReadCycleWidePseudo(MI, BB); 9505 case RISCV::Select_GPR_Using_CC_GPR: 9506 case RISCV::Select_FPR16_Using_CC_GPR: 9507 case RISCV::Select_FPR32_Using_CC_GPR: 9508 case RISCV::Select_FPR64_Using_CC_GPR: 9509 return emitSelectPseudo(MI, BB, Subtarget); 9510 case RISCV::BuildPairF64Pseudo: 9511 return emitBuildPairF64Pseudo(MI, BB); 9512 case RISCV::SplitF64Pseudo: 9513 return emitSplitF64Pseudo(MI, BB); 9514 case RISCV::PseudoQuietFLE_H: 9515 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 9516 case RISCV::PseudoQuietFLT_H: 9517 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 9518 case RISCV::PseudoQuietFLE_S: 9519 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 9520 case RISCV::PseudoQuietFLT_S: 9521 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 9522 case RISCV::PseudoQuietFLE_D: 9523 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 9524 case RISCV::PseudoQuietFLT_D: 9525 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 9526 } 9527 } 9528 9529 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 9530 SDNode *Node) const { 9531 // Add FRM dependency to any instructions with dynamic rounding mode. 9532 unsigned Opc = MI.getOpcode(); 9533 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 9534 if (Idx < 0) 9535 return; 9536 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 9537 return; 9538 // If the instruction already reads FRM, don't add another read. 9539 if (MI.readsRegister(RISCV::FRM)) 9540 return; 9541 MI.addOperand( 9542 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 9543 } 9544 9545 // Calling Convention Implementation. 9546 // The expectations for frontend ABI lowering vary from target to target. 9547 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 9548 // details, but this is a longer term goal. For now, we simply try to keep the 9549 // role of the frontend as simple and well-defined as possible. The rules can 9550 // be summarised as: 9551 // * Never split up large scalar arguments. We handle them here. 9552 // * If a hardfloat calling convention is being used, and the struct may be 9553 // passed in a pair of registers (fp+fp, int+fp), and both registers are 9554 // available, then pass as two separate arguments. If either the GPRs or FPRs 9555 // are exhausted, then pass according to the rule below. 9556 // * If a struct could never be passed in registers or directly in a stack 9557 // slot (as it is larger than 2*XLEN and the floating point rules don't 9558 // apply), then pass it using a pointer with the byval attribute. 9559 // * If a struct is less than 2*XLEN, then coerce to either a two-element 9560 // word-sized array or a 2*XLEN scalar (depending on alignment). 9561 // * The frontend can determine whether a struct is returned by reference or 9562 // not based on its size and fields. If it will be returned by reference, the 9563 // frontend must modify the prototype so a pointer with the sret annotation is 9564 // passed as the first argument. This is not necessary for large scalar 9565 // returns. 9566 // * Struct return values and varargs should be coerced to structs containing 9567 // register-size fields in the same situations they would be for fixed 9568 // arguments. 9569 9570 static const MCPhysReg ArgGPRs[] = { 9571 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 9572 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 9573 }; 9574 static const MCPhysReg ArgFPR16s[] = { 9575 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 9576 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 9577 }; 9578 static const MCPhysReg ArgFPR32s[] = { 9579 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 9580 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 9581 }; 9582 static const MCPhysReg ArgFPR64s[] = { 9583 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 9584 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 9585 }; 9586 // This is an interim calling convention and it may be changed in the future. 9587 static const MCPhysReg ArgVRs[] = { 9588 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 9589 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 9590 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 9591 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 9592 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 9593 RISCV::V20M2, RISCV::V22M2}; 9594 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 9595 RISCV::V20M4}; 9596 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 9597 9598 // Pass a 2*XLEN argument that has been split into two XLEN values through 9599 // registers or the stack as necessary. 9600 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 9601 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 9602 MVT ValVT2, MVT LocVT2, 9603 ISD::ArgFlagsTy ArgFlags2) { 9604 unsigned XLenInBytes = XLen / 8; 9605 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9606 // At least one half can be passed via register. 9607 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 9608 VA1.getLocVT(), CCValAssign::Full)); 9609 } else { 9610 // Both halves must be passed on the stack, with proper alignment. 9611 Align StackAlign = 9612 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 9613 State.addLoc( 9614 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 9615 State.AllocateStack(XLenInBytes, StackAlign), 9616 VA1.getLocVT(), CCValAssign::Full)); 9617 State.addLoc(CCValAssign::getMem( 9618 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9619 LocVT2, CCValAssign::Full)); 9620 return false; 9621 } 9622 9623 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9624 // The second half can also be passed via register. 9625 State.addLoc( 9626 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 9627 } else { 9628 // The second half is passed via the stack, without additional alignment. 9629 State.addLoc(CCValAssign::getMem( 9630 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9631 LocVT2, CCValAssign::Full)); 9632 } 9633 9634 return false; 9635 } 9636 9637 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 9638 Optional<unsigned> FirstMaskArgument, 9639 CCState &State, const RISCVTargetLowering &TLI) { 9640 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 9641 if (RC == &RISCV::VRRegClass) { 9642 // Assign the first mask argument to V0. 9643 // This is an interim calling convention and it may be changed in the 9644 // future. 9645 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 9646 return State.AllocateReg(RISCV::V0); 9647 return State.AllocateReg(ArgVRs); 9648 } 9649 if (RC == &RISCV::VRM2RegClass) 9650 return State.AllocateReg(ArgVRM2s); 9651 if (RC == &RISCV::VRM4RegClass) 9652 return State.AllocateReg(ArgVRM4s); 9653 if (RC == &RISCV::VRM8RegClass) 9654 return State.AllocateReg(ArgVRM8s); 9655 llvm_unreachable("Unhandled register class for ValueType"); 9656 } 9657 9658 // Implements the RISC-V calling convention. Returns true upon failure. 9659 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 9660 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 9661 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 9662 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 9663 Optional<unsigned> FirstMaskArgument) { 9664 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 9665 assert(XLen == 32 || XLen == 64); 9666 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 9667 9668 // Any return value split in to more than two values can't be returned 9669 // directly. Vectors are returned via the available vector registers. 9670 if (!LocVT.isVector() && IsRet && ValNo > 1) 9671 return true; 9672 9673 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 9674 // variadic argument, or if no F16/F32 argument registers are available. 9675 bool UseGPRForF16_F32 = true; 9676 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 9677 // variadic argument, or if no F64 argument registers are available. 9678 bool UseGPRForF64 = true; 9679 9680 switch (ABI) { 9681 default: 9682 llvm_unreachable("Unexpected ABI"); 9683 case RISCVABI::ABI_ILP32: 9684 case RISCVABI::ABI_LP64: 9685 break; 9686 case RISCVABI::ABI_ILP32F: 9687 case RISCVABI::ABI_LP64F: 9688 UseGPRForF16_F32 = !IsFixed; 9689 break; 9690 case RISCVABI::ABI_ILP32D: 9691 case RISCVABI::ABI_LP64D: 9692 UseGPRForF16_F32 = !IsFixed; 9693 UseGPRForF64 = !IsFixed; 9694 break; 9695 } 9696 9697 // FPR16, FPR32, and FPR64 alias each other. 9698 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 9699 UseGPRForF16_F32 = true; 9700 UseGPRForF64 = true; 9701 } 9702 9703 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 9704 // similar local variables rather than directly checking against the target 9705 // ABI. 9706 9707 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 9708 LocVT = XLenVT; 9709 LocInfo = CCValAssign::BCvt; 9710 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 9711 LocVT = MVT::i64; 9712 LocInfo = CCValAssign::BCvt; 9713 } 9714 9715 // If this is a variadic argument, the RISC-V calling convention requires 9716 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 9717 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 9718 // be used regardless of whether the original argument was split during 9719 // legalisation or not. The argument will not be passed by registers if the 9720 // original type is larger than 2*XLEN, so the register alignment rule does 9721 // not apply. 9722 unsigned TwoXLenInBytes = (2 * XLen) / 8; 9723 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 9724 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 9725 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 9726 // Skip 'odd' register if necessary. 9727 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 9728 State.AllocateReg(ArgGPRs); 9729 } 9730 9731 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 9732 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 9733 State.getPendingArgFlags(); 9734 9735 assert(PendingLocs.size() == PendingArgFlags.size() && 9736 "PendingLocs and PendingArgFlags out of sync"); 9737 9738 // Handle passing f64 on RV32D with a soft float ABI or when floating point 9739 // registers are exhausted. 9740 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 9741 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 9742 "Can't lower f64 if it is split"); 9743 // Depending on available argument GPRS, f64 may be passed in a pair of 9744 // GPRs, split between a GPR and the stack, or passed completely on the 9745 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 9746 // cases. 9747 Register Reg = State.AllocateReg(ArgGPRs); 9748 LocVT = MVT::i32; 9749 if (!Reg) { 9750 unsigned StackOffset = State.AllocateStack(8, Align(8)); 9751 State.addLoc( 9752 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9753 return false; 9754 } 9755 if (!State.AllocateReg(ArgGPRs)) 9756 State.AllocateStack(4, Align(4)); 9757 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9758 return false; 9759 } 9760 9761 // Fixed-length vectors are located in the corresponding scalable-vector 9762 // container types. 