1 //===----------- PPCVSXSwapRemoval.cpp - Remove VSX LE Swaps -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===---------------------------------------------------------------------===// 8 // 9 // This pass analyzes vector computations and removes unnecessary 10 // doubleword swaps (xxswapd instructions). This pass is performed 11 // only for little-endian VSX code generation. 12 // 13 // For this specific case, loads and stores of v4i32, v4f32, v2i64, 14 // and v2f64 vectors are inefficient. These are implemented using 15 // the lxvd2x and stxvd2x instructions, which invert the order of 16 // doublewords in a vector register. Thus code generation inserts 17 // an xxswapd after each such load, and prior to each such store. 18 // 19 // The extra xxswapd instructions reduce performance. The purpose 20 // of this pass is to reduce the number of xxswapd instructions 21 // required for correctness. 22 // 23 // The primary insight is that much code that operates on vectors 24 // does not care about the relative order of elements in a register, 25 // so long as the correct memory order is preserved. If we have a 26 // computation where all input values are provided by lxvd2x/xxswapd, 27 // all outputs are stored using xxswapd/lxvd2x, and all intermediate 28 // computations are lane-insensitive (independent of element order), 29 // then all the xxswapd instructions associated with the loads and 30 // stores may be removed without changing observable semantics. 31 // 32 // This pass uses standard equivalence class infrastructure to create 33 // maximal webs of computations fitting the above description. Each 34 // such web is then optimized by removing its unnecessary xxswapd 35 // instructions. 36 // 37 // There are some lane-sensitive operations for which we can still 38 // permit the optimization, provided we modify those operations 39 // accordingly. Such operations are identified as using "special 40 // handling" within this module. 41 // 42 //===---------------------------------------------------------------------===// 43 44 #include "PPC.h" 45 #include "PPCInstrBuilder.h" 46 #include "PPCInstrInfo.h" 47 #include "PPCTargetMachine.h" 48 #include "llvm/ADT/DenseMap.h" 49 #include "llvm/ADT/EquivalenceClasses.h" 50 #include "llvm/CodeGen/MachineFunctionPass.h" 51 #include "llvm/CodeGen/MachineInstrBuilder.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/Config/llvm-config.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/Format.h" 56 #include "llvm/Support/raw_ostream.h" 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "ppc-vsx-swaps" 61 62 namespace { 63 64 // A PPCVSXSwapEntry is created for each machine instruction that 65 // is relevant to a vector computation. 66 struct PPCVSXSwapEntry { 67 // Pointer to the instruction. 68 MachineInstr *VSEMI; 69 70 // Unique ID (position in the swap vector). 71 int VSEId; 72 73 // Attributes of this node. 74 unsigned int IsLoad : 1; 75 unsigned int IsStore : 1; 76 unsigned int IsSwap : 1; 77 unsigned int MentionsPhysVR : 1; 78 unsigned int IsSwappable : 1; 79 unsigned int MentionsPartialVR : 1; 80 unsigned int SpecialHandling : 3; 81 unsigned int WebRejected : 1; 82 unsigned int WillRemove : 1; 83 }; 84 85 enum SHValues { 86 SH_NONE = 0, 87 SH_EXTRACT, 88 SH_INSERT, 89 SH_NOSWAP_LD, 90 SH_NOSWAP_ST, 91 SH_SPLAT, 92 SH_XXPERMDI, 93 SH_COPYWIDEN 94 }; 95 96 struct PPCVSXSwapRemoval : public MachineFunctionPass { 97 98 static char ID; 99 const PPCInstrInfo *TII; 100 MachineFunction *MF; 101 MachineRegisterInfo *MRI; 102 103 // Swap entries are allocated in a vector for better performance. 104 std::vector<PPCVSXSwapEntry> SwapVector; 105 106 // A mapping is maintained between machine instructions and 107 // their swap entries. The key is the address of the MI. 108 DenseMap<MachineInstr*, int> SwapMap; 109 110 // Equivalence classes are used to gather webs of related computation. 111 // Swap entries are represented by their VSEId fields. 112 EquivalenceClasses<int> *EC; 113 114 PPCVSXSwapRemoval() : MachineFunctionPass(ID) { 115 initializePPCVSXSwapRemovalPass(*PassRegistry::getPassRegistry()); 116 } 117 118 private: 119 // Initialize data structures. 120 void initialize(MachineFunction &MFParm); 121 122 // Walk the machine instructions to gather vector usage information. 123 // Return true iff vector mentions are present. 