1 //===----------- PPCVSXSwapRemoval.cpp - Remove VSX LE Swaps -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===---------------------------------------------------------------------===// 9 // 10 // This pass analyzes vector computations and removes unnecessary 11 // doubleword swaps (xxswapd instructions). This pass is performed 12 // only for little-endian VSX code generation. 13 // 14 // For this specific case, loads and stores of v4i32, v4f32, v2i64, 15 // and v2f64 vectors are inefficient. These are implemented using 16 // the lxvd2x and stxvd2x instructions, which invert the order of 17 // doublewords in a vector register. Thus code generation inserts 18 // an xxswapd after each such load, and prior to each such store. 19 // 20 // The extra xxswapd instructions reduce performance. The purpose 21 // of this pass is to reduce the number of xxswapd instructions 22 // required for correctness. 23 // 24 // The primary insight is that much code that operates on vectors 25 // does not care about the relative order of elements in a register, 26 // so long as the correct memory order is preserved. If we have a 27 // computation where all input values are provided by lxvd2x/xxswapd, 28 // all outputs are stored using xxswapd/lxvd2x, and all intermediate 29 // computations are lane-insensitive (independent of element order), 30 // then all the xxswapd instructions associated with the loads and 31 // stores may be removed without changing observable semantics. 32 // 33 // This pass uses standard equivalence class infrastructure to create 34 // maximal webs of computations fitting the above description. Each 35 // such web is then optimized by removing its unnecessary xxswapd 36 // instructions. 37 // 38 // There are some lane-sensitive operations for which we can still 39 // permit the optimization, provided we modify those operations 40 // accordingly. Such operations are identified as using "special 41 // handling" within this module. 42 // 43 //===---------------------------------------------------------------------===// 44 45 #include "PPCInstrInfo.h" 46 #include "PPC.h" 47 #include "PPCInstrBuilder.h" 48 #include "PPCTargetMachine.h" 49 #include "llvm/ADT/DenseMap.h" 50 #include "llvm/ADT/EquivalenceClasses.h" 51 #include "llvm/CodeGen/MachineFunctionPass.h" 52 #include "llvm/CodeGen/MachineInstrBuilder.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/Format.h" 56 #include "llvm/Support/raw_ostream.h" 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "ppc-vsx-swaps" 61 62 namespace llvm { 63 void initializePPCVSXSwapRemovalPass(PassRegistry&); 64 } 65 66 namespace { 67 68 // A PPCVSXSwapEntry is created for each machine instruction that 69 // is relevant to a vector computation. 70 struct PPCVSXSwapEntry { 71 // Pointer to the instruction. 72 MachineInstr *VSEMI; 73 74 // Unique ID (position in the swap vector). 75 int VSEId; 76 77 // Attributes of this node. 78 unsigned int IsLoad : 1; 79 unsigned int IsStore : 1; 80 unsigned int IsSwap : 1; 81 unsigned int MentionsPhysVR : 1; 82 unsigned int IsSwappable : 1; 83 unsigned int MentionsPartialVR : 1; 84 unsigned int SpecialHandling : 3; 85 unsigned int WebRejected : 1; 86 unsigned int WillRemove : 1; 87 }; 88 89 enum SHValues { 90 SH_NONE = 0, 91 SH_EXTRACT, 92 SH_INSERT, 93 SH_NOSWAP_LD, 94 SH_NOSWAP_ST, 95 SH_SPLAT, 96 SH_XXPERMDI, 97 SH_COPYWIDEN 98 }; 99 100 struct PPCVSXSwapRemoval : public MachineFunctionPass { 101 102 static char ID; 103 const PPCInstrInfo *TII; 104 MachineFunction *MF; 105 MachineRegisterInfo *MRI; 106 107 // Swap entries are allocated in a vector for better performance. 108 std::vector<PPCVSXSwapEntry> SwapVector; 109 110 // A mapping is maintained between machine instructions and 111 // their swap entries. The key is the address of the MI. 112 DenseMap<MachineInstr*, int> SwapMap; 113 114 // Equivalence classes are used to gather webs of related computation. 115 // Swap entries are represented by their VSEId fields. 116 EquivalenceClasses<int> *EC; 117 118 PPCVSXSwapRemoval() : MachineFunctionPass(ID) { 119 initializePPCVSXSwapRemovalPass(*PassRegistry::getPassRegistry()); 120 } 121 122 private: 123 // Initialize data structures. 124 void initialize(MachineFunction &MFParm); 125 126 // Walk the machine instructions to gather vector usage information. 127 // Return true iff vector mentions are present. 