9763 if (ValVT.isFixedLengthVector()) 9764 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9765 9766 // Split arguments might be passed indirectly, so keep track of the pending 9767 // values. Split vectors are passed via a mix of registers and indirectly, so 9768 // treat them as we would any other argument. 9769 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 9770 LocVT = XLenVT; 9771 LocInfo = CCValAssign::Indirect; 9772 PendingLocs.push_back( 9773 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 9774 PendingArgFlags.push_back(ArgFlags); 9775 if (!ArgFlags.isSplitEnd()) { 9776 return false; 9777 } 9778 } 9779 9780 // If the split argument only had two elements, it should be passed directly 9781 // in registers or on the stack. 9782 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 9783 PendingLocs.size() <= 2) { 9784 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 9785 // Apply the normal calling convention rules to the first half of the 9786 // split argument. 9787 CCValAssign VA = PendingLocs[0]; 9788 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 9789 PendingLocs.clear(); 9790 PendingArgFlags.clear(); 9791 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 9792 ArgFlags); 9793 } 9794 9795 // Allocate to a register if possible, or else a stack slot. 9796 Register Reg; 9797 unsigned StoreSizeBytes = XLen / 8; 9798 Align StackAlign = Align(XLen / 8); 9799 9800 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 9801 Reg = State.AllocateReg(ArgFPR16s); 9802 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 9803 Reg = State.AllocateReg(ArgFPR32s); 9804 else if (ValVT == MVT::f64 && !UseGPRForF64) 9805 Reg = State.AllocateReg(ArgFPR64s); 9806 else if (ValVT.isVector()) { 9807 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 9808 if (!Reg) { 9809 // For return values, the vector must be passed fully via registers or 9810 // via the stack. 9811 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 9812 // but we're using all of them. 9813 if (IsRet) 9814 return true; 9815 // Try using a GPR to pass the address 9816 if ((Reg = State.AllocateReg(ArgGPRs))) { 9817 LocVT = XLenVT; 9818 LocInfo = CCValAssign::Indirect; 9819 } else if (ValVT.isScalableVector()) { 9820 LocVT = XLenVT; 9821 LocInfo = CCValAssign::Indirect; 9822 } else { 9823 // Pass fixed-length vectors on the stack. 9824 LocVT = ValVT; 9825 StoreSizeBytes = ValVT.getStoreSize(); 9826 // Align vectors to their element sizes, being careful for vXi1 9827 // vectors. 9828 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9829 } 9830 } 9831 } else { 9832 Reg = State.AllocateReg(ArgGPRs); 9833 } 9834 9835 unsigned StackOffset = 9836 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 9837 9838 // If we reach this point and PendingLocs is non-empty, we must be at the 9839 // end of a split argument that must be passed indirectly. 9840 if (!PendingLocs.empty()) { 9841 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 9842 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 9843 9844 for (auto &It : PendingLocs) { 9845 if (Reg) 9846 It.convertToReg(Reg); 9847 else 9848 It.convertToMem(StackOffset); 9849 State.addLoc(It); 9850 } 9851 PendingLocs.clear(); 9852 PendingArgFlags.clear(); 9853 return false; 9854 } 9855 9856 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 9857 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 9858 "Expected an XLenVT or vector types at this stage"); 9859 9860 if (Reg) { 9861 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9862 return false; 9863 } 9864 9865 // When a floating-point value is passed on the stack, no bit-conversion is 9866 // needed. 9867 if (ValVT.isFloatingPoint()) { 9868 LocVT = ValVT; 9869 LocInfo = CCValAssign::Full; 9870 } 9871 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9872 return false; 9873 } 9874 9875 template <typename ArgTy> 9876 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 9877 for (const auto &ArgIdx : enumerate(Args)) { 9878 MVT ArgVT = ArgIdx.value().VT; 9879 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 9880 return ArgIdx.index(); 9881 } 9882 return None; 9883 } 9884 9885 void RISCVTargetLowering::analyzeInputArgs( 9886 MachineFunction &MF, CCState &CCInfo, 9887 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 9888 RISCVCCAssignFn Fn) const { 9889 unsigned NumArgs = Ins.size(); 9890 FunctionType *FType = MF.getFunction().getFunctionType(); 9891 9892 Optional<unsigned> FirstMaskArgument; 9893 if (Subtarget.hasVInstructions()) 9894 FirstMaskArgument = preAssignMask(Ins); 9895 9896 for (unsigned i = 0; i != NumArgs; ++i) { 9897 MVT ArgVT = Ins[i].VT; 9898 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 9899 9900 Type *ArgTy = nullptr; 9901 if (IsRet) 9902 ArgTy = FType->getReturnType(); 9903 else if (Ins[i].isOrigArg()) 9904 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 9905 9906 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9907 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9908 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 9909 FirstMaskArgument)) { 9910 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 9911 << EVT(ArgVT).getEVTString() << '\n'); 9912 llvm_unreachable(nullptr); 9913 } 9914 } 9915 } 9916 9917 void RISCVTargetLowering::analyzeOutputArgs( 9918 MachineFunction &MF, CCState &CCInfo, 9919 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 9920 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 9921 unsigned NumArgs = Outs.size(); 9922 9923 Optional<unsigned> FirstMaskArgument; 9924 if (Subtarget.hasVInstructions()) 9925 FirstMaskArgument = preAssignMask(Outs); 9926 9927 for (unsigned i = 0; i != NumArgs; i++) { 9928 MVT ArgVT = Outs[i].VT; 9929 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9930 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 9931 9932 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9933 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9934 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 9935 FirstMaskArgument)) { 9936 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 9937 << EVT(ArgVT).getEVTString() << "\n"); 9938 llvm_unreachable(nullptr); 9939 } 9940 } 9941 } 9942 9943 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 9944 // values. 9945 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 9946 const CCValAssign &VA, const SDLoc &DL, 9947 const RISCVSubtarget &Subtarget) { 9948 switch (VA.getLocInfo()) { 9949 default: 9950 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9951 case CCValAssign::Full: 9952 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 9953 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 9954 break; 9955 case CCValAssign::BCvt: 9956 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9957 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 9958 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9959 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 9960 else 9961 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 9962 break; 9963 } 9964 return Val; 9965 } 9966 9967 // The caller is responsible for loading the full value if the argument is 9968 // passed with CCValAssign::Indirect. 9969 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 9970 const CCValAssign &VA, const SDLoc &DL, 9971 const RISCVTargetLowering &TLI) { 9972 MachineFunction &MF = DAG.getMachineFunction(); 9973 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9974 EVT LocVT = VA.getLocVT(); 9975 SDValue Val; 9976 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 9977 Register VReg = RegInfo.createVirtualRegister(RC); 9978 RegInfo.addLiveIn(VA.getLocReg(), VReg); 9979 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 9980 9981 if (VA.getLocInfo() == CCValAssign::Indirect) 9982 return Val; 9983 9984 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 9985 } 9986 9987 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 9988 const CCValAssign &VA, const SDLoc &DL, 9989 const RISCVSubtarget &Subtarget) { 9990 EVT LocVT = VA.getLocVT(); 9991 9992 switch (VA.getLocInfo()) { 9993 default: 9994 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9995 case CCValAssign::Full: 9996 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 9997 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 9998 break; 9999 case CCValAssign::BCvt: 10000 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 10001 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 10002 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 10003 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 10004 else 10005 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 10006 break; 10007 } 10008 return Val; 10009 } 10010 10011 // The caller is responsible for loading the full value if the argument is 10012 // passed with CCValAssign::Indirect. 10013 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 10014 const CCValAssign &VA, const SDLoc &DL) { 10015 MachineFunction &MF = DAG.getMachineFunction(); 10016 MachineFrameInfo &MFI = MF.getFrameInfo(); 10017 EVT LocVT = VA.getLocVT(); 10018 EVT ValVT = VA.getValVT(); 10019 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 10020 if (ValVT.isScalableVector()) { 10021 // When the value is a scalable vector, we save the pointer which points to 10022 // the scalable vector value in the stack. The ValVT will be the pointer 10023 // type, instead of the scalable vector type. 10024 ValVT = LocVT; 10025 } 10026 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 10027 /*IsImmutable=*/true); 10028 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 10029 SDValue Val; 10030 10031 ISD::LoadExtType ExtType; 10032 switch (VA.getLocInfo()) { 10033 default: 10034 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 10035 case CCValAssign::Full: 10036 case CCValAssign::Indirect: 10037 case CCValAssign::BCvt: 10038 ExtType = ISD::NON_EXTLOAD; 10039 break; 10040 } 10041 Val = DAG.getExtLoad( 10042 ExtType, DL, LocVT, Chain, FIN, 10043 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 10044 return Val; 10045 } 10046 10047 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 10048 const CCValAssign &VA, const SDLoc &DL) { 10049 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 10050 "Unexpected VA"); 10051 MachineFunction &MF = DAG.getMachineFunction(); 10052 MachineFrameInfo &MFI = MF.getFrameInfo(); 10053 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10054 10055 if (VA.isMemLoc()) { 10056 // f64 is passed on the stack. 10057 int FI = 10058 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 10059 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 10060 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 10061 MachinePointerInfo::getFixedStack(MF, FI)); 10062 } 10063 10064 assert(VA.isRegLoc() && "Expected register VA assignment"); 10065 10066 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 10067 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 10068 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 10069 SDValue Hi; 10070 if (VA.getLocReg() == RISCV::X17) { 10071 // Second half of f64 is passed on the stack. 