124 bool gatherVectorInstructions(); 125 126 // Add an entry to the swap vector and swap map. 127 int addSwapEntry(MachineInstr *MI, PPCVSXSwapEntry &SwapEntry); 128 129 // Hunt backwards through COPY and SUBREG_TO_REG chains for a 130 // source register. VecIdx indicates the swap vector entry to 131 // mark as mentioning a physical register if the search leads 132 // to one. 133 unsigned lookThruCopyLike(unsigned SrcReg, unsigned VecIdx); 134 135 // Generate equivalence classes for related computations (webs). 136 void formWebs(); 137 138 // Analyze webs and determine those that cannot be optimized. 139 void recordUnoptimizableWebs(); 140 141 // Record which swap instructions can be safely removed. 142 void markSwapsForRemoval(); 143 144 // Remove swaps and update other instructions requiring special 145 // handling. Return true iff any changes are made. 146 bool removeSwaps(); 147 148 // Insert a swap instruction from SrcReg to DstReg at the given 149 // InsertPoint. 150 void insertSwap(MachineInstr *MI, MachineBasicBlock::iterator InsertPoint, 151 unsigned DstReg, unsigned SrcReg); 152 153 // Update instructions requiring special handling. 154 void handleSpecialSwappables(int EntryIdx); 155 156 // Dump a description of the entries in the swap vector. 157 void dumpSwapVector(); 158 159 // Return true iff the given register is in the given class. 160 bool isRegInClass(unsigned Reg, const TargetRegisterClass *RC) { 161 if (TargetRegisterInfo::isVirtualRegister(Reg)) 162 return RC->hasSubClassEq(MRI->getRegClass(Reg)); 163 return RC->contains(Reg); 164 } 165 166 // Return true iff the given register is a full vector register. 167 bool isVecReg(unsigned Reg) { 168 return (isRegInClass(Reg, &PPC::VSRCRegClass) || 169 isRegInClass(Reg, &PPC::VRRCRegClass)); 170 } 171 172 // Return true iff the given register is a partial vector register. 173 bool isScalarVecReg(unsigned Reg) { 174 return (isRegInClass(Reg, &PPC::VSFRCRegClass) || 175 isRegInClass(Reg, &PPC::VSSRCRegClass)); 176 } 177 178 // Return true iff the given register mentions all or part of a 179 // vector register. Also sets Partial to true if the mention 180 // is for just the floating-point register overlap of the register. 181 bool isAnyVecReg(unsigned Reg, bool &Partial) { 182 if (isScalarVecReg(Reg)) 183 Partial = true; 184 return isScalarVecReg(Reg) || isVecReg(Reg); 185 } 186 187 public: 188 // Main entry point for this pass. 189 bool runOnMachineFunction(MachineFunction &MF) override { 190 if (skipFunction(MF.getFunction())) 191 return false; 192 193 // If we don't have VSX on the subtarget, don't do anything. 194 // Also, on Power 9 the load and store ops preserve element order and so 195 // the swaps are not required. 196 const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>(); 197 if (!STI.hasVSX() || !STI.needsSwapsForVSXMemOps()) 198 return false; 199 200 bool Changed = false; 201 initialize(MF); 202 203 if (gatherVectorInstructions()) { 204 formWebs(); 205 recordUnoptimizableWebs(); 206 markSwapsForRemoval(); 207 Changed = removeSwaps(); 208 } 209 210 // FIXME: See the allocation of EC in initialize(). 211 delete EC; 212 return Changed; 213 } 214 }; 215 216 // Initialize data structures for this pass. In particular, clear the 217 // swap vector and allocate the equivalence class mapping before 218 // processing each function. 219 void PPCVSXSwapRemoval::initialize(MachineFunction &MFParm) { 220 MF = &MFParm; 221 MRI = &MF->getRegInfo(); 222 TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); 223 224 // An initial vector size of 256 appears to work well in practice. 225 // Small/medium functions with vector content tend not to incur a 226 // reallocation at this size. Three of the vector tests in 227 // projects/test-suite reallocate, which seems like a reasonable rate. 228 const int InitialVectorSize(256); 229 SwapVector.clear(); 230 SwapVector.reserve(InitialVectorSize); 231 232 // FIXME: Currently we allocate EC each time because we don't have 233 // access to the set representation on which to call clear(). Should 234 // consider adding a clear() method to the EquivalenceClasses class. 235 EC = new EquivalenceClasses<int>; 236 } 237 238 // Create an entry in the swap vector for each instruction that mentions 239 // a full vector register, recording various characteristics of the 240 // instructions there. 241 bool PPCVSXSwapRemoval::gatherVectorInstructions() { 242 bool RelevantFunction = false; 243 244 for (MachineBasicBlock &MBB : *MF) { 245 for (MachineInstr &MI : MBB) { 246 247 if (MI.isDebugInstr()) 248 continue; 249 250 bool RelevantInstr = false; 251 bool Partial = false; 252 253 for (const MachineOperand &MO : MI.operands()) { 254 if (!MO.isReg()) 255 continue; 256 unsigned Reg = MO.getReg(); 257 if (isAnyVecReg(Reg, Partial)) { 258 RelevantInstr = true; 259 break; 260 } 261 } 262 263 if (!RelevantInstr) 264 continue; 265 266 RelevantFunction = true; 267 268 // Create a SwapEntry initialized to zeros, then fill in the 269 // instruction and ID fields before pushing it to the back 270 // of the swap vector. 