1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/PseudoSourceValue.h" 31 #include "llvm/CodeGen/RegisterClassInfo.h" 32 #include "llvm/CodeGen/RegisterPressure.h" 33 #include "llvm/CodeGen/ScheduleDAG.h" 34 #include "llvm/CodeGen/SlotIndexes.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/MCInst.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/TargetRegistry.h" 42 #include "llvm/Support/raw_ostream.h" 43 44 using namespace llvm; 45 46 #define DEBUG_TYPE "ppc-instr-info" 47 48 #define GET_INSTRMAP_INFO 49 #define GET_INSTRINFO_CTOR_DTOR 50 #include "PPCGenInstrInfo.inc" 51 52 STATISTIC(NumStoreSPILLVSRRCAsVec, 53 "Number of spillvsrrc spilled to stack as vec"); 54 STATISTIC(NumStoreSPILLVSRRCAsGpr, 55 "Number of spillvsrrc spilled to stack as gpr"); 56 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 57 STATISTIC(CmpIselsConverted, 58 "Number of ISELs that depend on comparison of constants converted"); 59 STATISTIC(MissedConvertibleImmediateInstrs, 60 "Number of compare-immediate instructions fed by constants"); 61 STATISTIC(NumRcRotatesConvertedToRcAnd, 62 "Number of record-form rotates converted to record-form andi"); 63 64 static cl:: 65 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 66 cl::desc("Disable analysis for CTR loops")); 67 68 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 69 cl::desc("Disable compare instruction optimization"), cl::Hidden); 70 71 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 72 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 73 cl::Hidden); 74 75 static cl::opt<bool> 76 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 77 cl::desc("Use the old (incorrect) instruction latency calculation")); 78 79 static cl::opt<float> 80 FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5), 81 cl::desc("register pressure factor for the transformations.")); 82 83 static cl::opt<bool> EnableFMARegPressureReduction( 84 "ppc-fma-rp-reduction", cl::Hidden, cl::init(true), 85 cl::desc("enable register pressure reduce in machine combiner pass.")); 86 87 // Pin the vtable to this file. 88 void PPCInstrInfo::anchor() {} 89 90 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 91 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 92 /* CatchRetOpcode */ -1, 93 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 94 Subtarget(STI), RI(STI.getTargetMachine()) {} 95 96 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 97 /// this target when scheduling the DAG. 98 ScheduleHazardRecognizer * 99 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 100 const ScheduleDAG *DAG) const { 101 unsigned Directive = 102 static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); 103 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 104 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 105 const InstrItineraryData *II = 106 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 107 return new ScoreboardHazardRecognizer(II, DAG); 108 } 109 110 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 111 } 112 113 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 114 /// to use for this target when scheduling the DAG. 115 ScheduleHazardRecognizer * 116 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 117 const ScheduleDAG *DAG) const { 118 unsigned Directive = 119 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); 120 121 // FIXME: Leaving this as-is until we have POWER9 scheduling info 122 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 123 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 124 125 // Most subtargets use a PPC970 recognizer. 126 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 127 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 128 assert(DAG->TII && "No InstrInfo?"); 129 130 return new PPCHazardRecognizer970(*DAG); 131 } 132 133 return new ScoreboardHazardRecognizer(II, DAG); 134 } 135 136 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 137 const MachineInstr &MI, 138 unsigned *PredCost) const { 139 if (!ItinData || UseOldLatencyCalc) 140 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 141 142 // The default implementation of getInstrLatency calls getStageLatency, but 143 // getStageLatency does not do the right thing for us. While we have 144 // itinerary, most cores are fully pipelined, and so the itineraries only 145 // express the first part of the pipeline, not every stage. Instead, we need 146 // to use the listed output operand cycle number (using operand 0 here, which 147 // is an output). 148 149 unsigned Latency = 1; 150 unsigned DefClass = MI.getDesc().getSchedClass(); 151 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 152 const MachineOperand &MO = MI.getOperand(i); 153 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 154 continue; 155 156 int Cycle = ItinData->getOperandCycle(DefClass, i); 157 if (Cycle < 0) 158 continue; 159 160 Latency = std::max(Latency, (unsigned) Cycle); 161 } 162 163 return Latency; 164 } 165 166 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 167 const MachineInstr &DefMI, unsigned DefIdx, 168 const MachineInstr &UseMI, 169 unsigned UseIdx) const { 170 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 171 UseMI, UseIdx); 172 173 if (!DefMI.getParent()) 174 return Latency; 175 176 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 177 Register Reg = DefMO.getReg(); 178 179 bool IsRegCR; 180 if (Register::isVirtualRegister(Reg)) { 181 const MachineRegisterInfo *MRI = 182 &DefMI.getParent()->getParent()->getRegInfo(); 183 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 184 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 185 } else { 186 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 187 PPC::CRBITRCRegClass.contains(Reg); 188 } 189 190 if (UseMI.isBranch() && IsRegCR) { 191 if (Latency < 0) 192 Latency = getInstrLatency(ItinData, DefMI); 193 194 // On some cores, there is an additional delay between writing to a condition 195 // register, and using it from a branch. 196 unsigned Directive = Subtarget.getCPUDirective(); 197 switch (Directive) { 198 default: break; 199 case PPC::DIR_7400: 200 case PPC::DIR_750: 201 case PPC::DIR_970: 202 case PPC::DIR_E5500: 203 case PPC::DIR_PWR4: 204 case PPC::DIR_PWR5: 205 case PPC::DIR_PWR5X: 206 case PPC::DIR_PWR6: 207 case PPC::DIR_PWR6X: 208 case PPC::DIR_PWR7: 209 case PPC::DIR_PWR8: 210 // FIXME: Is this needed for POWER9? 211 Latency += 2; 212 break; 213 } 214 } 215 216 return Latency; 217 } 218 219 /// This is an architecture-specific helper function of reassociateOps. 220 /// Set special operand attributes for new instructions after reassociation. 221 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, 222 MachineInstr &OldMI2, 223 MachineInstr &NewMI1, 224 MachineInstr &NewMI2) const { 225 // Propagate FP flags from the original instructions. 226 // But clear poison-generating flags because those may not be valid now. 227 uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags(); 228 NewMI1.setFlags(IntersectedFlags); 229 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap); 230 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap); 231 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact); 232 233 NewMI2.setFlags(IntersectedFlags); 234 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap); 235 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap); 236 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact); 237 } 238 239 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI, 240 uint16_t Flags) const { 241 MI.setFlags(Flags); 242 MI.clearFlag(MachineInstr::MIFlag::NoSWrap); 243 MI.clearFlag(MachineInstr::MIFlag::NoUWrap); 244 MI.clearFlag(MachineInstr::MIFlag::IsExact); 245 } 246 247 // This function does not list all associative and commutative operations, but 248 // only those worth feeding through the machine combiner in an attempt to 249 // reduce the critical path. Mostly, this means floating-point operations, 250 // because they have high latencies(>=5) (compared to other operations, such as 251 // and/or, which are also associative and commutative, but have low latencies). 252 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 253 switch (Inst.getOpcode()) { 254 // Floating point: 255 // FP Add: 256 case PPC::FADD: 257 case PPC::FADDS: 258 // FP Multiply: 259 case PPC::FMUL: 260 case PPC::FMULS: 261 // Altivec Add: 262 case PPC::VADDFP: 263 // VSX Add: 264 case PPC::XSADDDP: 265 case PPC::XVADDDP: 266 case PPC::XVADDSP: 267 case PPC::XSADDSP: 268 // VSX Multiply: 269 case PPC::XSMULDP: 270 case PPC::XVMULDP: 271 case PPC::XVMULSP: 272 case PPC::XSMULSP: 273 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && 274 Inst.getFlag(MachineInstr::MIFlag::FmNsz); 275 // Fixed point: 276 // Multiply: 277 case PPC::MULHD: 278 case PPC::MULLD: 279 case PPC::MULHW: 280 case PPC::MULLW: 281 return true; 282 default: 283 return false; 284 } 285 } 286 287 #define InfoArrayIdxFMAInst 0 288 #define InfoArrayIdxFAddInst 1 289 #define InfoArrayIdxFMULInst 2 290 #define InfoArrayIdxAddOpIdx 3 291 #define InfoArrayIdxMULOpIdx 4 292 #define InfoArrayIdxFSubInst 5 293 // Array keeps info for FMA instructions: 294 // Index 0(InfoArrayIdxFMAInst): FMA instruction; 295 // Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA; 296 // Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA; 297 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands; 298 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands; 299 // second MUL operand index is plus 1; 300 // Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA. 301 static const uint16_t FMAOpIdxInfo[][6] = { 302 // FIXME: Add more FMA instructions like XSNMADDADP and so on. 303 {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP}, 304 {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP}, 305 {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP}, 306 {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP}, 307 {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB}, 308 {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}}; 309 310 // Check if an opcode is a FMA instruction. If it is, return the index in array 311 // FMAOpIdxInfo. Otherwise, return -1. 312 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const { 313 for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++) 314 if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode) 315 return I; 316 return -1; 317 } 318 319 // On PowerPC target, we have two kinds of patterns related to FMA: 320 // 1: Improve ILP. 321 // Try to reassociate FMA chains like below: 322 // 323 // Pattern 1: 324 // A = FADD X, Y (Leaf) 325 // B = FMA A, M21, M22 (Prev) 326 // C = FMA B, M31, M32 (Root) 327 // --> 328 // A = FMA X, M21, M22 329 // B = FMA Y, M31, M32 330 // C = FADD A, B 331 // 332 // Pattern 2: 333 // A = FMA X, M11, M12 (Leaf) 334 // B = FMA A, M21, M22 (Prev) 335 // C = FMA B, M31, M32 (Root) 336 // --> 337 // A = FMUL M11, M12 338 // B = FMA X, M21, M22 339 // D = FMA A, M31, M32 340 // C = FADD B, D 341 // 342 // breaking the dependency between A and B, allowing FMA to be executed in 343 // parallel (or back-to-back in a pipeline) instead of depending on each other. 344 // 345 // 2: Reduce register pressure. 346 // Try to reassociate FMA with FSUB and a constant like below: 347 // C is a floating point const. 348 // 349 // Pattern 1: 350 // A = FSUB X, Y (Leaf) 351 // D = FMA B, C, A (Root) 352 // --> 353 // A = FMA B, Y, -C 354 // D = FMA A, X, C 355 // 356 // Pattern 2: 357 // A = FSUB X, Y (Leaf) 358 // D = FMA B, A, C (Root) 359 // --> 360 // A = FMA B, Y, -C 361 // D = FMA A, X, C 362 // 363 // Before the transformation, A must be assigned with different hardware 364 // register with D. After the transformation, A and D must be assigned with 365 // same hardware register due to TIE attribute of FMA instructions. 366 // 367 bool PPCInstrInfo::getFMAPatterns( 368 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, 369 bool DoRegPressureReduce) const { 370 MachineBasicBlock *MBB = Root.getParent(); 371 const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo(); 372 const TargetRegisterInfo *TRI = &getRegisterInfo(); 373 374 auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) { 375 for (const auto &MO : Instr.explicit_operands()) 376 if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg()))) 377 return false; 378 return true; 379 }; 380 381 auto IsReassociableAddOrSub = [&](const MachineInstr &Instr, 382 unsigned OpType) { 383 if (Instr.getOpcode() != 384 FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType]) 385 return false; 386 387 // Instruction can be reassociated. 388 // fast math flags may prohibit reassociation. 389 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 390 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 391 return false; 392 393 // Instruction operands are virtual registers for reassociation. 394 if (!IsAllOpsVirtualReg(Instr)) 395 return false; 396 397 // For register pressure reassociation, the FSub must have only one use as 398 // we want to delete the sub to save its def. 399 if (OpType == InfoArrayIdxFSubInst && 400 !MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg())) 401 return false; 402 403 return true; 404 }; 405 406 auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx, 407 int16_t &MulOpIdx, bool IsLeaf) { 408 int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode()); 409 if (Idx < 0) 410 return false; 411 412 // Instruction can be reassociated. 413 // fast math flags may prohibit reassociation. 414 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 415 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 416 return false; 417 418 // Instruction operands are virtual registers for reassociation. 419 if (!IsAllOpsVirtualReg(Instr)) 420 return false; 421 422 MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 423 if (IsLeaf) 424 return true; 425 426 AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 427 428 const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx); 429 MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg()); 430 // If 'add' operand's def is not in current block, don't do ILP related opt. 431 if (!MIAdd || MIAdd->getParent() != MBB) 432 return false; 433 434 // If this is not Leaf FMA Instr, its 'add' operand should only have one use 435 // as this fma will be changed later. 436 return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg()); 437 }; 438 439 int16_t AddOpIdx = -1; 440 int16_t MulOpIdx = -1; 441 442 bool IsUsedOnceL = false; 443 bool IsUsedOnceR = false; 444 MachineInstr *MULInstrL = nullptr; 445 MachineInstr *MULInstrR = nullptr; 446 447 auto IsRPReductionCandidate = [&]() { 448 // Currently, we only support float and double. 449 // FIXME: add support for other types. 450 unsigned Opcode = Root.getOpcode(); 451 if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP) 452 return false; 453 454 // Root must be a valid FMA like instruction. 455 // Treat it as leaf as we don't care its add operand. 456 if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) { 457 assert((MulOpIdx >= 0) && "mul operand index not right!"); 458 Register MULRegL = TRI->lookThruSingleUseCopyChain( 459 Root.getOperand(MulOpIdx).getReg(), MRI); 460 Register MULRegR = TRI->lookThruSingleUseCopyChain( 461 Root.getOperand(MulOpIdx + 1).getReg(), MRI); 462 if (!MULRegL && !MULRegR) 463 return false; 464 465 if (MULRegL && !MULRegR) { 466 MULRegR = 467 TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI); 468 IsUsedOnceL = true; 469 } else if (!MULRegL && MULRegR) { 470 MULRegL = 471 TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI); 472 IsUsedOnceR = true; 473 } else { 474 IsUsedOnceL = true; 475 IsUsedOnceR = true; 476 } 477 478 if (!Register::isVirtualRegister(MULRegL) || 479 !Register::isVirtualRegister(MULRegR)) 480 return false; 481 482 MULInstrL = MRI->getVRegDef(MULRegL); 483 MULInstrR = MRI->getVRegDef(MULRegR); 484 return true; 485 } 486 return false; 487 }; 488 489 // Register pressure fma reassociation patterns. 490 if (DoRegPressureReduce && IsRPReductionCandidate()) { 491 assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!"); 492 // Register pressure pattern 1 493 if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR && 494 IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) { 495 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n"); 496 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BCA); 497 return true; 498 } 499 500 // Register pressure pattern 2 501 if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL && 502 IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) { 503 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n"); 504 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BAC); 505 return true; 506 } 507 } 508 509 // ILP fma reassociation patterns. 510 // Root must be a valid FMA like instruction. 511 AddOpIdx = -1; 512 if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false)) 513 return false; 514 515 assert((AddOpIdx >= 0) && "add operand index not right!"); 516 517 Register RegB = Root.getOperand(AddOpIdx).getReg(); 518 MachineInstr *Prev = MRI->getUniqueVRegDef(RegB); 519 520 // Prev must be a valid FMA like instruction. 521 AddOpIdx = -1; 522 if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false)) 523 return false; 524 525 assert((AddOpIdx >= 0) && "add operand index not right!"); 526 527 Register RegA = Prev->getOperand(AddOpIdx).getReg(); 528 MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA); 529 AddOpIdx = -1; 530 if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) { 531 Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 532 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n"); 533 return true; 534 } 535 if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) { 536 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM); 537 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n"); 538 return true; 539 } 540 return false; 541 } 542 543 void PPCInstrInfo::finalizeInsInstrs( 544 MachineInstr &Root, MachineCombinerPattern &P, 545 SmallVectorImpl<MachineInstr *> &InsInstrs) const { 546 assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!"); 547 548 MachineFunction *MF = Root.getMF(); 549 MachineRegisterInfo *MRI = &MF->getRegInfo(); 550 const TargetRegisterInfo *TRI = &getRegisterInfo(); 551 MachineConstantPool *MCP = MF->getConstantPool(); 552 553 int16_t Idx = getFMAOpIdxInfo(Root.getOpcode()); 554 if (Idx < 0) 555 return; 556 557 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 558 559 // For now we only need to fix up placeholder for register pressure reduce 560 // patterns. 561 Register ConstReg = 0; 562 switch (P) { 563 case MachineCombinerPattern::REASSOC_XY_BCA: 564 ConstReg = 565 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI); 566 break; 567 case MachineCombinerPattern::REASSOC_XY_BAC: 568 ConstReg = 569 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI); 570 break; 571 default: 572 // Not register pressure reduce patterns. 573 return; 574 } 575 576 MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg); 577 // Get const value from const pool. 578 const Constant *C = getConstantFromConstantPool(ConstDefInstr); 579 assert(isa<llvm::ConstantFP>(C) && "not a valid constant!"); 580 581 // Get negative fp const. 582 APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF()); 583 F1.changeSign(); 584 Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1); 585 Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType()); 586 587 // Put negative fp const into constant pool. 588 unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment); 589 590 MachineOperand *Placeholder = nullptr; 591 // Record the placeholder PPC::ZERO8 we add in reassociateFMA. 592 for (auto *Inst : InsInstrs) { 593 for (MachineOperand &Operand : Inst->explicit_operands()) { 594 assert(Operand.isReg() && "Invalid instruction in InsInstrs!"); 595 if (Operand.getReg() == PPC::ZERO8) { 596 Placeholder = &Operand; 597 break; 598 } 599 } 600 } 601 602 assert(Placeholder && "Placeholder does not exist!"); 603 604 // Generate instructions to load the const fp from constant pool. 605 // We only support PPC64 and medium code model. 606 Register LoadNewConst = 607 generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs); 608 609 // Fill the placeholder with the new load from constant pool. 610 Placeholder->setReg(LoadNewConst); 611 } 612 613 bool PPCInstrInfo::shouldReduceRegisterPressure( 614 MachineBasicBlock *MBB, RegisterClassInfo *RegClassInfo) const { 615 616 if (!EnableFMARegPressureReduction) 617 return false; 618 619 // Currently, we only enable register pressure reducing in machine combiner 620 // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector 621 // support. 622 // 623 // So we need following instructions to access a TOC entry: 624 // 625 // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0 626 // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0, 627 // killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool) 628 // 629 // FIXME: add more supported targets, like Small and Large code model, PPC32, 630 // AIX. 631 if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() && 632 Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium)) 633 return false; 634 635 const TargetRegisterInfo *TRI = &getRegisterInfo(); 636 MachineFunction *MF = MBB->getParent(); 637 MachineRegisterInfo *MRI = &MF->getRegInfo(); 638 639 auto GetMBBPressure = [&](MachineBasicBlock *MBB) -> std::vector<unsigned> { 640 RegionPressure Pressure; 641 RegPressureTracker RPTracker(Pressure); 642 643 // Initialize the register pressure tracker. 644 RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(), 645 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 646 647 for (MachineBasicBlock::iterator MII = MBB->instr_end(), 648 MIE = MBB->instr_begin(); 649 MII != MIE; --MII) { 650 MachineInstr &MI = *std::prev(MII); 651 if (MI.isDebugValue() || MI.isDebugLabel()) 652 continue; 653 RegisterOperands RegOpers; 654 RegOpers.collect(MI, *TRI, *MRI, false, false); 655 RPTracker.recedeSkipDebugValues(); 656 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 657 RPTracker.recede(RegOpers); 658 } 659 660 // Close the RPTracker to finalize live ins. 661 RPTracker.closeRegion(); 662 663 return RPTracker.getPressure().MaxSetPressure; 664 }; 665 666 // For now we only care about float and double type fma. 667 unsigned VSSRCLimit = TRI->getRegPressureSetLimit( 668 *MBB->getParent(), PPC::RegisterPressureSets::VSSRC); 669 670 // Only reduce register pressure when pressure is high. 671 return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] > 672 (float)VSSRCLimit * FMARPFactor; 673 } 674 675 bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const { 676 // I has only one memory operand which is load from constant pool. 677 if (!I->hasOneMemOperand()) 678 return false; 679 680 MachineMemOperand *Op = I->memoperands()[0]; 681 return Op->isLoad() && Op->getPseudoValue() && 682 Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool; 683 } 684 685 Register PPCInstrInfo::generateLoadForNewConst( 686 unsigned Idx, MachineInstr *MI, Type *Ty, 687 SmallVectorImpl<MachineInstr *> &InsInstrs) const { 688 // Now we only support PPC64, Medium code model and P9 with vector. 689 // We have immutable pattern to access const pool. See function 690 // shouldReduceRegisterPressure. 691 assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() && 692 Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) && 693 "Target not supported!\n"); 694 695 MachineFunction *MF = MI->getMF(); 696 MachineRegisterInfo *MRI = &MF->getRegInfo(); 697 698 // Generate ADDIStocHA8 699 Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 700 MachineInstrBuilder TOCOffset = 701 BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1) 702 .addReg(PPC::X2) 703 .addConstantPoolIndex(Idx); 704 705 assert((Ty->isFloatTy() || Ty->isDoubleTy()) && 706 "Only float and double are supported!"); 707 708 unsigned LoadOpcode; 709 // Should be float type or double type. 710 if (Ty->isFloatTy()) 711 LoadOpcode = PPC::DFLOADf32; 712 else 713 LoadOpcode = PPC::DFLOADf64; 714 715 const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg()); 716 Register VReg2 = MRI->createVirtualRegister(RC); 717 MachineMemOperand *MMO = MF->getMachineMemOperand( 718 MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad, 719 Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty)); 720 721 // Generate Load from constant pool. 722 MachineInstrBuilder Load = 723 BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2) 724 .addConstantPoolIndex(Idx) 725 .addReg(VReg1, getKillRegState(true)) 726 .addMemOperand(MMO); 727 728 Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO); 729 730 // Insert the toc load instructions into InsInstrs. 731 InsInstrs.insert(InsInstrs.begin(), Load); 732 InsInstrs.insert(InsInstrs.begin(), TOCOffset); 733 return VReg2; 734 } 735 736 // This function returns the const value in constant pool if the \p I is a load 737 // from constant pool. 738 const Constant * 739 PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const { 740 MachineFunction *MF = I->getMF(); 741 MachineRegisterInfo *MRI = &MF->getRegInfo(); 742 MachineConstantPool *MCP = MF->getConstantPool(); 743 assert(I->mayLoad() && "Should be a load instruction.