10072 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 10073 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 10074 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 10075 MachinePointerInfo::getFixedStack(MF, FI)); 10076 } else { 10077 // Second half of f64 is passed in another GPR. 10078 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 10079 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 10080 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 10081 } 10082 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 10083 } 10084 10085 // FastCC has less than 1% performance improvement for some particular 10086 // benchmark. But theoretically, it may has benenfit for some cases. 10087 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 10088 unsigned ValNo, MVT ValVT, MVT LocVT, 10089 CCValAssign::LocInfo LocInfo, 10090 ISD::ArgFlagsTy ArgFlags, CCState &State, 10091 bool IsFixed, bool IsRet, Type *OrigTy, 10092 const RISCVTargetLowering &TLI, 10093 Optional<unsigned> FirstMaskArgument) { 10094 10095 // X5 and X6 might be used for save-restore libcall. 10096 static const MCPhysReg GPRList[] = { 10097 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 10098 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 10099 RISCV::X29, RISCV::X30, RISCV::X31}; 10100 10101 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 10102 if (unsigned Reg = State.AllocateReg(GPRList)) { 10103 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10104 return false; 10105 } 10106 } 10107 10108 if (LocVT == MVT::f16) { 10109 static const MCPhysReg FPR16List[] = { 10110 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 10111 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 10112 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 10113 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 10114 if (unsigned Reg = State.AllocateReg(FPR16List)) { 10115 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10116 return false; 10117 } 10118 } 10119 10120 if (LocVT == MVT::f32) { 10121 static const MCPhysReg FPR32List[] = { 10122 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 10123 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 10124 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 10125 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 10126 if (unsigned Reg = State.AllocateReg(FPR32List)) { 10127 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10128 return false; 10129 } 10130 } 10131 10132 if (LocVT == MVT::f64) { 10133 static const MCPhysReg FPR64List[] = { 10134 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 10135 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 10136 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 10137 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 10138 if (unsigned Reg = State.AllocateReg(FPR64List)) { 10139 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10140 return false; 10141 } 10142 } 10143 10144 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 10145 unsigned Offset4 = State.AllocateStack(4, Align(4)); 10146 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 10147 return false; 10148 } 10149 10150 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 10151 unsigned Offset5 = State.AllocateStack(8, Align(8)); 10152 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 10153 return false; 10154 } 10155 10156 if (LocVT.isVector()) { 10157 if (unsigned Reg = 10158 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 10159 // Fixed-length vectors are located in the corresponding scalable-vector 10160 // container types. 10161 if (ValVT.isFixedLengthVector()) 10162 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 10163 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10164 } else { 10165 // Try and pass the address via a "fast" GPR. 10166 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 10167 LocInfo = CCValAssign::Indirect; 10168 LocVT = TLI.getSubtarget().getXLenVT(); 10169 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 10170 } else if (ValVT.isFixedLengthVector()) { 10171 auto StackAlign = 10172 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 10173 unsigned StackOffset = 10174 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 10175 State.addLoc( 10176 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 10177 } else { 10178 // Can't pass scalable vectors on the stack. 10179 return true; 10180 } 10181 } 10182 10183 return false; 10184 } 10185 10186 return true; // CC didn't match. 10187 } 10188 10189 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 10190 CCValAssign::LocInfo LocInfo, 10191 ISD::ArgFlagsTy ArgFlags, CCState &State) { 10192 10193 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 10194 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 10195 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 10196 static const MCPhysReg GPRList[] = { 10197 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 10198 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 10199 if (unsigned Reg = State.AllocateReg(GPRList)) { 10200 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10201 return false; 10202 } 10203 } 10204 10205 if (LocVT == MVT::f32) { 10206 // Pass in STG registers: F1, ..., F6 10207 // fs0 ... fs5 10208 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 10209 RISCV::F18_F, RISCV::F19_F, 10210 RISCV::F20_F, RISCV::F21_F}; 10211 if (unsigned Reg = State.AllocateReg(FPR32List)) { 10212 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10213 return false; 10214 } 10215 } 10216 10217 if (LocVT == MVT::f64) { 10218 // Pass in STG registers: D1, ..., D6 10219 // fs6 ... fs11 10220 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 10221 RISCV::F24_D, RISCV::F25_D, 10222 RISCV::F26_D, RISCV::F27_D}; 10223 if (unsigned Reg = State.AllocateReg(FPR64List)) { 10224 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10225 return false; 10226 } 10227 } 10228 10229 report_fatal_error("No registers left in GHC calling convention"); 10230 return true; 10231 } 10232 10233 // Transform physical registers into virtual registers. 10234 SDValue RISCVTargetLowering::LowerFormalArguments( 10235 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 10236 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 10237 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 10238 10239 MachineFunction &MF = DAG.getMachineFunction(); 10240 10241 switch (CallConv) { 10242 default: 10243 report_fatal_error("Unsupported calling convention"); 10244 case CallingConv::C: 10245 case CallingConv::Fast: 10246 break; 10247 case CallingConv::GHC: 10248 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 10249 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 10250 report_fatal_error( 10251 "GHC calling convention requires the F and D instruction set extensions"); 10252 } 10253 10254 const Function &Func = MF.getFunction(); 10255 if (Func.hasFnAttribute("interrupt")) { 10256 if (!Func.arg_empty()) 10257 report_fatal_error( 10258 "Functions with the interrupt attribute cannot have arguments!"); 10259 10260 StringRef Kind = 10261 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10262 10263 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 10264 report_fatal_error( 10265 "Function interrupt attribute argument not supported!"); 10266 } 10267 10268 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10269 MVT XLenVT = Subtarget.getXLenVT(); 10270 unsigned XLenInBytes = Subtarget.getXLen() / 8; 10271 // Used with vargs to acumulate store chains. 10272 std::vector<SDValue> OutChains; 10273 10274 // Assign locations to all of the incoming arguments. 10275 SmallVector<CCValAssign, 16> ArgLocs; 10276 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10277 10278 if (CallConv == CallingConv::GHC) 10279 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 10280 else 10281 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 10282 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10283 : CC_RISCV); 10284 10285 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 10286 CCValAssign &VA = ArgLocs[i]; 10287 SDValue ArgValue; 10288 // Passing f64 on RV32D with a soft float ABI must be handled as a special 10289 // case. 10290 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 10291 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 10292 else if (VA.isRegLoc()) 10293 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 10294 else 10295 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 10296 10297 if (VA.getLocInfo() == CCValAssign::Indirect) { 10298 // If the original argument was split and passed by reference (e.g. i128 10299 // on RV32), we need to load all parts of it here (using the same 10300 // address). Vectors may be partly split to registers and partly to the 10301 // stack, in which case the base address is partly offset and subsequent 10302 // stores are relative to that. 10303 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 10304 MachinePointerInfo())); 10305 unsigned ArgIndex = Ins[i].OrigArgIndex; 10306 unsigned ArgPartOffset = Ins[i].PartOffset; 10307 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10308 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 10309 CCValAssign &PartVA = ArgLocs[i + 1]; 10310 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 10311 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10312 if (PartVA.getValVT().isScalableVector()) 10313 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10314 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 10315 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 10316 MachinePointerInfo())); 10317 ++i; 10318 } 10319 continue; 10320 } 10321 InVals.push_back(ArgValue); 10322 } 10323 10324 if (IsVarArg) { 10325 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 10326 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 10327 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 10328 MachineFrameInfo &MFI = MF.getFrameInfo(); 10329 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10330 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 10331 10332 // Offset of the first variable argument from stack pointer, and size of 10333 // the vararg save area. For now, the varargs save area is either zero or 10334 // large enough to hold a0-a7. 10335 int VaArgOffset, VarArgsSaveSize; 10336 10337 // If all registers are allocated, then all varargs must be passed on the 10338 // stack and we don't need to save any argregs. 10339 if (ArgRegs.size() == Idx) { 10340 VaArgOffset = CCInfo.getNextStackOffset(); 10341 VarArgsSaveSize = 0; 10342 } else { 10343 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 10344 VaArgOffset = -VarArgsSaveSize; 10345 } 10346 10347 // Record the frame index of the first variable argument 10348 // which is a value necessary to VASTART. 10349 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10350 RVFI->setVarArgsFrameIndex(FI); 10351 10352 // If saving an odd number of registers then create an extra stack slot to 10353 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 10354 // offsets to even-numbered registered remain 2*XLEN-aligned. 