271 PPCVSXSwapEntry SwapEntry{}; 272 int VecIdx = addSwapEntry(&MI, SwapEntry); 273 274 switch(MI.getOpcode()) { 275 default: 276 // Unless noted otherwise, an instruction is considered 277 // safe for the optimization. There are a large number of 278 // such true-SIMD instructions (all vector math, logical, 279 // select, compare, etc.). However, if the instruction 280 // mentions a partial vector register and does not have 281 // special handling defined, it is not swappable. 282 if (Partial) 283 SwapVector[VecIdx].MentionsPartialVR = 1; 284 else 285 SwapVector[VecIdx].IsSwappable = 1; 286 break; 287 case PPC::XXPERMDI: { 288 // This is a swap if it is of the form XXPERMDI t, s, s, 2. 289 // Unfortunately, MachineCSE ignores COPY and SUBREG_TO_REG, so we 290 // can also see XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), 2, 291 // for example. We have to look through chains of COPY and 292 // SUBREG_TO_REG to find the real source value for comparison. 293 // If the real source value is a physical register, then mark the 294 // XXPERMDI as mentioning a physical register. 295 int immed = MI.getOperand(3).getImm(); 296 if (immed == 2) { 297 unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(), 298 VecIdx); 299 unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(), 300 VecIdx); 301 if (trueReg1 == trueReg2) 302 SwapVector[VecIdx].IsSwap = 1; 303 else { 304 // We can still handle these if the two registers are not 305 // identical, by adjusting the form of the XXPERMDI. 306 SwapVector[VecIdx].IsSwappable = 1; 307 SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI; 308 } 309 // This is a doubleword splat if it is of the form 310 // XXPERMDI t, s, s, 0 or XXPERMDI t, s, s, 3. As above we 311 // must look through chains of copy-likes to find the source 312 // register. We turn off the marking for mention of a physical 313 // register, because splatting it is safe; the optimization 314 // will not swap the value in the physical register. Whether 315 // or not the two input registers are identical, we can handle 316 // these by adjusting the form of the XXPERMDI. 317 } else if (immed == 0 || immed == 3) { 318 319 SwapVector[VecIdx].IsSwappable = 1; 320 SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI; 321 322 unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(), 323 VecIdx); 324 unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(), 325 VecIdx); 326 if (trueReg1 == trueReg2) 327 SwapVector[VecIdx].MentionsPhysVR = 0; 328 329 } else { 330 // We can still handle these by adjusting the form of the XXPERMDI. 331 SwapVector[VecIdx].IsSwappable = 1; 332 SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI; 333 } 334 break; 335 } 336 case PPC::LVX: 337 // Non-permuting loads are currently unsafe. We can use special 338 // handling for this in the future. By not marking these as 339 // IsSwap, we ensure computations containing them will be rejected 340 // for now. 341 SwapVector[VecIdx].IsLoad = 1; 342 break; 343 case PPC::LXVD2X: 344 case PPC::LXVW4X: 345 // Permuting loads are marked as both load and swap, and are 346 // safe for optimization. 347 SwapVector[VecIdx].IsLoad = 1; 348 SwapVector[VecIdx].IsSwap = 1; 349 break; 350 case PPC::LXSDX: 351 case PPC::LXSSPX: 352 case PPC::XFLOADf64: 353 case PPC::XFLOADf32: 354 // A load of a floating-point value into the high-order half of 355 // a vector register is safe, provided that we introduce a swap 356 // following the load, which will be done by the SUBREG_TO_REG 357 // support. So just mark these as safe. 358 SwapVector[VecIdx].IsLoad = 1; 359 SwapVector[VecIdx].IsSwappable = 1; 360 break; 361 case PPC::STVX: 362 // Non-permuting stores are currently unsafe. We can use special 363 // handling for this in the future. By not marking these as 364 // IsSwap, we ensure computations containing them will be rejected 365 // for now. 366 SwapVector[VecIdx].IsStore = 1; 367 break; 368 case PPC::STXVD2X: 369 case PPC::STXVW4X: 370 // Permuting stores are marked as both store and swap, and are 371 // safe for optimization. 372 SwapVector[VecIdx].IsStore = 1; 373 SwapVector[VecIdx].IsSwap = 1; 374 break; 375 case PPC::COPY: 376 // These are fine provided they are moving between full vector 377 // register classes. 