1 //===---- PPCReduceCRLogicals.cpp - Reduce CR Bit Logical operations ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===---------------------------------------------------------------------===// 9 // 10 // This pass aims to reduce the number of logical operations on bits in the CR 11 // register. These instructions have a fairly high latency and only a single 12 // pipeline at their disposal in modern PPC cores. Furthermore, they have a 13 // tendency to occur in fairly small blocks where there's little opportunity 14 // to hide the latency between the CR logical operation and its user. 15 // 16 //===---------------------------------------------------------------------===// 17 18 #include "PPC.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 23 #include "llvm/CodeGen/MachineDominators.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/Config/llvm-config.h" 28 #include "llvm/Support/Debug.h" 29 30 using namespace llvm; 31 32 #define DEBUG_TYPE "ppc-reduce-cr-ops" 33 34 STATISTIC(NumContainedSingleUseBinOps, 35 "Number of single-use binary CR logical ops contained in a block"); 36 STATISTIC(NumToSplitBlocks, 37 "Number of binary CR logical ops that can be used to split blocks"); 38 STATISTIC(TotalCRLogicals, "Number of CR logical ops."); 39 STATISTIC(TotalNullaryCRLogicals, 40 "Number of nullary CR logical ops (CRSET/CRUNSET)."); 41 STATISTIC(TotalUnaryCRLogicals, "Number of unary CR logical ops."); 42 STATISTIC(TotalBinaryCRLogicals, "Number of CR logical ops."); 43 STATISTIC(NumBlocksSplitOnBinaryCROp, 44 "Number of blocks split on CR binary logical ops."); 45 STATISTIC(NumNotSplitIdenticalOperands, 46 "Number of blocks not split due to operands being identical."); 47 STATISTIC(NumNotSplitChainCopies, 48 "Number of blocks not split due to operands being chained copies."); 49 STATISTIC(NumNotSplitWrongOpcode, 50 "Number of blocks not split due to the wrong opcode."); 51 52 namespace llvm { 53 void initializePPCReduceCRLogicalsPass(PassRegistry&); 54 } 55 56 /// Given a basic block \p Successor that potentially contains PHIs, this 57 /// function will look for any incoming values in the PHIs that are supposed to 58 /// be coming from \p OrigMBB but whose definition is actually in \p NewMBB. 59 /// Any such PHIs will be updated to reflect reality. 60 static void updatePHIs(MachineBasicBlock *Successor, MachineBasicBlock *OrigMBB, 61 MachineBasicBlock *NewMBB, MachineRegisterInfo *MRI) { 62 for (auto &MI : Successor->instrs()) { 63 if (!MI.isPHI()) 64 continue; 65 // This is a really ugly-looking loop, but it was pillaged directly from 66 // MachineBasicBlock::transferSuccessorsAndUpdatePHIs(). 67 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 68 MachineOperand &MO = MI.getOperand(i); 69 if (MO.getMBB() == OrigMBB) { 70 // Check if the instruction is actualy defined in NewMBB. 71 if (MI.getOperand(i - 1).isReg()) { 72 MachineInstr *DefMI = MRI->getVRegDef(MI.getOperand(i - 1).getReg()); 73 if (DefMI->getParent() == NewMBB || 74 !OrigMBB->isSuccessor(Successor)) { 75 MO.setMBB(NewMBB); 76 break; 77 } 78 } 79 } 80 } 81 } 82 } 83 84 /// Given a basic block \p Successor that potentially contains PHIs, this 85 /// function will look for PHIs that have an incoming value from \p OrigMBB 86 /// and will add the same incoming value from \p NewMBB. 87 /// NOTE: This should only be used if \p NewMBB is an immediate dominator of 88 /// \p OrigMBB. 