10355 if (Idx % 2) { 10356 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 10357 VarArgsSaveSize += XLenInBytes; 10358 } 10359 10360 // Copy the integer registers that may have been used for passing varargs 10361 // to the vararg save area. 10362 for (unsigned I = Idx; I < ArgRegs.size(); 10363 ++I, VaArgOffset += XLenInBytes) { 10364 const Register Reg = RegInfo.createVirtualRegister(RC); 10365 RegInfo.addLiveIn(ArgRegs[I], Reg); 10366 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 10367 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10368 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10369 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 10370 MachinePointerInfo::getFixedStack(MF, FI)); 10371 cast<StoreSDNode>(Store.getNode()) 10372 ->getMemOperand() 10373 ->setValue((Value *)nullptr); 10374 OutChains.push_back(Store); 10375 } 10376 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 10377 } 10378 10379 // All stores are grouped in one node to allow the matching between 10380 // the size of Ins and InVals. This only happens for vararg functions. 10381 if (!OutChains.empty()) { 10382 OutChains.push_back(Chain); 10383 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 10384 } 10385 10386 return Chain; 10387 } 10388 10389 /// isEligibleForTailCallOptimization - Check whether the call is eligible 10390 /// for tail call optimization. 10391 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 10392 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 10393 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 10394 const SmallVector<CCValAssign, 16> &ArgLocs) const { 10395 10396 auto &Callee = CLI.Callee; 10397 auto CalleeCC = CLI.CallConv; 10398 auto &Outs = CLI.Outs; 10399 auto &Caller = MF.getFunction(); 10400 auto CallerCC = Caller.getCallingConv(); 10401 10402 // Exception-handling functions need a special set of instructions to 10403 // indicate a return to the hardware. Tail-calling another function would 10404 // probably break this. 10405 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 10406 // should be expanded as new function attributes are introduced. 10407 if (Caller.hasFnAttribute("interrupt")) 10408 return false; 10409 10410 // Do not tail call opt if the stack is used to pass parameters. 10411 if (CCInfo.getNextStackOffset() != 0) 10412 return false; 10413 10414 // Do not tail call opt if any parameters need to be passed indirectly. 10415 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 10416 // passed indirectly. So the address of the value will be passed in a 10417 // register, or if not available, then the address is put on the stack. In 10418 // order to pass indirectly, space on the stack often needs to be allocated 10419 // in order to store the value. In this case the CCInfo.getNextStackOffset() 10420 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 10421 // are passed CCValAssign::Indirect. 10422 for (auto &VA : ArgLocs) 10423 if (VA.getLocInfo() == CCValAssign::Indirect) 10424 return false; 10425 10426 // Do not tail call opt if either caller or callee uses struct return 10427 // semantics. 10428 auto IsCallerStructRet = Caller.hasStructRetAttr(); 10429 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 10430 if (IsCallerStructRet || IsCalleeStructRet) 10431 return false; 10432 10433 // Externally-defined functions with weak linkage should not be 10434 // tail-called. The behaviour of branch instructions in this situation (as 10435 // used for tail calls) is implementation-defined, so we cannot rely on the 10436 // linker replacing the tail call with a return. 10437 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 10438 const GlobalValue *GV = G->getGlobal(); 10439 if (GV->hasExternalWeakLinkage()) 10440 return false; 10441 } 10442 10443 // The callee has to preserve all registers the caller needs to preserve. 10444 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10445 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 10446 if (CalleeCC != CallerCC) { 10447 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 10448 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 10449 return false; 10450 } 10451 10452 // Byval parameters hand the function a pointer directly into the stack area 10453 // we want to reuse during a tail call. Working around this *is* possible 10454 // but less efficient and uglier in LowerCall. 10455 for (auto &Arg : Outs) 10456 if (Arg.Flags.isByVal()) 10457 return false; 10458 10459 return true; 10460 } 10461 10462 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 10463 return DAG.getDataLayout().getPrefTypeAlign( 10464 VT.getTypeForEVT(*DAG.getContext())); 10465 } 10466 10467 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 10468 // and output parameter nodes. 10469 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 10470 SmallVectorImpl<SDValue> &InVals) const { 10471 SelectionDAG &DAG = CLI.DAG; 10472 SDLoc &DL = CLI.DL; 10473 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 10474 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 10475 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 10476 SDValue Chain = CLI.Chain; 10477 SDValue Callee = CLI.Callee; 10478 bool &IsTailCall = CLI.IsTailCall; 10479 CallingConv::ID CallConv = CLI.CallConv; 10480 bool IsVarArg = CLI.IsVarArg; 10481 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10482 MVT XLenVT = Subtarget.getXLenVT(); 10483 10484 MachineFunction &MF = DAG.getMachineFunction(); 10485 10486 // Analyze the operands of the call, assigning locations to each operand. 10487 SmallVector<CCValAssign, 16> ArgLocs; 10488 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10489 10490 if (CallConv == CallingConv::GHC) 10491 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 10492 else 10493 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 10494 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10495 : CC_RISCV); 10496 10497 // Check if it's really possible to do a tail call. 10498 if (IsTailCall) 10499 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 10500 10501 if (IsTailCall) 10502 ++NumTailCalls; 10503 else if (CLI.CB && CLI.CB->isMustTailCall()) 10504 report_fatal_error("failed to perform tail call elimination on a call " 10505 "site marked musttail"); 10506 10507 // Get a count of how many bytes are to be pushed on the stack. 10508 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 10509 10510 // Create local copies for byval args 10511 SmallVector<SDValue, 8> ByValArgs; 10512 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10513 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10514 if (!Flags.isByVal()) 10515 continue; 10516 10517 SDValue Arg = OutVals[i]; 10518 unsigned Size = Flags.getByValSize(); 10519 Align Alignment = Flags.getNonZeroByValAlign(); 10520 10521 int FI = 10522 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 10523 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10524 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 10525 10526 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 10527 /*IsVolatile=*/false, 10528 /*AlwaysInline=*/false, IsTailCall, 10529 MachinePointerInfo(), MachinePointerInfo()); 10530 ByValArgs.push_back(FIPtr); 10531 } 10532 10533 if (!IsTailCall) 10534 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 10535 10536 // Copy argument values to their designated locations. 10537 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 10538 SmallVector<SDValue, 8> MemOpChains; 10539 SDValue StackPtr; 10540 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 10541 CCValAssign &VA = ArgLocs[i]; 10542 SDValue ArgValue = OutVals[i]; 10543 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10544 10545 // Handle passing f64 on RV32D with a soft float ABI as a special case. 10546 bool IsF64OnRV32DSoftABI = 10547 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 10548 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 10549 SDValue SplitF64 = DAG.getNode( 10550 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 10551 SDValue Lo = SplitF64.getValue(0); 10552 SDValue Hi = SplitF64.getValue(1); 10553 10554 Register RegLo = VA.getLocReg(); 10555 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 10556 10557 if (RegLo == RISCV::X17) { 10558 // Second half of f64 is passed on the stack. 10559 // Work out the address of the stack slot. 10560 if (!StackPtr.getNode()) 10561 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10562 // Emit the store. 10563 MemOpChains.push_back( 10564 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 10565 } else { 10566 // Second half of f64 is passed in another GPR. 10567 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10568 Register RegHigh = RegLo + 1; 10569 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 10570 } 10571 continue; 10572 } 10573 10574 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 10575 // as any other MemLoc. 10576 10577 // Promote the value if needed. 10578 // For now, only handle fully promoted and indirect arguments. 10579 if (VA.getLocInfo() == CCValAssign::Indirect) { 10580 // Store the argument in a stack slot and pass its address. 10581 Align StackAlign = 10582 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 10583 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 10584 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 10585 // If the original argument was split (e.g. i128), we need 10586 // to store the required parts of it here (and pass just one address). 10587 // Vectors may be partly split to registers and partly to the stack, in 10588 // which case the base address is partly offset and subsequent stores are 10589 // relative to that. 10590 unsigned ArgIndex = Outs[i].OrigArgIndex; 10591 unsigned ArgPartOffset = Outs[i].PartOffset; 10592 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10593 // Calculate the total size to store. We don't have access to what we're 10594 // actually storing other than performing the loop and collecting the 10595 // info. 10596 SmallVector<std::pair<SDValue, SDValue>> Parts; 10597 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 10598 SDValue PartValue = OutVals[i + 1]; 10599 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 10600 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10601 EVT PartVT = PartValue.getValueType(); 10602 if (PartVT.isScalableVector()) 10603 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10604 StoredSize += PartVT.getStoreSize(); 10605 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 10606 Parts.push_back(std::make_pair(PartValue, Offset)); 10607 ++i; 10608 } 10609 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 10610 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 10611 MemOpChains.push_back( 10612 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 10613 MachinePointerInfo::getFixedStack(MF, FI))); 10614 for (const auto &Part : Parts) { 10615 SDValue PartValue = Part.first; 10616 SDValue PartOffset = Part.second; 10617 SDValue Address = 10618 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 10619 MemOpChains.push_back( 10620 DAG.getStore(Chain, DL, PartValue, Address, 10621 MachinePointerInfo::getFixedStack(MF, FI))); 10622 } 10623 ArgValue = SpillSlot; 10624 } else { 10625 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 10626 } 10627 10628 // Use local copy if it is a byval arg. 10629 if (Flags.isByVal()) 10630 ArgValue = ByValArgs[j++]; 10631 10632 if (VA.isRegLoc()) { 10633 // Queue up the argument copies and emit them at the end. 10634 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 10635 } else { 10636 assert(VA.isMemLoc() && "Argument not register or memory"); 10637 assert(!IsTailCall && "Tail call not allowed if stack is used " 10638 "for passing parameters"); 10639 10640 // Work out the address of the stack slot. 10641 if (!StackPtr.getNode()) 10642 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10643 SDValue Address = 10644 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 10645 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 10646 10647 // Emit the store. 