1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCInstrInfo.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCHazardRecognizers.h"
18 #include "PPCInstrBuilder.h"
19 #include "PPCMachineFunctionInfo.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCInst.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/raw_ostream.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "ppc-instr-info"
44 
45 #define GET_INSTRMAP_INFO
46 #define GET_INSTRINFO_CTOR_DTOR
47 #include "PPCGenInstrInfo.inc"
48 
49 static cl::
50 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
51             cl::desc("Disable analysis for CTR loops"));
52 
53 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
54 cl::desc("Disable compare instruction optimization"), cl::Hidden);
55 
56 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
57 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
58 cl::Hidden);
59 
60 static cl::opt<bool>
61 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
62   cl::desc("Use the old (incorrect) instruction latency calculation"));
63 
64 // Pin the vtable to this file.
65 void PPCInstrInfo::anchor() {}
66 
67 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
68     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
69       Subtarget(STI), RI(STI.getTargetMachine()) {}
70 
71 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
72 /// this target when scheduling the DAG.
73 ScheduleHazardRecognizer *
74 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
75                                            const ScheduleDAG *DAG) const {
76   unsigned Directive =
77       static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
78   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
79       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
80     const InstrItineraryData *II =
81         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
82     return new ScoreboardHazardRecognizer(II, DAG);
83   }
84 
85   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
86 }
87 
88 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
89 /// to use for this target when scheduling the DAG.
90 ScheduleHazardRecognizer *
91 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
92                                                  const ScheduleDAG *DAG) const {
93   unsigned Directive =
94       DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
95 
96   // FIXME: Leaving this as-is until we have POWER9 scheduling info
97   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
98     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
99 
100   // Most subtargets use a PPC970 recognizer.
101   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
102       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
103     assert(DAG->TII && "No InstrInfo?");
104 
105     return new PPCHazardRecognizer970(*DAG);
106   }
107 
108   return new ScoreboardHazardRecognizer(II, DAG);
109 }
110 
111 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
112                                        const MachineInstr &MI,
113                                        unsigned *PredCost) const {
114   if (!ItinData || UseOldLatencyCalc)
115     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
116 
117   // The default implementation of getInstrLatency calls getStageLatency, but
118   // getStageLatency does not do the right thing for us. While we have
119   // itinerary, most cores are fully pipelined, and so the itineraries only
120   // express the first part of the pipeline, not every stage. Instead, we need
121   // to use the listed output operand cycle number (using operand 0 here, which
122   // is an output).
123 
124   unsigned Latency = 1;
125   unsigned DefClass = MI.getDesc().getSchedClass();
126   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
127     const MachineOperand &MO = MI.getOperand(i);
128     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
129       continue;
130 
131     int Cycle = ItinData->getOperandCycle(DefClass, i);
132     if (Cycle < 0)
133       continue;
134 
135     Latency = std::max(Latency, (unsigned) Cycle);
136   }
137 
138   return Latency;
139 }
140 
141 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
142                                     const MachineInstr &DefMI, unsigned DefIdx,
143                                     const MachineInstr &UseMI,
144                                     unsigned UseIdx) const {
145   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
146                                                    UseMI, UseIdx);
147 
148   if (!DefMI.getParent())
149     return Latency;
150 
151   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
152   unsigned Reg = DefMO.getReg();
153 
154   bool IsRegCR;
155   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
156     const MachineRegisterInfo *MRI =
157         &DefMI.getParent()->getParent()->getRegInfo();
158     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
159               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
160   } else {
161     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
162               PPC::CRBITRCRegClass.contains(Reg);
163   }
164 
165   if (UseMI.isBranch() && IsRegCR) {
166     if (Latency < 0)
167       Latency = getInstrLatency(ItinData, DefMI);
168 
169     // On some cores, there is an additional delay between writing to a condition
170     // register, and using it from a branch.
171     unsigned Directive = Subtarget.getDarwinDirective();
172     switch (Directive) {
173     default: break;
174     case PPC::DIR_7400:
175     case PPC::DIR_750:
176     case PPC::DIR_970:
177     case PPC::DIR_E5500:
178     case PPC::DIR_PWR4:
179     case PPC::DIR_PWR5:
180     case PPC::DIR_PWR5X:
181     case PPC::DIR_PWR6:
182     case PPC::DIR_PWR6X:
183     case PPC::DIR_PWR7:
184     case PPC::DIR_PWR8:
185     // FIXME: Is this needed for POWER9?
186       Latency += 2;
187       break;
188     }
189   }
190 
191   return Latency;
192 }
193 
194 // This function does not list all associative and commutative operations, but
195 // only those worth feeding through the machine combiner in an attempt to
196 // reduce the critical path. Mostly, this means floating-point operations,
197 // because they have high latencies (compared to other operations, such and
198 // and/or, which are also associative and commutative, but have low latencies).
199 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
200   switch (Inst.getOpcode()) {
201   // FP Add:
202   case PPC::FADD:
203   case PPC::FADDS:
204   // FP Multiply:
205   case PPC::FMUL:
206   case PPC::FMULS:
207   // Altivec Add:
208   case PPC::VADDFP:
209   // VSX Add:
210   case PPC::XSADDDP:
211   case PPC::XVADDDP:
212   case PPC::XVADDSP:
213   case PPC::XSADDSP:
214   // VSX Multiply:
215   case PPC::XSMULDP:
216   case PPC::XVMULDP:
217   case PPC::XVMULSP:
218   case PPC::XSMULSP:
219   // QPX Add:
220   case PPC::QVFADD:
221   case PPC::QVFADDS:
222   case PPC::QVFADDSs:
223   // QPX Multiply:
224   case PPC::QVFMUL:
225   case PPC::QVFMULS:
226   case PPC::QVFMULSs:
227     return true;
228   default:
229     return false;
230   }
231 }
232 
233 bool PPCInstrInfo::getMachineCombinerPatterns(
234     MachineInstr &Root,
235     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
236   // Using the machine combiner in this way is potentially expensive, so
237   // restrict to when aggressive optimizations are desired.
238   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
239     return false;
240 
241   // FP reassociation is only legal when we don't need strict IEEE semantics.
242   if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
243     return false;
244 
245   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
246 }
247 
248 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
249 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
250                                          unsigned &SrcReg, unsigned &DstReg,
251                                          unsigned &SubIdx) const {
252   switch (MI.getOpcode()) {
253   default: return false;
254   case PPC::EXTSW:
255   case PPC::EXTSW_32_64:
256     SrcReg = MI.getOperand(1).getReg();
257     DstReg = MI.getOperand(0).getReg();
258     SubIdx = PPC::sub_32;
259     return true;
260   }
261 }
262 
263 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
264                                            int &FrameIndex) const {
265   // Note: This list must be kept consistent with LoadRegFromStackSlot.
266   switch (MI.getOpcode()) {
267   default: break;
268   case PPC::LD:
269   case PPC::LWZ:
270   case PPC::LFS:
271   case PPC::LFD:
272   case PPC::RESTORE_CR:
273   case PPC::RESTORE_CRBIT:
274   case PPC::LVX:
275   case PPC::LXVD2X:
276   case PPC::QVLFDX:
277   case PPC::QVLFSXs:
278   case PPC::QVLFDXb:
279   case PPC::RESTORE_VRSAVE:
280     // Check for the operands added by addFrameReference (the immediate is the
281     // offset which defaults to 0).
