1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/PseudoSourceValue.h" 31 #include "llvm/CodeGen/RegisterClassInfo.h" 32 #include "llvm/CodeGen/RegisterPressure.h" 33 #include "llvm/CodeGen/ScheduleDAG.h" 34 #include "llvm/CodeGen/SlotIndexes.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/MCInst.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/TargetRegistry.h" 42 #include "llvm/Support/raw_ostream.h" 43 44 using namespace llvm; 45 46 #define DEBUG_TYPE "ppc-instr-info" 47 48 #define GET_INSTRMAP_INFO 49 #define GET_INSTRINFO_CTOR_DTOR 50 #include "PPCGenInstrInfo.inc" 51 52 STATISTIC(NumStoreSPILLVSRRCAsVec, 53 "Number of spillvsrrc spilled to stack as vec"); 54 STATISTIC(NumStoreSPILLVSRRCAsGpr, 55 "Number of spillvsrrc spilled to stack as gpr"); 56 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 57 STATISTIC(CmpIselsConverted, 58 "Number of ISELs that depend on comparison of constants converted"); 59 STATISTIC(MissedConvertibleImmediateInstrs, 60 "Number of compare-immediate instructions fed by constants"); 61 STATISTIC(NumRcRotatesConvertedToRcAnd, 62 "Number of record-form rotates converted to record-form andi"); 63 64 static cl:: 65 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 66 cl::desc("Disable analysis for CTR loops")); 67 68 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 69 cl::desc("Disable compare instruction optimization"), cl::Hidden); 70 71 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 72 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 73 cl::Hidden); 74 75 static cl::opt<bool> 76 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 77 cl::desc("Use the old (incorrect) instruction latency calculation")); 78 79 static cl::opt<float> 80 FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5), 81 cl::desc("register pressure factor for the transformations.")); 82 83 static cl::opt<bool> EnableFMARegPressureReduction( 84 "ppc-fma-rp-reduction", cl::Hidden, cl::init(true), 85 cl::desc("enable register pressure reduce in machine combiner pass.")); 86 87 // Pin the vtable to this file. 88 void PPCInstrInfo::anchor() {} 89 90 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 91 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 92 /* CatchRetOpcode */ -1, 93 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 94 Subtarget(STI), RI(STI.getTargetMachine()) {} 95 96 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 97 /// this target when scheduling the DAG. 98 ScheduleHazardRecognizer * 99 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 100 const ScheduleDAG *DAG) const { 101 unsigned Directive = 102 static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); 103 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 104 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 105 const InstrItineraryData *II = 106 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 107 return new ScoreboardHazardRecognizer(II, DAG); 108 } 109 110 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 111 } 112 113 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 114 /// to use for this target when scheduling the DAG. 115 ScheduleHazardRecognizer * 116 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 117 const ScheduleDAG *DAG) const { 118 unsigned Directive = 119 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); 120 121 // FIXME: Leaving this as-is until we have POWER9 scheduling info 122 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 123 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 124 125 // Most subtargets use a PPC970 recognizer. 126 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 127 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 128 assert(DAG->TII && "No InstrInfo?"); 129 130 return new PPCHazardRecognizer970(*DAG); 131 } 132 133 return new ScoreboardHazardRecognizer(II, DAG); 134 } 135 136 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 137 const MachineInstr &MI, 138 unsigned *PredCost) const { 139 if (!ItinData || UseOldLatencyCalc) 140 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 141 142 // The default implementation of getInstrLatency calls getStageLatency, but 143 // getStageLatency does not do the right thing for us. While we have 144 // itinerary, most cores are fully pipelined, and so the itineraries only 145 // express the first part of the pipeline, not every stage. Instead, we need 146 // to use the listed output operand cycle number (using operand 0 here, which 147 // is an output). 148 149 unsigned Latency = 1; 150 unsigned DefClass = MI.getDesc().getSchedClass(); 151 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 152 const MachineOperand &MO = MI.getOperand(i); 153 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 154 continue; 155 156 int Cycle = ItinData->getOperandCycle(DefClass, i); 157 if (Cycle < 0) 158 continue; 159 160 Latency = std::max(Latency, (unsigned) Cycle); 161 } 162 163 return Latency; 164 } 165 166 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 167 const MachineInstr &DefMI, unsigned DefIdx, 168 const MachineInstr &UseMI, 169 unsigned UseIdx) const { 170 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 171 UseMI, UseIdx); 172 173 if (!DefMI.getParent()) 174 return Latency; 175 176 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 177 Register Reg = DefMO.getReg(); 178 179 bool IsRegCR; 180 if (Register::isVirtualRegister(Reg)) { 181 const MachineRegisterInfo *MRI = 182 &DefMI.getParent()->getParent()->getRegInfo(); 183 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 184 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 185 } else { 186 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 187 PPC::CRBITRCRegClass.contains(Reg); 188 } 189 190 if (UseMI.isBranch() && IsRegCR) { 191 if (Latency < 0) 192 Latency = getInstrLatency(ItinData, DefMI); 193 194 // On some cores, there is an additional delay between writing to a condition 195 // register, and using it from a branch. 196 unsigned Directive = Subtarget.getCPUDirective(); 197 switch (Directive) { 198 default: break; 199 case PPC::DIR_7400: 200 case PPC::DIR_750: 201 case PPC::DIR_970: 202 case PPC::DIR_E5500: 203 case PPC::DIR_PWR4: 204 case PPC::DIR_PWR5: 205 case PPC::DIR_PWR5X: 206 case PPC::DIR_PWR6: 207 case PPC::DIR_PWR6X: 208 case PPC::DIR_PWR7: 209 case PPC::DIR_PWR8: 210 // FIXME: Is this needed for POWER9? 211 Latency += 2; 212 break; 213 } 214 } 215 216 return Latency; 217 } 218 219 /// This is an architecture-specific helper function of reassociateOps. 220 /// Set special operand attributes for new instructions after reassociation. 221 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, 222 MachineInstr &OldMI2, 223 MachineInstr &NewMI1, 224 MachineInstr &NewMI2) const { 225 // Propagate FP flags from the original instructions. 226 // But clear poison-generating flags because those may not be valid now. 227 uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags(); 228 NewMI1.setFlags(IntersectedFlags); 229 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap); 230 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap); 231 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact); 232 233 NewMI2.setFlags(IntersectedFlags); 234 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap); 235 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap); 236 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact); 237 } 238 239 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI, 240 uint16_t Flags) const { 241 MI.setFlags(Flags); 242 MI.clearFlag(MachineInstr::MIFlag::NoSWrap); 243 MI.clearFlag(MachineInstr::MIFlag::NoUWrap); 244 MI.clearFlag(MachineInstr::MIFlag::IsExact); 245 } 246 247 // This function does not list all associative and commutative operations, but 248 // only those worth feeding through the machine combiner in an attempt to 249 // reduce the critical path. Mostly, this means floating-point operations, 250 // because they have high latencies(>=5) (compared to other operations, such as 251 // and/or, which are also associative and commutative, but have low latencies). 252 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 253 switch (Inst.getOpcode()) { 254 // Floating point: 255 // FP Add: 256 case PPC::FADD: 257 case PPC::FADDS: 258 // FP Multiply: 259 case PPC::FMUL: 260 case PPC::FMULS: 261 // Altivec Add: 262 case PPC::VADDFP: 263 // VSX Add: 264 case PPC::XSADDDP: 265 case PPC::XVADDDP: 266 case PPC::XVADDSP: 267 case PPC::XSADDSP: 268 // VSX Multiply: 269 case PPC::XSMULDP: 270 case PPC::XVMULDP: 271 case PPC::XVMULSP: 272 case PPC::XSMULSP: 273 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && 274 Inst.getFlag(MachineInstr::MIFlag::FmNsz); 275 // Fixed point: 276 // Multiply: 277 case PPC::MULHD: 278 case PPC::MULLD: 279 case PPC::MULHW: 280 case PPC::MULLW: 281 return true; 282 default: 283 return false; 284 } 285 } 286 287 #define InfoArrayIdxFMAInst 0 288 #define InfoArrayIdxFAddInst 1 289 #define InfoArrayIdxFMULInst 2 290 #define InfoArrayIdxAddOpIdx 3 291 #define InfoArrayIdxMULOpIdx 4 292 #define InfoArrayIdxFSubInst 5 293 // Array keeps info for FMA instructions: 294 // Index 0(InfoArrayIdxFMAInst): FMA instruction; 295 // Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA; 296 // Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA; 297 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands; 298 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands; 299 // second MUL operand index is plus 1; 300 // Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA. 301 static const uint16_t FMAOpIdxInfo[][6] = { 302 // FIXME: Add more FMA instructions like XSNMADDADP and so on. 303 {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP}, 304 {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP}, 305 {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP}, 306 {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP}, 307 {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB}, 308 {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}}; 309 310 // Check if an opcode is a FMA instruction. If it is, return the index in array 311 // FMAOpIdxInfo. Otherwise, return -1. 312 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const { 313 for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++) 314 if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode) 315 return I; 316 return -1; 317 } 318 319 // On PowerPC target, we have two kinds of patterns related to FMA: 320 // 1: Improve ILP. 321 // Try to reassociate FMA chains like below: 322 // 323 // Pattern 1: 324 // A = FADD X, Y (Leaf) 325 // B = FMA A, M21, M22 (Prev) 326 // C = FMA B, M31, M32 (Root) 327 // --> 328 // A = FMA X, M21, M22 329 // B = FMA Y, M31, M32 330 // C = FADD A, B 331 // 332 // Pattern 2: 333 // A = FMA X, M11, M12 (Leaf) 334 // B = FMA A, M21, M22 (Prev) 335 // C = FMA B, M31, M32 (Root) 336 // --> 337 // A = FMUL M11, M12 338 // B = FMA X, M21, M22 339 // D = FMA A, M31, M32 340 // C = FADD B, D 341 // 342 // breaking the dependency between A and B, allowing FMA to be executed in 343 // parallel (or back-to-back in a pipeline) instead of depending on each other. 344 // 345 // 2: Reduce register pressure. 346 // Try to reassociate FMA with FSUB and a constant like below: 347 // C is a floating point const. 348 // 349 // Pattern 1: 350 // A = FSUB X, Y (Leaf) 351 // D = FMA B, C, A (Root) 352 // --> 353 // A = FMA B, Y, -C 354 // D = FMA A, X, C 355 // 356 // Pattern 2: 357 // A = FSUB X, Y (Leaf) 358 // D = FMA B, A, C (Root) 359 // --> 360 // A = FMA B, Y, -C 361 // D = FMA A, X, C 362 // 363 // Before the transformation, A must be assigned with different hardware 364 // register with D. After the transformation, A and D must be assigned with 365 // same hardware register due to TIE attribute of FMA instructions. 366 // 367 bool PPCInstrInfo::getFMAPatterns( 368 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, 369 bool DoRegPressureReduce) const { 370 MachineBasicBlock *MBB = Root.getParent(); 371 const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo(); 372 const TargetRegisterInfo *TRI = &getRegisterInfo(); 373 374 auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) { 375 for (const auto &MO : Instr.explicit_operands()) 376 if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg()))) 377 return false; 378 return true; 379 }; 380 381 auto IsReassociableAddOrSub = [&](const MachineInstr &Instr, 382 unsigned OpType) { 383 if (Instr.getOpcode() != 384 FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType]) 385 return false; 386 387 // Instruction can be reassociated. 388 // fast math flags may prohibit reassociation. 389 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 390 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 391 return false; 392 393 // Instruction operands are virtual registers for reassociation. 394 if (!IsAllOpsVirtualReg(Instr)) 395 return false; 396 397 // For register pressure reassociation, the FSub must have only one use as 398 // we want to delete the sub to save its def. 399 if (OpType == InfoArrayIdxFSubInst && 400 !MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg())) 401 return false; 402 403 return true; 404 }; 405 406 auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx, 407 int16_t &MulOpIdx, bool IsLeaf) { 408 int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode()); 409 if (Idx < 0) 410 return false; 411 412 // Instruction can be reassociated. 413 // fast math flags may prohibit reassociation. 414 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 415 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 416 return false; 417 418 // Instruction operands are virtual registers for reassociation. 419 if (!IsAllOpsVirtualReg(Instr)) 420 return false; 421 422 MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 423 if (IsLeaf) 424 return true; 425 426 AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 427 428 const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx); 429 MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg()); 430 // If 'add' operand's def is not in current block, don't do ILP related opt. 431 if (!MIAdd || MIAdd->getParent() != MBB) 432 return false; 433 434 // If this is not Leaf FMA Instr, its 'add' operand should only have one use 435 // as this fma will be changed later. 436 return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg()); 437 }; 438 439 int16_t AddOpIdx = -1; 440 int16_t MulOpIdx = -1; 441 442 bool IsUsedOnceL = false; 443 bool IsUsedOnceR = false; 444 MachineInstr *MULInstrL = nullptr; 445 MachineInstr *MULInstrR = nullptr; 446 447 auto IsRPReductionCandidate = [&]() { 448 // Currently, we only support float and double. 449 // FIXME: add support for other types. 450 unsigned Opcode = Root.getOpcode(); 451 if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP) 452 return false; 453 454 // Root must be a valid FMA like instruction. 455 // Treat it as leaf as we don't care its add operand. 456 if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) { 457 assert((MulOpIdx >= 0) && "mul operand index not right!"); 458 Register MULRegL = TRI->lookThruSingleUseCopyChain( 459 Root.getOperand(MulOpIdx).getReg(), MRI); 460 Register MULRegR = TRI->lookThruSingleUseCopyChain( 461 Root.getOperand(MulOpIdx + 1).getReg(), MRI); 462 if (!MULRegL && !MULRegR) 463 return false; 464 465 if (MULRegL && !MULRegR) { 466 MULRegR = 467 TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI); 468 IsUsedOnceL = true; 469 } else if (!MULRegL && MULRegR) { 470 MULRegL = 471 TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI); 472 IsUsedOnceR = true; 473 } else { 474 IsUsedOnceL = true; 475 IsUsedOnceR = true; 476 } 477 478 if (!Register::isVirtualRegister(MULRegL) || 479 !Register::isVirtualRegister(MULRegR)) 480 return false; 481 482 MULInstrL = MRI->getVRegDef(MULRegL); 483 MULInstrR = MRI->getVRegDef(MULRegR); 484 return true; 485 } 486 return false; 487 }; 488 489 // Register pressure fma reassociation patterns. 490 if (DoRegPressureReduce && IsRPReductionCandidate()) { 491 assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!"); 492 // Register pressure pattern 1 493 if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR && 494 IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) { 495 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n"); 496 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BCA); 497 return true; 498 } 499 500 // Register pressure pattern 2 501 if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL && 502 IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) { 503 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n"); 504 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BAC); 505 return true; 506 } 507 } 508 509 // ILP fma reassociation patterns. 510 // Root must be a valid FMA like instruction. 511 AddOpIdx = -1; 512 if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false)) 513 return false; 514 515 assert((AddOpIdx >= 0) && "add operand index not right!"); 516 517 Register RegB = Root.getOperand(AddOpIdx).getReg(); 518 MachineInstr *Prev = MRI->getUniqueVRegDef(RegB); 519 520 // Prev must be a valid FMA like instruction. 521 AddOpIdx = -1; 522 if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false)) 523 return false; 524 525 assert((AddOpIdx >= 0) && "add operand index not right!"); 526 527 Register RegA = Prev->getOperand(AddOpIdx).getReg(); 528 MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA); 529 AddOpIdx = -1; 530 if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) { 531 Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 532 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n"); 533 return true; 534 } 535 if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) { 536 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM); 537 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n"); 538 return true; 539 } 540 return false; 541 } 542 543 void PPCInstrInfo::finalizeInsInstrs( 544 MachineInstr &Root, MachineCombinerPattern &P, 545 SmallVectorImpl<MachineInstr *> &InsInstrs) const { 546 assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!"); 547 548 MachineFunction *MF = Root.getMF(); 549 MachineRegisterInfo *MRI = &MF->getRegInfo(); 550 const TargetRegisterInfo *TRI = &getRegisterInfo(); 551 MachineConstantPool *MCP = MF->getConstantPool(); 552 553 int16_t Idx = getFMAOpIdxInfo(Root.getOpcode()); 554 if (Idx < 0) 555 return; 556 557 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 558 559 // For now we only need to fix up placeholder for register pressure reduce 560 // patterns. 561 Register ConstReg = 0; 562 switch (P) { 563 case MachineCombinerPattern::REASSOC_XY_BCA: 564 ConstReg = 565 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI); 566 break; 567 case MachineCombinerPattern::REASSOC_XY_BAC: 568 ConstReg = 569 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI); 570 break; 571 default: 572 // Not register pressure reduce patterns. 573 return; 574 } 575 576 MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg); 577 // Get const value from const pool. 578 const Constant *C = getConstantFromConstantPool(ConstDefInstr); 579 assert(isa<llvm::ConstantFP>(C) && "not a valid constant!"); 580 581 // Get negative fp const. 582 APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF()); 583 F1.changeSign(); 584 Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1); 585 Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType()); 586 587 // Put negative fp const into constant pool. 588 unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment); 589 590 MachineOperand *Placeholder = nullptr; 591 // Record the placeholder PPC::ZERO8 we add in reassociateFMA. 592 for (auto *Inst : InsInstrs) { 593 for (MachineOperand &Operand : Inst->explicit_operands()) { 594 assert(Operand.isReg() && "Invalid instruction in InsInstrs!"); 595 if (Operand.getReg() == PPC::ZERO8) { 596 Placeholder = &Operand; 597 break; 598 } 599 } 600 } 601 602 assert(Placeholder && "Placeholder does not exist!"); 603 604 // Generate instructions to load the const fp from constant pool. 605 // We only support PPC64 and medium code model. 606 Register LoadNewConst = 607 generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs); 608 609 // Fill the placeholder with the new load from constant pool. 610 Placeholder->setReg(LoadNewConst); 611 } 612 613 bool PPCInstrInfo::shouldReduceRegisterPressure( 614 MachineBasicBlock *MBB, RegisterClassInfo *RegClassInfo) const { 615 616 if (!EnableFMARegPressureReduction) 617 return false; 618 619 // Currently, we only enable register pressure reducing in machine combiner 620 // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector 621 // support. 622 // 623 // So we need following instructions to access a TOC entry: 624 // 625 // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0 626 // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0, 627 // killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool) 628 // 629 // FIXME: add more supported targets, like Small and Large code model, PPC32, 630 // AIX. 631 if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() && 632 Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium)) 633 return false; 634 635 const TargetRegisterInfo *TRI = &getRegisterInfo(); 636 MachineFunction *MF = MBB->getParent(); 637 MachineRegisterInfo *MRI = &MF->getRegInfo(); 638 639 auto GetMBBPressure = [&](MachineBasicBlock *MBB) -> std::vector<unsigned> { 640 RegionPressure Pressure; 641 RegPressureTracker RPTracker(Pressure); 642 643 // Initialize the register pressure tracker. 644 RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(), 645 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 646 647 for (MachineBasicBlock::iterator MII = MBB->instr_end(), 648 MIE = MBB->instr_begin(); 649 MII != MIE; --MII) { 650 MachineInstr &MI = *std::prev(MII); 651 if (MI.isDebugValue() || MI.isDebugLabel()) 652 continue; 653 RegisterOperands RegOpers; 654 RegOpers.collect(MI, *TRI, *MRI, false, false); 655 RPTracker.recedeSkipDebugValues(); 656 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 657 RPTracker.recede(RegOpers); 658 } 659 660 // Close the RPTracker to finalize live ins. 661 RPTracker.closeRegion(); 662 663 return RPTracker.getPressure().MaxSetPressure; 664 }; 665 666 // For now we only care about float and double type fma. 667 unsigned VSSRCLimit = TRI->getRegPressureSetLimit( 668 *MBB->getParent(), PPC::RegisterPressureSets::VSSRC); 669 670 // Only reduce register pressure when pressure is high. 671 return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] > 672 (float)VSSRCLimit * FMARPFactor; 673 } 674 675 bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const { 676 // I has only one memory operand which is load from constant pool. 677 if (!I->hasOneMemOperand()) 678 return false; 679 680 MachineMemOperand *Op = I->memoperands()[0]; 681 return Op->isLoad() && Op->getPseudoValue() && 682 Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool; 683 } 684 685 Register PPCInstrInfo::generateLoadForNewConst( 686 unsigned Idx, MachineInstr *MI, Type *Ty, 687 SmallVectorImpl<MachineInstr *> &InsInstrs) const { 688 // Now we only support PPC64, Medium code model and P9 with vector. 689 // We have immutable pattern to access const pool. See function 690 // shouldReduceRegisterPressure. 691 assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() && 692 Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) && 693 "Target not supported!