1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the PowerPC implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCInstrInfo.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCHazardRecognizers.h" 18 #include "PPCInstrBuilder.h" 19 #include "PPCMachineFunctionInfo.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/ScheduleDAG.h" 31 #include "llvm/CodeGen/SlotIndexes.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCInst.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "ppc-instr-info" 44 45 #define GET_INSTRMAP_INFO 46 #define GET_INSTRINFO_CTOR_DTOR 47 #include "PPCGenInstrInfo.inc" 48 49 static cl:: 50 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 51 cl::desc("Disable analysis for CTR loops")); 52 53 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 54 cl::desc("Disable compare instruction optimization"), cl::Hidden); 55 56 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 57 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 58 cl::Hidden); 59 60 static cl::opt<bool> 61 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 62 cl::desc("Use the old (incorrect) instruction latency calculation")); 63 64 // Pin the vtable to this file. 65 void PPCInstrInfo::anchor() {} 66 67 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 68 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP), 69 Subtarget(STI), RI(STI.getTargetMachine()) {} 70 71 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 72 /// this target when scheduling the DAG. 73 ScheduleHazardRecognizer * 74 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 75 const ScheduleDAG *DAG) const { 76 unsigned Directive = 77 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); 78 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 79 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 80 const InstrItineraryData *II = 81 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 82 return new ScoreboardHazardRecognizer(II, DAG); 83 } 84 85 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 86 } 87 88 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 89 /// to use for this target when scheduling the DAG. 90 ScheduleHazardRecognizer * 91 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 92 const ScheduleDAG *DAG) const { 93 unsigned Directive = 94 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective(); 95 96 // FIXME: Leaving this as-is until we have POWER9 scheduling info 97 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 98 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 99 100 // Most subtargets use a PPC970 recognizer. 101 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 102 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 103 assert(DAG->TII && "No InstrInfo?"); 104 105 return new PPCHazardRecognizer970(*DAG); 106 } 107 108 return new ScoreboardHazardRecognizer(II, DAG); 109 } 110 111 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 112 const MachineInstr &MI, 113 unsigned *PredCost) const { 114 if (!ItinData || UseOldLatencyCalc) 115 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 116 117 // The default implementation of getInstrLatency calls getStageLatency, but 118 // getStageLatency does not do the right thing for us. While we have 119 // itinerary, most cores are fully pipelined, and so the itineraries only 120 // express the first part of the pipeline, not every stage. Instead, we need 121 // to use the listed output operand cycle number (using operand 0 here, which 122 // is an output). 123 124 unsigned Latency = 1; 125 unsigned DefClass = MI.getDesc().getSchedClass(); 126 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 127 const MachineOperand &MO = MI.getOperand(i); 128 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 129 continue; 130 131 int Cycle = ItinData->getOperandCycle(DefClass, i); 132 if (Cycle < 0) 133 continue; 134 135 Latency = std::max(Latency, (unsigned) Cycle); 136 } 137 138 return Latency; 139 } 140 141 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 142 const MachineInstr &DefMI, unsigned DefIdx, 143 const MachineInstr &UseMI, 144 unsigned UseIdx) const { 145 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 146 UseMI, UseIdx); 147 148 if (!DefMI.getParent()) 149 return Latency; 150 151 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 152 unsigned Reg = DefMO.getReg(); 153 154 bool IsRegCR; 155 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 156 const MachineRegisterInfo *MRI = 157 &DefMI.getParent()->getParent()->getRegInfo(); 158 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 159 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 160 } else { 161 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 162 PPC::CRBITRCRegClass.contains(Reg); 163 } 164 165 if (UseMI.isBranch() && IsRegCR) { 166 if (Latency < 0) 167 Latency = getInstrLatency(ItinData, DefMI); 168 169 // On some cores, there is an additional delay between writing to a condition 170 // register, and using it from a branch. 171 unsigned Directive = Subtarget.getDarwinDirective(); 172 switch (Directive) { 173 default: break; 174 case PPC::DIR_7400: 175 case PPC::DIR_750: 176 case PPC::DIR_970: 177 case PPC::DIR_E5500: 178 case PPC::DIR_PWR4: 179 case PPC::DIR_PWR5: 180 case PPC::DIR_PWR5X: 181 case PPC::DIR_PWR6: 182 case PPC::DIR_PWR6X: 183 case PPC::DIR_PWR7: 184 case PPC::DIR_PWR8: 185 // FIXME: Is this needed for POWER9? 186 Latency += 2; 187 break; 188 } 189 } 190 191 return Latency; 192 } 193 194 // This function does not list all associative and commutative operations, but 195 // only those worth feeding through the machine combiner in an attempt to 196 // reduce the critical path. Mostly, this means floating-point operations, 197 // because they have high latencies (compared to other operations, such and 198 // and/or, which are also associative and commutative, but have low latencies). 199 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 200 switch (Inst.getOpcode()) { 201 // FP Add: 202 case PPC::FADD: 203 case PPC::FADDS: 204 // FP Multiply: 205 case PPC::FMUL: 206 case PPC::FMULS: 207 // Altivec Add: 208 case PPC::VADDFP: 209 // VSX Add: 210 case PPC::XSADDDP: 211 case PPC::XVADDDP: 212 case PPC::XVADDSP: 213 case PPC::XSADDSP: 214 // VSX Multiply: 215 case PPC::XSMULDP: 216 case PPC::XVMULDP: 217 case PPC::XVMULSP: 218 case PPC::XSMULSP: 219 // QPX Add: 220 case PPC::QVFADD: 221 case PPC::QVFADDS: 222 case PPC::QVFADDSs: 223 // QPX Multiply: 224 case PPC::QVFMUL: 225 case PPC::QVFMULS: 226 case PPC::QVFMULSs: 227 return true; 228 default: 229 return false; 230 } 231 } 232 233 bool PPCInstrInfo::getMachineCombinerPatterns( 234 MachineInstr &Root, 235 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 236 // Using the machine combiner in this way is potentially expensive, so 237 // restrict to when aggressive optimizations are desired. 238 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 239 return false; 240 241 // FP reassociation is only legal when we don't need strict IEEE semantics. 242 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) 243 return false; 244 245 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 246 } 247 248 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 249 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 250 unsigned &SrcReg, unsigned &DstReg, 251 unsigned &SubIdx) const { 252 switch (MI.getOpcode()) { 253 default: return false; 254 case PPC::EXTSW: 255 case PPC::EXTSW_32_64: 256 SrcReg = MI.getOperand(1).getReg(); 257 DstReg = MI.getOperand(0).getReg(); 258 SubIdx = PPC::sub_32; 259 return true; 260 } 261 } 262 263 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 264 int &FrameIndex) const { 265 // Note: This list must be kept consistent with LoadRegFromStackSlot. 266 switch (MI.getOpcode()) { 267 default: break; 268 case PPC::LD: 269 case PPC::LWZ: 270 case PPC::LFS: 271 case PPC::LFD: 272 case PPC::RESTORE_CR: 273 case PPC::RESTORE_CRBIT: 274 case PPC::LVX: 275 case PPC::LXVD2X: 276 case PPC::QVLFDX: 277 case PPC::QVLFSXs: 278 case PPC::QVLFDXb: 279 case PPC::RESTORE_VRSAVE: 280 // Check for the operands added by addFrameReference (the immediate is the 281 // offset which defaults to 0). 