282     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
283         MI.getOperand(2).isFI()) {
284       FrameIndex = MI.getOperand(2).getIndex();
285       return MI.getOperand(0).getReg();
286     }
287     break;
288   }
289   return 0;
290 }
291 
292 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
293                                           int &FrameIndex) const {
294   // Note: This list must be kept consistent with StoreRegToStackSlot.
295   switch (MI.getOpcode()) {
296   default: break;
297   case PPC::STD:
298   case PPC::STW:
299   case PPC::STFS:
300   case PPC::STFD:
301   case PPC::SPILL_CR:
302   case PPC::SPILL_CRBIT:
303   case PPC::STVX:
304   case PPC::STXVD2X:
305   case PPC::QVSTFDX:
306   case PPC::QVSTFSXs:
307   case PPC::QVSTFDXb:
308   case PPC::SPILL_VRSAVE:
309     // Check for the operands added by addFrameReference (the immediate is the
310     // offset which defaults to 0).
311     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
312         MI.getOperand(2).isFI()) {
313       FrameIndex = MI.getOperand(2).getIndex();
314       return MI.getOperand(0).getReg();
315     }
316     break;
317   }
318   return 0;
319 }
320 
321 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
322                                                    unsigned OpIdx1,
323                                                    unsigned OpIdx2) const {
324   MachineFunction &MF = *MI.getParent()->getParent();
325 
326   // Normal instructions can be commuted the obvious way.
327   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
328     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
329   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
330   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
331   // changing the relative order of the mask operands might change what happens
332   // to the high-bits of the mask (and, thus, the result).
333 
334   // Cannot commute if it has a non-zero rotate count.
335   if (MI.getOperand(3).getImm() != 0)
336     return nullptr;
337 
338   // If we have a zero rotate count, we have:
339   //   M = mask(MB,ME)
340   //   Op0 = (Op1 & ~M) | (Op2 & M)
341   // Change this to:
342   //   M = mask((ME+1)&31, (MB-1)&31)
343   //   Op0 = (Op2 & ~M) | (Op1 & M)
344 
345   // Swap op1/op2
346   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
347          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
348   unsigned Reg0 = MI.getOperand(0).getReg();
349   unsigned Reg1 = MI.getOperand(1).getReg();
350   unsigned Reg2 = MI.getOperand(2).getReg();
351   unsigned SubReg1 = MI.getOperand(1).getSubReg();
352   unsigned SubReg2 = MI.getOperand(2).getSubReg();
353   bool Reg1IsKill = MI.getOperand(1).isKill();
354   bool Reg2IsKill = MI.getOperand(2).isKill();
355   bool ChangeReg0 = false;
356   // If machine instrs are no longer in two-address forms, update
357   // destination register as well.
358   if (Reg0 == Reg1) {
359     // Must be two address instruction!
360     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
361            "Expecting a two-address instruction!");
362     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
363     Reg2IsKill = false;
364     ChangeReg0 = true;
365   }
366 
367   // Masks.
368   unsigned MB = MI.getOperand(4).getImm();
369   unsigned ME = MI.getOperand(5).getImm();
370 
371   // We can't commute a trivial mask (there is no way to represent an all-zero
372   // mask).
373   if (MB == 0 && ME == 31)
374     return nullptr;
375 
376   if (NewMI) {
377     // Create a new instruction.
378     unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
379     bool Reg0IsDead = MI.getOperand(0).isDead();
380     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
381         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
382         .addReg(Reg2, getKillRegState(Reg2IsKill))
383         .addReg(Reg1, getKillRegState(Reg1IsKill))
384         .addImm((ME + 1) & 31)
385         .addImm((MB - 1) & 31);
386   }
387 
388   if (ChangeReg0) {
389     MI.getOperand(0).setReg(Reg2);
390     MI.getOperand(0).setSubReg(SubReg2);
391   }
392   MI.getOperand(2).setReg(Reg1);
393   MI.getOperand(1).setReg(Reg2);
394   MI.getOperand(2).setSubReg(SubReg1);
395   MI.getOperand(1).setSubReg(SubReg2);
396   MI.getOperand(2).setIsKill(Reg1IsKill);
397   MI.getOperand(1).setIsKill(Reg2IsKill);
398 
399   // Swap the mask around.
400   MI.getOperand(4).setImm((ME + 1) & 31);
401   MI.getOperand(5).setImm((MB - 1) & 31);
402   return &MI;
403 }
404 
405 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
406                                          unsigned &SrcOpIdx2) const {
407   // For VSX A-Type FMA instructions, it is the first two operands that can be
408   // commuted, however, because the non-encoded tied input operand is listed
409   // first, the operands to swap are actually the second and third.
410 
411   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
412   if (AltOpc == -1)
413     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
414 
415   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
416   // and SrcOpIdx2.
417   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
418 }
419 
420 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
421                               MachineBasicBlock::iterator MI) const {
422   // This function is used for scheduling, and the nop wanted here is the type
423   // that terminates dispatch groups on the POWER cores.
424   unsigned Directive = Subtarget.getDarwinDirective();
425   unsigned Opcode;
426   switch (Directive) {
427   default:            Opcode = PPC::NOP; break;
428   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
429   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
430   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
431   // FIXME: Update when POWER9 scheduling model is ready.
432   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
433   }
434 
435   DebugLoc DL;
436   BuildMI(MBB, MI, DL, get(Opcode));
437 }
438 
439 /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
440 void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
441   NopInst.setOpcode(PPC::NOP);
442 }
443 
444 // Branch analysis.
445 // Note: If the condition register is set to CTR or CTR8 then this is a
446 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
447 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
448                                  MachineBasicBlock *&TBB,
449                                  MachineBasicBlock *&FBB,
450                                  SmallVectorImpl<MachineOperand> &Cond,
451                                  bool AllowModify) const {
452   bool isPPC64 = Subtarget.isPPC64();
453 
454   // If the block has no terminators, it just falls into the block after it.
455   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
456   if (I == MBB.end())
457     return false;
458 
459   if (!isUnpredicatedTerminator(*I))
460     return false;
461 
462   // Get the last instruction in the block.
463   MachineInstr &LastInst = *I;
464 
465   // If there is only one terminator instruction, process it.
466   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
467     if (LastInst.getOpcode() == PPC::B) {
468       if (!LastInst.getOperand(0).isMBB())
469         return true;
470       TBB = LastInst.getOperand(0).getMBB();
471       return false;
472     } else if (LastInst.getOpcode() == PPC::BCC) {
473       if (!LastInst.getOperand(2).isMBB())
474         return true;
475       // Block ends with fall-through condbranch.
476       TBB = LastInst.getOperand(2).getMBB();
477       Cond.push_back(LastInst.getOperand(0));
478       Cond.push_back(LastInst.getOperand(1));
479       return false;
480     } else if (LastInst.getOpcode() == PPC::BC) {
481       if (!LastInst.getOperand(1).isMBB())
482         return true;
483       // Block ends with fall-through condbranch.
484       TBB = LastInst.getOperand(1).getMBB();
485       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
486       Cond.push_back(LastInst.getOperand(0));
487       return false;
488     } else if (LastInst.getOpcode() == PPC::BCn) {
489       if (!LastInst.getOperand(1).isMBB())
490         return true;
491       // Block ends with fall-through condbranch.