\n"); 694 695 MachineFunction *MF = MI->getMF(); 696 MachineRegisterInfo *MRI = &MF->getRegInfo(); 697 698 // Generate ADDIStocHA8 699 Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 700 MachineInstrBuilder TOCOffset = 701 BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1) 702 .addReg(PPC::X2) 703 .addConstantPoolIndex(Idx); 704 705 assert((Ty->isFloatTy() || Ty->isDoubleTy()) && 706 "Only float and double are supported!"); 707 708 unsigned LoadOpcode; 709 // Should be float type or double type. 710 if (Ty->isFloatTy()) 711 LoadOpcode = PPC::DFLOADf32; 712 else 713 LoadOpcode = PPC::DFLOADf64; 714 715 const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg()); 716 Register VReg2 = MRI->createVirtualRegister(RC); 717 MachineMemOperand *MMO = MF->getMachineMemOperand( 718 MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad, 719 Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty)); 720 721 // Generate Load from constant pool. 722 MachineInstrBuilder Load = 723 BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2) 724 .addConstantPoolIndex(Idx) 725 .addReg(VReg1, getKillRegState(true)) 726 .addMemOperand(MMO); 727 728 Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO); 729 730 // Insert the toc load instructions into InsInstrs. 731 InsInstrs.insert(InsInstrs.begin(), Load); 732 InsInstrs.insert(InsInstrs.begin(), TOCOffset); 733 return VReg2; 734 } 735 736 // This function returns the const value in constant pool if the \p I is a load 737 // from constant pool. 738 const Constant * 739 PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const { 740 MachineFunction *MF = I->getMF(); 741 MachineRegisterInfo *MRI = &MF->getRegInfo(); 742 MachineConstantPool *MCP = MF->getConstantPool(); 743 assert(I->mayLoad() && "Should be a load instruction.\n"); 744 for (auto MO : I->uses()) { 745 if (!MO.isReg()) 746 continue; 747 Register Reg = MO.getReg(); 748 if (Reg == 0 || !Register::isVirtualRegister(Reg)) 749 continue; 750 // Find the toc address. 751 MachineInstr *DefMI = MRI->getVRegDef(Reg); 752 for (auto MO2 : DefMI->uses()) 753 if (MO2.isCPI()) 754 return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal; 755 } 756 return nullptr; 757 } 758 759 bool PPCInstrInfo::getMachineCombinerPatterns( 760 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, 761 bool DoRegPressureReduce) const { 762 // Using the machine combiner in this way is potentially expensive, so 763 // restrict to when aggressive optimizations are desired. 764 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 765 return false; 766 767 if (getFMAPatterns(Root, Patterns, DoRegPressureReduce)) 768 return true; 769 770 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns, 771 DoRegPressureReduce); 772 } 773 774 void PPCInstrInfo::genAlternativeCodeSequence( 775 MachineInstr &Root, MachineCombinerPattern Pattern, 776 SmallVectorImpl<MachineInstr *> &InsInstrs, 777 SmallVectorImpl<MachineInstr *> &DelInstrs, 778 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 779 switch (Pattern) { 780 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 781 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 782 case MachineCombinerPattern::REASSOC_XY_BCA: 783 case MachineCombinerPattern::REASSOC_XY_BAC: 784 reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg); 785 break; 786 default: 787 // Reassociate default patterns. 788 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, 789 DelInstrs, InstrIdxForVirtReg); 790 break; 791 } 792 } 793 794 void PPCInstrInfo::reassociateFMA( 795 MachineInstr &Root, MachineCombinerPattern Pattern, 796 SmallVectorImpl<MachineInstr *> &InsInstrs, 797 SmallVectorImpl<MachineInstr *> &DelInstrs, 798 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 799 MachineFunction *MF = Root.getMF(); 800 MachineRegisterInfo &MRI = MF->getRegInfo(); 801 const TargetRegisterInfo *TRI = &getRegisterInfo(); 802 MachineOperand &OpC = Root.getOperand(0); 803 Register RegC = OpC.getReg(); 804 const TargetRegisterClass *RC = MRI.getRegClass(RegC); 805 MRI.constrainRegClass(RegC, RC); 806 807 unsigned FmaOp = Root.getOpcode(); 808 int16_t Idx = getFMAOpIdxInfo(FmaOp); 809 assert(Idx >= 0 && "Root must be a FMA instruction"); 810 811 bool IsILPReassociate = 812 (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) || 813 (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 814 815 uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 816 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 817 818 MachineInstr *Prev = nullptr; 819 MachineInstr *Leaf = nullptr; 820 switch (Pattern) { 821 default: 822 llvm_unreachable("not recognized pattern!"); 823 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 824 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 825 Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg()); 826 Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg()); 827 break; 828 case MachineCombinerPattern::REASSOC_XY_BAC: { 829 Register MULReg = 830 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI); 831 Leaf = MRI.getVRegDef(MULReg); 832 break; 833 } 834 case MachineCombinerPattern::REASSOC_XY_BCA: { 835 Register MULReg = TRI->lookThruCopyLike( 836 Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI); 837 Leaf = MRI.getVRegDef(MULReg); 838 break; 839 } 840 } 841 842 uint16_t IntersectedFlags = 0; 843 if (IsILPReassociate) 844 IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags(); 845 else 846 IntersectedFlags = Root.getFlags() & Leaf->getFlags(); 847 848 auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg, 849 bool &KillFlag) { 850 Reg = Operand.getReg(); 851 MRI.constrainRegClass(Reg, RC); 852 KillFlag = Operand.isKill(); 853 }; 854 855 auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1, 856 Register &MulOp2, Register &AddOp, 857 bool &MulOp1KillFlag, bool &MulOp2KillFlag, 858 bool &AddOpKillFlag) { 859 GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag); 860 GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag); 861 GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag); 862 }; 863 864 Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11, 865 RegA21, RegB; 866 bool KillX = false, KillY = false, KillM11 = false, KillM12 = false, 867 KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false, 868 KillA11 = false, KillA21 = false, KillB = false; 869 870 GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB); 871 872 if (IsILPReassociate) 873 GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21); 874 875 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 876 GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11); 877 GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX); 878 } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) { 879 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 880 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 881 } else { 882 // Get FSUB instruction info. 883 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 884 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 885 } 886 887 // Create new virtual registers for the new results instead of 888 // recycling legacy ones because the MachineCombiner's computation of the 889 // critical path requires a new register definition rather than an existing 890 // one. 891 // For register pressure reassociation, we only need create one virtual 892 // register for the new fma. 893 Register NewVRA = MRI.createVirtualRegister(RC); 894 InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0)); 895 896 Register NewVRB = 0; 897 if (IsILPReassociate) { 898 NewVRB = MRI.createVirtualRegister(RC); 899 InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1)); 900 } 901 902 Register NewVRD = 0; 903 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 904 NewVRD = MRI.createVirtualRegister(RC); 905 InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2)); 906 } 907 908 auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd, 909 Register RegMul1, bool KillRegMul1, 910 Register RegMul2, bool KillRegMul2) { 911 MI->getOperand(AddOpIdx).setReg(RegAdd); 912 MI->getOperand(AddOpIdx).setIsKill(KillAdd); 913 MI->getOperand(FirstMulOpIdx).setReg(RegMul1); 914 MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1); 915 MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2); 916 MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2); 917 }; 918 919 MachineInstrBuilder NewARegPressure, NewCRegPressure; 920 switch (Pattern) { 921 default: 922 llvm_unreachable("not recognized pattern!"); 923 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: { 924 // Create new instructions for insertion. 925 MachineInstrBuilder MINewB = 926 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 927 .addReg(RegX, getKillRegState(KillX)) 928 .addReg(RegM21, getKillRegState(KillM21)) 929 .addReg(RegM22, getKillRegState(KillM22)); 930 MachineInstrBuilder MINewA = 931 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 932 .addReg(RegY, getKillRegState(KillY)) 933 .addReg(RegM31, getKillRegState(KillM31)) 934 .addReg(RegM32, getKillRegState(KillM32)); 935 // If AddOpIdx is not 1, adjust the order. 936 if (AddOpIdx != 1) { 937 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 938 AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32); 939 } 940 941 MachineInstrBuilder MINewC = 942 BuildMI(*MF, Root.getDebugLoc(), 943 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 944 .addReg(NewVRB, getKillRegState(true)) 945 .addReg(NewVRA, getKillRegState(true)); 946 947 // Update flags for newly created instructions. 948 setSpecialOperandAttr(*MINewA, IntersectedFlags); 949 setSpecialOperandAttr(*MINewB, IntersectedFlags); 950 setSpecialOperandAttr(*MINewC, IntersectedFlags); 951 952 // Record new instructions for insertion. 953 InsInstrs.push_back(MINewA); 954 InsInstrs.push_back(MINewB); 955 InsInstrs.push_back(MINewC); 956 break; 957 } 958 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: { 959 assert(NewVRD && "new FMA register not created!"); 960 // Create new instructions for insertion. 961 MachineInstrBuilder MINewA = 962 BuildMI(*MF, Leaf->getDebugLoc(), 963 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA) 964 .addReg(RegM11, getKillRegState(KillM11)) 965 .addReg(RegM12, getKillRegState(KillM12)); 966 MachineInstrBuilder MINewB = 967 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 968 .addReg(RegX, getKillRegState(KillX)) 969 .addReg(RegM21, getKillRegState(KillM21)) 970 .addReg(RegM22, getKillRegState(KillM22)); 971 MachineInstrBuilder MINewD = 972 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD) 973 .addReg(NewVRA, getKillRegState(true)) 974 .addReg(RegM31, getKillRegState(KillM31)) 975 .addReg(RegM32, getKillRegState(KillM32)); 976 // If AddOpIdx is not 1, adjust the order. 977 if (AddOpIdx != 1) { 978 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 979 AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32, 980 KillM32); 981 } 982 983 MachineInstrBuilder MINewC = 984 BuildMI(*MF, Root.getDebugLoc(), 985 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 986 .addReg(NewVRB, getKillRegState(true)) 987 .addReg(NewVRD, getKillRegState(true)); 988 989 // Update flags for newly created instructions. 990 setSpecialOperandAttr(*MINewA, IntersectedFlags); 991 setSpecialOperandAttr(*MINewB, IntersectedFlags); 992 setSpecialOperandAttr(*MINewD, IntersectedFlags); 993 setSpecialOperandAttr(*MINewC, IntersectedFlags); 994 995 // Record new instructions for insertion. 996 InsInstrs.push_back(MINewA); 997 InsInstrs.push_back(MINewB); 998 InsInstrs.push_back(MINewD); 999 InsInstrs.push_back(MINewC); 1000 break; 1001 } 1002 case MachineCombinerPattern::REASSOC_XY_BAC: 1003 case MachineCombinerPattern::REASSOC_XY_BCA: { 1004 Register VarReg; 1005 bool KillVarReg = false; 1006 if (Pattern == MachineCombinerPattern::REASSOC_XY_BCA) { 1007 VarReg = RegM31; 1008 KillVarReg = KillM31; 1009 } else { 1010 VarReg = RegM32; 1011 KillVarReg = KillM32; 1012 } 1013 // We don't want to get negative const from memory pool too early, as the 1014 // created entry will not be deleted even if it has no users. Since all 1015 // operand of Leaf and Root are virtual register, we use zero register 1016 // here as a placeholder. When the InsInstrs is selected in 1017 // MachineCombiner, we call finalizeInsInstrs to replace the zero register 1018 // with a virtual register which is a load from constant pool. 1019 NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 1020 .addReg(RegB, getKillRegState(RegB)) 1021 .addReg(RegY, getKillRegState(KillY)) 1022 .addReg(PPC::ZERO8); 1023 NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC) 1024 .addReg(NewVRA, getKillRegState(true)) 1025 .addReg(RegX, getKillRegState(KillX)) 1026 .addReg(VarReg, getKillRegState(KillVarReg)); 1027 // For now, we only support xsmaddadp/xsmaddasp, their add operand are 1028 // both at index 1, no need to adjust. 1029 // FIXME: when add more fma instructions support, like fma/fmas, adjust 1030 // the operand index here. 1031 break; 1032 } 1033 } 1034 1035 if (!IsILPReassociate) { 1036 setSpecialOperandAttr(*NewARegPressure, IntersectedFlags); 1037 setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags); 1038 1039 InsInstrs.push_back(NewARegPressure); 1040 InsInstrs.push_back(NewCRegPressure); 1041 } 1042 1043 assert(!InsInstrs.empty() && 1044 "Insertion instructions set should not be empty!"); 1045 1046 // Record old instructions for deletion. 1047 DelInstrs.push_back(Leaf); 1048 if (IsILPReassociate) 1049 DelInstrs.push_back(Prev); 1050 DelInstrs.push_back(&Root); 1051 } 1052 1053 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 1054 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 1055 Register &SrcReg, Register &DstReg, 1056 unsigned &SubIdx) const { 1057 switch (MI.getOpcode()) { 1058 default: return false; 1059 case PPC::EXTSW: 1060 case PPC::EXTSW_32: 1061 case PPC::EXTSW_32_64: 1062 SrcReg = MI.getOperand(1).getReg(); 1063 DstReg = MI.getOperand(0).getReg(); 1064 SubIdx = PPC::sub_32; 1065 return true; 1066 } 1067 } 1068 1069 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1070 int &FrameIndex) const { 1071 unsigned Opcode = MI.getOpcode(); 1072 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1073 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 1074 1075 if (End != std::find(OpcodesForSpill, End, Opcode)) { 1076 // Check for the operands added by addFrameReference (the immediate is the 1077 // offset which defaults to 0). 1078 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 1079 MI.getOperand(2).isFI()) { 1080 FrameIndex = MI.getOperand(2).getIndex(); 1081 return MI.getOperand(0).getReg(); 1082 } 1083 } 1084 return 0; 1085 } 1086 1087 // For opcodes with the ReMaterializable flag set, this function is called to 1088 // verify the instruction is really rematable. 1089 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 1090 AliasAnalysis *AA) const { 1091 switch (MI.getOpcode()) { 1092 default: 1093 // This function should only be called for opcodes with the ReMaterializable 1094 // flag set. 1095 llvm_unreachable("Unknown rematerializable operation!"); 1096 break; 1097 case PPC::LI: 1098 case PPC::LI8: 1099 case PPC::PLI: 1100 case PPC::PLI8: 1101 case PPC::LIS: 1102 case PPC::LIS8: 1103 case PPC::ADDIStocHA: 1104 case PPC::ADDIStocHA8: 1105 case PPC::ADDItocL: 1106 case PPC::LOAD_STACK_GUARD: 1107 case PPC::XXLXORz: 1108 case PPC::XXLXORspz: 1109 case PPC::XXLXORdpz: 1110 case PPC::XXLEQVOnes: 1111 case PPC::V_SET0B: 1112 case PPC::V_SET0H: 1113 case PPC::V_SET0: 1114 case PPC::V_SETALLONESB: 1115 case PPC::V_SETALLONESH: 1116 case PPC::V_SETALLONES: 1117 case PPC::CRSET: 1118 case PPC::CRUNSET: 1119 case PPC::XXSETACCZ: 1120 return true; 1121 } 1122 return false; 1123 } 1124 1125 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1126 int &FrameIndex) const { 1127 unsigned Opcode = MI.getOpcode(); 1128 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1129 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 1130 1131 if (End != std::find(OpcodesForSpill, End, Opcode)) { 1132 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 1133 MI.getOperand(2).isFI()) { 1134 FrameIndex = MI.getOperand(2).getIndex(); 1135 return MI.getOperand(0).getReg(); 1136 } 1137 } 1138 return 0; 1139 } 1140 1141 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 1142 unsigned OpIdx1, 1143 unsigned OpIdx2) const { 1144 MachineFunction &MF = *MI.getParent()->getParent(); 1145 1146 // Normal instructions can be commuted the obvious way. 1147 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) 1148 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 1149 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 1150 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 1151 // changing the relative order of the mask operands might change what happens 1152 // to the high-bits of the mask (and, thus, the result). 1153 1154 // Cannot commute if it has a non-zero rotate count. 1155 if (MI.getOperand(3).getImm() != 0) 1156 return nullptr; 1157 1158 // If we have a zero rotate count, we have: 1159 // M = mask(MB,ME) 1160 // Op0 = (Op1 & ~M) | (Op2 & M) 1161 // Change this to: 1162 // M = mask((ME+1)&31, (MB-1)&31) 1163 // Op0 = (Op2 & ~M) | (Op1 & M) 1164 1165 // Swap op1/op2 1166 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 1167 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); 1168 Register Reg0 = MI.getOperand(0).getReg(); 1169 Register Reg1 = MI.getOperand(1).getReg(); 1170 Register Reg2 = MI.getOperand(2).getReg(); 1171 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 1172 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 1173 bool Reg1IsKill = MI.getOperand(1).isKill(); 1174 bool Reg2IsKill = MI.getOperand(2).isKill(); 1175 bool ChangeReg0 = false; 1176 // If machine instrs are no longer in two-address forms, update 1177 // destination register as well. 1178 if (Reg0 == Reg1) { 1179 // Must be two address instruction! 1180 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 1181 "Expecting a two-address instruction!"); 1182 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 1183 Reg2IsKill = false; 1184 ChangeReg0 = true; 1185 } 1186 1187 // Masks. 1188 unsigned MB = MI.getOperand(4).getImm(); 1189 unsigned ME = MI.getOperand(5).getImm(); 1190 1191 // We can't commute a trivial mask (there is no way to represent an all-zero 1192 // mask). 1193 if (MB == 0 && ME == 31) 1194 return nullptr; 1195 1196 if (NewMI) { 1197 // Create a new instruction. 1198 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 1199 bool Reg0IsDead = MI.getOperand(0).isDead(); 1200 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 1201 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 1202 .addReg(Reg2, getKillRegState(Reg2IsKill)) 1203 .addReg(Reg1, getKillRegState(Reg1IsKill)) 1204 .addImm((ME + 1) & 31) 1205 .addImm((MB - 1) & 31); 1206 } 1207 1208 if (ChangeReg0) { 1209 MI.getOperand(0).setReg(Reg2); 1210 MI.getOperand(0).setSubReg(SubReg2); 1211 } 1212 MI.getOperand(2).setReg(Reg1); 1213 MI.getOperand(1).setReg(Reg2); 1214 MI.getOperand(2).setSubReg(SubReg1); 1215 MI.getOperand(1).setSubReg(SubReg2); 1216 MI.getOperand(2).setIsKill(Reg1IsKill); 1217 MI.getOperand(1).setIsKill(Reg2IsKill); 1218 1219 // Swap the mask around. 1220 MI.getOperand(4).setImm((ME + 1) & 31); 1221 MI.getOperand(5).setImm((MB - 1) & 31); 1222 return &MI; 1223 } 1224 1225 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 1226 unsigned &SrcOpIdx1, 1227 unsigned &SrcOpIdx2) const { 1228 // For VSX A-Type FMA instructions, it is the first two operands that can be 1229 // commuted, however, because the non-encoded tied input operand is listed 1230 // first, the operands to swap are actually the second and third. 1231 1232 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 1233 if (AltOpc == -1) 1234 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 1235 1236 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 1237 // and SrcOpIdx2. 1238 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 1239 } 1240 1241 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 1242 MachineBasicBlock::iterator MI) const { 1243 // This function is used for scheduling, and the nop wanted here is the type 1244 // that terminates dispatch groups on the POWER cores. 1245 unsigned Directive = Subtarget.getCPUDirective(); 1246 unsigned Opcode; 1247 switch (Directive) { 1248 default: Opcode = PPC::NOP; break; 1249 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 1250 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 1251 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 1252 // FIXME: Update when POWER9 scheduling model is ready. 1253 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 1254 } 1255 1256 DebugLoc DL; 1257 BuildMI(MBB, MI, DL, get(Opcode)); 1258 } 1259 1260 /// Return the noop instruction to use for a noop. 1261 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 1262 NopInst.setOpcode(PPC::NOP); 1263 } 1264 1265 // Branch analysis. 1266 // Note: If the condition register is set to CTR or CTR8 then this is a 1267 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 1268 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 1269 MachineBasicBlock *&TBB, 1270 MachineBasicBlock *&FBB, 1271 SmallVectorImpl<MachineOperand> &Cond, 1272 bool AllowModify) const { 1273 bool isPPC64 = Subtarget.isPPC64(); 1274 1275 // If the block has no terminators, it just falls into the block after it. 1276 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1277 if (I == MBB.end()) 1278 return false; 1279 1280 if (!isUnpredicatedTerminator(*I)) 1281 return false; 1282 1283 if (AllowModify) { 1284 // If the BB ends with an unconditional branch to the fallthrough BB, 1285 // we eliminate the branch instruction. 1286 if (I->getOpcode() == PPC::B && 1287 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 1288 I->eraseFromParent(); 1289 1290 // We update iterator after deleting the last branch. 1291 I = MBB.getLastNonDebugInstr(); 1292 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 1293 return false; 1294 } 1295 } 1296 1297 // Get the last instruction in the block. 1298 MachineInstr &LastInst = *I; 1299 1300 // If there is only one terminator instruction, process it. 1301 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 1302 if (LastInst.getOpcode() == PPC::B) { 1303 if (!LastInst.getOperand(0).isMBB()) 1304 return true; 1305 TBB = LastInst.getOperand(0).getMBB(); 1306 return false; 1307 } else if (LastInst.getOpcode() == PPC::BCC) { 1308 if (!LastInst.getOperand(2).isMBB()) 1309 return true; 1310 // Block ends with fall-through condbranch. 1311 TBB = LastInst.getOperand(2).getMBB(); 1312 Cond.push_back(LastInst.getOperand(0)); 1313 Cond.push_back(LastInst.getOperand(1)); 1314 return false; 1315 } else if (LastInst.getOpcode() == PPC::BC) { 1316 if (!LastInst.getOperand(1).isMBB()) 1317 return true; 1318 // Block ends with fall-through condbranch. 1319 TBB = LastInst.getOperand(1).getMBB(); 1320 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 1321 Cond.push_back(LastInst.getOperand(0)); 1322 return false; 1323 } else if (LastInst.getOpcode() == PPC::BCn) { 1324 if (!LastInst.getOperand(1).isMBB()) 1325 return true; 1326 // Block ends with fall-through condbranch. 1327 TBB = LastInst.getOperand(1).getMBB(); 1328 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 1329 Cond.push_back(LastInst.getOperand(0)); 1330 return false; 1331 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 1332 LastInst.getOpcode() == PPC::BDNZ) { 1333 if (!LastInst.getOperand(0).isMBB()) 1334 return true; 1335 if (DisableCTRLoopAnal) 1336 return true; 1337 TBB = LastInst.getOperand(0).getMBB(); 1338 Cond.push_back(MachineOperand::CreateImm(1)); 1339 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1340 true)); 1341 return false; 1342 } else if (LastInst.getOpcode() == PPC::BDZ8 || 1343 LastInst.getOpcode() == PPC::BDZ) { 1344 if (!LastInst.getOperand(0).isMBB()) 1345 return true; 1346 if (DisableCTRLoopAnal) 1347 return true; 1348 TBB = LastInst.getOperand(0).getMBB(); 1349 Cond.push_back(MachineOperand::CreateImm(0)); 1350 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1351 true)); 1352 return false; 1353 } 1354 1355 // Otherwise, don't know what this is. 1356 return true; 1357 } 1358 1359 // Get the instruction before it if it's a terminator. 