378 if (isVecReg(MI.getOperand(0).getReg()) && 379 isVecReg(MI.getOperand(1).getReg())) 380 SwapVector[VecIdx].IsSwappable = 1; 381 // If we have a copy from one scalar floating-point register 382 // to another, we can accept this even if it is a physical 383 // register. The only way this gets involved is if it feeds 384 // a SUBREG_TO_REG, which is handled by introducing a swap. 385 else if (isScalarVecReg(MI.getOperand(0).getReg()) && 386 isScalarVecReg(MI.getOperand(1).getReg())) 387 SwapVector[VecIdx].IsSwappable = 1; 388 break; 389 case PPC::SUBREG_TO_REG: { 390 // These are fine provided they are moving between full vector 391 // register classes. If they are moving from a scalar 392 // floating-point class to a vector class, we can handle those 393 // as well, provided we introduce a swap. It is generally the 394 // case that we will introduce fewer swaps than we remove, but 395 // (FIXME) a cost model could be used. However, introduced 396 // swaps could potentially be CSEd, so this is not trivial. 397 if (isVecReg(MI.getOperand(0).getReg()) && 398 isVecReg(MI.getOperand(2).getReg())) 399 SwapVector[VecIdx].IsSwappable = 1; 400 else if (isVecReg(MI.getOperand(0).getReg()) && 401 isScalarVecReg(MI.getOperand(2).getReg())) { 402 SwapVector[VecIdx].IsSwappable = 1; 403 SwapVector[VecIdx].SpecialHandling = SHValues::SH_COPYWIDEN; 404 } 405 break; 406 } 407 case PPC::VSPLTB: 408 case PPC::VSPLTH: 409 case PPC::VSPLTW: 410 case PPC::XXSPLTW: 411 // Splats are lane-sensitive, but we can use special handling 412 // to adjust the source lane for the splat. 413 SwapVector[VecIdx].IsSwappable = 1; 414 SwapVector[VecIdx].SpecialHandling = SHValues::SH_SPLAT; 415 break; 416 // The presence of the following lane-sensitive operations in a 417 // web will kill the optimization, at least for now. For these 418 // we do nothing, causing the optimization to fail. 419 // FIXME: Some of these could be permitted with special handling, 420 // and will be phased in as time permits. 421 // FIXME: There is no simple and maintainable way to express a set 422 // of opcodes having a common attribute in TableGen. Should this 423 // change, this is a prime candidate to use such a mechanism. 424 case PPC::INLINEASM: 425 case PPC::EXTRACT_SUBREG: 426 case PPC::INSERT_SUBREG: 427 case PPC::COPY_TO_REGCLASS: 428 case PPC::LVEBX: 429 case PPC::LVEHX: 430 case PPC::LVEWX: 431 case PPC::LVSL: 432 case PPC::LVSR: 433 case PPC::LVXL: 434 case PPC::STVEBX: 435 case PPC::STVEHX: 436 case PPC::STVEWX: 437 case PPC::STVXL: 438 // We can handle STXSDX and STXSSPX similarly to LXSDX and LXSSPX, 439 // by adding special handling for narrowing copies as well as 440 // widening ones. However, I've experimented with this, and in 441 // practice we currently do not appear to use STXSDX fed by 442 // a narrowing copy from a full vector register. Since I can't 443 // generate any useful test cases, I've left this alone for now. 444 case PPC::STXSDX: 445 case PPC::STXSSPX: 446 case PPC::VCIPHER: 447 case PPC::VCIPHERLAST: 448 case PPC::VMRGHB: 449 case PPC::VMRGHH: 450 case PPC::VMRGHW: 451 case PPC::VMRGLB: 452 case PPC::VMRGLH: 453 case PPC::VMRGLW: 454 case PPC::VMULESB: 455 case PPC::VMULESH: 456 case PPC::VMULESW: 457 case PPC::VMULEUB: 458 case PPC::VMULEUH: 459 case PPC::VMULEUW: 460 case PPC::VMULOSB: 461 case PPC::VMULOSH: 462 case PPC::VMULOSW: 463 case PPC::VMULOUB: 464 case PPC::VMULOUH: 465 case PPC::VMULOUW: 466 case PPC::VNCIPHER: 467 case PPC::VNCIPHERLAST: 468 case PPC::VPERM: 469 case PPC::VPERMXOR: 470 case PPC::VPKPX: 471 case PPC::VPKSHSS: 472 case PPC::VPKSHUS: 473 case PPC::VPKSDSS: 474 case PPC::VPKSDUS: 475 case PPC::VPKSWSS: 476 case PPC::VPKSWUS: 477 case PPC::VPKUDUM: 478 case PPC::VPKUDUS: 479 case PPC::VPKUHUM: 480 case PPC::VPKUHUS: 481 case PPC::VPKUWUM: 482 case PPC::VPKUWUS: 483 case PPC::VPMSUMB: 484 case PPC::VPMSUMD: 485 case PPC::VPMSUMH: 486 case PPC::VPMSUMW: 487 case PPC::VRLB: 488 case PPC::VRLD: 489 case PPC::VRLH: 490 case PPC::VRLW: 491 case PPC::VSBOX: 492 case PPC::VSHASIGMAD: 493 case PPC::VSHASIGMAW: 494 case PPC::VSL: 495 case PPC::VSLDOI: 496 case PPC::VSLO: 497 case PPC::VSR: 498 case PPC::VSRO: 499 case PPC::VSUM2SWS: 500 case PPC::VSUM4SBS: 501 case PPC::VSUM4SHS: 502 case PPC::VSUM4UBS: 503 case PPC::VSUMSWS: 504 case PPC::VUPKHPX: 505 case PPC::VUPKHSB: 506 case PPC::VUPKHSH: 507 case PPC::VUPKHSW: 508 case PPC::VUPKLPX: 509 case PPC::VUPKLSB: 510 case PPC::VUPKLSH: 511 case PPC::VUPKLSW: 512 case PPC::XXMRGHW: 513 case PPC::XXMRGLW: 514 // XXSLDWI could be replaced by a general permute with one of three 515 // permute control vectors (for shift values 1, 2, 3). However, 516 // VPERM has a more restrictive register class. 