282 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 283 MI.getOperand(2).isFI()) { 284 FrameIndex = MI.getOperand(2).getIndex(); 285 return MI.getOperand(0).getReg(); 286 } 287 break; 288 } 289 return 0; 290 } 291 292 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 293 int &FrameIndex) const { 294 // Note: This list must be kept consistent with StoreRegToStackSlot. 295 switch (MI.getOpcode()) { 296 default: break; 297 case PPC::STD: 298 case PPC::STW: 299 case PPC::STFS: 300 case PPC::STFD: 301 case PPC::SPILL_CR: 302 case PPC::SPILL_CRBIT: 303 case PPC::STVX: 304 case PPC::STXVD2X: 305 case PPC::QVSTFDX: 306 case PPC::QVSTFSXs: 307 case PPC::QVSTFDXb: 308 case PPC::SPILL_VRSAVE: 309 // Check for the operands added by addFrameReference (the immediate is the 310 // offset which defaults to 0). 311 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 312 MI.getOperand(2).isFI()) { 313 FrameIndex = MI.getOperand(2).getIndex(); 314 return MI.getOperand(0).getReg(); 315 } 316 break; 317 } 318 return 0; 319 } 320 321 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 322 unsigned OpIdx1, 323 unsigned OpIdx2) const { 324 MachineFunction &MF = *MI.getParent()->getParent(); 325 326 // Normal instructions can be commuted the obvious way. 327 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo) 328 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 329 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 330 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 331 // changing the relative order of the mask operands might change what happens 332 // to the high-bits of the mask (and, thus, the result). 333 334 // Cannot commute if it has a non-zero rotate count. 335 if (MI.getOperand(3).getImm() != 0) 336 return nullptr; 337 338 // If we have a zero rotate count, we have: 339 // M = mask(MB,ME) 340 // Op0 = (Op1 & ~M) | (Op2 & M) 341 // Change this to: 342 // M = mask((ME+1)&31, (MB-1)&31) 343 // Op0 = (Op2 & ~M) | (Op1 & M) 344 345 // Swap op1/op2 346 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 347 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo."); 348 unsigned Reg0 = MI.getOperand(0).getReg(); 349 unsigned Reg1 = MI.getOperand(1).getReg(); 350 unsigned Reg2 = MI.getOperand(2).getReg(); 351 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 352 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 353 bool Reg1IsKill = MI.getOperand(1).isKill(); 354 bool Reg2IsKill = MI.getOperand(2).isKill(); 355 bool ChangeReg0 = false; 356 // If machine instrs are no longer in two-address forms, update 357 // destination register as well. 358 if (Reg0 == Reg1) { 359 // Must be two address instruction! 360 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 361 "Expecting a two-address instruction!"); 362 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 363 Reg2IsKill = false; 364 ChangeReg0 = true; 365 } 366 367 // Masks. 368 unsigned MB = MI.getOperand(4).getImm(); 369 unsigned ME = MI.getOperand(5).getImm(); 370 371 // We can't commute a trivial mask (there is no way to represent an all-zero 372 // mask). 373 if (MB == 0 && ME == 31) 374 return nullptr; 375 376 if (NewMI) { 377 // Create a new instruction. 378 unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 379 bool Reg0IsDead = MI.getOperand(0).isDead(); 380 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 381 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 382 .addReg(Reg2, getKillRegState(Reg2IsKill)) 383 .addReg(Reg1, getKillRegState(Reg1IsKill)) 384 .addImm((ME + 1) & 31) 385 .addImm((MB - 1) & 31); 386 } 387 388 if (ChangeReg0) { 389 MI.getOperand(0).setReg(Reg2); 390 MI.getOperand(0).setSubReg(SubReg2); 391 } 392 MI.getOperand(2).setReg(Reg1); 393 MI.getOperand(1).setReg(Reg2); 394 MI.getOperand(2).setSubReg(SubReg1); 395 MI.getOperand(1).setSubReg(SubReg2); 396 MI.getOperand(2).setIsKill(Reg1IsKill); 397 MI.getOperand(1).setIsKill(Reg2IsKill); 398 399 // Swap the mask around. 400 MI.getOperand(4).setImm((ME + 1) & 31); 401 MI.getOperand(5).setImm((MB - 1) & 31); 402 return &MI; 403 } 404 405 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, 406 unsigned &SrcOpIdx2) const { 407 // For VSX A-Type FMA instructions, it is the first two operands that can be 408 // commuted, however, because the non-encoded tied input operand is listed 409 // first, the operands to swap are actually the second and third. 410 411 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 412 if (AltOpc == -1) 413 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 414 415 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 416 // and SrcOpIdx2. 417 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 418 } 419 420 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 421 MachineBasicBlock::iterator MI) const { 422 // This function is used for scheduling, and the nop wanted here is the type 423 // that terminates dispatch groups on the POWER cores. 424 unsigned Directive = Subtarget.getDarwinDirective(); 425 unsigned Opcode; 426 switch (Directive) { 427 default: Opcode = PPC::NOP; break; 428 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 429 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 430 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 431 // FIXME: Update when POWER9 scheduling model is ready. 432 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 433 } 434 435 DebugLoc DL; 436 BuildMI(MBB, MI, DL, get(Opcode)); 437 } 438 439 /// getNoopForMachoTarget - Return the noop instruction to use for a noop. 440 void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { 441 NopInst.setOpcode(PPC::NOP); 442 } 443 444 // Branch analysis. 445 // Note: If the condition register is set to CTR or CTR8 then this is a 446 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 447 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 448 MachineBasicBlock *&TBB, 449 MachineBasicBlock *&FBB, 450 SmallVectorImpl<MachineOperand> &Cond, 451 bool AllowModify) const { 452 bool isPPC64 = Subtarget.isPPC64(); 453 454 // If the block has no terminators, it just falls into the block after it. 455 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 456 if (I == MBB.end()) 457 return false; 458 459 if (!isUnpredicatedTerminator(*I)) 460 return false; 461 462 // Get the last instruction in the block. 463 MachineInstr &LastInst = *I; 464 465 // If there is only one terminator instruction, process it. 466 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 467 if (LastInst.getOpcode() == PPC::B) { 468 if (!LastInst.getOperand(0).isMBB()) 469 return true; 470 TBB = LastInst.getOperand(0).getMBB(); 471 return false; 472 } else if (LastInst.getOpcode() == PPC::BCC) { 473 if (!LastInst.getOperand(2).isMBB()) 474 return true; 475 // Block ends with fall-through condbranch. 476 TBB = LastInst.getOperand(2).getMBB(); 477 Cond.push_back(LastInst.getOperand(0)); 478 Cond.push_back(LastInst.getOperand(1)); 479 return false; 480 } else if (LastInst.getOpcode() == PPC::BC) { 481 if (!LastInst.getOperand(1).isMBB()) 482 return true; 483 // Block ends with fall-through condbranch. 484 TBB = LastInst.getOperand(1).getMBB(); 485 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 486 Cond.push_back(LastInst.getOperand(0)); 487 return false; 488 } else if (LastInst.getOpcode() == PPC::BCn) { 489 if (!LastInst.getOperand(1).isMBB()) 490 return true; 491 // Block ends with fall-through condbranch. 492 TBB = LastInst.getOperand(1).getMBB(); 493 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 494 Cond.push_back(LastInst.getOperand(0)); 495 return false; 496 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 497 LastInst.getOpcode() == PPC::BDNZ) { 498 if (!LastInst.getOperand(0).isMBB()) 499 return true; 500 if (DisableCTRLoopAnal) 501 return true; 502 TBB = LastInst.getOperand(0).getMBB(); 503 Cond.push_back(MachineOperand::CreateImm(1)); 504 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 505 true)); 506 return false; 507 } else if (LastInst.getOpcode() == PPC::BDZ8 || 508 LastInst.getOpcode() == PPC::BDZ) { 509 if (!LastInst.getOperand(0).isMBB()) 510 return true; 511 if (DisableCTRLoopAnal) 512 return true; 513 TBB = LastInst.getOperand(0).getMBB(); 514 Cond.push_back(MachineOperand::CreateImm(0)); 515 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 516 true)); 517 return false; 518 } 519 520 // Otherwise, don't know what this is. 521 return true; 522 } 523 524 // Get the instruction before it if it's a terminator. 