1360 MachineInstr &SecondLastInst = *I; 1361 1362 // If there are three terminators, we don't know what sort of block this is. 1363 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 1364 return true; 1365 1366 // If the block ends with PPC::B and PPC:BCC, handle it. 1367 if (SecondLastInst.getOpcode() == PPC::BCC && 1368 LastInst.getOpcode() == PPC::B) { 1369 if (!SecondLastInst.getOperand(2).isMBB() || 1370 !LastInst.getOperand(0).isMBB()) 1371 return true; 1372 TBB = SecondLastInst.getOperand(2).getMBB(); 1373 Cond.push_back(SecondLastInst.getOperand(0)); 1374 Cond.push_back(SecondLastInst.getOperand(1)); 1375 FBB = LastInst.getOperand(0).getMBB(); 1376 return false; 1377 } else if (SecondLastInst.getOpcode() == PPC::BC && 1378 LastInst.getOpcode() == PPC::B) { 1379 if (!SecondLastInst.getOperand(1).isMBB() || 1380 !LastInst.getOperand(0).isMBB()) 1381 return true; 1382 TBB = SecondLastInst.getOperand(1).getMBB(); 1383 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 1384 Cond.push_back(SecondLastInst.getOperand(0)); 1385 FBB = LastInst.getOperand(0).getMBB(); 1386 return false; 1387 } else if (SecondLastInst.getOpcode() == PPC::BCn && 1388 LastInst.getOpcode() == PPC::B) { 1389 if (!SecondLastInst.getOperand(1).isMBB() || 1390 !LastInst.getOperand(0).isMBB()) 1391 return true; 1392 TBB = SecondLastInst.getOperand(1).getMBB(); 1393 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 1394 Cond.push_back(SecondLastInst.getOperand(0)); 1395 FBB = LastInst.getOperand(0).getMBB(); 1396 return false; 1397 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 1398 SecondLastInst.getOpcode() == PPC::BDNZ) && 1399 LastInst.getOpcode() == PPC::B) { 1400 if (!SecondLastInst.getOperand(0).isMBB() || 1401 !LastInst.getOperand(0).isMBB()) 1402 return true; 1403 if (DisableCTRLoopAnal) 1404 return true; 1405 TBB = SecondLastInst.getOperand(0).getMBB(); 1406 Cond.push_back(MachineOperand::CreateImm(1)); 1407 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1408 true)); 1409 FBB = LastInst.getOperand(0).getMBB(); 1410 return false; 1411 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 1412 SecondLastInst.getOpcode() == PPC::BDZ) && 1413 LastInst.getOpcode() == PPC::B) { 1414 if (!SecondLastInst.getOperand(0).isMBB() || 1415 !LastInst.getOperand(0).isMBB()) 1416 return true; 1417 if (DisableCTRLoopAnal) 1418 return true; 1419 TBB = SecondLastInst.getOperand(0).getMBB(); 1420 Cond.push_back(MachineOperand::CreateImm(0)); 1421 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1422 true)); 1423 FBB = LastInst.getOperand(0).getMBB(); 1424 return false; 1425 } 1426 1427 // If the block ends with two PPC:Bs, handle it. The second one is not 1428 // executed, so remove it. 1429 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 1430 if (!SecondLastInst.getOperand(0).isMBB()) 1431 return true; 1432 TBB = SecondLastInst.getOperand(0).getMBB(); 1433 I = LastInst; 1434 if (AllowModify) 1435 I->eraseFromParent(); 1436 return false; 1437 } 1438 1439 // Otherwise, can't handle this. 1440 return true; 1441 } 1442 1443 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 1444 int *BytesRemoved) const { 1445 assert(!BytesRemoved && "code size not handled"); 1446 1447 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1448 if (I == MBB.end()) 1449 return 0; 1450 1451 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 1452 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1453 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1454 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1455 return 0; 1456 1457 // Remove the branch. 1458 I->eraseFromParent(); 1459 1460 I = MBB.end(); 1461 1462 if (I == MBB.begin()) return 1; 1463 --I; 1464 if (I->getOpcode() != PPC::BCC && 1465 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1466 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1467 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1468 return 1; 1469 1470 // Remove the branch. 1471 I->eraseFromParent(); 1472 return 2; 1473 } 1474 1475 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 1476 MachineBasicBlock *TBB, 1477 MachineBasicBlock *FBB, 1478 ArrayRef<MachineOperand> Cond, 1479 const DebugLoc &DL, 1480 int *BytesAdded) const { 1481 // Shouldn't be a fall through. 1482 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 1483 assert((Cond.size() == 2 || Cond.size() == 0) && 1484 "PPC branch conditions have two components!"); 1485 assert(!BytesAdded && "code size not handled"); 1486 1487 bool isPPC64 = Subtarget.isPPC64(); 1488 1489 // One-way branch. 1490 if (!FBB) { 1491 if (Cond.empty()) // Unconditional branch 1492 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 1493 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1494 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1495 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1496 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1497 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1498 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1499 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1500 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1501 else // Conditional branch 1502 BuildMI(&MBB, DL, get(PPC::BCC)) 1503 .addImm(Cond[0].getImm()) 1504 .add(Cond[1]) 1505 .addMBB(TBB); 1506 return 1; 1507 } 1508 1509 // Two-way Conditional Branch. 1510 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1511 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1512 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1513 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1514 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1515 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1516 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1517 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1518 else 1519 BuildMI(&MBB, DL, get(PPC::BCC)) 1520 .addImm(Cond[0].getImm()) 1521 .add(Cond[1]) 1522 .addMBB(TBB); 1523 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 1524 return 2; 1525 } 1526 1527 // Select analysis. 1528 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 1529 ArrayRef<MachineOperand> Cond, 1530 Register DstReg, Register TrueReg, 1531 Register FalseReg, int &CondCycles, 1532 int &TrueCycles, int &FalseCycles) const { 1533 if (Cond.size() != 2) 1534 return false; 1535 1536 // If this is really a bdnz-like condition, then it cannot be turned into a 1537 // select. 1538 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1539 return false; 1540 1541 // Check register classes. 1542 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1543 const TargetRegisterClass *RC = 1544 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1545 if (!RC) 1546 return false; 1547 1548 // isel is for regular integer GPRs only. 1549 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 1550 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 1551 !PPC::G8RCRegClass.hasSubClassEq(RC) && 1552 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 1553 return false; 1554 1555 // FIXME: These numbers are for the A2, how well they work for other cores is 1556 // an open question. On the A2, the isel instruction has a 2-cycle latency 1557 // but single-cycle throughput. These numbers are used in combination with 1558 // the MispredictPenalty setting from the active SchedMachineModel. 1559 CondCycles = 1; 1560 TrueCycles = 1; 1561 FalseCycles = 1; 1562 1563 return true; 1564 } 1565 1566 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 1567 MachineBasicBlock::iterator MI, 1568 const DebugLoc &dl, Register DestReg, 1569 ArrayRef<MachineOperand> Cond, Register TrueReg, 1570 Register FalseReg) const { 1571 assert(Cond.size() == 2 && 1572 "PPC branch conditions have two components!"); 1573 1574 // Get the register classes. 1575 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1576 const TargetRegisterClass *RC = 1577 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1578 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 1579 1580 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 1581 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 1582 assert((Is64Bit || 1583 PPC::GPRCRegClass.hasSubClassEq(RC) || 1584 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 1585 "isel is for regular integer GPRs only"); 1586 1587 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 1588 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 1589 1590 unsigned SubIdx = 0; 1591 bool SwapOps = false; 1592 switch (SelectPred) { 1593 case PPC::PRED_EQ: 1594 case PPC::PRED_EQ_MINUS: 1595 case PPC::PRED_EQ_PLUS: 1596 SubIdx = PPC::sub_eq; SwapOps = false; break; 1597 case PPC::PRED_NE: 1598 case PPC::PRED_NE_MINUS: 1599 case PPC::PRED_NE_PLUS: 1600 SubIdx = PPC::sub_eq; SwapOps = true; break; 1601 case PPC::PRED_LT: 1602 case PPC::PRED_LT_MINUS: 1603 case PPC::PRED_LT_PLUS: 1604 SubIdx = PPC::sub_lt; SwapOps = false; break; 1605 case PPC::PRED_GE: 1606 case PPC::PRED_GE_MINUS: 1607 case PPC::PRED_GE_PLUS: 1608 SubIdx = PPC::sub_lt; SwapOps = true; break; 1609 case PPC::PRED_GT: 1610 case PPC::PRED_GT_MINUS: 1611 case PPC::PRED_GT_PLUS: 1612 SubIdx = PPC::sub_gt; SwapOps = false; break; 1613 case PPC::PRED_LE: 1614 case PPC::PRED_LE_MINUS: 1615 case PPC::PRED_LE_PLUS: 1616 SubIdx = PPC::sub_gt; SwapOps = true; break; 1617 case PPC::PRED_UN: 1618 case PPC::PRED_UN_MINUS: 1619 case PPC::PRED_UN_PLUS: 1620 SubIdx = PPC::sub_un; SwapOps = false; break; 1621 case PPC::PRED_NU: 1622 case PPC::PRED_NU_MINUS: 1623 case PPC::PRED_NU_PLUS: 1624 SubIdx = PPC::sub_un; SwapOps = true; break; 1625 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 1626 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 1627 } 1628 1629 Register FirstReg = SwapOps ? FalseReg : TrueReg, 1630 SecondReg = SwapOps ? TrueReg : FalseReg; 1631 1632 // The first input register of isel cannot be r0. If it is a member 1633 // of a register class that can be r0, then copy it first (the 1634 // register allocator should eliminate the copy). 1635 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 1636 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 1637 const TargetRegisterClass *FirstRC = 1638 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 1639 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 1640 Register OldFirstReg = FirstReg; 1641 FirstReg = MRI.createVirtualRegister(FirstRC); 1642 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 1643 .addReg(OldFirstReg); 1644 } 1645 1646 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 1647 .addReg(FirstReg).addReg(SecondReg) 1648 .addReg(Cond[1].getReg(), 0, SubIdx); 1649 } 1650 1651 static unsigned getCRBitValue(unsigned CRBit) { 1652 unsigned Ret = 4; 1653 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 1654 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 1655 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 1656 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 1657 Ret = 3; 1658 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 1659 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 1660 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 1661 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 1662 Ret = 2; 1663 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 1664 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 1665 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 1666 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 1667 Ret = 1; 1668 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 1669 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 1670 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 1671 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 1672 Ret = 0; 1673 1674 assert(Ret != 4 && "Invalid CR bit register"); 1675 return Ret; 1676 } 1677 1678 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 1679 MachineBasicBlock::iterator I, 1680 const DebugLoc &DL, MCRegister DestReg, 1681 MCRegister SrcReg, bool KillSrc) const { 1682 // We can end up with self copies and similar things as a result of VSX copy 1683 // legalization. Promote them here. 1684 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1685 if (PPC::F8RCRegClass.contains(DestReg) && 1686 PPC::VSRCRegClass.contains(SrcReg)) { 1687 MCRegister SuperReg = 1688 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 1689 1690 if (VSXSelfCopyCrash && SrcReg == SuperReg) 1691 llvm_unreachable("nop VSX copy"); 1692 1693 DestReg = SuperReg; 1694 } else if (PPC::F8RCRegClass.contains(SrcReg) && 1695 PPC::VSRCRegClass.contains(DestReg)) { 1696 MCRegister SuperReg = 1697 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 1698 1699 if (VSXSelfCopyCrash && DestReg == SuperReg) 1700 llvm_unreachable("nop VSX copy"); 1701 1702 SrcReg = SuperReg; 1703 } 1704 1705 // Different class register copy 1706 if (PPC::CRBITRCRegClass.contains(SrcReg) && 1707 PPC::GPRCRegClass.contains(DestReg)) { 1708 MCRegister CRReg = getCRFromCRBit(SrcReg); 1709 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 1710 getKillRegState(KillSrc); 1711 // Rotate the CR bit in the CR fields to be the least significant bit and 1712 // then mask with 0x1 (MB = ME = 31). 1713 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 1714 .addReg(DestReg, RegState::Kill) 1715 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 1716 .addImm(31) 1717 .addImm(31); 1718 return; 1719 } else if (PPC::CRRCRegClass.contains(SrcReg) && 1720 (PPC::G8RCRegClass.contains(DestReg) || 1721 PPC::GPRCRegClass.contains(DestReg))) { 1722 bool Is64Bit = PPC::G8RCRegClass.contains(DestReg); 1723 unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF; 1724 unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM; 1725 unsigned CRNum = TRI->getEncodingValue(SrcReg); 1726 BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg); 1727 getKillRegState(KillSrc); 1728 if (CRNum == 7) 1729 return; 1730 // Shift the CR bits to make the CR field in the lowest 4 bits of GRC. 1731 BuildMI(MBB, I, DL, get(ShCode), DestReg) 1732 .addReg(DestReg, RegState::Kill) 1733 .addImm(CRNum * 4 + 4) 1734 .addImm(28) 1735 .addImm(31); 1736 return; 1737 } else if (PPC::G8RCRegClass.contains(SrcReg) && 1738 PPC::VSFRCRegClass.contains(DestReg)) { 1739 assert(Subtarget.hasDirectMove() && 1740 "Subtarget doesn't support directmove, don't know how to copy."); 1741 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 1742 NumGPRtoVSRSpill++; 1743 getKillRegState(KillSrc); 1744 return; 1745 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 1746 PPC::G8RCRegClass.contains(DestReg)) { 1747 assert(Subtarget.hasDirectMove() && 1748 "Subtarget doesn't support directmove, don't know how to copy."); 1749 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 1750 getKillRegState(KillSrc); 1751 return; 1752 } else if (PPC::SPERCRegClass.contains(SrcReg) && 1753 PPC::GPRCRegClass.contains(DestReg)) { 1754 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 1755 getKillRegState(KillSrc); 1756 return; 1757 } else if (PPC::GPRCRegClass.contains(SrcReg) && 1758 PPC::SPERCRegClass.contains(DestReg)) { 1759 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 1760 getKillRegState(KillSrc); 1761 return; 1762 } 1763 1764 unsigned Opc; 1765 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 1766 Opc = PPC::OR; 1767 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 1768 Opc = PPC::OR8; 1769 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 1770 Opc = PPC::FMR; 1771 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 1772 Opc = PPC::MCRF; 1773 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 1774 Opc = PPC::VOR; 1775 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 1776 // There are two different ways this can be done: 1777 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 1778 // issue in VSU pipeline 0. 1779 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 1780 // can go to either pipeline. 1781 // We'll always use xxlor here, because in practically all cases where 1782 // copies are generated, they are close enough to some use that the 1783 // lower-latency form is preferable. 1784 Opc = PPC::XXLOR; 1785 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1786 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1787 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1788 else if (Subtarget.pairedVectorMemops() && 1789 PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) { 1790 if (SrcReg > PPC::VSRp15) 1791 SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2; 1792 else 1793 SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2; 1794 if (DestReg > PPC::VSRp15) 1795 DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2; 1796 else 1797 DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2; 1798 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg). 1799 addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1800 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1). 1801 addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc)); 1802 return; 1803 } 1804 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1805 Opc = PPC::CROR; 1806 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1807 Opc = PPC::EVOR; 1808 else if ((PPC::ACCRCRegClass.contains(DestReg) || 1809 PPC::UACCRCRegClass.contains(DestReg)) && 1810 (PPC::ACCRCRegClass.contains(SrcReg) || 1811 PPC::UACCRCRegClass.contains(SrcReg))) { 1812 // If primed, de-prime the source register, copy the individual registers 1813 // and prime the destination if needed. The vector subregisters are 1814 // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the 1815 // source is primed, we need to re-prime it after the copy as well. 1816 PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg); 1817 bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg); 1818 bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg); 1819 MCRegister VSLSrcReg = 1820 PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; 1821 MCRegister VSLDestReg = 1822 PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; 1823 if (SrcPrimed) 1824 BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg); 1825 for (unsigned Idx = 0; Idx < 4; Idx++) 1826 BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx) 1827 .addReg(VSLSrcReg + Idx) 1828 .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc)); 1829 if (DestPrimed) 1830 BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg); 1831 if (SrcPrimed && !KillSrc) 1832 BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg); 1833 return; 1834 } else 1835 llvm_unreachable("Impossible reg-to-reg copy"); 1836 1837 const MCInstrDesc &MCID = get(Opc); 1838 if (MCID.getNumOperands() == 3) 1839 BuildMI(MBB, I, DL, MCID, DestReg) 1840 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1841 else 1842 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1843 } 1844 1845 unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const { 1846 int OpcodeIndex = 0; 1847 1848 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1849 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1850 OpcodeIndex = SOK_Int4Spill; 1851 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1852 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1853 OpcodeIndex = SOK_Int8Spill; 1854 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1855 OpcodeIndex = SOK_Float8Spill; 1856 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1857 OpcodeIndex = SOK_Float4Spill; 1858 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1859 OpcodeIndex = SOK_SPESpill; 1860 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1861 OpcodeIndex = SOK_CRSpill; 1862 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1863 OpcodeIndex = SOK_CRBitSpill; 1864 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1865 OpcodeIndex = SOK_VRVectorSpill; 1866 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1867 OpcodeIndex = SOK_VSXVectorSpill; 1868 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1869 OpcodeIndex = SOK_VectorFloat8Spill; 1870 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1871 OpcodeIndex = SOK_VectorFloat4Spill; 1872 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1873 OpcodeIndex = SOK_SpillToVSR; 1874 } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) { 1875 assert(Subtarget.pairedVectorMemops() && 1876 "Register unexpected when paired memops are disabled."); 1877 OpcodeIndex = SOK_AccumulatorSpill; 1878 } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) { 1879 assert(Subtarget.pairedVectorMemops() && 1880 "Register unexpected when paired memops are disabled."); 1881 OpcodeIndex = SOK_UAccumulatorSpill; 1882 } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) { 1883 assert(Subtarget.pairedVectorMemops() && 1884 "Register unexpected when paired memops are disabled."); 1885 OpcodeIndex = SOK_PairedVecSpill; 1886 } else { 1887 llvm_unreachable("Unknown regclass!"); 1888 } 1889 return OpcodeIndex; 1890 } 1891 1892 unsigned 1893 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const { 1894 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1895 return OpcodesForSpill[getSpillIndex(RC)]; 1896 } 1897 1898 unsigned 1899 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const { 1900 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1901 return OpcodesForSpill[getSpillIndex(RC)]; 1902 } 1903 1904 void PPCInstrInfo::StoreRegToStackSlot( 1905 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1906 const TargetRegisterClass *RC, 1907 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1908 unsigned Opcode = getStoreOpcodeForSpill(RC); 1909 DebugLoc DL; 1910 1911 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1912 FuncInfo->setHasSpills(); 1913 1914 NewMIs.push_back(addFrameReference( 1915 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1916 FrameIdx)); 1917 1918 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1919 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1920 FuncInfo->setSpillsCR(); 1921 1922 if (isXFormMemOp(Opcode)) 1923 FuncInfo->setHasNonRISpills(); 1924 } 1925 1926 void PPCInstrInfo::storeRegToStackSlotNoUpd( 1927 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, 1928 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 1929 const TargetRegisterInfo *TRI) const { 1930 MachineFunction &MF = *MBB.getParent(); 1931 SmallVector<MachineInstr *, 4> NewMIs; 1932 1933 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1934 1935 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1936 MBB.insert(MI, NewMIs[i]); 1937 1938 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1939 MachineMemOperand *MMO = MF.getMachineMemOperand( 1940 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1941 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1942 MFI.getObjectAlign(FrameIdx)); 1943 NewMIs.back()->addMemOperand(MF, MMO); 1944 } 1945 1946 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1947 MachineBasicBlock::iterator MI, 1948 Register SrcReg, bool isKill, 1949 int FrameIdx, 1950 const TargetRegisterClass *RC, 1951 const TargetRegisterInfo *TRI) const { 1952 // We need to avoid a situation in which the value from a VRRC register is 1953 // spilled using an Altivec instruction and reloaded into a VSRC register 1954 // using a VSX instruction. The issue with this is that the VSX 1955 // load/store instructions swap the doublewords in the vector and the Altivec 1956 // ones don't. The register classes on the spill/reload may be different if 1957 // the register is defined using an Altivec instruction and is then used by a 1958 // VSX instruction. 