517 case PPC::XXSLDWI: 518 case PPC::XSCVDPSPN: 519 case PPC::XSCVSPDPN: 520 break; 521 } 522 } 523 } 524 525 if (RelevantFunction) { 526 LLVM_DEBUG(dbgs() << "Swap vector when first built\n\n"); 527 LLVM_DEBUG(dumpSwapVector()); 528 } 529 530 return RelevantFunction; 531 } 532 533 // Add an entry to the swap vector and swap map, and make a 534 // singleton equivalence class for the entry. 535 int PPCVSXSwapRemoval::addSwapEntry(MachineInstr *MI, 536 PPCVSXSwapEntry& SwapEntry) { 537 SwapEntry.VSEMI = MI; 538 SwapEntry.VSEId = SwapVector.size(); 539 SwapVector.push_back(SwapEntry); 540 EC->insert(SwapEntry.VSEId); 541 SwapMap[MI] = SwapEntry.VSEId; 542 return SwapEntry.VSEId; 543 } 544 545 // This is used to find the "true" source register for an 546 // XXPERMDI instruction, since MachineCSE does not handle the 547 // "copy-like" operations (Copy and SubregToReg). Returns 548 // the original SrcReg unless it is the target of a copy-like 549 // operation, in which case we chain backwards through all 550 // such operations to the ultimate source register. If a 551 // physical register is encountered, we stop the search and 552 // flag the swap entry indicated by VecIdx (the original 553 // XXPERMDI) as mentioning a physical register. 554 unsigned PPCVSXSwapRemoval::lookThruCopyLike(unsigned SrcReg, 555 unsigned VecIdx) { 556 MachineInstr *MI = MRI->getVRegDef(SrcReg); 557 if (!MI->isCopyLike()) 558 return SrcReg; 559 560 unsigned CopySrcReg; 561 if (MI->isCopy()) 562 CopySrcReg = MI->getOperand(1).getReg(); 563 else { 564 assert(MI->isSubregToReg() && "bad opcode for lookThruCopyLike"); 565 CopySrcReg = MI->getOperand(2).getReg(); 566 } 567 568 if (!TargetRegisterInfo::isVirtualRegister(CopySrcReg)) { 569 if (!isScalarVecReg(CopySrcReg)) 570 SwapVector[VecIdx].MentionsPhysVR = 1; 571 return CopySrcReg; 572 } 573 574 return lookThruCopyLike(CopySrcReg, VecIdx); 575 } 576 577 // Generate equivalence classes for related computations (webs) by 578 // def-use relationships of virtual registers. Mention of a physical 579 // register terminates the generation of equivalence classes as this 580 // indicates a use of a parameter, definition of a return value, use 581 // of a value returned from a call, or definition of a parameter to a 582 // call. Computations with physical register mentions are flagged 583 // as such so their containing webs will not be optimized. 584 void PPCVSXSwapRemoval::formWebs() { 585 586 LLVM_DEBUG(dbgs() << "\n*** Forming webs for swap removal ***\n\n"); 587 588 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 589 590 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 591 592 LLVM_DEBUG(dbgs() << "\n" << SwapVector[EntryIdx].VSEId << " "); 593 LLVM_DEBUG(MI->dump()); 594 595 // It's sufficient to walk vector uses and join them to their unique 596 // definitions. In addition, check full vector register operands 597 // for physical regs. We exclude partial-vector register operands 598 // because we can handle them if copied to a full vector. 599 for (const MachineOperand &MO : MI->operands()) { 600 if (!MO.isReg()) 601 continue; 602 603 unsigned Reg = MO.getReg(); 604 if (!isVecReg(Reg) && !isScalarVecReg(Reg)) 605 continue; 606 607 if (!TargetRegisterInfo::isVirtualRegister(Reg)) { 608 if (!(MI->isCopy() && isScalarVecReg(Reg))) 609 SwapVector[EntryIdx].MentionsPhysVR = 1; 610 continue; 611 } 612 613 if (!MO.isUse()) 614 continue; 615 616 MachineInstr* DefMI = MRI->getVRegDef(Reg); 617 assert(SwapMap.find(DefMI) != SwapMap.end() && 618 "Inconsistency: def of vector reg not found in swap map!"); 619 int DefIdx = SwapMap[DefMI]; 620 (void)EC->unionSets(SwapVector[DefIdx].VSEId, 621 SwapVector[EntryIdx].VSEId); 622 623 LLVM_DEBUG(dbgs() << format("Unioning %d with %d\n", 624 SwapVector[DefIdx].VSEId, 625 SwapVector[EntryIdx].VSEId)); 626 LLVM_DEBUG(dbgs() << " Def: "); 627 LLVM_DEBUG(DefMI->dump()); 628 } 629 } 630 } 631 632 // Walk the swap vector entries looking for conditions that prevent their 633 // containing computations from being optimized. When such conditions are 634 // found, mark the representative of the computation's equivalence class 635 // as rejected. 