1 //===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "RISCVMatInt.h" 10 #include "MCTargetDesc/RISCVMCTargetDesc.h" 11 #include "llvm/ADT/APInt.h" 12 #include "llvm/Support/MathExtras.h" 13 using namespace llvm; 14 15 static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) { 16 if (!HasRVC) 17 return Res.size(); 18 19 int Cost = 0; 20 for (auto Instr : Res) { 21 bool Compressed; 22 switch (Instr.Opc) { 23 default: llvm_unreachable("Unexpected opcode"); 24 case RISCV::SLLI: 25 case RISCV::SRLI: 26 Compressed = true; 27 break; 28 case RISCV::ADDI: 29 case RISCV::ADDIW: 30 case RISCV::LUI: 31 Compressed = isInt<6>(Instr.Imm); 32 break; 33 case RISCV::ADDUW: 34 Compressed = false; 35 break; 36 } 37 // Two RVC instructions take the same space as one RVI instruction, but 38 // can take longer to execute than the single RVI instruction. Thus, we 39 // consider that two RVC instruction are slightly more costly than one 40 // RVI instruction. For longer sequences of RVC instructions the space 41 // savings can be worth it, though. The costs below try to model that. 42 if (!Compressed) 43 Cost += 100; // Baseline cost of one RVI instruction: 100%. 44 else 45 Cost += 70; // 70% cost of baseline. 46 } 47 return Cost; 48 } 49 50 // Recursively generate a sequence for materializing an integer. 51 static void generateInstSeqImpl(int64_t Val, 52 const FeatureBitset &ActiveFeatures, 53 RISCVMatInt::InstSeq &Res) { 54 bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit]; 55 56 if (isInt<32>(Val)) { 57 // Depending on the active bits in the immediate Value v, the following 58 // instruction sequences are emitted: 59 // 60 // v == 0 : ADDI 61 // v[0,12) != 0 && v[12,32) == 0 : ADDI 62 // v[0,12) == 0 && v[12,32) != 0 : LUI 63 // v[0,32) != 0 : LUI+ADDI(W) 64 int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF; 65 int64_t Lo12 = SignExtend64<12>(Val); 66 67 if (Hi20) 68 Res.push_back(RISCVMatInt::Inst(RISCV::LUI, Hi20)); 69 70 if (Lo12 || Hi20 == 0) { 71 unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI; 72 Res.push_back(RISCVMatInt::Inst(AddiOpc, Lo12)); 73 } 74 return; 75 } 76 77 assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target"); 78 79 // In the worst case, for a full 64-bit constant, a sequence of 8 instructions 80 // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note 81 // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits 82 // while the following ADDI instructions contribute up to 12 bits each. 83 // 84 // On the first glance, implementing this seems to be possible by simply 85 // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left 86 // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the 87 // fact that ADDI performs a sign extended addition, doing it like that would 88 // only be possible when at most 11 bits of the ADDI instructions are used. 89 // Using all 12 bits of the ADDI instructions, like done by GAS, actually 90 // requires that the constant is processed starting with the least significant 91 // bit. 92 // 93 // In the following, constants are processed from LSB to MSB but instruction 94 // emission is performed from MSB to LSB by recursively calling 95 // generateInstSeq. In each recursion, first the lowest 12 bits are removed 96 // from the constant and the optimal shift amount, which can be greater than 97 // 12 bits if the constant is sparse, is determined. Then, the shifted 98 // remaining constant is processed recursively and gets emitted as soon as it 99 // fits into 32 bits. The emission of the shifts and additions is subsequently 100 // performed when the recursion returns. 101 102 int64_t Lo12 = SignExtend64<12>(Val); 103 int64_t Hi52 = ((uint64_t)Val + 0x800ull) >> 12; 104 int ShiftAmount = 12 + findFirstSet((uint64_t)Hi52); 105 Hi52 = SignExtend64(Hi52 >> (ShiftAmount - 12), 64 - ShiftAmount); 106 107 // If the remaining bits don't fit in 12 bits, we might be able to reduce the 108 // shift amount in order to use LUI which will zero the lower 12 bits. 109 bool Unsigned = false; 110 if (ShiftAmount > 12 && !isInt<12>(Hi52)) { 111 if (isInt<32>((uint64_t)Hi52 << 12)) { 112 // Reduce the shift amount and add zeros to the LSBs so it will match LUI. 113 ShiftAmount -= 12; 114 Hi52 = (uint64_t)Hi52 << 12; 115 } else if (isUInt<32>((uint64_t)Hi52 << 12) && 116 ActiveFeatures[RISCV::FeatureStdExtZba]) { 117 // Reduce the shift amount and add zeros to the LSBs so it will match 118 // LUI, then shift left with SLLI.UW to clear the upper 32 set bits. 119 ShiftAmount -= 12; 120 Hi52 = ((uint64_t)Hi52 << 12) | (0xffffffffull << 32); 121 Unsigned = true; 122 } 123 } 124 125 generateInstSeqImpl(Hi52, ActiveFeatures, Res); 126 127 if (Unsigned) 128 Res.push_back(RISCVMatInt::Inst(RISCV::SLLIUW, ShiftAmount)); 129 else 130 Res.push_back(RISCVMatInt::Inst(RISCV::SLLI, ShiftAmount)); 131 if (Lo12) 132 Res.push_back(RISCVMatInt::Inst(RISCV::ADDI, Lo12)); 133 } 134 135 namespace llvm { 136 namespace RISCVMatInt { 137 InstSeq generateInstSeq(int64_t Val, const FeatureBitset &ActiveFeatures) { 138 