1959 RC = updatedRC(RC); 1960 storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI); 1961 } 1962 1963 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1964 unsigned DestReg, int FrameIdx, 1965 const TargetRegisterClass *RC, 1966 SmallVectorImpl<MachineInstr *> &NewMIs) 1967 const { 1968 unsigned Opcode = getLoadOpcodeForSpill(RC); 1969 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1970 FrameIdx)); 1971 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1972 1973 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1974 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1975 FuncInfo->setSpillsCR(); 1976 1977 if (isXFormMemOp(Opcode)) 1978 FuncInfo->setHasNonRISpills(); 1979 } 1980 1981 void PPCInstrInfo::loadRegFromStackSlotNoUpd( 1982 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, 1983 int FrameIdx, const TargetRegisterClass *RC, 1984 const TargetRegisterInfo *TRI) const { 1985 MachineFunction &MF = *MBB.getParent(); 1986 SmallVector<MachineInstr*, 4> NewMIs; 1987 DebugLoc DL; 1988 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1989 1990 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1991 FuncInfo->setHasSpills(); 1992 1993 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1994 1995 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1996 MBB.insert(MI, NewMIs[i]); 1997 1998 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1999 MachineMemOperand *MMO = MF.getMachineMemOperand( 2000 MachinePointerInfo::getFixedStack(MF, FrameIdx), 2001 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 2002 MFI.getObjectAlign(FrameIdx)); 2003 NewMIs.back()->addMemOperand(MF, MMO); 2004 } 2005 2006 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 2007 MachineBasicBlock::iterator MI, 2008 Register DestReg, int FrameIdx, 2009 const TargetRegisterClass *RC, 2010 const TargetRegisterInfo *TRI) const { 2011 // We need to avoid a situation in which the value from a VRRC register is 2012 // spilled using an Altivec instruction and reloaded into a VSRC register 2013 // using a VSX instruction. The issue with this is that the VSX 2014 // load/store instructions swap the doublewords in the vector and the Altivec 2015 // ones don't. The register classes on the spill/reload may be different if 2016 // the register is defined using an Altivec instruction and is then used by a 2017 // VSX instruction. 2018 RC = updatedRC(RC); 2019 2020 loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI); 2021 } 2022 2023 bool PPCInstrInfo:: 2024 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 2025 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 2026 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 2027 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 2028 else 2029 // Leave the CR# the same, but invert the condition. 2030 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 2031 return false; 2032 } 2033 2034 // For some instructions, it is legal to fold ZERO into the RA register field. 2035 // This function performs that fold by replacing the operand with PPC::ZERO, 2036 // it does not consider whether the load immediate zero is no longer in use. 2037 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 2038 Register Reg) const { 2039 // A zero immediate should always be loaded with a single li. 2040 unsigned DefOpc = DefMI.getOpcode(); 2041 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 2042 return false; 2043 if (!DefMI.getOperand(1).isImm()) 2044 return false; 2045 if (DefMI.getOperand(1).getImm() != 0) 2046 return false; 2047 2048 // Note that we cannot here invert the arguments of an isel in order to fold 2049 // a ZERO into what is presented as the second argument. All we have here 2050 // is the condition bit, and that might come from a CR-logical bit operation. 2051 2052 const MCInstrDesc &UseMCID = UseMI.getDesc(); 2053 2054 // Only fold into real machine instructions. 2055 if (UseMCID.isPseudo()) 2056 return false; 2057 2058 // We need to find which of the User's operands is to be folded, that will be 2059 // the operand that matches the given register ID. 2060 unsigned UseIdx; 2061 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 2062 if (UseMI.getOperand(UseIdx).isReg() && 2063 UseMI.getOperand(UseIdx).getReg() == Reg) 2064 break; 2065 2066 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 2067 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 2068 2069 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 2070 2071 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 2072 // register (which might also be specified as a pointer class kind). 2073 if (UseInfo->isLookupPtrRegClass()) { 2074 if (UseInfo->RegClass /* Kind */ != 1) 2075 return false; 2076 } else { 2077 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 2078 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 2079 return false; 2080 } 2081 2082 // Make sure this is not tied to an output register (or otherwise 2083 // constrained). This is true for ST?UX registers, for example, which 2084 // are tied to their output registers. 2085 if (UseInfo->Constraints != 0) 2086 return false; 2087 2088 MCRegister ZeroReg; 2089 if (UseInfo->isLookupPtrRegClass()) { 2090 bool isPPC64 = Subtarget.isPPC64(); 2091 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 2092 } else { 2093 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 2094 PPC::ZERO8 : PPC::ZERO; 2095 } 2096 2097 UseMI.getOperand(UseIdx).setReg(ZeroReg); 2098 return true; 2099 } 2100 2101 // Folds zero into instructions which have a load immediate zero as an operand 2102 // but also recognize zero as immediate zero. If the definition of the load 2103 // has no more users it is deleted. 2104 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 2105 Register Reg, MachineRegisterInfo *MRI) const { 2106 bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg); 2107 if (MRI->use_nodbg_empty(Reg)) 2108 DefMI.eraseFromParent(); 2109 return Changed; 2110 } 2111 2112 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 2113 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 2114 I != IE; ++I) 2115 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 2116 return true; 2117 return false; 2118 } 2119 2120 // We should make sure that, if we're going to predicate both sides of a 2121 // condition (a diamond), that both sides don't define the counter register. We 2122 // can predicate counter-decrement-based branches, but while that predicates 2123 // the branching, it does not predicate the counter decrement. If we tried to 2124 // merge the triangle into one predicated block, we'd decrement the counter 2125 // twice. 2126 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 2127 unsigned NumT, unsigned ExtraT, 2128 MachineBasicBlock &FMBB, 2129 unsigned NumF, unsigned ExtraF, 2130 BranchProbability Probability) const { 2131 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 2132 } 2133 2134 2135 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 2136 // The predicated branches are identified by their type, not really by the 2137 // explicit presence of a predicate. Furthermore, some of them can be 2138 // predicated more than once. Because if conversion won't try to predicate 2139 // any instruction which already claims to be predicated (by returning true 2140 // here), always return false. In doing so, we let isPredicable() be the 2141 // final word on whether not the instruction can be (further) predicated. 2142 2143 return false; 2144 } 2145 2146 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 2147 const MachineBasicBlock *MBB, 2148 const MachineFunction &MF) const { 2149 // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion 2150 // across them, since some FP operations may change content of FPSCR. 2151 // TODO: Model FPSCR in PPC instruction definitions and remove the workaround 2152 if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF) 2153 return true; 2154 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); 2155 } 2156 2157 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 2158 ArrayRef<MachineOperand> Pred) const { 2159 unsigned OpC = MI.getOpcode(); 2160 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 2161 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 2162 bool isPPC64 = Subtarget.isPPC64(); 2163 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 2164 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 2165 // Need add Def and Use for CTR implicit operand. 2166 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2167 .addReg(Pred[1].getReg(), RegState::Implicit) 2168 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 2169 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2170 MI.setDesc(get(PPC::BCLR)); 2171 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2172 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2173 MI.setDesc(get(PPC::BCLRn)); 2174 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2175 } else { 2176 MI.setDesc(get(PPC::BCCLR)); 2177 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2178 .addImm(Pred[0].getImm()) 2179 .add(Pred[1]); 2180 } 2181 2182 return true; 2183 } else if (OpC == PPC::B) { 2184 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 2185 bool isPPC64 = Subtarget.isPPC64(); 2186 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 2187 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 2188 // Need add Def and Use for CTR implicit operand. 2189 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2190 .addReg(Pred[1].getReg(), RegState::Implicit) 2191 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 2192 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2193 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2194 MI.RemoveOperand(0); 2195 2196 MI.setDesc(get(PPC::BC)); 2197 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2198 .add(Pred[1]) 2199 .addMBB(MBB); 2200 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2201 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2202 MI.RemoveOperand(0); 2203 2204 MI.setDesc(get(PPC::BCn)); 2205 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2206 .add(Pred[1]) 2207 .addMBB(MBB); 2208 } else { 2209 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2210 MI.RemoveOperand(0); 2211 2212 MI.setDesc(get(PPC::BCC)); 2213 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2214 .addImm(Pred[0].getImm()) 2215 .add(Pred[1]) 2216 .addMBB(MBB); 2217 } 2218 2219 return true; 2220 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 2221 OpC == PPC::BCTRL8) { 2222 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 2223 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 2224 2225 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 2226 bool isPPC64 = Subtarget.isPPC64(); 2227 2228 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2229 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 2230 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 2231 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2232 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2233 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 2234 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 2235 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2236 } else { 2237 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 2238 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 2239 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2240 .addImm(Pred[0].getImm()) 2241 .add(Pred[1]); 2242 } 2243 2244 // Need add Def and Use for LR implicit operand. 2245 if (setLR) 2246 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2247 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit) 2248 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine); 2249 2250 return true; 2251 } 2252 2253 return false; 2254 } 2255 2256 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 2257 ArrayRef<MachineOperand> Pred2) const { 2258 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 2259 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 2260 2261 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 2262 return false; 2263 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 2264 return false; 2265 2266 // P1 can only subsume P2 if they test the same condition register. 2267 if (Pred1[1].getReg() != Pred2[1].getReg()) 2268 return false; 2269 2270 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 2271 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 2272 2273 if (P1 == P2) 2274 return true; 2275 2276 // Does P1 subsume P2, e.g. GE subsumes GT. 2277 if (P1 == PPC::PRED_LE && 2278 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 2279 return true; 2280 if (P1 == PPC::PRED_GE && 2281 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 2282 return true; 2283 2284 return false; 2285 } 2286 2287 bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI, 2288 std::vector<MachineOperand> &Pred, 2289 bool SkipDead) const { 2290 // Note: At the present time, the contents of Pred from this function is 2291 // unused by IfConversion. This implementation follows ARM by pushing the 2292 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 2293 // predicate, instructions defining CTR or CTR8 are also included as 2294 // predicate-defining instructions. 2295 2296 const TargetRegisterClass *RCs[] = 2297 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 2298 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 2299 2300 bool Found = false; 2301 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 2302 const MachineOperand &MO = MI.getOperand(i); 2303 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 2304 const TargetRegisterClass *RC = RCs[c]; 2305 if (MO.isReg()) { 2306 if (MO.isDef() && RC->contains(MO.getReg())) { 2307 Pred.push_back(MO); 2308 Found = true; 2309 } 2310 } else if (MO.isRegMask()) { 2311 for (TargetRegisterClass::iterator I = RC->begin(), 2312 IE = RC->end(); I != IE; ++I) 2313 if (MO.clobbersPhysReg(*I)) { 2314 Pred.push_back(MO); 2315 Found = true; 2316 } 2317 } 2318 } 2319 } 2320 2321 return Found; 2322 } 2323 2324 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 2325 Register &SrcReg2, int &Mask, 2326 int &Value) const { 2327 unsigned Opc = MI.getOpcode(); 2328 2329 switch (Opc) { 2330 default: return false; 2331 case PPC::CMPWI: 2332 case PPC::CMPLWI: 2333 case PPC::CMPDI: 2334 case PPC::CMPLDI: 2335 SrcReg = MI.getOperand(1).getReg(); 2336 SrcReg2 = 0; 2337 Value = MI.getOperand(2).getImm(); 2338 Mask = 0xFFFF; 2339 return true; 2340 case PPC::CMPW: 2341 case PPC::CMPLW: 2342 case PPC::CMPD: 2343 case PPC::CMPLD: 2344 case PPC::FCMPUS: 2345 case PPC::FCMPUD: 2346 SrcReg = MI.getOperand(1).getReg(); 2347 SrcReg2 = MI.getOperand(2).getReg(); 2348 Value = 0; 2349 Mask = 0; 2350 return true; 2351 } 2352 } 2353 2354 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 2355 Register SrcReg2, int Mask, int Value, 2356 const MachineRegisterInfo *MRI) const { 2357 if (DisableCmpOpt) 2358 return false; 2359 2360 int OpC = CmpInstr.getOpcode(); 2361 Register CRReg = CmpInstr.getOperand(0).getReg(); 2362 2363 // FP record forms set CR1 based on the exception status bits, not a 2364 // comparison with zero. 2365 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 2366 return false; 2367 2368 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2369 // The record forms set the condition register based on a signed comparison 2370 // with zero (so says the ISA manual). This is not as straightforward as it 2371 // seems, however, because this is always a 64-bit comparison on PPC64, even 2372 // for instructions that are 32-bit in nature (like slw for example). 2373 // So, on PPC32, for unsigned comparisons, we can use the record forms only 2374 // for equality checks (as those don't depend on the sign). On PPC64, 2375 // we are restricted to equality for unsigned 64-bit comparisons and for 2376 // signed 32-bit comparisons the applicability is more restricted. 2377 bool isPPC64 = Subtarget.isPPC64(); 2378 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 2379 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 2380 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 2381 2382 // Look through copies unless that gets us to a physical register. 2383 Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 2384 if (ActualSrc.isVirtual()) 2385 SrcReg = ActualSrc; 2386 2387 // Get the unique definition of SrcReg. 2388 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 2389 if (!MI) return false; 2390 2391 bool equalityOnly = false; 2392 bool noSub = false; 2393 if (isPPC64) { 2394 if (is32BitSignedCompare) { 2395 // We can perform this optimization only if MI is sign-extending. 2396 if (isSignExtended(*MI)) 2397 noSub = true; 2398 else 2399 return false; 2400 } else if (is32BitUnsignedCompare) { 2401 // We can perform this optimization, equality only, if MI is 2402 // zero-extending. 2403 if (isZeroExtended(*MI)) { 2404 noSub = true; 2405 equalityOnly = true; 2406 } else 2407 return false; 2408 } else 2409 equalityOnly = is64BitUnsignedCompare; 2410 } else 2411 equalityOnly = is32BitUnsignedCompare; 2412 2413 if (equalityOnly) { 2414 // We need to check the uses of the condition register in order to reject 2415 // non-equality comparisons. 2416 for (MachineRegisterInfo::use_instr_iterator 2417 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2418 I != IE; ++I) { 2419 MachineInstr *UseMI = &*I; 2420 if (UseMI->getOpcode() == PPC::BCC) { 2421 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 2422 unsigned PredCond = PPC::getPredicateCondition(Pred); 2423 // We ignore hint bits when checking for non-equality comparisons. 2424 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 2425 return false; 2426 } else if (UseMI->getOpcode() == PPC::ISEL || 2427 UseMI->getOpcode() == PPC::ISEL8) { 2428 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 2429 if (SubIdx != PPC::sub_eq) 2430 return false; 2431 } else 2432 return false; 2433 } 2434 } 2435 2436 MachineBasicBlock::iterator I = CmpInstr; 2437 2438 // Scan forward to find the first use of the compare. 2439 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 2440 ++I) { 2441 bool FoundUse = false; 2442 for (MachineRegisterInfo::use_instr_iterator 2443 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 2444 J != JE; ++J) 2445 if (&*J == &*I) { 2446 FoundUse = true; 2447 break; 2448 } 2449 2450 if (FoundUse) 2451 break; 2452 } 2453 2454 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 2455 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 2456 2457 // There are two possible candidates which can be changed to set CR[01]. 2458 // One is MI, the other is a SUB instruction. 2459 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 2460 MachineInstr *Sub = nullptr; 2461 if (SrcReg2 != 0) 2462 // MI is not a candidate for CMPrr. 2463 MI = nullptr; 2464 // FIXME: Conservatively refuse to convert an instruction which isn't in the 2465 // same BB as the comparison. This is to allow the check below to avoid calls 2466 // (and other explicit clobbers); instead we should really check for these 2467 // more explicitly (in at least a few predecessors). 2468 else if (MI->getParent() != CmpInstr.getParent()) 2469 return false; 2470 else if (Value != 0) { 2471 // The record-form instructions set CR bit based on signed comparison 2472 // against 0. We try to convert a compare against 1 or -1 into a compare 2473 // against 0 to exploit record-form instructions. For example, we change 2474 // the condition "greater than -1" into "greater than or equal to 0" 2475 // and "less than 1" into "less than or equal to 0". 2476 2477 // Since we optimize comparison based on a specific branch condition, 2478 // we don't optimize if condition code is used by more than once. 2479 if (equalityOnly || !MRI->hasOneUse(CRReg)) 2480 return false; 2481 2482 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 2483 if (UseMI->getOpcode() != PPC::BCC) 2484 return false; 2485 2486 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 2487 unsigned PredCond = PPC::getPredicateCondition(Pred); 2488 unsigned PredHint = PPC::getPredicateHint(Pred); 2489 int16_t Immed = (int16_t)Value; 2490 2491 // When modifying the condition in the predicate, we propagate hint bits 2492 // from the original predicate to the new one. 2493 if (Immed == -1 && PredCond == PPC::PRED_GT) 2494 // We convert "greater than -1" into "greater than or equal to 0", 2495 // since we are assuming signed comparison by !equalityOnly 2496 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 2497 else if (Immed == -1 && PredCond == PPC::PRED_LE) 2498 // We convert "less than or equal to -1" into "less than 0". 2499 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 2500 else if (Immed == 1 && PredCond == PPC::PRED_LT) 2501 // We convert "less than 1" into "less than or equal to 0". 2502 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 2503 else if (Immed == 1 && PredCond == PPC::PRED_GE) 2504 // We convert "greater than or equal to 1" into "greater than 0". 2505 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 2506 else 2507 return false; 2508 2509 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred)); 2510 } 2511 2512 // Search for Sub. 2513 --I; 2514 2515 // Get ready to iterate backward from CmpInstr. 2516 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 2517 2518 for (; I != E && !noSub; --I) { 2519 const MachineInstr &Instr = *I; 2520 unsigned IOpC = Instr.getOpcode(); 2521 2522 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 2523 Instr.readsRegister(PPC::CR0, TRI))) 2524 // This instruction modifies or uses the record condition register after 2525 // the one we want to change. While we could do this transformation, it 2526 // would likely not be profitable. This transformation removes one 2527 // instruction, and so even forcing RA to generate one move probably 2528 // makes it unprofitable. 2529 return false; 2530 2531 // Check whether CmpInstr can be made redundant by the current instruction. 2532 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 2533 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 2534 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 2535 ((Instr.getOperand(1).getReg() == SrcReg && 2536 Instr.getOperand(2).getReg() == SrcReg2) || 2537 (Instr.getOperand(1).getReg() == SrcReg2 && 2538 Instr.getOperand(2).getReg() == SrcReg))) { 2539 Sub = &*I; 2540 break; 2541 } 2542 2543 if (I == B) 2544 // The 'and' is below the comparison instruction. 2545 return false; 2546 } 2547 2548 // Return false if no candidates exist. 2549 if (!MI && !Sub) 2550 return false; 2551 2552 // The single candidate is called MI. 2553 if (!MI) MI = Sub; 2554 2555 int NewOpC = -1; 2556 int MIOpC = MI->getOpcode(); 2557 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || 2558 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) 2559 NewOpC = MIOpC; 2560 else { 2561 NewOpC = PPC::getRecordFormOpcode(MIOpC); 2562 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 2563 NewOpC = MIOpC; 2564 } 2565 2566 // FIXME: On the non-embedded POWER architectures, only some of the record 2567 // forms are fast, and we should use only the fast ones. 2568 2569 // The defining instruction has a record form (or is already a record 2570 // form). It is possible, however, that we'll need to reverse the condition 2571 // code of the users. 2572 if (NewOpC == -1) 2573 return false; 2574 2575 // This transformation should not be performed if `nsw` is missing and is not 2576 // `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in 2577 // CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in 2578 // CRReg can reflect if compared values are equal, this optz is still valid. 2579 if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) && 2580 Sub && !Sub->getFlag(MachineInstr::NoSWrap)) 2581 return false; 2582 2583 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 2584 // needs to be updated to be based on SUB. Push the condition code 2585 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 2586 // condition code of these operands will be modified. 2587 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 2588 // comparison against 0, which may modify predicate. 2589 bool ShouldSwap = false; 2590 if (Sub && Value == 0) { 2591 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 2592 Sub->getOperand(2).getReg() == SrcReg; 2593 2594 // The operands to subf are the opposite of sub, so only in the fixed-point 2595 // case, invert the order. 