\n"); 744 for (auto MO : I->uses()) { 745 if (!MO.isReg()) 746 continue; 747 Register Reg = MO.getReg(); 748 if (Reg == 0 || !Register::isVirtualRegister(Reg)) 749 continue; 750 // Find the toc address. 751 MachineInstr *DefMI = MRI->getVRegDef(Reg); 752 for (auto MO2 : DefMI->uses()) 753 if (MO2.isCPI()) 754 return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal; 755 } 756 return nullptr; 757 } 758 759 bool PPCInstrInfo::getMachineCombinerPatterns( 760 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, 761 bool DoRegPressureReduce) const { 762 // Using the machine combiner in this way is potentially expensive, so 763 // restrict to when aggressive optimizations are desired. 764 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 765 return false; 766 767 if (getFMAPatterns(Root, Patterns, DoRegPressureReduce)) 768 return true; 769 770 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns, 771 DoRegPressureReduce); 772 } 773 774 void PPCInstrInfo::genAlternativeCodeSequence( 775 MachineInstr &Root, MachineCombinerPattern Pattern, 776 SmallVectorImpl<MachineInstr *> &InsInstrs, 777 SmallVectorImpl<MachineInstr *> &DelInstrs, 778 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 779 switch (Pattern) { 780 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 781 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 782 case MachineCombinerPattern::REASSOC_XY_BCA: 783 case MachineCombinerPattern::REASSOC_XY_BAC: 784 reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg); 785 break; 786 default: 787 // Reassociate default patterns. 788 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, 789 DelInstrs, InstrIdxForVirtReg); 790 break; 791 } 792 } 793 794 void PPCInstrInfo::reassociateFMA( 795 MachineInstr &Root, MachineCombinerPattern Pattern, 796 SmallVectorImpl<MachineInstr *> &InsInstrs, 797 SmallVectorImpl<MachineInstr *> &DelInstrs, 798 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 799 MachineFunction *MF = Root.getMF(); 800 MachineRegisterInfo &MRI = MF->getRegInfo(); 801 const TargetRegisterInfo *TRI = &getRegisterInfo(); 802 MachineOperand &OpC = Root.getOperand(0); 803 Register RegC = OpC.getReg(); 804 const TargetRegisterClass *RC = MRI.getRegClass(RegC); 805 MRI.constrainRegClass(RegC, RC); 806 807 unsigned FmaOp = Root.getOpcode(); 808 int16_t Idx = getFMAOpIdxInfo(FmaOp); 809 assert(Idx >= 0 && "Root must be a FMA instruction"); 810 811 bool IsILPReassociate = 812 (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) || 813 (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 814 815 uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 816 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 817 818 MachineInstr *Prev = nullptr; 819 MachineInstr *Leaf = nullptr; 820 switch (Pattern) { 821 default: 822 llvm_unreachable("not recognized pattern!"); 823 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 824 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 825 Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg()); 826 Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg()); 827 break; 828 case MachineCombinerPattern::REASSOC_XY_BAC: { 829 Register MULReg = 830 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI); 831 Leaf = MRI.getVRegDef(MULReg); 832 break; 833 } 834 case MachineCombinerPattern::REASSOC_XY_BCA: { 835 Register MULReg = TRI->lookThruCopyLike( 836 Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI); 837 Leaf = MRI.getVRegDef(MULReg); 838 break; 839 } 840 } 841 842 uint16_t IntersectedFlags = 0; 843 if (IsILPReassociate) 844 IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags(); 845 else 846 IntersectedFlags = Root.getFlags() & Leaf->getFlags(); 847 848 auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg, 849 bool &KillFlag) { 850 Reg = Operand.getReg(); 851 MRI.constrainRegClass(Reg, RC); 852 KillFlag = Operand.isKill(); 853 }; 854 855 auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1, 856 Register &MulOp2, Register &AddOp, 857 bool &MulOp1KillFlag, bool &MulOp2KillFlag, 858 bool &AddOpKillFlag) { 859 GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag); 860 GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag); 861 GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag); 862 }; 863 864 Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11, 865 RegA21, RegB; 866 bool KillX = false, KillY = false, KillM11 = false, KillM12 = false, 867 KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false, 868 KillA11 = false, KillA21 = false, KillB = false; 869 870 GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB); 871 872 if (IsILPReassociate) 873 GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21); 874 875 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 876 GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11); 877 GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX); 878 } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) { 879 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 880 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 881 } else { 882 // Get FSUB instruction info. 883 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 884 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 885 } 886 887 // Create new virtual registers for the new results instead of 888 // recycling legacy ones because the MachineCombiner's computation of the 889 // critical path requires a new register definition rather than an existing 890 // one. 891 // For register pressure reassociation, we only need create one virtual 892 // register for the new fma. 893 Register NewVRA = MRI.createVirtualRegister(RC); 894 InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0)); 895 896 Register NewVRB = 0; 897 if (IsILPReassociate) { 898 NewVRB = MRI.createVirtualRegister(RC); 899 InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1)); 900 } 901 902 Register NewVRD = 0; 903 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 904 NewVRD = MRI.createVirtualRegister(RC); 905 InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2)); 906 } 907 908 auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd, 909 Register RegMul1, bool KillRegMul1, 910 Register RegMul2, bool KillRegMul2) { 911 MI->getOperand(AddOpIdx).setReg(RegAdd); 912 MI->getOperand(AddOpIdx).setIsKill(KillAdd); 913 MI->getOperand(FirstMulOpIdx).setReg(RegMul1); 914 MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1); 915 MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2); 916 MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2); 917 }; 918 919 MachineInstrBuilder NewARegPressure, NewCRegPressure; 920 switch (Pattern) { 921 default: 922 llvm_unreachable("not recognized pattern!"); 923 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: { 924 // Create new instructions for insertion. 925 MachineInstrBuilder MINewB = 926 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 927 .addReg(RegX, getKillRegState(KillX)) 928 .addReg(RegM21, getKillRegState(KillM21)) 929 .addReg(RegM22, getKillRegState(KillM22)); 930 MachineInstrBuilder MINewA = 931 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 932 .addReg(RegY, getKillRegState(KillY)) 933 .addReg(RegM31, getKillRegState(KillM31)) 934 .addReg(RegM32, getKillRegState(KillM32)); 935 // If AddOpIdx is not 1, adjust the order. 936 if (AddOpIdx != 1) { 937 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 938 AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32); 939 } 940 941 MachineInstrBuilder MINewC = 942 BuildMI(*MF, Root.getDebugLoc(), 943 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 944 .addReg(NewVRB, getKillRegState(true)) 945 .addReg(NewVRA, getKillRegState(true)); 946 947 // Update flags for newly created instructions. 948 setSpecialOperandAttr(*MINewA, IntersectedFlags); 949 setSpecialOperandAttr(*MINewB, IntersectedFlags); 950 setSpecialOperandAttr(*MINewC, IntersectedFlags); 951 952 // Record new instructions for insertion. 953 InsInstrs.push_back(MINewA); 954 InsInstrs.push_back(MINewB); 955 InsInstrs.push_back(MINewC); 956 break; 957 } 958 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: { 959 assert(NewVRD && "new FMA register not created!"); 960 // Create new instructions for insertion. 961 MachineInstrBuilder MINewA = 962 BuildMI(*MF, Leaf->getDebugLoc(), 963 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA) 964 .addReg(RegM11, getKillRegState(KillM11)) 965 .addReg(RegM12, getKillRegState(KillM12)); 966 MachineInstrBuilder MINewB = 967 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 968 .addReg(RegX, getKillRegState(KillX)) 969 .addReg(RegM21, getKillRegState(KillM21)) 970 .addReg(RegM22, getKillRegState(KillM22)); 971 MachineInstrBuilder MINewD = 972 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD) 973 .addReg(NewVRA, getKillRegState(true)) 974 .addReg(RegM31, getKillRegState(KillM31)) 975 .addReg(RegM32, getKillRegState(KillM32)); 976 // If AddOpIdx is not 1, adjust the order. 977 if (AddOpIdx != 1) { 978 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 979 AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32, 980 KillM32); 981 } 982 983 MachineInstrBuilder MINewC = 984 BuildMI(*MF, Root.getDebugLoc(), 985 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 986 .addReg(NewVRB, getKillRegState(true)) 987 .addReg(NewVRD, getKillRegState(true)); 988 989 // Update flags for newly created instructions. 990 setSpecialOperandAttr(*MINewA, IntersectedFlags); 991 setSpecialOperandAttr(*MINewB, IntersectedFlags); 992 setSpecialOperandAttr(*MINewD, IntersectedFlags); 993 setSpecialOperandAttr(*MINewC, IntersectedFlags); 994 995 // Record new instructions for insertion. 996 InsInstrs.push_back(MINewA); 997 InsInstrs.push_back(MINewB); 998 InsInstrs.push_back(MINewD); 999 InsInstrs.push_back(MINewC); 1000 break; 1001 } 1002 case MachineCombinerPattern::REASSOC_XY_BAC: 1003 case MachineCombinerPattern::REASSOC_XY_BCA: { 1004 Register VarReg; 1005 bool KillVarReg = false; 1006 if (Pattern == MachineCombinerPattern::REASSOC_XY_BCA) { 1007 VarReg = RegM31; 1008 KillVarReg = KillM31; 1009 } else { 1010 VarReg = RegM32; 1011 KillVarReg = KillM32; 1012 } 1013 // We don't want to get negative const from memory pool too early, as the 1014 // created entry will not be deleted even if it has no users. Since all 1015 // operand of Leaf and Root are virtual register, we use zero register 1016 // here as a placeholder. When the InsInstrs is selected in 1017 // MachineCombiner, we call finalizeInsInstrs to replace the zero register 1018 // with a virtual register which is a load from constant pool. 1019 NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 1020 .addReg(RegB, getKillRegState(RegB)) 1021 .addReg(RegY, getKillRegState(KillY)) 1022 .addReg(PPC::ZERO8); 1023 NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC) 1024 .addReg(NewVRA, getKillRegState(true)) 1025 .addReg(RegX, getKillRegState(KillX)) 1026 .addReg(VarReg, getKillRegState(KillVarReg)); 1027 // For now, we only support xsmaddadp/xsmaddasp, their add operand are 1028 // both at index 1, no need to adjust. 1029 // FIXME: when add more fma instructions support, like fma/fmas, adjust 1030 // the operand index here. 1031 break; 1032 } 1033 } 1034 1035 if (!IsILPReassociate) { 1036 setSpecialOperandAttr(*NewARegPressure, IntersectedFlags); 1037 setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags); 1038 1039 InsInstrs.push_back(NewARegPressure); 1040 InsInstrs.push_back(NewCRegPressure); 1041 } 1042 1043 assert(!InsInstrs.empty() && 1044 "Insertion instructions set should not be empty!"); 1045 1046 // Record old instructions for deletion. 1047 DelInstrs.push_back(Leaf); 1048 if (IsILPReassociate) 1049 DelInstrs.push_back(Prev); 1050 DelInstrs.push_back(&Root); 1051 } 1052 1053 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 1054 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 1055 Register &SrcReg, Register &DstReg, 1056 unsigned &SubIdx) const { 1057 switch (MI.getOpcode()) { 1058 default: return false; 1059 case PPC::EXTSW: 1060 case PPC::EXTSW_32: 1061 case PPC::EXTSW_32_64: 1062 SrcReg = MI.getOperand(1).getReg(); 1063 DstReg = MI.getOperand(0).getReg(); 1064 SubIdx = PPC::sub_32; 1065 return true; 1066 } 1067 } 1068 1069 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1070 int &FrameIndex) const { 1071 unsigned Opcode = MI.getOpcode(); 1072 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1073 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 1074 1075 if (End != std::find(OpcodesForSpill, End, Opcode)) { 1076 // Check for the operands added by addFrameReference (the immediate is the 1077 // offset which defaults to 0). 1078 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 1079 MI.getOperand(2).isFI()) { 1080 FrameIndex = MI.getOperand(2).getIndex(); 1081 return MI.getOperand(0).getReg(); 1082 } 1083 } 1084 return 0; 1085 } 1086 1087 // For opcodes with the ReMaterializable flag set, this function is called to 1088 // verify the instruction is really rematable. 1089 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 1090 AliasAnalysis *AA) const { 1091 switch (MI.getOpcode()) { 1092 default: 1093 // This function should only be called for opcodes with the ReMaterializable 1094 // flag set. 1095 llvm_unreachable("Unknown rematerializable operation!"); 1096 break; 1097 case PPC::LI: 1098 case PPC::LI8: 1099 case PPC::PLI: 1100 case PPC::PLI8: 1101 case PPC::LIS: 1102 case PPC::LIS8: 1103 case PPC::ADDIStocHA: 1104 case PPC::ADDIStocHA8: 1105 case PPC::ADDItocL: 1106 case PPC::LOAD_STACK_GUARD: 1107 case PPC::XXLXORz: 1108 case PPC::XXLXORspz: 1109 case PPC::XXLXORdpz: 1110 case PPC::XXLEQVOnes: 1111 case PPC::XXSPLTI32DX: 1112 case PPC::V_SET0B: 1113 case PPC::V_SET0H: 1114 case PPC::V_SET0: 1115 case PPC::V_SETALLONESB: 1116 case PPC::V_SETALLONESH: 1117 case PPC::V_SETALLONES: 1118 case PPC::CRSET: 1119 case PPC::CRUNSET: 1120 case PPC::XXSETACCZ: 1121 return true; 1122 } 1123 return false; 1124 } 1125 1126 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1127 int &FrameIndex) const { 1128 unsigned Opcode = MI.getOpcode(); 1129 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1130 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 1131 1132 if (End != std::find(OpcodesForSpill, End, Opcode)) { 1133 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 1134 MI.getOperand(2).isFI()) { 1135 FrameIndex = MI.getOperand(2).getIndex(); 1136 return MI.getOperand(0).getReg(); 1137 } 1138 } 1139 return 0; 1140 } 1141 1142 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 1143 unsigned OpIdx1, 1144 unsigned OpIdx2) const { 1145 MachineFunction &MF = *MI.getParent()->getParent(); 1146 1147 // Normal instructions can be commuted the obvious way. 1148 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) 1149 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 1150 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 1151 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 1152 // changing the relative order of the mask operands might change what happens 1153 // to the high-bits of the mask (and, thus, the result). 1154 1155 // Cannot commute if it has a non-zero rotate count. 1156 if (MI.getOperand(3).getImm() != 0) 1157 return nullptr; 1158 1159 // If we have a zero rotate count, we have: 1160 // M = mask(MB,ME) 1161 // Op0 = (Op1 & ~M) | (Op2 & M) 1162 // Change this to: 1163 // M = mask((ME+1)&31, (MB-1)&31) 1164 // Op0 = (Op2 & ~M) | (Op1 & M) 1165 1166 // Swap op1/op2 1167 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 1168 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); 1169 Register Reg0 = MI.getOperand(0).getReg(); 1170 Register Reg1 = MI.getOperand(1).getReg(); 1171 Register Reg2 = MI.getOperand(2).getReg(); 1172 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 1173 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 1174 bool Reg1IsKill = MI.getOperand(1).isKill(); 1175 bool Reg2IsKill = MI.getOperand(2).isKill(); 1176 bool ChangeReg0 = false; 1177 // If machine instrs are no longer in two-address forms, update 1178 // destination register as well. 1179 if (Reg0 == Reg1) { 1180 // Must be two address instruction! 1181 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 1182 "Expecting a two-address instruction!"); 1183 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 1184 Reg2IsKill = false; 1185 ChangeReg0 = true; 1186 } 1187 1188 // Masks. 1189 unsigned MB = MI.getOperand(4).getImm(); 1190 unsigned ME = MI.getOperand(5).getImm(); 1191 1192 // We can't commute a trivial mask (there is no way to represent an all-zero 1193 // mask). 1194 if (MB == 0 && ME == 31) 1195 return nullptr; 1196 1197 if (NewMI) { 1198 // Create a new instruction. 1199 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 1200 bool Reg0IsDead = MI.getOperand(0).isDead(); 1201 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 1202 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 1203 .addReg(Reg2, getKillRegState(Reg2IsKill)) 1204 .addReg(Reg1, getKillRegState(Reg1IsKill)) 1205 .addImm((ME + 1) & 31) 1206 .addImm((MB - 1) & 31); 1207 } 1208 1209 if (ChangeReg0) { 1210 MI.getOperand(0).setReg(Reg2); 1211 MI.getOperand(0).setSubReg(SubReg2); 1212 } 1213 MI.getOperand(2).setReg(Reg1); 1214 MI.getOperand(1).setReg(Reg2); 1215 MI.getOperand(2).setSubReg(SubReg1); 1216 MI.getOperand(1).setSubReg(SubReg2); 1217 MI.getOperand(2).setIsKill(Reg1IsKill); 1218 MI.getOperand(1).setIsKill(Reg2IsKill); 1219 1220 // Swap the mask around. 1221 MI.getOperand(4).setImm((ME + 1) & 31); 1222 MI.getOperand(5).setImm((MB - 1) & 31); 1223 return &MI; 1224 } 1225 1226 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 1227 unsigned &SrcOpIdx1, 1228 unsigned &SrcOpIdx2) const { 1229 // For VSX A-Type FMA instructions, it is the first two operands that can be 1230 // commuted, however, because the non-encoded tied input operand is listed 1231 // first, the operands to swap are actually the second and third. 1232 1233 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 1234 if (AltOpc == -1) 1235 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 1236 1237 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 1238 // and SrcOpIdx2. 1239 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 1240 } 1241 1242 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 1243 MachineBasicBlock::iterator MI) const { 1244 // This function is used for scheduling, and the nop wanted here is the type 1245 // that terminates dispatch groups on the POWER cores. 1246 unsigned Directive = Subtarget.getCPUDirective(); 1247 unsigned Opcode; 1248 switch (Directive) { 1249 default: Opcode = PPC::NOP; break; 1250 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 1251 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 1252 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 1253 // FIXME: Update when POWER9 scheduling model is ready. 1254 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 1255 } 1256 1257 DebugLoc DL; 1258 BuildMI(MBB, MI, DL, get(Opcode)); 1259 } 1260 1261 /// Return the noop instruction to use for a noop. 1262 MCInst PPCInstrInfo::getNop() const { 1263 MCInst Nop; 1264 Nop.setOpcode(PPC::NOP); 1265 return Nop; 1266 } 1267 1268 // Branch analysis. 1269 // Note: If the condition register is set to CTR or CTR8 then this is a 1270 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 1271 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 1272 MachineBasicBlock *&TBB, 1273 MachineBasicBlock *&FBB, 1274 SmallVectorImpl<MachineOperand> &Cond, 1275 bool AllowModify) const { 1276 bool isPPC64 = Subtarget.isPPC64(); 1277 1278 // If the block has no terminators, it just falls into the block after it. 1279 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1280 if (I == MBB.end()) 1281 return false; 1282 1283 if (!isUnpredicatedTerminator(*I)) 1284 return false; 1285 1286 if (AllowModify) { 1287 // If the BB ends with an unconditional branch to the fallthrough BB, 1288 // we eliminate the branch instruction. 1289 if (I->getOpcode() == PPC::B && 1290 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 1291 I->eraseFromParent(); 1292 1293 // We update iterator after deleting the last branch. 1294 I = MBB.getLastNonDebugInstr(); 1295 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 1296 return false; 1297 } 1298 } 1299 1300 // Get the last instruction in the block. 1301 MachineInstr &LastInst = *I; 1302 1303 // If there is only one terminator instruction, process it. 1304 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 1305 if (LastInst.getOpcode() == PPC::B) { 1306 if (!LastInst.getOperand(0).isMBB()) 1307 return true; 1308 TBB = LastInst.getOperand(0).getMBB(); 1309 return false; 1310 } else if (LastInst.getOpcode() == PPC::BCC) { 1311 if (!LastInst.getOperand(2).isMBB()) 1312 return true; 1313 // Block ends with fall-through condbranch. 1314 TBB = LastInst.getOperand(2).getMBB(); 1315 Cond.push_back(LastInst.getOperand(0)); 1316 Cond.push_back(LastInst.getOperand(1)); 1317 return false; 1318 } else if (LastInst.getOpcode() == PPC::BC) { 1319 if (!LastInst.getOperand(1).isMBB()) 1320 return true; 1321 // Block ends with fall-through condbranch. 1322 TBB = LastInst.getOperand(1).getMBB(); 1323 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 1324 Cond.push_back(LastInst.getOperand(0)); 1325 return false; 1326 } else if (LastInst.getOpcode() == PPC::BCn) { 1327 if (!LastInst.getOperand(1).isMBB()) 1328 return true; 1329 // Block ends with fall-through condbranch. 1330 TBB = LastInst.getOperand(1).getMBB(); 1331 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 1332 Cond.push_back(LastInst.getOperand(0)); 1333 return false; 1334 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 1335 LastInst.getOpcode() == PPC::BDNZ) { 1336 if (!LastInst.getOperand(0).isMBB()) 1337 return true; 1338 if (DisableCTRLoopAnal) 1339 return true; 1340 TBB = LastInst.getOperand(0).getMBB(); 1341 Cond.push_back(MachineOperand::CreateImm(1)); 1342 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1343 true)); 1344 return false; 1345 } else if (LastInst.getOpcode() == PPC::BDZ8 || 1346 LastInst.getOpcode() == PPC::BDZ) { 1347 if (!LastInst.getOperand(0).isMBB()) 1348 return true; 1349 if (DisableCTRLoopAnal) 1350 return true; 1351 TBB = LastInst.getOperand(0).getMBB(); 1352 Cond.push_back(MachineOperand::CreateImm(0)); 1353 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1354 true)); 1355 return false; 1356 } 1357 1358 // Otherwise, don't know what this is. 1359 return true; 1360 } 1361 1362 // Get the instruction before it if it's a terminator. 1363 MachineInstr &SecondLastInst = *I; 1364 1365 // If there are three terminators, we don't know what sort of block this is. 1366 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 1367 return true; 1368 1369 // If the block ends with PPC::B and PPC:BCC, handle it. 1370 if (SecondLastInst.getOpcode() == PPC::BCC && 1371 LastInst.getOpcode() == PPC::B) { 1372 if (!SecondLastInst.getOperand(2).isMBB() || 1373 !LastInst.getOperand(0).isMBB()) 1374 return true; 1375 TBB = SecondLastInst.getOperand(2).getMBB(); 1376 Cond.push_back(SecondLastInst.getOperand(0)); 1377 Cond.push_back(SecondLastInst.getOperand(1)); 1378 FBB = LastInst.getOperand(0).getMBB(); 1379 return false; 1380 } else if (SecondLastInst.getOpcode() == PPC::BC && 1381 LastInst.getOpcode() == PPC::B) { 1382 if (!SecondLastInst.getOperand(1).isMBB() || 1383 !LastInst.getOperand(0).isMBB()) 1384 return true; 1385 TBB = SecondLastInst.getOperand(1).getMBB(); 1386 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 1387 Cond.push_back(SecondLastInst.getOperand(0)); 1388 FBB = LastInst.getOperand(0).getMBB(); 1389 return false; 1390 } else if (SecondLastInst.getOpcode() == PPC::BCn && 1391 LastInst.getOpcode() == PPC::B) { 1392 if (!SecondLastInst.getOperand(1).isMBB() || 1393 !LastInst.getOperand(0).isMBB()) 1394 return true; 1395 TBB = SecondLastInst.getOperand(1).getMBB(); 1396 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 1397 Cond.push_back(SecondLastInst.getOperand(0)); 1398 FBB = LastInst.getOperand(0).getMBB(); 1399 return false; 1400 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 1401 SecondLastInst.getOpcode() == PPC::BDNZ) && 1402 LastInst.getOpcode() == PPC::B) { 1403 if (!SecondLastInst.getOperand(0).isMBB() || 1404 !LastInst.getOperand(0).isMBB()) 1405 return true; 1406 if (DisableCTRLoopAnal) 1407 return true; 1408 TBB = SecondLastInst.getOperand(0).getMBB(); 1409 Cond.push_back(MachineOperand::CreateImm(1)); 1410 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1411 true)); 1412 FBB = LastInst.getOperand(0).getMBB(); 1413 return false; 1414 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 1415 SecondLastInst.getOpcode() == PPC::BDZ) && 1416 LastInst.getOpcode() == PPC::B) { 1417 if (!SecondLastInst.getOperand(0).isMBB() || 1418 !LastInst.getOperand(0).isMBB()) 1419 return true; 1420 if (DisableCTRLoopAnal) 1421 return true; 1422 TBB = SecondLastInst.getOperand(0).getMBB(); 1423 Cond.push_back(MachineOperand::CreateImm(0)); 1424 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1425 true)); 1426 FBB = LastInst.getOperand(0).getMBB(); 1427 return false; 1428 } 1429 1430 // If the block ends with two PPC:Bs, handle it. The second one is not 1431 // executed, so remove it. 1432 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 1433 if (!SecondLastInst.getOperand(0).isMBB()) 1434 return true; 1435 TBB = SecondLastInst.getOperand(0).getMBB(); 1436 I = LastInst; 1437 if (AllowModify) 1438 I->eraseFromParent(); 1439 return false; 1440 } 1441 1442 // Otherwise, can't handle this. 1443 return true; 1444 } 1445 1446 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 1447 int *BytesRemoved) const { 1448 assert(!BytesRemoved && "code size not handled"); 1449 1450 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1451 if (I == MBB.end()) 1452 return 0; 1453 1454 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 1455 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1456 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1457 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1458 return 0; 1459 1460 // Remove the branch. 