492       TBB = LastInst.getOperand(1).getMBB();
493       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
494       Cond.push_back(LastInst.getOperand(0));
495       return false;
496     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
497                LastInst.getOpcode() == PPC::BDNZ) {
498       if (!LastInst.getOperand(0).isMBB())
499         return true;
500       if (DisableCTRLoopAnal)
501         return true;
502       TBB = LastInst.getOperand(0).getMBB();
503       Cond.push_back(MachineOperand::CreateImm(1));
504       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
505                                                true));
506       return false;
507     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
508                LastInst.getOpcode() == PPC::BDZ) {
509       if (!LastInst.getOperand(0).isMBB())
510         return true;
511       if (DisableCTRLoopAnal)
512         return true;
513       TBB = LastInst.getOperand(0).getMBB();
514       Cond.push_back(MachineOperand::CreateImm(0));
515       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
516                                                true));
517       return false;
518     }
519 
520     // Otherwise, don't know what this is.
521     return true;
522   }
523 
524   // Get the instruction before it if it's a terminator.
525   MachineInstr &SecondLastInst = *I;
526 
527   // If there are three terminators, we don't know what sort of block this is.
528   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
529     return true;
530 
531   // If the block ends with PPC::B and PPC:BCC, handle it.
532   if (SecondLastInst.getOpcode() == PPC::BCC &&
533       LastInst.getOpcode() == PPC::B) {
534     if (!SecondLastInst.getOperand(2).isMBB() ||
535         !LastInst.getOperand(0).isMBB())
536       return true;
537     TBB = SecondLastInst.getOperand(2).getMBB();
538     Cond.push_back(SecondLastInst.getOperand(0));
539     Cond.push_back(SecondLastInst.getOperand(1));
540     FBB = LastInst.getOperand(0).getMBB();
541     return false;
542   } else if (SecondLastInst.getOpcode() == PPC::BC &&
543              LastInst.getOpcode() == PPC::B) {
544     if (!SecondLastInst.getOperand(1).isMBB() ||
545         !LastInst.getOperand(0).isMBB())
546       return true;
547     TBB = SecondLastInst.getOperand(1).getMBB();
548     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
549     Cond.push_back(SecondLastInst.getOperand(0));
550     FBB = LastInst.getOperand(0).getMBB();
551     return false;
552   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
553              LastInst.getOpcode() == PPC::B) {
554     if (!SecondLastInst.getOperand(1).isMBB() ||
555         !LastInst.getOperand(0).isMBB())
556       return true;
557     TBB = SecondLastInst.getOperand(1).getMBB();
558     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
559     Cond.push_back(SecondLastInst.getOperand(0));
560     FBB = LastInst.getOperand(0).getMBB();
561     return false;
562   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
563               SecondLastInst.getOpcode() == PPC::BDNZ) &&
564              LastInst.getOpcode() == PPC::B) {
565     if (!SecondLastInst.getOperand(0).isMBB() ||
566         !LastInst.getOperand(0).isMBB())
567       return true;
568     if (DisableCTRLoopAnal)
569       return true;
570     TBB = SecondLastInst.getOperand(0).getMBB();
571     Cond.push_back(MachineOperand::CreateImm(1));
572     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
573                                              true));
574     FBB = LastInst.getOperand(0).getMBB();
575     return false;
576   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
577               SecondLastInst.getOpcode() == PPC::BDZ) &&
578              LastInst.getOpcode() == PPC::B) {
579     if (!SecondLastInst.getOperand(0).isMBB() ||
580         !LastInst.getOperand(0).isMBB())
581       return true;
582     if (DisableCTRLoopAnal)
583       return true;
584     TBB = SecondLastInst.getOperand(0).getMBB();
585     Cond.push_back(MachineOperand::CreateImm(0));
586     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
587                                              true));
588     FBB = LastInst.getOperand(0).getMBB();
589     return false;
590   }
591 
592   // If the block ends with two PPC:Bs, handle it.  The second one is not
593   // executed, so remove it.
594   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
595     if (!SecondLastInst.getOperand(0).isMBB())
596       return true;
597     TBB = SecondLastInst.getOperand(0).getMBB();
598     I = LastInst;
599     if (AllowModify)
600       I->eraseFromParent();
601     return false;
602   }
603 
604   // Otherwise, can't handle this.
605   return true;
606 }
607 
608 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
609   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
610   if (I == MBB.end())
611     return 0;
612 
613   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
614       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
615       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
616       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
617     return 0;
618 
619   // Remove the branch.
620   I->eraseFromParent();
621 
622   I = MBB.end();
623 
624   if (I == MBB.begin()) return 1;
625   --I;
626   if (I->getOpcode() != PPC::BCC &&
627       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
628       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
629       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
630     return 1;
631 
632   // Remove the branch.
633   I->eraseFromParent();
634   return 2;
635 }
636 
637 unsigned PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB,
638                                     MachineBasicBlock *TBB,
639                                     MachineBasicBlock *FBB,
640                                     ArrayRef<MachineOperand> Cond,
641                                     const DebugLoc &DL) const {
642   // Shouldn't be a fall through.
643   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
644   assert((Cond.size() == 2 || Cond.size() == 0) &&
645          "PPC branch conditions have two components!");
646 
647   bool isPPC64 = Subtarget.isPPC64();
648 
649   // One-way branch.
650   if (!FBB) {
651     if (Cond.empty())   // Unconditional branch
652       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
653     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
654       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
655                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
656                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
657     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
658       BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
659     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
660       BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
661     else                // Conditional branch
662       BuildMI(&MBB, DL, get(PPC::BCC))
663         .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
664     return 1;
665   }
666 
667   // Two-way Conditional Branch.
668   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
669     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
670                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
671                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
672   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
673     BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
674   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
675     BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
676   else
677     BuildMI(&MBB, DL, get(PPC::BCC))
678       .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
679   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
680   return 2;
681 }
682 
683 // Select analysis.
684 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
685                 ArrayRef<MachineOperand> Cond,
686                 unsigned TrueReg, unsigned FalseReg,
687                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
688   if (!Subtarget.hasISEL())
689     return false;
690 
691   if (Cond.size() != 2)
692     return false;
693 
694   // If this is really a bdnz-like condition, then it cannot be turned into a
695   // select.
696   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
697     return false;
698 
699   // Check register classes.
700   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
701   const TargetRegisterClass *RC =
702     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
703   if (!RC)
704     return false;
705 
706   // isel is for regular integer GPRs only.
707   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
708       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
709       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
710       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
711     return false;
712 
713   // FIXME: These numbers are for the A2, how well they work for other cores is
714   // an open question. On the A2, the isel instruction has a 2-cycle latency
715   // but single-cycle throughput. These numbers are used in combination with
716   // the MispredictPenalty setting from the active SchedMachineModel.
717   CondCycles = 1;
718   TrueCycles = 1;
719   FalseCycles = 1;
720 
721   return true;
722 }
723 
724 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
725                                 MachineBasicBlock::iterator MI,
726                                 const DebugLoc &dl, unsigned DestReg,
727                                 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
728                                 unsigned FalseReg) const {
729   assert(Cond.size() == 2 &&
730          "PPC branch conditions have two components!");
731 
732   assert(Subtarget.hasISEL() &&
733          "Cannot insert select on target without ISEL support");
734 
735   // Get the register classes.
