1 //===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "RISCVMatInt.h" 10 #include "MCTargetDesc/RISCVMCTargetDesc.h" 11 #include "llvm/ADT/APInt.h" 12 #include "llvm/Support/MathExtras.h" 13 using namespace llvm; 14 15 static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) { 16 if (!HasRVC) 17 return Res.size(); 18 19 int Cost = 0; 20 for (auto Instr : Res) { 21 // Assume instructions that aren't listed aren't compressible. 22 bool Compressed = false; 23 switch (Instr.Opc) { 24 case RISCV::SLLI: 25 case RISCV::SRLI: 26 Compressed = true; 27 break; 28 case RISCV::ADDI: 29 case RISCV::ADDIW: 30 case RISCV::LUI: 31 Compressed = isInt<6>(Instr.Imm); 32 break; 33 } 34 // Two RVC instructions take the same space as one RVI instruction, but 35 // can take longer to execute than the single RVI instruction. Thus, we 36 // consider that two RVC instruction are slightly more costly than one 37 // RVI instruction. For longer sequences of RVC instructions the space 38 // savings can be worth it, though. The costs below try to model that. 39 if (!Compressed) 40 Cost += 100; // Baseline cost of one RVI instruction: 100%. 41 else 42 Cost += 70; // 70% cost of baseline. 43 } 44 return Cost; 45 } 46 47 // Recursively generate a sequence for materializing an integer. 48 static void generateInstSeqImpl(int64_t Val, 49 const FeatureBitset &ActiveFeatures, 50 RISCVMatInt::InstSeq &Res) { 51 bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit]; 52 53 if (isInt<32>(Val)) { 54 // Depending on the active bits in the immediate Value v, the following 55 // instruction sequences are emitted: 56 // 57 // v == 0 : ADDI 58 // v[0,12) != 0 && v[12,32) == 0 : ADDI 59 // v[0,12) == 0 && v[12,32) != 0 : LUI 60 // v[0,32) != 0 : LUI+ADDI(W) 61 int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF; 62 int64_t Lo12 = SignExtend64<12>(Val); 63 64 if (Hi20) 65 Res.push_back(RISCVMatInt::Inst(RISCV::LUI, Hi20)); 66 67 if (Lo12 || Hi20 == 0) { 68 unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI; 69 Res.push_back(RISCVMatInt::Inst(AddiOpc, Lo12)); 70 } 71 return; 72 } 73 74 assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target"); 75 76 // Use BSETI for a single bit. 77 if (ActiveFeatures[RISCV::FeatureStdExtZbs] && isPowerOf2_64(Val)) { 78 Res.push_back(RISCVMatInt::Inst(RISCV::BSETI, Log2_64(Val))); 79 return; 80 } 81 82 // In the worst case, for a full 64-bit constant, a sequence of 8 instructions 83 // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note 84 // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits 85 // while the following ADDI instructions contribute up to 12 bits each. 86 // 87 // On the first glance, implementing this seems to be possible by simply 88 // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left 89 // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the 90 // fact that ADDI performs a sign extended addition, doing it like that would 91 // only be possible when at most 11 bits of the ADDI instructions are used. 92 // Using all 12 bits of the ADDI instructions, like done by GAS, actually 93 // requires that the constant is processed starting with the least significant 94 // bit. 95 // 96 // In the following, constants are processed from LSB to MSB but instruction 97 // emission is performed from MSB to LSB by recursively calling 98 // generateInstSeq. In each recursion, first the lowest 12 bits are removed 99 // from the constant and the optimal shift amount, which can be greater than 100 // 12 bits if the constant is sparse, is determined. Then, the shifted 101 // remaining constant is processed recursively and gets emitted as soon as it 102 // fits into 32 bits. The emission of the shifts and additions is subsequently 103 // performed when the recursion returns. 