1461 I->eraseFromParent(); 1462 1463 I = MBB.end(); 1464 1465 if (I == MBB.begin()) return 1; 1466 --I; 1467 if (I->getOpcode() != PPC::BCC && 1468 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1469 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1470 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1471 return 1; 1472 1473 // Remove the branch. 1474 I->eraseFromParent(); 1475 return 2; 1476 } 1477 1478 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 1479 MachineBasicBlock *TBB, 1480 MachineBasicBlock *FBB, 1481 ArrayRef<MachineOperand> Cond, 1482 const DebugLoc &DL, 1483 int *BytesAdded) const { 1484 // Shouldn't be a fall through. 1485 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 1486 assert((Cond.size() == 2 || Cond.size() == 0) && 1487 "PPC branch conditions have two components!"); 1488 assert(!BytesAdded && "code size not handled"); 1489 1490 bool isPPC64 = Subtarget.isPPC64(); 1491 1492 // One-way branch. 1493 if (!FBB) { 1494 if (Cond.empty()) // Unconditional branch 1495 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 1496 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1497 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1498 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1499 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1500 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1501 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1502 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1503 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1504 else // Conditional branch 1505 BuildMI(&MBB, DL, get(PPC::BCC)) 1506 .addImm(Cond[0].getImm()) 1507 .add(Cond[1]) 1508 .addMBB(TBB); 1509 return 1; 1510 } 1511 1512 // Two-way Conditional Branch. 1513 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1514 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1515 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1516 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1517 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1518 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1519 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1520 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1521 else 1522 BuildMI(&MBB, DL, get(PPC::BCC)) 1523 .addImm(Cond[0].getImm()) 1524 .add(Cond[1]) 1525 .addMBB(TBB); 1526 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 1527 return 2; 1528 } 1529 1530 // Select analysis. 1531 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 1532 ArrayRef<MachineOperand> Cond, 1533 Register DstReg, Register TrueReg, 1534 Register FalseReg, int &CondCycles, 1535 int &TrueCycles, int &FalseCycles) const { 1536 if (Cond.size() != 2) 1537 return false; 1538 1539 // If this is really a bdnz-like condition, then it cannot be turned into a 1540 // select. 1541 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1542 return false; 1543 1544 // Check register classes. 1545 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1546 const TargetRegisterClass *RC = 1547 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1548 if (!RC) 1549 return false; 1550 1551 // isel is for regular integer GPRs only. 1552 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 1553 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 1554 !PPC::G8RCRegClass.hasSubClassEq(RC) && 1555 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 1556 return false; 1557 1558 // FIXME: These numbers are for the A2, how well they work for other cores is 1559 // an open question. On the A2, the isel instruction has a 2-cycle latency 1560 // but single-cycle throughput. These numbers are used in combination with 1561 // the MispredictPenalty setting from the active SchedMachineModel. 1562 CondCycles = 1; 1563 TrueCycles = 1; 1564 FalseCycles = 1; 1565 1566 return true; 1567 } 1568 1569 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 1570 MachineBasicBlock::iterator MI, 1571 const DebugLoc &dl, Register DestReg, 1572 ArrayRef<MachineOperand> Cond, Register TrueReg, 1573 Register FalseReg) const { 1574 assert(Cond.size() == 2 && 1575 "PPC branch conditions have two components!"); 1576 1577 // Get the register classes. 1578 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1579 const TargetRegisterClass *RC = 1580 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1581 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 1582 1583 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 1584 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 1585 assert((Is64Bit || 1586 PPC::GPRCRegClass.hasSubClassEq(RC) || 1587 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 1588 "isel is for regular integer GPRs only"); 1589 1590 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 1591 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 1592 1593 unsigned SubIdx = 0; 1594 bool SwapOps = false; 1595 switch (SelectPred) { 1596 case PPC::PRED_EQ: 1597 case PPC::PRED_EQ_MINUS: 1598 case PPC::PRED_EQ_PLUS: 1599 SubIdx = PPC::sub_eq; SwapOps = false; break; 1600 case PPC::PRED_NE: 1601 case PPC::PRED_NE_MINUS: 1602 case PPC::PRED_NE_PLUS: 1603 SubIdx = PPC::sub_eq; SwapOps = true; break; 1604 case PPC::PRED_LT: 1605 case PPC::PRED_LT_MINUS: 1606 case PPC::PRED_LT_PLUS: 1607 SubIdx = PPC::sub_lt; SwapOps = false; break; 1608 case PPC::PRED_GE: 1609 case PPC::PRED_GE_MINUS: 1610 case PPC::PRED_GE_PLUS: 1611 SubIdx = PPC::sub_lt; SwapOps = true; break; 1612 case PPC::PRED_GT: 1613 case PPC::PRED_GT_MINUS: 1614 case PPC::PRED_GT_PLUS: 1615 SubIdx = PPC::sub_gt; SwapOps = false; break; 1616 case PPC::PRED_LE: 1617 case PPC::PRED_LE_MINUS: 1618 case PPC::PRED_LE_PLUS: 1619 SubIdx = PPC::sub_gt; SwapOps = true; break; 1620 case PPC::PRED_UN: 1621 case PPC::PRED_UN_MINUS: 1622 case PPC::PRED_UN_PLUS: 1623 SubIdx = PPC::sub_un; SwapOps = false; break; 1624 case PPC::PRED_NU: 1625 case PPC::PRED_NU_MINUS: 1626 case PPC::PRED_NU_PLUS: 1627 SubIdx = PPC::sub_un; SwapOps = true; break; 1628 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 1629 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 1630 } 1631 1632 Register FirstReg = SwapOps ? FalseReg : TrueReg, 1633 SecondReg = SwapOps ? TrueReg : FalseReg; 1634 1635 // The first input register of isel cannot be r0. If it is a member 1636 // of a register class that can be r0, then copy it first (the 1637 // register allocator should eliminate the copy). 1638 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 1639 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 1640 const TargetRegisterClass *FirstRC = 1641 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 1642 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 1643 Register OldFirstReg = FirstReg; 1644 FirstReg = MRI.createVirtualRegister(FirstRC); 1645 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 1646 .addReg(OldFirstReg); 1647 } 1648 1649 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 1650 .addReg(FirstReg).addReg(SecondReg) 1651 .addReg(Cond[1].getReg(), 0, SubIdx); 1652 } 1653 1654 static unsigned getCRBitValue(unsigned CRBit) { 1655 unsigned Ret = 4; 1656 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 1657 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 1658 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 1659 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 1660 Ret = 3; 1661 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 1662 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 1663 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 1664 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 1665 Ret = 2; 1666 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 1667 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 1668 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 1669 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 1670 Ret = 1; 1671 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 1672 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 1673 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 1674 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 1675 Ret = 0; 1676 1677 assert(Ret != 4 && "Invalid CR bit register"); 1678 return Ret; 1679 } 1680 1681 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 1682 MachineBasicBlock::iterator I, 1683 const DebugLoc &DL, MCRegister DestReg, 1684 MCRegister SrcReg, bool KillSrc) const { 1685 // We can end up with self copies and similar things as a result of VSX copy 1686 // legalization. Promote them here. 1687 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1688 if (PPC::F8RCRegClass.contains(DestReg) && 1689 PPC::VSRCRegClass.contains(SrcReg)) { 1690 MCRegister SuperReg = 1691 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 1692 1693 if (VSXSelfCopyCrash && SrcReg == SuperReg) 1694 llvm_unreachable("nop VSX copy"); 1695 1696 DestReg = SuperReg; 1697 } else if (PPC::F8RCRegClass.contains(SrcReg) && 1698 PPC::VSRCRegClass.contains(DestReg)) { 1699 MCRegister SuperReg = 1700 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 1701 1702 if (VSXSelfCopyCrash && DestReg == SuperReg) 1703 llvm_unreachable("nop VSX copy"); 1704 1705 SrcReg = SuperReg; 1706 } 1707 1708 // Different class register copy 1709 if (PPC::CRBITRCRegClass.contains(SrcReg) && 1710 PPC::GPRCRegClass.contains(DestReg)) { 1711 MCRegister CRReg = getCRFromCRBit(SrcReg); 1712 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 1713 getKillRegState(KillSrc); 1714 // Rotate the CR bit in the CR fields to be the least significant bit and 1715 // then mask with 0x1 (MB = ME = 31). 1716 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 1717 .addReg(DestReg, RegState::Kill) 1718 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 1719 .addImm(31) 1720 .addImm(31); 1721 return; 1722 } else if (PPC::CRRCRegClass.contains(SrcReg) && 1723 (PPC::G8RCRegClass.contains(DestReg) || 1724 PPC::GPRCRegClass.contains(DestReg))) { 1725 bool Is64Bit = PPC::G8RCRegClass.contains(DestReg); 1726 unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF; 1727 unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM; 1728 unsigned CRNum = TRI->getEncodingValue(SrcReg); 1729 BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg); 1730 getKillRegState(KillSrc); 1731 if (CRNum == 7) 1732 return; 1733 // Shift the CR bits to make the CR field in the lowest 4 bits of GRC. 1734 BuildMI(MBB, I, DL, get(ShCode), DestReg) 1735 .addReg(DestReg, RegState::Kill) 1736 .addImm(CRNum * 4 + 4) 1737 .addImm(28) 1738 .addImm(31); 1739 return; 1740 } else if (PPC::G8RCRegClass.contains(SrcReg) && 1741 PPC::VSFRCRegClass.contains(DestReg)) { 1742 assert(Subtarget.hasDirectMove() && 1743 "Subtarget doesn't support directmove, don't know how to copy."); 1744 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 1745 NumGPRtoVSRSpill++; 1746 getKillRegState(KillSrc); 1747 return; 1748 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 1749 PPC::G8RCRegClass.contains(DestReg)) { 1750 assert(Subtarget.hasDirectMove() && 1751 "Subtarget doesn't support directmove, don't know how to copy."); 1752 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 1753 getKillRegState(KillSrc); 1754 return; 1755 } else if (PPC::SPERCRegClass.contains(SrcReg) && 1756 PPC::GPRCRegClass.contains(DestReg)) { 1757 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 1758 getKillRegState(KillSrc); 1759 return; 1760 } else if (PPC::GPRCRegClass.contains(SrcReg) && 1761 PPC::SPERCRegClass.contains(DestReg)) { 1762 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 1763 getKillRegState(KillSrc); 1764 return; 1765 } 1766 1767 unsigned Opc; 1768 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 1769 Opc = PPC::OR; 1770 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 1771 Opc = PPC::OR8; 1772 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 1773 Opc = PPC::FMR; 1774 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 1775 Opc = PPC::MCRF; 1776 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 1777 Opc = PPC::VOR; 1778 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 1779 // There are two different ways this can be done: 1780 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 1781 // issue in VSU pipeline 0. 1782 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 1783 // can go to either pipeline. 1784 // We'll always use xxlor here, because in practically all cases where 1785 // copies are generated, they are close enough to some use that the 1786 // lower-latency form is preferable. 1787 Opc = PPC::XXLOR; 1788 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1789 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1790 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1791 else if (Subtarget.pairedVectorMemops() && 1792 PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) { 1793 if (SrcReg > PPC::VSRp15) 1794 SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2; 1795 else 1796 SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2; 1797 if (DestReg > PPC::VSRp15) 1798 DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2; 1799 else 1800 DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2; 1801 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg). 1802 addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1803 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1). 1804 addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc)); 1805 return; 1806 } 1807 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1808 Opc = PPC::CROR; 1809 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1810 Opc = PPC::EVOR; 1811 else if ((PPC::ACCRCRegClass.contains(DestReg) || 1812 PPC::UACCRCRegClass.contains(DestReg)) && 1813 (PPC::ACCRCRegClass.contains(SrcReg) || 1814 PPC::UACCRCRegClass.contains(SrcReg))) { 1815 // If primed, de-prime the source register, copy the individual registers 1816 // and prime the destination if needed. The vector subregisters are 1817 // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the 1818 // source is primed, we need to re-prime it after the copy as well. 1819 PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg); 1820 bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg); 1821 bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg); 1822 MCRegister VSLSrcReg = 1823 PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; 1824 MCRegister VSLDestReg = 1825 PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; 1826 if (SrcPrimed) 1827 BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg); 1828 for (unsigned Idx = 0; Idx < 4; Idx++) 1829 BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx) 1830 .addReg(VSLSrcReg + Idx) 1831 .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc)); 1832 if (DestPrimed) 1833 BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg); 1834 if (SrcPrimed && !KillSrc) 1835 BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg); 1836 return; 1837 } else if (PPC::G8pRCRegClass.contains(DestReg) && 1838 PPC::G8pRCRegClass.contains(SrcReg)) { 1839 // TODO: Handle G8RC to G8pRC (and vice versa) copy. 1840 unsigned DestRegIdx = DestReg - PPC::G8p0; 1841 MCRegister DestRegSub0 = PPC::X0 + 2 * DestRegIdx; 1842 MCRegister DestRegSub1 = PPC::X0 + 2 * DestRegIdx + 1; 1843 unsigned SrcRegIdx = SrcReg - PPC::G8p0; 1844 MCRegister SrcRegSub0 = PPC::X0 + 2 * SrcRegIdx; 1845 MCRegister SrcRegSub1 = PPC::X0 + 2 * SrcRegIdx + 1; 1846 BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub0) 1847 .addReg(SrcRegSub0) 1848 .addReg(SrcRegSub0, getKillRegState(KillSrc)); 1849 BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub1) 1850 .addReg(SrcRegSub1) 1851 .addReg(SrcRegSub1, getKillRegState(KillSrc)); 1852 return; 1853 } else 1854 llvm_unreachable("Impossible reg-to-reg copy"); 1855 1856 const MCInstrDesc &MCID = get(Opc); 1857 if (MCID.getNumOperands() == 3) 1858 BuildMI(MBB, I, DL, MCID, DestReg) 1859 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1860 else 1861 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1862 } 1863 1864 unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const { 1865 int OpcodeIndex = 0; 1866 1867 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1868 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1869 OpcodeIndex = SOK_Int4Spill; 1870 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1871 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1872 OpcodeIndex = SOK_Int8Spill; 1873 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1874 OpcodeIndex = SOK_Float8Spill; 1875 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1876 OpcodeIndex = SOK_Float4Spill; 1877 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1878 OpcodeIndex = SOK_SPESpill; 1879 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1880 OpcodeIndex = SOK_CRSpill; 1881 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1882 OpcodeIndex = SOK_CRBitSpill; 1883 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1884 OpcodeIndex = SOK_VRVectorSpill; 1885 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1886 OpcodeIndex = SOK_VSXVectorSpill; 1887 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1888 OpcodeIndex = SOK_VectorFloat8Spill; 1889 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1890 OpcodeIndex = SOK_VectorFloat4Spill; 1891 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1892 OpcodeIndex = SOK_SpillToVSR; 1893 } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) { 1894 assert(Subtarget.pairedVectorMemops() && 1895 "Register unexpected when paired memops are disabled."); 1896 OpcodeIndex = SOK_AccumulatorSpill; 1897 } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) { 1898 assert(Subtarget.pairedVectorMemops() && 1899 "Register unexpected when paired memops are disabled."); 1900 OpcodeIndex = SOK_UAccumulatorSpill; 1901 } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) { 1902 assert(Subtarget.pairedVectorMemops() && 1903 "Register unexpected when paired memops are disabled."); 1904 OpcodeIndex = SOK_PairedVecSpill; 1905 } else if (PPC::G8pRCRegClass.hasSubClassEq(RC)) { 1906 OpcodeIndex = SOK_PairedG8Spill; 1907 } else { 1908 llvm_unreachable("Unknown regclass!"); 1909 } 1910 return OpcodeIndex; 1911 } 1912 1913 unsigned 1914 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const { 1915 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1916 return OpcodesForSpill[getSpillIndex(RC)]; 1917 } 1918 1919 unsigned 1920 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const { 1921 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1922 return OpcodesForSpill[getSpillIndex(RC)]; 1923 } 1924 1925 void PPCInstrInfo::StoreRegToStackSlot( 1926 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1927 const TargetRegisterClass *RC, 1928 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1929 unsigned Opcode = getStoreOpcodeForSpill(RC); 1930 DebugLoc DL; 1931 1932 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1933 FuncInfo->setHasSpills(); 1934 1935 NewMIs.push_back(addFrameReference( 1936 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1937 FrameIdx)); 1938 1939 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1940 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1941 FuncInfo->setSpillsCR(); 1942 1943 if (isXFormMemOp(Opcode)) 1944 FuncInfo->setHasNonRISpills(); 1945 } 1946 1947 void PPCInstrInfo::storeRegToStackSlotNoUpd( 1948 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, 1949 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 1950 const TargetRegisterInfo *TRI) const { 1951 MachineFunction &MF = *MBB.getParent(); 1952 SmallVector<MachineInstr *, 4> NewMIs; 1953 1954 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1955 1956 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1957 MBB.insert(MI, NewMIs[i]); 1958 1959 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1960 MachineMemOperand *MMO = MF.getMachineMemOperand( 1961 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1962 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1963 MFI.getObjectAlign(FrameIdx)); 1964 NewMIs.back()->addMemOperand(MF, MMO); 1965 } 1966 1967 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1968 MachineBasicBlock::iterator MI, 1969 Register SrcReg, bool isKill, 1970 int FrameIdx, 1971 const TargetRegisterClass *RC, 1972 const TargetRegisterInfo *TRI) const { 1973 // We need to avoid a situation in which the value from a VRRC register is 1974 // spilled using an Altivec instruction and reloaded into a VSRC register 1975 // using a VSX instruction. The issue with this is that the VSX 1976 // load/store instructions swap the doublewords in the vector and the Altivec 1977 // ones don't. The register classes on the spill/reload may be different if 1978 // the register is defined using an Altivec instruction and is then used by a 1979 // VSX instruction. 1980 RC = updatedRC(RC); 1981 storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI); 1982 } 1983 1984 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1985 unsigned DestReg, int FrameIdx, 1986 const TargetRegisterClass *RC, 1987 SmallVectorImpl<MachineInstr *> &NewMIs) 1988 const { 1989 unsigned Opcode = getLoadOpcodeForSpill(RC); 1990 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1991 FrameIdx)); 1992 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1993 1994 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1995 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1996 FuncInfo->setSpillsCR(); 1997 1998 if (isXFormMemOp(Opcode)) 1999 FuncInfo->setHasNonRISpills(); 2000 } 2001 2002 void PPCInstrInfo::loadRegFromStackSlotNoUpd( 2003 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, 2004 int FrameIdx, const TargetRegisterClass *RC, 2005 const TargetRegisterInfo *TRI) const { 2006 MachineFunction &MF = *MBB.getParent(); 2007 SmallVector<MachineInstr*, 4> NewMIs; 2008 DebugLoc DL; 2009 if (MI != MBB.end()) DL = MI->getDebugLoc(); 2010 2011 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2012 FuncInfo->setHasSpills(); 2013 2014 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 2015 2016 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 2017 MBB.insert(MI, NewMIs[i]); 2018 2019 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2020 MachineMemOperand *MMO = MF.getMachineMemOperand( 2021 MachinePointerInfo::getFixedStack(MF, FrameIdx), 2022 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 2023 MFI.getObjectAlign(FrameIdx)); 2024 NewMIs.back()->addMemOperand(MF, MMO); 2025 } 2026 2027 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 2028 MachineBasicBlock::iterator MI, 2029 Register DestReg, int FrameIdx, 2030 const TargetRegisterClass *RC, 2031 const TargetRegisterInfo *TRI) const { 2032 // We need to avoid a situation in which the value from a VRRC register is 2033 // spilled using an Altivec instruction and reloaded into a VSRC register 2034 // using a VSX instruction. The issue with this is that the VSX 2035 // load/store instructions swap the doublewords in the vector and the Altivec 2036 // ones don't. The register classes on the spill/reload may be different if 2037 // the register is defined using an Altivec instruction and is then used by a 2038 // VSX instruction. 2039 RC = updatedRC(RC); 2040 2041 loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI); 2042 } 2043 2044 bool PPCInstrInfo:: 2045 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 2046 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 2047 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 2048 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 2049 else 2050 // Leave the CR# the same, but invert the condition. 2051 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 2052 return false; 2053 } 2054 2055 // For some instructions, it is legal to fold ZERO into the RA register field. 2056 // This function performs that fold by replacing the operand with PPC::ZERO, 2057 // it does not consider whether the load immediate zero is no longer in use. 2058 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 2059 Register Reg) const { 2060 // A zero immediate should always be loaded with a single li. 2061 unsigned DefOpc = DefMI.getOpcode(); 2062 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 2063 return false; 2064 if (!DefMI.getOperand(1).isImm()) 2065 return false; 2066 if (DefMI.getOperand(1).getImm() != 0) 2067 return false; 2068 2069 // Note that we cannot here invert the arguments of an isel in order to fold 2070 // a ZERO into what is presented as the second argument. All we have here 2071 // is the condition bit, and that might come from a CR-logical bit operation. 