525 MachineInstr &SecondLastInst = *I; 526 527 // If there are three terminators, we don't know what sort of block this is. 528 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 529 return true; 530 531 // If the block ends with PPC::B and PPC:BCC, handle it. 532 if (SecondLastInst.getOpcode() == PPC::BCC && 533 LastInst.getOpcode() == PPC::B) { 534 if (!SecondLastInst.getOperand(2).isMBB() || 535 !LastInst.getOperand(0).isMBB()) 536 return true; 537 TBB = SecondLastInst.getOperand(2).getMBB(); 538 Cond.push_back(SecondLastInst.getOperand(0)); 539 Cond.push_back(SecondLastInst.getOperand(1)); 540 FBB = LastInst.getOperand(0).getMBB(); 541 return false; 542 } else if (SecondLastInst.getOpcode() == PPC::BC && 543 LastInst.getOpcode() == PPC::B) { 544 if (!SecondLastInst.getOperand(1).isMBB() || 545 !LastInst.getOperand(0).isMBB()) 546 return true; 547 TBB = SecondLastInst.getOperand(1).getMBB(); 548 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 549 Cond.push_back(SecondLastInst.getOperand(0)); 550 FBB = LastInst.getOperand(0).getMBB(); 551 return false; 552 } else if (SecondLastInst.getOpcode() == PPC::BCn && 553 LastInst.getOpcode() == PPC::B) { 554 if (!SecondLastInst.getOperand(1).isMBB() || 555 !LastInst.getOperand(0).isMBB()) 556 return true; 557 TBB = SecondLastInst.getOperand(1).getMBB(); 558 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 559 Cond.push_back(SecondLastInst.getOperand(0)); 560 FBB = LastInst.getOperand(0).getMBB(); 561 return false; 562 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 563 SecondLastInst.getOpcode() == PPC::BDNZ) && 564 LastInst.getOpcode() == PPC::B) { 565 if (!SecondLastInst.getOperand(0).isMBB() || 566 !LastInst.getOperand(0).isMBB()) 567 return true; 568 if (DisableCTRLoopAnal) 569 return true; 570 TBB = SecondLastInst.getOperand(0).getMBB(); 571 Cond.push_back(MachineOperand::CreateImm(1)); 572 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 573 true)); 574 FBB = LastInst.getOperand(0).getMBB(); 575 return false; 576 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 577 SecondLastInst.getOpcode() == PPC::BDZ) && 578 LastInst.getOpcode() == PPC::B) { 579 if (!SecondLastInst.getOperand(0).isMBB() || 580 !LastInst.getOperand(0).isMBB()) 581 return true; 582 if (DisableCTRLoopAnal) 583 return true; 584 TBB = SecondLastInst.getOperand(0).getMBB(); 585 Cond.push_back(MachineOperand::CreateImm(0)); 586 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 587 true)); 588 FBB = LastInst.getOperand(0).getMBB(); 589 return false; 590 } 591 592 // If the block ends with two PPC:Bs, handle it. The second one is not 593 // executed, so remove it. 594 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 595 if (!SecondLastInst.getOperand(0).isMBB()) 596 return true; 597 TBB = SecondLastInst.getOperand(0).getMBB(); 598 I = LastInst; 599 if (AllowModify) 600 I->eraseFromParent(); 601 return false; 602 } 603 604 // Otherwise, can't handle this. 605 return true; 606 } 607 608 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 609 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 610 if (I == MBB.end()) 611 return 0; 612 613 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 614 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 615 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 616 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 617 return 0; 618 619 // Remove the branch. 620 I->eraseFromParent(); 621 622 I = MBB.end(); 623 624 if (I == MBB.begin()) return 1; 625 --I; 626 if (I->getOpcode() != PPC::BCC && 627 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 628 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 629 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 630 return 1; 631 632 // Remove the branch. 633 I->eraseFromParent(); 634 return 2; 635 } 636 637 unsigned PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, 638 MachineBasicBlock *TBB, 639 MachineBasicBlock *FBB, 640 ArrayRef<MachineOperand> Cond, 641 const DebugLoc &DL) const { 642 // Shouldn't be a fall through. 643 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 644 assert((Cond.size() == 2 || Cond.size() == 0) && 645 "PPC branch conditions have two components!"); 646 647 bool isPPC64 = Subtarget.isPPC64(); 648 649 // One-way branch. 650 if (!FBB) { 651 if (Cond.empty()) // Unconditional branch 652 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 653 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 654 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 655 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 656 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 657 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 658 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); 659 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 660 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); 661 else // Conditional branch 662 BuildMI(&MBB, DL, get(PPC::BCC)) 663 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); 664 return 1; 665 } 666 667 // Two-way Conditional Branch. 668 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 669 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 670 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 671 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 672 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 673 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); 674 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 675 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); 676 else 677 BuildMI(&MBB, DL, get(PPC::BCC)) 678 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); 679 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 680 return 2; 681 } 682 683 // Select analysis. 684 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 685 ArrayRef<MachineOperand> Cond, 686 unsigned TrueReg, unsigned FalseReg, 687 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 688 if (!Subtarget.hasISEL()) 689 return false; 690 691 if (Cond.size() != 2) 692 return false; 693 694 // If this is really a bdnz-like condition, then it cannot be turned into a 695 // select. 696 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 697 return false; 698 699 // Check register classes. 700 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 701 const TargetRegisterClass *RC = 702 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 703 if (!RC) 704 return false; 705 706 // isel is for regular integer GPRs only. 707 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 708 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 709 !PPC::G8RCRegClass.hasSubClassEq(RC) && 710 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 711 return false; 712 713 // FIXME: These numbers are for the A2, how well they work for other cores is 714 // an open question. On the A2, the isel instruction has a 2-cycle latency 715 // but single-cycle throughput. These numbers are used in combination with 716 // the MispredictPenalty setting from the active SchedMachineModel. 717 CondCycles = 1; 718 TrueCycles = 1; 719 FalseCycles = 1; 720 721 return true; 722 } 723 724 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 725 MachineBasicBlock::iterator MI, 726 const DebugLoc &dl, unsigned DestReg, 727 ArrayRef<MachineOperand> Cond, unsigned TrueReg, 728 unsigned FalseReg) const { 729 assert(Cond.size() == 2 && 730 "PPC branch conditions have two components!"); 731 732 assert(Subtarget.hasISEL() && 733 "Cannot insert select on target without ISEL support"); 734 735 // Get the register classes. 