736   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
737   const TargetRegisterClass *RC =
738     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
739   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
740 
741   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
742                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
743   assert((Is64Bit ||
744           PPC::GPRCRegClass.hasSubClassEq(RC) ||
745           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
746          "isel is for regular integer GPRs only");
747 
748   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
749   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
750 
751   unsigned SubIdx = 0;
752   bool SwapOps = false;
753   switch (SelectPred) {
754   case PPC::PRED_EQ:
755   case PPC::PRED_EQ_MINUS:
756   case PPC::PRED_EQ_PLUS:
757       SubIdx = PPC::sub_eq; SwapOps = false; break;
758   case PPC::PRED_NE:
759   case PPC::PRED_NE_MINUS:
760   case PPC::PRED_NE_PLUS:
761       SubIdx = PPC::sub_eq; SwapOps = true; break;
762   case PPC::PRED_LT:
763   case PPC::PRED_LT_MINUS:
764   case PPC::PRED_LT_PLUS:
765       SubIdx = PPC::sub_lt; SwapOps = false; break;
766   case PPC::PRED_GE:
767   case PPC::PRED_GE_MINUS:
768   case PPC::PRED_GE_PLUS:
769       SubIdx = PPC::sub_lt; SwapOps = true; break;
770   case PPC::PRED_GT:
771   case PPC::PRED_GT_MINUS:
772   case PPC::PRED_GT_PLUS:
773       SubIdx = PPC::sub_gt; SwapOps = false; break;
774   case PPC::PRED_LE:
775   case PPC::PRED_LE_MINUS:
776   case PPC::PRED_LE_PLUS:
777       SubIdx = PPC::sub_gt; SwapOps = true; break;
778   case PPC::PRED_UN:
779   case PPC::PRED_UN_MINUS:
780   case PPC::PRED_UN_PLUS:
781       SubIdx = PPC::sub_un; SwapOps = false; break;
782   case PPC::PRED_NU:
783   case PPC::PRED_NU_MINUS:
784   case PPC::PRED_NU_PLUS:
785       SubIdx = PPC::sub_un; SwapOps = true; break;
786   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
787   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
788   }
789 
790   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
791            SecondReg = SwapOps ? TrueReg  : FalseReg;
792 
793   // The first input register of isel cannot be r0. If it is a member
794   // of a register class that can be r0, then copy it first (the
795   // register allocator should eliminate the copy).
796   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
797       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
798     const TargetRegisterClass *FirstRC =
799       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
800         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
801     unsigned OldFirstReg = FirstReg;
802     FirstReg = MRI.createVirtualRegister(FirstRC);
803     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
804       .addReg(OldFirstReg);
805   }
806 
807   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
808     .addReg(FirstReg).addReg(SecondReg)
809     .addReg(Cond[1].getReg(), 0, SubIdx);
810 }
811 
812 static unsigned getCRBitValue(unsigned CRBit) {
813   unsigned Ret = 4;
814   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
815       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
816       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
817       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
818     Ret = 3;
819   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
820       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
821       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
822       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
823     Ret = 2;
824   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
825       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
826       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
827       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
828     Ret = 1;
829   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
830       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
831       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
832       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
833     Ret = 0;
834 
835   assert(Ret != 4 && "Invalid CR bit register");
836   return Ret;
837 }
838 
839 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
840                                MachineBasicBlock::iterator I,
841                                const DebugLoc &DL, unsigned DestReg,
842                                unsigned SrcReg, bool KillSrc) const {
843   // We can end up with self copies and similar things as a result of VSX copy
844   // legalization. Promote them here.
845   const TargetRegisterInfo *TRI = &getRegisterInfo();
846   if (PPC::F8RCRegClass.contains(DestReg) &&
847       PPC::VSRCRegClass.contains(SrcReg)) {
848     unsigned SuperReg =
849       TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
850 
851     if (VSXSelfCopyCrash && SrcReg == SuperReg)
852       llvm_unreachable("nop VSX copy");
853 
854     DestReg = SuperReg;
855   } else if (PPC::VRRCRegClass.contains(DestReg) &&
856              PPC::VSRCRegClass.contains(SrcReg)) {
857     unsigned SuperReg =
858       TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass);
859 
860     if (VSXSelfCopyCrash && SrcReg == SuperReg)
861       llvm_unreachable("nop VSX copy");
862 
863     DestReg = SuperReg;
864   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
865              PPC::VSRCRegClass.contains(DestReg)) {
866     unsigned SuperReg =
867       TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
868 
869     if (VSXSelfCopyCrash && DestReg == SuperReg)
870       llvm_unreachable("nop VSX copy");
871 
872     SrcReg = SuperReg;
873   } else if (PPC::VRRCRegClass.contains(SrcReg) &&
874              PPC::VSRCRegClass.contains(DestReg)) {
875     unsigned SuperReg =
876       TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass);
877 
878     if (VSXSelfCopyCrash && DestReg == SuperReg)
879       llvm_unreachable("nop VSX copy");
880 
881     SrcReg = SuperReg;
882   }
883 
884   // Different class register copy
885   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
886       PPC::GPRCRegClass.contains(DestReg)) {
887     unsigned CRReg = getCRFromCRBit(SrcReg);
888     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
889     getKillRegState(KillSrc);
890     // Rotate the CR bit in the CR fields to be the least significant bit and
891     // then mask with 0x1 (MB = ME = 31).
892     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
893        .addReg(DestReg, RegState::Kill)
894        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
895        .addImm(31)
896        .addImm(31);
897     return;
898   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
899       PPC::G8RCRegClass.contains(DestReg)) {
900     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
901     getKillRegState(KillSrc);
902     return;
903   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
904       PPC::GPRCRegClass.contains(DestReg)) {
905     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
906     getKillRegState(KillSrc);
907     return;
908    }
909 
910   unsigned Opc;
911   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
912     Opc = PPC::OR;
913   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
914     Opc = PPC::OR8;
915   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
916     Opc = PPC::FMR;
917   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
918     Opc = PPC::MCRF;
919   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
920     Opc = PPC::VOR;
921   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
922     // There are two different ways this can be done:
923     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
924     //      issue in VSU pipeline 0.
925     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
926     //      can go to either pipeline.
927     // We'll always use xxlor here, because in practically all cases where
928     // copies are generated, they are close enough to some use that the
929     // lower-latency form is preferable.
930     Opc = PPC::XXLOR;
931   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
932            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
933     Opc = PPC::XXLORf;
934   else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
935     Opc = PPC::QVFMR;
936   else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
937     Opc = PPC::QVFMRs;
938   else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
939     Opc = PPC::QVFMRb;
940   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
941     Opc = PPC::CROR;
942   else
943     llvm_unreachable("Impossible reg-to-reg copy");
944 
945   const MCInstrDesc &MCID = get(Opc);
946   if (MCID.getNumOperands() == 3)
947     BuildMI(MBB, I, DL, MCID, DestReg)
948       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
949   else
950     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
951 }
952 
953 // This function returns true if a CR spill is necessary and false otherwise.
954 bool
955 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
956                                   unsigned SrcReg, bool isKill,
957                                   int FrameIdx,
958                                   const TargetRegisterClass *RC,
959                                   SmallVectorImpl<MachineInstr*> &NewMIs,
960                                   bool &NonRI, bool &SpillsVRS) const{
961   // Note: If additional store instructions are added here,
962   // update isStoreToStackSlot.