636 void PPCVSXSwapRemoval::recordUnoptimizableWebs() { 637 638 LLVM_DEBUG(dbgs() << "\n*** Rejecting webs for swap removal ***\n\n"); 639 640 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 641 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId); 642 643 // If representative is already rejected, don't waste further time. 644 if (SwapVector[Repr].WebRejected) 645 continue; 646 647 // Reject webs containing mentions of physical or partial registers, or 648 // containing operations that we don't know how to handle in a lane- 649 // permuted region. 650 if (SwapVector[EntryIdx].MentionsPhysVR || 651 SwapVector[EntryIdx].MentionsPartialVR || 652 !(SwapVector[EntryIdx].IsSwappable || SwapVector[EntryIdx].IsSwap)) { 653 654 SwapVector[Repr].WebRejected = 1; 655 656 LLVM_DEBUG( 657 dbgs() << format("Web %d rejected for physreg, partial reg, or not " 658 "swap[pable]\n", 659 Repr)); 660 LLVM_DEBUG(dbgs() << " in " << EntryIdx << ": "); 661 LLVM_DEBUG(SwapVector[EntryIdx].VSEMI->dump()); 662 LLVM_DEBUG(dbgs() << "\n"); 663 } 664 665 // Reject webs than contain swapping loads that feed something other 666 // than a swap instruction. 667 else if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) { 668 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 669 unsigned DefReg = MI->getOperand(0).getReg(); 670 671 // We skip debug instructions in the analysis. (Note that debug 672 // location information is still maintained by this optimization 673 // because it remains on the LXVD2X and STXVD2X instructions after 674 // the XXPERMDIs are removed.) 675 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) { 676 int UseIdx = SwapMap[&UseMI]; 677 678 if (!SwapVector[UseIdx].IsSwap || SwapVector[UseIdx].IsLoad || 679 SwapVector[UseIdx].IsStore) { 680 681 SwapVector[Repr].WebRejected = 1; 682 683 LLVM_DEBUG(dbgs() << format( 684 "Web %d rejected for load not feeding swap\n", Repr)); 685 LLVM_DEBUG(dbgs() << " def " << EntryIdx << ": "); 686 LLVM_DEBUG(MI->dump()); 687 LLVM_DEBUG(dbgs() << " use " << UseIdx << ": "); 688 LLVM_DEBUG(UseMI.dump()); 689 LLVM_DEBUG(dbgs() << "\n"); 690 } 691 } 692 693 // Reject webs that contain swapping stores that are fed by something 694 // other than a swap instruction. 695 } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) { 696 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 697 unsigned UseReg = MI->getOperand(0).getReg(); 698 MachineInstr *DefMI = MRI->getVRegDef(UseReg); 699 unsigned DefReg = DefMI->getOperand(0).getReg(); 700 int DefIdx = SwapMap[DefMI]; 701 702 if (!SwapVector[DefIdx].IsSwap || SwapVector[DefIdx].IsLoad || 703 SwapVector[DefIdx].IsStore) { 704 705 SwapVector[Repr].WebRejected = 1; 706 707 LLVM_DEBUG(dbgs() << format( 708 "Web %d rejected for store not fed by swap\n", Repr)); 709 LLVM_DEBUG(dbgs() << " def " << DefIdx << ": "); 710 LLVM_DEBUG(DefMI->dump()); 711 LLVM_DEBUG(dbgs() << " use " << EntryIdx << ": "); 712 LLVM_DEBUG(MI->dump()); 713 LLVM_DEBUG(dbgs() << "\n"); 714 } 715 716 // Ensure all uses of the register defined by DefMI feed store 717 // instructions 718 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) { 719 int UseIdx = SwapMap[&UseMI]; 720 721 if (SwapVector[UseIdx].VSEMI->getOpcode() != MI->getOpcode()) { 722 SwapVector[Repr].WebRejected = 1; 723 724 LLVM_DEBUG( 725 dbgs() << format( 726 "Web %d rejected for swap not feeding only stores\n", Repr)); 727 LLVM_DEBUG(dbgs() << " def " 728 << " : "); 729 LLVM_DEBUG(DefMI->dump()); 730 LLVM_DEBUG(dbgs() << " use " << UseIdx << ": "); 731 LLVM_DEBUG(SwapVector[UseIdx].VSEMI->dump()); 732 LLVM_DEBUG(dbgs() << "\n"); 733 } 734 } 735 } 736 } 737 738 LLVM_DEBUG(dbgs() << "Swap vector after web analysis:\n\n"); 739 LLVM_DEBUG(dumpSwapVector()); 740 } 741 742 // Walk the swap vector entries looking for swaps fed by permuting loads 743 // and swaps that feed permuting stores. If the containing computation 744 // has not been marked rejected, mark each such swap for removal. 745 // (Removal is delayed in case optimization has disturbed the pattern, 746 // such that multiple loads feed the same swap, etc.) 747 void PPCVSXSwapRemoval::markSwapsForRemoval() { 748 749 LLVM_DEBUG(dbgs() << "\n*** Marking swaps for removal ***\n\n"); 750 751 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 752 753 if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) { 754 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId); 755 756 if (!SwapVector[Repr].WebRejected) { 757 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 758 unsigned DefReg = MI->getOperand(0).getReg(); 759 760 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) { 761 int UseIdx = SwapMap[&UseMI]; 762 SwapVector[UseIdx].WillRemove = 1; 763 764 