736 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 737 const TargetRegisterClass *RC = 738 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 739 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 740 741 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 742 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 743 assert((Is64Bit || 744 PPC::GPRCRegClass.hasSubClassEq(RC) || 745 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 746 "isel is for regular integer GPRs only"); 747 748 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 749 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 750 751 unsigned SubIdx = 0; 752 bool SwapOps = false; 753 switch (SelectPred) { 754 case PPC::PRED_EQ: 755 case PPC::PRED_EQ_MINUS: 756 case PPC::PRED_EQ_PLUS: 757 SubIdx = PPC::sub_eq; SwapOps = false; break; 758 case PPC::PRED_NE: 759 case PPC::PRED_NE_MINUS: 760 case PPC::PRED_NE_PLUS: 761 SubIdx = PPC::sub_eq; SwapOps = true; break; 762 case PPC::PRED_LT: 763 case PPC::PRED_LT_MINUS: 764 case PPC::PRED_LT_PLUS: 765 SubIdx = PPC::sub_lt; SwapOps = false; break; 766 case PPC::PRED_GE: 767 case PPC::PRED_GE_MINUS: 768 case PPC::PRED_GE_PLUS: 769 SubIdx = PPC::sub_lt; SwapOps = true; break; 770 case PPC::PRED_GT: 771 case PPC::PRED_GT_MINUS: 772 case PPC::PRED_GT_PLUS: 773 SubIdx = PPC::sub_gt; SwapOps = false; break; 774 case PPC::PRED_LE: 775 case PPC::PRED_LE_MINUS: 776 case PPC::PRED_LE_PLUS: 777 SubIdx = PPC::sub_gt; SwapOps = true; break; 778 case PPC::PRED_UN: 779 case PPC::PRED_UN_MINUS: 780 case PPC::PRED_UN_PLUS: 781 SubIdx = PPC::sub_un; SwapOps = false; break; 782 case PPC::PRED_NU: 783 case PPC::PRED_NU_MINUS: 784 case PPC::PRED_NU_PLUS: 785 SubIdx = PPC::sub_un; SwapOps = true; break; 786 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 787 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 788 } 789 790 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 791 SecondReg = SwapOps ? TrueReg : FalseReg; 792 793 // The first input register of isel cannot be r0. If it is a member 794 // of a register class that can be r0, then copy it first (the 795 // register allocator should eliminate the copy). 796 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 797 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 798 const TargetRegisterClass *FirstRC = 799 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 800 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 801 unsigned OldFirstReg = FirstReg; 802 FirstReg = MRI.createVirtualRegister(FirstRC); 803 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 804 .addReg(OldFirstReg); 805 } 806 807 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 808 .addReg(FirstReg).addReg(SecondReg) 809 .addReg(Cond[1].getReg(), 0, SubIdx); 810 } 811 812 static unsigned getCRBitValue(unsigned CRBit) { 813 unsigned Ret = 4; 814 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 815 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 816 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 817 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 818 Ret = 3; 819 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 820 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 821 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 822 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 823 Ret = 2; 824 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 825 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 826 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 827 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 828 Ret = 1; 829 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 830 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 831 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 832 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 833 Ret = 0; 834 835 assert(Ret != 4 && "Invalid CR bit register"); 836 return Ret; 837 } 838 839 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 840 MachineBasicBlock::iterator I, 841 const DebugLoc &DL, unsigned DestReg, 842 unsigned SrcReg, bool KillSrc) const { 843 // We can end up with self copies and similar things as a result of VSX copy 844 // legalization. Promote them here. 845 const TargetRegisterInfo *TRI = &getRegisterInfo(); 846 if (PPC::F8RCRegClass.contains(DestReg) && 847 PPC::VSRCRegClass.contains(SrcReg)) { 848 unsigned SuperReg = 849 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 850 851 if (VSXSelfCopyCrash && SrcReg == SuperReg) 852 llvm_unreachable("nop VSX copy"); 853 854 DestReg = SuperReg; 855 } else if (PPC::VRRCRegClass.contains(DestReg) && 856 PPC::VSRCRegClass.contains(SrcReg)) { 857 unsigned SuperReg = 858 TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass); 859 860 if (VSXSelfCopyCrash && SrcReg == SuperReg) 861 llvm_unreachable("nop VSX copy"); 862 863 DestReg = SuperReg; 864 } else if (PPC::F8RCRegClass.contains(SrcReg) && 865 PPC::VSRCRegClass.contains(DestReg)) { 866 unsigned SuperReg = 867 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 868 869 if (VSXSelfCopyCrash && DestReg == SuperReg) 870 llvm_unreachable("nop VSX copy"); 871 872 SrcReg = SuperReg; 873 } else if (PPC::VRRCRegClass.contains(SrcReg) && 874 PPC::VSRCRegClass.contains(DestReg)) { 875 unsigned SuperReg = 876 TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass); 877 878 if (VSXSelfCopyCrash && DestReg == SuperReg) 879 llvm_unreachable("nop VSX copy"); 880 881 SrcReg = SuperReg; 882 } 883 884 // Different class register copy 885 if (PPC::CRBITRCRegClass.contains(SrcReg) && 886 PPC::GPRCRegClass.contains(DestReg)) { 887 unsigned CRReg = getCRFromCRBit(SrcReg); 888 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 889 getKillRegState(KillSrc); 890 // Rotate the CR bit in the CR fields to be the least significant bit and 891 // then mask with 0x1 (MB = ME = 31). 892 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 893 .addReg(DestReg, RegState::Kill) 894 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 895 .addImm(31) 896 .addImm(31); 897 return; 898 } else if (PPC::CRRCRegClass.contains(SrcReg) && 899 PPC::G8RCRegClass.contains(DestReg)) { 900 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 901 getKillRegState(KillSrc); 902 return; 903 } else if (PPC::CRRCRegClass.contains(SrcReg) && 904 PPC::GPRCRegClass.contains(DestReg)) { 905 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 906 getKillRegState(KillSrc); 907 return; 908 } 909 910 unsigned Opc; 911 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 912 Opc = PPC::OR; 913 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 914 Opc = PPC::OR8; 915 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 916 Opc = PPC::FMR; 917 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 918 Opc = PPC::MCRF; 919 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 920 Opc = PPC::VOR; 921 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 922 // There are two different ways this can be done: 923 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 924 // issue in VSU pipeline 0. 925 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 926 // can go to either pipeline. 927 // We'll always use xxlor here, because in practically all cases where 928 // copies are generated, they are close enough to some use that the 929 // lower-latency form is preferable. 930 Opc = PPC::XXLOR; 931 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 932 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 933 Opc = PPC::XXLORf; 934 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 935 Opc = PPC::QVFMR; 936 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 937 Opc = PPC::QVFMRs; 938 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 939 Opc = PPC::QVFMRb; 940 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 941 Opc = PPC::CROR; 942 else 943 llvm_unreachable("Impossible reg-to-reg copy"); 944 945 const MCInstrDesc &MCID = get(Opc); 946 if (MCID.getNumOperands() == 3) 947 BuildMI(MBB, I, DL, MCID, DestReg) 948 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 949 else 950 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 951 } 952 953 // This function returns true if a CR spill is necessary and false otherwise. 954 bool 955 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, 956 unsigned SrcReg, bool isKill, 957 int FrameIdx, 958 const TargetRegisterClass *RC, 959 SmallVectorImpl<MachineInstr*> &NewMIs, 960 bool &NonRI, bool &SpillsVRS) const{ 961 // Note: If additional store instructions are added here, 962 // update isStoreToStackSlot. 