1 //===-- PowerPCSubtarget.cpp - PPC Subtarget Information ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPC specific subclass of TargetSubtargetInfo. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCSubtarget.h" 15 #include "PPC.h" 16 #include "PPCRegisterInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineScheduler.h" 19 #include "llvm/IR/Attributes.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/Support/Host.h" 23 #include "llvm/Support/TargetRegistry.h" 24 #include "llvm/Target/TargetMachine.h" 25 #include <cstdlib> 26 27 using namespace llvm; 28 29 #define DEBUG_TYPE "ppc-subtarget" 30 31 #define GET_SUBTARGETINFO_TARGET_DESC 32 #define GET_SUBTARGETINFO_CTOR 33 #include "PPCGenSubtargetInfo.inc" 34 35 /// Return the datalayout string of a subtarget. 36 static std::string getDataLayoutString(const Triple &T) { 37 bool is64Bit = T.getArch() == Triple::ppc64 || T.getArch() == Triple::ppc64le; 38 std::string Ret; 39 40 // Most PPC* platforms are big endian, PPC64LE is little endian. 41 if (T.getArch() == Triple::ppc64le) 42 Ret = "e"; 43 else 44 Ret = "E"; 45 46 Ret += DataLayout::getManglingComponent(T); 47 48 // PPC32 has 32 bit pointers. The PS3 (OS Lv2) is a PPC64 machine with 32 bit 49 // pointers. 50 if (!is64Bit || T.getOS() == Triple::Lv2) 51 Ret += "-p:32:32"; 52 53 // Note, the alignment values for f64 and i64 on ppc64 in Darwin 54 // documentation are wrong; these are correct (i.e. "what gcc does"). 55 if (is64Bit || !T.isOSDarwin()) 56 Ret += "-i64:64"; 57 else 58 Ret += "-f64:32:64"; 59 60 // PPC64 has 32 and 64 bit registers, PPC32 has only 32 bit ones. 61 if (is64Bit) 62 Ret += "-n32:64"; 63 else 64 Ret += "-n32"; 65 66 return Ret; 67 } 68 69 PPCSubtarget &PPCSubtarget::initializeSubtargetDependencies(StringRef CPU, 70 StringRef FS) { 71 initializeEnvironment(); 72 resetSubtargetFeatures(CPU, FS); 73 return *this; 74 } 75 76 PPCSubtarget::PPCSubtarget(const std::string &TT, const std::string &CPU, 77 const std::string &FS, PPCTargetMachine &TM, 78 CodeGenOpt::Level OptLevel) 79 : PPCGenSubtargetInfo(TT, CPU, FS), TargetTriple(TT), 80 DL(getDataLayoutString(TargetTriple)), 81 IsPPC64(TargetTriple.getArch() == Triple::ppc64 || 82 TargetTriple.getArch() == Triple::ppc64le), 83 OptLevel(OptLevel), TargetABI(PPC_ABI_UNKNOWN), 84 FrameLowering(initializeSubtargetDependencies(CPU, FS)), InstrInfo(*this), 85 JITInfo(*this), TLInfo(TM), TSInfo(&DL) {} 86 87 /// SetJITMode - This is called to inform the subtarget info that we are 88 /// producing code for the JIT. 89 void PPCSubtarget::SetJITMode() { 90 // JIT mode doesn't want lazy resolver stubs, it knows exactly where 91 // everything is. This matters for PPC64, which codegens in PIC mode without 92 // stubs. 93 HasLazyResolverStubs = false; 94 95 // Calls to external functions need to use indirect calls 96 IsJITCodeModel = true; 97 } 98 99 void PPCSubtarget::resetSubtargetFeatures(const MachineFunction *MF) { 100 AttributeSet FnAttrs = MF->getFunction()->getAttributes(); 101 Attribute CPUAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex, 102 "target-cpu"); 103 Attribute FSAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex, 104 "target-features"); 105 std::string CPU = 106 !CPUAttr.hasAttribute(Attribute::None) ? CPUAttr.getValueAsString() : ""; 107 std::string FS = 108 !FSAttr.hasAttribute(Attribute::None) ? FSAttr.getValueAsString() : ""; 109 if (!FS.empty()) { 110 initializeEnvironment(); 111 resetSubtargetFeatures(CPU, FS); 112 } 113 } 114 115 void PPCSubtarget::initializeEnvironment() { 116 StackAlignment = 16; 117 DarwinDirective = PPC::DIR_NONE; 118 HasMFOCRF = false; 119 Has64BitSupport = false; 120 Use64BitRegs = false; 121 UseCRBits = false; 122 HasAltivec = false; 123 HasSPE = false; 124 HasQPX = false; 125 HasVSX = false; 126 HasFCPSGN = false; 127 HasFSQRT = false; 128 HasFRE = false; 129 HasFRES = false; 130 HasFRSQRTE = false; 131 HasFRSQRTES = false; 132 HasRecipPrec = false; 133 HasSTFIWX = false; 134 HasLFIWAX = false; 135 HasFPRND = false; 136 HasFPCVT = false; 137 HasISEL = false; 138 HasPOPCNTD = false; 139 HasLDBRX = false; 140 IsBookE = false; 141 IsPPC4xx = false; 142 IsPPC6xx = false; 143 IsE500 = false; 144 DeprecatedMFTB = false; 145 DeprecatedDST = false; 146 HasLazyResolverStubs = false; 147 IsJITCodeModel = false; 148 } 149 150 void PPCSubtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) { 151 // Determine default and user specified characteristics 152 std::string CPUName = CPU; 153 if (CPUName.empty()) 154 CPUName = "generic"; 155 #if (defined(__APPLE__) || defined(__linux__)) && \ 156 (defined(__ppc__) || defined(__powerpc__)) 157 if (CPUName == "generic") 158 CPUName = sys::getHostCPUName(); 159 #endif 160 161 // Initialize scheduling itinerary for the specified CPU. 162 InstrItins = getInstrItineraryForCPU(CPUName); 163 164 // Make sure 64-bit features are available when CPUname is generic 165 std::string FullFS = FS; 166 167 // If we are generating code for ppc64, verify that options make sense. 