LLVM_DEBUG(dbgs() << "Marking swap fed by load for removal: "); 765 LLVM_DEBUG(UseMI.dump()); 766 } 767 } 768 769 } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) { 770 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId); 771 772 if (!SwapVector[Repr].WebRejected) { 773 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 774 unsigned UseReg = MI->getOperand(0).getReg(); 775 MachineInstr *DefMI = MRI->getVRegDef(UseReg); 776 int DefIdx = SwapMap[DefMI]; 777 SwapVector[DefIdx].WillRemove = 1; 778 779 LLVM_DEBUG(dbgs() << "Marking swap feeding store for removal: "); 780 LLVM_DEBUG(DefMI->dump()); 781 } 782 783 } else if (SwapVector[EntryIdx].IsSwappable && 784 SwapVector[EntryIdx].SpecialHandling != 0) { 785 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId); 786 787 if (!SwapVector[Repr].WebRejected) 788 handleSpecialSwappables(EntryIdx); 789 } 790 } 791 } 792 793 // Create an xxswapd instruction and insert it prior to the given point. 794 // MI is used to determine basic block and debug loc information. 795 // FIXME: When inserting a swap, we should check whether SrcReg is 796 // defined by another swap: SrcReg = XXPERMDI Reg, Reg, 2; If so, 797 // then instead we should generate a copy from Reg to DstReg. 798 void PPCVSXSwapRemoval::insertSwap(MachineInstr *MI, 799 MachineBasicBlock::iterator InsertPoint, 800 unsigned DstReg, unsigned SrcReg) { 801 BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(), 802 TII->get(PPC::XXPERMDI), DstReg) 803 .addReg(SrcReg) 804 .addReg(SrcReg) 805 .addImm(2); 806 } 807 808 // The identified swap entry requires special handling to allow its 809 // containing computation to be optimized. Perform that handling 810 // here. 811 // FIXME: Additional opportunities will be phased in with subsequent 812 // patches. 813 void PPCVSXSwapRemoval::handleSpecialSwappables(int EntryIdx) { 814 switch (SwapVector[EntryIdx].SpecialHandling) { 815 816 default: 817 llvm_unreachable("Unexpected special handling type"); 818 819 // For splats based on an index into a vector, add N/2 modulo N 820 // to the index, where N is the number of vector elements. 821 case SHValues::SH_SPLAT: { 822 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 823 unsigned NElts; 824 825 LLVM_DEBUG(dbgs() << "Changing splat: "); 826 LLVM_DEBUG(MI->dump()); 827 828 switch (MI->getOpcode()) { 829 default: 830 llvm_unreachable("Unexpected splat opcode"); 831 case PPC::VSPLTB: NElts = 16; break; 832 case PPC::VSPLTH: NElts = 8; break; 833 case PPC::VSPLTW: 834 case PPC::XXSPLTW: NElts = 4; break; 835 } 836 837 unsigned EltNo; 838 if (MI->getOpcode() == PPC::XXSPLTW) 839 EltNo = MI->getOperand(2).getImm(); 840 else 841 EltNo = MI->getOperand(1).getImm(); 842 843 EltNo = (EltNo + NElts / 2) % NElts; 844 if (MI->getOpcode() == PPC::XXSPLTW) 845 MI->getOperand(2).setImm(EltNo); 846 else 847 MI->getOperand(1).setImm(EltNo); 848 849 LLVM_DEBUG(dbgs() << " Into: "); 850 LLVM_DEBUG(MI->dump()); 851 break; 852 } 853 854 // For an XXPERMDI that isn't handled otherwise, we need to 855 // reverse the order of the operands. If the selector operand 856 // has a value of 0 or 3, we need to change it to 3 or 0, 857 // respectively. Otherwise we should leave it alone. (This 858 // is equivalent to reversing the two bits of the selector 859 // operand and complementing the result.) 860 case SHValues::SH_XXPERMDI: { 861 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 862 863 LLVM_DEBUG(dbgs() << "Changing XXPERMDI: "); 864 LLVM_DEBUG(MI->dump()); 865 866 unsigned Selector = MI->getOperand(3).getImm(); 867 if (Selector == 0 || Selector == 3) 868 Selector = 3 - Selector; 869 MI->getOperand(3).setImm(Selector); 870 871 unsigned Reg1 = MI->getOperand(1).getReg(); 872 unsigned Reg2 = MI->getOperand(2).getReg(); 873 MI->getOperand(1).setReg(Reg2); 874 MI->getOperand(2).setReg(Reg1); 875 876 // We also need to swap kill flag associated with the register. 