2072 2073 const MCInstrDesc &UseMCID = UseMI.getDesc(); 2074 2075 // Only fold into real machine instructions. 2076 if (UseMCID.isPseudo()) 2077 return false; 2078 2079 // We need to find which of the User's operands is to be folded, that will be 2080 // the operand that matches the given register ID. 2081 unsigned UseIdx; 2082 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 2083 if (UseMI.getOperand(UseIdx).isReg() && 2084 UseMI.getOperand(UseIdx).getReg() == Reg) 2085 break; 2086 2087 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 2088 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 2089 2090 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 2091 2092 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 2093 // register (which might also be specified as a pointer class kind). 2094 if (UseInfo->isLookupPtrRegClass()) { 2095 if (UseInfo->RegClass /* Kind */ != 1) 2096 return false; 2097 } else { 2098 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 2099 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 2100 return false; 2101 } 2102 2103 // Make sure this is not tied to an output register (or otherwise 2104 // constrained). This is true for ST?UX registers, for example, which 2105 // are tied to their output registers. 2106 if (UseInfo->Constraints != 0) 2107 return false; 2108 2109 MCRegister ZeroReg; 2110 if (UseInfo->isLookupPtrRegClass()) { 2111 bool isPPC64 = Subtarget.isPPC64(); 2112 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 2113 } else { 2114 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 2115 PPC::ZERO8 : PPC::ZERO; 2116 } 2117 2118 UseMI.getOperand(UseIdx).setReg(ZeroReg); 2119 return true; 2120 } 2121 2122 // Folds zero into instructions which have a load immediate zero as an operand 2123 // but also recognize zero as immediate zero. If the definition of the load 2124 // has no more users it is deleted. 2125 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 2126 Register Reg, MachineRegisterInfo *MRI) const { 2127 bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg); 2128 if (MRI->use_nodbg_empty(Reg)) 2129 DefMI.eraseFromParent(); 2130 return Changed; 2131 } 2132 2133 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 2134 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 2135 I != IE; ++I) 2136 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 2137 return true; 2138 return false; 2139 } 2140 2141 // We should make sure that, if we're going to predicate both sides of a 2142 // condition (a diamond), that both sides don't define the counter register. We 2143 // can predicate counter-decrement-based branches, but while that predicates 2144 // the branching, it does not predicate the counter decrement. If we tried to 2145 // merge the triangle into one predicated block, we'd decrement the counter 2146 // twice. 2147 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 2148 unsigned NumT, unsigned ExtraT, 2149 MachineBasicBlock &FMBB, 2150 unsigned NumF, unsigned ExtraF, 2151 BranchProbability Probability) const { 2152 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 2153 } 2154 2155 2156 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 2157 // The predicated branches are identified by their type, not really by the 2158 // explicit presence of a predicate. Furthermore, some of them can be 2159 // predicated more than once. Because if conversion won't try to predicate 2160 // any instruction which already claims to be predicated (by returning true 2161 // here), always return false. In doing so, we let isPredicable() be the 2162 // final word on whether not the instruction can be (further) predicated. 2163 2164 return false; 2165 } 2166 2167 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 2168 const MachineBasicBlock *MBB, 2169 const MachineFunction &MF) const { 2170 // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion 2171 // across them, since some FP operations may change content of FPSCR. 2172 // TODO: Model FPSCR in PPC instruction definitions and remove the workaround 2173 if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF) 2174 return true; 2175 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); 2176 } 2177 2178 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 2179 ArrayRef<MachineOperand> Pred) const { 2180 unsigned OpC = MI.getOpcode(); 2181 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 2182 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 2183 bool isPPC64 = Subtarget.isPPC64(); 2184 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 2185 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 2186 // Need add Def and Use for CTR implicit operand. 2187 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2188 .addReg(Pred[1].getReg(), RegState::Implicit) 2189 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 2190 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2191 MI.setDesc(get(PPC::BCLR)); 2192 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2193 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2194 MI.setDesc(get(PPC::BCLRn)); 2195 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2196 } else { 2197 MI.setDesc(get(PPC::BCCLR)); 2198 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2199 .addImm(Pred[0].getImm()) 2200 .add(Pred[1]); 2201 } 2202 2203 return true; 2204 } else if (OpC == PPC::B) { 2205 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 2206 bool isPPC64 = Subtarget.isPPC64(); 2207 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 2208 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 2209 // Need add Def and Use for CTR implicit operand. 2210 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2211 .addReg(Pred[1].getReg(), RegState::Implicit) 2212 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 2213 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2214 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2215 MI.RemoveOperand(0); 2216 2217 MI.setDesc(get(PPC::BC)); 2218 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2219 .add(Pred[1]) 2220 .addMBB(MBB); 2221 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2222 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2223 MI.RemoveOperand(0); 2224 2225 MI.setDesc(get(PPC::BCn)); 2226 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2227 .add(Pred[1]) 2228 .addMBB(MBB); 2229 } else { 2230 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2231 MI.RemoveOperand(0); 2232 2233 MI.setDesc(get(PPC::BCC)); 2234 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2235 .addImm(Pred[0].getImm()) 2236 .add(Pred[1]) 2237 .addMBB(MBB); 2238 } 2239 2240 return true; 2241 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 2242 OpC == PPC::BCTRL8) { 2243 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 2244 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 2245 2246 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 2247 bool isPPC64 = Subtarget.isPPC64(); 2248 2249 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2250 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 2251 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 2252 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2253 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2254 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 2255 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 2256 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2257 } else { 2258 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 2259 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 2260 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2261 .addImm(Pred[0].getImm()) 2262 .add(Pred[1]); 2263 } 2264 2265 // Need add Def and Use for LR implicit operand. 2266 if (setLR) 2267 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2268 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit) 2269 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine); 2270 2271 return true; 2272 } 2273 2274 return false; 2275 } 2276 2277 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 2278 ArrayRef<MachineOperand> Pred2) const { 2279 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 2280 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 2281 2282 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 2283 return false; 2284 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 2285 return false; 2286 2287 // P1 can only subsume P2 if they test the same condition register. 2288 if (Pred1[1].getReg() != Pred2[1].getReg()) 2289 return false; 2290 2291 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 2292 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 2293 2294 if (P1 == P2) 2295 return true; 2296 2297 // Does P1 subsume P2, e.g. GE subsumes GT. 2298 if (P1 == PPC::PRED_LE && 2299 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 2300 return true; 2301 if (P1 == PPC::PRED_GE && 2302 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 2303 return true; 2304 2305 return false; 2306 } 2307 2308 bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI, 2309 std::vector<MachineOperand> &Pred, 2310 bool SkipDead) const { 2311 // Note: At the present time, the contents of Pred from this function is 2312 // unused by IfConversion. This implementation follows ARM by pushing the 2313 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 2314 // predicate, instructions defining CTR or CTR8 are also included as 2315 // predicate-defining instructions. 2316 2317 const TargetRegisterClass *RCs[] = 2318 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 2319 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 2320 2321 bool Found = false; 2322 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 2323 const MachineOperand &MO = MI.getOperand(i); 2324 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 2325 const TargetRegisterClass *RC = RCs[c]; 2326 if (MO.isReg()) { 2327 if (MO.isDef() && RC->contains(MO.getReg())) { 2328 Pred.push_back(MO); 2329 Found = true; 2330 } 2331 } else if (MO.isRegMask()) { 2332 for (TargetRegisterClass::iterator I = RC->begin(), 2333 IE = RC->end(); I != IE; ++I) 2334 if (MO.clobbersPhysReg(*I)) { 2335 Pred.push_back(MO); 2336 Found = true; 2337 } 2338 } 2339 } 2340 } 2341 2342 return Found; 2343 } 2344 2345 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 2346 Register &SrcReg2, int64_t &Mask, 2347 int64_t &Value) const { 2348 unsigned Opc = MI.getOpcode(); 2349 2350 switch (Opc) { 2351 default: return false; 2352 case PPC::CMPWI: 2353 case PPC::CMPLWI: 2354 case PPC::CMPDI: 2355 case PPC::CMPLDI: 2356 SrcReg = MI.getOperand(1).getReg(); 2357 SrcReg2 = 0; 2358 Value = MI.getOperand(2).getImm(); 2359 Mask = 0xFFFF; 2360 return true; 2361 case PPC::CMPW: 2362 case PPC::CMPLW: 2363 case PPC::CMPD: 2364 case PPC::CMPLD: 2365 case PPC::FCMPUS: 2366 case PPC::FCMPUD: 2367 SrcReg = MI.getOperand(1).getReg(); 2368 SrcReg2 = MI.getOperand(2).getReg(); 2369 Value = 0; 2370 Mask = 0; 2371 return true; 2372 } 2373 } 2374 2375 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 2376 Register SrcReg2, int64_t Mask, 2377 int64_t Value, 2378 const MachineRegisterInfo *MRI) const { 2379 if (DisableCmpOpt) 2380 return false; 2381 2382 int OpC = CmpInstr.getOpcode(); 2383 Register CRReg = CmpInstr.getOperand(0).getReg(); 2384 2385 // FP record forms set CR1 based on the exception status bits, not a 2386 // comparison with zero. 2387 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 2388 return false; 2389 2390 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2391 // The record forms set the condition register based on a signed comparison 2392 // with zero (so says the ISA manual). This is not as straightforward as it 2393 // seems, however, because this is always a 64-bit comparison on PPC64, even 2394 // for instructions that are 32-bit in nature (like slw for example). 2395 // So, on PPC32, for unsigned comparisons, we can use the record forms only 2396 // for equality checks (as those don't depend on the sign). On PPC64, 2397 // we are restricted to equality for unsigned 64-bit comparisons and for 2398 // signed 32-bit comparisons the applicability is more restricted. 2399 bool isPPC64 = Subtarget.isPPC64(); 2400 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 2401 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 2402 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 2403 2404 // Look through copies unless that gets us to a physical register. 2405 Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 2406 if (ActualSrc.isVirtual()) 2407 SrcReg = ActualSrc; 2408 2409 // Get the unique definition of SrcReg. 2410 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 2411 if (!MI) return false; 2412 2413 bool equalityOnly = false; 2414 bool noSub = false; 2415 if (isPPC64) { 2416 if (is32BitSignedCompare) { 2417 // We can perform this optimization only if MI is sign-extending. 2418 if (isSignExtended(*MI)) 2419 noSub = true; 2420 else 2421 return false; 2422 } else if (is32BitUnsignedCompare) { 2423 // We can perform this optimization, equality only, if MI is 2424 // zero-extending. 2425 if (isZeroExtended(*MI)) { 2426 noSub = true; 2427 equalityOnly = true; 2428 } else 2429 return false; 2430 } else 2431 equalityOnly = is64BitUnsignedCompare; 2432 } else 2433 equalityOnly = is32BitUnsignedCompare; 2434 2435 if (equalityOnly) { 2436 // We need to check the uses of the condition register in order to reject 2437 // non-equality comparisons. 2438 for (MachineRegisterInfo::use_instr_iterator 2439 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2440 I != IE; ++I) { 2441 MachineInstr *UseMI = &*I; 2442 if (UseMI->getOpcode() == PPC::BCC) { 2443 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 2444 unsigned PredCond = PPC::getPredicateCondition(Pred); 2445 // We ignore hint bits when checking for non-equality comparisons. 2446 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 2447 return false; 2448 } else if (UseMI->getOpcode() == PPC::ISEL || 2449 UseMI->getOpcode() == PPC::ISEL8) { 2450 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 2451 if (SubIdx != PPC::sub_eq) 2452 return false; 2453 } else 2454 return false; 2455 } 2456 } 2457 2458 MachineBasicBlock::iterator I = CmpInstr; 2459 2460 // Scan forward to find the first use of the compare. 2461 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 2462 ++I) { 2463 bool FoundUse = false; 2464 for (MachineRegisterInfo::use_instr_iterator 2465 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 2466 J != JE; ++J) 2467 if (&*J == &*I) { 2468 FoundUse = true; 2469 break; 2470 } 2471 2472 if (FoundUse) 2473 break; 2474 } 2475 2476 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 2477 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 2478 2479 // There are two possible candidates which can be changed to set CR[01]. 2480 // One is MI, the other is a SUB instruction. 2481 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 2482 MachineInstr *Sub = nullptr; 2483 if (SrcReg2 != 0) 2484 // MI is not a candidate for CMPrr. 2485 MI = nullptr; 2486 // FIXME: Conservatively refuse to convert an instruction which isn't in the 2487 // same BB as the comparison. This is to allow the check below to avoid calls 2488 // (and other explicit clobbers); instead we should really check for these 2489 // more explicitly (in at least a few predecessors). 2490 else if (MI->getParent() != CmpInstr.getParent()) 2491 return false; 2492 else if (Value != 0) { 2493 // The record-form instructions set CR bit based on signed comparison 2494 // against 0. We try to convert a compare against 1 or -1 into a compare 2495 // against 0 to exploit record-form instructions. For example, we change 2496 // the condition "greater than -1" into "greater than or equal to 0" 2497 // and "less than 1" into "less than or equal to 0". 2498 2499 // Since we optimize comparison based on a specific branch condition, 2500 // we don't optimize if condition code is used by more than once. 2501 if (equalityOnly || !MRI->hasOneUse(CRReg)) 2502 return false; 2503 2504 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 2505 if (UseMI->getOpcode() != PPC::BCC) 2506 return false; 2507 2508 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 2509 unsigned PredCond = PPC::getPredicateCondition(Pred); 2510 unsigned PredHint = PPC::getPredicateHint(Pred); 2511 int16_t Immed = (int16_t)Value; 2512 2513 // When modifying the condition in the predicate, we propagate hint bits 2514 // from the original predicate to the new one. 2515 if (Immed == -1 && PredCond == PPC::PRED_GT) 2516 // We convert "greater than -1" into "greater than or equal to 0", 2517 // since we are assuming signed comparison by !equalityOnly 2518 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 2519 else if (Immed == -1 && PredCond == PPC::PRED_LE) 2520 // We convert "less than or equal to -1" into "less than 0". 2521 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 2522 else if (Immed == 1 && PredCond == PPC::PRED_LT) 2523 // We convert "less than 1" into "less than or equal to 0". 2524 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 2525 else if (Immed == 1 && PredCond == PPC::PRED_GE) 2526 // We convert "greater than or equal to 1" into "greater than 0". 2527 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 2528 else 2529 return false; 2530 2531 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred)); 2532 } 2533 2534 // Search for Sub. 2535 --I; 2536 2537 // Get ready to iterate backward from CmpInstr. 2538 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 2539 2540 for (; I != E && !noSub; --I) { 2541 const MachineInstr &Instr = *I; 2542 unsigned IOpC = Instr.getOpcode(); 2543 2544 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 2545 Instr.readsRegister(PPC::CR0, TRI))) 2546 // This instruction modifies or uses the record condition register after 2547 // the one we want to change. While we could do this transformation, it 2548 // would likely not be profitable. This transformation removes one 2549 // instruction, and so even forcing RA to generate one move probably 2550 // makes it unprofitable. 2551 return false; 2552 2553 // Check whether CmpInstr can be made redundant by the current instruction. 2554 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 2555 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 2556 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 2557 ((Instr.getOperand(1).getReg() == SrcReg && 2558 Instr.getOperand(2).getReg() == SrcReg2) || 2559 (Instr.getOperand(1).getReg() == SrcReg2 && 2560 Instr.getOperand(2).getReg() == SrcReg))) { 2561 Sub = &*I; 2562 break; 2563 } 2564 2565 if (I == B) 2566 // The 'and' is below the comparison instruction. 2567 return false; 2568 } 2569 2570 // Return false if no candidates exist. 2571 if (!MI && !Sub) 2572 return false; 2573 2574 // The single candidate is called MI. 2575 if (!MI) MI = Sub; 2576 2577 int NewOpC = -1; 2578 int MIOpC = MI->getOpcode(); 2579 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || 2580 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) 2581 NewOpC = MIOpC; 2582 else { 2583 NewOpC = PPC::getRecordFormOpcode(MIOpC); 2584 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 2585 NewOpC = MIOpC; 2586 } 2587 2588 // FIXME: On the non-embedded POWER architectures, only some of the record 2589 // forms are fast, and we should use only the fast ones. 2590 2591 // The defining instruction has a record form (or is already a record 2592 // form). It is possible, however, that we'll need to reverse the condition 2593 // code of the users. 2594 if (NewOpC == -1) 2595 return false; 2596 2597 // This transformation should not be performed if `nsw` is missing and is not 2598 // `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in 2599 // CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in 2600 // CRReg can reflect if compared values are equal, this optz is still valid. 2601 if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) && 2602 Sub && !Sub->getFlag(MachineInstr::NoSWrap)) 2603 return false; 2604 2605 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 2606 // needs to be updated to be based on SUB. Push the condition code 2607 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 2608 // condition code of these operands will be modified. 2609 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 2610 // comparison against 0, which may modify predicate. 2611 bool ShouldSwap = false; 2612 if (Sub && Value == 0) { 2613 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 2614 Sub->getOperand(2).getReg() == SrcReg; 2615 2616 // The operands to subf are the opposite of sub, so only in the fixed-point 2617 // case, invert the order. 2618 ShouldSwap = !ShouldSwap; 2619 } 2620 2621 if (ShouldSwap) 2622 for (MachineRegisterInfo::use_instr_iterator 2623 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2624 I != IE; ++I) { 2625 MachineInstr *UseMI = &*I; 2626 if (UseMI->getOpcode() == PPC::BCC) { 2627 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 2628 unsigned PredCond = PPC::getPredicateCondition(Pred); 2629 assert((!equalityOnly || 2630 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 2631 "Invalid predicate for equality-only optimization"); 2632 (void)PredCond; // To suppress warning in release build. 2633 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 2634 PPC::getSwappedPredicate(Pred))); 2635 } else if (UseMI->getOpcode() == PPC::ISEL || 2636 UseMI->getOpcode() == PPC::ISEL8) { 2637 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 2638 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 2639 "Invalid CR bit for equality-only optimization"); 2640 2641 if (NewSubReg == PPC::sub_lt) 2642 NewSubReg = PPC::sub_gt; 2643 else if (NewSubReg == PPC::sub_gt) 2644 NewSubReg = PPC::sub_lt; 2645 2646 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 2647 NewSubReg)); 2648 } else // We need to abort on a user we don't understand. 2649 return false; 2650 } 2651 assert(!(Value != 0 && ShouldSwap) && 2652 "Non-zero immediate support and ShouldSwap" 2653 "may conflict in updating predicate"); 2654 2655 // Create a new virtual register to hold the value of the CR set by the 2656 // record-form instruction. If the instruction was not previously in 2657 // record form, then set the kill flag on the CR. 2658 CmpInstr.eraseFromParent(); 2659 2660 MachineBasicBlock::iterator MII = MI; 2661 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 2662 get(TargetOpcode::COPY), CRReg) 2663 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 2664 2665 // Even if CR0 register were dead before, it is alive now since the 2666 // instruction we just built uses it. 2667 MI->clearRegisterDeads(PPC::CR0); 2668 2669 if (MIOpC != NewOpC) { 2670 // We need to be careful here: we're replacing one instruction with 2671 // another, and we need to make sure that we get all of the right 2672 // implicit uses and defs. On the other hand, the caller may be holding 2673 // an iterator to this instruction, and so we can't delete it (this is 2674 // specifically the case if this is the instruction directly after the 2675 // compare). 2676 2677 // Rotates are expensive instructions. If we're emitting a record-form 2678 // rotate that can just be an andi/andis, we should just emit that. 2679 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 2680 Register GPRRes = MI->getOperand(0).getReg(); 2681 int64_t SH = MI->getOperand(2).getImm(); 2682 int64_t MB = MI->getOperand(3).getImm(); 2683 int64_t ME = MI->getOperand(4).getImm(); 2684 // We can only do this if both the start and end of the mask are in the 2685 // same halfword. 2686 bool MBInLoHWord = MB >= 16; 2687 bool MEInLoHWord = ME >= 16; 2688 uint64_t Mask = ~0LLU; 2689 2690 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 2691 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2692 // The mask value needs to shift right 16 if we're emitting andis. 2693 Mask >>= MBInLoHWord ? 0 : 16; 2694 NewOpC = MIOpC == PPC::RLWINM 2695 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) 2696 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); 2697 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 2698 (ME - MB + 1 == SH) && (MB >= 16)) { 2699 // If we are rotating by the exact number of bits as are in the mask 2700 // and the mask is in the least significant bits of the register, 2701 // that's just an andis. (as long as the GPR result has no uses). 2702 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 2703 Mask >>= 16; 2704 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; 2705 } 2706 // If we've set the mask, we can transform. 