128 bool gatherVectorInstructions(); 129 130 // Add an entry to the swap vector and swap map. 131 int addSwapEntry(MachineInstr *MI, PPCVSXSwapEntry &SwapEntry); 132 133 // Hunt backwards through COPY and SUBREG_TO_REG chains for a 134 // source register. VecIdx indicates the swap vector entry to 135 // mark as mentioning a physical register if the search leads 136 // to one. 137 unsigned lookThruCopyLike(unsigned SrcReg, unsigned VecIdx); 138 139 // Generate equivalence classes for related computations (webs). 140 void formWebs(); 141 142 // Analyze webs and determine those that cannot be optimized. 143 void recordUnoptimizableWebs(); 144 145 // Record which swap instructions can be safely removed. 146 void markSwapsForRemoval(); 147 148 // Remove swaps and update other instructions requiring special 149 // handling. Return true iff any changes are made. 150 bool removeSwaps(); 151 152 // Insert a swap instruction from SrcReg to DstReg at the given 153 // InsertPoint. 154 void insertSwap(MachineInstr *MI, MachineBasicBlock::iterator InsertPoint, 155 unsigned DstReg, unsigned SrcReg); 156 157 // Update instructions requiring special handling. 158 void handleSpecialSwappables(int EntryIdx); 159 160 // Dump a description of the entries in the swap vector. 161 void dumpSwapVector(); 162 163 // Return true iff the given register is in the given class. 164 bool isRegInClass(unsigned Reg, const TargetRegisterClass *RC) { 165 if (TargetRegisterInfo::isVirtualRegister(Reg)) 166 return RC->hasSubClassEq(MRI->getRegClass(Reg)); 167 return RC->contains(Reg); 168 } 169 170 // Return true iff the given register is a full vector register. 171 bool isVecReg(unsigned Reg) { 172 return (isRegInClass(Reg, &PPC::VSRCRegClass) || 173 isRegInClass(Reg, &PPC::VRRCRegClass)); 174 } 175 176 // Return true iff the given register is a partial vector register. 177 bool isScalarVecReg(unsigned Reg) { 178 return (isRegInClass(Reg, &PPC::VSFRCRegClass) || 179 isRegInClass(Reg, &PPC::VSSRCRegClass)); 180 } 181 182 // Return true iff the given register mentions all or part of a 183 // vector register. Also sets Partial to true if the mention 184 // is for just the floating-point register overlap of the register. 185 bool isAnyVecReg(unsigned Reg, bool &Partial) { 186 if (isScalarVecReg(Reg)) 187 Partial = true; 188 return isScalarVecReg(Reg) || isVecReg(Reg); 189 } 190 191 public: 192 // Main entry point for this pass. 193 bool runOnMachineFunction(MachineFunction &MF) override { 194 // If we don't have VSX on the subtarget, don't do anything. 195 const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>(); 196 if (!STI.hasVSX()) 197 return false; 198 199 bool Changed = false; 200 initialize(MF); 201 202 if (gatherVectorInstructions()) { 203 formWebs(); 204 recordUnoptimizableWebs(); 205 markSwapsForRemoval(); 206 Changed = removeSwaps(); 207 } 208 209 // FIXME: See the allocation of EC in initialize(). 210 delete EC; 211 return Changed; 212 } 213 }; 214 215 // Initialize data structures for this pass. In particular, clear the 216 // swap vector and allocate the equivalence class mapping before 217 // processing each function. 218 void PPCVSXSwapRemoval::initialize(MachineFunction &MFParm) { 219 MF = &MFParm; 220 MRI = &MF->getRegInfo(); 221 TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); 222 223 // An initial vector size of 256 appears to work well in practice. 224 // Small/medium functions with vector content tend not to incur a 225 // reallocation at this size. Three of the vector tests in 226 // projects/test-suite reallocate, which seems like a reasonable rate. 227 const int InitialVectorSize(256); 228 SwapVector.clear(); 229 SwapVector.reserve(InitialVectorSize); 230 231 // FIXME: Currently we allocate EC each time because we don't have 232 // access to the set representation on which to call clear(). Should 233 // consider adding a clear() method to the EquivalenceClasses class. 234 EC = new EquivalenceClasses<int>; 235 } 236 237 // Create an entry in the swap vector for each instruction that mentions 238 // a full vector register, recording various characteristics of the 239 // instructions there. 