104 105 int64_t Lo12 = SignExtend64<12>(Val); 106 int64_t Hi52 = ((uint64_t)Val + 0x800ull) >> 12; 107 int ShiftAmount = 12 + findFirstSet((uint64_t)Hi52); 108 Hi52 = SignExtend64(Hi52 >> (ShiftAmount - 12), 64 - ShiftAmount); 109 110 // If the remaining bits don't fit in 12 bits, we might be able to reduce the 111 // shift amount in order to use LUI which will zero the lower 12 bits. 112 bool Unsigned = false; 113 if (ShiftAmount > 12 && !isInt<12>(Hi52)) { 114 if (isInt<32>((uint64_t)Hi52 << 12)) { 115 // Reduce the shift amount and add zeros to the LSBs so it will match LUI. 116 ShiftAmount -= 12; 117 Hi52 = (uint64_t)Hi52 << 12; 118 } else if (isUInt<32>((uint64_t)Hi52 << 12) && 119 ActiveFeatures[RISCV::FeatureStdExtZba]) { 120 // Reduce the shift amount and add zeros to the LSBs so it will match 121 // LUI, then shift left with SLLI.UW to clear the upper 32 set bits. 122 ShiftAmount -= 12; 123 Hi52 = ((uint64_t)Hi52 << 12) | (0xffffffffull << 32); 124 Unsigned = true; 125 } 126 } 127 128 // Try to use SLLI_UW for Hi52 when it is uint32 but not int32. 129 if (isUInt<32>((uint64_t)Hi52) && !isInt<32>((uint64_t)Hi52) && 130 ActiveFeatures[RISCV::FeatureStdExtZba]) { 131 // Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with 132 // SLLI_UW. 133 Hi52 = ((uint64_t)Hi52) | (0xffffffffull << 32); 134 Unsigned = true; 135 } 136 137 generateInstSeqImpl(Hi52, ActiveFeatures, Res); 138 139 if (Unsigned) 140 Res.push_back(RISCVMatInt::Inst(RISCV::SLLI_UW, ShiftAmount)); 141 else 142 Res.push_back(RISCVMatInt::Inst(RISCV::SLLI, ShiftAmount)); 143 if (Lo12) 144 Res.push_back(RISCVMatInt::Inst(RISCV::ADDI, Lo12)); 145 } 146 147 static unsigned extractRotateInfo(int64_t Val) { 148 // for case: 0b111..1..xxxxxx1..1.. 149 unsigned LeadingOnes = countLeadingOnes((uint64_t)Val); 150 unsigned TrailingOnes = countTrailingOnes((uint64_t)Val); 151 if (TrailingOnes > 0 && TrailingOnes < 64 && 152 (LeadingOnes + TrailingOnes) > (64 - 12)) 153 return 64 - TrailingOnes; 154 155 // for case: 0bxxx1..1..1...xxx 156 unsigned UpperTrailingOnes = countTrailingOnes(Hi_32(Val)); 157 unsigned LowerLeadingOnes = countLeadingOnes(Lo_32(Val)); 158 if (UpperTrailingOnes < 32 && 159 (UpperTrailingOnes + LowerLeadingOnes) > (64 - 12)) 160 return 32 - UpperTrailingOnes; 161 162 return 0; 163 } 164 165 namespace llvm { 166 namespace RISCVMatInt { 167 InstSeq generateInstSeq(int64_t Val, const FeatureBitset &ActiveFeatures) { 168 RISCVMatInt::InstSeq Res; 169 generateInstSeqImpl(Val, ActiveFeatures, Res); 170 171 // If there are trailing zeros, try generating a sign extended constant with 172 // no trailing zeros and use a final SLLI to restore them. 173 if ((Val & 1) == 0 && Res.size() > 2) { 174 unsigned TrailingZeros = countTrailingZeros((uint64_t)Val); 175 int64_t ShiftedVal = Val >> TrailingZeros; 176 RISCVMatInt::InstSeq TmpSeq; 177 generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq); 178 TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SLLI, TrailingZeros)); 179 180 // Keep the new sequence if it is an improvement. 