10648 MemOpChains.push_back( 10649 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 10650 } 10651 } 10652 10653 // Join the stores, which are independent of one another. 10654 if (!MemOpChains.empty()) 10655 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 10656 10657 SDValue Glue; 10658 10659 // Build a sequence of copy-to-reg nodes, chained and glued together. 10660 for (auto &Reg : RegsToPass) { 10661 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 10662 Glue = Chain.getValue(1); 10663 } 10664 10665 // Validate that none of the argument registers have been marked as 10666 // reserved, if so report an error. Do the same for the return address if this 10667 // is not a tailcall. 10668 validateCCReservedRegs(RegsToPass, MF); 10669 if (!IsTailCall && 10670 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 10671 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10672 MF.getFunction(), 10673 "Return address register required, but has been reserved."}); 10674 10675 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 10676 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 10677 // split it and then direct call can be matched by PseudoCALL. 10678 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 10679 const GlobalValue *GV = S->getGlobal(); 10680 10681 unsigned OpFlags = RISCVII::MO_CALL; 10682 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 10683 OpFlags = RISCVII::MO_PLT; 10684 10685 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 10686 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 10687 unsigned OpFlags = RISCVII::MO_CALL; 10688 10689 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 10690 nullptr)) 10691 OpFlags = RISCVII::MO_PLT; 10692 10693 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 10694 } 10695 10696 // The first call operand is the chain and the second is the target address. 10697 SmallVector<SDValue, 8> Ops; 10698 Ops.push_back(Chain); 10699 Ops.push_back(Callee); 10700 10701 // Add argument registers to the end of the list so that they are 10702 // known live into the call. 10703 for (auto &Reg : RegsToPass) 10704 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 10705 10706 if (!IsTailCall) { 10707 // Add a register mask operand representing the call-preserved registers. 10708 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10709 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 10710 assert(Mask && "Missing call preserved mask for calling convention"); 10711 Ops.push_back(DAG.getRegisterMask(Mask)); 10712 } 10713 10714 // Glue the call to the argument copies, if any. 10715 if (Glue.getNode()) 10716 Ops.push_back(Glue); 10717 10718 // Emit the call. 10719 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10720 10721 if (IsTailCall) { 10722 MF.getFrameInfo().setHasTailCall(); 10723 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 10724 } 10725 10726 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 10727 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 10728 Glue = Chain.getValue(1); 10729 10730 // Mark the end of the call, which is glued to the call itself. 10731 Chain = DAG.getCALLSEQ_END(Chain, 10732 DAG.getConstant(NumBytes, DL, PtrVT, true), 10733 DAG.getConstant(0, DL, PtrVT, true), 10734 Glue, DL); 10735 Glue = Chain.getValue(1); 10736 10737 // Assign locations to each value returned by this call. 10738 SmallVector<CCValAssign, 16> RVLocs; 10739 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 10740 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 10741 10742 // Copy all of the result registers out of their specified physreg. 10743 for (auto &VA : RVLocs) { 10744 // Copy the value out 10745 SDValue RetValue = 10746 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 10747 // Glue the RetValue to the end of the call sequence 10748 Chain = RetValue.getValue(1); 10749 Glue = RetValue.getValue(2); 10750 10751 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10752 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 10753 SDValue RetValue2 = 10754 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 10755 Chain = RetValue2.getValue(1); 10756 Glue = RetValue2.getValue(2); 10757 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 10758 RetValue2); 10759 } 10760 10761 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 10762 10763 InVals.push_back(RetValue); 10764 } 10765 10766 return Chain; 10767 } 10768 10769 bool RISCVTargetLowering::CanLowerReturn( 10770 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 10771 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 10772 SmallVector<CCValAssign, 16> RVLocs; 10773 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 10774 10775 Optional<unsigned> FirstMaskArgument; 10776 if (Subtarget.hasVInstructions()) 10777 FirstMaskArgument = preAssignMask(Outs); 10778 10779 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10780 MVT VT = Outs[i].VT; 10781 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 10782 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 10783 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 10784 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 10785 *this, FirstMaskArgument)) 10786 return false; 10787 } 10788 return true; 10789 } 10790 10791 SDValue 10792 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 10793 bool IsVarArg, 10794 const SmallVectorImpl<ISD::OutputArg> &Outs, 10795 const SmallVectorImpl<SDValue> &OutVals, 10796 const SDLoc &DL, SelectionDAG &DAG) const { 10797 const MachineFunction &MF = DAG.getMachineFunction(); 10798 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10799 10800 // Stores the assignment of the return value to a location. 10801 SmallVector<CCValAssign, 16> RVLocs; 10802 10803 // Info about the registers and stack slot. 10804 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 10805 *DAG.getContext()); 10806 10807 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 10808 nullptr, CC_RISCV); 10809 10810 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 10811 report_fatal_error("GHC functions return void only"); 10812 10813 SDValue Glue; 10814 SmallVector<SDValue, 4> RetOps(1, Chain); 10815 10816 // Copy the result values into the output registers. 10817 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 10818 SDValue Val = OutVals[i]; 10819 CCValAssign &VA = RVLocs[i]; 10820 assert(VA.isRegLoc() && "Can only return in registers!"); 10821 10822 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10823 // Handle returning f64 on RV32D with a soft float ABI. 10824 assert(VA.isRegLoc() && "Expected return via registers"); 10825 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 10826 DAG.getVTList(MVT::i32, MVT::i32), Val); 10827 SDValue Lo = SplitF64.getValue(0); 10828 SDValue Hi = SplitF64.getValue(1); 10829 Register RegLo = VA.getLocReg(); 10830 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10831 Register RegHi = RegLo + 1; 10832 10833 if (STI.isRegisterReservedByUser(RegLo) || 10834 STI.isRegisterReservedByUser(RegHi)) 10835 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10836 MF.getFunction(), 10837 "Return value register required, but has been reserved."}); 10838 10839 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 10840 Glue = Chain.getValue(1); 10841 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 10842 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 10843 Glue = Chain.getValue(1); 10844 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 10845 } else { 10846 // Handle a 'normal' return. 10847 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 10848 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 10849 10850 if (STI.isRegisterReservedByUser(VA.getLocReg())) 10851 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10852 MF.getFunction(), 10853 "Return value register required, but has been reserved."}); 10854 10855 // Guarantee that all emitted copies are stuck together. 10856 Glue = Chain.getValue(1); 10857 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 10858 } 10859 } 10860 10861 RetOps[0] = Chain; // Update chain. 10862 10863 // Add the glue node if we have it. 10864 if (Glue.getNode()) { 10865 RetOps.push_back(Glue); 10866 } 10867 10868 unsigned RetOpc = RISCVISD::RET_FLAG; 10869 // Interrupt service routines use different return instructions. 10870 const Function &Func = DAG.getMachineFunction().getFunction(); 10871 if (Func.hasFnAttribute("interrupt")) { 10872 if (!Func.getReturnType()->isVoidTy()) 10873 report_fatal_error( 10874 "Functions with the interrupt attribute must have void return type!"); 10875 10876 MachineFunction &MF = DAG.getMachineFunction(); 10877 StringRef Kind = 10878 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10879 10880 if (Kind == "user") 10881 RetOpc = RISCVISD::URET_FLAG; 10882 else if (Kind == "supervisor") 10883 RetOpc = RISCVISD::SRET_FLAG; 10884 else 10885 RetOpc = RISCVISD::MRET_FLAG; 10886 } 10887 10888 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 10889 } 10890 10891 void RISCVTargetLowering::validateCCReservedRegs( 10892 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 10893 MachineFunction &MF) const { 10894 const Function &F = MF.getFunction(); 10895 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10896 10897 if (llvm::any_of(Regs, [&STI](auto Reg) { 10898 return STI.isRegisterReservedByUser(Reg.first); 10899 })) 10900 F.getContext().diagnose(DiagnosticInfoUnsupported{ 10901 F, "Argument register required, but has been reserved."