963 
964   DebugLoc DL;
965   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
966       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
967     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
968                                        .addReg(SrcReg,
969                                                getKillRegState(isKill)),
970                                        FrameIdx));
971   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
972              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
973     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
974                                        .addReg(SrcReg,
975                                                getKillRegState(isKill)),
976                                        FrameIdx));
977   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
978     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
979                                        .addReg(SrcReg,
980                                                getKillRegState(isKill)),
981                                        FrameIdx));
982   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
983     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
984                                        .addReg(SrcReg,
985                                                getKillRegState(isKill)),
986                                        FrameIdx));
987   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
988     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
989                                        .addReg(SrcReg,
990                                                getKillRegState(isKill)),
991                                        FrameIdx));
992     return true;
993   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
994     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
995                                        .addReg(SrcReg,
996                                                getKillRegState(isKill)),
997                                        FrameIdx));
998     return true;
999   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1000     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
1001                                        .addReg(SrcReg,
1002                                                getKillRegState(isKill)),
1003                                        FrameIdx));
1004     NonRI = true;
1005   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1006     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X))
1007                                        .addReg(SrcReg,
1008                                                getKillRegState(isKill)),
1009                                        FrameIdx));
1010     NonRI = true;
1011   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1012     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX))
1013                                        .addReg(SrcReg,
1014                                                getKillRegState(isKill)),
1015                                        FrameIdx));
1016     NonRI = true;
1017   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1018     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSSPX))
1019                                        .addReg(SrcReg,
1020                                                getKillRegState(isKill)),
1021                                        FrameIdx));
1022     NonRI = true;
1023   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1024     assert(Subtarget.isDarwin() &&
1025            "VRSAVE only needs spill/restore on Darwin");
1026     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
1027                                        .addReg(SrcReg,
1028                                                getKillRegState(isKill)),
1029                                        FrameIdx));
1030     SpillsVRS = true;
1031   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1032     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX))
1033                                        .addReg(SrcReg,
1034                                                getKillRegState(isKill)),
1035                                        FrameIdx));
1036     NonRI = true;
1037   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1038     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs))
1039                                        .addReg(SrcReg,
1040                                                getKillRegState(isKill)),
1041                                        FrameIdx));
1042     NonRI = true;
1043   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1044     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb))
1045                                        .addReg(SrcReg,
1046                                                getKillRegState(isKill)),
1047                                        FrameIdx));
1048     NonRI = true;
1049   } else {
1050     llvm_unreachable("Unknown regclass!");
1051   }
1052 
1053   return false;
1054 }
1055 
1056 void
1057 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1058                                   MachineBasicBlock::iterator MI,
1059                                   unsigned SrcReg, bool isKill, int FrameIdx,
1060                                   const TargetRegisterClass *RC,
1061                                   const TargetRegisterInfo *TRI) const {
1062   MachineFunction &MF = *MBB.getParent();
1063   SmallVector<MachineInstr*, 4> NewMIs;
1064 
1065   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1066   FuncInfo->setHasSpills();
1067 
1068   bool NonRI = false, SpillsVRS = false;
1069   if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
1070                           NonRI, SpillsVRS))
1071     FuncInfo->setSpillsCR();
1072 
1073   if (SpillsVRS)
1074     FuncInfo->setSpillsVRSAVE();
1075 
1076   if (NonRI)
1077     FuncInfo->setHasNonRISpills();
1078 
1079   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1080     MBB.insert(MI, NewMIs[i]);
1081 
1082   const MachineFrameInfo &MFI = MF.getFrameInfo();
1083   MachineMemOperand *MMO = MF.getMachineMemOperand(
1084       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1085       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1086       MFI.getObjectAlignment(FrameIdx));
1087   NewMIs.back()->addMemOperand(MF, MMO);
1088 }
1089 
1090 bool PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1091                                         unsigned DestReg, int FrameIdx,
1092                                         const TargetRegisterClass *RC,
1093                                         SmallVectorImpl<MachineInstr *> &NewMIs,
1094                                         bool &NonRI, bool &SpillsVRS) const {
1095   // Note: If additional load instructions are added here,
1096   // update isLoadFromStackSlot.
1097 
1098   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1099       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1100     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
1101                                                DestReg), FrameIdx));
1102   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1103              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1104     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
1105                                        FrameIdx));
1106   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1107     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
1108                                        FrameIdx));
1109   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1110     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
1111                                        FrameIdx));
1112   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1113     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1114                                                get(PPC::RESTORE_CR), DestReg),
1115                                        FrameIdx));
1116     return true;
1117   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1118     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1119                                                get(PPC::RESTORE_CRBIT), DestReg),
1120                                        FrameIdx));
1121     return true;
1122   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1123     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
1124                                        FrameIdx));
1125     NonRI = true;
1126   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1127     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg),
1128                                        FrameIdx));
1129     NonRI = true;
1130   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1131     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg),
1132                                        FrameIdx));
1133     NonRI = true;
1134   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1135     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSSPX), DestReg),
1136                                        FrameIdx));
1137     NonRI = true;
1138   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1139     assert(Subtarget.isDarwin() &&
1140            "VRSAVE only needs spill/restore on Darwin");
1141     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1142                                                get(PPC::RESTORE_VRSAVE),
1143                                                DestReg),
1144                                        FrameIdx));
1145     SpillsVRS = true;
1146   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1147     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg),
1148                                        FrameIdx));
1149     NonRI = true;
1150   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1151     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg),
1152                                        FrameIdx));
1153     NonRI = true;
1154   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1155     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg),
1156                                        FrameIdx));
1157     NonRI = true;
1158   } else {
1159     llvm_unreachable("Unknown regclass!");
1160   }
1161 
1162   return false;
1163 }
1164 
1165 void
1166 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1167                                    MachineBasicBlock::iterator MI,
1168                                    unsigned DestReg, int FrameIdx,
1169                                    const TargetRegisterClass *RC,
1170                                    const TargetRegisterInfo *TRI) const {
1171   MachineFunction &MF = *MBB.getParent();
1172   SmallVector<MachineInstr*, 4> NewMIs;
1173   DebugLoc DL;
1174   if (MI != MBB.end()) DL = MI->getDebugLoc();
1175 
1176   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1177   FuncInfo->setHasSpills();
1178 
1179   bool NonRI = false, SpillsVRS = false;
1180   if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
1181                            NonRI, SpillsVRS))
1182     FuncInfo->setSpillsCR();
1183 
1184   if (SpillsVRS)
1185     FuncInfo->setSpillsVRSAVE();
1186 
1187   if (NonRI)
1188     FuncInfo->setHasNonRISpills();
1189 
1190   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1191     MBB.insert(MI, NewMIs[i]);
1192 
1193   const MachineFrameInfo &MFI = MF.getFrameInfo();
1194   MachineMemOperand *MMO = MF.getMachineMemOperand(
1195       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1196       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1197       MFI.getObjectAlignment(FrameIdx));
1198   NewMIs.back()->addMemOperand(MF, MMO);
1199 }
1200 
1201 bool PPCInstrInfo::
1202 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1203   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1204   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1205     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1206   else
1207     // Leave the CR# the same, but invert the condition.
1208     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1209   return false;
1210 }
1211 
1212 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1213                                  unsigned Reg, MachineRegisterInfo *MRI) const {
1214   // For some instructions, it is legal to fold ZERO into the RA register field.