181 if (TmpSeq.size() < Res.size()) { 182 Res = TmpSeq; 183 // A 2 instruction sequence is the best we can do. 184 if (Res.size() <= 2) 185 return Res; 186 } 187 } 188 189 // If the constant is positive we might be able to generate a shifted constant 190 // with no leading zeros and use a final SRLI to restore them. 191 if (Val > 0 && Res.size() > 2) { 192 assert(ActiveFeatures[RISCV::Feature64Bit] && 193 "Expected RV32 to only need 2 instructions"); 194 unsigned LeadingZeros = countLeadingZeros((uint64_t)Val); 195 uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros; 196 // Fill in the bits that will be shifted out with 1s. An example where this 197 // helps is trailing one masks with 32 or more ones. This will generate 198 // ADDI -1 and an SRLI. 199 ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros); 200 201 RISCVMatInt::InstSeq TmpSeq; 202 generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq); 203 TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros)); 204 205 // Keep the new sequence if it is an improvement. 206 if (TmpSeq.size() < Res.size()) { 207 Res = TmpSeq; 208 // A 2 instruction sequence is the best we can do. 209 if (Res.size() <= 2) 210 return Res; 211 } 212 213 // Some cases can benefit from filling the lower bits with zeros instead. 214 ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros); 215 TmpSeq.clear(); 216 generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq); 217 TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros)); 218 219 // Keep the new sequence if it is an improvement. 220 if (TmpSeq.size() < Res.size()) { 221 Res = TmpSeq; 222 // A 2 instruction sequence is the best we can do. 223 if (Res.size() <= 2) 224 return Res; 225 } 226 227 // If we have exactly 32 leading zeros and Zba, we can try using zext.w at 228 // the end of the sequence. 229 if (LeadingZeros == 32 && ActiveFeatures[RISCV::FeatureStdExtZba]) { 230 // Try replacing upper bits with 1. 231 uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros); 232 TmpSeq.clear(); 233 generateInstSeqImpl(LeadingOnesVal, ActiveFeatures, TmpSeq); 234 TmpSeq.push_back(RISCVMatInt::Inst(RISCV::ADD_UW, 0)); 235 236 // Keep the new sequence if it is an improvement. 237 if (TmpSeq.size() < Res.size()) { 238 Res = TmpSeq; 239 // A 2 instruction sequence is the best we can do. 240 if (Res.size() <= 2) 241 return Res; 242 } 243 } 244 } 245 246 // Perform optimization with BCLRI/BSETI in the Zbs extension. 247 if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZbs]) { 248 assert(ActiveFeatures[RISCV::Feature64Bit] && 249 "Expected RV32 to only need 2 instructions"); 250 251 // 1. For values in range 0xffffffff 7fffffff ~ 0xffffffff 00000000, 252 // call generateInstSeqImpl with Val|0x80000000 (which is expected be 253 // an int32), then emit (BCLRI r, 31). 254 // 2. For values in range 0x80000000 ~ 0xffffffff, call generateInstSeqImpl 255 // with Val&~0x80000000 (which is expected to be an int32), then 256 // emit (BSETI r, 31). 257 int64_t NewVal; 258 unsigned Opc; 259 if (Val < 0) { 260 Opc = RISCV::BCLRI; 261 NewVal = Val | 0x80000000ll; 262 } else { 263 Opc = RISCV::BSETI; 264 NewVal = Val & ~0x80000000ll; 265 } 266 if (isInt<32>(NewVal)) { 267 RISCVMatInt::InstSeq TmpSeq; 268 generateInstSeqImpl(NewVal, ActiveFeatures, TmpSeq); 269 TmpSeq.push_back(RISCVMatInt::Inst(Opc, 31)); 270 if (TmpSeq.size() < Res.size()) 271 Res = TmpSeq; 272 } 273 274 // Try to use BCLRI for upper 32 bits if the original lower 32 bits are 275 // negative int32, or use BSETI for upper 32 bits if the original lower 276 // 32 bits are positive int32. 277 int32_t Lo = Val; 278 uint32_t Hi = Val >> 32; 279 Opc = 0; 280 RISCVMatInt::InstSeq TmpSeq; 281 generateInstSeqImpl(Lo, ActiveFeatures, TmpSeq); 282 // Check if it is profitable to use BCLRI/BSETI. 283 if (Lo > 0 && TmpSeq.size() + countPopulation(Hi) < Res.size()) { 284 Opc = RISCV::BSETI; 285 } else if (Lo < 0 && TmpSeq.size() + countPopulation(~Hi) < Res.size()) { 286 Opc = RISCV::BCLRI; 287 Hi = ~Hi; 288 } 289 // Search for each bit and build corresponding BCLRI/BSETI. 