240 bool PPCVSXSwapRemoval::gatherVectorInstructions() { 241 bool RelevantFunction = false; 242 243 for (MachineBasicBlock &MBB : *MF) { 244 for (MachineInstr &MI : MBB) { 245 246 if (MI.isDebugValue()) 247 continue; 248 249 bool RelevantInstr = false; 250 bool Partial = false; 251 252 for (const MachineOperand &MO : MI.operands()) { 253 if (!MO.isReg()) 254 continue; 255 unsigned Reg = MO.getReg(); 256 if (isAnyVecReg(Reg, Partial)) { 257 RelevantInstr = true; 258 break; 259 } 260 } 261 262 if (!RelevantInstr) 263 continue; 264 265 RelevantFunction = true; 266 267 // Create a SwapEntry initialized to zeros, then fill in the 268 // instruction and ID fields before pushing it to the back 269 // of the swap vector. 270 PPCVSXSwapEntry SwapEntry{}; 271 int VecIdx = addSwapEntry(&MI, SwapEntry); 272 273 switch(MI.getOpcode()) { 274 default: 275 // Unless noted otherwise, an instruction is considered 276 // safe for the optimization. There are a large number of 277 // such true-SIMD instructions (all vector math, logical, 278 // select, compare, etc.). However, if the instruction 279 // mentions a partial vector register and does not have 280 // special handling defined, it is not swappable. 281 if (Partial) 282 SwapVector[VecIdx].MentionsPartialVR = 1; 283 else 284 SwapVector[VecIdx].IsSwappable = 1; 285 break; 286 case PPC::XXPERMDI: { 287 // This is a swap if it is of the form XXPERMDI t, s, s, 2. 288 // Unfortunately, MachineCSE ignores COPY and SUBREG_TO_REG, so we 289 // can also see XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), 2, 290 // for example. We have to look through chains of COPY and 291 // SUBREG_TO_REG to find the real source value for comparison. 292 // If the real source value is a physical register, then mark the 293 // XXPERMDI as mentioning a physical register. 294 int immed = MI.getOperand(3).getImm(); 295 if (immed == 2) { 296 unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(), 297 VecIdx); 298 unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(), 299 VecIdx); 300 if (trueReg1 == trueReg2) 301 SwapVector[VecIdx].IsSwap = 1; 302 else { 303 // We can still handle these if the two registers are not 304 // identical, by adjusting the form of the XXPERMDI. 305 SwapVector[VecIdx].IsSwappable = 1; 306 SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI; 307 } 308 // This is a doubleword splat if it is of the form 309 // XXPERMDI t, s, s, 0 or XXPERMDI t, s, s, 3. As above we 310 // must look through chains of copy-likes to find the source 311 // register. We turn off the marking for mention of a physical 312 // register, because splatting it is safe; the optimization 313 // will not swap the value in the physical register. Whether 314 // or not the two input registers are identical, we can handle 315 // these by adjusting the form of the XXPERMDI. 316 } else if (immed == 0 || immed == 3) { 317 318 SwapVector[VecIdx].IsSwappable = 1; 319 SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI; 320 321 unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(), 322 VecIdx); 323 unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(), 324 VecIdx); 325 if (trueReg1 == trueReg2) 326 SwapVector[VecIdx].MentionsPhysVR = 0; 327 328 } else { 329 // We can still handle these by adjusting the form of the XXPERMDI. 330 SwapVector[VecIdx].IsSwappable = 1; 331 SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI; 332 } 333 break; 334 } 335 case PPC::LVX: 336 // Non-permuting loads are currently unsafe. We can use special 337 // handling for this in the future. By not marking these as 338 // IsSwap, we ensure computations containing them will be rejected 339 // for now. 340 SwapVector[VecIdx].IsLoad = 1; 341 break; 342 case PPC::LXVD2X: 343 case PPC::LXVW4X: 344 // Permuting loads are marked as both load and swap, and are 345 // safe for optimization. 346 SwapVector[VecIdx].IsLoad = 1; 347 SwapVector[VecIdx].IsSwap = 1; 348 break; 349 case PPC::LXSDX: 350 case PPC::LXSSPX: 351 // A load of a floating-point value into the high-order half of 352 // a vector register is safe, provided that we introduce a swap 353 // following the load, which will be done by the SUBREG_TO_REG 354 // support. So just mark these as safe. 355 SwapVector[VecIdx].IsLoad = 1; 356 SwapVector[VecIdx].IsSwappable = 1; 357 break; 358 case PPC::STVX: 359 // Non-permuting stores are currently unsafe. We can use special 360 // handling for this in the future. By not marking these as 361 // IsSwap, we ensure computations containing them will be rejected 362 // for now. 363 SwapVector[VecIdx].IsStore = 1; 364 break; 365 case PPC::STXVD2X: 366 case PPC::STXVW4X: 367 // Permuting stores are marked as both store and swap, and are 368 // safe for optimization. 