2707 if (Mask != ~0LLU) { 2708 MI->RemoveOperand(4); 2709 MI->RemoveOperand(3); 2710 MI->getOperand(2).setImm(Mask); 2711 NumRcRotatesConvertedToRcAnd++; 2712 } 2713 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 2714 int64_t MB = MI->getOperand(3).getImm(); 2715 if (MB >= 48) { 2716 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2717 NewOpC = PPC::ANDI8_rec; 2718 MI->RemoveOperand(3); 2719 MI->getOperand(2).setImm(Mask); 2720 NumRcRotatesConvertedToRcAnd++; 2721 } 2722 } 2723 2724 const MCInstrDesc &NewDesc = get(NewOpC); 2725 MI->setDesc(NewDesc); 2726 2727 if (NewDesc.ImplicitDefs) 2728 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 2729 *ImpDefs; ++ImpDefs) 2730 if (!MI->definesRegister(*ImpDefs)) 2731 MI->addOperand(*MI->getParent()->getParent(), 2732 MachineOperand::CreateReg(*ImpDefs, true, true)); 2733 if (NewDesc.ImplicitUses) 2734 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 2735 *ImpUses; ++ImpUses) 2736 if (!MI->readsRegister(*ImpUses)) 2737 MI->addOperand(*MI->getParent()->getParent(), 2738 MachineOperand::CreateReg(*ImpUses, false, true)); 2739 } 2740 assert(MI->definesRegister(PPC::CR0) && 2741 "Record-form instruction does not define cr0?"); 2742 2743 // Modify the condition code of operands in OperandsToUpdate. 2744 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 2745 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 2746 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 2747 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 2748 2749 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 2750 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 2751 2752 return true; 2753 } 2754 2755 bool PPCInstrInfo::getMemOperandsWithOffsetWidth( 2756 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, 2757 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, 2758 const TargetRegisterInfo *TRI) const { 2759 const MachineOperand *BaseOp; 2760 OffsetIsScalable = false; 2761 if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI)) 2762 return false; 2763 BaseOps.push_back(BaseOp); 2764 return true; 2765 } 2766 2767 static bool isLdStSafeToCluster(const MachineInstr &LdSt, 2768 const TargetRegisterInfo *TRI) { 2769 // If this is a volatile load/store, don't mess with it. 2770 if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3) 2771 return false; 2772 2773 if (LdSt.getOperand(2).isFI()) 2774 return true; 2775 2776 assert(LdSt.getOperand(2).isReg() && "Expected a reg operand."); 2777 // Can't cluster if the instruction modifies the base register 2778 // or it is update form. e.g. ld r2,3(r2) 2779 if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI)) 2780 return false; 2781 2782 return true; 2783 } 2784 2785 // Only cluster instruction pair that have the same opcode, and they are 2786 // clusterable according to PowerPC specification. 2787 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc, 2788 const PPCSubtarget &Subtarget) { 2789 switch (FirstOpc) { 2790 default: 2791 return false; 2792 case PPC::STD: 2793 case PPC::STFD: 2794 case PPC::STXSD: 2795 case PPC::DFSTOREf64: 2796 return FirstOpc == SecondOpc; 2797 // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with 2798 // 32bit and 64bit instruction selection. They are clusterable pair though 2799 // they are different opcode. 2800 case PPC::STW: 2801 case PPC::STW8: 2802 return SecondOpc == PPC::STW || SecondOpc == PPC::STW8; 2803 } 2804 } 2805 2806 bool PPCInstrInfo::shouldClusterMemOps( 2807 ArrayRef<const MachineOperand *> BaseOps1, 2808 ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads, 2809 unsigned NumBytes) const { 2810 2811 assert(BaseOps1.size() == 1 && BaseOps2.size() == 1); 2812 const MachineOperand &BaseOp1 = *BaseOps1.front(); 2813 const MachineOperand &BaseOp2 = *BaseOps2.front(); 2814 assert((BaseOp1.isReg() || BaseOp1.isFI()) && 2815 "Only base registers and frame indices are supported."); 2816 2817 // The NumLoads means the number of loads that has been clustered. 2818 // Don't cluster memory op if there are already two ops clustered at least. 2819 if (NumLoads > 2) 2820 return false; 2821 2822 // Cluster the load/store only when they have the same base 2823 // register or FI. 2824 if ((BaseOp1.isReg() != BaseOp2.isReg()) || 2825 (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) || 2826 (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex())) 2827 return false; 2828 2829 // Check if the load/store are clusterable according to the PowerPC 2830 // specification. 2831 const MachineInstr &FirstLdSt = *BaseOp1.getParent(); 2832 const MachineInstr &SecondLdSt = *BaseOp2.getParent(); 2833 unsigned FirstOpc = FirstLdSt.getOpcode(); 2834 unsigned SecondOpc = SecondLdSt.getOpcode(); 2835 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2836 // Cluster the load/store only when they have the same opcode, and they are 2837 // clusterable opcode according to PowerPC specification. 2838 if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget)) 2839 return false; 2840 2841 // Can't cluster load/store that have ordered or volatile memory reference. 2842 if (!isLdStSafeToCluster(FirstLdSt, TRI) || 2843 !isLdStSafeToCluster(SecondLdSt, TRI)) 2844 return false; 2845 2846 int64_t Offset1 = 0, Offset2 = 0; 2847 unsigned Width1 = 0, Width2 = 0; 2848 const MachineOperand *Base1 = nullptr, *Base2 = nullptr; 2849 if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) || 2850 !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) || 2851 Width1 != Width2) 2852 return false; 2853 2854 assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 && 2855 "getMemOperandWithOffsetWidth return incorrect base op"); 2856 // The caller should already have ordered FirstMemOp/SecondMemOp by offset. 2857 assert(Offset1 <= Offset2 && "Caller should have ordered offsets."); 2858 return Offset1 + Width1 == Offset2; 2859 } 2860 2861 /// GetInstSize - Return the number of bytes of code the specified 2862 /// instruction may be. This returns the maximum number of bytes. 2863 /// 2864 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2865 unsigned Opcode = MI.getOpcode(); 2866 2867 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 2868 const MachineFunction *MF = MI.getParent()->getParent(); 2869 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2870 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2871 } else if (Opcode == TargetOpcode::STACKMAP) { 2872 StackMapOpers Opers(&MI); 2873 return Opers.getNumPatchBytes(); 2874 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2875 PatchPointOpers Opers(&MI); 2876 return Opers.getNumPatchBytes(); 2877 } else { 2878 return get(Opcode).getSize(); 2879 } 2880 } 2881 2882 std::pair<unsigned, unsigned> 2883 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2884 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2885 return std::make_pair(TF & Mask, TF & ~Mask); 2886 } 2887 2888 ArrayRef<std::pair<unsigned, const char *>> 2889 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2890 using namespace PPCII; 2891 static const std::pair<unsigned, const char *> TargetFlags[] = { 2892 {MO_LO, "ppc-lo"}, 2893 {MO_HA, "ppc-ha"}, 2894 {MO_TPREL_LO, "ppc-tprel-lo"}, 2895 {MO_TPREL_HA, "ppc-tprel-ha"}, 2896 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2897 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2898 {MO_TOC_LO, "ppc-toc-lo"}, 2899 {MO_TLS, "ppc-tls"}}; 2900 return makeArrayRef(TargetFlags); 2901 } 2902 2903 ArrayRef<std::pair<unsigned, const char *>> 2904 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2905 using namespace PPCII; 2906 static const std::pair<unsigned, const char *> TargetFlags[] = { 2907 {MO_PLT, "ppc-plt"}, 2908 {MO_PIC_FLAG, "ppc-pic"}, 2909 {MO_PCREL_FLAG, "ppc-pcrel"}, 2910 {MO_GOT_FLAG, "ppc-got"}, 2911 {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"}, 2912 {MO_TLSGD_FLAG, "ppc-tlsgd"}, 2913 {MO_TLSLD_FLAG, "ppc-tlsld"}, 2914 {MO_TPREL_FLAG, "ppc-tprel"}, 2915 {MO_TLSGDM_FLAG, "ppc-tlsgdm"}, 2916 {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"}, 2917 {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"}, 2918 {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}}; 2919 return makeArrayRef(TargetFlags); 2920 } 2921 2922 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2923 // The VSX versions have the advantage of a full 64-register target whereas 2924 // the FP ones have the advantage of lower latency and higher throughput. So 2925 // what we are after is using the faster instructions in low register pressure 2926 // situations and using the larger register file in high register pressure 2927 // situations. 2928 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2929 unsigned UpperOpcode, LowerOpcode; 2930 switch (MI.getOpcode()) { 2931 case PPC::DFLOADf32: 2932 UpperOpcode = PPC::LXSSP; 2933 LowerOpcode = PPC::LFS; 2934 break; 2935 case PPC::DFLOADf64: 2936 UpperOpcode = PPC::LXSD; 2937 LowerOpcode = PPC::LFD; 2938 break; 2939 case PPC::DFSTOREf32: 2940 UpperOpcode = PPC::STXSSP; 2941 LowerOpcode = PPC::STFS; 2942 break; 2943 case PPC::DFSTOREf64: 2944 UpperOpcode = PPC::STXSD; 2945 LowerOpcode = PPC::STFD; 2946 break; 2947 case PPC::XFLOADf32: 2948 UpperOpcode = PPC::LXSSPX; 2949 LowerOpcode = PPC::LFSX; 2950 break; 2951 case PPC::XFLOADf64: 2952 UpperOpcode = PPC::LXSDX; 2953 LowerOpcode = PPC::LFDX; 2954 break; 2955 case PPC::XFSTOREf32: 2956 UpperOpcode = PPC::STXSSPX; 2957 LowerOpcode = PPC::STFSX; 2958 break; 2959 case PPC::XFSTOREf64: 2960 UpperOpcode = PPC::STXSDX; 2961 LowerOpcode = PPC::STFDX; 2962 break; 2963 case PPC::LIWAX: 2964 UpperOpcode = PPC::LXSIWAX; 2965 LowerOpcode = PPC::LFIWAX; 2966 break; 2967 case PPC::LIWZX: 2968 UpperOpcode = PPC::LXSIWZX; 2969 LowerOpcode = PPC::LFIWZX; 2970 break; 2971 case PPC::STIWX: 2972 UpperOpcode = PPC::STXSIWX; 2973 LowerOpcode = PPC::STFIWX; 2974 break; 2975 default: 2976 llvm_unreachable("Unknown Operation!"); 2977 } 2978 2979 Register TargetReg = MI.getOperand(0).getReg(); 2980 unsigned Opcode; 2981 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2982 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2983 Opcode = LowerOpcode; 2984 else 2985 Opcode = UpperOpcode; 2986 MI.setDesc(get(Opcode)); 2987 return true; 2988 } 2989 2990 static bool isAnImmediateOperand(const MachineOperand &MO) { 2991 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2992 } 2993 2994 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2995 auto &MBB = *MI.getParent(); 2996 auto DL = MI.getDebugLoc(); 2997 2998 switch (MI.getOpcode()) { 2999 case PPC::BUILD_UACC: { 3000 MCRegister ACC = MI.getOperand(0).getReg(); 3001 MCRegister UACC = MI.getOperand(1).getReg(); 3002 if (ACC - PPC::ACC0 != UACC - PPC::UACC0) { 3003 MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4; 3004 MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4; 3005 // FIXME: This can easily be improved to look up to the top of the MBB 3006 // to see if the inputs are XXLOR's. If they are and SrcReg is killed, 3007 // we can just re-target any such XXLOR's to DstVSR + offset. 3008 for (int VecNo = 0; VecNo < 4; VecNo++) 3009 BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo) 3010 .addReg(SrcVSR + VecNo) 3011 .addReg(SrcVSR + VecNo); 3012 } 3013 // BUILD_UACC is expanded to 4 copies of the underlying vsx registers. 3014 // So after building the 4 copies, we can replace the BUILD_UACC instruction 3015 // with a NOP. 3016 LLVM_FALLTHROUGH; 3017 } 3018 case PPC::KILL_PAIR: { 3019 MI.setDesc(get(PPC::UNENCODED_NOP)); 3020 MI.RemoveOperand(1); 3021 MI.RemoveOperand(0); 3022 return true; 3023 } 3024 case TargetOpcode::LOAD_STACK_GUARD: { 3025 assert(Subtarget.isTargetLinux() && 3026 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 3027 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 3028 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 3029 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 3030 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3031 .addImm(Offset) 3032 .addReg(Reg); 3033 return true; 3034 } 3035 case PPC::DFLOADf32: 3036 case PPC::DFLOADf64: 3037 case PPC::DFSTOREf32: 3038 case PPC::DFSTOREf64: { 3039 assert(Subtarget.hasP9Vector() && 3040 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 3041 assert(MI.getOperand(2).isReg() && 3042 isAnImmediateOperand(MI.getOperand(1)) && 3043 "D-form op must have register and immediate operands"); 3044 return expandVSXMemPseudo(MI); 3045 } 3046 case PPC::XFLOADf32: 3047 case PPC::XFSTOREf32: 3048 case PPC::LIWAX: 3049 case PPC::LIWZX: 3050 case PPC::STIWX: { 3051 assert(Subtarget.hasP8Vector() && 3052 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 3053 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 3054 "X-form op must have register and register operands"); 3055 return expandVSXMemPseudo(MI); 3056 } 3057 case PPC::XFLOADf64: 3058 case PPC::XFSTOREf64: { 3059 assert(Subtarget.hasVSX() && 3060 "Invalid X-Form Pseudo-ops on target that has no VSX."); 3061 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 3062 "X-form op must have register and register operands"); 3063 return expandVSXMemPseudo(MI); 3064 } 3065 case PPC::SPILLTOVSR_LD: { 3066 Register TargetReg = MI.getOperand(0).getReg(); 3067 if (PPC::VSFRCRegClass.contains(TargetReg)) { 3068 MI.setDesc(get(PPC::DFLOADf64)); 3069 return expandPostRAPseudo(MI); 3070 } 3071 else 3072 MI.setDesc(get(PPC::LD)); 3073 return true; 3074 } 3075 case PPC::SPILLTOVSR_ST: { 3076 Register SrcReg = MI.getOperand(0).getReg(); 3077 if (PPC::VSFRCRegClass.contains(SrcReg)) { 3078 NumStoreSPILLVSRRCAsVec++; 3079 MI.setDesc(get(PPC::DFSTOREf64)); 3080 return expandPostRAPseudo(MI); 3081 } else { 3082 NumStoreSPILLVSRRCAsGpr++; 3083 MI.setDesc(get(PPC::STD)); 3084 } 3085 return true; 3086 } 3087 case PPC::SPILLTOVSR_LDX: { 3088 Register TargetReg = MI.getOperand(0).getReg(); 3089 if (PPC::VSFRCRegClass.contains(TargetReg)) 3090 MI.setDesc(get(PPC::LXSDX)); 3091 else 3092 MI.setDesc(get(PPC::LDX)); 3093 return true; 3094 } 3095 case PPC::SPILLTOVSR_STX: { 3096 Register SrcReg = MI.getOperand(0).getReg(); 3097 if (PPC::VSFRCRegClass.contains(SrcReg)) { 3098 NumStoreSPILLVSRRCAsVec++; 3099 MI.setDesc(get(PPC::STXSDX)); 3100 } else { 3101 NumStoreSPILLVSRRCAsGpr++; 3102 MI.setDesc(get(PPC::STDX)); 3103 } 3104 return true; 3105 } 3106 3107 // FIXME: Maybe we can expand it in 'PowerPC Expand Atomic' pass. 3108 case PPC::CFENCE8: { 3109 auto Val = MI.getOperand(0).getReg(); 3110 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 3111 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 3112 .addImm(PPC::PRED_NE_MINUS) 3113 .addReg(PPC::CR7) 3114 .addImm(1); 3115 MI.setDesc(get(PPC::ISYNC)); 3116 MI.RemoveOperand(0); 3117 return true; 3118 } 3119 } 3120 return false; 3121 } 3122 3123 // Essentially a compile-time implementation of a compare->isel sequence. 3124 // It takes two constants to compare, along with the true/false registers 3125 // and the comparison type (as a subreg to a CR field) and returns one 3126 // of the true/false registers, depending on the comparison results. 3127 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 3128 unsigned TrueReg, unsigned FalseReg, 3129 unsigned CRSubReg) { 3130 // Signed comparisons. The immediates are assumed to be sign-extended. 3131 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 3132 switch (CRSubReg) { 3133 default: llvm_unreachable("Unknown integer comparison type."); 3134 case PPC::sub_lt: 3135 return Imm1 < Imm2 ? TrueReg : FalseReg; 3136 case PPC::sub_gt: 3137 return Imm1 > Imm2 ? TrueReg : FalseReg; 3138 case PPC::sub_eq: 3139 return Imm1 == Imm2 ? TrueReg : FalseReg; 3140 } 3141 } 3142 // Unsigned comparisons. 3143 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 3144 switch (CRSubReg) { 3145 default: llvm_unreachable("Unknown integer comparison type."); 3146 case PPC::sub_lt: 3147 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 3148 case PPC::sub_gt: 3149 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 3150 case PPC::sub_eq: 3151 return Imm1 == Imm2 ? TrueReg : FalseReg; 3152 } 3153 } 3154 return PPC::NoRegister; 3155 } 3156 3157 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 3158 unsigned OpNo, 3159 int64_t Imm) const { 3160 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 3161 // Replace the REG with the Immediate. 3162 Register InUseReg = MI.getOperand(OpNo).getReg(); 3163 MI.getOperand(OpNo).ChangeToImmediate(Imm); 3164 3165 // We need to make sure that the MI didn't have any implicit use 3166 // of this REG any more. We don't call MI.implicit_operands().empty() to 3167 // return early, since MI's MCID might be changed in calling context, as a 3168 // result its number of explicit operands may be changed, thus the begin of 3169 // implicit operand is changed. 3170 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3171 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 3172 if (UseOpIdx >= 0) { 3173 MachineOperand &MO = MI.getOperand(UseOpIdx); 3174 if (MO.isImplicit()) 3175 // The operands must always be in the following order: 3176 // - explicit reg defs, 3177 // - other explicit operands (reg uses, immediates, etc.), 3178 // - implicit reg defs 3179 // - implicit reg uses 3180 // Therefore, removing the implicit operand won't change the explicit 3181 // operands layout. 3182 MI.RemoveOperand(UseOpIdx); 3183 } 3184 } 3185 3186 // Replace an instruction with one that materializes a constant (and sets 3187 // CR0 if the original instruction was a record-form instruction). 3188 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 3189 const LoadImmediateInfo &LII) const { 3190 // Remove existing operands. 3191 int OperandToKeep = LII.SetCR ? 1 : 0; 3192 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 3193 MI.RemoveOperand(i); 3194 3195 // Replace the instruction. 3196 if (LII.SetCR) { 3197 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 3198 // Set the immediate. 3199 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3200 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 3201 return; 3202 } 3203 else 3204 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 3205 3206 // Set the immediate. 3207 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3208 .addImm(LII.Imm); 3209 } 3210 3211 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 3212 bool &SeenIntermediateUse) const { 3213 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 3214 "Should be called after register allocation."); 3215 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3216 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 3217 It++; 3218 SeenIntermediateUse = false; 3219 for (; It != E; ++It) { 3220 if (It->modifiesRegister(Reg, TRI)) 3221 return &*It; 3222 if (It->readsRegister(Reg, TRI)) 3223 SeenIntermediateUse = true; 3224 } 3225 return nullptr; 3226 } 3227 3228 MachineInstr *PPCInstrInfo::getForwardingDefMI( 3229 MachineInstr &MI, 3230 unsigned &OpNoForForwarding, 3231 bool &SeenIntermediateUse) const { 3232 OpNoForForwarding = ~0U; 3233 MachineInstr *DefMI = nullptr; 3234 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 3235 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3236 // If we're in SSA, get the defs through the MRI. Otherwise, only look 3237 // within the basic block to see if the register is defined using an 3238 // LI/LI8/ADDI/ADDI8. 3239 if (MRI->isSSA()) { 3240 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 3241 if (!MI.getOperand(i).isReg()) 3242 continue; 3243 Register Reg = MI.getOperand(i).getReg(); 3244 if (!Register::isVirtualRegister(Reg)) 3245 continue; 3246 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 3247 if (Register::isVirtualRegister(TrueReg)) { 3248 DefMI = MRI->getVRegDef(TrueReg); 3249 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 || 3250 DefMI->getOpcode() == PPC::ADDI || 3251 DefMI->getOpcode() == PPC::ADDI8) { 3252 OpNoForForwarding = i; 3253 // The ADDI and LI operand maybe exist in one instruction at same 3254 // time. we prefer to fold LI operand as LI only has one Imm operand 3255 // and is more possible to be converted. So if current DefMI is 3256 // ADDI/ADDI8, we continue to find possible LI/LI8. 3257 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) 3258 break; 3259 } 3260 } 3261 } 3262 } else { 3263 // Looking back through the definition for each operand could be expensive, 3264 // so exit early if this isn't an instruction that either has an immediate 3265 // form or is already an immediate form that we can handle. 3266 ImmInstrInfo III; 3267 unsigned Opc = MI.getOpcode(); 3268 bool ConvertibleImmForm = 3269 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || 3270 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || 3271 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || 3272 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || 3273 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 3274 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || 3275 Opc == PPC::RLWINM8_rec; 3276 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 3277 ? isVFRegister(MI.getOperand(0).getReg()) 3278 : false; 3279 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 3280 return nullptr; 3281 3282 // Don't convert or %X, %Y, %Y since that's just a register move. 3283 if ((Opc == PPC::OR || Opc == PPC::OR8) && 3284 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 3285 return nullptr; 3286 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 3287 MachineOperand &MO = MI.getOperand(i); 3288 SeenIntermediateUse = false; 3289 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 3290 Register Reg = MI.getOperand(i).getReg(); 3291 // If we see another use of this reg between the def and the MI, 3292 // we want to flat it so the def isn't deleted. 3293 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 3294 if (DefMI) { 3295 // Is this register defined by some form of add-immediate (including 3296 // load-immediate) within this basic block? 3297 switch (DefMI->getOpcode()) { 3298 default: 3299 break; 3300 case PPC::LI: 3301 case PPC::LI8: 3302 case PPC::ADDItocL: 3303 case PPC::ADDI: 3304 case PPC::ADDI8: 3305 OpNoForForwarding = i; 3306 return DefMI; 3307 } 3308 } 3309 } 3310 } 3311 } 3312 return OpNoForForwarding == ~0U ? nullptr : DefMI; 3313 } 3314 3315 unsigned PPCInstrInfo::getSpillTarget() const { 3316 // With P10, we may need to spill paired vector registers or accumulator 3317 // registers. MMA implies paired vectors, so we can just check that. 3318 bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops(); 3319 return IsP10Variant ? 2 : Subtarget.hasP9Vector() ? 1 : 0; 3320 } 3321 3322 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 3323 return StoreSpillOpcodesArray[getSpillTarget()]; 3324 } 3325 3326 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 3327 return LoadSpillOpcodesArray[getSpillTarget()]; 3328 } 3329 3330 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI, 3331 unsigned RegNo) const { 3332 // Conservatively clear kill flag for the register if the instructions are in 3333 // different basic blocks and in SSA form, because the kill flag may no longer 3334 // be right. There is no need to bother with dead flags since defs with no 3335 // uses will be handled by DCE. 3336 MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo(); 3337 if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) { 3338 MRI.clearKillFlags(RegNo); 3339 return; 3340 } 3341 3342 // Instructions between [StartMI, EndMI] should be in same basic block. 3343 assert((StartMI->getParent() == EndMI->getParent()) && 3344 "Instructions are not in same basic block"); 3345 3346 // If before RA, StartMI may be def through COPY, we need to adjust it to the 3347 // real def. See function getForwardingDefMI. 3348 if (MRI.isSSA()) { 3349 bool Reads, Writes; 3350 std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo); 3351 if (!Reads && !Writes) { 3352 assert(Register::isVirtualRegister(RegNo) && 3353 "Must be a virtual register"); 3354 // Get real def and ignore copies. 3355 StartMI = MRI.getVRegDef(RegNo); 3356 } 3357 } 3358 3359 bool IsKillSet = false; 3360 3361 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 3362 MachineOperand &MO = MI.getOperand(Index); 3363 if (MO.isReg() && MO.isUse() && MO.isKill() && 3364 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 3365 MO.setIsKill(false); 3366 }; 3367 3368 // Set killed flag for EndMI. 3369 // No need to do anything if EndMI defines RegNo. 3370 int UseIndex = 3371 EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 3372 if (UseIndex != -1) { 3373 EndMI->getOperand(UseIndex).setIsKill(true); 3374 IsKillSet = true; 3375 // Clear killed flag for other EndMI operands related to RegNo. In some 3376 // upexpected cases, killed may be set multiple times for same register 3377 // operand in same MI. 3378 for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i) 3379 if (i != UseIndex) 3380 clearOperandKillInfo(*EndMI, i); 3381 } 3382 3383 // Walking the inst in reverse order (EndMI -> StartMI]. 3384 MachineBasicBlock::reverse_iterator It = *EndMI; 3385 MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend(); 3386 // EndMI has been handled above, skip it here. 3387 It++; 3388 MachineOperand *MO = nullptr; 3389 for (; It != E; ++It) { 3390 // Skip insturctions which could not be a def/use of RegNo. 3391 if (It->isDebugInstr() || It->isPosition()) 3392 continue; 3393 3394 // Clear killed flag for all It operands related to RegNo. In some 3395 // upexpected cases, killed may be set multiple times for same register 3396 // operand in same MI. 3397 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 3398 clearOperandKillInfo(*It, i); 3399 3400 // If killed is not set, set killed for its last use or set dead for its def 3401 // if no use found. 