1215   // A zero immediate should always be loaded with a single li.
1216   unsigned DefOpc = DefMI.getOpcode();
1217   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1218     return false;
1219   if (!DefMI.getOperand(1).isImm())
1220     return false;
1221   if (DefMI.getOperand(1).getImm() != 0)
1222     return false;
1223 
1224   // Note that we cannot here invert the arguments of an isel in order to fold
1225   // a ZERO into what is presented as the second argument. All we have here
1226   // is the condition bit, and that might come from a CR-logical bit operation.
1227 
1228   const MCInstrDesc &UseMCID = UseMI.getDesc();
1229 
1230   // Only fold into real machine instructions.
1231   if (UseMCID.isPseudo())
1232     return false;
1233 
1234   unsigned UseIdx;
1235   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1236     if (UseMI.getOperand(UseIdx).isReg() &&
1237         UseMI.getOperand(UseIdx).getReg() == Reg)
1238       break;
1239 
1240   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1241   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1242 
1243   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1244 
1245   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1246   // register (which might also be specified as a pointer class kind).
1247   if (UseInfo->isLookupPtrRegClass()) {
1248     if (UseInfo->RegClass /* Kind */ != 1)
1249       return false;
1250   } else {
1251     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1252         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1253       return false;
1254   }
1255 
1256   // Make sure this is not tied to an output register (or otherwise
1257   // constrained). This is true for ST?UX registers, for example, which
1258   // are tied to their output registers.
1259   if (UseInfo->Constraints != 0)
1260     return false;
1261 
1262   unsigned ZeroReg;
1263   if (UseInfo->isLookupPtrRegClass()) {
1264     bool isPPC64 = Subtarget.isPPC64();
1265     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1266   } else {
1267     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1268               PPC::ZERO8 : PPC::ZERO;
1269   }
1270 
1271   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1272   UseMI.getOperand(UseIdx).setReg(ZeroReg);
1273 
1274   if (DeleteDef)
1275     DefMI.eraseFromParent();
1276 
1277   return true;
1278 }
1279 
1280 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1281   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1282        I != IE; ++I)
1283     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1284       return true;
1285   return false;
1286 }
1287 
1288 // We should make sure that, if we're going to predicate both sides of a
1289 // condition (a diamond), that both sides don't define the counter register. We
1290 // can predicate counter-decrement-based branches, but while that predicates
1291 // the branching, it does not predicate the counter decrement. If we tried to
1292 // merge the triangle into one predicated block, we'd decrement the counter
1293 // twice.
1294 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1295                      unsigned NumT, unsigned ExtraT,
1296                      MachineBasicBlock &FMBB,
1297                      unsigned NumF, unsigned ExtraF,
1298                      BranchProbability Probability) const {
1299   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1300 }
1301 
1302 
1303 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1304   // The predicated branches are identified by their type, not really by the
1305   // explicit presence of a predicate. Furthermore, some of them can be
1306   // predicated more than once. Because if conversion won't try to predicate
1307   // any instruction which already claims to be predicated (by returning true
1308   // here), always return false. In doing so, we let isPredicable() be the
1309   // final word on whether not the instruction can be (further) predicated.
1310 
1311   return false;
1312 }
1313 
1314 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1315   if (!MI.isTerminator())
1316     return false;
1317 
1318   // Conditional branch is a special case.
1319   if (MI.isBranch() && !MI.isBarrier())
1320     return true;
1321 
1322   return !isPredicated(MI);
1323 }
1324 
1325 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1326                                         ArrayRef<MachineOperand> Pred) const {
1327   unsigned OpC = MI.getOpcode();
1328   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1329     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1330       bool isPPC64 = Subtarget.isPPC64();
1331       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1332                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1333     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1334       MI.setDesc(get(PPC::BCLR));
1335       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1336           .addReg(Pred[1].getReg());
1337     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1338       MI.setDesc(get(PPC::BCLRn));
1339       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1340           .addReg(Pred[1].getReg());
1341     } else {
1342       MI.setDesc(get(PPC::BCCLR));
1343       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1344           .addImm(Pred[0].getImm())
1345           .addReg(Pred[1].getReg());
1346     }
1347 
1348     return true;
1349   } else if (OpC == PPC::B) {
1350     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1351       bool isPPC64 = Subtarget.isPPC64();
1352       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1353                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1354     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1355       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1356       MI.RemoveOperand(0);
1357 
1358       MI.setDesc(get(PPC::BC));
1359       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1360           .addReg(Pred[1].getReg())
1361           .addMBB(MBB);
1362     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1363       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1364       MI.RemoveOperand(0);
1365 
1366       MI.setDesc(get(PPC::BCn));
1367       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1368           .addReg(Pred[1].getReg())
1369           .addMBB(MBB);
1370     } else {
1371       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1372       MI.RemoveOperand(0);
1373 
1374       MI.setDesc(get(PPC::BCC));
1375       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1376           .addImm(Pred[0].getImm())
1377           .addReg(Pred[1].getReg())
1378           .addMBB(MBB);
1379     }
1380 
1381     return true;
1382   } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
1383              OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
1384     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1385       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1386 
1387     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1388     bool isPPC64 = Subtarget.isPPC64();
1389 
1390     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1391       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1392                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1393       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1394           .addReg(Pred[1].getReg());
1395       return true;
1396     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1397       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1398                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1399       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1400           .addReg(Pred[1].getReg());
1401       return true;
1402     }
1403 
1404     MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1405                            : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1406     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1407         .addImm(Pred[0].getImm())
1408         .addReg(Pred[1].getReg());
1409     return true;
1410   }
1411 
1412   return false;
1413 }
1414 
1415 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1416                                      ArrayRef<MachineOperand> Pred2) const {
1417   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1418   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1419 
1420   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1421     return false;
1422   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1423     return false;
1424 
1425   // P1 can only subsume P2 if they test the same condition register.
1426   if (Pred1[1].getReg() != Pred2[1].getReg())
1427     return false;
1428 
1429   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1430   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1431 
1432   if (P1 == P2)
1433     return true;
1434 
1435   // Does P1 subsume P2, e.g. GE subsumes GT.
1436   if (P1 == PPC::PRED_LE &&
1437       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1438     return true;
1439   if (P1 == PPC::PRED_GE &&
1440       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1441     return true;
1442 
1443   return false;
1444 }
1445 
1446 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1447                                     std::vector<MachineOperand> &Pred) const {
1448   // Note: At the present time, the contents of Pred from this function is
1449   // unused by IfConversion. This implementation follows ARM by pushing the
1450   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1451   // predicate, instructions defining CTR or CTR8 are also included as
1452   // predicate-defining instructions.