369 SwapVector[VecIdx].IsStore = 1; 370 SwapVector[VecIdx].IsSwap = 1; 371 break; 372 case PPC::COPY: 373 // These are fine provided they are moving between full vector 374 // register classes. 375 if (isVecReg(MI.getOperand(0).getReg()) && 376 isVecReg(MI.getOperand(1).getReg())) 377 SwapVector[VecIdx].IsSwappable = 1; 378 // If we have a copy from one scalar floating-point register 379 // to another, we can accept this even if it is a physical 380 // register. The only way this gets involved is if it feeds 381 // a SUBREG_TO_REG, which is handled by introducing a swap. 382 else if (isScalarVecReg(MI.getOperand(0).getReg()) && 383 isScalarVecReg(MI.getOperand(1).getReg())) 384 SwapVector[VecIdx].IsSwappable = 1; 385 break; 386 case PPC::SUBREG_TO_REG: { 387 // These are fine provided they are moving between full vector 388 // register classes. If they are moving from a scalar 389 // floating-point class to a vector class, we can handle those 390 // as well, provided we introduce a swap. It is generally the 391 // case that we will introduce fewer swaps than we remove, but 392 // (FIXME) a cost model could be used. However, introduced 393 // swaps could potentially be CSEd, so this is not trivial. 394 if (isVecReg(MI.getOperand(0).getReg()) && 395 isVecReg(MI.getOperand(2).getReg())) 396 SwapVector[VecIdx].IsSwappable = 1; 397 else if (isVecReg(MI.getOperand(0).getReg()) && 398 isScalarVecReg(MI.getOperand(2).getReg())) { 399 SwapVector[VecIdx].IsSwappable = 1; 400 SwapVector[VecIdx].SpecialHandling = SHValues::SH_COPYWIDEN; 401 } 402 break; 403 } 404 case PPC::VSPLTB: 405 case PPC::VSPLTH: 406 case PPC::VSPLTW: 407 // Splats are lane-sensitive, but we can use special handling 408 // to adjust the source lane for the splat. This is not yet 409 // implemented. When it is, we need to uncomment the following: 410 SwapVector[VecIdx].IsSwappable = 1; 411 SwapVector[VecIdx].SpecialHandling = SHValues::SH_SPLAT; 412 break; 413 // The presence of the following lane-sensitive operations in a 414 // web will kill the optimization, at least for now. For these 415 // we do nothing, causing the optimization to fail. 416 // FIXME: Some of these could be permitted with special handling, 417 // and will be phased in as time permits. 418 // FIXME: There is no simple and maintainable way to express a set 419 // of opcodes having a common attribute in TableGen. Should this 420 // change, this is a prime candidate to use such a mechanism. 421 case PPC::INLINEASM: 422 case PPC::EXTRACT_SUBREG: 423 case PPC::INSERT_SUBREG: 424 case PPC::COPY_TO_REGCLASS: 425 case PPC::LVEBX: 426 case PPC::LVEHX: 427 case PPC::LVEWX: 428 case PPC::LVSL: 429 case PPC::LVSR: 430 case PPC::LVXL: 431 case PPC::STVEBX: 432 case PPC::STVEHX: 433 case PPC::STVEWX: 434 case PPC::STVXL: 435 // We can handle STXSDX and STXSSPX similarly to LXSDX and LXSSPX, 436 // by adding special handling for narrowing copies as well as 437 // widening ones. However, I've experimented with this, and in 438 // practice we currently do not appear to use STXSDX fed by 439 // a narrowing copy from a full vector register. Since I can't 440 // generate any useful test cases, I've left this alone for now. 441 case PPC::STXSDX: 442 case PPC::STXSSPX: 443 case PPC::VCIPHER: 444 case PPC::VCIPHERLAST: 445 case PPC::VMRGHB: 446 case PPC::VMRGHH: 447 case PPC::VMRGHW: 448 case PPC::VMRGLB: 449 case PPC::VMRGLH: 450 case PPC::VMRGLW: 451 case PPC::VMULESB: 452 case PPC::VMULESH: 453 case PPC::VMULESW: 454 case PPC::VMULEUB: 455 case PPC::VMULEUH: 456 case PPC::VMULEUW: 457 case PPC::VMULOSB: 458 case PPC::VMULOSH: 459 case PPC::VMULOSW: 460 case PPC::VMULOUB: 461 case PPC::VMULOUH: 462 case PPC::VMULOUW: 463 case PPC::VNCIPHER: 464 case PPC::VNCIPHERLAST: 465 case PPC::VPERM: 466 case PPC::VPERMXOR: 467 case PPC::VPKPX: 468 case PPC::VPKSHSS: 469 case PPC::VPKSHUS: 470 case PPC::VPKSDSS: 471 case PPC::VPKSDUS: 472 case PPC::VPKSWSS: 473 case PPC::VPKSWUS: 474 case PPC::VPKUDUM: 475 case PPC::VPKUDUS: 476 case PPC::VPKUHUM: 477 case PPC::VPKUHUS: 478 case PPC::VPKUWUM: 479 case PPC::VPKUWUS: 480 case PPC::VPMSUMB: 481 case PPC::VPMSUMD: 482 