2596 ShouldSwap = !ShouldSwap; 2597 } 2598 2599 if (ShouldSwap) 2600 for (MachineRegisterInfo::use_instr_iterator 2601 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2602 I != IE; ++I) { 2603 MachineInstr *UseMI = &*I; 2604 if (UseMI->getOpcode() == PPC::BCC) { 2605 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 2606 unsigned PredCond = PPC::getPredicateCondition(Pred); 2607 assert((!equalityOnly || 2608 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 2609 "Invalid predicate for equality-only optimization"); 2610 (void)PredCond; // To suppress warning in release build. 2611 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 2612 PPC::getSwappedPredicate(Pred))); 2613 } else if (UseMI->getOpcode() == PPC::ISEL || 2614 UseMI->getOpcode() == PPC::ISEL8) { 2615 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 2616 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 2617 "Invalid CR bit for equality-only optimization"); 2618 2619 if (NewSubReg == PPC::sub_lt) 2620 NewSubReg = PPC::sub_gt; 2621 else if (NewSubReg == PPC::sub_gt) 2622 NewSubReg = PPC::sub_lt; 2623 2624 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 2625 NewSubReg)); 2626 } else // We need to abort on a user we don't understand. 2627 return false; 2628 } 2629 assert(!(Value != 0 && ShouldSwap) && 2630 "Non-zero immediate support and ShouldSwap" 2631 "may conflict in updating predicate"); 2632 2633 // Create a new virtual register to hold the value of the CR set by the 2634 // record-form instruction. If the instruction was not previously in 2635 // record form, then set the kill flag on the CR. 2636 CmpInstr.eraseFromParent(); 2637 2638 MachineBasicBlock::iterator MII = MI; 2639 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 2640 get(TargetOpcode::COPY), CRReg) 2641 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 2642 2643 // Even if CR0 register were dead before, it is alive now since the 2644 // instruction we just built uses it. 2645 MI->clearRegisterDeads(PPC::CR0); 2646 2647 if (MIOpC != NewOpC) { 2648 // We need to be careful here: we're replacing one instruction with 2649 // another, and we need to make sure that we get all of the right 2650 // implicit uses and defs. On the other hand, the caller may be holding 2651 // an iterator to this instruction, and so we can't delete it (this is 2652 // specifically the case if this is the instruction directly after the 2653 // compare). 2654 2655 // Rotates are expensive instructions. If we're emitting a record-form 2656 // rotate that can just be an andi/andis, we should just emit that. 2657 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 2658 Register GPRRes = MI->getOperand(0).getReg(); 2659 int64_t SH = MI->getOperand(2).getImm(); 2660 int64_t MB = MI->getOperand(3).getImm(); 2661 int64_t ME = MI->getOperand(4).getImm(); 2662 // We can only do this if both the start and end of the mask are in the 2663 // same halfword. 2664 bool MBInLoHWord = MB >= 16; 2665 bool MEInLoHWord = ME >= 16; 2666 uint64_t Mask = ~0LLU; 2667 2668 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 2669 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2670 // The mask value needs to shift right 16 if we're emitting andis. 2671 Mask >>= MBInLoHWord ? 0 : 16; 2672 NewOpC = MIOpC == PPC::RLWINM 2673 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) 2674 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); 2675 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 2676 (ME - MB + 1 == SH) && (MB >= 16)) { 2677 // If we are rotating by the exact number of bits as are in the mask 2678 // and the mask is in the least significant bits of the register, 2679 // that's just an andis. (as long as the GPR result has no uses). 2680 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 2681 Mask >>= 16; 2682 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; 2683 } 2684 // If we've set the mask, we can transform. 2685 if (Mask != ~0LLU) { 2686 MI->RemoveOperand(4); 2687 MI->RemoveOperand(3); 2688 MI->getOperand(2).setImm(Mask); 2689 NumRcRotatesConvertedToRcAnd++; 2690 } 2691 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 2692 int64_t MB = MI->getOperand(3).getImm(); 2693 if (MB >= 48) { 2694 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2695 NewOpC = PPC::ANDI8_rec; 2696 MI->RemoveOperand(3); 2697 MI->getOperand(2).setImm(Mask); 2698 NumRcRotatesConvertedToRcAnd++; 2699 } 2700 } 2701 2702 const MCInstrDesc &NewDesc = get(NewOpC); 2703 MI->setDesc(NewDesc); 2704 2705 if (NewDesc.ImplicitDefs) 2706 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 2707 *ImpDefs; ++ImpDefs) 2708 if (!MI->definesRegister(*ImpDefs)) 2709 MI->addOperand(*MI->getParent()->getParent(), 2710 MachineOperand::CreateReg(*ImpDefs, true, true)); 2711 if (NewDesc.ImplicitUses) 2712 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 2713 *ImpUses; ++ImpUses) 2714 if (!MI->readsRegister(*ImpUses)) 2715 MI->addOperand(*MI->getParent()->getParent(), 2716 MachineOperand::CreateReg(*ImpUses, false, true)); 2717 } 2718 assert(MI->definesRegister(PPC::CR0) && 2719 "Record-form instruction does not define cr0?"); 2720 2721 // Modify the condition code of operands in OperandsToUpdate. 2722 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 2723 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 2724 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 2725 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 2726 2727 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 2728 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 2729 2730 return true; 2731 } 2732 2733 bool PPCInstrInfo::getMemOperandsWithOffsetWidth( 2734 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, 2735 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, 2736 const TargetRegisterInfo *TRI) const { 2737 const MachineOperand *BaseOp; 2738 OffsetIsScalable = false; 2739 if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI)) 2740 return false; 2741 BaseOps.push_back(BaseOp); 2742 return true; 2743 } 2744 2745 static bool isLdStSafeToCluster(const MachineInstr &LdSt, 2746 const TargetRegisterInfo *TRI) { 2747 // If this is a volatile load/store, don't mess with it. 2748 if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3) 2749 return false; 2750 2751 if (LdSt.getOperand(2).isFI()) 2752 return true; 2753 2754 assert(LdSt.getOperand(2).isReg() && "Expected a reg operand."); 2755 // Can't cluster if the instruction modifies the base register 2756 // or it is update form. e.g. ld r2,3(r2) 2757 if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI)) 2758 return false; 2759 2760 return true; 2761 } 2762 2763 // Only cluster instruction pair that have the same opcode, and they are 2764 // clusterable according to PowerPC specification. 2765 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc, 2766 const PPCSubtarget &Subtarget) { 2767 switch (FirstOpc) { 2768 default: 2769 return false; 2770 case PPC::STD: 2771 case PPC::STFD: 2772 case PPC::STXSD: 2773 case PPC::DFSTOREf64: 2774 return FirstOpc == SecondOpc; 2775 // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with 2776 // 32bit and 64bit instruction selection. They are clusterable pair though 2777 // they are different opcode. 2778 case PPC::STW: 2779 case PPC::STW8: 2780 return SecondOpc == PPC::STW || SecondOpc == PPC::STW8; 2781 } 2782 } 2783 2784 bool PPCInstrInfo::shouldClusterMemOps( 2785 ArrayRef<const MachineOperand *> BaseOps1, 2786 ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads, 2787 unsigned NumBytes) const { 2788 2789 assert(BaseOps1.size() == 1 && BaseOps2.size() == 1); 2790 const MachineOperand &BaseOp1 = *BaseOps1.front(); 2791 const MachineOperand &BaseOp2 = *BaseOps2.front(); 2792 assert((BaseOp1.isReg() || BaseOp1.isFI()) && 2793 "Only base registers and frame indices are supported."); 2794 2795 // The NumLoads means the number of loads that has been clustered. 2796 // Don't cluster memory op if there are already two ops clustered at least. 2797 if (NumLoads > 2) 2798 return false; 2799 2800 // Cluster the load/store only when they have the same base 2801 // register or FI. 2802 if ((BaseOp1.isReg() != BaseOp2.isReg()) || 2803 (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) || 2804 (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex())) 2805 return false; 2806 2807 // Check if the load/store are clusterable according to the PowerPC 2808 // specification. 2809 const MachineInstr &FirstLdSt = *BaseOp1.getParent(); 2810 const MachineInstr &SecondLdSt = *BaseOp2.getParent(); 2811 unsigned FirstOpc = FirstLdSt.getOpcode(); 2812 unsigned SecondOpc = SecondLdSt.getOpcode(); 2813 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2814 // Cluster the load/store only when they have the same opcode, and they are 2815 // clusterable opcode according to PowerPC specification. 2816 if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget)) 2817 return false; 2818 2819 // Can't cluster load/store that have ordered or volatile memory reference. 2820 if (!isLdStSafeToCluster(FirstLdSt, TRI) || 2821 !isLdStSafeToCluster(SecondLdSt, TRI)) 2822 return false; 2823 2824 int64_t Offset1 = 0, Offset2 = 0; 2825 unsigned Width1 = 0, Width2 = 0; 2826 const MachineOperand *Base1 = nullptr, *Base2 = nullptr; 2827 if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) || 2828 !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) || 2829 Width1 != Width2) 2830 return false; 2831 2832 assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 && 2833 "getMemOperandWithOffsetWidth return incorrect base op"); 2834 // The caller should already have ordered FirstMemOp/SecondMemOp by offset. 2835 assert(Offset1 <= Offset2 && "Caller should have ordered offsets."); 2836 return Offset1 + Width1 == Offset2; 2837 } 2838 2839 /// GetInstSize - Return the number of bytes of code the specified 2840 /// instruction may be. This returns the maximum number of bytes. 2841 /// 2842 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2843 unsigned Opcode = MI.getOpcode(); 2844 2845 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 2846 const MachineFunction *MF = MI.getParent()->getParent(); 2847 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2848 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2849 } else if (Opcode == TargetOpcode::STACKMAP) { 2850 StackMapOpers Opers(&MI); 2851 return Opers.getNumPatchBytes(); 2852 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2853 PatchPointOpers Opers(&MI); 2854 return Opers.getNumPatchBytes(); 2855 } else { 2856 return get(Opcode).getSize(); 2857 } 2858 } 2859 2860 std::pair<unsigned, unsigned> 2861 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2862 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2863 return std::make_pair(TF & Mask, TF & ~Mask); 2864 } 2865 2866 ArrayRef<std::pair<unsigned, const char *>> 2867 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2868 using namespace PPCII; 2869 static const std::pair<unsigned, const char *> TargetFlags[] = { 2870 {MO_LO, "ppc-lo"}, 2871 {MO_HA, "ppc-ha"}, 2872 {MO_TPREL_LO, "ppc-tprel-lo"}, 2873 {MO_TPREL_HA, "ppc-tprel-ha"}, 2874 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2875 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2876 {MO_TOC_LO, "ppc-toc-lo"}, 2877 {MO_TLS, "ppc-tls"}}; 2878 return makeArrayRef(TargetFlags); 2879 } 2880 2881 ArrayRef<std::pair<unsigned, const char *>> 2882 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2883 using namespace PPCII; 2884 static const std::pair<unsigned, const char *> TargetFlags[] = { 2885 {MO_PLT, "ppc-plt"}, 2886 {MO_PIC_FLAG, "ppc-pic"}, 2887 {MO_PCREL_FLAG, "ppc-pcrel"}, 2888 {MO_GOT_FLAG, "ppc-got"}, 2889 {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"}, 2890 {MO_TLSGD_FLAG, "ppc-tlsgd"}, 2891 {MO_TLSLD_FLAG, "ppc-tlsld"}, 2892 {MO_TPREL_FLAG, "ppc-tprel"}, 2893 {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"}, 2894 {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"}, 2895 {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}}; 2896 return makeArrayRef(TargetFlags); 2897 } 2898 2899 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2900 // The VSX versions have the advantage of a full 64-register target whereas 2901 // the FP ones have the advantage of lower latency and higher throughput. So 2902 // what we are after is using the faster instructions in low register pressure 2903 // situations and using the larger register file in high register pressure 2904 // situations. 2905 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2906 unsigned UpperOpcode, LowerOpcode; 2907 switch (MI.getOpcode()) { 2908 case PPC::DFLOADf32: 2909 UpperOpcode = PPC::LXSSP; 2910 LowerOpcode = PPC::LFS; 2911 break; 2912 case PPC::DFLOADf64: 2913 UpperOpcode = PPC::LXSD; 2914 LowerOpcode = PPC::LFD; 2915 break; 2916 case PPC::DFSTOREf32: 2917 UpperOpcode = PPC::STXSSP; 2918 LowerOpcode = PPC::STFS; 2919 break; 2920 case PPC::DFSTOREf64: 2921 UpperOpcode = PPC::STXSD; 2922 LowerOpcode = PPC::STFD; 2923 break; 2924 case PPC::XFLOADf32: 2925 UpperOpcode = PPC::LXSSPX; 2926 LowerOpcode = PPC::LFSX; 2927 break; 2928 case PPC::XFLOADf64: 2929 UpperOpcode = PPC::LXSDX; 2930 LowerOpcode = PPC::LFDX; 2931 break; 2932 case PPC::XFSTOREf32: 2933 UpperOpcode = PPC::STXSSPX; 2934 LowerOpcode = PPC::STFSX; 2935 break; 2936 case PPC::XFSTOREf64: 2937 UpperOpcode = PPC::STXSDX; 2938 LowerOpcode = PPC::STFDX; 2939 break; 2940 case PPC::LIWAX: 2941 UpperOpcode = PPC::LXSIWAX; 2942 LowerOpcode = PPC::LFIWAX; 2943 break; 2944 case PPC::LIWZX: 2945 UpperOpcode = PPC::LXSIWZX; 2946 LowerOpcode = PPC::LFIWZX; 2947 break; 2948 case PPC::STIWX: 2949 UpperOpcode = PPC::STXSIWX; 2950 LowerOpcode = PPC::STFIWX; 2951 break; 2952 default: 2953 llvm_unreachable("Unknown Operation!"); 2954 } 2955 2956 Register TargetReg = MI.getOperand(0).getReg(); 2957 unsigned Opcode; 2958 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2959 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2960 Opcode = LowerOpcode; 2961 else 2962 Opcode = UpperOpcode; 2963 MI.setDesc(get(Opcode)); 2964 return true; 2965 } 2966 2967 static bool isAnImmediateOperand(const MachineOperand &MO) { 2968 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2969 } 2970 2971 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2972 auto &MBB = *MI.getParent(); 2973 auto DL = MI.getDebugLoc(); 2974 2975 switch (MI.getOpcode()) { 2976 case PPC::BUILD_UACC: { 2977 MCRegister ACC = MI.getOperand(0).getReg(); 2978 MCRegister UACC = MI.getOperand(1).getReg(); 2979 if (ACC - PPC::ACC0 != UACC - PPC::UACC0) { 2980 MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4; 2981 MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4; 2982 // FIXME: This can easily be improved to look up to the top of the MBB 2983 // to see if the inputs are XXLOR's. If they are and SrcReg is killed, 2984 // we can just re-target any such XXLOR's to DstVSR + offset. 2985 for (int VecNo = 0; VecNo < 4; VecNo++) 2986 BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo) 2987 .addReg(SrcVSR + VecNo) 2988 .addReg(SrcVSR + VecNo); 2989 } 2990 // BUILD_UACC is expanded to 4 copies of the underlying vsx regisers. 2991 // So after building the 4 copies, we can replace the BUILD_UACC instruction 2992 // with a NOP. 2993 LLVM_FALLTHROUGH; 2994 } 2995 case PPC::KILL_PAIR: { 2996 MI.setDesc(get(PPC::UNENCODED_NOP)); 2997 MI.RemoveOperand(1); 2998 MI.RemoveOperand(0); 2999 return true; 3000 } 3001 case TargetOpcode::LOAD_STACK_GUARD: { 3002 assert(Subtarget.isTargetLinux() && 3003 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 3004 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 3005 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 3006 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 3007 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3008 .addImm(Offset) 3009 .addReg(Reg); 3010 return true; 3011 } 3012 case PPC::DFLOADf32: 3013 case PPC::DFLOADf64: 3014 case PPC::DFSTOREf32: 3015 case PPC::DFSTOREf64: { 3016 assert(Subtarget.hasP9Vector() && 3017 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 3018 assert(MI.getOperand(2).isReg() && 3019 isAnImmediateOperand(MI.getOperand(1)) && 3020 "D-form op must have register and immediate operands"); 3021 return expandVSXMemPseudo(MI); 3022 } 3023 case PPC::XFLOADf32: 3024 case PPC::XFSTOREf32: 3025 case PPC::LIWAX: 3026 case PPC::LIWZX: 3027 case PPC::STIWX: { 3028 assert(Subtarget.hasP8Vector() && 3029 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 3030 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 3031 "X-form op must have register and register operands"); 3032 return expandVSXMemPseudo(MI); 3033 } 3034 case PPC::XFLOADf64: 3035 case PPC::XFSTOREf64: { 3036 assert(Subtarget.hasVSX() && 3037 "Invalid X-Form Pseudo-ops on target that has no VSX."); 3038 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 3039 "X-form op must have register and register operands"); 3040 return expandVSXMemPseudo(MI); 3041 } 3042 case PPC::SPILLTOVSR_LD: { 3043 Register TargetReg = MI.getOperand(0).getReg(); 3044 if (PPC::VSFRCRegClass.contains(TargetReg)) { 3045 MI.setDesc(get(PPC::DFLOADf64)); 3046 return expandPostRAPseudo(MI); 3047 } 3048 else 3049 MI.setDesc(get(PPC::LD)); 3050 return true; 3051 } 3052 case PPC::SPILLTOVSR_ST: { 3053 Register SrcReg = MI.getOperand(0).getReg(); 3054 if (PPC::VSFRCRegClass.contains(SrcReg)) { 3055 NumStoreSPILLVSRRCAsVec++; 3056 MI.setDesc(get(PPC::DFSTOREf64)); 3057 return expandPostRAPseudo(MI); 3058 } else { 3059 NumStoreSPILLVSRRCAsGpr++; 3060 MI.setDesc(get(PPC::STD)); 3061 } 3062 return true; 3063 } 3064 case PPC::SPILLTOVSR_LDX: { 3065 Register TargetReg = MI.getOperand(0).getReg(); 3066 if (PPC::VSFRCRegClass.contains(TargetReg)) 3067 MI.setDesc(get(PPC::LXSDX)); 3068 else 3069 MI.setDesc(get(PPC::LDX)); 3070 return true; 3071 } 3072 case PPC::SPILLTOVSR_STX: { 3073 Register SrcReg = MI.getOperand(0).getReg(); 3074 if (PPC::VSFRCRegClass.contains(SrcReg)) { 3075 NumStoreSPILLVSRRCAsVec++; 3076 MI.setDesc(get(PPC::STXSDX)); 3077 } else { 3078 NumStoreSPILLVSRRCAsGpr++; 3079 MI.setDesc(get(PPC::STDX)); 3080 } 3081 return true; 3082 } 3083 3084 case PPC::CFENCE8: { 3085 auto Val = MI.getOperand(0).getReg(); 3086 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 3087 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 3088 .addImm(PPC::PRED_NE_MINUS) 3089 .addReg(PPC::CR7) 3090 .addImm(1); 3091 MI.setDesc(get(PPC::ISYNC)); 3092 MI.RemoveOperand(0); 3093 return true; 3094 } 3095 } 3096 return false; 3097 } 3098 3099 // Essentially a compile-time implementation of a compare->isel sequence. 3100 // It takes two constants to compare, along with the true/false registers 3101 // and the comparison type (as a subreg to a CR field) and returns one 3102 // of the true/false registers, depending on the comparison results. 3103 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 3104 unsigned TrueReg, unsigned FalseReg, 3105 unsigned CRSubReg) { 3106 // Signed comparisons. The immediates are assumed to be sign-extended. 3107 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 3108 switch (CRSubReg) { 3109 default: llvm_unreachable("Unknown integer comparison type."); 3110 case PPC::sub_lt: 3111 return Imm1 < Imm2 ? TrueReg : FalseReg; 3112 case PPC::sub_gt: 3113 return Imm1 > Imm2 ? TrueReg : FalseReg; 3114 case PPC::sub_eq: 3115 return Imm1 == Imm2 ? TrueReg : FalseReg; 3116 } 3117 } 3118 // Unsigned comparisons. 3119 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 3120 switch (CRSubReg) { 3121 default: llvm_unreachable("Unknown integer comparison type."); 3122 case PPC::sub_lt: 3123 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 3124 case PPC::sub_gt: 3125 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 3126 case PPC::sub_eq: 3127 return Imm1 == Imm2 ? TrueReg : FalseReg; 3128 } 3129 } 3130 return PPC::NoRegister; 3131 } 3132 3133 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 3134 unsigned OpNo, 3135 int64_t Imm) const { 3136 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 3137 // Replace the REG with the Immediate. 3138 Register InUseReg = MI.getOperand(OpNo).getReg(); 3139 MI.getOperand(OpNo).ChangeToImmediate(Imm); 3140 3141 if (MI.implicit_operands().empty()) 3142 return; 3143 3144 // We need to make sure that the MI didn't have any implicit use 3145 // of this REG any more. 3146 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3147 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 3148 if (UseOpIdx >= 0) { 3149 MachineOperand &MO = MI.getOperand(UseOpIdx); 3150 if (MO.isImplicit()) 3151 // The operands must always be in the following order: 3152 // - explicit reg defs, 3153 // - other explicit operands (reg uses, immediates, etc.), 3154 // - implicit reg defs 3155 // - implicit reg uses 3156 // Therefore, removing the implicit operand won't change the explicit 3157 // operands layout. 3158 MI.RemoveOperand(UseOpIdx); 3159 } 3160 } 3161 3162 // Replace an instruction with one that materializes a constant (and sets 3163 // CR0 if the original instruction was a record-form instruction). 3164 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 3165 const LoadImmediateInfo &LII) const { 3166 // Remove existing operands. 3167 int OperandToKeep = LII.SetCR ? 1 : 0; 3168 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 3169 MI.RemoveOperand(i); 3170 3171 // Replace the instruction. 3172 if (LII.SetCR) { 3173 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 3174 // Set the immediate. 3175 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3176 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 3177 return; 3178 } 3179 else 3180 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 3181 3182 // Set the immediate. 3183 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3184 .addImm(LII.Imm); 3185 } 3186 3187 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 3188 bool &SeenIntermediateUse) const { 3189 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 3190 "Should be called after register allocation."); 3191 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3192 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 3193 It++; 3194 SeenIntermediateUse = false; 3195 for (; It != E; ++It) { 3196 if (It->modifiesRegister(Reg, TRI)) 3197 return &*It; 3198 if (It->readsRegister(Reg, TRI)) 3199 SeenIntermediateUse = true; 3200 } 3201 return nullptr; 3202 } 3203 3204 MachineInstr *PPCInstrInfo::getForwardingDefMI( 3205 MachineInstr &MI, 3206 unsigned &OpNoForForwarding, 3207 bool &SeenIntermediateUse) const { 3208 OpNoForForwarding = ~0U; 3209 MachineInstr *DefMI = nullptr; 3210 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 3211 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3212 // If we're in SSA, get the defs through the MRI. Otherwise, only look 3213 // within the basic block to see if the register is defined using an 3214 // LI/LI8/ADDI/ADDI8. 3215 if (MRI->isSSA()) { 3216 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 3217 if (!MI.getOperand(i).isReg()) 3218 continue; 3219 Register Reg = MI.getOperand(i).getReg(); 3220 if (!Register::isVirtualRegister(Reg)) 3221 continue; 3222 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 3223 if (Register::isVirtualRegister(TrueReg)) { 3224 DefMI = MRI->getVRegDef(TrueReg); 3225 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 || 3226 DefMI->getOpcode() == PPC::ADDI || 3227 DefMI->getOpcode() == PPC::ADDI8) { 3228 OpNoForForwarding = i; 3229 // The ADDI and LI operand maybe exist in one instruction at same 3230 // time. we prefer to fold LI operand as LI only has one Imm operand 3231 // and is more possible to be converted. So if current DefMI is 3232 // ADDI/ADDI8, we continue to find possible LI/LI8. 3233 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) 3234 break; 3235 } 3236 } 3237 } 3238 } else { 3239 // Looking back through the definition for each operand could be expensive, 3240 // so exit early if this isn't an instruction that either has an immediate 3241 // form or is already an immediate form that we can handle. 