89 static void addIncomingValuesToPHIs(MachineBasicBlock *Successor, 90 MachineBasicBlock *OrigMBB, 91 MachineBasicBlock *NewMBB, 92 MachineRegisterInfo *MRI) { 93 assert(OrigMBB->isSuccessor(NewMBB) && 94 "NewMBB must be a sucessor of OrigMBB"); 95 for (auto &MI : Successor->instrs()) { 96 if (!MI.isPHI()) 97 continue; 98 // This is a really ugly-looking loop, but it was pillaged directly from 99 // MachineBasicBlock::transferSuccessorsAndUpdatePHIs(). 100 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 101 MachineOperand &MO = MI.getOperand(i); 102 if (MO.getMBB() == OrigMBB) { 103 MachineInstrBuilder MIB(*MI.getParent()->getParent(), &MI); 104 MIB.addReg(MI.getOperand(i - 1).getReg()).addMBB(NewMBB); 105 break; 106 } 107 } 108 } 109 } 110 111 struct BlockSplitInfo { 112 MachineInstr *OrigBranch; 113 MachineInstr *SplitBefore; 114 MachineInstr *SplitCond; 115 bool InvertNewBranch; 116 bool InvertOrigBranch; 117 bool BranchToFallThrough; 118 const MachineBranchProbabilityInfo *MBPI; 119 MachineInstr *MIToDelete; 120 MachineInstr *NewCond; 121 bool allInstrsInSameMBB() { 122 if (!OrigBranch || !SplitBefore || !SplitCond) 123 return false; 124 MachineBasicBlock *MBB = OrigBranch->getParent(); 125 if (SplitBefore->getParent() != MBB || SplitCond->getParent() != MBB) 126 return false; 127 if (MIToDelete && MIToDelete->getParent() != MBB) 128 return false; 129 if (NewCond && NewCond->getParent() != MBB) 130 return false; 131 return true; 132 } 133 }; 134 135 /// Splits a MachineBasicBlock to branch before \p SplitBefore. The original 136 /// branch is \p OrigBranch. The target of the new branch can either be the same 137 /// as the target of the original branch or the fallthrough successor of the 138 /// original block as determined by \p BranchToFallThrough. The branch 139 /// conditions will be inverted according to \p InvertNewBranch and 140 /// \p InvertOrigBranch. If an instruction that previously fed the branch is to 141 /// be deleted, it is provided in \p MIToDelete and \p NewCond will be used as 142 /// the branch condition. The branch probabilities will be set if the 143 /// MachineBranchProbabilityInfo isn't null. 144 static bool splitMBB(BlockSplitInfo &BSI) { 145 assert(BSI.allInstrsInSameMBB() && 146 "All instructions must be in the same block."); 147 148 MachineBasicBlock *ThisMBB = BSI.OrigBranch->getParent(); 149 MachineFunction *MF = ThisMBB->getParent(); 150 MachineRegisterInfo *MRI = &MF->getRegInfo(); 151 assert(MRI->isSSA() && "Can only do this while the function is in SSA form."); 152 if (ThisMBB->succ_size() != 2) { 153 DEBUG(dbgs() << "Don't know how to handle blocks that don't have exactly" 154 << " two succesors.\n"); 155 return false; 156 } 157 158 const PPCInstrInfo *TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); 159 unsigned OrigBROpcode = BSI.OrigBranch->getOpcode(); 160 unsigned InvertedOpcode = 161 OrigBROpcode == PPC::BC 162 ? PPC::BCn 163 : OrigBROpcode == PPC::BCn 164 ? PPC::BC 165 : OrigBROpcode == PPC::BCLR ? PPC::BCLRn : PPC::BCLR; 166 unsigned NewBROpcode = BSI.InvertNewBranch ? InvertedOpcode : OrigBROpcode; 167 MachineBasicBlock *OrigTarget = BSI.OrigBranch->getOperand(1).getMBB(); 168 MachineBasicBlock *OrigFallThrough = OrigTarget == *ThisMBB->succ_begin() 169 ? *ThisMBB->succ_rbegin() 170 : *ThisMBB->succ_begin(); 171 MachineBasicBlock *NewBRTarget = 172 BSI.BranchToFallThrough ? OrigFallThrough : OrigTarget; 173 BranchProbability ProbToNewTarget = 174 !BSI.MBPI ? BranchProbability::getUnknown() 175 : BSI.MBPI->getEdgeProbability(ThisMBB, NewBRTarget); 176 177 // Create a new basic block. 