case PPC::VPMSUMH: 483 case PPC::VPMSUMW: 484 case PPC::VRLB: 485 case PPC::VRLD: 486 case PPC::VRLH: 487 case PPC::VRLW: 488 case PPC::VSBOX: 489 case PPC::VSHASIGMAD: 490 case PPC::VSHASIGMAW: 491 case PPC::VSL: 492 case PPC::VSLDOI: 493 case PPC::VSLO: 494 case PPC::VSR: 495 case PPC::VSRO: 496 case PPC::VSUM2SWS: 497 case PPC::VSUM4SBS: 498 case PPC::VSUM4SHS: 499 case PPC::VSUM4UBS: 500 case PPC::VSUMSWS: 501 case PPC::VUPKHPX: 502 case PPC::VUPKHSB: 503 case PPC::VUPKHSH: 504 case PPC::VUPKHSW: 505 case PPC::VUPKLPX: 506 case PPC::VUPKLSB: 507 case PPC::VUPKLSH: 508 case PPC::VUPKLSW: 509 case PPC::XXMRGHW: 510 case PPC::XXMRGLW: 511 // XXSLDWI could be replaced by a general permute with one of three 512 // permute control vectors (for shift values 1, 2, 3). However, 513 // VPERM has a more restrictive register class. 514 case PPC::XXSLDWI: 515 case PPC::XXSPLTW: 516 break; 517 } 518 } 519 } 520 521 if (RelevantFunction) { 522 DEBUG(dbgs() << "Swap vector when first built\n\n"); 523 dumpSwapVector(); 524 } 525 526 return RelevantFunction; 527 } 528 529 // Add an entry to the swap vector and swap map, and make a 530 // singleton equivalence class for the entry. 531 int PPCVSXSwapRemoval::addSwapEntry(MachineInstr *MI, 532 PPCVSXSwapEntry& SwapEntry) { 533 SwapEntry.VSEMI = MI; 534 SwapEntry.VSEId = SwapVector.size(); 535 SwapVector.push_back(SwapEntry); 536 EC->insert(SwapEntry.VSEId); 537 SwapMap[MI] = SwapEntry.VSEId; 538 return SwapEntry.VSEId; 539 } 540 541 // This is used to find the "true" source register for an 542 // XXPERMDI instruction, since MachineCSE does not handle the 543 // "copy-like" operations (Copy and SubregToReg). Returns 544 // the original SrcReg unless it is the target of a copy-like 545 // operation, in which case we chain backwards through all 546 // such operations to the ultimate source register. If a 547 // physical register is encountered, we stop the search and 548 // flag the swap entry indicated by VecIdx (the original 549 // XXPERMDI) as mentioning a physical register. 550 unsigned PPCVSXSwapRemoval::lookThruCopyLike(unsigned SrcReg, 551 unsigned VecIdx) { 552 MachineInstr *MI = MRI->getVRegDef(SrcReg); 553 if (!MI->isCopyLike()) 554 return SrcReg; 555 556 unsigned CopySrcReg; 557 if (MI->isCopy()) 558 CopySrcReg = MI->getOperand(1).getReg(); 559 else { 560 assert(MI->isSubregToReg() && "bad opcode for lookThruCopyLike"); 561 CopySrcReg = MI->getOperand(2).getReg(); 562 } 563 564 if (!TargetRegisterInfo::isVirtualRegister(CopySrcReg)) { 565 if (!isScalarVecReg(CopySrcReg)) 566 SwapVector[VecIdx].MentionsPhysVR = 1; 567 return CopySrcReg; 568 } 569 570 return lookThruCopyLike(CopySrcReg, VecIdx); 571 } 572 573 // Generate equivalence classes for related computations (webs) by 574 // def-use relationships of virtual registers. Mention of a physical 575 // register terminates the generation of equivalence classes as this 576 // indicates a use of a parameter, definition of a return value, use 577 // of a value returned from a call, or definition of a parameter to a 578 // call. Computations with physical register mentions are flagged 579 // as such so their containing webs will not be optimized. 580 void PPCVSXSwapRemoval::formWebs() { 581 582 DEBUG(dbgs() << "\n*** Forming webs for swap removal ***\n\n"); 583 584 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 585 586 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 587 588 DEBUG(dbgs() << "\n" << SwapVector[EntryIdx].VSEId << " "); 589 DEBUG(MI->dump()); 590 591 // It's sufficient to walk vector uses and join them to their unique 592 // definitions. In addition, check full vector register operands 593 // for physical regs. We exclude partial-vector register operands 594 // because we can handle them if copied to a full vector. 595 for (const MachineOperand &MO : MI->operands()) { 596 if (!MO.isReg()) 597 continue; 598 599 unsigned Reg = MO.getReg(); 600 if (!isVecReg(Reg) && !isScalarVecReg(Reg)) 601 continue; 602 603 if (!TargetRegisterInfo::isVirtualRegister(Reg)) { 604 if (!