3242 ImmInstrInfo III; 3243 unsigned Opc = MI.getOpcode(); 3244 bool ConvertibleImmForm = 3245 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || 3246 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || 3247 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || 3248 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || 3249 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 3250 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || 3251 Opc == PPC::RLWINM8_rec; 3252 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 3253 ? isVFRegister(MI.getOperand(0).getReg()) 3254 : false; 3255 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 3256 return nullptr; 3257 3258 // Don't convert or %X, %Y, %Y since that's just a register move. 3259 if ((Opc == PPC::OR || Opc == PPC::OR8) && 3260 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 3261 return nullptr; 3262 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 3263 MachineOperand &MO = MI.getOperand(i); 3264 SeenIntermediateUse = false; 3265 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 3266 Register Reg = MI.getOperand(i).getReg(); 3267 // If we see another use of this reg between the def and the MI, 3268 // we want to flat it so the def isn't deleted. 3269 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 3270 if (DefMI) { 3271 // Is this register defined by some form of add-immediate (including 3272 // load-immediate) within this basic block? 3273 switch (DefMI->getOpcode()) { 3274 default: 3275 break; 3276 case PPC::LI: 3277 case PPC::LI8: 3278 case PPC::ADDItocL: 3279 case PPC::ADDI: 3280 case PPC::ADDI8: 3281 OpNoForForwarding = i; 3282 return DefMI; 3283 } 3284 } 3285 } 3286 } 3287 } 3288 return OpNoForForwarding == ~0U ? nullptr : DefMI; 3289 } 3290 3291 unsigned PPCInstrInfo::getSpillTarget() const { 3292 // With P10, we may need to spill paired vector registers or accumulator 3293 // registers. MMA implies paired vectors, so we can just check that. 3294 bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops(); 3295 return IsP10Variant ? 2 : Subtarget.hasP9Vector() ? 1 : 0; 3296 } 3297 3298 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 3299 return StoreSpillOpcodesArray[getSpillTarget()]; 3300 } 3301 3302 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 3303 return LoadSpillOpcodesArray[getSpillTarget()]; 3304 } 3305 3306 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI, 3307 unsigned RegNo) const { 3308 // Conservatively clear kill flag for the register if the instructions are in 3309 // different basic blocks and in SSA form, because the kill flag may no longer 3310 // be right. There is no need to bother with dead flags since defs with no 3311 // uses will be handled by DCE. 3312 MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo(); 3313 if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) { 3314 MRI.clearKillFlags(RegNo); 3315 return; 3316 } 3317 3318 // Instructions between [StartMI, EndMI] should be in same basic block. 3319 assert((StartMI->getParent() == EndMI->getParent()) && 3320 "Instructions are not in same basic block"); 3321 3322 // If before RA, StartMI may be def through COPY, we need to adjust it to the 3323 // real def. See function getForwardingDefMI. 3324 if (MRI.isSSA()) { 3325 bool Reads, Writes; 3326 std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo); 3327 if (!Reads && !Writes) { 3328 assert(Register::isVirtualRegister(RegNo) && 3329 "Must be a virtual register"); 3330 // Get real def and ignore copies. 3331 StartMI = MRI.getVRegDef(RegNo); 3332 } 3333 } 3334 3335 bool IsKillSet = false; 3336 3337 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 3338 MachineOperand &MO = MI.getOperand(Index); 3339 if (MO.isReg() && MO.isUse() && MO.isKill() && 3340 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 3341 MO.setIsKill(false); 3342 }; 3343 3344 // Set killed flag for EndMI. 3345 // No need to do anything if EndMI defines RegNo. 3346 int UseIndex = 3347 EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 3348 if (UseIndex != -1) { 3349 EndMI->getOperand(UseIndex).setIsKill(true); 3350 IsKillSet = true; 3351 // Clear killed flag for other EndMI operands related to RegNo. In some 3352 // upexpected cases, killed may be set multiple times for same register 3353 // operand in same MI. 3354 for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i) 3355 if (i != UseIndex) 3356 clearOperandKillInfo(*EndMI, i); 3357 } 3358 3359 // Walking the inst in reverse order (EndMI -> StartMI]. 3360 MachineBasicBlock::reverse_iterator It = *EndMI; 3361 MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend(); 3362 // EndMI has been handled above, skip it here. 3363 It++; 3364 MachineOperand *MO = nullptr; 3365 for (; It != E; ++It) { 3366 // Skip insturctions which could not be a def/use of RegNo. 3367 if (It->isDebugInstr() || It->isPosition()) 3368 continue; 3369 3370 // Clear killed flag for all It operands related to RegNo. In some 3371 // upexpected cases, killed may be set multiple times for same register 3372 // operand in same MI. 3373 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 3374 clearOperandKillInfo(*It, i); 3375 3376 // If killed is not set, set killed for its last use or set dead for its def 3377 // if no use found. 3378 if (!IsKillSet) { 3379 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 3380 // Use found, set it killed. 3381 IsKillSet = true; 3382 MO->setIsKill(true); 3383 continue; 3384 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 3385 &getRegisterInfo()))) { 3386 // No use found, set dead for its def. 3387 assert(&*It == StartMI && "No new def between StartMI and EndMI."); 3388 MO->setIsDead(true); 3389 break; 3390 } 3391 } 3392 3393 if ((&*It) == StartMI) 3394 break; 3395 } 3396 // Ensure RegMo liveness is killed after EndMI. 3397 assert((IsKillSet || (MO && MO->isDead())) && 3398 "RegNo should be killed or dead"); 3399 } 3400 3401 // This opt tries to convert the following imm form to an index form to save an 3402 // add for stack variables. 3403 // Return false if no such pattern found. 3404 // 3405 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 3406 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg 3407 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) 3408 // 3409 // can be converted to: 3410 // 3411 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) 3412 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) 3413 // 3414 // In order to eliminate ADD instr, make sure that: 3415 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in 3416 // new ADDI instr and ADDI can only take int16 Imm. 3417 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use 3418 // between ADDI and ADD instr since its original def in ADDI will be changed 3419 // in new ADDI instr. And also there should be no new def for it between 3420 // ADD and Imm instr as ToBeChangedReg will be used in Index instr. 3421 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use 3422 // between ADD and Imm instr since ADD instr will be eliminated. 3423 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be 3424 // moved to Index instr. 3425 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { 3426 MachineFunction *MF = MI.getParent()->getParent(); 3427 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3428 bool PostRA = !MRI->isSSA(); 3429 // Do this opt after PEI which is after RA. The reason is stack slot expansion 3430 // in PEI may expose such opportunities since in PEI, stack slot offsets to 3431 // frame base(OffsetAddi) are determined. 3432 if (!PostRA) 3433 return false; 3434 unsigned ToBeDeletedReg = 0; 3435 int64_t OffsetImm = 0; 3436 unsigned XFormOpcode = 0; 3437 ImmInstrInfo III; 3438 3439 // Check if Imm instr meets requirement. 3440 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, 3441 III)) 3442 return false; 3443 3444 bool OtherIntermediateUse = false; 3445 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); 3446 3447 // Exit if there is other use between ADD and Imm instr or no def found. 3448 if (OtherIntermediateUse || !ADDMI) 3449 return false; 3450 3451 // Check if ADD instr meets requirement. 3452 if (!isADDInstrEligibleForFolding(*ADDMI)) 3453 return false; 3454 3455 unsigned ScaleRegIdx = 0; 3456 int64_t OffsetAddi = 0; 3457 MachineInstr *ADDIMI = nullptr; 3458 3459 // Check if there is a valid ToBeChangedReg in ADDMI. 3460 // 1: It must be killed. 3461 // 2: Its definition must be a valid ADDIMI. 3462 // 3: It must satify int16 offset requirement. 3463 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) 3464 ScaleRegIdx = 2; 3465 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) 3466 ScaleRegIdx = 1; 3467 else 3468 return false; 3469 3470 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); 3471 unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg(); 3472 unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); 3473 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, 3474 MachineBasicBlock::iterator End) { 3475 for (auto It = ++Start; It != End; It++) 3476 if (It->modifiesRegister(Reg, &getRegisterInfo())) 3477 return true; 3478 return false; 3479 }; 3480 3481 // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is 3482 // treated as special zero when ScaleReg is R0/X0 register. 3483 if (III.ZeroIsSpecialOrig == III.ImmOpNo && 3484 (ScaleReg == PPC::R0 || ScaleReg == PPC::X0)) 3485 return false; 3486 3487 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr 3488 // and Imm Instr. 3489 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) 3490 return false; 3491 3492 // Now start to do the transformation. 3493 LLVM_DEBUG(dbgs() << "Replace instruction: " 3494 << "\n"); 3495 LLVM_DEBUG(ADDIMI->dump()); 3496 LLVM_DEBUG(ADDMI->dump()); 3497 LLVM_DEBUG(MI.dump()); 3498 LLVM_DEBUG(dbgs() << "with: " 3499 << "\n"); 3500 3501 // Update ADDI instr. 3502 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); 3503 3504 // Update Imm instr. 3505 MI.setDesc(get(XFormOpcode)); 3506 MI.getOperand(III.ImmOpNo) 3507 .ChangeToRegister(ScaleReg, false, false, 3508 ADDMI->getOperand(ScaleRegIdx).isKill()); 3509 3510 MI.getOperand(III.OpNoForForwarding) 3511 .ChangeToRegister(ToBeChangedReg, false, false, true); 3512 3513 // Eliminate ADD instr. 3514 ADDMI->eraseFromParent(); 3515 3516 LLVM_DEBUG(ADDIMI->dump()); 3517 LLVM_DEBUG(MI.dump()); 3518 3519 return true; 3520 } 3521 3522 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, 3523 int64_t &Imm) const { 3524 unsigned Opc = ADDIMI.getOpcode(); 3525 3526 // Exit if the instruction is not ADDI. 3527 if (Opc != PPC::ADDI && Opc != PPC::ADDI8) 3528 return false; 3529 3530 // The operand may not necessarily be an immediate - it could be a relocation. 3531 if (!ADDIMI.getOperand(2).isImm()) 3532 return false; 3533 3534 Imm = ADDIMI.getOperand(2).getImm(); 3535 3536 return true; 3537 } 3538 3539 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { 3540 unsigned Opc = ADDMI.getOpcode(); 3541 3542 // Exit if the instruction is not ADD. 3543 return Opc == PPC::ADD4 || Opc == PPC::ADD8; 3544 } 3545 3546 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, 3547 unsigned &ToBeDeletedReg, 3548 unsigned &XFormOpcode, 3549 int64_t &OffsetImm, 3550 ImmInstrInfo &III) const { 3551 // Only handle load/store. 3552 if (!MI.mayLoadOrStore()) 3553 return false; 3554 3555 unsigned Opc = MI.getOpcode(); 3556 3557 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); 3558 3559 // Exit if instruction has no index form. 3560 if (XFormOpcode == PPC::INSTRUCTION_LIST_END) 3561 return false; 3562 3563 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. 3564 if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()), 3565 III, true)) 3566 return false; 3567 3568 if (!III.IsSummingOperands) 3569 return false; 3570 3571 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); 3572 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); 3573 // Only support imm operands, not relocation slots or others. 3574 if (!ImmOperand.isImm()) 3575 return false; 3576 3577 assert(RegOperand.isReg() && "Instruction format is not right"); 3578 3579 // There are other use for ToBeDeletedReg after Imm instr, can not delete it. 3580 if (!RegOperand.isKill()) 3581 return false; 3582 3583 ToBeDeletedReg = RegOperand.getReg(); 3584 OffsetImm = ImmOperand.getImm(); 3585 3586 return true; 3587 } 3588 3589 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, 3590 MachineInstr *&ADDIMI, 3591 int64_t &OffsetAddi, 3592 int64_t OffsetImm) const { 3593 assert((Index == 1 || Index == 2) && "Invalid operand index for add."); 3594 MachineOperand &MO = ADDMI->getOperand(Index); 3595 3596 if (!MO.isKill()) 3597 return false; 3598 3599 bool OtherIntermediateUse = false; 3600 3601 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); 3602 // Currently handle only one "add + Imminstr" pair case, exit if other 3603 // intermediate use for ToBeChangedReg found. 3604 // TODO: handle the cases where there are other "add + Imminstr" pairs 3605 // with same offset in Imminstr which is like: 3606 // 3607 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 3608 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 3609 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) 3610 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 3611 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) 3612 // 3613 // can be converted to: 3614 // 3615 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, 3616 // (OffsetAddi + OffsetImm) 3617 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg 3618 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) 3619 3620 if (OtherIntermediateUse || !ADDIMI) 3621 return false; 3622 // Check if ADDI instr meets requirement. 3623 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) 3624 return false; 3625 3626 if (isInt<16>(OffsetAddi + OffsetImm)) 3627 return true; 3628 return false; 3629 } 3630 3631 // If this instruction has an immediate form and one of its operands is a 3632 // result of a load-immediate or an add-immediate, convert it to 3633 // the immediate form if the constant is in range. 3634 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 3635 MachineInstr **KilledDef) const { 3636 MachineFunction *MF = MI.getParent()->getParent(); 3637 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3638 bool PostRA = !MRI->isSSA(); 3639 bool SeenIntermediateUse = true; 3640 unsigned ForwardingOperand = ~0U; 3641 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 3642 SeenIntermediateUse); 3643 if (!DefMI) 3644 return false; 3645 assert(ForwardingOperand < MI.getNumOperands() && 3646 "The forwarding operand needs to be valid at this point"); 3647 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 3648 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 3649 if (KilledDef && KillFwdDefMI) 3650 *KilledDef = DefMI; 3651 3652 // If this is a imm instruction and its register operands is produced by ADDI, 3653 // put the imm into imm inst directly. 3654 if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) != 3655 PPC::INSTRUCTION_LIST_END && 3656 transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand)) 3657 return true; 3658 3659 ImmInstrInfo III; 3660 bool IsVFReg = MI.getOperand(0).isReg() 3661 ? isVFRegister(MI.getOperand(0).getReg()) 3662 : false; 3663 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 3664 // If this is a reg+reg instruction that has a reg+imm form, 3665 // and one of the operands is produced by an add-immediate, 3666 // try to convert it. 3667 if (HasImmForm && 3668 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 3669 KillFwdDefMI)) 3670 return true; 3671 3672 // If this is a reg+reg instruction that has a reg+imm form, 3673 // and one of the operands is produced by LI, convert it now. 3674 if (HasImmForm && 3675 transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI)) 3676 return true; 3677 3678 // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI 3679 // can be simpified to LI. 3680 if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef)) 3681 return true; 3682 3683 return false; 3684 } 3685 3686 bool PPCInstrInfo::combineRLWINM(MachineInstr &MI, 3687 MachineInstr **ToErase) const { 3688 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 3689 unsigned FoldingReg = MI.getOperand(1).getReg(); 3690 if (!Register::isVirtualRegister(FoldingReg)) 3691 return false; 3692 MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg); 3693 if (SrcMI->getOpcode() != PPC::RLWINM && 3694 SrcMI->getOpcode() != PPC::RLWINM_rec && 3695 SrcMI->getOpcode() != PPC::RLWINM8 && 3696 SrcMI->getOpcode() != PPC::RLWINM8_rec) 3697 return false; 3698 assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() && 3699 MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() && 3700 SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) && 3701 "Invalid PPC::RLWINM Instruction!"); 3702 uint64_t SHSrc = SrcMI->getOperand(2).getImm(); 3703 uint64_t SHMI = MI.getOperand(2).getImm(); 3704 uint64_t MBSrc = SrcMI->getOperand(3).getImm(); 3705 uint64_t MBMI = MI.getOperand(3).getImm(); 3706 uint64_t MESrc = SrcMI->getOperand(4).getImm(); 3707 uint64_t MEMI = MI.getOperand(4).getImm(); 3708 3709 assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) && 3710 "Invalid PPC::RLWINM Instruction!"); 3711 // If MBMI is bigger than MEMI, we always can not get run of ones. 3712 // RotatedSrcMask non-wrap: 3713 // 0........31|32........63 3714 // RotatedSrcMask: B---E B---E 3715 // MaskMI: -----------|--E B------ 3716 // Result: ----- --- (Bad candidate) 3717 // 3718 // RotatedSrcMask wrap: 3719 // 0........31|32........63 3720 // RotatedSrcMask: --E B----|--E B---- 3721 // MaskMI: -----------|--E B------ 3722 // Result: --- -----|--- ----- (Bad candidate) 3723 // 3724 // One special case is RotatedSrcMask is a full set mask. 3725 // RotatedSrcMask full: 3726 // 0........31|32........63 3727 // RotatedSrcMask: ------EB---|-------EB--- 3728 // MaskMI: -----------|--E B------ 3729 // Result: -----------|--- ------- (Good candidate) 3730 3731 // Mark special case. 3732 bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31); 3733 3734 // For other MBMI > MEMI cases, just return. 3735 if ((MBMI > MEMI) && !SrcMaskFull) 3736 return false; 3737 3738 // Handle MBMI <= MEMI cases. 3739 APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI); 3740 // In MI, we only need low 32 bits of SrcMI, just consider about low 32 3741 // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0, 3742 // while in PowerPC ISA, lowerest bit is at index 63. 3743 APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc); 3744 3745 APInt RotatedSrcMask = MaskSrc.rotl(SHMI); 3746 APInt FinalMask = RotatedSrcMask & MaskMI; 3747 uint32_t NewMB, NewME; 3748 bool Simplified = false; 3749 3750 // If final mask is 0, MI result should be 0 too. 3751 if (FinalMask.isNullValue()) { 3752 bool Is64Bit = 3753 (MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec); 3754 Simplified = true; 3755 LLVM_DEBUG(dbgs() << "Replace Instr: "); 3756 LLVM_DEBUG(MI.dump()); 3757 3758 if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) { 3759 // Replace MI with "LI 0" 3760 MI.RemoveOperand(4); 3761 MI.RemoveOperand(3); 3762 MI.RemoveOperand(2); 3763 MI.getOperand(1).ChangeToImmediate(0); 3764 MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI)); 3765 } else { 3766 // Replace MI with "ANDI_rec reg, 0" 3767 MI.RemoveOperand(4); 3768 MI.RemoveOperand(3); 3769 MI.getOperand(2).setImm(0); 3770 MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 3771 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 3772 if (SrcMI->getOperand(1).isKill()) { 3773 MI.getOperand(1).setIsKill(true); 3774 SrcMI->getOperand(1).setIsKill(false); 3775 } else 3776 // About to replace MI.getOperand(1), clear its kill flag. 3777 MI.getOperand(1).setIsKill(false); 3778 } 3779 3780 LLVM_DEBUG(dbgs() << "With: "); 3781 LLVM_DEBUG(MI.dump()); 3782 3783 } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) && 3784 NewMB <= NewME) || 3785 SrcMaskFull) { 3786 // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger 3787 // than NewME. Otherwise we get a 64 bit value after folding, but MI 3788 // return a 32 bit value. 3789 Simplified = true; 3790 LLVM_DEBUG(dbgs() << "Converting Instr: "); 3791 LLVM_DEBUG(MI.dump()); 3792 3793 uint16_t NewSH = (SHSrc + SHMI) % 32; 3794 MI.getOperand(2).setImm(NewSH); 3795 // If SrcMI mask is full, no need to update MBMI and MEMI. 3796 if (!SrcMaskFull) { 3797 MI.getOperand(3).setImm(NewMB); 3798 MI.getOperand(4).setImm(NewME); 3799 } 3800 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 3801 if (SrcMI->getOperand(1).isKill()) { 3802 MI.getOperand(1).setIsKill(true); 3803 SrcMI->getOperand(1).setIsKill(false); 3804 } else 3805 // About to replace MI.getOperand(1), clear its kill flag. 3806 MI.getOperand(1).setIsKill(false); 3807 3808 LLVM_DEBUG(dbgs() << "To: "); 3809 LLVM_DEBUG(MI.dump()); 3810 } 3811 if (Simplified & MRI->use_nodbg_empty(FoldingReg) && 3812 !SrcMI->hasImplicitDef()) { 3813 // If FoldingReg has no non-debug use and it has no implicit def (it 3814 // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI. 3815 // Otherwise keep it. 3816 *ToErase = SrcMI; 3817 LLVM_DEBUG(dbgs() << "Delete dead instruction: "); 3818 LLVM_DEBUG(SrcMI->dump()); 3819 } 3820 return Simplified; 3821 } 3822 3823 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 3824 ImmInstrInfo &III, bool PostRA) const { 3825 // The vast majority of the instructions would need their operand 2 replaced 3826 // with an immediate when switching to the reg+imm form. A marked exception 3827 // are the update form loads/stores for which a constant operand 2 would need 3828 // to turn into a displacement and move operand 1 to the operand 2 position. 3829 III.ImmOpNo = 2; 3830 III.OpNoForForwarding = 2; 3831 III.ImmWidth = 16; 3832 III.ImmMustBeMultipleOf = 1; 3833 III.TruncateImmTo = 0; 3834 III.IsSummingOperands = false; 3835 switch (Opc) { 3836 default: return false; 3837 case PPC::ADD4: 3838 case PPC::ADD8: 3839 III.SignedImm = true; 3840 III.ZeroIsSpecialOrig = 0; 3841 III.ZeroIsSpecialNew = 1; 3842 III.IsCommutative = true; 3843 III.IsSummingOperands = true; 3844 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 3845 break; 3846 case PPC::ADDC: 3847 case PPC::ADDC8: 3848 III.SignedImm = true; 3849 III.ZeroIsSpecialOrig = 0; 3850 III.ZeroIsSpecialNew = 0; 3851 III.IsCommutative = true; 3852 III.IsSummingOperands = true; 3853 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 3854 break; 3855 case PPC::ADDC_rec: 3856 III.SignedImm = true; 3857 III.ZeroIsSpecialOrig = 0; 3858 III.ZeroIsSpecialNew = 0; 3859 III.IsCommutative = true; 3860 III.IsSummingOperands = true; 3861 III.ImmOpcode = PPC::ADDIC_rec; 3862 break; 3863 case PPC::SUBFC: 3864 case PPC::SUBFC8: 3865 III.SignedImm = true; 3866 III.ZeroIsSpecialOrig = 0; 3867 III.ZeroIsSpecialNew = 0; 3868 III.IsCommutative = false; 3869 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 3870 break; 3871 case PPC::CMPW: 3872 case PPC::CMPD: 3873 III.SignedImm = true; 3874 III.ZeroIsSpecialOrig = 0; 3875 III.ZeroIsSpecialNew = 0; 3876 III.IsCommutative = false; 3877 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 3878 break; 3879 case PPC::CMPLW: 3880 case PPC::CMPLD: 3881 III.SignedImm = false; 3882 III.ZeroIsSpecialOrig = 0; 3883 III.ZeroIsSpecialNew = 0; 3884 III.IsCommutative = false; 3885 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 3886 break; 3887 case PPC::AND_rec: 3888 case PPC::AND8_rec: 3889 case PPC::OR: 3890 case PPC::OR8: 3891 case PPC::XOR: 3892 case PPC::XOR8: 3893 III.SignedImm = false; 3894 III.ZeroIsSpecialOrig = 0; 3895 III.ZeroIsSpecialNew = 0; 3896 III.IsCommutative = true; 3897 switch(Opc) { 3898 default: llvm_unreachable("Unknown opcode"); 3899 case PPC::AND_rec: 3900 III.ImmOpcode = PPC::ANDI_rec; 3901 break; 3902 case PPC::AND8_rec: 3903 III.ImmOpcode = PPC::ANDI8_rec; 3904 break; 3905 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 3906 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 3907 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 3908 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 3909 } 3910 break; 3911 case PPC::RLWNM: 3912 case PPC::RLWNM8: 3913 case PPC::RLWNM_rec: 3914 case PPC::RLWNM8_rec: 3915 case PPC::SLW: 3916 case PPC::SLW8: 3917 case PPC::SLW_rec: 3918 case PPC::SLW8_rec: 3919 case PPC::SRW: 3920 case PPC::SRW8: 3921 case PPC::SRW_rec: 3922 case PPC::SRW8_rec: 3923 case PPC::SRAW: 3924 case PPC::SRAW_rec: 3925 III.SignedImm = false; 3926 III.ZeroIsSpecialOrig = 0; 3927 III.ZeroIsSpecialNew = 0; 3928 III.IsCommutative = false; 3929 // This isn't actually true, but the instructions ignore any of the 3930 // upper bits, so any immediate loaded with an LI is acceptable. 