963 964 DebugLoc DL; 965 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 966 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 967 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) 968 .addReg(SrcReg, 969 getKillRegState(isKill)), 970 FrameIdx)); 971 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 972 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 973 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) 974 .addReg(SrcReg, 975 getKillRegState(isKill)), 976 FrameIdx)); 977 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 978 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) 979 .addReg(SrcReg, 980 getKillRegState(isKill)), 981 FrameIdx)); 982 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 983 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) 984 .addReg(SrcReg, 985 getKillRegState(isKill)), 986 FrameIdx)); 987 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 988 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) 989 .addReg(SrcReg, 990 getKillRegState(isKill)), 991 FrameIdx)); 992 return true; 993 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 994 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT)) 995 .addReg(SrcReg, 996 getKillRegState(isKill)), 997 FrameIdx)); 998 return true; 999 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1000 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX)) 1001 .addReg(SrcReg, 1002 getKillRegState(isKill)), 1003 FrameIdx)); 1004 NonRI = true; 1005 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1006 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X)) 1007 .addReg(SrcReg, 1008 getKillRegState(isKill)), 1009 FrameIdx)); 1010 NonRI = true; 1011 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1012 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX)) 1013 .addReg(SrcReg, 1014 getKillRegState(isKill)), 1015 FrameIdx)); 1016 NonRI = true; 1017 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1018 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSSPX)) 1019 .addReg(SrcReg, 1020 getKillRegState(isKill)), 1021 FrameIdx)); 1022 NonRI = true; 1023 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1024 assert(Subtarget.isDarwin() && 1025 "VRSAVE only needs spill/restore on Darwin"); 1026 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE)) 1027 .addReg(SrcReg, 1028 getKillRegState(isKill)), 1029 FrameIdx)); 1030 SpillsVRS = true; 1031 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1032 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX)) 1033 .addReg(SrcReg, 1034 getKillRegState(isKill)), 1035 FrameIdx)); 1036 NonRI = true; 1037 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1038 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs)) 1039 .addReg(SrcReg, 1040 getKillRegState(isKill)), 1041 FrameIdx)); 1042 NonRI = true; 1043 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1044 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb)) 1045 .addReg(SrcReg, 1046 getKillRegState(isKill)), 1047 FrameIdx)); 1048 NonRI = true; 1049 } else { 1050 llvm_unreachable("Unknown regclass!"); 1051 } 1052 1053 return false; 1054 } 1055 1056 void 1057 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1058 MachineBasicBlock::iterator MI, 1059 unsigned SrcReg, bool isKill, int FrameIdx, 1060 const TargetRegisterClass *RC, 1061 const TargetRegisterInfo *TRI) const { 1062 MachineFunction &MF = *MBB.getParent(); 1063 SmallVector<MachineInstr*, 4> NewMIs; 1064 1065 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1066 FuncInfo->setHasSpills(); 1067 1068 bool NonRI = false, SpillsVRS = false; 1069 if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs, 1070 NonRI, SpillsVRS)) 1071 FuncInfo->setSpillsCR(); 1072 1073 if (SpillsVRS) 1074 FuncInfo->setSpillsVRSAVE(); 1075 1076 if (NonRI) 1077 FuncInfo->setHasNonRISpills(); 1078 1079 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1080 MBB.insert(MI, NewMIs[i]); 1081 1082 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1083 MachineMemOperand *MMO = MF.getMachineMemOperand( 1084 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1085 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1086 MFI.getObjectAlignment(FrameIdx)); 1087 NewMIs.back()->addMemOperand(MF, MMO); 1088 } 1089 1090 bool PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1091 unsigned DestReg, int FrameIdx, 1092 const TargetRegisterClass *RC, 1093 SmallVectorImpl<MachineInstr *> &NewMIs, 1094 bool &NonRI, bool &SpillsVRS) const { 1095 // Note: If additional load instructions are added here, 1096 // update isLoadFromStackSlot. 1097 1098 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1099 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1100 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), 1101 DestReg), FrameIdx)); 1102 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1103 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1104 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), 1105 FrameIdx)); 1106 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1107 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), 1108 FrameIdx)); 1109 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1110 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), 1111 FrameIdx)); 1112 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1113 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1114 get(PPC::RESTORE_CR), DestReg), 1115 FrameIdx)); 1116 return true; 1117 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1118 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1119 get(PPC::RESTORE_CRBIT), DestReg), 1120 FrameIdx)); 1121 return true; 1122 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1123 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg), 1124 FrameIdx)); 1125 NonRI = true; 1126 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1127 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg), 1128 FrameIdx)); 1129 NonRI = true; 1130 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1131 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg), 1132 FrameIdx)); 1133 NonRI = true; 1134 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1135 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSSPX), DestReg), 1136 FrameIdx)); 1137 NonRI = true; 1138 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1139 assert(Subtarget.isDarwin() && 1140 "VRSAVE only needs spill/restore on Darwin"); 1141 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1142 get(PPC::RESTORE_VRSAVE), 1143 DestReg), 1144 FrameIdx)); 1145 SpillsVRS = true; 1146 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1147 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg), 1148 FrameIdx)); 1149 NonRI = true; 1150 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1151 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg), 1152 FrameIdx)); 1153 NonRI = true; 1154 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1155 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg), 1156 FrameIdx)); 1157 NonRI = true; 1158 } else { 1159 llvm_unreachable("Unknown regclass!"); 1160 } 1161 1162 return false; 1163 } 1164 1165 void 1166 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1167 MachineBasicBlock::iterator MI, 1168 unsigned DestReg, int FrameIdx, 1169 const TargetRegisterClass *RC, 1170 const TargetRegisterInfo *TRI) const { 1171 MachineFunction &MF = *MBB.getParent(); 1172 SmallVector<MachineInstr*, 4> NewMIs; 1173 DebugLoc DL; 1174 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1175 1176 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1177 FuncInfo->setHasSpills(); 1178 1179 bool NonRI = false, SpillsVRS = false; 1180 if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs, 1181 NonRI, SpillsVRS)) 1182 FuncInfo->setSpillsCR(); 1183 1184 if (SpillsVRS) 1185 FuncInfo->setSpillsVRSAVE(); 1186 1187 if (NonRI) 1188 FuncInfo->setHasNonRISpills(); 1189 1190 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1191 MBB.insert(MI, NewMIs[i]); 1192 1193 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1194 MachineMemOperand *MMO = MF.getMachineMemOperand( 1195 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1196 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1197 MFI.getObjectAlignment(FrameIdx)); 1198 NewMIs.back()->addMemOperand(MF, MMO); 1199 } 1200 1201 bool PPCInstrInfo:: 1202 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1203 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1204 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1205 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1206 else 1207 // Leave the CR# the same, but invert the condition. 