178 MachineBasicBlock::iterator InsertPoint = BSI.SplitBefore; 179 const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock(); 180 MachineFunction::iterator It = ThisMBB->getIterator(); 181 MachineBasicBlock *NewMBB = MF->CreateMachineBasicBlock(LLVM_BB); 182 MF->insert(++It, NewMBB); 183 184 // Move everything after SplitBefore into the new block. 185 NewMBB->splice(NewMBB->end(), ThisMBB, InsertPoint, ThisMBB->end()); 186 NewMBB->transferSuccessors(ThisMBB); 187 188 // Add the two successors to ThisMBB. The probabilities come from the 189 // existing blocks if available. 190 ThisMBB->addSuccessor(NewBRTarget, ProbToNewTarget); 191 ThisMBB->addSuccessor(NewMBB, ProbToNewTarget.getCompl()); 192 193 // Add the branches to ThisMBB. 194 BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(), 195 TII->get(NewBROpcode)) 196 .addReg(BSI.SplitCond->getOperand(0).getReg()) 197 .addMBB(NewBRTarget); 198 BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(), 199 TII->get(PPC::B)) 200 .addMBB(NewMBB); 201 if (BSI.MIToDelete) 202 BSI.MIToDelete->eraseFromParent(); 203 204 // Change the condition on the original branch and invert it if requested. 205 auto FirstTerminator = NewMBB->getFirstTerminator(); 206 if (BSI.NewCond) { 207 assert(FirstTerminator->getOperand(0).isReg() && 208 "Can't update condition of unconditional branch."); 209 FirstTerminator->getOperand(0).setReg(BSI.NewCond->getOperand(0).getReg()); 210 } 211 if (BSI.InvertOrigBranch) 212 FirstTerminator->setDesc(TII->get(InvertedOpcode)); 213 214 // If any of the PHIs in the successors of NewMBB reference values that 215 // now come from NewMBB, they need to be updated. 216 for (auto *Succ : NewMBB->successors()) { 217 updatePHIs(Succ, ThisMBB, NewMBB, MRI); 218 } 219 addIncomingValuesToPHIs(NewBRTarget, ThisMBB, NewMBB, MRI); 220 221 DEBUG(dbgs() << "After splitting, ThisMBB:\n"; ThisMBB->dump()); 222 DEBUG(dbgs() << "NewMBB:\n"; NewMBB->dump()); 223 DEBUG(dbgs() << "New branch-to block:\n"; NewBRTarget->dump()); 224 return true; 225 } 226 227 static bool isBinary(MachineInstr &MI) { 228 return MI.getNumOperands() == 3; 229 } 230 231 static bool isNullary(MachineInstr &MI) { 232 return MI.getNumOperands() == 1; 233 } 234 235 /// Given a CR logical operation \p CROp, branch opcode \p BROp as well as 236 /// a flag to indicate if the first operand of \p CROp is used as the 237 /// SplitBefore operand, determines whether either of the branches are to be 238 /// inverted as well as whether the new target should be the original 239 /// fall-through block. 240 static void 241 computeBranchTargetAndInversion(unsigned CROp, unsigned BROp, bool UsingDef1, 242 bool &InvertNewBranch, bool &InvertOrigBranch, 243 bool &TargetIsFallThrough) { 244 // The conditions under which each of the output operands should be [un]set 245 // can certainly be written much more concisely with just 3 if statements or 246 // ternary expressions. However, this provides a much clearer overview to the 247 // reader as to what is set for each <CROp, BROp, OpUsed> combination. 248 if (BROp == PPC::BC || BROp == PPC::BCLR) { 249 // Regular branches. 