(MI->isCopy() && isScalarVecReg(Reg))) 605 SwapVector[EntryIdx].MentionsPhysVR = 1; 606 continue; 607 } 608 609 if (!MO.isUse()) 610 continue; 611 612 MachineInstr* DefMI = MRI->getVRegDef(Reg); 613 assert(SwapMap.find(DefMI) != SwapMap.end() && 614 "Inconsistency: def of vector reg not found in swap map!"); 615 int DefIdx = SwapMap[DefMI]; 616 (void)EC->unionSets(SwapVector[DefIdx].VSEId, 617 SwapVector[EntryIdx].VSEId); 618 619 DEBUG(dbgs() << format("Unioning %d with %d\n", SwapVector[DefIdx].VSEId, 620 SwapVector[EntryIdx].VSEId)); 621 DEBUG(dbgs() << " Def: "); 622 DEBUG(DefMI->dump()); 623 } 624 } 625 } 626 627 // Walk the swap vector entries looking for conditions that prevent their 628 // containing computations from being optimized. When such conditions are 629 // found, mark the representative of the computation's equivalence class 630 // as rejected. 631 void PPCVSXSwapRemoval::recordUnoptimizableWebs() { 632 633 DEBUG(dbgs() << "\n*** Rejecting webs for swap removal ***\n\n"); 634 635 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 636 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId); 637 638 // If representative is already rejected, don't waste further time. 639 if (SwapVector[Repr].WebRejected) 640 continue; 641 642 // Reject webs containing mentions of physical or partial registers, or 643 // containing operations that we don't know how to handle in a lane- 644 // permuted region. 645 if (SwapVector[EntryIdx].MentionsPhysVR || 646 SwapVector[EntryIdx].MentionsPartialVR || 647 !(SwapVector[EntryIdx].IsSwappable || SwapVector[EntryIdx].IsSwap)) { 648 649 SwapVector[Repr].WebRejected = 1; 650 651 DEBUG(dbgs() << 652 format("Web %d rejected for physreg, partial reg, or not " 653 "swap[pable]\n", Repr)); 654 DEBUG(dbgs() << " in " << EntryIdx << ": "); 655 DEBUG(SwapVector[EntryIdx].VSEMI->dump()); 656 DEBUG(dbgs() << "\n"); 657 } 658 659 // Reject webs than contain swapping loads that feed something other 660 // than a swap instruction. 661 else if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) { 662 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 663 unsigned DefReg = MI->getOperand(0).getReg(); 664 665 // We skip debug instructions in the analysis. (Note that debug 666 // location information is still maintained by this optimization 667 // because it remains on the LXVD2X and STXVD2X instructions after 668 // the XXPERMDIs are removed.) 669 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) { 670 int UseIdx = SwapMap[&UseMI]; 671 672 if (!SwapVector[UseIdx].IsSwap || SwapVector[UseIdx].IsLoad || 673 SwapVector[UseIdx].IsStore) { 674 675 SwapVector[Repr].WebRejected = 1; 676 677 DEBUG(dbgs() << 678 format("Web %d rejected for load not feeding swap\n", Repr)); 679 DEBUG(dbgs() << " def " << EntryIdx << ": "); 680 DEBUG(MI->dump()); 681 DEBUG(dbgs() << " use " << UseIdx << ": "); 682 DEBUG(UseMI.dump()); 683 DEBUG(dbgs() << "\n"); 684 } 685 } 686 687 // Reject webs that contain swapping stores that are fed by something 688 // other than a swap instruction. 689 } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) { 690 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 691 unsigned UseReg = MI->getOperand(0).getReg(); 692 MachineInstr *DefMI = MRI->getVRegDef(UseReg); 693 int DefIdx = SwapMap[DefMI]; 694 695 if (!SwapVector[DefIdx].IsSwap || SwapVector[DefIdx].IsLoad || 696 SwapVector[DefIdx].IsStore) { 697 698 SwapVector[Repr].WebRejected = 1; 699 700 DEBUG(dbgs() << 701 format("Web %d rejected for store not fed by swap\n", Repr)); 702 DEBUG(dbgs() << " def " << DefIdx << ": "); 703 DEBUG(DefMI->dump()); 704 DEBUG(dbgs() << " use " << EntryIdx << ": "); 705 DEBUG(MI->dump()); 706 DEBUG(dbgs() << "\n"); 707 } 708 } 709 } 710 711 DEBUG(dbgs() << "Swap vector after web analysis:\n\n"); 712 dumpSwapVector(); 713 } 714 715 // Walk the swap vector entries looking for swaps fed by permuting loads 716 // and swaps that feed permuting stores. If the containing computation 717 // has not been marked rejected, mark each such swap for removal. 