1208 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1209 return false; 1210 } 1211 1212 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1213 unsigned Reg, MachineRegisterInfo *MRI) const { 1214 // For some instructions, it is legal to fold ZERO into the RA register field. 1215 // A zero immediate should always be loaded with a single li. 1216 unsigned DefOpc = DefMI.getOpcode(); 1217 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1218 return false; 1219 if (!DefMI.getOperand(1).isImm()) 1220 return false; 1221 if (DefMI.getOperand(1).getImm() != 0) 1222 return false; 1223 1224 // Note that we cannot here invert the arguments of an isel in order to fold 1225 // a ZERO into what is presented as the second argument. All we have here 1226 // is the condition bit, and that might come from a CR-logical bit operation. 1227 1228 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1229 1230 // Only fold into real machine instructions. 1231 if (UseMCID.isPseudo()) 1232 return false; 1233 1234 unsigned UseIdx; 1235 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1236 if (UseMI.getOperand(UseIdx).isReg() && 1237 UseMI.getOperand(UseIdx).getReg() == Reg) 1238 break; 1239 1240 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1241 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1242 1243 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1244 1245 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1246 // register (which might also be specified as a pointer class kind). 1247 if (UseInfo->isLookupPtrRegClass()) { 1248 if (UseInfo->RegClass /* Kind */ != 1) 1249 return false; 1250 } else { 1251 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1252 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1253 return false; 1254 } 1255 1256 // Make sure this is not tied to an output register (or otherwise 1257 // constrained). This is true for ST?UX registers, for example, which 1258 // are tied to their output registers. 1259 if (UseInfo->Constraints != 0) 1260 return false; 1261 1262 unsigned ZeroReg; 1263 if (UseInfo->isLookupPtrRegClass()) { 1264 bool isPPC64 = Subtarget.isPPC64(); 1265 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1266 } else { 1267 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1268 PPC::ZERO8 : PPC::ZERO; 1269 } 1270 1271 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1272 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1273 1274 if (DeleteDef) 1275 DefMI.eraseFromParent(); 1276 1277 return true; 1278 } 1279 1280 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1281 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1282 I != IE; ++I) 1283 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1284 return true; 1285 return false; 1286 } 1287 1288 // We should make sure that, if we're going to predicate both sides of a 1289 // condition (a diamond), that both sides don't define the counter register. We 1290 // can predicate counter-decrement-based branches, but while that predicates 1291 // the branching, it does not predicate the counter decrement. If we tried to 1292 // merge the triangle into one predicated block, we'd decrement the counter 1293 // twice. 1294 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1295 unsigned NumT, unsigned ExtraT, 1296 MachineBasicBlock &FMBB, 1297 unsigned NumF, unsigned ExtraF, 1298 BranchProbability Probability) const { 1299 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1300 } 1301 1302 1303 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1304 // The predicated branches are identified by their type, not really by the 1305 // explicit presence of a predicate. Furthermore, some of them can be 1306 // predicated more than once. Because if conversion won't try to predicate 1307 // any instruction which already claims to be predicated (by returning true 1308 // here), always return false. In doing so, we let isPredicable() be the 1309 // final word on whether not the instruction can be (further) predicated. 1310 1311 return false; 1312 } 1313 1314 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 1315 if (!MI.isTerminator()) 1316 return false; 1317 1318 // Conditional branch is a special case. 1319 if (MI.isBranch() && !MI.isBarrier()) 1320 return true; 1321 1322 return !isPredicated(MI); 1323 } 1324 1325 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1326 ArrayRef<MachineOperand> Pred) const { 1327 unsigned OpC = MI.getOpcode(); 1328 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1329 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1330 bool isPPC64 = Subtarget.isPPC64(); 1331 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1332 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1333 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1334 MI.setDesc(get(PPC::BCLR)); 1335 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1336 .addReg(Pred[1].getReg()); 1337 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1338 MI.setDesc(get(PPC::BCLRn)); 1339 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1340 .addReg(Pred[1].getReg()); 1341 } else { 1342 MI.setDesc(get(PPC::BCCLR)); 1343 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1344 .addImm(Pred[0].getImm()) 1345 .addReg(Pred[1].getReg()); 1346 } 1347 1348 return true; 1349 } else if (OpC == PPC::B) { 1350 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1351 bool isPPC64 = Subtarget.isPPC64(); 1352 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1353 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1354 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1355 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1356 MI.RemoveOperand(0); 1357 1358 MI.setDesc(get(PPC::BC)); 1359 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1360 .addReg(Pred[1].getReg()) 1361 .addMBB(MBB); 1362 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1363 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1364 MI.RemoveOperand(0); 1365 1366 MI.setDesc(get(PPC::BCn)); 1367 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1368 .addReg(Pred[1].getReg()) 1369 .addMBB(MBB); 1370 } else { 1371 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1372 MI.RemoveOperand(0); 1373 1374 MI.setDesc(get(PPC::BCC)); 1375 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1376 .addImm(Pred[0].getImm()) 1377 .addReg(Pred[1].getReg()) 1378 .addMBB(MBB); 1379 } 1380 1381 return true; 1382 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || 1383 OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { 1384 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1385 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1386 1387 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1388 bool isPPC64 = Subtarget.isPPC64(); 1389 1390 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1391 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1392 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1393 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1394 .addReg(Pred[1].getReg()); 1395 return true; 1396 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1397 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1398 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1399 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1400 .addReg(Pred[1].getReg()); 1401 return true; 1402 } 1403 1404 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1405 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1406 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1407 .addImm(Pred[0].getImm()) 1408 .addReg(Pred[1].getReg()); 1409 return true; 1410 } 1411 1412 return false; 1413 } 1414 1415 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1416 ArrayRef<MachineOperand> Pred2) const { 1417 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1418 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1419 1420 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1421 return false; 1422 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1423 return false; 1424 1425 // P1 can only subsume P2 if they test the same condition register. 