250 switch (CROp) { 251 default: 252 llvm_unreachable("Don't know how to handle this CR logical."); 253 case PPC::CROR: 254 InvertNewBranch = false; 255 InvertOrigBranch = false; 256 TargetIsFallThrough = false; 257 return; 258 case PPC::CRAND: 259 InvertNewBranch = true; 260 InvertOrigBranch = false; 261 TargetIsFallThrough = true; 262 return; 263 case PPC::CRNAND: 264 InvertNewBranch = true; 265 InvertOrigBranch = true; 266 TargetIsFallThrough = false; 267 return; 268 case PPC::CRNOR: 269 InvertNewBranch = false; 270 InvertOrigBranch = true; 271 TargetIsFallThrough = true; 272 return; 273 case PPC::CRORC: 274 InvertNewBranch = UsingDef1; 275 InvertOrigBranch = !UsingDef1; 276 TargetIsFallThrough = false; 277 return; 278 case PPC::CRANDC: 279 InvertNewBranch = !UsingDef1; 280 InvertOrigBranch = !UsingDef1; 281 TargetIsFallThrough = true; 282 return; 283 } 284 } else if (BROp == PPC::BCn || BROp == PPC::BCLRn) { 285 // Negated branches. 286 switch (CROp) { 287 default: 288 llvm_unreachable("Don't know how to handle this CR logical."); 289 case PPC::CROR: 290 InvertNewBranch = true; 291 InvertOrigBranch = false; 292 TargetIsFallThrough = true; 293 return; 294 case PPC::CRAND: 295 InvertNewBranch = false; 296 InvertOrigBranch = false; 297 TargetIsFallThrough = false; 298 return; 299 case PPC::CRNAND: 300 InvertNewBranch = false; 301 InvertOrigBranch = true; 302 TargetIsFallThrough = true; 303 return; 304 case PPC::CRNOR: 305 InvertNewBranch = true; 306 InvertOrigBranch = true; 307 TargetIsFallThrough = false; 308 return; 309 case PPC::CRORC: 310 InvertNewBranch = !UsingDef1; 311 InvertOrigBranch = !UsingDef1; 312 TargetIsFallThrough = true; 313 return; 314 case PPC::CRANDC: 315 InvertNewBranch = UsingDef1; 316 InvertOrigBranch = !UsingDef1; 317 TargetIsFallThrough = false; 318 return; 319 } 320 } else 321 llvm_unreachable("Don't know how to handle this branch."); 322 } 323 324 namespace { 325 326 class PPCReduceCRLogicals : public MachineFunctionPass { 327 328 public: 329 static char ID; 330 struct CRLogicalOpInfo { 331 MachineInstr *MI; 332 // FIXME: If chains of copies are to be handled, this should be a vector. 333 std::pair<MachineInstr*, MachineInstr*> CopyDefs; 334 std::pair<MachineInstr*, MachineInstr*> TrueDefs; 335 unsigned IsBinary : 1; 336 unsigned IsNullary : 1; 337 unsigned ContainedInBlock : 1; 338 unsigned FeedsISEL : 1; 339 unsigned FeedsBR : 1; 340 unsigned FeedsLogical : 1; 341 unsigned SingleUse : 1; 342 unsigned DefsSingleUse : 1; 343 unsigned SubregDef1; 344 unsigned SubregDef2; 345 CRLogicalOpInfo() : MI(nullptr), IsBinary(0), IsNullary(0), 346 ContainedInBlock(0), FeedsISEL(0), FeedsBR(0), 347 FeedsLogical(0), SingleUse(0), DefsSingleUse(1), 348 SubregDef1(0), SubregDef2(0) { } 349 void dump(); 350 }; 351 352 private: 353 const PPCInstrInfo *TII; 354 MachineFunction *MF; 355 MachineRegisterInfo *MRI; 356 const MachineBranchProbabilityInfo *MBPI; 357 358 // A vector to contain all the CR logical operations 359 std::vector<CRLogicalOpInfo> AllCRLogicalOps; 360 void initialize(MachineFunction &MFParm); 361 void collectCRLogicals(); 362 bool handleCROp(CRLogicalOpInfo &CRI); 363 bool splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI); 364 static bool isCRLogical(MachineInstr &MI) { 365 unsigned Opc = MI.getOpcode(); 366 return Opc == PPC::CRAND || Opc == PPC::CRNAND || Opc == PPC::CROR || 367 Opc == PPC::CRXOR || Opc == PPC::CRNOR || Opc == PPC::CREQV || 368 Opc == PPC::CRANDC || Opc == PPC::CRORC || Opc == PPC::CRSET || 369 Opc == PPC::CRUNSET || Opc == PPC::CR6SET || Opc == PPC::CR6UNSET; 370 } 371 bool simplifyCode() { 372 bool Changed = false; 373 // Not using a range-based for loop here as the vector may grow while being 374 // operated on. 375 for (unsigned i = 0; i < AllCRLogicalOps.size(); i++) 376 Changed |= handleCROp(AllCRLogicalOps[i]); 377 return Changed; 378 } 379 380 public: 381 PPCReduceCRLogicals() : MachineFunctionPass(ID) { 382 initializePPCReduceCRLogicalsPass(*PassRegistry::getPassRegistry()); 383 } 384 385 MachineInstr *lookThroughCRCopy(unsigned Reg, unsigned &Subreg, 386 MachineInstr *&CpDef); 387 bool runOnMachineFunction(MachineFunction &MF) override { 388 if (skipFunction(MF.getFunction())) 389 return false; 390 391 // If the subtarget doesn't use CR bits, there's nothing to do. 392 const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>(); 393 if (!STI.useCRBits()) 394 return false; 395 396 initialize(MF); 397 collectCRLogicals(); 398 return simplifyCode(); 399 } 400 CRLogicalOpInfo createCRLogicalOpInfo(MachineInstr &MI); 401 void getAnalysisUsage(AnalysisUsage &AU) const override { 402 AU.addRequired<MachineBranchProbabilityInfo>(); 403 AU.addRequired<MachineDominatorTree>(); 404 MachineFunctionPass::getAnalysisUsage(AU); 405 } 406 }; 407 408 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 409 LLVM_DUMP_METHOD void PPCReduceCRLogicals::CRLogicalOpInfo::dump() { 410 dbgs() << "CRLogicalOpMI: "; 411 MI->dump(); 412 dbgs() << "IsBinary: " << IsBinary << ", FeedsISEL: " << FeedsISEL; 413 dbgs() << ", FeedsBR: " << FeedsBR << ", FeedsLogical: "; 414 dbgs() << FeedsLogical << ", SingleUse: " << SingleUse; 415 dbgs() << ", DefsSingleUse: " << DefsSingleUse; 416 dbgs() << ", SubregDef1: " << SubregDef1 << ", SubregDef2: "; 417 dbgs() << SubregDef2 << ", ContainedInBlock: " << ContainedInBlock; 418 if (!IsNullary) { 419 dbgs() << "\nDefs:\n"; 420 TrueDefs.first->dump(); 421 } 422 if (IsBinary) 423 TrueDefs.second->dump(); 424 dbgs() << "\n"; 425 if (CopyDefs.first) { 426 dbgs() << "CopyDef1: "; 427 CopyDefs.first->dump(); 428 } 429 if (CopyDefs.second) { 430 dbgs() << "CopyDef2: "; 431 CopyDefs.second->dump(); 432 } 433 } 434 #endif 435 436 PPCReduceCRLogicals::CRLogicalOpInfo 437 PPCReduceCRLogicals::createCRLogicalOpInfo(MachineInstr &MIParam) { 438 CRLogicalOpInfo Ret; 439 Ret.MI = &MIParam; 440 // Get the defs 441 if (isNullary(MIParam)) { 442 Ret.IsNullary = 1; 443 Ret.TrueDefs = std::make_pair(nullptr, nullptr); 444 Ret.CopyDefs = std::make_pair(nullptr, nullptr); 445 } else { 446 MachineInstr *Def1 = lookThroughCRCopy(MIParam.getOperand(1).getReg(), 447 Ret.SubregDef1, Ret.CopyDefs.first); 448 Ret.DefsSingleUse &= 449 MRI->hasOneNonDBGUse(Def1->getOperand(0).getReg()); 450 Ret.DefsSingleUse &= 451 MRI->hasOneNonDBGUse(Ret.CopyDefs.first->getOperand(0).getReg()); 452 assert(Def1 && "Must be able to find a definition of operand 1."); 453 if (isBinary(MIParam)) { 454 Ret.IsBinary = 1; 455 MachineInstr *Def2 = lookThroughCRCopy(MIParam.getOperand(2).getReg(), 456 Ret.SubregDef2, 457 Ret.CopyDefs.second); 458 Ret.DefsSingleUse &= 459 MRI->hasOneNonDBGUse(Def2->getOperand(0).getReg()); 460 Ret.DefsSingleUse &= 461 MRI->hasOneNonDBGUse(Ret.CopyDefs.second->getOperand(0).getReg()); 462 assert(Def2 && "Must be able to find