}); 10902 } 10903 10904 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 10905 return CI->isTailCall(); 10906 } 10907 10908 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 10909 #define NODE_NAME_CASE(NODE) \ 10910 case RISCVISD::NODE: \ 10911 return "RISCVISD::" #NODE; 10912 // clang-format off 10913 switch ((RISCVISD::NodeType)Opcode) { 10914 case RISCVISD::FIRST_NUMBER: 10915 break; 10916 NODE_NAME_CASE(RET_FLAG) 10917 NODE_NAME_CASE(URET_FLAG) 10918 NODE_NAME_CASE(SRET_FLAG) 10919 NODE_NAME_CASE(MRET_FLAG) 10920 NODE_NAME_CASE(CALL) 10921 NODE_NAME_CASE(SELECT_CC) 10922 NODE_NAME_CASE(BR_CC) 10923 NODE_NAME_CASE(BuildPairF64) 10924 NODE_NAME_CASE(SplitF64) 10925 NODE_NAME_CASE(TAIL) 10926 NODE_NAME_CASE(MULHSU) 10927 NODE_NAME_CASE(SLLW) 10928 NODE_NAME_CASE(SRAW) 10929 NODE_NAME_CASE(SRLW) 10930 NODE_NAME_CASE(DIVW) 10931 NODE_NAME_CASE(DIVUW) 10932 NODE_NAME_CASE(REMUW) 10933 NODE_NAME_CASE(ROLW) 10934 NODE_NAME_CASE(RORW) 10935 NODE_NAME_CASE(CLZW) 10936 NODE_NAME_CASE(CTZW) 10937 NODE_NAME_CASE(FSLW) 10938 NODE_NAME_CASE(FSRW) 10939 NODE_NAME_CASE(FSL) 10940 NODE_NAME_CASE(FSR) 10941 NODE_NAME_CASE(FMV_H_X) 10942 NODE_NAME_CASE(FMV_X_ANYEXTH) 10943 NODE_NAME_CASE(FMV_X_SIGNEXTH) 10944 NODE_NAME_CASE(FMV_W_X_RV64) 10945 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 10946 NODE_NAME_CASE(FCVT_X) 10947 NODE_NAME_CASE(FCVT_XU) 10948 NODE_NAME_CASE(FCVT_W_RV64) 10949 NODE_NAME_CASE(FCVT_WU_RV64) 10950 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 10951 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 10952 NODE_NAME_CASE(READ_CYCLE_WIDE) 10953 NODE_NAME_CASE(GREV) 10954 NODE_NAME_CASE(GREVW) 10955 NODE_NAME_CASE(GORC) 10956 NODE_NAME_CASE(GORCW) 10957 NODE_NAME_CASE(SHFL) 10958 NODE_NAME_CASE(SHFLW) 10959 NODE_NAME_CASE(UNSHFL) 10960 NODE_NAME_CASE(UNSHFLW) 10961 NODE_NAME_CASE(BFP) 10962 NODE_NAME_CASE(BFPW) 10963 NODE_NAME_CASE(BCOMPRESS) 10964 NODE_NAME_CASE(BCOMPRESSW) 10965 NODE_NAME_CASE(BDECOMPRESS) 10966 NODE_NAME_CASE(BDECOMPRESSW) 10967 NODE_NAME_CASE(VMV_V_X_VL) 10968 NODE_NAME_CASE(VFMV_V_F_VL) 10969 NODE_NAME_CASE(VMV_X_S) 10970 NODE_NAME_CASE(VMV_S_X_VL) 10971 NODE_NAME_CASE(VFMV_S_F_VL) 10972 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 10973 NODE_NAME_CASE(READ_VLENB) 10974 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 10975 NODE_NAME_CASE(VSLIDEUP_VL) 10976 NODE_NAME_CASE(VSLIDE1UP_VL) 10977 NODE_NAME_CASE(VSLIDEDOWN_VL) 10978 NODE_NAME_CASE(VSLIDE1DOWN_VL) 10979 NODE_NAME_CASE(VID_VL) 10980 NODE_NAME_CASE(VFNCVT_ROD_VL) 10981 NODE_NAME_CASE(VECREDUCE_ADD_VL) 10982 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 10983 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 10984 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 10985 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 10986 NODE_NAME_CASE(VECREDUCE_AND_VL) 10987 NODE_NAME_CASE(VECREDUCE_OR_VL) 10988 NODE_NAME_CASE(VECREDUCE_XOR_VL) 10989 NODE_NAME_CASE(VECREDUCE_FADD_VL) 10990 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 10991 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 10992 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 10993 NODE_NAME_CASE(ADD_VL) 10994 NODE_NAME_CASE(AND_VL) 10995 NODE_NAME_CASE(MUL_VL) 10996 NODE_NAME_CASE(OR_VL) 10997 NODE_NAME_CASE(SDIV_VL) 10998 NODE_NAME_CASE(SHL_VL) 10999 NODE_NAME_CASE(SREM_VL) 11000 NODE_NAME_CASE(SRA_VL) 11001 NODE_NAME_CASE(SRL_VL) 11002 NODE_NAME_CASE(SUB_VL) 11003 NODE_NAME_CASE(UDIV_VL) 11004 NODE_NAME_CASE(UREM_VL) 11005 NODE_NAME_CASE(XOR_VL) 11006 NODE_NAME_CASE(SADDSAT_VL) 11007 NODE_NAME_CASE(UADDSAT_VL) 11008 NODE_NAME_CASE(SSUBSAT_VL) 11009 NODE_NAME_CASE(USUBSAT_VL) 11010 NODE_NAME_CASE(FADD_VL) 11011 NODE_NAME_CASE(FSUB_VL) 11012 NODE_NAME_CASE(FMUL_VL) 11013 NODE_NAME_CASE(FDIV_VL) 11014 NODE_NAME_CASE(FNEG_VL) 11015 NODE_NAME_CASE(FABS_VL) 11016 NODE_NAME_CASE(FSQRT_VL) 11017 NODE_NAME_CASE(FMA_VL) 11018 NODE_NAME_CASE(FCOPYSIGN_VL) 11019 NODE_NAME_CASE(SMIN_VL) 11020 NODE_NAME_CASE(SMAX_VL) 11021 NODE_NAME_CASE(UMIN_VL) 11022 NODE_NAME_CASE(UMAX_VL) 11023 NODE_NAME_CASE(FMINNUM_VL) 11024 NODE_NAME_CASE(FMAXNUM_VL) 11025 NODE_NAME_CASE(MULHS_VL) 11026 NODE_NAME_CASE(MULHU_VL) 11027 NODE_NAME_CASE(FP_TO_SINT_VL) 11028 NODE_NAME_CASE(FP_TO_UINT_VL) 11029 NODE_NAME_CASE(SINT_TO_FP_VL) 11030 NODE_NAME_CASE(UINT_TO_FP_VL) 11031 NODE_NAME_CASE(FP_EXTEND_VL) 11032 NODE_NAME_CASE(FP_ROUND_VL) 11033 NODE_NAME_CASE(VWMUL_VL) 11034 NODE_NAME_CASE(VWMULU_VL) 11035 NODE_NAME_CASE(VWMULSU_VL) 11036 NODE_NAME_CASE(VWADD_VL) 11037 NODE_NAME_CASE(VWADDU_VL) 11038 NODE_NAME_CASE(VWSUB_VL) 11039 NODE_NAME_CASE(VWSUBU_VL) 11040 NODE_NAME_CASE(VWADD_W_VL) 11041 NODE_NAME_CASE(VWADDU_W_VL) 11042 NODE_NAME_CASE(VWSUB_W_VL) 11043 NODE_NAME_CASE(VWSUBU_W_VL) 11044 NODE_NAME_CASE(SETCC_VL) 11045 NODE_NAME_CASE(VSELECT_VL) 11046 NODE_NAME_CASE(VP_MERGE_VL) 11047 NODE_NAME_CASE(VMAND_VL) 11048 NODE_NAME_CASE(VMOR_VL) 11049 NODE_NAME_CASE(VMXOR_VL) 11050 NODE_NAME_CASE(VMCLR_VL) 11051 NODE_NAME_CASE(VMSET_VL) 11052 NODE_NAME_CASE(VRGATHER_VX_VL) 11053 NODE_NAME_CASE(VRGATHER_VV_VL) 11054 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 11055 NODE_NAME_CASE(VSEXT_VL) 11056 NODE_NAME_CASE(VZEXT_VL) 11057 NODE_NAME_CASE(VCPOP_VL) 11058 NODE_NAME_CASE(READ_CSR) 11059 NODE_NAME_CASE(WRITE_CSR) 11060 NODE_NAME_CASE(SWAP_CSR) 11061 } 11062 // clang-format on 11063 return nullptr; 11064 #undef NODE_NAME_CASE 11065 } 11066 11067 /// getConstraintType - Given a constraint letter, return the type of 11068 /// constraint it is for this target. 11069 RISCVTargetLowering::ConstraintType 11070 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 11071 if (Constraint.size() == 1) { 11072 switch (Constraint[0]) { 11073 default: 11074 break; 11075 case 'f': 11076 return C_RegisterClass; 11077 case 'I': 11078 case 'J': 11079 case 'K': 11080 return C_Immediate; 11081 case 'A': 11082 return C_Memory; 11083 case 'S': // A symbolic address 11084 return C_Other; 11085 } 11086 } else { 11087 if (Constraint == "vr" || Constraint == "vm") 11088 return C_RegisterClass; 11089 } 11090 return TargetLowering::getConstraintType(Constraint); 11091 } 11092 11093 std::pair<unsigned, const TargetRegisterClass *> 11094 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 11095 StringRef Constraint, 11096 MVT VT) const { 11097 // First, see if this is a constraint that directly corresponds to a 11098 // RISCV register class. 11099 if (Constraint.size() == 1) { 11100 switch (Constraint[0]) { 11101 case 'r': 11102 // TODO: Support fixed vectors up to XLen for P extension? 11103 if (VT.isVector()) 11104 break; 11105 return std::make_pair(0U, &RISCV::GPRRegClass); 11106 case 'f': 11107 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 11108 return std::make_pair(0U, &RISCV::FPR16RegClass); 11109 if (Subtarget.hasStdExtF() && VT == MVT::f32) 11110 return std::make_pair(0U, &RISCV::FPR32RegClass); 11111 if (Subtarget.hasStdExtD() && VT == MVT::f64) 11112 return std::make_pair(0U, &RISCV::FPR64RegClass); 11113 break; 11114 default: 11115 break; 11116 } 11117 } else if (Constraint == "vr") { 11118 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 11119 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 11120 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 11121 return std::make_pair(0U, RC); 11122 } 11123 } else if (Constraint == "vm") { 11124 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 11125 return std::make_pair(0U, &RISCV::VMV0RegClass); 11126 } 11127 11128 // Clang will correctly decode the usage of register name aliases into their 11129 // official names. However, other frontends like `rustc` do not. This allows 11130 // users of these frontends to use the ABI names for registers in LLVM-style 11131 // register constraints. 11132 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 11133 .Case("{zero}", RISCV::X0) 11134 .Case("{ra}", RISCV::X1) 11135 .Case("{sp}", RISCV::X2) 11136 .Case("{gp}", RISCV::X3) 11137 .Case("{tp}", RISCV::X4) 11138 .Case("{t0}", RISCV::X5) 11139 .Case("{t1}", RISCV::X6) 11140 .Case("{t2}", RISCV::X7) 11141 .Cases("{s0}", "{fp}", RISCV::X8) 11142 .Case("{s1}", RISCV::X9) 11143 .Case("{a0}", RISCV::X10) 11144 .Case("{a1}", RISCV::X11) 11145 .Case("{a2}", RISCV::X12) 11146 .Case("{a3}", RISCV::X13) 11147 .Case("{a4}", RISCV::X14) 11148 .Case("{a5}", RISCV::X15) 11149 .Case("{a6}", RISCV::X16) 11150 .Case("{a7}", RISCV::X17) 11151 .Case("{s2}", RISCV::X18) 11152 .Case("{s3}", RISCV::X19) 11153 .Case("{s4}", RISCV::X20) 11154 .Case("{s5}", RISCV::X21) 11155 .Case("{s6}", RISCV::X22) 11156 .Case("{s7}", RISCV::X23) 11157 .Case("{s8}", RISCV::X24) 11158 .Case("{s9}", RISCV::X25) 11159 .Case("{s10}", RISCV::X26) 11160 .Case("{s11}", RISCV::X27) 11161 .Case("{t3}", RISCV::X28) 11162 .Case("{t4}", RISCV::X29) 11163 .Case("{t5}", RISCV::X30) 11164 .Case("{t6}", RISCV::X31) 11165 .Default(RISCV::NoRegister); 11166 if (XRegFromAlias != RISCV::NoRegister) 11167 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 11168 11169 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 11170 // TableGen record rather than the AsmName to choose registers for InlineAsm 11171 // constraints, plus we want to match those names to the widest floating point 11172 // register type available, manually select floating point registers here. 11173 // 11174 // The second case is the ABI name of the register, so that frontends can also 11175 // use the ABI names in register constraint lists. 11176 if (Subtarget.hasStdExtF()) { 11177 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 11178 .Cases("{f0}", "{ft0}", RISCV::F0_F) 11179 .Cases("{f1}", "{ft1}", RISCV::F1_F) 11180 .Cases("{f2}", "{ft2}", RISCV::F2_F) 11181 .Cases("{f3}", "{ft3}", RISCV::F3_F) 11182 .Cases("{f4}", "{ft4}", RISCV::F4_F) 11183 .Cases("{f5}", "{ft5}", RISCV::F5_F) 11184 .Cases("{f6}", "{ft6}", RISCV::F6_F) 11185 .Cases("{f7}", "{ft7}", RISCV::F7_F) 11186 .Cases("{f8}", "{fs0}", RISCV::F8_F) 11187 .Cases("{f9}", "{fs1}", RISCV::F9_F) 11188 .Cases("{f10}", "{fa0}", RISCV::F10_F) 11189 .Cases("{f11}", "{fa1}", RISCV::F11_F) 11190 .Cases("{f12}", "{fa2}", RISCV::F12_F) 11191 .Cases("{f13}", "{fa3}", RISCV::F13_F) 11192 .Cases("{f14}", "{fa4}", RISCV::F14_F) 11193 .Cases("{f15}", "{fa5}", RISCV::F15_F) 11194 .Cases("{f16}", "{fa6}", RISCV::F16_F) 11195 .Cases("{f17}", "{fa7}", RISCV::F17_F) 11196 .Cases("{f18}", "{fs2}", RISCV::F18_F) 11197 .Cases("{f19}", "{fs3}", RISCV::F19_F) 11198 .Cases("{f20}", "{fs4}", RISCV::F20_F) 11199 .Cases("{f21}", "{fs5}", RISCV::F21_F) 11200 .Cases("{f22}", "{fs6}", RISCV::F22_F) 11201 .Cases("{f23}", "{fs7}", RISCV::F23_F) 11202 .Cases("{f24}", "{fs8}", RISCV::F24_F) 11203 .Cases("{f25}", "{fs9}", RISCV::F25_F) 11204 .Cases("{f26}", "{fs10}", RISCV::F26_F) 11205 .Cases("{f27}", "{fs11}", RISCV::F27_F) 11206 .Cases("{f28}", "{ft8}", RISCV::F28_F) 11207 .Cases("{f29}", "{ft9}", RISCV::F29_F) 11208 .Cases("{f30}", "{ft10}", RISCV::F30_F) 11209 .Cases("{f31}", "{ft11}", RISCV::F31_F) 11210 .Default(RISCV::NoRegister); 11211 if (FReg != RISCV::NoRegister) { 11212 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 11213 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 11214 unsigned RegNo = FReg - RISCV::F0_F; 11215 unsigned DReg = RISCV::F0_D + RegNo; 11216 return std::make_pair(DReg, &RISCV::FPR64RegClass); 11217 } 11218 if (VT == MVT::f32 || VT == MVT::Other) 11219 return std::make_pair(FReg, &RISCV::FPR32RegClass); 11220 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 11221 unsigned RegNo = FReg - RISCV::F0_F; 11222 unsigned HReg = RISCV::F0_H + RegNo; 11223 return std::make_pair(HReg, &RISCV::FPR16RegClass); 11224 } 11225 } 11226 } 11227 11228 if (Subtarget.hasVInstructions()) { 11229 Register VReg = StringSwitch<Register>(Constraint.lower()) 11230 .Case("{v0}", RISCV::V0) 11231 .Case("{v1}", RISCV::V1) 11232 .Case("{v2}", RISCV::V2) 11233 .Case("{v3}", RISCV::V3) 11234 .Case("{v4}", RISCV::V4) 11235 .Case("{v5}", RISCV::V5) 11236 .Case("{v6}", RISCV::V6) 11237 .Case("{v7}", RISCV::V7) 11238 .Case("{v8}", RISCV::V8) 11239 .Case("{v9}", RISCV::V9) 11240 .Case("{v10}", RISCV::V10) 11241 .Case("{v11}", RISCV::V11) 11242 .Case("{v12}", RISCV::V12) 11243 .Case("{v13}", RISCV::V13) 11244 .Case("{v14}", RISCV::V14) 11245 .Case("{v15}", RISCV::V15) 11246 .Case("{v16}", RISCV::V16) 11247 .Case("{v17}", RISCV::V17) 11248 .Case("{v18}", RISCV::V18) 11249 .Case("{v19}", RISCV::V19) 11250 .Case("{v20}", RISCV::V20) 11251 .Case("{v21}", RISCV::V21) 11252 .Case("{v22}", RISCV::V22) 11253 .Case("{v23}", RISCV::V23) 11254 .Case("{v24}", RISCV::V24) 11255 .Case("{v25}", RISCV::V25) 11256 .Case("{v26}", RISCV::V26) 11257 .Case("{v27}", RISCV::V27) 11258 .Case("{v28}", RISCV::V28) 11259 .Case("{v29}", RISCV::V29) 11260 .Case("{v30}", RISCV::V30) 11261 .Case("{v31}", RISCV::V31) 11262 .Default(RISCV::NoRegister); 11263 if (VReg != RISCV::NoRegister) { 11264 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 11265 return std::make_pair(VReg, &RISCV::VMRegClass); 11266 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 11267 return std::make_pair(VReg, &RISCV::VRRegClass); 11268 for (const auto *RC : 11269 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 11270 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 11271 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 11272 return std::make_pair(VReg, RC); 11273 } 11274 } 11275 } 11276 } 11277 11278 std::pair<Register, const TargetRegisterClass *> Res = 11279 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11280 11281 // If we picked one of the Zfinx register classes, remap it to the GPR class. 