718 // (Removal is delayed in case optimization has disturbed the pattern, 719 // such that multiple loads feed the same swap, etc.) 720 void PPCVSXSwapRemoval::markSwapsForRemoval() { 721 722 DEBUG(dbgs() << "\n*** Marking swaps for removal ***\n\n"); 723 724 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 725 726 if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) { 727 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId); 728 729 if (!SwapVector[Repr].WebRejected) { 730 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 731 unsigned DefReg = MI->getOperand(0).getReg(); 732 733 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) { 734 int UseIdx = SwapMap[&UseMI]; 735 SwapVector[UseIdx].WillRemove = 1; 736 737 DEBUG(dbgs() << "Marking swap fed by load for removal: "); 738 DEBUG(UseMI.dump()); 739 } 740 } 741 742 } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) { 743 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId); 744 745 if (!SwapVector[Repr].WebRejected) { 746 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 747 unsigned UseReg = MI->getOperand(0).getReg(); 748 MachineInstr *DefMI = MRI->getVRegDef(UseReg); 749 int DefIdx = SwapMap[DefMI]; 750 SwapVector[DefIdx].WillRemove = 1; 751 752 DEBUG(dbgs() << "Marking swap feeding store for removal: "); 753 DEBUG(DefMI->dump()); 754 } 755 756 } else if (SwapVector[EntryIdx].IsSwappable && 757 SwapVector[EntryIdx].SpecialHandling != 0) { 758 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId); 759 760 if (!SwapVector[Repr].WebRejected) 761 handleSpecialSwappables(EntryIdx); 762 } 763 } 764 } 765 766 // Create an xxswapd instruction and insert it prior to the given point. 767 // MI is used to determine basic block and debug loc information. 768 // FIXME: When inserting a swap, we should check whether SrcReg is 769 // defined by another swap: SrcReg = XXPERMDI Reg, Reg, 2; If so, 770 // then instead we should generate a copy from Reg to DstReg. 771 void PPCVSXSwapRemoval::insertSwap(MachineInstr *MI, 772 MachineBasicBlock::iterator InsertPoint, 773 unsigned DstReg, unsigned SrcReg) { 774 BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(), 775 TII->get(PPC::XXPERMDI), DstReg) 776 .addReg(SrcReg) 777 .addReg(SrcReg) 778 .addImm(2); 779 } 780 781 // The identified swap entry requires special handling to allow its 782 // containing computation to be optimized. Perform that handling 783 // here. 784 // FIXME: Additional opportunities will be phased in with subsequent 785 // patches. 786 void PPCVSXSwapRemoval::handleSpecialSwappables(int EntryIdx) { 787 switch (SwapVector[EntryIdx].SpecialHandling) { 788 789 default: 790 llvm_unreachable("Unexpected special handling type"); 791 792 // For splats based on an index into a vector, add N/2 modulo N 793 // to the index, where N is the number of vector elements. 794 case SHValues::SH_SPLAT: { 795 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 796 unsigned NElts; 797 798 DEBUG(dbgs() << "Changing splat: "); 799 DEBUG(MI->dump()); 800 801 switch (MI->getOpcode()) { 802 default: 803 llvm_unreachable("Unexpected splat opcode"); 804 case PPC::VSPLTB: NElts = 16; break; 805 case PPC::VSPLTH: NElts = 8; break; 806 case PPC::VSPLTW: NElts = 4; break; 807 } 808 809 unsigned EltNo = MI->getOperand(1).getImm(); 810 EltNo = (EltNo + NElts / 2) % NElts; 811 MI->getOperand(1).setImm(EltNo); 812 813 DEBUG(dbgs() << " Into: "); 814 DEBUG(MI->dump()); 815 break; 816 } 817 818 // For an XXPERMDI that isn't handled otherwise, we need to 819 // reverse the order of the operands. If the selector operand 820 // has a value of 0 or 3, we need to change it to 3 or 0, 821 // respectively. Otherwise we should leave it alone. (This 822 // is equivalent to reversing the two bits of the selector 823 // operand and complementing the result.) 824 case SHValues::SH_XXPERMDI: { 825 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 826 827 DEBUG(dbgs() << "Changing XXPERMDI: "); 828 DEBUG(MI->dump()); 829 830 unsigned Selector = MI->getOperand(3).getImm(); 831 if (Selector == 0 || Selector == 3) 832 Selector = 3 - Selector; 833 MI->getOperand(3).setImm(Selector); 834 835 unsigned Reg1 = MI->getOperand(1).getReg(); 836 unsigned Reg2 = MI->getOperand(2).getReg(); 837 MI->getOperand(1).setReg(Reg2); 838 MI->getOperand(2).setReg(Reg1); 839 840 DEBUG(dbgs() << " Into: "); 841 DEBUG(MI->dump()); 842 break; 843 } 844 845 // For a copy from a scalar floating-point register to a vector 846 // register, removing swaps will leave the copied value in the 847 // wrong lane. Insert a swap following the copy to fix this. 848 case SHValues::SH_COPYWIDEN: { 849 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 850 851 DEBUG(dbgs() << "Changing SUBREG_TO_REG: "); 852 DEBUG(MI->dump()); 853 854 unsigned DstReg = MI->getOperand(0).getReg(); 855 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 856 unsigned NewVReg = MRI->createVirtualRegister(DstRC); 857 858 