3402 if (!IsKillSet) { 3403 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 3404 // Use found, set it killed. 3405 IsKillSet = true; 3406 MO->setIsKill(true); 3407 continue; 3408 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 3409 &getRegisterInfo()))) { 3410 // No use found, set dead for its def. 3411 assert(&*It == StartMI && "No new def between StartMI and EndMI."); 3412 MO->setIsDead(true); 3413 break; 3414 } 3415 } 3416 3417 if ((&*It) == StartMI) 3418 break; 3419 } 3420 // Ensure RegMo liveness is killed after EndMI. 3421 assert((IsKillSet || (MO && MO->isDead())) && 3422 "RegNo should be killed or dead"); 3423 } 3424 3425 // This opt tries to convert the following imm form to an index form to save an 3426 // add for stack variables. 3427 // Return false if no such pattern found. 3428 // 3429 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 3430 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg 3431 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) 3432 // 3433 // can be converted to: 3434 // 3435 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) 3436 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) 3437 // 3438 // In order to eliminate ADD instr, make sure that: 3439 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in 3440 // new ADDI instr and ADDI can only take int16 Imm. 3441 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use 3442 // between ADDI and ADD instr since its original def in ADDI will be changed 3443 // in new ADDI instr. And also there should be no new def for it between 3444 // ADD and Imm instr as ToBeChangedReg will be used in Index instr. 3445 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use 3446 // between ADD and Imm instr since ADD instr will be eliminated. 3447 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be 3448 // moved to Index instr. 3449 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { 3450 MachineFunction *MF = MI.getParent()->getParent(); 3451 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3452 bool PostRA = !MRI->isSSA(); 3453 // Do this opt after PEI which is after RA. The reason is stack slot expansion 3454 // in PEI may expose such opportunities since in PEI, stack slot offsets to 3455 // frame base(OffsetAddi) are determined. 3456 if (!PostRA) 3457 return false; 3458 unsigned ToBeDeletedReg = 0; 3459 int64_t OffsetImm = 0; 3460 unsigned XFormOpcode = 0; 3461 ImmInstrInfo III; 3462 3463 // Check if Imm instr meets requirement. 3464 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, 3465 III)) 3466 return false; 3467 3468 bool OtherIntermediateUse = false; 3469 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); 3470 3471 // Exit if there is other use between ADD and Imm instr or no def found. 3472 if (OtherIntermediateUse || !ADDMI) 3473 return false; 3474 3475 // Check if ADD instr meets requirement. 3476 if (!isADDInstrEligibleForFolding(*ADDMI)) 3477 return false; 3478 3479 unsigned ScaleRegIdx = 0; 3480 int64_t OffsetAddi = 0; 3481 MachineInstr *ADDIMI = nullptr; 3482 3483 // Check if there is a valid ToBeChangedReg in ADDMI. 3484 // 1: It must be killed. 3485 // 2: Its definition must be a valid ADDIMI. 3486 // 3: It must satify int16 offset requirement. 3487 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) 3488 ScaleRegIdx = 2; 3489 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) 3490 ScaleRegIdx = 1; 3491 else 3492 return false; 3493 3494 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); 3495 unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg(); 3496 unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); 3497 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, 3498 MachineBasicBlock::iterator End) { 3499 for (auto It = ++Start; It != End; It++) 3500 if (It->modifiesRegister(Reg, &getRegisterInfo())) 3501 return true; 3502 return false; 3503 }; 3504 3505 // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is 3506 // treated as special zero when ScaleReg is R0/X0 register. 3507 if (III.ZeroIsSpecialOrig == III.ImmOpNo && 3508 (ScaleReg == PPC::R0 || ScaleReg == PPC::X0)) 3509 return false; 3510 3511 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr 3512 // and Imm Instr. 3513 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) 3514 return false; 3515 3516 // Now start to do the transformation. 3517 LLVM_DEBUG(dbgs() << "Replace instruction: " 3518 << "\n"); 3519 LLVM_DEBUG(ADDIMI->dump()); 3520 LLVM_DEBUG(ADDMI->dump()); 3521 LLVM_DEBUG(MI.dump()); 3522 LLVM_DEBUG(dbgs() << "with: " 3523 << "\n"); 3524 3525 // Update ADDI instr. 3526 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); 3527 3528 // Update Imm instr. 3529 MI.setDesc(get(XFormOpcode)); 3530 MI.getOperand(III.ImmOpNo) 3531 .ChangeToRegister(ScaleReg, false, false, 3532 ADDMI->getOperand(ScaleRegIdx).isKill()); 3533 3534 MI.getOperand(III.OpNoForForwarding) 3535 .ChangeToRegister(ToBeChangedReg, false, false, true); 3536 3537 // Eliminate ADD instr. 3538 ADDMI->eraseFromParent(); 3539 3540 LLVM_DEBUG(ADDIMI->dump()); 3541 LLVM_DEBUG(MI.dump()); 3542 3543 return true; 3544 } 3545 3546 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, 3547 int64_t &Imm) const { 3548 unsigned Opc = ADDIMI.getOpcode(); 3549 3550 // Exit if the instruction is not ADDI. 3551 if (Opc != PPC::ADDI && Opc != PPC::ADDI8) 3552 return false; 3553 3554 // The operand may not necessarily be an immediate - it could be a relocation. 3555 if (!ADDIMI.getOperand(2).isImm()) 3556 return false; 3557 3558 Imm = ADDIMI.getOperand(2).getImm(); 3559 3560 return true; 3561 } 3562 3563 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { 3564 unsigned Opc = ADDMI.getOpcode(); 3565 3566 // Exit if the instruction is not ADD. 3567 return Opc == PPC::ADD4 || Opc == PPC::ADD8; 3568 } 3569 3570 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, 3571 unsigned &ToBeDeletedReg, 3572 unsigned &XFormOpcode, 3573 int64_t &OffsetImm, 3574 ImmInstrInfo &III) const { 3575 // Only handle load/store. 3576 if (!MI.mayLoadOrStore()) 3577 return false; 3578 3579 unsigned Opc = MI.getOpcode(); 3580 3581 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); 3582 3583 // Exit if instruction has no index form. 3584 if (XFormOpcode == PPC::INSTRUCTION_LIST_END) 3585 return false; 3586 3587 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. 3588 if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()), 3589 III, true)) 3590 return false; 3591 3592 if (!III.IsSummingOperands) 3593 return false; 3594 3595 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); 3596 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); 3597 // Only support imm operands, not relocation slots or others. 3598 if (!ImmOperand.isImm()) 3599 return false; 3600 3601 assert(RegOperand.isReg() && "Instruction format is not right"); 3602 3603 // There are other use for ToBeDeletedReg after Imm instr, can not delete it. 3604 if (!RegOperand.isKill()) 3605 return false; 3606 3607 ToBeDeletedReg = RegOperand.getReg(); 3608 OffsetImm = ImmOperand.getImm(); 3609 3610 return true; 3611 } 3612 3613 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, 3614 MachineInstr *&ADDIMI, 3615 int64_t &OffsetAddi, 3616 int64_t OffsetImm) const { 3617 assert((Index == 1 || Index == 2) && "Invalid operand index for add."); 3618 MachineOperand &MO = ADDMI->getOperand(Index); 3619 3620 if (!MO.isKill()) 3621 return false; 3622 3623 bool OtherIntermediateUse = false; 3624 3625 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); 3626 // Currently handle only one "add + Imminstr" pair case, exit if other 3627 // intermediate use for ToBeChangedReg found. 3628 // TODO: handle the cases where there are other "add + Imminstr" pairs 3629 // with same offset in Imminstr which is like: 3630 // 3631 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 3632 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 3633 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) 3634 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 3635 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) 3636 // 3637 // can be converted to: 3638 // 3639 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, 3640 // (OffsetAddi + OffsetImm) 3641 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg 3642 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) 3643 3644 if (OtherIntermediateUse || !ADDIMI) 3645 return false; 3646 // Check if ADDI instr meets requirement. 3647 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) 3648 return false; 3649 3650 if (isInt<16>(OffsetAddi + OffsetImm)) 3651 return true; 3652 return false; 3653 } 3654 3655 // If this instruction has an immediate form and one of its operands is a 3656 // result of a load-immediate or an add-immediate, convert it to 3657 // the immediate form if the constant is in range. 3658 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 3659 MachineInstr **KilledDef) const { 3660 MachineFunction *MF = MI.getParent()->getParent(); 3661 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3662 bool PostRA = !MRI->isSSA(); 3663 bool SeenIntermediateUse = true; 3664 unsigned ForwardingOperand = ~0U; 3665 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 3666 SeenIntermediateUse); 3667 if (!DefMI) 3668 return false; 3669 assert(ForwardingOperand < MI.getNumOperands() && 3670 "The forwarding operand needs to be valid at this point"); 3671 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 3672 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 3673 if (KilledDef && KillFwdDefMI) 3674 *KilledDef = DefMI; 3675 3676 // If this is a imm instruction and its register operands is produced by ADDI, 3677 // put the imm into imm inst directly. 3678 if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) != 3679 PPC::INSTRUCTION_LIST_END && 3680 transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand)) 3681 return true; 3682 3683 ImmInstrInfo III; 3684 bool IsVFReg = MI.getOperand(0).isReg() 3685 ? isVFRegister(MI.getOperand(0).getReg()) 3686 : false; 3687 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 3688 // If this is a reg+reg instruction that has a reg+imm form, 3689 // and one of the operands is produced by an add-immediate, 3690 // try to convert it. 3691 if (HasImmForm && 3692 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 3693 KillFwdDefMI)) 3694 return true; 3695 3696 // If this is a reg+reg instruction that has a reg+imm form, 3697 // and one of the operands is produced by LI, convert it now. 3698 if (HasImmForm && 3699 transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI)) 3700 return true; 3701 3702 // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI 3703 // can be simpified to LI. 3704 if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef)) 3705 return true; 3706 3707 return false; 3708 } 3709 3710 bool PPCInstrInfo::combineRLWINM(MachineInstr &MI, 3711 MachineInstr **ToErase) const { 3712 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 3713 unsigned FoldingReg = MI.getOperand(1).getReg(); 3714 if (!Register::isVirtualRegister(FoldingReg)) 3715 return false; 3716 MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg); 3717 if (SrcMI->getOpcode() != PPC::RLWINM && 3718 SrcMI->getOpcode() != PPC::RLWINM_rec && 3719 SrcMI->getOpcode() != PPC::RLWINM8 && 3720 SrcMI->getOpcode() != PPC::RLWINM8_rec) 3721 return false; 3722 assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() && 3723 MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() && 3724 SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) && 3725 "Invalid PPC::RLWINM Instruction!"); 3726 uint64_t SHSrc = SrcMI->getOperand(2).getImm(); 3727 uint64_t SHMI = MI.getOperand(2).getImm(); 3728 uint64_t MBSrc = SrcMI->getOperand(3).getImm(); 3729 uint64_t MBMI = MI.getOperand(3).getImm(); 3730 uint64_t MESrc = SrcMI->getOperand(4).getImm(); 3731 uint64_t MEMI = MI.getOperand(4).getImm(); 3732 3733 assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) && 3734 "Invalid PPC::RLWINM Instruction!"); 3735 // If MBMI is bigger than MEMI, we always can not get run of ones. 3736 // RotatedSrcMask non-wrap: 3737 // 0........31|32........63 3738 // RotatedSrcMask: B---E B---E 3739 // MaskMI: -----------|--E B------ 3740 // Result: ----- --- (Bad candidate) 3741 // 3742 // RotatedSrcMask wrap: 3743 // 0........31|32........63 3744 // RotatedSrcMask: --E B----|--E B---- 3745 // MaskMI: -----------|--E B------ 3746 // Result: --- -----|--- ----- (Bad candidate) 3747 // 3748 // One special case is RotatedSrcMask is a full set mask. 3749 // RotatedSrcMask full: 3750 // 0........31|32........63 3751 // RotatedSrcMask: ------EB---|-------EB--- 3752 // MaskMI: -----------|--E B------ 3753 // Result: -----------|--- ------- (Good candidate) 3754 3755 // Mark special case. 3756 bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31); 3757 3758 // For other MBMI > MEMI cases, just return. 3759 if ((MBMI > MEMI) && !SrcMaskFull) 3760 return false; 3761 3762 // Handle MBMI <= MEMI cases. 3763 APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI); 3764 // In MI, we only need low 32 bits of SrcMI, just consider about low 32 3765 // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0, 3766 // while in PowerPC ISA, lowerest bit is at index 63. 3767 APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc); 3768 3769 APInt RotatedSrcMask = MaskSrc.rotl(SHMI); 3770 APInt FinalMask = RotatedSrcMask & MaskMI; 3771 uint32_t NewMB, NewME; 3772 bool Simplified = false; 3773 3774 // If final mask is 0, MI result should be 0 too. 3775 if (FinalMask.isNullValue()) { 3776 bool Is64Bit = 3777 (MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec); 3778 Simplified = true; 3779 LLVM_DEBUG(dbgs() << "Replace Instr: "); 3780 LLVM_DEBUG(MI.dump()); 3781 3782 if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) { 3783 // Replace MI with "LI 0" 3784 MI.RemoveOperand(4); 3785 MI.RemoveOperand(3); 3786 MI.RemoveOperand(2); 3787 MI.getOperand(1).ChangeToImmediate(0); 3788 MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI)); 3789 } else { 3790 // Replace MI with "ANDI_rec reg, 0" 3791 MI.RemoveOperand(4); 3792 MI.RemoveOperand(3); 3793 MI.getOperand(2).setImm(0); 3794 MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 3795 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 3796 if (SrcMI->getOperand(1).isKill()) { 3797 MI.getOperand(1).setIsKill(true); 3798 SrcMI->getOperand(1).setIsKill(false); 3799 } else 3800 // About to replace MI.getOperand(1), clear its kill flag. 3801 MI.getOperand(1).setIsKill(false); 3802 } 3803 3804 LLVM_DEBUG(dbgs() << "With: "); 3805 LLVM_DEBUG(MI.dump()); 3806 3807 } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) && 3808 NewMB <= NewME) || 3809 SrcMaskFull) { 3810 // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger 3811 // than NewME. Otherwise we get a 64 bit value after folding, but MI 3812 // return a 32 bit value. 3813 Simplified = true; 3814 LLVM_DEBUG(dbgs() << "Converting Instr: "); 3815 LLVM_DEBUG(MI.dump()); 3816 3817 uint16_t NewSH = (SHSrc + SHMI) % 32; 3818 MI.getOperand(2).setImm(NewSH); 3819 // If SrcMI mask is full, no need to update MBMI and MEMI. 3820 if (!SrcMaskFull) { 3821 MI.getOperand(3).setImm(NewMB); 3822 MI.getOperand(4).setImm(NewME); 3823 } 3824 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 3825 if (SrcMI->getOperand(1).isKill()) { 3826 MI.getOperand(1).setIsKill(true); 3827 SrcMI->getOperand(1).setIsKill(false); 3828 } else 3829 // About to replace MI.getOperand(1), clear its kill flag. 3830 MI.getOperand(1).setIsKill(false); 3831 3832 LLVM_DEBUG(dbgs() << "To: "); 3833 LLVM_DEBUG(MI.dump()); 3834 } 3835 if (Simplified & MRI->use_nodbg_empty(FoldingReg) && 3836 !SrcMI->hasImplicitDef()) { 3837 // If FoldingReg has no non-debug use and it has no implicit def (it 3838 // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI. 3839 // Otherwise keep it. 3840 *ToErase = SrcMI; 3841 LLVM_DEBUG(dbgs() << "Delete dead instruction: "); 3842 LLVM_DEBUG(SrcMI->dump()); 3843 } 3844 return Simplified; 3845 } 3846 3847 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 3848 ImmInstrInfo &III, bool PostRA) const { 3849 // The vast majority of the instructions would need their operand 2 replaced 3850 // with an immediate when switching to the reg+imm form. A marked exception 3851 // are the update form loads/stores for which a constant operand 2 would need 3852 // to turn into a displacement and move operand 1 to the operand 2 position. 3853 III.ImmOpNo = 2; 3854 III.OpNoForForwarding = 2; 3855 III.ImmWidth = 16; 3856 III.ImmMustBeMultipleOf = 1; 3857 III.TruncateImmTo = 0; 3858 III.IsSummingOperands = false; 3859 switch (Opc) { 3860 default: return false; 3861 case PPC::ADD4: 3862 case PPC::ADD8: 3863 III.SignedImm = true; 3864 III.ZeroIsSpecialOrig = 0; 3865 III.ZeroIsSpecialNew = 1; 3866 III.IsCommutative = true; 3867 III.IsSummingOperands = true; 3868 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 3869 break; 3870 case PPC::ADDC: 3871 case PPC::ADDC8: 3872 III.SignedImm = true; 3873 III.ZeroIsSpecialOrig = 0; 3874 III.ZeroIsSpecialNew = 0; 3875 III.IsCommutative = true; 3876 III.IsSummingOperands = true; 3877 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 3878 break; 3879 case PPC::ADDC_rec: 3880 III.SignedImm = true; 3881 III.ZeroIsSpecialOrig = 0; 3882 III.ZeroIsSpecialNew = 0; 3883 III.IsCommutative = true; 3884 III.IsSummingOperands = true; 3885 III.ImmOpcode = PPC::ADDIC_rec; 3886 break; 3887 case PPC::SUBFC: 3888 case PPC::SUBFC8: 3889 III.SignedImm = true; 3890 III.ZeroIsSpecialOrig = 0; 3891 III.ZeroIsSpecialNew = 0; 3892 III.IsCommutative = false; 3893 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 3894 break; 3895 case PPC::CMPW: 3896 case PPC::CMPD: 3897 III.SignedImm = true; 3898 III.ZeroIsSpecialOrig = 0; 3899 III.ZeroIsSpecialNew = 0; 3900 III.IsCommutative = false; 3901 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 3902 break; 3903 case PPC::CMPLW: 3904 case PPC::CMPLD: 3905 III.SignedImm = false; 3906 III.ZeroIsSpecialOrig = 0; 3907 III.ZeroIsSpecialNew = 0; 3908 III.IsCommutative = false; 3909 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 3910 break; 3911 case PPC::AND_rec: 3912 case PPC::AND8_rec: 3913 case PPC::OR: 3914 case PPC::OR8: 3915 case PPC::XOR: 3916 case PPC::XOR8: 3917 III.SignedImm = false; 3918 III.ZeroIsSpecialOrig = 0; 3919 III.ZeroIsSpecialNew = 0; 3920 III.IsCommutative = true; 3921 switch(Opc) { 3922 default: llvm_unreachable("Unknown opcode"); 3923 case PPC::AND_rec: 3924 III.ImmOpcode = PPC::ANDI_rec; 3925 break; 3926 case PPC::AND8_rec: 3927 III.ImmOpcode = PPC::ANDI8_rec; 3928 break; 3929 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 3930 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 3931 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 3932 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 3933 } 3934 break; 3935 case PPC::RLWNM: 3936 case PPC::RLWNM8: 3937 case PPC::RLWNM_rec: 3938 case PPC::RLWNM8_rec: 3939 case PPC::SLW: 3940 case PPC::SLW8: 3941 case PPC::SLW_rec: 3942 case PPC::SLW8_rec: 3943 case PPC::SRW: 3944 case PPC::SRW8: 3945 case PPC::SRW_rec: 3946 case PPC::SRW8_rec: 3947 case PPC::SRAW: 3948 case PPC::SRAW_rec: 3949 III.SignedImm = false; 3950 III.ZeroIsSpecialOrig = 0; 3951 III.ZeroIsSpecialNew = 0; 3952 III.IsCommutative = false; 3953 // This isn't actually true, but the instructions ignore any of the 3954 // upper bits, so any immediate loaded with an LI is acceptable. 3955 // This does not apply to shift right algebraic because a value 3956 // out of range will produce a -1/0. 3957 III.ImmWidth = 16; 3958 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || 3959 Opc == PPC::RLWNM8_rec) 3960 III.TruncateImmTo = 5; 3961 else 3962 III.TruncateImmTo = 6; 3963 switch(Opc) { 3964 default: llvm_unreachable("Unknown opcode"); 3965 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 3966 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 3967 case PPC::RLWNM_rec: 3968 III.ImmOpcode = PPC::RLWINM_rec; 3969 break; 3970 case PPC::RLWNM8_rec: 3971 III.ImmOpcode = PPC::RLWINM8_rec; 3972 break; 3973 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 3974 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 3975 case PPC::SLW_rec: 3976 III.ImmOpcode = PPC::RLWINM_rec; 3977 break; 3978 case PPC::SLW8_rec: 3979 III.ImmOpcode = PPC::RLWINM8_rec; 3980 break; 3981 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 3982 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 3983 case PPC::SRW_rec: 3984 III.ImmOpcode = PPC::RLWINM_rec; 3985 break; 3986 case PPC::SRW8_rec: 3987 III.ImmOpcode = PPC::RLWINM8_rec; 3988 break; 3989 case PPC::SRAW: 3990 III.ImmWidth = 5; 3991 III.TruncateImmTo = 0; 3992 III.ImmOpcode = PPC::SRAWI; 3993 break; 3994 case PPC::SRAW_rec: 3995 III.ImmWidth = 5; 3996 III.TruncateImmTo = 0; 3997 III.ImmOpcode = PPC::SRAWI_rec; 3998 break; 3999 } 4000 break; 4001 case PPC::RLDCL: 4002 case PPC::RLDCL_rec: 4003 case PPC::RLDCR: 4004 case PPC::RLDCR_rec: 4005 case PPC::SLD: 4006 case PPC::SLD_rec: 4007 case PPC::SRD: 4008 case PPC::SRD_rec: 4009 case PPC::SRAD: 4010 case PPC::SRAD_rec: 4011 III.SignedImm = false; 4012 III.ZeroIsSpecialOrig = 0; 4013 III.ZeroIsSpecialNew = 0; 4014 III.IsCommutative = false; 4015 // This isn't actually true, but the instructions ignore any of the 4016 // upper bits, so any immediate loaded with an LI is acceptable. 4017 // This does not apply to shift right algebraic because a value 4018 // out of range will produce a -1/0. 4019 III.ImmWidth = 16; 4020 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || 4021 Opc == PPC::RLDCR_rec) 4022 III.TruncateImmTo = 6; 4023 else 4024 III.TruncateImmTo = 7; 4025 switch(Opc) { 4026 default: llvm_unreachable("Unknown opcode"); 4027 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 4028 case PPC::RLDCL_rec: 4029 III.ImmOpcode = PPC::RLDICL_rec; 4030 break; 4031 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 4032 case PPC::RLDCR_rec: 4033 III.ImmOpcode = PPC::RLDICR_rec; 4034 break; 4035 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 4036 case PPC::SLD_rec: 4037 III.ImmOpcode = PPC::RLDICR_rec; 4038 break; 4039 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 4040 case PPC::SRD_rec: 4041 III.ImmOpcode = PPC::RLDICL_rec; 4042 break; 4043 case PPC::SRAD: 4044 III.ImmWidth = 6; 4045 III.TruncateImmTo = 0; 4046 III.ImmOpcode = PPC::SRADI; 4047 break; 4048 case PPC::SRAD_rec: 4049 III.ImmWidth = 6; 4050 III.TruncateImmTo = 0; 4051 III.ImmOpcode = PPC::SRADI_rec; 4052 break; 4053 } 4054 break; 4055 // Loads and stores: 4056 case PPC::LBZX: 4057 case PPC::LBZX8: 4058 case PPC::LHZX: 4059 case PPC::LHZX8: 4060 case PPC::LHAX: 4061 case PPC::LHAX8: 4062 case PPC::LWZX: 4063 case PPC::LWZX8: 4064 case PPC::LWAX: 4065 case PPC::LDX: 4066 case PPC::LFSX: 4067 case PPC::LFDX: 4068 case PPC::STBX: 4069 case PPC::STBX8: 4070 case PPC::STHX: 4071 case PPC::STHX8: 4072 case PPC::STWX: 4073 case PPC::STWX8: 4074 case PPC::STDX: 4075 case PPC::STFSX: 4076 case PPC::STFDX: 4077 III.SignedImm = true; 4078 III.ZeroIsSpecialOrig = 1; 4079 III.ZeroIsSpecialNew = 2; 4080 III.IsCommutative = true; 4081 III.IsSummingOperands = true; 4082 III.ImmOpNo = 1; 4083 III.OpNoForForwarding = 2; 4084 switch(Opc) { 4085 default: llvm_unreachable("Unknown opcode"); 4086 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 4087 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 4088 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 4089 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 4090 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 4091 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 4092 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 4093 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 4094 case PPC::LWAX: 4095 III.ImmOpcode = PPC::LWA; 4096 III.ImmMustBeMultipleOf = 4; 4097 break; 4098 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 4099 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 4100 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 4101 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 4102 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 4103 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 4104 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 4105 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 4106 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 4107 case PPC::STDX: 4108 III.ImmOpcode = PPC::STD; 4109 III.ImmMustBeMultipleOf = 4; 4110 break; 4111 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 4112 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 4113 } 4114 break; 4115 case PPC::LBZUX: 4116 case PPC::LBZUX8: 4117 case PPC::LHZUX: 4118 case PPC::LHZUX8: 4119 case PPC::LHAUX: 4120 case PPC::LHAUX8: 4121 case PPC::LWZUX: 4122 case PPC::LWZUX8: 4123 case PPC::LDUX: 4124 case PPC::LFSUX: 4125 case PPC::LFDUX: 4126 case PPC::STBUX: 4127 case PPC::STBUX8: 4128 case PPC::STHUX: 4129 case PPC::STHUX8: 4130 case PPC::STWUX: 4131 case PPC::STWUX8: 4132 case PPC::STDUX: 4133 case PPC::STFSUX: 4134 case PPC::STFDUX: 4135 III.SignedImm = true; 4136 III.ZeroIsSpecialOrig = 2; 4137 III.ZeroIsSpecialNew = 3; 4138 III.IsCommutative = false; 4139 III.IsSummingOperands = true; 4140 III.ImmOpNo = 2; 4141 III.OpNoForForwarding = 3; 4142 switch(Opc) { 4143 default: llvm_unreachable("Unknown opcode"); 4144 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 4145 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 4146 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 4147 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 4148 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 4149 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 4150 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 4151 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 4152 case PPC::LDUX: 4153 III.ImmOpcode = PPC::LDU; 4154 III.ImmMustBeMultipleOf = 4; 4155 break; 4156 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 4157 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 4158 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 4159 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 4160 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 4161 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 4162 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 4163 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 4164 case PPC::STDUX: 4165 III.ImmOpcode = PPC::STDU; 4166 III.ImmMustBeMultipleOf = 4; 4167 break; 4168 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 4169 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 4170 } 4171 break; 4172 // Power9 and up only. For some of these, the X-Form version has access to all 4173 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 4174 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 4175 // into or stored from is one of the VR registers. 