a definition of operand 2."); 463 Ret.TrueDefs = std::make_pair(Def1, Def2); 464 } else { 465 Ret.TrueDefs = std::make_pair(Def1, nullptr); 466 Ret.CopyDefs.second = nullptr; 467 } 468 } 469 470 Ret.ContainedInBlock = 1; 471 // Get the uses 472 for (MachineInstr &UseMI : 473 MRI->use_nodbg_instructions(MIParam.getOperand(0).getReg())) { 474 unsigned Opc = UseMI.getOpcode(); 475 if (Opc == PPC::ISEL || Opc == PPC::ISEL8) 476 Ret.FeedsISEL = 1; 477 if (Opc == PPC::BC || Opc == PPC::BCn || Opc == PPC::BCLR || 478 Opc == PPC::BCLRn) 479 Ret.FeedsBR = 1; 480 Ret.FeedsLogical = isCRLogical(UseMI); 481 if (UseMI.getParent() != MIParam.getParent()) 482 Ret.ContainedInBlock = 0; 483 } 484 Ret.SingleUse = MRI->hasOneNonDBGUse(MIParam.getOperand(0).getReg()) ? 1 : 0; 485 486 // We now know whether all the uses of the CR logical are in the same block. 487 if (!Ret.IsNullary) { 488 Ret.ContainedInBlock &= 489 (MIParam.getParent() == Ret.TrueDefs.first->getParent()); 490 if (Ret.IsBinary) 491 Ret.ContainedInBlock &= 492 (MIParam.getParent() == Ret.TrueDefs.second->getParent()); 493 } 494 DEBUG(Ret.dump()); 495 if (Ret.IsBinary && Ret.ContainedInBlock && Ret.SingleUse) { 496 NumContainedSingleUseBinOps++; 497 if (Ret.FeedsBR && Ret.DefsSingleUse) 498 NumToSplitBlocks++; 499 } 500 return Ret; 501 } 502 503 /// Looks trhough a COPY instruction to the actual definition of the CR-bit 504 /// register and returns the instruction that defines it. 505 /// FIXME: This currently handles what is by-far the most common case: 506 /// an instruction that defines a CR field followed by a single copy of a bit 507 /// from that field into a virtual register. If chains of copies need to be 508 /// handled, this should have a loop until a non-copy instruction is found. 509 MachineInstr *PPCReduceCRLogicals::lookThroughCRCopy(unsigned Reg, 510 unsigned &Subreg, 511 MachineInstr *&CpDef) { 512 Subreg = -1; 513 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 514 return nullptr; 515 MachineInstr *Copy = MRI->getVRegDef(Reg); 516 CpDef = Copy; 517 if (!Copy->isCopy()) 518 return Copy; 519 unsigned CopySrc = Copy->getOperand(1).getReg(); 520 Subreg = Copy->getOperand(1).getSubReg(); 521 if (!TargetRegisterInfo::isVirtualRegister(CopySrc)) { 522 const TargetRegisterInfo *TRI = &TII->getRegisterInfo(); 523 // Set the Subreg 524 if (CopySrc == PPC::CR0EQ || CopySrc == PPC::CR6EQ) 525 Subreg = PPC::sub_eq; 526 if (CopySrc == PPC::CR0LT || CopySrc == PPC::CR6LT) 527 Subreg = PPC::sub_lt; 528 if (CopySrc == PPC::CR0GT || CopySrc == PPC::CR6GT) 529 Subreg = PPC::sub_gt; 530 if (CopySrc == PPC::CR0UN || CopySrc == PPC::CR6UN) 531 Subreg = PPC::sub_un; 532 // Loop backwards and return the first MI that modifies the physical CR Reg. 533 MachineBasicBlock::iterator Me = Copy, B = Copy->getParent()->begin(); 534 while (Me != B) 535 if ((--Me)->modifiesRegister(CopySrc, TRI)) 536 return &*Me; 537 return nullptr; 538 } 539 return MRI->getVRegDef(CopySrc); 540 } 541 542 void PPCReduceCRLogicals::initialize(MachineFunction &MFParam) { 543 MF = &MFParam; 544 MRI = &MF->getRegInfo(); 545 TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); 546 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 547 548 AllCRLogicalOps.clear(); 549 } 550 551 /// Contains all the implemented transformations on CR logical operations. 