1453 
1454   const TargetRegisterClass *RCs[] =
1455     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1456       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1457 
1458   bool Found = false;
1459   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1460     const MachineOperand &MO = MI.getOperand(i);
1461     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1462       const TargetRegisterClass *RC = RCs[c];
1463       if (MO.isReg()) {
1464         if (MO.isDef() && RC->contains(MO.getReg())) {
1465           Pred.push_back(MO);
1466           Found = true;
1467         }
1468       } else if (MO.isRegMask()) {
1469         for (TargetRegisterClass::iterator I = RC->begin(),
1470              IE = RC->end(); I != IE; ++I)
1471           if (MO.clobbersPhysReg(*I)) {
1472             Pred.push_back(MO);
1473             Found = true;
1474           }
1475       }
1476     }
1477   }
1478 
1479   return Found;
1480 }
1481 
1482 bool PPCInstrInfo::isPredicable(MachineInstr &MI) const {
1483   unsigned OpC = MI.getOpcode();
1484   switch (OpC) {
1485   default:
1486     return false;
1487   case PPC::B:
1488   case PPC::BLR:
1489   case PPC::BLR8:
1490   case PPC::BCTR:
1491   case PPC::BCTR8:
1492   case PPC::BCTRL:
1493   case PPC::BCTRL8:
1494     return true;
1495   }
1496 }
1497 
1498 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1499                                   unsigned &SrcReg2, int &Mask,
1500                                   int &Value) const {
1501   unsigned Opc = MI.getOpcode();
1502 
1503   switch (Opc) {
1504   default: return false;
1505   case PPC::CMPWI:
1506   case PPC::CMPLWI:
1507   case PPC::CMPDI:
1508   case PPC::CMPLDI:
1509     SrcReg = MI.getOperand(1).getReg();
1510     SrcReg2 = 0;
1511     Value = MI.getOperand(2).getImm();
1512     Mask = 0xFFFF;
1513     return true;
1514   case PPC::CMPW:
1515   case PPC::CMPLW:
1516   case PPC::CMPD:
1517   case PPC::CMPLD:
1518   case PPC::FCMPUS:
1519   case PPC::FCMPUD:
1520     SrcReg = MI.getOperand(1).getReg();
1521     SrcReg2 = MI.getOperand(2).getReg();
1522     return true;
1523   }
1524 }
1525 
1526 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1527                                         unsigned SrcReg2, int Mask, int Value,
1528                                         const MachineRegisterInfo *MRI) const {
1529   if (DisableCmpOpt)
1530     return false;
1531 
1532   int OpC = CmpInstr.getOpcode();
1533   unsigned CRReg = CmpInstr.getOperand(0).getReg();
1534 
1535   // FP record forms set CR1 based on the execption status bits, not a
1536   // comparison with zero.
1537   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1538     return false;
1539 
1540   // The record forms set the condition register based on a signed comparison
1541   // with zero (so says the ISA manual). This is not as straightforward as it
1542   // seems, however, because this is always a 64-bit comparison on PPC64, even
1543   // for instructions that are 32-bit in nature (like slw for example).
1544   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1545   // for equality checks (as those don't depend on the sign). On PPC64,
1546   // we are restricted to equality for unsigned 64-bit comparisons and for
1547   // signed 32-bit comparisons the applicability is more restricted.
1548   bool isPPC64 = Subtarget.isPPC64();
1549   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1550   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1551   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1552 
1553   // Get the unique definition of SrcReg.
1554   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1555   if (!MI) return false;
1556   int MIOpC = MI->getOpcode();
1557 
1558   bool equalityOnly = false;
1559   bool noSub = false;
1560   if (isPPC64) {
1561     if (is32BitSignedCompare) {
1562       // We can perform this optimization only if MI is sign-extending.
1563       if (MIOpC == PPC::SRAW  || MIOpC == PPC::SRAWo ||
1564           MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
1565           MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
1566           MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
1567           MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
1568         noSub = true;
1569       } else
1570         return false;
1571     } else if (is32BitUnsignedCompare) {
1572       // 32-bit rotate and mask instructions are zero extending only if MB <= ME
1573       bool isZeroExtendingRotate  =
1574           (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINMo ||
1575            MIOpC == PPC::RLWNM || MIOpC == PPC::RLWNMo)
1576           && MI->getOperand(3).getImm() <= MI->getOperand(4).getImm();
1577 
1578       // We can perform this optimization, equality only, if MI is
1579       // zero-extending.
1580       if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
1581           MIOpC == PPC::SLW    || MIOpC == PPC::SLWo ||
1582           MIOpC == PPC::SRW    || MIOpC == PPC::SRWo ||
1583           isZeroExtendingRotate) {
1584         noSub = true;
1585         equalityOnly = true;
1586       } else
1587         return false;
1588     } else
1589       equalityOnly = is64BitUnsignedCompare;
1590   } else
1591     equalityOnly = is32BitUnsignedCompare;
1592 
1593   if (equalityOnly) {
1594     // We need to check the uses of the condition register in order to reject
1595     // non-equality comparisons.
1596     for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg),
1597          IE = MRI->use_instr_end(); I != IE; ++I) {
1598       MachineInstr *UseMI = &*I;
1599       if (UseMI->getOpcode() == PPC::BCC) {
1600         unsigned Pred = UseMI->getOperand(0).getImm();
1601         if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
1602           return false;
1603       } else if (UseMI->getOpcode() == PPC::ISEL ||
1604                  UseMI->getOpcode() == PPC::ISEL8) {
1605         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1606         if (SubIdx != PPC::sub_eq)
1607           return false;
1608       } else
1609         return false;
1610     }
1611   }
1612 
1613   MachineBasicBlock::iterator I = CmpInstr;
1614 
1615   // Scan forward to find the first use of the compare.
1616   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1617        ++I) {
1618     bool FoundUse = false;
1619     for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg),
1620          JE = MRI->use_instr_end(); J != JE; ++J)
1621       if (&*J == &*I) {
1622         FoundUse = true;
1623         break;
1624       }
1625 
1626     if (FoundUse)
1627       break;
1628   }
1629 
1630   // There are two possible candidates which can be changed to set CR[01].
1631   // One is MI, the other is a SUB instruction.
1632   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1633   MachineInstr *Sub = nullptr;
1634   if (SrcReg2 != 0)
1635     // MI is not a candidate for CMPrr.
1636     MI = nullptr;
1637   // FIXME: Conservatively refuse to convert an instruction which isn't in the
1638   // same BB as the comparison. This is to allow the check below to avoid calls
1639   // (and other explicit clobbers); instead we should really check for these
1640   // more explicitly (in at least a few predecessors).
1641   else if (MI->getParent() != CmpInstr.getParent() || Value != 0) {
1642     // PPC does not have a record-form SUBri.
1643     return false;
1644   }
1645 
1646   // Search for Sub.
1647   const TargetRegisterInfo *TRI = &getRegisterInfo();
1648   --I;
1649 
1650   // Get ready to iterate backward from CmpInstr.
1651   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
1652 
1653   for (; I != E && !noSub; --I) {
1654     const MachineInstr &Instr = *I;
1655     unsigned IOpC = Instr.getOpcode();
1656 
1657     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
1658                              Instr.readsRegister(PPC::CR0, TRI)))
1659       // This instruction modifies or uses the record condition register after
1660       // the one we want to change. While we could do this transformation, it
1661       // would likely not be profitable. This transformation removes one
1662       // instruction, and so even forcing RA to generate one move probably
1663       // makes it unprofitable.
1664       return false;
1665 
1666     // Check whether CmpInstr can be made redundant by the current instruction.
1667     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1668          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1669         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1670         ((Instr.getOperand(1).getReg() == SrcReg &&
1671           Instr.getOperand(2).getReg() == SrcReg2) ||
1672         (Instr.getOperand(1).getReg() == SrcReg2 &&
1673          Instr.getOperand(2).getReg() == SrcReg))) {
1674       Sub = &*I;
1675       break;
1676     }
1677 
1678     if (I == B)
1679       // The 'and' is below the comparison instruction.