4176 case PPC::LXVX: 4177 case PPC::LXSSPX: 4178 case PPC::LXSDX: 4179 case PPC::STXVX: 4180 case PPC::STXSSPX: 4181 case PPC::STXSDX: 4182 case PPC::XFLOADf32: 4183 case PPC::XFLOADf64: 4184 case PPC::XFSTOREf32: 4185 case PPC::XFSTOREf64: 4186 if (!Subtarget.hasP9Vector()) 4187 return false; 4188 III.SignedImm = true; 4189 III.ZeroIsSpecialOrig = 1; 4190 III.ZeroIsSpecialNew = 2; 4191 III.IsCommutative = true; 4192 III.IsSummingOperands = true; 4193 III.ImmOpNo = 1; 4194 III.OpNoForForwarding = 2; 4195 III.ImmMustBeMultipleOf = 4; 4196 switch(Opc) { 4197 default: llvm_unreachable("Unknown opcode"); 4198 case PPC::LXVX: 4199 III.ImmOpcode = PPC::LXV; 4200 III.ImmMustBeMultipleOf = 16; 4201 break; 4202 case PPC::LXSSPX: 4203 if (PostRA) { 4204 if (IsVFReg) 4205 III.ImmOpcode = PPC::LXSSP; 4206 else { 4207 III.ImmOpcode = PPC::LFS; 4208 III.ImmMustBeMultipleOf = 1; 4209 } 4210 break; 4211 } 4212 LLVM_FALLTHROUGH; 4213 case PPC::XFLOADf32: 4214 III.ImmOpcode = PPC::DFLOADf32; 4215 break; 4216 case PPC::LXSDX: 4217 if (PostRA) { 4218 if (IsVFReg) 4219 III.ImmOpcode = PPC::LXSD; 4220 else { 4221 III.ImmOpcode = PPC::LFD; 4222 III.ImmMustBeMultipleOf = 1; 4223 } 4224 break; 4225 } 4226 LLVM_FALLTHROUGH; 4227 case PPC::XFLOADf64: 4228 III.ImmOpcode = PPC::DFLOADf64; 4229 break; 4230 case PPC::STXVX: 4231 III.ImmOpcode = PPC::STXV; 4232 III.ImmMustBeMultipleOf = 16; 4233 break; 4234 case PPC::STXSSPX: 4235 if (PostRA) { 4236 if (IsVFReg) 4237 III.ImmOpcode = PPC::STXSSP; 4238 else { 4239 III.ImmOpcode = PPC::STFS; 4240 III.ImmMustBeMultipleOf = 1; 4241 } 4242 break; 4243 } 4244 LLVM_FALLTHROUGH; 4245 case PPC::XFSTOREf32: 4246 III.ImmOpcode = PPC::DFSTOREf32; 4247 break; 4248 case PPC::STXSDX: 4249 if (PostRA) { 4250 if (IsVFReg) 4251 III.ImmOpcode = PPC::STXSD; 4252 else { 4253 III.ImmOpcode = PPC::STFD; 4254 III.ImmMustBeMultipleOf = 1; 4255 } 4256 break; 4257 } 4258 LLVM_FALLTHROUGH; 4259 case PPC::XFSTOREf64: 4260 III.ImmOpcode = PPC::DFSTOREf64; 4261 break; 4262 } 4263 break; 4264 } 4265 return true; 4266 } 4267 4268 // Utility function for swaping two arbitrary operands of an instruction. 4269 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 4270 assert(Op1 != Op2 && "Cannot swap operand with itself."); 4271 4272 unsigned MaxOp = std::max(Op1, Op2); 4273 unsigned MinOp = std::min(Op1, Op2); 4274 MachineOperand MOp1 = MI.getOperand(MinOp); 4275 MachineOperand MOp2 = MI.getOperand(MaxOp); 4276 MI.RemoveOperand(std::max(Op1, Op2)); 4277 MI.RemoveOperand(std::min(Op1, Op2)); 4278 4279 // If the operands we are swapping are the two at the end (the common case) 4280 // we can just remove both and add them in the opposite order. 4281 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 4282 MI.addOperand(MOp2); 4283 MI.addOperand(MOp1); 4284 } else { 4285 // Store all operands in a temporary vector, remove them and re-add in the 4286 // right order. 4287 SmallVector<MachineOperand, 2> MOps; 4288 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 4289 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 4290 MOps.push_back(MI.getOperand(i)); 4291 MI.RemoveOperand(i); 4292 } 4293 // MOp2 needs to be added next. 4294 MI.addOperand(MOp2); 4295 // Now add the rest. 4296 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 4297 if (i == MaxOp) 4298 MI.addOperand(MOp1); 4299 else { 4300 MI.addOperand(MOps.back()); 4301 MOps.pop_back(); 4302 } 4303 } 4304 } 4305 } 4306 4307 // Check if the 'MI' that has the index OpNoForForwarding 4308 // meets the requirement described in the ImmInstrInfo. 4309 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 4310 const ImmInstrInfo &III, 4311 unsigned OpNoForForwarding 4312 ) const { 4313 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 4314 // would not work pre-RA, we can only do the check post RA. 4315 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4316 if (MRI.isSSA()) 4317 return false; 4318 4319 // Cannot do the transform if MI isn't summing the operands. 4320 if (!III.IsSummingOperands) 4321 return false; 4322 4323 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 4324 if (!III.ZeroIsSpecialOrig) 4325 return false; 4326 4327 // We cannot do the transform if the operand we are trying to replace 4328 // isn't the same as the operand the instruction allows. 4329 if (OpNoForForwarding != III.OpNoForForwarding) 4330 return false; 4331 4332 // Check if the instruction we are trying to transform really has 4333 // the special zero register as its operand. 4334 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 4335 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 4336 return false; 4337 4338 // This machine instruction is convertible if it is, 4339 // 1. summing the operands. 4340 // 2. one of the operands is special zero register. 4341 // 3. the operand we are trying to replace is allowed by the MI. 4342 return true; 4343 } 4344 4345 // Check if the DefMI is the add inst and set the ImmMO and RegMO 4346 // accordingly. 4347 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 4348 const ImmInstrInfo &III, 4349 MachineOperand *&ImmMO, 4350 MachineOperand *&RegMO) const { 4351 unsigned Opc = DefMI.getOpcode(); 4352 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 4353 return false; 4354 4355 assert(DefMI.getNumOperands() >= 3 && 4356 "Add inst must have at least three operands"); 4357 RegMO = &DefMI.getOperand(1); 4358 ImmMO = &DefMI.getOperand(2); 4359 4360 // Before RA, ADDI first operand could be a frame index. 4361 if (!RegMO->isReg()) 4362 return false; 4363 4364 // This DefMI is elgible for forwarding if it is: 4365 // 1. add inst 4366 // 2. one of the operands is Imm/CPI/Global. 4367 return isAnImmediateOperand(*ImmMO); 4368 } 4369 4370 bool PPCInstrInfo::isRegElgibleForForwarding( 4371 const MachineOperand &RegMO, const MachineInstr &DefMI, 4372 const MachineInstr &MI, bool KillDefMI, 4373 bool &IsFwdFeederRegKilled) const { 4374 // x = addi y, imm 4375 // ... 4376 // z = lfdx 0, x -> z = lfd imm(y) 4377 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 4378 // of "y" between the DEF of "x" and "z". 4379 // The query is only valid post RA. 4380 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4381 if (MRI.isSSA()) 4382 return false; 4383 4384 Register Reg = RegMO.getReg(); 4385 4386 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 4387 MachineBasicBlock::const_reverse_iterator It = MI; 4388 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 4389 It++; 4390 for (; It != E; ++It) { 4391 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 4392 return false; 4393 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 4394 IsFwdFeederRegKilled = true; 4395 // Made it to DefMI without encountering a clobber. 4396 if ((&*It) == &DefMI) 4397 break; 4398 } 4399 assert((&*It) == &DefMI && "DefMI is missing"); 4400 4401 // If DefMI also defines the register to be forwarded, we can only forward it 4402 // if DefMI is being erased. 4403 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 4404 return KillDefMI; 4405 4406 return true; 4407 } 4408 4409 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 4410 const MachineInstr &DefMI, 4411 const ImmInstrInfo &III, 4412 int64_t &Imm, 4413 int64_t BaseImm) const { 4414 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 4415 if (DefMI.getOpcode() == PPC::ADDItocL) { 4416 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 4417 // However, we know that, it is 16-bit width, and has the alignment of 4. 4418 // Check if the instruction met the requirement. 4419 if (III.ImmMustBeMultipleOf > 4 || 4420 III.TruncateImmTo || III.ImmWidth != 16) 4421 return false; 4422 4423 // Going from XForm to DForm loads means that the displacement needs to be 4424 // not just an immediate but also a multiple of 4, or 16 depending on the 4425 // load. A DForm load cannot be represented if it is a multiple of say 2. 4426 // XForm loads do not have this restriction. 4427 if (ImmMO.isGlobal()) { 4428 const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout(); 4429 if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf) 4430 return false; 4431 } 4432 4433 return true; 4434 } 4435 4436 if (ImmMO.isImm()) { 4437 // It is Imm, we need to check if the Imm fit the range. 4438 // Sign-extend to 64-bits. 4439 // DefMI may be folded with another imm form instruction, the result Imm is 4440 // the sum of Imm of DefMI and BaseImm which is from imm form instruction. 4441 APInt ActualValue(64, ImmMO.getImm() + BaseImm, true); 4442 if (III.SignedImm && !ActualValue.isSignedIntN(III.ImmWidth)) 4443 return false; 4444 if (!III.SignedImm && !ActualValue.isIntN(III.ImmWidth)) 4445 return false; 4446 Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm); 4447 4448 if (Imm % III.ImmMustBeMultipleOf) 4449 return false; 4450 if (III.TruncateImmTo) 4451 Imm &= ((1 << III.TruncateImmTo) - 1); 4452 } 4453 else 4454 return false; 4455 4456 // This ImmMO is forwarded if it meets the requriement describle 4457 // in ImmInstrInfo 4458 return true; 4459 } 4460 4461 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI, 4462 unsigned OpNoForForwarding, 4463 MachineInstr **KilledDef) const { 4464 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4465 !DefMI.getOperand(1).isImm()) 4466 return false; 4467 4468 MachineFunction *MF = MI.getParent()->getParent(); 4469 MachineRegisterInfo *MRI = &MF->getRegInfo(); 4470 bool PostRA = !MRI->isSSA(); 4471 4472 int64_t Immediate = DefMI.getOperand(1).getImm(); 4473 // Sign-extend to 64-bits. 4474 int64_t SExtImm = SignExtend64<16>(Immediate); 4475 4476 bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill(); 4477 Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 4478 4479 bool ReplaceWithLI = false; 4480 bool Is64BitLI = false; 4481 int64_t NewImm = 0; 4482 bool SetCR = false; 4483 unsigned Opc = MI.getOpcode(); 4484 switch (Opc) { 4485 default: 4486 return false; 4487 4488 // FIXME: Any branches conditional on such a comparison can be made 4489 // unconditional. At this time, this happens too infrequently to be worth 4490 // the implementation effort, but if that ever changes, we could convert 4491 // such a pattern here. 4492 case PPC::CMPWI: 4493 case PPC::CMPLWI: 4494 case PPC::CMPDI: 4495 case PPC::CMPLDI: { 4496 // Doing this post-RA would require dataflow analysis to reliably find uses 4497 // of the CR register set by the compare. 4498 // No need to fixup killed/dead flag since this transformation is only valid 4499 // before RA. 4500 if (PostRA) 4501 return false; 4502 // If a compare-immediate is fed by an immediate and is itself an input of 4503 // an ISEL (the most common case) into a COPY of the correct register. 4504 bool Changed = false; 4505 Register DefReg = MI.getOperand(0).getReg(); 4506 int64_t Comparand = MI.getOperand(2).getImm(); 4507 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 4508 ? (Comparand | 0xFFFFFFFFFFFF0000) 4509 : Comparand; 4510 4511 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 4512 unsigned UseOpc = CompareUseMI.getOpcode(); 4513 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 4514 continue; 4515 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 4516 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 4517 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 4518 unsigned RegToCopy = 4519 selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg); 4520 if (RegToCopy == PPC::NoRegister) 4521 continue; 4522 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 4523 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 4524 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 4525 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 4526 CompareUseMI.RemoveOperand(3); 4527 CompareUseMI.RemoveOperand(2); 4528 continue; 4529 } 4530 LLVM_DEBUG( 4531 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 4532 LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump()); 4533 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 4534 // Convert to copy and remove unneeded operands. 4535 CompareUseMI.setDesc(get(PPC::COPY)); 4536 CompareUseMI.RemoveOperand(3); 4537 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 4538 CmpIselsConverted++; 4539 Changed = true; 4540 LLVM_DEBUG(CompareUseMI.dump()); 4541 } 4542 if (Changed) 4543 return true; 4544 // This may end up incremented multiple times since this function is called 4545 // during a fixed-point transformation, but it is only meant to indicate the 4546 // presence of this opportunity. 4547 MissedConvertibleImmediateInstrs++; 4548 return false; 4549 } 4550 4551 // Immediate forms - may simply be convertable to an LI. 4552 case PPC::ADDI: 4553 case PPC::ADDI8: { 4554 // Does the sum fit in a 16-bit signed field? 4555 int64_t Addend = MI.getOperand(2).getImm(); 4556 if (isInt<16>(Addend + SExtImm)) { 4557 ReplaceWithLI = true; 4558 Is64BitLI = Opc == PPC::ADDI8; 4559 NewImm = Addend + SExtImm; 4560 break; 4561 } 4562 return false; 4563 } 4564 case PPC::SUBFIC: 4565 case PPC::SUBFIC8: { 4566 // Only transform this if the CARRY implicit operand is dead. 4567 if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead()) 4568 return false; 4569 int64_t Minuend = MI.getOperand(2).getImm(); 4570 if (isInt<16>(Minuend - SExtImm)) { 4571 ReplaceWithLI = true; 4572 Is64BitLI = Opc == PPC::SUBFIC8; 4573 NewImm = Minuend - SExtImm; 4574 break; 4575 } 4576 return false; 4577 } 4578 case PPC::RLDICL: 4579 case PPC::RLDICL_rec: 4580 case PPC::RLDICL_32: 4581 case PPC::RLDICL_32_64: { 4582 // Use APInt's rotate function. 4583 int64_t SH = MI.getOperand(2).getImm(); 4584 int64_t MB = MI.getOperand(3).getImm(); 4585 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, 4586 SExtImm, true); 4587 InVal = InVal.rotl(SH); 4588 uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1; 4589 InVal &= Mask; 4590 // Can't replace negative values with an LI as that will sign-extend 4591 // and not clear the left bits. If we're setting the CR bit, we will use 4592 // ANDI_rec which won't sign extend, so that's safe. 4593 if (isUInt<15>(InVal.getSExtValue()) || 4594 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { 4595 ReplaceWithLI = true; 4596 Is64BitLI = Opc != PPC::RLDICL_32; 4597 NewImm = InVal.getSExtValue(); 4598 SetCR = Opc == PPC::RLDICL_rec; 4599 break; 4600 } 4601 return false; 4602 } 4603 case PPC::RLWINM: 4604 case PPC::RLWINM8: 4605 case PPC::RLWINM_rec: 4606 case PPC::RLWINM8_rec: { 4607 int64_t SH = MI.getOperand(2).getImm(); 4608 int64_t MB = MI.getOperand(3).getImm(); 4609 int64_t ME = MI.getOperand(4).getImm(); 4610 APInt InVal(32, SExtImm, true); 4611 InVal = InVal.rotl(SH); 4612 APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB); 4613 InVal &= Mask; 4614 // Can't replace negative values with an LI as that will sign-extend 4615 // and not clear the left bits. If we're setting the CR bit, we will use 4616 // ANDI_rec which won't sign extend, so that's safe. 4617 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 4618 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && 4619 isUInt<16>(InVal.getSExtValue())); 4620 if (ValueFits) { 4621 ReplaceWithLI = true; 4622 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; 4623 NewImm = InVal.getSExtValue(); 4624 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; 4625 break; 4626 } 4627 return false; 4628 } 4629 case PPC::ORI: 4630 case PPC::ORI8: 4631 case PPC::XORI: 4632 case PPC::XORI8: { 4633 int64_t LogicalImm = MI.getOperand(2).getImm(); 4634 int64_t Result = 0; 4635 if (Opc == PPC::ORI || Opc == PPC::ORI8) 4636 Result = LogicalImm | SExtImm; 4637 else 4638 Result = LogicalImm ^ SExtImm; 4639 if (isInt<16>(Result)) { 4640 ReplaceWithLI = true; 4641 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 4642 NewImm = Result; 4643 break; 4644 } 4645 return false; 4646 } 4647 } 4648 4649 if (ReplaceWithLI) { 4650 // We need to be careful with CR-setting instructions we're replacing. 4651 if (SetCR) { 4652 // We don't know anything about uses when we're out of SSA, so only 4653 // replace if the new immediate will be reproduced. 4654 bool ImmChanged = (SExtImm & NewImm) != NewImm; 4655 if (PostRA && ImmChanged) 4656 return false; 4657 4658 if (!PostRA) { 4659 // If the defining load-immediate has no other uses, we can just replace 4660 // the immediate with the new immediate. 4661 if (MRI->hasOneUse(DefMI.getOperand(0).getReg())) 4662 DefMI.getOperand(1).setImm(NewImm); 4663 4664 // If we're not using the GPR result of the CR-setting instruction, we 4665 // just need to and with zero/non-zero depending on the new immediate. 4666 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 4667 if (NewImm) { 4668 assert(Immediate && "Transformation converted zero to non-zero?"); 4669 NewImm = Immediate; 4670 } 4671 } else if (ImmChanged) 4672 return false; 4673 } 4674 } 4675 4676 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4677 LLVM_DEBUG(MI.dump()); 4678 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4679 LLVM_DEBUG(DefMI.dump()); 4680 LoadImmediateInfo LII; 4681 LII.Imm = NewImm; 4682 LII.Is64Bit = Is64BitLI; 4683 LII.SetCR = SetCR; 4684 // If we're setting the CR, the original load-immediate must be kept (as an 4685 // operand to ANDI_rec/ANDI8_rec). 4686 if (KilledDef && SetCR) 4687 *KilledDef = nullptr; 4688 replaceInstrWithLI(MI, LII); 4689 4690 // Fixup killed/dead flag after transformation. 4691 // Pattern: 4692 // ForwardingOperandReg = LI imm1 4693 // y = op2 imm2, ForwardingOperandReg(killed) 4694 if (IsForwardingOperandKilled) 4695 fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg); 4696 4697 LLVM_DEBUG(dbgs() << "With:\n"); 4698 LLVM_DEBUG(MI.dump()); 4699 return true; 4700 } 4701 return false; 4702 } 4703 4704 bool PPCInstrInfo::transformToNewImmFormFedByAdd( 4705 MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const { 4706 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 4707 bool PostRA = !MRI->isSSA(); 4708 // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI 4709 // for post-ra. 4710 if (PostRA) 4711 return false; 4712 4713 // Only handle load/store. 4714 if (!MI.mayLoadOrStore()) 4715 return false; 4716 4717 unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode()); 4718 4719 assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) && 4720 "MI must have x-form opcode"); 4721 4722 // get Imm Form info. 4723 ImmInstrInfo III; 4724 bool IsVFReg = MI.getOperand(0).isReg() 4725 ? isVFRegister(MI.getOperand(0).getReg()) 4726 : false; 4727 4728 if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA)) 4729 return false; 4730 4731 if (!III.IsSummingOperands) 4732 return false; 4733 4734 if (OpNoForForwarding != III.OpNoForForwarding) 4735 return false; 4736 4737 MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo); 4738 if (!ImmOperandMI.isImm()) 4739 return false; 4740 4741 // Check DefMI. 4742 MachineOperand *ImmMO = nullptr; 4743 MachineOperand *RegMO = nullptr; 4744 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4745 return false; 4746 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4747 4748 // Check Imm. 4749 // Set ImmBase from imm instruction as base and get new Imm inside 4750 // isImmElgibleForForwarding. 4751 int64_t ImmBase = ImmOperandMI.getImm(); 4752 int64_t Imm = 0; 4753 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase)) 4754 return false; 4755 4756 // Get killed info in case fixup needed after transformation. 4757 unsigned ForwardKilledOperandReg = ~0U; 4758 if (MI.getOperand(III.OpNoForForwarding).isKill()) 4759 ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg(); 4760 4761 // Do the transform 4762 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4763 LLVM_DEBUG(MI.dump()); 4764 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4765 LLVM_DEBUG(DefMI.dump()); 4766 4767 MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg()); 4768 if (RegMO->isKill()) { 4769 MI.getOperand(III.OpNoForForwarding).setIsKill(true); 4770 // Clear the killed flag in RegMO. Doing this here can handle some cases 4771 // that DefMI and MI are not in same basic block. 4772 RegMO->setIsKill(false); 4773 } 4774 MI.getOperand(III.ImmOpNo).setImm(Imm); 4775 4776 // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block. 4777 if (DefMI.getParent() == MI.getParent()) { 4778 // Check if reg is killed between MI and DefMI. 4779 auto IsKilledFor = [&](unsigned Reg) { 4780 MachineBasicBlock::const_reverse_iterator It = MI; 4781 MachineBasicBlock::const_reverse_iterator E = DefMI; 4782 It++; 4783 for (; It != E; ++It) { 4784 if (It->killsRegister(Reg)) 4785 return true; 4786 } 4787 return false; 4788 }; 4789 4790 // Update kill flag 4791 if (RegMO->isKill() || IsKilledFor(RegMO->getReg())) 4792 fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); 4793 if (ForwardKilledOperandReg != ~0U) 4794 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4795 } 4796 4797 LLVM_DEBUG(dbgs() << "With:\n"); 4798 LLVM_DEBUG(MI.dump()); 4799 return true; 4800 } 4801 4802 // If an X-Form instruction is fed by an add-immediate and one of its operands 4803 // is the literal zero, attempt to forward the source of the add-immediate to 4804 // the corresponding D-Form instruction with the displacement coming from 4805 // the immediate being added. 4806 bool PPCInstrInfo::transformToImmFormFedByAdd( 4807 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 4808 MachineInstr &DefMI, bool KillDefMI) const { 4809 // RegMO ImmMO 4810 // | | 4811 // x = addi reg, imm <----- DefMI 4812 // y = op 0 , x <----- MI 4813 // | 4814 // OpNoForForwarding 4815 // Check if the MI meet the requirement described in the III. 4816 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 4817 return false; 4818 4819 // Check if the DefMI meet the requirement 4820 // described in the III. If yes, set the ImmMO and RegMO accordingly. 4821 MachineOperand *ImmMO = nullptr; 4822 MachineOperand *RegMO = nullptr; 4823 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4824 return false; 4825 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4826 4827 // As we get the Imm operand now, we need to check if the ImmMO meet 4828 // the requirement described in the III. If yes set the Imm. 4829 int64_t Imm = 0; 4830 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 4831 return false; 4832 4833 bool IsFwdFeederRegKilled = false; 4834 // Check if the RegMO can be forwarded to MI. 4835 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 4836 IsFwdFeederRegKilled)) 4837 return false; 4838 4839 // Get killed info in case fixup needed after transformation. 4840 unsigned ForwardKilledOperandReg = ~0U; 4841 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4842 bool PostRA = !MRI.isSSA(); 4843 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 4844 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 4845 4846 // We know that, the MI and DefMI both meet the pattern, and 4847 // the Imm also meet the requirement with the new Imm-form. 4848 // It is safe to do the transformation now. 4849 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4850 LLVM_DEBUG(MI.dump()); 4851 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4852 LLVM_DEBUG(DefMI.dump()); 4853 4854 // Update the base reg first. 4855 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 4856 false, false, 4857 RegMO->isKill()); 4858 4859 // Then, update the imm. 4860 if (ImmMO->isImm()) { 4861 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 4862 // directly. 