MI->getOperand(0).setReg(NewVReg); 859 DEBUG(dbgs() << " Into: "); 860 DEBUG(MI->dump()); 861 862 auto InsertPoint = ++MachineBasicBlock::iterator(MI); 863 864 // Note that an XXPERMDI requires a VSRC, so if the SUBREG_TO_REG 865 // is copying to a VRRC, we need to be careful to avoid a register 866 // assignment problem. In this case we must copy from VRRC to VSRC 867 // prior to the swap, and from VSRC to VRRC following the swap. 868 // Coalescing will usually remove all this mess. 869 if (DstRC == &PPC::VRRCRegClass) { 870 unsigned VSRCTmp1 = MRI->createVirtualRegister(&PPC::VSRCRegClass); 871 unsigned VSRCTmp2 = MRI->createVirtualRegister(&PPC::VSRCRegClass); 872 873 BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(), 874 TII->get(PPC::COPY), VSRCTmp1) 875 .addReg(NewVReg); 876 DEBUG(std::prev(InsertPoint)->dump()); 877 878 insertSwap(MI, InsertPoint, VSRCTmp2, VSRCTmp1); 879 DEBUG(std::prev(InsertPoint)->dump()); 880 881 BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(), 882 TII->get(PPC::COPY), DstReg) 883 .addReg(VSRCTmp2); 884 DEBUG(std::prev(InsertPoint)->dump()); 885 886 } else { 887 insertSwap(MI, InsertPoint, DstReg, NewVReg); 888 DEBUG(std::prev(InsertPoint)->dump()); 889 } 890 break; 891 } 892 } 893 } 894 895 // Walk the swap vector and replace each entry marked for removal with 896 // a copy operation. 897 bool PPCVSXSwapRemoval::removeSwaps() { 898 899 DEBUG(dbgs() << "\n*** Removing swaps ***\n\n"); 900 901 bool Changed = false; 902 903 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 904 if (SwapVector[EntryIdx].WillRemove) { 905 Changed = true; 906 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 907 MachineBasicBlock *MBB = MI->getParent(); 908 BuildMI(*MBB, MI, MI->getDebugLoc(), 909 TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) 910 .addOperand(MI->getOperand(1)); 911 912 DEBUG(dbgs() << format("Replaced %d with copy: ", 913 SwapVector[EntryIdx].VSEId)); 914 DEBUG(MI->dump()); 915 916 MI->eraseFromParent(); 917 } 918 } 919 920 return Changed; 921 } 922 923 // For debug purposes, dump the contents of the swap vector. 924 void PPCVSXSwapRemoval::dumpSwapVector() { 925 926 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 927 928 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 929 int ID = SwapVector[EntryIdx].VSEId; 930 931 DEBUG(dbgs() << format("%6d", ID)); 932 DEBUG(dbgs() << format("%6d", EC->getLeaderValue(ID))); 933 DEBUG(dbgs() << format(" BB#%3d", MI->getParent()->getNumber())); 934 DEBUG(dbgs() << format(" %14s ", TII->getName(MI->getOpcode()))); 935 936 if (SwapVector[EntryIdx].IsLoad) 937 DEBUG(dbgs() << "load "); 938 if (SwapVector[EntryIdx].IsStore) 939 DEBUG(dbgs() << "store "); 940 if (SwapVector[EntryIdx].IsSwap) 941 DEBUG(dbgs() << "swap "); 942 if (SwapVector[EntryIdx].MentionsPhysVR) 943 DEBUG(dbgs() << "physreg "); 944 if (SwapVector[EntryIdx].MentionsPartialVR) 945 DEBUG(dbgs() << "partialreg "); 946 947 if (SwapVector[EntryIdx].IsSwappable) { 948 DEBUG(dbgs() << "swappable "); 949 switch(SwapVector[EntryIdx].SpecialHandling) { 950 default: 951 DEBUG(dbgs() << "special:**unknown**"); 952 break; 953 case SH_NONE: 954 break; 955 case SH_EXTRACT: 956 DEBUG(dbgs() << "special:extract "); 957 break; 958 case SH_INSERT: 959 DEBUG(dbgs() << "special:insert "); 960 break; 961 case SH_NOSWAP_LD: 962 DEBUG(dbgs() << "special:load "); 963 break; 964 case SH_NOSWAP_ST: 965 DEBUG(dbgs() << "special:store "); 966 break; 967 case SH_SPLAT: 968 DEBUG(dbgs() << "special:splat "); 969 break; 970 case SH_XXPERMDI: 971 DEBUG(dbgs() << "special:xxpermdi "); 972 break; 973 case SH_COPYWIDEN: 974 DEBUG(dbgs() << "special:copywiden "); 975 break; 976 } 977 } 978 979 if (SwapVector[EntryIdx].WebRejected) 980 DEBUG(dbgs() << "rejected "); 981 if (SwapVector[EntryIdx].WillRemove) 982 DEBUG(dbgs() << "remove "); 983 984 DEBUG(dbgs() << "\n"); 985 986 // For no-asserts builds. 987 (void)MI; 988 (void)ID; 989 } 990 991 DEBUG(dbgs() << "\n"); 992 } 993 994 } // end default namespace 995 996 INITIALIZE_PASS_BEGIN(PPCVSXSwapRemoval, DEBUG_TYPE, 997 "PowerPC VSX Swap Removal", false, false) 998 INITIALIZE_PASS_END(PPCVSXSwapRemoval, DEBUG_TYPE, 999 "PowerPC VSX Swap Removal", false, false) 1000 1001 char PPCVSXSwapRemoval::ID = 0; 1002 FunctionPass* 1003 llvm::createPPCVSXSwapRemovalPass() { return new PPCVSXSwapRemoval(); } 1004