552 /// For example, a binary CR logical can be used to split a block on its inputs, 553 /// a unary CR logical might be used to change the condition code on a 554 /// comparison feeding it. A nullary CR logical might simply be removable 555 /// if the user of the bit it [un]sets can be transformed. 556 bool PPCReduceCRLogicals::handleCROp(CRLogicalOpInfo &CRI) { 557 // We can definitely split a block on the inputs to a binary CR operation 558 // whose defs and (single) use are within the same block. 559 bool Changed = false; 560 if (CRI.IsBinary && CRI.ContainedInBlock && CRI.SingleUse && CRI.FeedsBR && 561 CRI.DefsSingleUse) { 562 Changed = splitBlockOnBinaryCROp(CRI); 563 if (Changed) 564 NumBlocksSplitOnBinaryCROp++; 565 } 566 return Changed; 567 } 568 569 /// Splits a block that contains a CR-logical operation that feeds a branch 570 /// and whose operands are produced within the block. 571 /// Example: 572 /// %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2 573 /// %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5 574 /// %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3 575 /// %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7 576 /// %vr9<def> = CROR %vr6<kill>, %vr8<kill>; CRBITRC:%vr9,%vr6,%vr8 577 /// BC %vr9<kill>, <BB#2>; CRBITRC:%vr9 578 /// Becomes: 579 /// %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2 580 /// %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5 581 /// BC %vr6<kill>, <BB#2>; CRBITRC:%vr6 582 /// 583 /// %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3 584 /// %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7 585 /// BC %vr9<kill>, <BB#2>; CRBITRC:%vr9 586 bool PPCReduceCRLogicals::splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI) { 587 if (CRI.CopyDefs.first == CRI.CopyDefs.second) { 588 DEBUG(dbgs() << "Unable to split as the two operands are the same\n"); 589 NumNotSplitIdenticalOperands++; 590 return false; 591 } 592 if (CRI.TrueDefs.first->isCopy() || CRI.TrueDefs.second->isCopy() || 593 CRI.TrueDefs.first->isPHI() || CRI.TrueDefs.second->isPHI()) { 594 DEBUG(dbgs() << "Unable to split because one of the operands is a PHI or " 595 "chain of copies.\n"); 596 NumNotSplitChainCopies++; 597 return false; 598 } 599 // Note: keep in sync with computeBranchTargetAndInversion(). 600 if (CRI.MI->getOpcode() != PPC::CROR && 601 CRI.MI->getOpcode() != PPC::CRAND && 602 CRI.MI->getOpcode() != PPC::CRNOR && 603 CRI.MI->getOpcode() != PPC::CRNAND && 604 CRI.MI->getOpcode() != PPC::CRORC && 605 CRI.MI->getOpcode() != PPC::CRANDC) { 606 DEBUG(dbgs() << "Unable to split blocks on this opcode.\n"); 607 NumNotSplitWrongOpcode++; 608 return false; 609 } 610 DEBUG(dbgs() << "Splitting the following CR op:\n"; CRI.dump()); 611 MachineBasicBlock::iterator Def1It = CRI.TrueDefs.first; 612 MachineBasicBlock::iterator Def2It = CRI.TrueDefs.second; 613 614 bool UsingDef1 = false; 615 MachineInstr *SplitBefore = &*Def2It; 616 for (auto E = CRI.MI->getParent()->end(); Def2It != E; ++Def2It) { 617 if (Def1It == Def2It) { // Def2 comes before Def1. 618 SplitBefore = &*Def1It; 619 UsingDef1 = true; 620 break; 621 } 622 } 623 624 DEBUG(dbgs() << "We will split the following block:\n";); 625 DEBUG(CRI.MI->getParent()->dump()); 626 DEBUG(dbgs() << "Before instruction:\n"; SplitBefore->dump()); 627 628 // Get the branch instruction. 