4863 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 4864 } 4865 else { 4866 // Otherwise, it is Constant Pool Index(CPI) or Global, 4867 // which is relocation in fact. We need to replace the special zero 4868 // register with ImmMO. 4869 // Before that, we need to fixup the target flags for imm. 4870 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 4871 if (DefMI.getOpcode() == PPC::ADDItocL) 4872 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 4873 4874 // MI didn't have the interface such as MI.setOperand(i) though 4875 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 4876 // ImmMO, we need to remove ZERO operand and all the operands behind it, 4877 // and, add the ImmMO, then, move back all the operands behind ZERO. 4878 SmallVector<MachineOperand, 2> MOps; 4879 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 4880 MOps.push_back(MI.getOperand(i)); 4881 MI.RemoveOperand(i); 4882 } 4883 4884 // Remove the last MO in the list, which is ZERO operand in fact. 4885 MOps.pop_back(); 4886 // Add the imm operand. 4887 MI.addOperand(*ImmMO); 4888 // Now add the rest back. 4889 for (auto &MO : MOps) 4890 MI.addOperand(MO); 4891 } 4892 4893 // Update the opcode. 4894 MI.setDesc(get(III.ImmOpcode)); 4895 4896 // Fix up killed/dead flag after transformation. 4897 // Pattern 1: 4898 // x = ADD KilledFwdFeederReg, imm 4899 // n = opn KilledFwdFeederReg(killed), regn 4900 // y = XOP 0, x 4901 // Pattern 2: 4902 // x = ADD reg(killed), imm 4903 // y = XOP 0, x 4904 if (IsFwdFeederRegKilled || RegMO->isKill()) 4905 fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); 4906 // Pattern 3: 4907 // ForwardKilledOperandReg = ADD reg, imm 4908 // y = XOP 0, ForwardKilledOperandReg(killed) 4909 if (ForwardKilledOperandReg != ~0U) 4910 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4911 4912 LLVM_DEBUG(dbgs() << "With:\n"); 4913 LLVM_DEBUG(MI.dump()); 4914 4915 return true; 4916 } 4917 4918 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 4919 const ImmInstrInfo &III, 4920 unsigned ConstantOpNo, 4921 MachineInstr &DefMI) const { 4922 // DefMI must be LI or LI8. 4923 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4924 !DefMI.getOperand(1).isImm()) 4925 return false; 4926 4927 // Get Imm operand and Sign-extend to 64-bits. 4928 int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm()); 4929 4930 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4931 bool PostRA = !MRI.isSSA(); 4932 // Exit early if we can't convert this. 4933 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 4934 return false; 4935 if (Imm % III.ImmMustBeMultipleOf) 4936 return false; 4937 if (III.TruncateImmTo) 4938 Imm &= ((1 << III.TruncateImmTo) - 1); 4939 if (III.SignedImm) { 4940 APInt ActualValue(64, Imm, true); 4941 if (!ActualValue.isSignedIntN(III.ImmWidth)) 4942 return false; 4943 } else { 4944 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 4945 if ((uint64_t)Imm > UnsignedMax) 4946 return false; 4947 } 4948 4949 // If we're post-RA, the instructions don't agree on whether register zero is 4950 // special, we can transform this as long as the register operand that will 4951 // end up in the location where zero is special isn't R0. 4952 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 4953 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 4954 III.ZeroIsSpecialNew + 1; 4955 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 4956 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 4957 // If R0 is in the operand where zero is special for the new instruction, 4958 // it is unsafe to transform if the constant operand isn't that operand. 4959 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 4960 ConstantOpNo != III.ZeroIsSpecialNew) 4961 return false; 4962 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 4963 ConstantOpNo != PosForOrigZero) 4964 return false; 4965 } 4966 4967 // Get killed info in case fixup needed after transformation. 4968 unsigned ForwardKilledOperandReg = ~0U; 4969 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 4970 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 4971 4972 unsigned Opc = MI.getOpcode(); 4973 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || 4974 Opc == PPC::SRW || Opc == PPC::SRW_rec || 4975 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || 4976 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; 4977 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || 4978 Opc == PPC::SRD || Opc == PPC::SRD_rec; 4979 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || 4980 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; 4981 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || 4982 Opc == PPC::SRD_rec; 4983 4984 MI.setDesc(get(III.ImmOpcode)); 4985 if (ConstantOpNo == III.OpNoForForwarding) { 4986 // Converting shifts to immediate form is a bit tricky since they may do 4987 // one of three things: 4988 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 4989 // 2. If the shift amount is zero, the result is unchanged (save for maybe 4990 // setting CR0) 4991 // 3. If the shift amount is in [1, OpSize), it's just a shift 4992 if (SpecialShift32 || SpecialShift64) { 4993 LoadImmediateInfo LII; 4994 LII.Imm = 0; 4995 LII.SetCR = SetCR; 4996 LII.Is64Bit = SpecialShift64; 4997 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 4998 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 4999 replaceInstrWithLI(MI, LII); 5000 // Shifts by zero don't change the value. If we don't need to set CR0, 5001 // just convert this to a COPY. Can't do this post-RA since we've already 5002 // cleaned up the copies. 5003 else if (!SetCR && ShAmt == 0 && !PostRA) { 5004 MI.RemoveOperand(2); 5005 MI.setDesc(get(PPC::COPY)); 5006 } else { 5007 // The 32 bit and 64 bit instructions are quite different. 5008 if (SpecialShift32) { 5009 // Left shifts use (N, 0, 31-N). 5010 // Right shifts use (32-N, N, 31) if 0 < N < 32. 5011 // use (0, 0, 31) if N == 0. 5012 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; 5013 uint64_t MB = RightShift ? ShAmt : 0; 5014 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 5015 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 5016 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 5017 .addImm(ME); 5018 } else { 5019 // Left shifts use (N, 63-N). 5020 // Right shifts use (64-N, N) if 0 < N < 64. 5021 // use (0, 0) if N == 0. 5022 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; 5023 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 5024 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 5025 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 5026 } 5027 } 5028 } else 5029 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 5030 } 5031 // Convert commutative instructions (switch the operands and convert the 5032 // desired one to an immediate. 5033 else if (III.IsCommutative) { 5034 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 5035 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 5036 } else 5037 llvm_unreachable("Should have exited early!"); 5038 5039 // For instructions for which the constant register replaces a different 5040 // operand than where the immediate goes, we need to swap them. 5041 if (III.OpNoForForwarding != III.ImmOpNo) 5042 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 5043 5044 // If the special R0/X0 register index are different for original instruction 5045 // and new instruction, we need to fix up the register class in new 5046 // instruction. 5047 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 5048 if (III.ZeroIsSpecialNew) { 5049 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 5050 // need to fix up register class. 5051 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 5052 if (Register::isVirtualRegister(RegToModify)) { 5053 const TargetRegisterClass *NewRC = 5054 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 5055 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 5056 MRI.setRegClass(RegToModify, NewRC); 5057 } 5058 } 5059 } 5060 5061 // Fix up killed/dead flag after transformation. 5062 // Pattern: 5063 // ForwardKilledOperandReg = LI imm 5064 // y = XOP reg, ForwardKilledOperandReg(killed) 5065 if (ForwardKilledOperandReg != ~0U) 5066 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 5067 return true; 5068 } 5069 5070 const TargetRegisterClass * 5071 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 5072 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 5073 return &PPC::VSRCRegClass; 5074 return RC; 5075 } 5076 5077 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 5078 return PPC::getRecordFormOpcode(Opcode); 5079 } 5080 5081 // This function returns true if the machine instruction 5082 // always outputs a value by sign-extending a 32 bit value, 5083 // i.e. 0 to 31-th bits are same as 32-th bit. 5084 static bool isSignExtendingOp(const MachineInstr &MI) { 5085 int Opcode = MI.getOpcode(); 5086 if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS || 5087 Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec || 5088 Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA || 5089 Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 5090 Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 || 5091 Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX || 5092 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU || 5093 Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 5094 Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 || 5095 Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 5096 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB || 5097 Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH || 5098 Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 || 5099 Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW || 5100 Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 || 5101 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 5102 Opcode == PPC::EXTSB8_32_64) 5103 return true; 5104 5105 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 5106 return true; 5107 5108 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 5109 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && 5110 MI.getOperand(3).getImm() > 0 && 5111 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 5112 return true; 5113 5114 return false; 5115 } 5116 5117 // This function returns true if the machine instruction 5118 // always outputs zeros in higher 32 bits. 5119 static bool isZeroExtendingOp(const MachineInstr &MI) { 5120 int Opcode = MI.getOpcode(); 5121 // The 16-bit immediate is sign-extended in li/lis. 5122 // If the most significant bit is zero, all higher bits are zero. 5123 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 5124 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 5125 int64_t Imm = MI.getOperand(1).getImm(); 5126 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 5127 return true; 5128 } 5129 5130 // We have some variations of rotate-and-mask instructions 5131 // that clear higher 32-bits. 5132 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 5133 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || 5134 Opcode == PPC::RLDICL_32_64) && 5135 MI.getOperand(3).getImm() >= 32) 5136 return true; 5137 5138 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 5139 MI.getOperand(3).getImm() >= 32 && 5140 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 5141 return true; 5142 5143 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 5144 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 5145 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 5146 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 5147 return true; 5148 5149 // There are other instructions that clear higher 32-bits. 5150 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec || 5151 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec || 5152 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 5153 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec || 5154 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec || 5155 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW || 5156 Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec || 5157 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI || 5158 Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI || 5159 Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX || 5160 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX || 5161 Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX || 5162 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ || 5163 Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 5164 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 || 5165 Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 5166 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 || 5167 Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 5168 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 5169 Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec || 5170 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec || 5171 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec || 5172 Opcode == PPC::MFVSRWZ) 5173 return true; 5174 5175 return false; 5176 } 5177 5178 // This function returns true if the input MachineInstr is a TOC save 5179 // instruction. 5180 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 5181 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 5182 return false; 5183 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5184 unsigned StackOffset = MI.getOperand(1).getImm(); 5185 Register StackReg = MI.getOperand(2).getReg(); 5186 Register SPReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 5187 if (StackReg == SPReg && StackOffset == TOCSaveOffset) 5188 return true; 5189 5190 return false; 5191 } 5192 5193 // We limit the max depth to track incoming values of PHIs or binary ops 5194 // (e.g. AND) to avoid excessive cost. 5195 const unsigned MAX_DEPTH = 1; 5196 5197 bool 5198 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 5199 const unsigned Depth) const { 5200 const MachineFunction *MF = MI.getParent()->getParent(); 5201 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 5202 5203 // If we know this instruction returns sign- or zero-extended result, 5204 // return true. 5205 if (SignExt ? isSignExtendingOp(MI): 5206 isZeroExtendingOp(MI)) 5207 return true; 5208 5209 switch (MI.getOpcode()) { 5210 case PPC::COPY: { 5211 Register SrcReg = MI.getOperand(1).getReg(); 5212 5213 // In both ELFv1 and v2 ABI, method parameters and the return value 5214 // are sign- or zero-extended. 5215 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 5216 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 5217 // We check the ZExt/SExt flags for a method parameter. 5218 if (MI.getParent()->getBasicBlock() == 5219 &MF->getFunction().getEntryBlock()) { 5220 Register VReg = MI.getOperand(0).getReg(); 5221 if (MF->getRegInfo().isLiveIn(VReg)) 5222 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 5223 FuncInfo->isLiveInZExt(VReg); 5224 } 5225 5226 // For a method return value, we check the ZExt/SExt flags in attribute. 5227 // We assume the following code sequence for method call. 5228 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 5229 // BL8_NOP @func,... 5230 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 5231 // %5 = COPY %x3; G8RC:%5 5232 if (SrcReg == PPC::X3) { 5233 const MachineBasicBlock *MBB = MI.getParent(); 5234 MachineBasicBlock::const_instr_iterator II = 5235 MachineBasicBlock::const_instr_iterator(&MI); 5236 if (II != MBB->instr_begin() && 5237 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 5238 const MachineInstr &CallMI = *(--II); 5239 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 5240 const Function *CalleeFn = 5241 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 5242 if (!CalleeFn) 5243 return false; 5244 const IntegerType *IntTy = 5245 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 5246 const AttributeSet &Attrs = CalleeFn->getAttributes().getRetAttrs(); 5247 if (IntTy && IntTy->getBitWidth() <= 32) 5248 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 5249 Attribute::ZExt); 5250 } 5251 } 5252 } 5253 } 5254 5255 // If this is a copy from another register, we recursively check source. 5256 if (!Register::isVirtualRegister(SrcReg)) 5257 return false; 5258 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 5259 if (SrcMI != NULL) 5260 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 5261 5262 return false; 5263 } 5264 5265 case PPC::ANDI_rec: 5266 case PPC::ANDIS_rec: 5267 case PPC::ORI: 5268 case PPC::ORIS: 5269 case PPC::XORI: 5270 case PPC::XORIS: 5271 case PPC::ANDI8_rec: 5272 case PPC::ANDIS8_rec: 5273 case PPC::ORI8: 5274 case PPC::ORIS8: 5275 case PPC::XORI8: 5276 case PPC::XORIS8: { 5277 // logical operation with 16-bit immediate does not change the upper bits. 5278 // So, we track the operand register as we do for register copy. 5279 Register SrcReg = MI.getOperand(1).getReg(); 5280 if (!Register::isVirtualRegister(SrcReg)) 5281 return false; 5282 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 5283 if (SrcMI != NULL) 5284 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 5285 5286 return false; 5287 } 5288 5289 // If all incoming values are sign-/zero-extended, 5290 // the output of OR, ISEL or PHI is also sign-/zero-extended. 5291 case PPC::OR: 5292 case PPC::OR8: 5293 case PPC::ISEL: 5294 case PPC::PHI: { 5295 if (Depth >= MAX_DEPTH) 5296 return false; 5297 5298 // The input registers for PHI are operand 1, 3, ... 5299 // The input registers for others are operand 1 and 2. 5300 unsigned E = 3, D = 1; 5301 if (MI.getOpcode() == PPC::PHI) { 5302 E = MI.getNumOperands(); 5303 D = 2; 5304 } 5305 5306 for (unsigned I = 1; I != E; I += D) { 5307 if (MI.getOperand(I).isReg()) { 5308 Register SrcReg = MI.getOperand(I).getReg(); 5309 if (!Register::isVirtualRegister(SrcReg)) 5310 return false; 5311 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 5312 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 5313 return false; 5314 } 5315 else 5316 return false; 5317 } 5318 return true; 5319 } 5320 5321 // If at least one of the incoming values of an AND is zero extended 5322 // then the output is also zero-extended. If both of the incoming values 5323 // are sign-extended then the output is also sign extended. 5324 case PPC::AND: 5325 case PPC::AND8: { 5326 if (Depth >= MAX_DEPTH) 5327 return false; 5328 5329 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 5330 5331 Register SrcReg1 = MI.getOperand(1).getReg(); 5332 Register SrcReg2 = MI.getOperand(2).getReg(); 5333 5334 if (!Register::isVirtualRegister(SrcReg1) || 5335 !Register::isVirtualRegister(SrcReg2)) 5336 return false; 5337 5338 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 5339 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 5340 if (!MISrc1 || !MISrc2) 5341 return false; 5342 5343 if(SignExt) 5344 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 5345 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 5346 else 5347 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 5348 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 5349 } 5350 5351 default: 5352 break; 5353 } 5354 return false; 5355 } 5356 5357 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 5358 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 5359 } 5360 5361 namespace { 5362 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 5363 MachineInstr *Loop, *EndLoop, *LoopCount; 5364 MachineFunction *MF; 5365 const TargetInstrInfo *TII; 5366 int64_t TripCount; 5367 5368 public: 5369 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 5370 MachineInstr *LoopCount) 5371 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 5372 MF(Loop->getParent()->getParent()), 5373 TII(MF->getSubtarget().getInstrInfo()) { 5374 // Inspect the Loop instruction up-front, as it may be deleted when we call 5375 // createTripCountGreaterCondition. 5376 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 5377 TripCount = LoopCount->getOperand(1).getImm(); 5378 else 5379 TripCount = -1; 5380 } 5381 5382 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 5383 // Only ignore the terminator. 5384 return MI == EndLoop; 5385 } 5386 5387 Optional<bool> 5388 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 5389 SmallVectorImpl<MachineOperand> &Cond) override { 5390 if (TripCount == -1) { 5391 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 5392 // so we don't need to generate any thing here. 5393 Cond.push_back(MachineOperand::CreateImm(0)); 5394 Cond.push_back(MachineOperand::CreateReg( 5395 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 5396 true)); 5397 return {}; 5398 } 5399 5400 return TripCount > TC; 5401 } 5402 5403 void setPreheader(MachineBasicBlock *NewPreheader) override { 5404 // Do nothing. We want the LOOP setup instruction to stay in the *old* 5405 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 5406 } 5407 5408 void adjustTripCount(int TripCountAdjust) override { 5409 // If the loop trip count is a compile-time value, then just change the 5410 // value. 5411 if (LoopCount->getOpcode() == PPC::LI8 || 5412 LoopCount->getOpcode() == PPC::LI) { 5413 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 5414 LoopCount->getOperand(1).setImm(TripCount); 5415 return; 5416 } 5417 5418 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 5419 // so we don't need to generate any thing here. 5420 } 5421 5422 void disposed() override { 5423 Loop->eraseFromParent(); 5424 // Ensure the loop setup instruction is deleted too. 5425 LoopCount->eraseFromParent(); 5426 } 5427 }; 5428 } // namespace 5429 5430 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 5431 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 5432 // We really "analyze" only hardware loops right now. 5433 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 5434 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 5435 if (Preheader == LoopBB) 5436 Preheader = *std::next(LoopBB->pred_begin()); 5437 MachineFunction *MF = Preheader->getParent(); 5438 5439 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 5440 SmallPtrSet<MachineBasicBlock *, 8> Visited; 5441 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 5442 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 5443 MachineRegisterInfo &MRI = MF->getRegInfo(); 5444 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 5445 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 5446 } 5447 } 5448 return nullptr; 5449 } 5450 5451 MachineInstr *PPCInstrInfo::findLoopInstr( 5452 MachineBasicBlock &PreHeader, 5453 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 5454 5455 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 5456 5457 // The loop set-up instruction should be in preheader 5458 for (auto &I : PreHeader.instrs()) 5459 if (I.getOpcode() == LOOPi) 5460 return &I; 5461 return nullptr; 5462 } 5463 5464 // Return true if get the base operand, byte offset of an instruction and the 5465 // memory width. Width is the size of memory that is being loaded/stored. 5466 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 5467 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, 5468 unsigned &Width, const TargetRegisterInfo *TRI) const { 5469 if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3) 5470 return false; 5471 5472 // Handle only loads/stores with base register followed by immediate offset. 5473 if (!LdSt.getOperand(1).isImm() || 5474 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 5475 return false; 5476 if (!LdSt.getOperand(1).isImm() || 5477 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 5478 return false; 5479 5480 if (!LdSt.hasOneMemOperand()) 5481 return false; 5482 5483 Width = (*LdSt.memoperands_begin())->getSize(); 5484 Offset = LdSt.getOperand(1).getImm(); 5485 BaseReg = &LdSt.getOperand(2); 5486 return true; 5487 } 5488 5489 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 5490 const MachineInstr &MIa, const MachineInstr &MIb) const { 5491 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 5492 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 5493 5494 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 5495 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 5496 return false; 5497 5498 // Retrieve the base register, offset from the base register and width. Width 5499 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 5500 // base registers are identical, and the offset of a lower memory access + 5501 // the width doesn't overlap the offset of a higher memory access, 5502 // then the memory accesses are different. 5503 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5504 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 5505 int64_t OffsetA = 0, OffsetB = 0; 5506 unsigned int WidthA = 0, WidthB = 0; 5507 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 5508 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 5509 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 5510 int LowOffset = std::min(OffsetA, OffsetB); 5511 int HighOffset = std::max(OffsetA, OffsetB); 5512 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 5513 if (LowOffset + LowWidth <= HighOffset) 5514 return true; 5515 } 5516 } 5517 return false; 5518 } 5519