168 if (IsPPC64) { 169 Has64BitSupport = true; 170 // Silently force 64-bit register use on ppc64. 171 Use64BitRegs = true; 172 if (!FullFS.empty()) 173 FullFS = "+64bit," + FullFS; 174 else 175 FullFS = "+64bit"; 176 } 177 178 // At -O2 and above, track CR bits as individual registers. 179 if (OptLevel >= CodeGenOpt::Default) { 180 if (!FullFS.empty()) 181 FullFS = "+crbits," + FullFS; 182 else 183 FullFS = "+crbits"; 184 } 185 186 // Parse features string. 187 ParseSubtargetFeatures(CPUName, FullFS); 188 189 // If the user requested use of 64-bit regs, but the cpu selected doesn't 190 // support it, ignore. 191 if (use64BitRegs() && !has64BitSupport()) 192 Use64BitRegs = false; 193 194 // Set up darwin-specific properties. 195 if (isDarwin()) 196 HasLazyResolverStubs = true; 197 198 // QPX requires a 32-byte aligned stack. Note that we need to do this if 199 // we're compiling for a BG/Q system regardless of whether or not QPX 200 // is enabled because external functions will assume this alignment. 201 if (hasQPX() || isBGQ()) 202 StackAlignment = 32; 203 204 // Determine endianness. 205 IsLittleEndian = (TargetTriple.getArch() == Triple::ppc64le); 206 207 // FIXME: For now, we disable VSX in little-endian mode until endian 208 // issues in those instructions can be addressed. 209 if (IsLittleEndian) 210 HasVSX = false; 211 212 // Determine default ABI. 213 if (TargetABI == PPC_ABI_UNKNOWN) { 214 if (!isDarwin() && IsPPC64) { 215 if (IsLittleEndian) 216 TargetABI = PPC_ABI_ELFv2; 217 else 218 TargetABI = PPC_ABI_ELFv1; 219 } 220 } 221 } 222 223 /// hasLazyResolverStub - Return true if accesses to the specified global have 224 /// to go through a dyld lazy resolution stub. This means that an extra load 225 /// is required to get the address of the global. 226 bool PPCSubtarget::hasLazyResolverStub(const GlobalValue *GV, 227 const TargetMachine &TM) const { 228 // We never have stubs if HasLazyResolverStubs=false or if in static mode. 229 if (!HasLazyResolverStubs || TM.getRelocationModel() == Reloc::Static) 230 return false; 231 // If symbol visibility is hidden, the extra load is not needed if 232 // the symbol is definitely defined in the current translation unit. 233 bool isDecl = GV->isDeclaration() && !GV->isMaterializable(); 234 if (GV->hasHiddenVisibility() && !isDecl && !GV->hasCommonLinkage()) 235 return false; 236 return GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() || 237 GV->hasCommonLinkage() || isDecl; 238 } 239 240 // Embedded cores need aggressive scheduling (and some others also benefit). 241 static bool needsAggressiveScheduling(unsigned Directive) { 242 switch (Directive) { 243 default: return false; 244 case PPC::DIR_440: 245 case PPC::DIR_A2: 246 case PPC::DIR_E500mc: 247 case PPC::DIR_E5500: 248 case PPC::DIR_PWR7: 249 case PPC::DIR_PWR8: 250 return true; 251 } 252 } 253 254 bool PPCSubtarget::enableMachineScheduler() const { 255 // Enable MI scheduling for the embedded cores. 256 // FIXME: Enable this for all cores (some additional modeling 257 // may be necessary). 258 return needsAggressiveScheduling(DarwinDirective); 259 } 260 261 // This overrides the PostRAScheduler bit in the SchedModel for each CPU. 262 bool PPCSubtarget::enablePostMachineScheduler() const { return true; } 263 264 PPCGenSubtargetInfo::AntiDepBreakMode PPCSubtarget::getAntiDepBreakMode() const { 265 return TargetSubtargetInfo::ANTIDEP_ALL; 266 } 267 268 void PPCSubtarget::getCriticalPathRCs(RegClassVector &CriticalPathRCs) const { 269 CriticalPathRCs.clear(); 270 CriticalPathRCs.push_back(isPPC64() ? 271 &PPC::G8RCRegClass : &PPC::GPRCRegClass); 272 } 273 274 void PPCSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy, 275 MachineInstr *begin, 276 MachineInstr *end, 277 unsigned NumRegionInstrs) const { 278 if (needsAggressiveScheduling(DarwinDirective)) { 279 Policy.OnlyTopDown = false; 280 Policy.OnlyBottomUp = false; 281 } 282 283 // Spilling is generally expensive on all PPC cores, so always enable 284 // register-pressure tracking. 285 Policy.ShouldTrackPressure = true; 286 } 287 288 bool PPCSubtarget::useAA() const { 289 // Use AA during code generation for the embedded cores. 290 return needsAggressiveScheduling(DarwinDirective); 291 } 292 293