629 MachineInstr *Branch = 630 MRI->use_nodbg_begin(CRI.MI->getOperand(0).getReg())->getParent(); 631 632 // We want the new block to have no code in it other than the definition 633 // of the input to the CR logical and the CR logical itself. So we move 634 // those to the bottom of the block (just before the branch). Then we 635 // will split before the CR logical. 636 MachineBasicBlock *MBB = SplitBefore->getParent(); 637 auto FirstTerminator = MBB->getFirstTerminator(); 638 MachineBasicBlock::iterator FirstInstrToMove = 639 UsingDef1 ? CRI.TrueDefs.first : CRI.TrueDefs.second; 640 MachineBasicBlock::iterator SecondInstrToMove = 641 UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second; 642 643 // The instructions that need to be moved are not guaranteed to be 644 // contiguous. Move them individually. 645 // FIXME: If one of the operands is a chain of (single use) copies, they 646 // can all be moved and we can still split. 647 MBB->splice(FirstTerminator, MBB, FirstInstrToMove); 648 if (FirstInstrToMove != SecondInstrToMove) 649 MBB->splice(FirstTerminator, MBB, SecondInstrToMove); 650 MBB->splice(FirstTerminator, MBB, CRI.MI); 651 652 unsigned Opc = CRI.MI->getOpcode(); 653 bool InvertOrigBranch, InvertNewBranch, TargetIsFallThrough; 654 computeBranchTargetAndInversion(Opc, Branch->getOpcode(), UsingDef1, 655 InvertNewBranch, InvertOrigBranch, 656 TargetIsFallThrough); 657 MachineInstr *SplitCond = 658 UsingDef1 ? CRI.CopyDefs.second : CRI.CopyDefs.first; 659 DEBUG(dbgs() << "We will " << (InvertNewBranch ? "invert" : "copy")); 660 DEBUG(dbgs() << " the original branch and the target is the " << 661 (TargetIsFallThrough ? "fallthrough block\n" : "orig. target block\n")); 662 DEBUG(dbgs() << "Original branch instruction: "; Branch->dump()); 663 BlockSplitInfo BSI { Branch, SplitBefore, SplitCond, InvertNewBranch, 664 InvertOrigBranch, TargetIsFallThrough, MBPI, CRI.MI, 665 UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second }; 666 bool Changed = splitMBB(BSI); 667 // If we've split on a CR logical that is fed by a CR logical, 668 // recompute the source CR logical as it may be usable for splitting. 669 if (Changed) { 670 bool Input1CRlogical = 671 CRI.TrueDefs.first && isCRLogical(*CRI.TrueDefs.first); 672 bool Input2CRlogical = 673 CRI.TrueDefs.second && isCRLogical(*CRI.TrueDefs.second); 674 if (Input1CRlogical) 675 AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.first)); 676 if (Input2CRlogical) 677 AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.second)); 678 } 679 return Changed; 680 } 681 682 void PPCReduceCRLogicals::collectCRLogicals() { 683 for (MachineBasicBlock &MBB : *MF) { 684 for (MachineInstr &MI : MBB) { 685 if (isCRLogical(MI)) { 686 AllCRLogicalOps.push_back(createCRLogicalOpInfo(MI)); 687 TotalCRLogicals++; 688 if (AllCRLogicalOps.back().IsNullary) 689 TotalNullaryCRLogicals++; 690 else if (AllCRLogicalOps.back().IsBinary) 691 TotalBinaryCRLogicals++; 692 else 693 TotalUnaryCRLogicals++; 694 } 695 } 696 } 697 } 698 699 } // end annonymous namespace 700 701 INITIALIZE_PASS_BEGIN(PPCReduceCRLogicals, DEBUG_TYPE, 702 "PowerPC Reduce CR logical Operation", false, false) 703 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 704 INITIALIZE_PASS_END(PPCReduceCRLogicals, DEBUG_TYPE, 705 "PowerPC Reduce CR logical Operation", false, false) 706 707 char PPCReduceCRLogicals::ID = 0; 708 FunctionPass* 709 llvm::createPPCReduceCRLogicalsPass() { return new PPCReduceCRLogicals(); } 710