877 bool IsKill1 = MI->getOperand(1).isKill(); 878 bool IsKill2 = MI->getOperand(2).isKill(); 879 MI->getOperand(1).setIsKill(IsKill2); 880 MI->getOperand(2).setIsKill(IsKill1); 881 882 LLVM_DEBUG(dbgs() << " Into: "); 883 LLVM_DEBUG(MI->dump()); 884 break; 885 } 886 887 // For a copy from a scalar floating-point register to a vector 888 // register, removing swaps will leave the copied value in the 889 // wrong lane. Insert a swap following the copy to fix this. 890 case SHValues::SH_COPYWIDEN: { 891 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 892 893 LLVM_DEBUG(dbgs() << "Changing SUBREG_TO_REG: "); 894 LLVM_DEBUG(MI->dump()); 895 896 unsigned DstReg = MI->getOperand(0).getReg(); 897 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 898 unsigned NewVReg = MRI->createVirtualRegister(DstRC); 899 900 MI->getOperand(0).setReg(NewVReg); 901 LLVM_DEBUG(dbgs() << " Into: "); 902 LLVM_DEBUG(MI->dump()); 903 904 auto InsertPoint = ++MachineBasicBlock::iterator(MI); 905 906 // Note that an XXPERMDI requires a VSRC, so if the SUBREG_TO_REG 907 // is copying to a VRRC, we need to be careful to avoid a register 908 // assignment problem. In this case we must copy from VRRC to VSRC 909 // prior to the swap, and from VSRC to VRRC following the swap. 910 // Coalescing will usually remove all this mess. 911 if (DstRC == &PPC::VRRCRegClass) { 912 unsigned VSRCTmp1 = MRI->createVirtualRegister(&PPC::VSRCRegClass); 913 unsigned VSRCTmp2 = MRI->createVirtualRegister(&PPC::VSRCRegClass); 914 915 BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(), 916 TII->get(PPC::COPY), VSRCTmp1) 917 .addReg(NewVReg); 918 LLVM_DEBUG(std::prev(InsertPoint)->dump()); 919 920 insertSwap(MI, InsertPoint, VSRCTmp2, VSRCTmp1); 921 LLVM_DEBUG(std::prev(InsertPoint)->dump()); 922 923 BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(), 924 TII->get(PPC::COPY), DstReg) 925 .addReg(VSRCTmp2); 926 LLVM_DEBUG(std::prev(InsertPoint)->dump()); 927 928 } else { 929 insertSwap(MI, InsertPoint, DstReg, NewVReg); 930 LLVM_DEBUG(std::prev(InsertPoint)->dump()); 931 } 932 break; 933 } 934 } 935 } 936 937 // Walk the swap vector and replace each entry marked for removal with 938 // a copy operation. 939 bool PPCVSXSwapRemoval::removeSwaps() { 940 941 LLVM_DEBUG(dbgs() << "\n*** Removing swaps ***\n\n"); 942 943 bool Changed = false; 944 945 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 946 if (SwapVector[EntryIdx].WillRemove) { 947 Changed = true; 948 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 949 MachineBasicBlock *MBB = MI->getParent(); 950 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY), 951 MI->getOperand(0).getReg()) 952 .add(MI->getOperand(1)); 953 954 LLVM_DEBUG(dbgs() << format("Replaced %d with copy: ", 955 SwapVector[EntryIdx].VSEId)); 956 LLVM_DEBUG(MI->dump()); 957 958 MI->eraseFromParent(); 959 } 960 } 961 962 return Changed; 963 } 964 965 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 966 // For debug purposes, dump the contents of the swap vector. 967 LLVM_DUMP_METHOD void PPCVSXSwapRemoval::dumpSwapVector() { 968 969 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 970 971 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 972 int ID = SwapVector[EntryIdx].VSEId; 973 974 dbgs() << format("%6d", ID); 975 dbgs() << format("%6d", EC->getLeaderValue(ID)); 976 dbgs() << format(" %bb.%3d", MI->getParent()->getNumber()); 977 dbgs() << format(" %14s ", TII->getName(MI->getOpcode()).str().c_str()); 978 979 if (SwapVector[EntryIdx].IsLoad) 980 dbgs() << "load "; 981 if (SwapVector[EntryIdx].IsStore) 982 dbgs() << "store "; 983 if (SwapVector[EntryIdx].IsSwap) 984 dbgs() << "swap "; 985 if (SwapVector[EntryIdx].MentionsPhysVR) 986 dbgs() << "physreg "; 987 if (SwapVector[EntryIdx].MentionsPartialVR) 988 dbgs() << "partialreg "; 989 990 if (SwapVector[EntryIdx].IsSwappable) { 991 dbgs() << "swappable "; 992 switch(SwapVector[EntryIdx].SpecialHandling) { 993 default: 994 dbgs() << "special:**unknown**"; 995 break; 996 case SH_NONE: 997 break; 998 case SH_EXTRACT: 999 dbgs() << "special:extract "; 1000 break; 1001 case SH_INSERT: 1002 dbgs() << "special:insert "; 1003 break; 1004 case SH_NOSWAP_LD: 1005 dbgs() << "special:load "; 1006 break; 1007 case SH_NOSWAP_ST: 1008 dbgs() << "special:store "; 1009 break; 1010 case SH_SPLAT: 1011 dbgs() << "special:splat "; 1012 break; 1013 case SH_XXPERMDI: 1014 dbgs() << "special:xxpermdi "; 1015 break; 1016 case SH_COPYWIDEN: 1017 dbgs() << "special:copywiden "; 1018 break; 1019 } 1020 } 1021 1022 if (SwapVector[EntryIdx].WebRejected) 1023 dbgs() << "rejected "; 1024 if (SwapVector[EntryIdx].WillRemove) 1025 dbgs() << "remove "; 1026 1027 dbgs() << "\n"; 1028 1029 // For no-asserts builds. 1030 (void)MI; 1031 (void)ID; 1032 } 1033 1034 dbgs() << "\n"; 1035 } 1036 #endif 1037 1038 } // end default namespace 1039 1040 INITIALIZE_PASS_BEGIN(PPCVSXSwapRemoval, DEBUG_TYPE, 1041 "PowerPC VSX Swap Removal", false, false) 1042 INITIALIZE_PASS_END(PPCVSXSwapRemoval, DEBUG_TYPE, 1043 "PowerPC VSX Swap Removal", false, false) 1044 1045 char PPCVSXSwapRemoval::ID = 0; 1046 FunctionPass* 1047 llvm::createPPCVSXSwapRemovalPass() { return new PPCVSXSwapRemoval(); } 1048