290 if (Opc > 0) { 291 while (Hi != 0) { 292 unsigned Bit = countTrailingZeros(Hi); 293 TmpSeq.push_back(RISCVMatInt::Inst(Opc, Bit + 32)); 294 Hi &= ~(1 << Bit); 295 } 296 if (TmpSeq.size() < Res.size()) 297 Res = TmpSeq; 298 } 299 } 300 301 // Perform optimization with SH*ADD in the Zba extension. 302 if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZba]) { 303 assert(ActiveFeatures[RISCV::Feature64Bit] && 304 "Expected RV32 to only need 2 instructions"); 305 int64_t Div = 0; 306 unsigned Opc = 0; 307 RISCVMatInt::InstSeq TmpSeq; 308 // Select the opcode and divisor. 309 if ((Val % 3) == 0 && isInt<32>(Val / 3)) { 310 Div = 3; 311 Opc = RISCV::SH1ADD; 312 } else if ((Val % 5) == 0 && isInt<32>(Val / 5)) { 313 Div = 5; 314 Opc = RISCV::SH2ADD; 315 } else if ((Val % 9) == 0 && isInt<32>(Val / 9)) { 316 Div = 9; 317 Opc = RISCV::SH3ADD; 318 } 319 // Build the new instruction sequence. 320 if (Div > 0) { 321 generateInstSeqImpl(Val / Div, ActiveFeatures, TmpSeq); 322 TmpSeq.push_back(RISCVMatInt::Inst(Opc, 0)); 323 if (TmpSeq.size() < Res.size()) 324 Res = TmpSeq; 325 } else { 326 // Try to use LUI+SH*ADD+ADDI. 327 int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull; 328 int64_t Lo12 = SignExtend64<12>(Val); 329 Div = 0; 330 if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) { 331 Div = 3; 332 Opc = RISCV::SH1ADD; 333 } else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) { 334 Div = 5; 335 Opc = RISCV::SH2ADD; 336 } else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) { 337 Div = 9; 338 Opc = RISCV::SH3ADD; 339 } 340 // Build the new instruction sequence. 341 if (Div > 0) { 342 // For Val that has zero Lo12 (implies Val equals to Hi52) should has 343 // already been processed to LUI+SH*ADD by previous optimization. 344 assert(Lo12 != 0 && 345 "unexpected instruction sequence for immediate materialisation"); 346 assert(TmpSeq.empty() && "Expected empty TmpSeq"); 347 generateInstSeqImpl(Hi52 / Div, ActiveFeatures, TmpSeq); 348 TmpSeq.push_back(RISCVMatInt::Inst(Opc, 0)); 349 TmpSeq.push_back(RISCVMatInt::Inst(RISCV::ADDI, Lo12)); 350 if (TmpSeq.size() < Res.size()) 351 Res = TmpSeq; 352 } 353 } 354 } 355 356 // Perform optimization with rori in the Zbb extension. 357 if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZbb]) { 358 if (unsigned Rotate = extractRotateInfo(Val)) { 359 RISCVMatInt::InstSeq TmpSeq; 360 uint64_t NegImm12 = 361 ((uint64_t)Val >> (64 - Rotate)) | ((uint64_t)Val << Rotate); 362 assert(isInt<12>(NegImm12)); 363 TmpSeq.push_back(RISCVMatInt::Inst(RISCV::ADDI, NegImm12)); 364 TmpSeq.push_back(RISCVMatInt::Inst(RISCV::RORI, Rotate)); 365 Res = TmpSeq; 366 } 367 } 368 return Res; 369 } 370 371 int getIntMatCost(const APInt &Val, unsigned Size, 372 const FeatureBitset &ActiveFeatures, bool CompressionCost) { 373 bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit]; 374 bool HasRVC = CompressionCost && ActiveFeatures[RISCV::FeatureStdExtC]; 375 int PlatRegSize = IsRV64 ? 64 : 32; 376 377 // Split the constant into platform register sized chunks, and calculate cost 378 // of each chunk. 379 int Cost = 0; 380 for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) { 381 APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize); 382 InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), ActiveFeatures); 383 Cost += getInstSeqCost(MatSeq, HasRVC); 384 } 385 return std::max(1, Cost); 386 } 387 } // namespace RISCVMatInt 388 } // namespace llvm 389