3931 // This does not apply to shift right algebraic because a value 3932 // out of range will produce a -1/0. 3933 III.ImmWidth = 16; 3934 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || 3935 Opc == PPC::RLWNM8_rec) 3936 III.TruncateImmTo = 5; 3937 else 3938 III.TruncateImmTo = 6; 3939 switch(Opc) { 3940 default: llvm_unreachable("Unknown opcode"); 3941 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 3942 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 3943 case PPC::RLWNM_rec: 3944 III.ImmOpcode = PPC::RLWINM_rec; 3945 break; 3946 case PPC::RLWNM8_rec: 3947 III.ImmOpcode = PPC::RLWINM8_rec; 3948 break; 3949 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 3950 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 3951 case PPC::SLW_rec: 3952 III.ImmOpcode = PPC::RLWINM_rec; 3953 break; 3954 case PPC::SLW8_rec: 3955 III.ImmOpcode = PPC::RLWINM8_rec; 3956 break; 3957 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 3958 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 3959 case PPC::SRW_rec: 3960 III.ImmOpcode = PPC::RLWINM_rec; 3961 break; 3962 case PPC::SRW8_rec: 3963 III.ImmOpcode = PPC::RLWINM8_rec; 3964 break; 3965 case PPC::SRAW: 3966 III.ImmWidth = 5; 3967 III.TruncateImmTo = 0; 3968 III.ImmOpcode = PPC::SRAWI; 3969 break; 3970 case PPC::SRAW_rec: 3971 III.ImmWidth = 5; 3972 III.TruncateImmTo = 0; 3973 III.ImmOpcode = PPC::SRAWI_rec; 3974 break; 3975 } 3976 break; 3977 case PPC::RLDCL: 3978 case PPC::RLDCL_rec: 3979 case PPC::RLDCR: 3980 case PPC::RLDCR_rec: 3981 case PPC::SLD: 3982 case PPC::SLD_rec: 3983 case PPC::SRD: 3984 case PPC::SRD_rec: 3985 case PPC::SRAD: 3986 case PPC::SRAD_rec: 3987 III.SignedImm = false; 3988 III.ZeroIsSpecialOrig = 0; 3989 III.ZeroIsSpecialNew = 0; 3990 III.IsCommutative = false; 3991 // This isn't actually true, but the instructions ignore any of the 3992 // upper bits, so any immediate loaded with an LI is acceptable. 3993 // This does not apply to shift right algebraic because a value 3994 // out of range will produce a -1/0. 3995 III.ImmWidth = 16; 3996 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || 3997 Opc == PPC::RLDCR_rec) 3998 III.TruncateImmTo = 6; 3999 else 4000 III.TruncateImmTo = 7; 4001 switch(Opc) { 4002 default: llvm_unreachable("Unknown opcode"); 4003 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 4004 case PPC::RLDCL_rec: 4005 III.ImmOpcode = PPC::RLDICL_rec; 4006 break; 4007 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 4008 case PPC::RLDCR_rec: 4009 III.ImmOpcode = PPC::RLDICR_rec; 4010 break; 4011 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 4012 case PPC::SLD_rec: 4013 III.ImmOpcode = PPC::RLDICR_rec; 4014 break; 4015 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 4016 case PPC::SRD_rec: 4017 III.ImmOpcode = PPC::RLDICL_rec; 4018 break; 4019 case PPC::SRAD: 4020 III.ImmWidth = 6; 4021 III.TruncateImmTo = 0; 4022 III.ImmOpcode = PPC::SRADI; 4023 break; 4024 case PPC::SRAD_rec: 4025 III.ImmWidth = 6; 4026 III.TruncateImmTo = 0; 4027 III.ImmOpcode = PPC::SRADI_rec; 4028 break; 4029 } 4030 break; 4031 // Loads and stores: 4032 case PPC::LBZX: 4033 case PPC::LBZX8: 4034 case PPC::LHZX: 4035 case PPC::LHZX8: 4036 case PPC::LHAX: 4037 case PPC::LHAX8: 4038 case PPC::LWZX: 4039 case PPC::LWZX8: 4040 case PPC::LWAX: 4041 case PPC::LDX: 4042 case PPC::LFSX: 4043 case PPC::LFDX: 4044 case PPC::STBX: 4045 case PPC::STBX8: 4046 case PPC::STHX: 4047 case PPC::STHX8: 4048 case PPC::STWX: 4049 case PPC::STWX8: 4050 case PPC::STDX: 4051 case PPC::STFSX: 4052 case PPC::STFDX: 4053 III.SignedImm = true; 4054 III.ZeroIsSpecialOrig = 1; 4055 III.ZeroIsSpecialNew = 2; 4056 III.IsCommutative = true; 4057 III.IsSummingOperands = true; 4058 III.ImmOpNo = 1; 4059 III.OpNoForForwarding = 2; 4060 switch(Opc) { 4061 default: llvm_unreachable("Unknown opcode"); 4062 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 4063 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 4064 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 4065 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 4066 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 4067 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 4068 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 4069 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 4070 case PPC::LWAX: 4071 III.ImmOpcode = PPC::LWA; 4072 III.ImmMustBeMultipleOf = 4; 4073 break; 4074 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 4075 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 4076 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 4077 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 4078 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 4079 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 4080 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 4081 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 4082 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 4083 case PPC::STDX: 4084 III.ImmOpcode = PPC::STD; 4085 III.ImmMustBeMultipleOf = 4; 4086 break; 4087 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 4088 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 4089 } 4090 break; 4091 case PPC::LBZUX: 4092 case PPC::LBZUX8: 4093 case PPC::LHZUX: 4094 case PPC::LHZUX8: 4095 case PPC::LHAUX: 4096 case PPC::LHAUX8: 4097 case PPC::LWZUX: 4098 case PPC::LWZUX8: 4099 case PPC::LDUX: 4100 case PPC::LFSUX: 4101 case PPC::LFDUX: 4102 case PPC::STBUX: 4103 case PPC::STBUX8: 4104 case PPC::STHUX: 4105 case PPC::STHUX8: 4106 case PPC::STWUX: 4107 case PPC::STWUX8: 4108 case PPC::STDUX: 4109 case PPC::STFSUX: 4110 case PPC::STFDUX: 4111 III.SignedImm = true; 4112 III.ZeroIsSpecialOrig = 2; 4113 III.ZeroIsSpecialNew = 3; 4114 III.IsCommutative = false; 4115 III.IsSummingOperands = true; 4116 III.ImmOpNo = 2; 4117 III.OpNoForForwarding = 3; 4118 switch(Opc) { 4119 default: llvm_unreachable("Unknown opcode"); 4120 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 4121 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 4122 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 4123 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 4124 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 4125 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 4126 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 4127 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 4128 case PPC::LDUX: 4129 III.ImmOpcode = PPC::LDU; 4130 III.ImmMustBeMultipleOf = 4; 4131 break; 4132 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 4133 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 4134 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 4135 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 4136 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 4137 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 4138 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 4139 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 4140 case PPC::STDUX: 4141 III.ImmOpcode = PPC::STDU; 4142 III.ImmMustBeMultipleOf = 4; 4143 break; 4144 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 4145 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 4146 } 4147 break; 4148 // Power9 and up only. For some of these, the X-Form version has access to all 4149 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 4150 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 4151 // into or stored from is one of the VR registers. 4152 case PPC::LXVX: 4153 case PPC::LXSSPX: 4154 case PPC::LXSDX: 4155 case PPC::STXVX: 4156 case PPC::STXSSPX: 4157 case PPC::STXSDX: 4158 case PPC::XFLOADf32: 4159 case PPC::XFLOADf64: 4160 case PPC::XFSTOREf32: 4161 case PPC::XFSTOREf64: 4162 if (!Subtarget.hasP9Vector()) 4163 return false; 4164 III.SignedImm = true; 4165 III.ZeroIsSpecialOrig = 1; 4166 III.ZeroIsSpecialNew = 2; 4167 III.IsCommutative = true; 4168 III.IsSummingOperands = true; 4169 III.ImmOpNo = 1; 4170 III.OpNoForForwarding = 2; 4171 III.ImmMustBeMultipleOf = 4; 4172 switch(Opc) { 4173 default: llvm_unreachable("Unknown opcode"); 4174 case PPC::LXVX: 4175 III.ImmOpcode = PPC::LXV; 4176 III.ImmMustBeMultipleOf = 16; 4177 break; 4178 case PPC::LXSSPX: 4179 if (PostRA) { 4180 if (IsVFReg) 4181 III.ImmOpcode = PPC::LXSSP; 4182 else { 4183 III.ImmOpcode = PPC::LFS; 4184 III.ImmMustBeMultipleOf = 1; 4185 } 4186 break; 4187 } 4188 LLVM_FALLTHROUGH; 4189 case PPC::XFLOADf32: 4190 III.ImmOpcode = PPC::DFLOADf32; 4191 break; 4192 case PPC::LXSDX: 4193 if (PostRA) { 4194 if (IsVFReg) 4195 III.ImmOpcode = PPC::LXSD; 4196 else { 4197 III.ImmOpcode = PPC::LFD; 4198 III.ImmMustBeMultipleOf = 1; 4199 } 4200 break; 4201 } 4202 LLVM_FALLTHROUGH; 4203 case PPC::XFLOADf64: 4204 III.ImmOpcode = PPC::DFLOADf64; 4205 break; 4206 case PPC::STXVX: 4207 III.ImmOpcode = PPC::STXV; 4208 III.ImmMustBeMultipleOf = 16; 4209 break; 4210 case PPC::STXSSPX: 4211 if (PostRA) { 4212 if (IsVFReg) 4213 III.ImmOpcode = PPC::STXSSP; 4214 else { 4215 III.ImmOpcode = PPC::STFS; 4216 III.ImmMustBeMultipleOf = 1; 4217 } 4218 break; 4219 } 4220 LLVM_FALLTHROUGH; 4221 case PPC::XFSTOREf32: 4222 III.ImmOpcode = PPC::DFSTOREf32; 4223 break; 4224 case PPC::STXSDX: 4225 if (PostRA) { 4226 if (IsVFReg) 4227 III.ImmOpcode = PPC::STXSD; 4228 else { 4229 III.ImmOpcode = PPC::STFD; 4230 III.ImmMustBeMultipleOf = 1; 4231 } 4232 break; 4233 } 4234 LLVM_FALLTHROUGH; 4235 case PPC::XFSTOREf64: 4236 III.ImmOpcode = PPC::DFSTOREf64; 4237 break; 4238 } 4239 break; 4240 } 4241 return true; 4242 } 4243 4244 // Utility function for swaping two arbitrary operands of an instruction. 4245 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 4246 assert(Op1 != Op2 && "Cannot swap operand with itself."); 4247 4248 unsigned MaxOp = std::max(Op1, Op2); 4249 unsigned MinOp = std::min(Op1, Op2); 4250 MachineOperand MOp1 = MI.getOperand(MinOp); 4251 MachineOperand MOp2 = MI.getOperand(MaxOp); 4252 MI.RemoveOperand(std::max(Op1, Op2)); 4253 MI.RemoveOperand(std::min(Op1, Op2)); 4254 4255 // If the operands we are swapping are the two at the end (the common case) 4256 // we can just remove both and add them in the opposite order. 4257 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 4258 MI.addOperand(MOp2); 4259 MI.addOperand(MOp1); 4260 } else { 4261 // Store all operands in a temporary vector, remove them and re-add in the 4262 // right order. 4263 SmallVector<MachineOperand, 2> MOps; 4264 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 4265 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 4266 MOps.push_back(MI.getOperand(i)); 4267 MI.RemoveOperand(i); 4268 } 4269 // MOp2 needs to be added next. 4270 MI.addOperand(MOp2); 4271 // Now add the rest. 4272 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 4273 if (i == MaxOp) 4274 MI.addOperand(MOp1); 4275 else { 4276 MI.addOperand(MOps.back()); 4277 MOps.pop_back(); 4278 } 4279 } 4280 } 4281 } 4282 4283 // Check if the 'MI' that has the index OpNoForForwarding 4284 // meets the requirement described in the ImmInstrInfo. 4285 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 4286 const ImmInstrInfo &III, 4287 unsigned OpNoForForwarding 4288 ) const { 4289 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 4290 // would not work pre-RA, we can only do the check post RA. 4291 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4292 if (MRI.isSSA()) 4293 return false; 4294 4295 // Cannot do the transform if MI isn't summing the operands. 4296 if (!III.IsSummingOperands) 4297 return false; 4298 4299 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 4300 if (!III.ZeroIsSpecialOrig) 4301 return false; 4302 4303 // We cannot do the transform if the operand we are trying to replace 4304 // isn't the same as the operand the instruction allows. 4305 if (OpNoForForwarding != III.OpNoForForwarding) 4306 return false; 4307 4308 // Check if the instruction we are trying to transform really has 4309 // the special zero register as its operand. 4310 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 4311 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 4312 return false; 4313 4314 // This machine instruction is convertible if it is, 4315 // 1. summing the operands. 4316 // 2. one of the operands is special zero register. 4317 // 3. the operand we are trying to replace is allowed by the MI. 4318 return true; 4319 } 4320 4321 // Check if the DefMI is the add inst and set the ImmMO and RegMO 4322 // accordingly. 4323 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 4324 const ImmInstrInfo &III, 4325 MachineOperand *&ImmMO, 4326 MachineOperand *&RegMO) const { 4327 unsigned Opc = DefMI.getOpcode(); 4328 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 4329 return false; 4330 4331 assert(DefMI.getNumOperands() >= 3 && 4332 "Add inst must have at least three operands"); 4333 RegMO = &DefMI.getOperand(1); 4334 ImmMO = &DefMI.getOperand(2); 4335 4336 // Before RA, ADDI first operand could be a frame index. 4337 if (!RegMO->isReg()) 4338 return false; 4339 4340 // This DefMI is elgible for forwarding if it is: 4341 // 1. add inst 4342 // 2. one of the operands is Imm/CPI/Global. 4343 return isAnImmediateOperand(*ImmMO); 4344 } 4345 4346 bool PPCInstrInfo::isRegElgibleForForwarding( 4347 const MachineOperand &RegMO, const MachineInstr &DefMI, 4348 const MachineInstr &MI, bool KillDefMI, 4349 bool &IsFwdFeederRegKilled) const { 4350 // x = addi y, imm 4351 // ... 4352 // z = lfdx 0, x -> z = lfd imm(y) 4353 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 4354 // of "y" between the DEF of "x" and "z". 4355 // The query is only valid post RA. 4356 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4357 if (MRI.isSSA()) 4358 return false; 4359 4360 Register Reg = RegMO.getReg(); 4361 4362 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 4363 MachineBasicBlock::const_reverse_iterator It = MI; 4364 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 4365 It++; 4366 for (; It != E; ++It) { 4367 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 4368 return false; 4369 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 4370 IsFwdFeederRegKilled = true; 4371 // Made it to DefMI without encountering a clobber. 4372 if ((&*It) == &DefMI) 4373 break; 4374 } 4375 assert((&*It) == &DefMI && "DefMI is missing"); 4376 4377 // If DefMI also defines the register to be forwarded, we can only forward it 4378 // if DefMI is being erased. 4379 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 4380 return KillDefMI; 4381 4382 return true; 4383 } 4384 4385 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 4386 const MachineInstr &DefMI, 4387 const ImmInstrInfo &III, 4388 int64_t &Imm, 4389 int64_t BaseImm) const { 4390 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 4391 if (DefMI.getOpcode() == PPC::ADDItocL) { 4392 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 4393 // However, we know that, it is 16-bit width, and has the alignment of 4. 4394 // Check if the instruction met the requirement. 4395 if (III.ImmMustBeMultipleOf > 4 || 4396 III.TruncateImmTo || III.ImmWidth != 16) 4397 return false; 4398 4399 // Going from XForm to DForm loads means that the displacement needs to be 4400 // not just an immediate but also a multiple of 4, or 16 depending on the 4401 // load. A DForm load cannot be represented if it is a multiple of say 2. 4402 // XForm loads do not have this restriction. 4403 if (ImmMO.isGlobal()) { 4404 const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout(); 4405 if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf) 4406 return false; 4407 } 4408 4409 return true; 4410 } 4411 4412 if (ImmMO.isImm()) { 4413 // It is Imm, we need to check if the Imm fit the range. 4414 // Sign-extend to 64-bits. 4415 // DefMI may be folded with another imm form instruction, the result Imm is 4416 // the sum of Imm of DefMI and BaseImm which is from imm form instruction. 4417 Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm); 4418 4419 if (Imm % III.ImmMustBeMultipleOf) 4420 return false; 4421 if (III.TruncateImmTo) 4422 Imm &= ((1 << III.TruncateImmTo) - 1); 4423 if (III.SignedImm) { 4424 APInt ActualValue(64, Imm, true); 4425 if (!ActualValue.isSignedIntN(III.ImmWidth)) 4426 return false; 4427 } else { 4428 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 4429 if ((uint64_t)Imm > UnsignedMax) 4430 return false; 4431 } 4432 } 4433 else 4434 return false; 4435 4436 // This ImmMO is forwarded if it meets the requriement describle 4437 // in ImmInstrInfo 4438 return true; 4439 } 4440 4441 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI, 4442 unsigned OpNoForForwarding, 4443 MachineInstr **KilledDef) const { 4444 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4445 !DefMI.getOperand(1).isImm()) 4446 return false; 4447 4448 MachineFunction *MF = MI.getParent()->getParent(); 4449 MachineRegisterInfo *MRI = &MF->getRegInfo(); 4450 bool PostRA = !MRI->isSSA(); 4451 4452 int64_t Immediate = DefMI.getOperand(1).getImm(); 4453 // Sign-extend to 64-bits. 4454 int64_t SExtImm = SignExtend64<16>(Immediate); 4455 4456 bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill(); 4457 Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 4458 4459 bool ReplaceWithLI = false; 4460 bool Is64BitLI = false; 4461 int64_t NewImm = 0; 4462 bool SetCR = false; 4463 unsigned Opc = MI.getOpcode(); 4464 switch (Opc) { 4465 default: 4466 return false; 4467 4468 // FIXME: Any branches conditional on such a comparison can be made 4469 // unconditional. At this time, this happens too infrequently to be worth 4470 // the implementation effort, but if that ever changes, we could convert 4471 // such a pattern here. 4472 case PPC::CMPWI: 4473 case PPC::CMPLWI: 4474 case PPC::CMPDI: 4475 case PPC::CMPLDI: { 4476 // Doing this post-RA would require dataflow analysis to reliably find uses 4477 // of the CR register set by the compare. 4478 // No need to fixup killed/dead flag since this transformation is only valid 4479 // before RA. 4480 if (PostRA) 4481 return false; 4482 // If a compare-immediate is fed by an immediate and is itself an input of 4483 // an ISEL (the most common case) into a COPY of the correct register. 4484 bool Changed = false; 4485 Register DefReg = MI.getOperand(0).getReg(); 4486 int64_t Comparand = MI.getOperand(2).getImm(); 4487 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 4488 ? (Comparand | 0xFFFFFFFFFFFF0000) 4489 : Comparand; 4490 4491 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 4492 unsigned UseOpc = CompareUseMI.getOpcode(); 4493 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 4494 continue; 4495 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 4496 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 4497 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 4498 unsigned RegToCopy = 4499 selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg); 4500 if (RegToCopy == PPC::NoRegister) 4501 continue; 4502 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 4503 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 4504 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 4505 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 4506 CompareUseMI.RemoveOperand(3); 4507 CompareUseMI.RemoveOperand(2); 4508 continue; 4509 } 4510 LLVM_DEBUG( 4511 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 4512 LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump()); 4513 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 4514 // Convert to copy and remove unneeded operands. 4515 CompareUseMI.setDesc(get(PPC::COPY)); 4516 CompareUseMI.RemoveOperand(3); 4517 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 4518 CmpIselsConverted++; 4519 Changed = true; 4520 LLVM_DEBUG(CompareUseMI.dump()); 4521 } 4522 if (Changed) 4523 return true; 4524 // This may end up incremented multiple times since this function is called 4525 // during a fixed-point transformation, but it is only meant to indicate the 4526 // presence of this opportunity. 4527 MissedConvertibleImmediateInstrs++; 4528 return false; 4529 } 4530 4531 // Immediate forms - may simply be convertable to an LI. 4532 case PPC::ADDI: 4533 case PPC::ADDI8: { 4534 // Does the sum fit in a 16-bit signed field? 4535 int64_t Addend = MI.getOperand(2).getImm(); 4536 if (isInt<16>(Addend + SExtImm)) { 4537 ReplaceWithLI = true; 4538 Is64BitLI = Opc == PPC::ADDI8; 4539 NewImm = Addend + SExtImm; 4540 break; 4541 } 4542 return false; 4543 } 4544 case PPC::SUBFIC: 4545 case PPC::SUBFIC8: { 4546 // Only transform this if the CARRY implicit operand is dead. 4547 if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead()) 4548 return false; 4549 int64_t Minuend = MI.getOperand(2).getImm(); 4550 if (isInt<16>(Minuend - SExtImm)) { 4551 ReplaceWithLI = true; 4552 Is64BitLI = Opc == PPC::SUBFIC8; 4553 NewImm = Minuend - SExtImm; 4554 break; 4555 } 4556 return false; 4557 } 4558 case PPC::RLDICL: 4559 case PPC::RLDICL_rec: 4560 case PPC::RLDICL_32: 4561 case PPC::RLDICL_32_64: { 4562 // Use APInt's rotate function. 4563 int64_t SH = MI.getOperand(2).getImm(); 4564 int64_t MB = MI.getOperand(3).getImm(); 4565 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, 4566 SExtImm, true); 4567 InVal = InVal.rotl(SH); 4568 uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1; 4569 InVal &= Mask; 4570 // Can't replace negative values with an LI as that will sign-extend 4571 // and not clear the left bits. If we're setting the CR bit, we will use 4572 // ANDI_rec which won't sign extend, so that's safe. 4573 if (isUInt<15>(InVal.getSExtValue()) || 4574 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { 4575 ReplaceWithLI = true; 4576 Is64BitLI = Opc != PPC::RLDICL_32; 4577 NewImm = InVal.getSExtValue(); 4578 SetCR = Opc == PPC::RLDICL_rec; 4579 break; 4580 } 4581 return false; 4582 } 4583 case PPC::RLWINM: 4584 case PPC::RLWINM8: 4585 case PPC::RLWINM_rec: 4586 case PPC::RLWINM8_rec: { 4587 int64_t SH = MI.getOperand(2).getImm(); 4588 int64_t MB = MI.getOperand(3).getImm(); 4589 int64_t ME = MI.getOperand(4).getImm(); 4590 APInt InVal(32, SExtImm, true); 4591 InVal = InVal.rotl(SH); 4592 APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB); 4593 InVal &= Mask; 4594 // Can't replace negative values with an LI as that will sign-extend 4595 // and not clear the left bits. If we're setting the CR bit, we will use 4596 // ANDI_rec which won't sign extend, so that's safe. 4597 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 4598 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && 4599 isUInt<16>(InVal.getSExtValue())); 4600 if (ValueFits) { 4601 ReplaceWithLI = true; 4602 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; 4603 NewImm = InVal.getSExtValue(); 4604 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; 4605 break; 4606 } 4607 return false; 4608 } 4609 case PPC::ORI: 4610 case PPC::ORI8: 4611 case PPC::XORI: 4612 case PPC::XORI8: { 4613 int64_t LogicalImm = MI.getOperand(2).getImm(); 4614 int64_t Result = 0; 4615 if (Opc == PPC::ORI || Opc == PPC::ORI8) 4616 Result = LogicalImm | SExtImm; 4617 else 4618 Result = LogicalImm ^ SExtImm; 4619 if (isInt<16>(Result)) { 4620 ReplaceWithLI = true; 4621 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 4622 NewImm = Result; 4623 break; 4624 } 4625 return false; 4626 } 4627 } 4628 4629 if (ReplaceWithLI) { 4630 // We need to be careful with CR-setting instructions we're replacing. 