1680       return false;
1681   }
1682 
1683   // Return false if no candidates exist.
1684   if (!MI && !Sub)
1685     return false;
1686 
1687   // The single candidate is called MI.
1688   if (!MI) MI = Sub;
1689 
1690   int NewOpC = -1;
1691   MIOpC = MI->getOpcode();
1692   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
1693     NewOpC = MIOpC;
1694   else {
1695     NewOpC = PPC::getRecordFormOpcode(MIOpC);
1696     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1697       NewOpC = MIOpC;
1698   }
1699 
1700   // FIXME: On the non-embedded POWER architectures, only some of the record
1701   // forms are fast, and we should use only the fast ones.
1702 
1703   // The defining instruction has a record form (or is already a record
1704   // form). It is possible, however, that we'll need to reverse the condition
1705   // code of the users.
1706   if (NewOpC == -1)
1707     return false;
1708 
1709   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1710   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1711 
1712   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1713   // needs to be updated to be based on SUB.  Push the condition code
1714   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1715   // condition code of these operands will be modified.
1716   bool ShouldSwap = false;
1717   if (Sub) {
1718     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1719       Sub->getOperand(2).getReg() == SrcReg;
1720 
1721     // The operands to subf are the opposite of sub, so only in the fixed-point
1722     // case, invert the order.
1723     ShouldSwap = !ShouldSwap;
1724   }
1725 
1726   if (ShouldSwap)
1727     for (MachineRegisterInfo::use_instr_iterator
1728          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1729          I != IE; ++I) {
1730       MachineInstr *UseMI = &*I;
1731       if (UseMI->getOpcode() == PPC::BCC) {
1732         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1733         assert((!equalityOnly ||
1734                 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
1735                "Invalid predicate for equality-only optimization");
1736         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1737                                 PPC::getSwappedPredicate(Pred)));
1738       } else if (UseMI->getOpcode() == PPC::ISEL ||
1739                  UseMI->getOpcode() == PPC::ISEL8) {
1740         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1741         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1742                "Invalid CR bit for equality-only optimization");
1743 
1744         if (NewSubReg == PPC::sub_lt)
1745           NewSubReg = PPC::sub_gt;
1746         else if (NewSubReg == PPC::sub_gt)
1747           NewSubReg = PPC::sub_lt;
1748 
1749         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1750                                                  NewSubReg));
1751       } else // We need to abort on a user we don't understand.
1752         return false;
1753     }
1754 
1755   // Create a new virtual register to hold the value of the CR set by the
1756   // record-form instruction. If the instruction was not previously in
1757   // record form, then set the kill flag on the CR.
1758   CmpInstr.eraseFromParent();
1759 
1760   MachineBasicBlock::iterator MII = MI;
1761   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1762           get(TargetOpcode::COPY), CRReg)
1763     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1764 
1765   // Even if CR0 register were dead before, it is alive now since the
1766   // instruction we just built uses it.
1767   MI->clearRegisterDeads(PPC::CR0);
1768 
1769   if (MIOpC != NewOpC) {
1770     // We need to be careful here: we're replacing one instruction with
1771     // another, and we need to make sure that we get all of the right
1772     // implicit uses and defs. On the other hand, the caller may be holding
1773     // an iterator to this instruction, and so we can't delete it (this is
1774     // specifically the case if this is the instruction directly after the
1775     // compare).
1776 
1777     const MCInstrDesc &NewDesc = get(NewOpC);
1778     MI->setDesc(NewDesc);
1779 
1780     if (NewDesc.ImplicitDefs)
1781       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1782            *ImpDefs; ++ImpDefs)
1783         if (!MI->definesRegister(*ImpDefs))
1784           MI->addOperand(*MI->getParent()->getParent(),
1785                          MachineOperand::CreateReg(*ImpDefs, true, true));
1786     if (NewDesc.ImplicitUses)
1787       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1788            *ImpUses; ++ImpUses)
1789         if (!MI->readsRegister(*ImpUses))
1790           MI->addOperand(*MI->getParent()->getParent(),
1791                          MachineOperand::CreateReg(*ImpUses, false, true));
1792   }
1793   assert(MI->definesRegister(PPC::CR0) &&
1794          "Record-form instruction does not define cr0?");
1795 
1796   // Modify the condition code of operands in OperandsToUpdate.
1797   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1798   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1799   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1800     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1801 
1802   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1803     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1804 
1805   return true;
1806 }
1807 
1808 /// GetInstSize - Return the number of bytes of code the specified
1809 /// instruction may be.  This returns the maximum number of bytes.
1810 ///
1811 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1812   unsigned Opcode = MI.getOpcode();
1813 
1814   if (Opcode == PPC::INLINEASM) {
1815     const MachineFunction *MF = MI.getParent()->getParent();
1816     const char *AsmStr = MI.getOperand(0).getSymbolName();
1817     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1818   } else if (Opcode == TargetOpcode::STACKMAP) {
1819     StackMapOpers Opers(&MI);
1820     return Opers.getNumPatchBytes();
1821   } else if (Opcode == TargetOpcode::PATCHPOINT) {
1822     PatchPointOpers Opers(&MI);
1823     return Opers.getNumPatchBytes();
1824   } else {
1825     const MCInstrDesc &Desc = get(Opcode);
1826     return Desc.getSize();
1827   }
1828 }
1829 
1830 std::pair<unsigned, unsigned>
1831 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
1832   const unsigned Mask = PPCII::MO_ACCESS_MASK;
1833   return std::make_pair(TF & Mask, TF & ~Mask);
1834 }
1835 
1836 ArrayRef<std::pair<unsigned, const char *>>
1837 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
1838   using namespace PPCII;
1839   static const std::pair<unsigned, const char *> TargetFlags[] = {
1840       {MO_LO, "ppc-lo"},
1841       {MO_HA, "ppc-ha"},
1842       {MO_TPREL_LO, "ppc-tprel-lo"},
1843       {MO_TPREL_HA, "ppc-tprel-ha"},
1844       {MO_DTPREL_LO, "ppc-dtprel-lo"},
1845       {MO_TLSLD_LO, "ppc-tlsld-lo"},
1846       {MO_TOC_LO, "ppc-toc-lo"},
1847       {MO_TLS, "ppc-tls"}};
1848   return makeArrayRef(TargetFlags);
1849 }
1850 
1851 ArrayRef<std::pair<unsigned, const char *>>
1852 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
1853   using namespace PPCII;
1854   static const std::pair<unsigned, const char *> TargetFlags[] = {
1855       {MO_PLT, "ppc-plt"},
1856       {MO_PIC_FLAG, "ppc-pic"},
1857       {MO_NLP_FLAG, "ppc-nlp"},
1858       {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
1859   return makeArrayRef(TargetFlags);
1860 }
1861 
1862 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1863   switch (MI.getOpcode()) {
1864   case TargetOpcode::LOAD_STACK_GUARD: {
1865     assert(Subtarget.isTargetLinux() &&
1866            "Only Linux target is expected to contain LOAD_STACK_GUARD");
1867     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
1868     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
1869     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
1870     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1871         .addImm(Offset)
1872         .addReg(Reg);
1873     return true;
1874   }
1875   }
1876   return false;
1877 }
1878