11282 // FIXME: When Zfinx is supported in CodeGen this will need to take the 11283 // Subtarget into account. 11284 if (Res.second == &RISCV::GPRF16RegClass || 11285 Res.second == &RISCV::GPRF32RegClass || 11286 Res.second == &RISCV::GPRF64RegClass) 11287 return std::make_pair(Res.first, &RISCV::GPRRegClass); 11288 11289 return Res; 11290 } 11291 11292 unsigned 11293 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 11294 // Currently only support length 1 constraints. 11295 if (ConstraintCode.size() == 1) { 11296 switch (ConstraintCode[0]) { 11297 case 'A': 11298 return InlineAsm::Constraint_A; 11299 default: 11300 break; 11301 } 11302 } 11303 11304 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 11305 } 11306 11307 void RISCVTargetLowering::LowerAsmOperandForConstraint( 11308 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 11309 SelectionDAG &DAG) const { 11310 // Currently only support length 1 constraints. 11311 if (Constraint.length() == 1) { 11312 switch (Constraint[0]) { 11313 case 'I': 11314 // Validate & create a 12-bit signed immediate operand. 11315 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 11316 uint64_t CVal = C->getSExtValue(); 11317 if (isInt<12>(CVal)) 11318 Ops.push_back( 11319 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 11320 } 11321 return; 11322 case 'J': 11323 // Validate & create an integer zero operand. 11324 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 11325 if (C->getZExtValue() == 0) 11326 Ops.push_back( 11327 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 11328 return; 11329 case 'K': 11330 // Validate & create a 5-bit unsigned immediate operand. 11331 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 11332 uint64_t CVal = C->getZExtValue(); 11333 if (isUInt<5>(CVal)) 11334 Ops.push_back( 11335 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 11336 } 11337 return; 11338 case 'S': 11339 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 11340 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 11341 GA->getValueType(0))); 11342 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 11343 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 11344 BA->getValueType(0))); 11345 } 11346 return; 11347 default: 11348 break; 11349 } 11350 } 11351 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11352 } 11353 11354 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11355 Instruction *Inst, 11356 AtomicOrdering Ord) const { 11357 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 11358 return Builder.CreateFence(Ord); 11359 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 11360 return Builder.CreateFence(AtomicOrdering::Release); 11361 return nullptr; 11362 } 11363 11364 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11365 Instruction *Inst, 11366 AtomicOrdering Ord) const { 11367 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 11368 return Builder.CreateFence(AtomicOrdering::Acquire); 11369 return nullptr; 11370 } 11371 11372 TargetLowering::AtomicExpansionKind 11373 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 11374 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 11375 // point operations can't be used in an lr/sc sequence without breaking the 11376 // forward-progress guarantee. 11377 if (AI->isFloatingPointOperation()) 11378 return AtomicExpansionKind::CmpXChg; 11379 11380 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 11381 if (Size == 8 || Size == 16) 11382 return AtomicExpansionKind::MaskedIntrinsic; 11383 return AtomicExpansionKind::None; 11384 } 11385 11386 static Intrinsic::ID 11387 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 11388 if (XLen == 32) { 11389 switch (BinOp) { 11390 default: 11391 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11392 case AtomicRMWInst::Xchg: 11393 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 11394 case AtomicRMWInst::Add: 11395 return Intrinsic::riscv_masked_atomicrmw_add_i32; 11396 case AtomicRMWInst::Sub: 11397 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 11398 case AtomicRMWInst::Nand: 11399 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 11400 case AtomicRMWInst::Max: 11401 return Intrinsic::riscv_masked_atomicrmw_max_i32; 11402 case AtomicRMWInst::Min: 11403 return Intrinsic::riscv_masked_atomicrmw_min_i32; 11404 case AtomicRMWInst::UMax: 11405 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 11406 case AtomicRMWInst::UMin: 11407 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 11408 } 11409 } 11410 11411 if (XLen == 64) { 11412 switch (BinOp) { 11413 default: 11414 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11415 case AtomicRMWInst::Xchg: 11416 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 11417 case AtomicRMWInst::Add: 11418 return Intrinsic::riscv_masked_atomicrmw_add_i64; 11419 case AtomicRMWInst::Sub: 11420 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 11421 case AtomicRMWInst::Nand: 11422 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 11423 case AtomicRMWInst::Max: 11424 return Intrinsic::riscv_masked_atomicrmw_max_i64; 11425 case AtomicRMWInst::Min: 11426 return Intrinsic::riscv_masked_atomicrmw_min_i64; 11427 case AtomicRMWInst::UMax: 11428 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 11429 case AtomicRMWInst::UMin: 11430 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 11431 } 11432 } 11433 11434 llvm_unreachable("Unexpected XLen\n"); 11435 } 11436 11437 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 11438 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 11439 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 11440 unsigned XLen = Subtarget.getXLen(); 11441 Value *Ordering = 11442 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 11443 Type *Tys[] = {AlignedAddr->getType()}; 11444 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 11445 AI->getModule(), 11446 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 11447 11448 if (XLen == 64) { 11449 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 11450 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11451 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 11452 } 11453 11454 Value *Result; 11455 11456 // Must pass the shift amount needed to sign extend the loaded value prior 11457 // to performing a signed comparison for min/max. ShiftAmt is the number of 11458 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 11459 // is the number of bits to left+right shift the value in order to 11460 // sign-extend. 11461 if (AI->getOperation() == AtomicRMWInst::Min || 11462 AI->getOperation() == AtomicRMWInst::Max) { 11463 const DataLayout &DL = AI->getModule()->getDataLayout(); 11464 unsigned ValWidth = 11465 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 11466 Value *SextShamt = 11467 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 11468 Result = Builder.CreateCall(LrwOpScwLoop, 11469 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 11470 } else { 11471 Result = 11472 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 11473 } 11474 11475 if (XLen == 64) 11476 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11477 return Result; 11478 } 11479 11480 TargetLowering::AtomicExpansionKind 11481 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 11482 AtomicCmpXchgInst *CI) const { 11483 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 11484 if (Size == 8 || Size == 16) 11485 return AtomicExpansionKind::MaskedIntrinsic; 11486 return AtomicExpansionKind::None; 11487 } 11488 11489 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 11490 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 11491 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 11492 unsigned XLen = Subtarget.getXLen(); 11493 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 11494 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 11495 if (XLen == 64) { 11496 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 11497 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 11498 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11499 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 11500 } 11501 Type *Tys[] = {AlignedAddr->getType()}; 11502 Function *MaskedCmpXchg = 11503 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 11504 Value *Result = Builder.CreateCall( 11505 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 11506 if (XLen == 64) 11507 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11508 return Result; 11509 } 11510 11511 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 11512 return false; 11513 } 11514 11515 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 11516 EVT VT) const { 11517 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 11518 return false; 11519 11520 switch (FPVT.getSimpleVT().SimpleTy) { 11521 case MVT::f16: 11522 return Subtarget.hasStdExtZfh(); 11523 case MVT::f32: 11524 return Subtarget.hasStdExtF(); 11525 case MVT::f64: 11526 return Subtarget.hasStdExtD(); 11527 default: 11528 return false; 11529 } 11530 } 11531 11532 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 11533 // If we are using the small code model, we can reduce size of jump table 11534 // entry to 4 bytes. 