RISCVMatInt::InstSeq Res; 139 generateInstSeqImpl(Val, ActiveFeatures, Res); 140 141 // If the constant is positive we might be able to generate a shifted constant 142 // with no leading zeros and use a final SRLI to restore them. 143 if (Val > 0 && Res.size() > 2) { 144 assert(ActiveFeatures[RISCV::Feature64Bit] && 145 "Expected RV32 to only need 2 instructions"); 146 unsigned LeadingZeros = countLeadingZeros((uint64_t)Val); 147 uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros; 148 // Fill in the bits that will be shifted out with 1s. An example where this 149 // helps is trailing one masks with 32 or more ones. This will generate 150 // ADDI -1 and an SRLI. 151 ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros); 152 153 RISCVMatInt::InstSeq TmpSeq; 154 generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq); 155 TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros)); 156 157 // Keep the new sequence if it is an improvement. 158 if (TmpSeq.size() < Res.size()) { 159 Res = TmpSeq; 160 // A 2 instruction sequence is the best we can do. 161 if (Res.size() <= 2) 162 return Res; 163 } 164 165 // Some cases can benefit from filling the lower bits with zeros instead. 166 ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros); 167 TmpSeq.clear(); 168 generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq); 169 TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros)); 170 171 // Keep the new sequence if it is an improvement. 172 if (TmpSeq.size() < Res.size()) { 173 Res = TmpSeq; 174 // A 2 instruction sequence is the best we can do. 175 if (Res.size() <= 2) 176 return Res; 177 } 178 179 // If we have exactly 32 leading zeros and Zba, we can try using zext.w at 180 // the end of the sequence. 181 if (LeadingZeros == 32 && ActiveFeatures[RISCV::FeatureStdExtZba]) { 182 // Try replacing upper bits with 1. 183 uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros); 184 TmpSeq.clear(); 185 generateInstSeqImpl(LeadingOnesVal, ActiveFeatures, TmpSeq); 186 TmpSeq.push_back(RISCVMatInt::Inst(RISCV::ADDUW, 0)); 187 188 // Keep the new sequence if it is an improvement. 189 if (TmpSeq.size() < Res.size()) { 190 Res = TmpSeq; 191 // A 2 instruction sequence is the best we can do. 192 if (Res.size() <= 2) 193 return Res; 194 } 195 } 196 } 197 198 // Perform optimization with BCLRI/BSETI in the Zbs extension. 199 if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZbs]) { 200 assert(ActiveFeatures[RISCV::Feature64Bit] && 201 "Expected RV32 to only need 2 instructions"); 202 203 // 1. For values in range 0xffffffff 7fffffff ~ 0xffffffff 00000000, 204 // call generateInstSeqImpl with Val|0x80000000 (which is expected be 205 // an int32), then emit (BCLRI r, 31). 206 // 2. For values in range 0x80000000 ~ 0xffffffff, call generateInstSeqImpl 207 // with Val&~0x80000000 (which is expected to be an int32), then 208 // emit (BSETI r, 31). 209 int64_t NewVal; 210 unsigned Opc; 211 if (Val < 0) { 212 Opc = RISCV::BCLRI; 213 NewVal = Val | 0x80000000ll; 214 } else { 215 Opc = RISCV::BSETI; 216 NewVal = Val & ~0x80000000ll; 217 } 218 if (isInt<32>(NewVal)) { 219 RISCVMatInt::InstSeq TmpSeq; 220 generateInstSeqImpl(NewVal, ActiveFeatures, TmpSeq); 221 TmpSeq.push_back(RISCVMatInt::Inst(Opc, 31)); 222 if (TmpSeq.size() < Res.size()) 223 Res = TmpSeq; 224 } 225 226 // Try to use BCLRI for upper 32 bits if the original lower 32 bits are 227 // negative int32, or use BSETI for upper 32 bits if the original lower 228 // 32 bits are positive int32. 229 int32_t Lo = Val; 230 uint32_t Hi = Val >> 32; 231 Opc = 0; 232 RISCVMatInt::InstSeq TmpSeq; 233 generateInstSeqImpl(Lo, ActiveFeatures, TmpSeq); 234 // Check if it is profitable to use BCLRI/BSETI. 235 if (Lo > 0 && TmpSeq.size() + countPopulation(Hi) < Res.size()) { 236 Opc = RISCV::BSETI; 237 } else if (Lo < 0 && TmpSeq.size() + countPopulation(~Hi) < Res.size()) { 238 Opc = RISCV::BCLRI; 239 Hi = ~Hi; 240 } 241 // Search for each bit and build corresponding BCLRI/BSETI. 242 if (Opc > 0) { 243 while (Hi != 0) { 244 unsigned Bit = countTrailingZeros(Hi); 245 TmpSeq.push_back(RISCVMatInt::Inst(Opc, Bit + 32)); 246 Hi &= ~(1 << Bit); 247 } 248 if (TmpSeq.size() < Res.size()) 249 Res = TmpSeq; 250 } 251 } 252 253 return Res; 254 } 255 256 int getIntMatCost(const APInt &Val, unsigned Size, 257 const FeatureBitset &ActiveFeatures, 258 bool CompressionCost) { 259 bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit]; 260 bool HasRVC = CompressionCost && ActiveFeatures[RISCV::FeatureStdExtC]; 261 int PlatRegSize = IsRV64 ? 64 : 32; 262 263 // Split the constant into platform register sized chunks, and calculate cost 264 // of each chunk. 265 int Cost = 0; 266 for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) { 267 APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize); 268 InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), ActiveFeatures); 269 Cost += getInstSeqCost(MatSeq, HasRVC); 270 } 271 return std::max(1, Cost); 272 } 273 } // namespace RISCVMatInt 274 } // namespace llvm 275