1426 if (Pred1[1].getReg() != Pred2[1].getReg()) 1427 return false; 1428 1429 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1430 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1431 1432 if (P1 == P2) 1433 return true; 1434 1435 // Does P1 subsume P2, e.g. GE subsumes GT. 1436 if (P1 == PPC::PRED_LE && 1437 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1438 return true; 1439 if (P1 == PPC::PRED_GE && 1440 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1441 return true; 1442 1443 return false; 1444 } 1445 1446 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1447 std::vector<MachineOperand> &Pred) const { 1448 // Note: At the present time, the contents of Pred from this function is 1449 // unused by IfConversion. This implementation follows ARM by pushing the 1450 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1451 // predicate, instructions defining CTR or CTR8 are also included as 1452 // predicate-defining instructions. 1453 1454 const TargetRegisterClass *RCs[] = 1455 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1456 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1457 1458 bool Found = false; 1459 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1460 const MachineOperand &MO = MI.getOperand(i); 1461 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1462 const TargetRegisterClass *RC = RCs[c]; 1463 if (MO.isReg()) { 1464 if (MO.isDef() && RC->contains(MO.getReg())) { 1465 Pred.push_back(MO); 1466 Found = true; 1467 } 1468 } else if (MO.isRegMask()) { 1469 for (TargetRegisterClass::iterator I = RC->begin(), 1470 IE = RC->end(); I != IE; ++I) 1471 if (MO.clobbersPhysReg(*I)) { 1472 Pred.push_back(MO); 1473 Found = true; 1474 } 1475 } 1476 } 1477 } 1478 1479 return Found; 1480 } 1481 1482 bool PPCInstrInfo::isPredicable(MachineInstr &MI) const { 1483 unsigned OpC = MI.getOpcode(); 1484 switch (OpC) { 1485 default: 1486 return false; 1487 case PPC::B: 1488 case PPC::BLR: 1489 case PPC::BLR8: 1490 case PPC::BCTR: 1491 case PPC::BCTR8: 1492 case PPC::BCTRL: 1493 case PPC::BCTRL8: 1494 return true; 1495 } 1496 } 1497 1498 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 1499 unsigned &SrcReg2, int &Mask, 1500 int &Value) const { 1501 unsigned Opc = MI.getOpcode(); 1502 1503 switch (Opc) { 1504 default: return false; 1505 case PPC::CMPWI: 1506 case PPC::CMPLWI: 1507 case PPC::CMPDI: 1508 case PPC::CMPLDI: 1509 SrcReg = MI.getOperand(1).getReg(); 1510 SrcReg2 = 0; 1511 Value = MI.getOperand(2).getImm(); 1512 Mask = 0xFFFF; 1513 return true; 1514 case PPC::CMPW: 1515 case PPC::CMPLW: 1516 case PPC::CMPD: 1517 case PPC::CMPLD: 1518 case PPC::FCMPUS: 1519 case PPC::FCMPUD: 1520 SrcReg = MI.getOperand(1).getReg(); 1521 SrcReg2 = MI.getOperand(2).getReg(); 1522 return true; 1523 } 1524 } 1525 1526 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, 1527 unsigned SrcReg2, int Mask, int Value, 1528 const MachineRegisterInfo *MRI) const { 1529 if (DisableCmpOpt) 1530 return false; 1531 1532 int OpC = CmpInstr.getOpcode(); 1533 unsigned CRReg = CmpInstr.getOperand(0).getReg(); 1534 1535 // FP record forms set CR1 based on the execption status bits, not a 1536 // comparison with zero. 1537 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1538 return false; 1539 1540 // The record forms set the condition register based on a signed comparison 1541 // with zero (so says the ISA manual). This is not as straightforward as it 1542 // seems, however, because this is always a 64-bit comparison on PPC64, even 1543 // for instructions that are 32-bit in nature (like slw for example). 1544 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1545 // for equality checks (as those don't depend on the sign). On PPC64, 1546 // we are restricted to equality for unsigned 64-bit comparisons and for 1547 // signed 32-bit comparisons the applicability is more restricted. 1548 bool isPPC64 = Subtarget.isPPC64(); 1549 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1550 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1551 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1552 1553 // Get the unique definition of SrcReg. 1554 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1555 if (!MI) return false; 1556 int MIOpC = MI->getOpcode(); 1557 1558 bool equalityOnly = false; 1559 bool noSub = false; 1560 if (isPPC64) { 1561 if (is32BitSignedCompare) { 1562 // We can perform this optimization only if MI is sign-extending. 1563 if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo || 1564 MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo || 1565 MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo || 1566 MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo || 1567 MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) { 1568 noSub = true; 1569 } else 1570 return false; 1571 } else if (is32BitUnsignedCompare) { 1572 // 32-bit rotate and mask instructions are zero extending only if MB <= ME 1573 bool isZeroExtendingRotate = 1574 (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINMo || 1575 MIOpC == PPC::RLWNM || MIOpC == PPC::RLWNMo) 1576 && MI->getOperand(3).getImm() <= MI->getOperand(4).getImm(); 1577 1578 // We can perform this optimization, equality only, if MI is 1579 // zero-extending. 1580 if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo || 1581 MIOpC == PPC::SLW || MIOpC == PPC::SLWo || 1582 MIOpC == PPC::SRW || MIOpC == PPC::SRWo || 1583 isZeroExtendingRotate) { 1584 noSub = true; 1585 equalityOnly = true; 1586 } else 1587 return false; 1588 } else 1589 equalityOnly = is64BitUnsignedCompare; 1590 } else 1591 equalityOnly = is32BitUnsignedCompare; 1592 1593 if (equalityOnly) { 1594 // We need to check the uses of the condition register in order to reject 1595 // non-equality comparisons. 1596 for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg), 1597 IE = MRI->use_instr_end(); I != IE; ++I) { 1598 MachineInstr *UseMI = &*I; 1599 if (UseMI->getOpcode() == PPC::BCC) { 1600 unsigned Pred = UseMI->getOperand(0).getImm(); 1601 if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE) 1602 return false; 1603 } else if (UseMI->getOpcode() == PPC::ISEL || 1604 UseMI->getOpcode() == PPC::ISEL8) { 1605 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1606 if (SubIdx != PPC::sub_eq) 1607 return false; 1608 } else 1609 return false; 1610 } 1611 } 1612 1613 MachineBasicBlock::iterator I = CmpInstr; 1614 1615 // Scan forward to find the first use of the compare. 1616 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1617 ++I) { 1618 bool FoundUse = false; 1619 for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg), 1620 JE = MRI->use_instr_end(); J != JE; ++J) 1621 if (&*J == &*I) { 1622 FoundUse = true; 1623 break; 1624 } 1625 1626 if (FoundUse) 1627 break; 1628 } 1629 1630 // There are two possible candidates which can be changed to set CR[01]. 1631 // One is MI, the other is a SUB instruction. 1632 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1633 MachineInstr *Sub = nullptr; 1634 if (SrcReg2 != 0) 1635 // MI is not a candidate for CMPrr. 1636 MI = nullptr; 1637 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1638 // same BB as the comparison. This is to allow the check below to avoid calls 1639 // (and other explicit clobbers); instead we should really check for these 1640 // more explicitly (in at least a few predecessors). 1641 else if (MI->getParent() != CmpInstr.getParent() || Value != 0) { 1642 // PPC does not have a record-form SUBri. 1643 return false; 1644 } 1645 1646 // Search for Sub. 1647 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1648 --I; 1649 1650 // Get ready to iterate backward from CmpInstr. 1651 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 1652 1653 for (; I != E && !noSub; --I) { 1654 const MachineInstr &Instr = *I; 1655 unsigned IOpC = Instr.getOpcode(); 1656 1657 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 1658 Instr.readsRegister(PPC::CR0, TRI))) 1659 // This instruction modifies or uses the record condition register after 1660 // the one we want to change. While we could do this transformation, it 1661 // would likely not be profitable. This transformation removes one 1662 // instruction, and so even forcing RA to generate one move probably 1663 // makes it unprofitable. 