11535 if (Subtarget.is64Bit() && !isPositionIndependent() && 11536 getTargetMachine().getCodeModel() == CodeModel::Small) { 11537 return MachineJumpTableInfo::EK_Custom32; 11538 } 11539 return TargetLowering::getJumpTableEncoding(); 11540 } 11541 11542 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 11543 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 11544 unsigned uid, MCContext &Ctx) const { 11545 assert(Subtarget.is64Bit() && !isPositionIndependent() && 11546 getTargetMachine().getCodeModel() == CodeModel::Small); 11547 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 11548 } 11549 11550 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 11551 EVT VT) const { 11552 VT = VT.getScalarType(); 11553 11554 if (!VT.isSimple()) 11555 return false; 11556 11557 switch (VT.getSimpleVT().SimpleTy) { 11558 case MVT::f16: 11559 return Subtarget.hasStdExtZfh(); 11560 case MVT::f32: 11561 return Subtarget.hasStdExtF(); 11562 case MVT::f64: 11563 return Subtarget.hasStdExtD(); 11564 default: 11565 break; 11566 } 11567 11568 return false; 11569 } 11570 11571 Register RISCVTargetLowering::getExceptionPointerRegister( 11572 const Constant *PersonalityFn) const { 11573 return RISCV::X10; 11574 } 11575 11576 Register RISCVTargetLowering::getExceptionSelectorRegister( 11577 const Constant *PersonalityFn) const { 11578 return RISCV::X11; 11579 } 11580 11581 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 11582 // Return false to suppress the unnecessary extensions if the LibCall 11583 // arguments or return value is f32 type for LP64 ABI. 11584 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 11585 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 11586 return false; 11587 11588 return true; 11589 } 11590 11591 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 11592 if (Subtarget.is64Bit() && Type == MVT::i32) 11593 return true; 11594 11595 return IsSigned; 11596 } 11597 11598 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 11599 SDValue C) const { 11600 // Check integral scalar types. 11601 if (VT.isScalarInteger()) { 11602 // Omit the optimization if the sub target has the M extension and the data 11603 // size exceeds XLen. 11604 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 11605 return false; 11606 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 11607 // Break the MUL to a SLLI and an ADD/SUB. 11608 const APInt &Imm = ConstNode->getAPIntValue(); 11609 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 11610 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 11611 return true; 11612 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 11613 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 11614 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 11615 (Imm - 8).isPowerOf2())) 11616 return true; 11617 // Omit the following optimization if the sub target has the M extension 11618 // and the data size >= XLen. 11619 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 11620 return false; 11621 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 11622 // a pair of LUI/ADDI. 11623 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 11624 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 11625 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 11626 (1 - ImmS).isPowerOf2()) 11627 return true; 11628 } 11629 } 11630 } 11631 11632 return false; 11633 } 11634 11635 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode, 11636 SDValue ConstNode) const { 11637 // Let the DAGCombiner decide for vectors. 11638 EVT VT = AddNode.getValueType(); 11639 if (VT.isVector()) 11640 return true; 11641 11642 // Let the DAGCombiner decide for larger types. 11643 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 11644 return true; 11645 11646 // It is worse if c1 is simm12 while c1*c2 is not. 11647 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 11648 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 11649 const APInt &C1 = C1Node->getAPIntValue(); 11650 const APInt &C2 = C2Node->getAPIntValue(); 11651 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 11652 return false; 11653 11654 // Default to true and let the DAGCombiner decide. 11655 return true; 11656 } 11657 11658 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 11659 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 11660 bool *Fast) const { 11661 if (!VT.isVector()) 11662 return false; 11663 11664 EVT ElemVT = VT.getVectorElementType(); 11665 if (Alignment >= ElemVT.getStoreSize()) { 11666 if (Fast) 11667 *Fast = true; 11668 return true; 11669 } 11670 11671 return false; 11672 } 11673 11674 bool RISCVTargetLowering::splitValueIntoRegisterParts( 11675 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 11676 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 11677 bool IsABIRegCopy = CC.hasValue(); 11678 EVT ValueVT = Val.getValueType(); 11679 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11680 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 11681 // and cast to f32. 11682 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 11683 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 11684 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 11685 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 11686 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 11687 Parts[0] = Val; 11688 return true; 11689 } 11690 11691 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11692 LLVMContext &Context = *DAG.getContext(); 11693 EVT ValueEltVT = ValueVT.getVectorElementType(); 11694 EVT PartEltVT = PartVT.getVectorElementType(); 11695 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11696 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11697 if (PartVTBitSize % ValueVTBitSize == 0) { 11698 assert(PartVTBitSize >= ValueVTBitSize); 11699 // If the element types are different, bitcast to the same element type of 11700 // PartVT first. 11701 // Give an example here, we want copy a <vscale x 1 x i8> value to 11702 // <vscale x 4 x i16>. 11703 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 11704 // subvector, then we can bitcast to <vscale x 4 x i16>. 11705 if (ValueEltVT != PartEltVT) { 11706 if (PartVTBitSize > ValueVTBitSize) { 11707 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11708 assert(Count != 0 && "The number of element should not be zero."); 11709 EVT SameEltTypeVT = 11710 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11711 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 11712 DAG.getUNDEF(SameEltTypeVT), Val, 11713 DAG.getVectorIdxConstant(0, DL)); 11714 } 11715 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 11716 } else { 11717 Val = 11718 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 11719 Val, DAG.getVectorIdxConstant(0, DL)); 11720 } 11721 Parts[0] = Val; 11722 return true; 11723 } 11724 } 11725 return false; 11726 } 11727 11728 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 11729 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 11730 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 11731 bool IsABIRegCopy = CC.hasValue(); 11732 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11733 SDValue Val = Parts[0]; 11734 11735 // Cast the f32 to i32, truncate to i16, and cast back to f16. 11736 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 11737 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 11738 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 11739 return Val; 11740 } 11741 11742 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11743 LLVMContext &Context = *DAG.getContext(); 11744 SDValue Val = Parts[0]; 11745 EVT ValueEltVT = ValueVT.getVectorElementType(); 11746 EVT PartEltVT = PartVT.getVectorElementType(); 11747 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11748 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11749 if (PartVTBitSize % ValueVTBitSize == 0) { 11750 assert(PartVTBitSize >= ValueVTBitSize); 11751 EVT SameEltTypeVT = ValueVT; 11752 // If the element types are different, convert it to the same element type 11753 // of PartVT. 11754 // Give an example here, we want copy a <vscale x 1 x i8> value from 11755 // <vscale x 4 x i16>. 11756 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 11757 // then we can extract <vscale x 1 x i8>. 11758 if (ValueEltVT != PartEltVT) { 11759 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11760 assert(Count != 0 && "The number of element should not be zero."); 11761 SameEltTypeVT = 11762 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11763 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 11764 } 11765 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 11766 DAG.getVectorIdxConstant(0, DL)); 11767 return Val; 11768 } 11769 } 11770 return SDValue(); 11771 } 11772 11773 SDValue 11774 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 11775 SelectionDAG &DAG, 11776 SmallVectorImpl<SDNode *> &Created) const { 11777 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 11778 if (isIntDivCheap(N->getValueType(0), Attr)) 11779 return SDValue(N, 0); // Lower SDIV as SDIV 11780 11781 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 11782 "Unexpected divisor!"); 11783 11784 // Conditional move is needed, so do the transformation iff Zbt is enabled. 11785 if (!Subtarget.hasStdExtZbt()) 11786 return SDValue(); 11787 11788 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 11789 // Besides, more critical path instructions will be generated when dividing 11790 // by 2. So we keep using the original DAGs for these cases. 11791 unsigned Lg2 = Divisor.countTrailingZeros(); 11792 if (Lg2 == 1 || Lg2 >= 12) 11793 return SDValue(); 11794 11795 // fold (sdiv X, pow2) 11796 EVT VT = N->getValueType(0); 11797 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 11798 return SDValue(); 11799 11800 SDLoc DL(N); 11801 SDValue N0 = N->getOperand(0); 11802 SDValue Zero = DAG.getConstant(0, DL, VT); 11803 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 11804 11805 // Add (N0 < 0) ? Pow2 - 1 : 0; 11806 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 11807 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 11808 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 11809 11810 Created.push_back(Cmp.getNode()); 11811 Created.push_back(Add.getNode()); 11812 Created.push_back(Sel.getNode()); 11813 11814 // Divide by pow2. 11815 SDValue SRA = 11816 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 11817 11818 // If we're dividing by a positive value, we're done. Otherwise, we must 11819 // negate the result. 11820 if (Divisor.isNonNegative()) 11821 return SRA; 11822 11823 Created.push_back(SRA.getNode()); 11824 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 11825 } 11826 11827 #define GET_REGISTER_MATCHER 11828 #include "RISCVGenAsmMatcher.inc" 11829 11830 Register 11831 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 11832 const MachineFunction &MF) const { 11833 Register Reg = MatchRegisterAltName(RegName); 11834 if (Reg == RISCV::NoRegister) 11835 Reg = MatchRegisterName(RegName); 11836 if (Reg == RISCV::NoRegister) 11837 report_fatal_error( 11838 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 11839 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 11840 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 11841 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 11842 StringRef(RegName) + "\".")); 11843 return Reg; 11844 } 11845 11846 namespace llvm { 11847 namespace RISCVVIntrinsicsTable { 11848 11849 #define GET_RISCVVIntrinsicsTable_IMPL 11850 #include "RISCVGenSearchableTables.inc" 11851 11852 } // namespace RISCVVIntrinsicsTable 11853 11854 } // namespace llvm 11855