1664 return false; 1665 1666 // Check whether CmpInstr can be made redundant by the current instruction. 1667 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1668 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1669 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1670 ((Instr.getOperand(1).getReg() == SrcReg && 1671 Instr.getOperand(2).getReg() == SrcReg2) || 1672 (Instr.getOperand(1).getReg() == SrcReg2 && 1673 Instr.getOperand(2).getReg() == SrcReg))) { 1674 Sub = &*I; 1675 break; 1676 } 1677 1678 if (I == B) 1679 // The 'and' is below the comparison instruction. 1680 return false; 1681 } 1682 1683 // Return false if no candidates exist. 1684 if (!MI && !Sub) 1685 return false; 1686 1687 // The single candidate is called MI. 1688 if (!MI) MI = Sub; 1689 1690 int NewOpC = -1; 1691 MIOpC = MI->getOpcode(); 1692 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8) 1693 NewOpC = MIOpC; 1694 else { 1695 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1696 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1697 NewOpC = MIOpC; 1698 } 1699 1700 // FIXME: On the non-embedded POWER architectures, only some of the record 1701 // forms are fast, and we should use only the fast ones. 1702 1703 // The defining instruction has a record form (or is already a record 1704 // form). It is possible, however, that we'll need to reverse the condition 1705 // code of the users. 1706 if (NewOpC == -1) 1707 return false; 1708 1709 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1710 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1711 1712 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1713 // needs to be updated to be based on SUB. Push the condition code 1714 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1715 // condition code of these operands will be modified. 1716 bool ShouldSwap = false; 1717 if (Sub) { 1718 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1719 Sub->getOperand(2).getReg() == SrcReg; 1720 1721 // The operands to subf are the opposite of sub, so only in the fixed-point 1722 // case, invert the order. 1723 ShouldSwap = !ShouldSwap; 1724 } 1725 1726 if (ShouldSwap) 1727 for (MachineRegisterInfo::use_instr_iterator 1728 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1729 I != IE; ++I) { 1730 MachineInstr *UseMI = &*I; 1731 if (UseMI->getOpcode() == PPC::BCC) { 1732 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1733 assert((!equalityOnly || 1734 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) && 1735 "Invalid predicate for equality-only optimization"); 1736 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1737 PPC::getSwappedPredicate(Pred))); 1738 } else if (UseMI->getOpcode() == PPC::ISEL || 1739 UseMI->getOpcode() == PPC::ISEL8) { 1740 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1741 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1742 "Invalid CR bit for equality-only optimization"); 1743 1744 if (NewSubReg == PPC::sub_lt) 1745 NewSubReg = PPC::sub_gt; 1746 else if (NewSubReg == PPC::sub_gt) 1747 NewSubReg = PPC::sub_lt; 1748 1749 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1750 NewSubReg)); 1751 } else // We need to abort on a user we don't understand. 1752 return false; 1753 } 1754 1755 // Create a new virtual register to hold the value of the CR set by the 1756 // record-form instruction. If the instruction was not previously in 1757 // record form, then set the kill flag on the CR. 1758 CmpInstr.eraseFromParent(); 1759 1760 MachineBasicBlock::iterator MII = MI; 1761 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1762 get(TargetOpcode::COPY), CRReg) 1763 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1764 1765 // Even if CR0 register were dead before, it is alive now since the 1766 // instruction we just built uses it. 1767 MI->clearRegisterDeads(PPC::CR0); 1768 1769 if (MIOpC != NewOpC) { 1770 // We need to be careful here: we're replacing one instruction with 1771 // another, and we need to make sure that we get all of the right 1772 // implicit uses and defs. On the other hand, the caller may be holding 1773 // an iterator to this instruction, and so we can't delete it (this is 1774 // specifically the case if this is the instruction directly after the 1775 // compare). 1776 1777 const MCInstrDesc &NewDesc = get(NewOpC); 1778 MI->setDesc(NewDesc); 1779 1780 if (NewDesc.ImplicitDefs) 1781 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 1782 *ImpDefs; ++ImpDefs) 1783 if (!MI->definesRegister(*ImpDefs)) 1784 MI->addOperand(*MI->getParent()->getParent(), 1785 MachineOperand::CreateReg(*ImpDefs, true, true)); 1786 if (NewDesc.ImplicitUses) 1787 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 1788 *ImpUses; ++ImpUses) 1789 if (!MI->readsRegister(*ImpUses)) 1790 MI->addOperand(*MI->getParent()->getParent(), 1791 MachineOperand::CreateReg(*ImpUses, false, true)); 1792 } 1793 assert(MI->definesRegister(PPC::CR0) && 1794 "Record-form instruction does not define cr0?"); 1795 1796 // Modify the condition code of operands in OperandsToUpdate. 1797 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1798 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1799 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1800 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1801 1802 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1803 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1804 1805 return true; 1806 } 1807 1808 /// GetInstSize - Return the number of bytes of code the specified 1809 /// instruction may be. This returns the maximum number of bytes. 1810 /// 1811 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 1812 unsigned Opcode = MI.getOpcode(); 1813 1814 if (Opcode == PPC::INLINEASM) { 1815 const MachineFunction *MF = MI.getParent()->getParent(); 1816 const char *AsmStr = MI.getOperand(0).getSymbolName(); 1817 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1818 } else if (Opcode == TargetOpcode::STACKMAP) { 1819 StackMapOpers Opers(&MI); 1820 return Opers.getNumPatchBytes(); 1821 } else if (Opcode == TargetOpcode::PATCHPOINT) { 1822 PatchPointOpers Opers(&MI); 1823 return Opers.getNumPatchBytes(); 1824 } else { 1825 const MCInstrDesc &Desc = get(Opcode); 1826 return Desc.getSize(); 1827 } 1828 } 1829 1830 std::pair<unsigned, unsigned> 1831 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 1832 const unsigned Mask = PPCII::MO_ACCESS_MASK; 1833 return std::make_pair(TF & Mask, TF & ~Mask); 1834 } 1835 1836 ArrayRef<std::pair<unsigned, const char *>> 1837 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 1838 using namespace PPCII; 1839 static const std::pair<unsigned, const char *> TargetFlags[] = { 1840 {MO_LO, "ppc-lo"}, 1841 {MO_HA, "ppc-ha"}, 1842 {MO_TPREL_LO, "ppc-tprel-lo"}, 1843 {MO_TPREL_HA, "ppc-tprel-ha"}, 1844 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 1845 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 1846 {MO_TOC_LO, "ppc-toc-lo"}, 1847 {MO_TLS, "ppc-tls"}}; 1848 return makeArrayRef(TargetFlags); 1849 } 1850 1851 ArrayRef<std::pair<unsigned, const char *>> 1852 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 1853 using namespace PPCII; 1854 static const std::pair<unsigned, const char *> TargetFlags[] = { 1855 {MO_PLT, "ppc-plt"}, 1856 {MO_PIC_FLAG, "ppc-pic"}, 1857 {MO_NLP_FLAG, "ppc-nlp"}, 1858 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}}; 1859 return makeArrayRef(TargetFlags); 1860 } 1861 1862 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1863 switch (MI.getOpcode()) { 1864 case TargetOpcode::LOAD_STACK_GUARD: { 1865 assert(Subtarget.isTargetLinux() && 1866 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 1867 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 1868 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 1869 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 1870 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1871 .addImm(Offset) 1872 .addReg(Reg); 1873 return true; 1874 } 1875 } 1876 return false; 1877 } 1878