4631 if (SetCR) { 4632 // We don't know anything about uses when we're out of SSA, so only 4633 // replace if the new immediate will be reproduced. 4634 bool ImmChanged = (SExtImm & NewImm) != NewImm; 4635 if (PostRA && ImmChanged) 4636 return false; 4637 4638 if (!PostRA) { 4639 // If the defining load-immediate has no other uses, we can just replace 4640 // the immediate with the new immediate. 4641 if (MRI->hasOneUse(DefMI.getOperand(0).getReg())) 4642 DefMI.getOperand(1).setImm(NewImm); 4643 4644 // If we're not using the GPR result of the CR-setting instruction, we 4645 // just need to and with zero/non-zero depending on the new immediate. 4646 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 4647 if (NewImm) { 4648 assert(Immediate && "Transformation converted zero to non-zero?"); 4649 NewImm = Immediate; 4650 } 4651 } else if (ImmChanged) 4652 return false; 4653 } 4654 } 4655 4656 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4657 LLVM_DEBUG(MI.dump()); 4658 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4659 LLVM_DEBUG(DefMI.dump()); 4660 LoadImmediateInfo LII; 4661 LII.Imm = NewImm; 4662 LII.Is64Bit = Is64BitLI; 4663 LII.SetCR = SetCR; 4664 // If we're setting the CR, the original load-immediate must be kept (as an 4665 // operand to ANDI_rec/ANDI8_rec). 4666 if (KilledDef && SetCR) 4667 *KilledDef = nullptr; 4668 replaceInstrWithLI(MI, LII); 4669 4670 // Fixup killed/dead flag after transformation. 4671 // Pattern: 4672 // ForwardingOperandReg = LI imm1 4673 // y = op2 imm2, ForwardingOperandReg(killed) 4674 if (IsForwardingOperandKilled) 4675 fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg); 4676 4677 LLVM_DEBUG(dbgs() << "With:\n"); 4678 LLVM_DEBUG(MI.dump()); 4679 return true; 4680 } 4681 return false; 4682 } 4683 4684 bool PPCInstrInfo::transformToNewImmFormFedByAdd( 4685 MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const { 4686 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 4687 bool PostRA = !MRI->isSSA(); 4688 // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI 4689 // for post-ra. 4690 if (PostRA) 4691 return false; 4692 4693 // Only handle load/store. 4694 if (!MI.mayLoadOrStore()) 4695 return false; 4696 4697 unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode()); 4698 4699 assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) && 4700 "MI must have x-form opcode"); 4701 4702 // get Imm Form info. 4703 ImmInstrInfo III; 4704 bool IsVFReg = MI.getOperand(0).isReg() 4705 ? isVFRegister(MI.getOperand(0).getReg()) 4706 : false; 4707 4708 if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA)) 4709 return false; 4710 4711 if (!III.IsSummingOperands) 4712 return false; 4713 4714 if (OpNoForForwarding != III.OpNoForForwarding) 4715 return false; 4716 4717 MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo); 4718 if (!ImmOperandMI.isImm()) 4719 return false; 4720 4721 // Check DefMI. 4722 MachineOperand *ImmMO = nullptr; 4723 MachineOperand *RegMO = nullptr; 4724 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4725 return false; 4726 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4727 4728 // Check Imm. 4729 // Set ImmBase from imm instruction as base and get new Imm inside 4730 // isImmElgibleForForwarding. 4731 int64_t ImmBase = ImmOperandMI.getImm(); 4732 int64_t Imm = 0; 4733 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase)) 4734 return false; 4735 4736 // Get killed info in case fixup needed after transformation. 4737 unsigned ForwardKilledOperandReg = ~0U; 4738 if (MI.getOperand(III.OpNoForForwarding).isKill()) 4739 ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg(); 4740 4741 // Do the transform 4742 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4743 LLVM_DEBUG(MI.dump()); 4744 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4745 LLVM_DEBUG(DefMI.dump()); 4746 4747 MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg()); 4748 MI.getOperand(III.OpNoForForwarding).setIsKill(RegMO->isKill()); 4749 MI.getOperand(III.ImmOpNo).setImm(Imm); 4750 4751 // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block. 4752 if (DefMI.getParent() == MI.getParent()) { 4753 // Check if reg is killed between MI and DefMI. 4754 auto IsKilledFor = [&](unsigned Reg) { 4755 MachineBasicBlock::const_reverse_iterator It = MI; 4756 MachineBasicBlock::const_reverse_iterator E = DefMI; 4757 It++; 4758 for (; It != E; ++It) { 4759 if (It->killsRegister(Reg)) 4760 return true; 4761 } 4762 return false; 4763 }; 4764 4765 // Update kill flag 4766 if (RegMO->isKill() || IsKilledFor(RegMO->getReg())) 4767 fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); 4768 if (ForwardKilledOperandReg != ~0U) 4769 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4770 } 4771 4772 LLVM_DEBUG(dbgs() << "With:\n"); 4773 LLVM_DEBUG(MI.dump()); 4774 return true; 4775 } 4776 4777 // If an X-Form instruction is fed by an add-immediate and one of its operands 4778 // is the literal zero, attempt to forward the source of the add-immediate to 4779 // the corresponding D-Form instruction with the displacement coming from 4780 // the immediate being added. 4781 bool PPCInstrInfo::transformToImmFormFedByAdd( 4782 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 4783 MachineInstr &DefMI, bool KillDefMI) const { 4784 // RegMO ImmMO 4785 // | | 4786 // x = addi reg, imm <----- DefMI 4787 // y = op 0 , x <----- MI 4788 // | 4789 // OpNoForForwarding 4790 // Check if the MI meet the requirement described in the III. 4791 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 4792 return false; 4793 4794 // Check if the DefMI meet the requirement 4795 // described in the III. If yes, set the ImmMO and RegMO accordingly. 4796 MachineOperand *ImmMO = nullptr; 4797 MachineOperand *RegMO = nullptr; 4798 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4799 return false; 4800 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4801 4802 // As we get the Imm operand now, we need to check if the ImmMO meet 4803 // the requirement described in the III. If yes set the Imm. 4804 int64_t Imm = 0; 4805 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 4806 return false; 4807 4808 bool IsFwdFeederRegKilled = false; 4809 // Check if the RegMO can be forwarded to MI. 4810 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 4811 IsFwdFeederRegKilled)) 4812 return false; 4813 4814 // Get killed info in case fixup needed after transformation. 4815 unsigned ForwardKilledOperandReg = ~0U; 4816 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4817 bool PostRA = !MRI.isSSA(); 4818 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 4819 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 4820 4821 // We know that, the MI and DefMI both meet the pattern, and 4822 // the Imm also meet the requirement with the new Imm-form. 4823 // It is safe to do the transformation now. 4824 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4825 LLVM_DEBUG(MI.dump()); 4826 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4827 LLVM_DEBUG(DefMI.dump()); 4828 4829 // Update the base reg first. 4830 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 4831 false, false, 4832 RegMO->isKill()); 4833 4834 // Then, update the imm. 4835 if (ImmMO->isImm()) { 4836 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 4837 // directly. 4838 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 4839 } 4840 else { 4841 // Otherwise, it is Constant Pool Index(CPI) or Global, 4842 // which is relocation in fact. We need to replace the special zero 4843 // register with ImmMO. 4844 // Before that, we need to fixup the target flags for imm. 4845 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 4846 if (DefMI.getOpcode() == PPC::ADDItocL) 4847 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 4848 4849 // MI didn't have the interface such as MI.setOperand(i) though 4850 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 4851 // ImmMO, we need to remove ZERO operand and all the operands behind it, 4852 // and, add the ImmMO, then, move back all the operands behind ZERO. 4853 SmallVector<MachineOperand, 2> MOps; 4854 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 4855 MOps.push_back(MI.getOperand(i)); 4856 MI.RemoveOperand(i); 4857 } 4858 4859 // Remove the last MO in the list, which is ZERO operand in fact. 4860 MOps.pop_back(); 4861 // Add the imm operand. 4862 MI.addOperand(*ImmMO); 4863 // Now add the rest back. 4864 for (auto &MO : MOps) 4865 MI.addOperand(MO); 4866 } 4867 4868 // Update the opcode. 4869 MI.setDesc(get(III.ImmOpcode)); 4870 4871 // Fix up killed/dead flag after transformation. 4872 // Pattern 1: 4873 // x = ADD KilledFwdFeederReg, imm 4874 // n = opn KilledFwdFeederReg(killed), regn 4875 // y = XOP 0, x 4876 // Pattern 2: 4877 // x = ADD reg(killed), imm 4878 // y = XOP 0, x 4879 if (IsFwdFeederRegKilled || RegMO->isKill()) 4880 fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); 4881 // Pattern 3: 4882 // ForwardKilledOperandReg = ADD reg, imm 4883 // y = XOP 0, ForwardKilledOperandReg(killed) 4884 if (ForwardKilledOperandReg != ~0U) 4885 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4886 4887 LLVM_DEBUG(dbgs() << "With:\n"); 4888 LLVM_DEBUG(MI.dump()); 4889 4890 return true; 4891 } 4892 4893 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 4894 const ImmInstrInfo &III, 4895 unsigned ConstantOpNo, 4896 MachineInstr &DefMI) const { 4897 // DefMI must be LI or LI8. 4898 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4899 !DefMI.getOperand(1).isImm()) 4900 return false; 4901 4902 // Get Imm operand and Sign-extend to 64-bits. 4903 int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm()); 4904 4905 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4906 bool PostRA = !MRI.isSSA(); 4907 // Exit early if we can't convert this. 4908 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 4909 return false; 4910 if (Imm % III.ImmMustBeMultipleOf) 4911 return false; 4912 if (III.TruncateImmTo) 4913 Imm &= ((1 << III.TruncateImmTo) - 1); 4914 if (III.SignedImm) { 4915 APInt ActualValue(64, Imm, true); 4916 if (!ActualValue.isSignedIntN(III.ImmWidth)) 4917 return false; 4918 } else { 4919 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 4920 if ((uint64_t)Imm > UnsignedMax) 4921 return false; 4922 } 4923 4924 // If we're post-RA, the instructions don't agree on whether register zero is 4925 // special, we can transform this as long as the register operand that will 4926 // end up in the location where zero is special isn't R0. 4927 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 4928 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 4929 III.ZeroIsSpecialNew + 1; 4930 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 4931 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 4932 // If R0 is in the operand where zero is special for the new instruction, 4933 // it is unsafe to transform if the constant operand isn't that operand. 4934 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 4935 ConstantOpNo != III.ZeroIsSpecialNew) 4936 return false; 4937 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 4938 ConstantOpNo != PosForOrigZero) 4939 return false; 4940 } 4941 4942 // Get killed info in case fixup needed after transformation. 4943 unsigned ForwardKilledOperandReg = ~0U; 4944 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 4945 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 4946 4947 unsigned Opc = MI.getOpcode(); 4948 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || 4949 Opc == PPC::SRW || Opc == PPC::SRW_rec || 4950 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || 4951 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; 4952 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || 4953 Opc == PPC::SRD || Opc == PPC::SRD_rec; 4954 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || 4955 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; 4956 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || 4957 Opc == PPC::SRD_rec; 4958 4959 MI.setDesc(get(III.ImmOpcode)); 4960 if (ConstantOpNo == III.OpNoForForwarding) { 4961 // Converting shifts to immediate form is a bit tricky since they may do 4962 // one of three things: 4963 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 4964 // 2. If the shift amount is zero, the result is unchanged (save for maybe 4965 // setting CR0) 4966 // 3. If the shift amount is in [1, OpSize), it's just a shift 4967 if (SpecialShift32 || SpecialShift64) { 4968 LoadImmediateInfo LII; 4969 LII.Imm = 0; 4970 LII.SetCR = SetCR; 4971 LII.Is64Bit = SpecialShift64; 4972 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 4973 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 4974 replaceInstrWithLI(MI, LII); 4975 // Shifts by zero don't change the value. If we don't need to set CR0, 4976 // just convert this to a COPY. Can't do this post-RA since we've already 4977 // cleaned up the copies. 4978 else if (!SetCR && ShAmt == 0 && !PostRA) { 4979 MI.RemoveOperand(2); 4980 MI.setDesc(get(PPC::COPY)); 4981 } else { 4982 // The 32 bit and 64 bit instructions are quite different. 4983 if (SpecialShift32) { 4984 // Left shifts use (N, 0, 31-N). 4985 // Right shifts use (32-N, N, 31) if 0 < N < 32. 4986 // use (0, 0, 31) if N == 0. 4987 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; 4988 uint64_t MB = RightShift ? ShAmt : 0; 4989 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 4990 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 4991 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 4992 .addImm(ME); 4993 } else { 4994 // Left shifts use (N, 63-N). 4995 // Right shifts use (64-N, N) if 0 < N < 64. 4996 // use (0, 0) if N == 0. 4997 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; 4998 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 4999 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 5000 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 5001 } 5002 } 5003 } else 5004 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 5005 } 5006 // Convert commutative instructions (switch the operands and convert the 5007 // desired one to an immediate. 5008 else if (III.IsCommutative) { 5009 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 5010 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 5011 } else 5012 llvm_unreachable("Should have exited early!"); 5013 5014 // For instructions for which the constant register replaces a different 5015 // operand than where the immediate goes, we need to swap them. 5016 if (III.OpNoForForwarding != III.ImmOpNo) 5017 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 5018 5019 // If the special R0/X0 register index are different for original instruction 5020 // and new instruction, we need to fix up the register class in new 5021 // instruction. 5022 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 5023 if (III.ZeroIsSpecialNew) { 5024 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 5025 // need to fix up register class. 5026 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 5027 if (Register::isVirtualRegister(RegToModify)) { 5028 const TargetRegisterClass *NewRC = 5029 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 5030 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 5031 MRI.setRegClass(RegToModify, NewRC); 5032 } 5033 } 5034 } 5035 5036 // Fix up killed/dead flag after transformation. 5037 // Pattern: 5038 // ForwardKilledOperandReg = LI imm 5039 // y = XOP reg, ForwardKilledOperandReg(killed) 5040 if (ForwardKilledOperandReg != ~0U) 5041 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 5042 return true; 5043 } 5044 5045 const TargetRegisterClass * 5046 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 5047 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 5048 return &PPC::VSRCRegClass; 5049 return RC; 5050 } 5051 5052 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 5053 return PPC::getRecordFormOpcode(Opcode); 5054 } 5055 5056 // This function returns true if the machine instruction 5057 // always outputs a value by sign-extending a 32 bit value, 5058 // i.e. 0 to 31-th bits are same as 32-th bit. 5059 static bool isSignExtendingOp(const MachineInstr &MI) { 5060 int Opcode = MI.getOpcode(); 5061 if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS || 5062 Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec || 5063 Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA || 5064 Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 5065 Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 || 5066 Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX || 5067 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU || 5068 Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 5069 Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 || 5070 Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 5071 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB || 5072 Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH || 5073 Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 || 5074 Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW || 5075 Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 || 5076 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 5077 Opcode == PPC::EXTSB8_32_64) 5078 return true; 5079 5080 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 5081 return true; 5082 5083 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 5084 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && 5085 MI.getOperand(3).getImm() > 0 && 5086 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 5087 return true; 5088 5089 return false; 5090 } 5091 5092 // This function returns true if the machine instruction 5093 // always outputs zeros in higher 32 bits. 5094 static bool isZeroExtendingOp(const MachineInstr &MI) { 5095 int Opcode = MI.getOpcode(); 5096 // The 16-bit immediate is sign-extended in li/lis. 5097 // If the most significant bit is zero, all higher bits are zero. 5098 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 5099 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 5100 int64_t Imm = MI.getOperand(1).getImm(); 5101 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 5102 return true; 5103 } 5104 5105 // We have some variations of rotate-and-mask instructions 5106 // that clear higher 32-bits. 5107 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 5108 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || 5109 Opcode == PPC::RLDICL_32_64) && 5110 MI.getOperand(3).getImm() >= 32) 5111 return true; 5112 5113 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 5114 MI.getOperand(3).getImm() >= 32 && 5115 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 5116 return true; 5117 5118 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 5119 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 5120 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 5121 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 5122 return true; 5123 5124 // There are other instructions that clear higher 32-bits. 5125 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec || 5126 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec || 5127 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 5128 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec || 5129 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec || 5130 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW || 5131 Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec || 5132 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI || 5133 Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI || 5134 Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX || 5135 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX || 5136 Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX || 5137 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ || 5138 Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 5139 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 || 5140 Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 5141 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 || 5142 Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 5143 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 5144 Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec || 5145 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec || 5146 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec || 5147 Opcode == PPC::MFVSRWZ) 5148 return true; 5149 5150 return false; 5151 } 5152 5153 // This function returns true if the input MachineInstr is a TOC save 5154 // instruction. 5155 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 5156 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 5157 return false; 5158 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5159 unsigned StackOffset = MI.getOperand(1).getImm(); 5160 Register StackReg = MI.getOperand(2).getReg(); 5161 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) 5162 return true; 5163 5164 return false; 5165 } 5166 5167 // We limit the max depth to track incoming values of PHIs or binary ops 5168 // (e.g. AND) to avoid excessive cost. 5169 const unsigned MAX_DEPTH = 1; 5170 5171 bool 5172 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 5173 const unsigned Depth) const { 5174 const MachineFunction *MF = MI.getParent()->getParent(); 5175 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 5176 5177 // If we know this instruction returns sign- or zero-extended result, 5178 // return true. 5179 if (SignExt ? isSignExtendingOp(MI): 5180 isZeroExtendingOp(MI)) 5181 return true; 5182 5183 switch (MI.getOpcode()) { 5184 case PPC::COPY: { 5185 Register SrcReg = MI.getOperand(1).getReg(); 5186 5187 // In both ELFv1 and v2 ABI, method parameters and the return value 5188 // are sign- or zero-extended. 5189 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 5190 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 5191 // We check the ZExt/SExt flags for a method parameter. 5192 if (MI.getParent()->getBasicBlock() == 5193 &MF->getFunction().getEntryBlock()) { 5194 Register VReg = MI.getOperand(0).getReg(); 5195 if (MF->getRegInfo().isLiveIn(VReg)) 5196 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 5197 FuncInfo->isLiveInZExt(VReg); 5198 } 5199 5200 // For a method return value, we check the ZExt/SExt flags in attribute. 5201 // We assume the following code sequence for method call. 5202 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 5203 // BL8_NOP @func,... 5204 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 5205 // %5 = COPY %x3; G8RC:%5 5206 if (SrcReg == PPC::X3) { 5207 const MachineBasicBlock *MBB = MI.getParent(); 5208 MachineBasicBlock::const_instr_iterator II = 5209 MachineBasicBlock::const_instr_iterator(&MI); 5210 if (II != MBB->instr_begin() && 5211 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 5212 const MachineInstr &CallMI = *(--II); 5213 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 5214 const Function *CalleeFn = 5215 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 5216 if (!CalleeFn) 5217 return false; 5218 const IntegerType *IntTy = 5219 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 5220 const AttributeSet &Attrs = 5221 CalleeFn->getAttributes().getRetAttributes(); 5222 if (IntTy && IntTy->getBitWidth() <= 32) 5223 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 5224 Attribute::ZExt); 5225 } 5226 } 5227 } 5228 } 5229 5230 // If this is a copy from another register, we recursively check source. 5231 if (!Register::isVirtualRegister(SrcReg)) 5232 return false; 5233 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 5234 if (SrcMI != NULL) 5235 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 5236 5237 return false; 5238 } 5239 5240 case PPC::ANDI_rec: 5241 case PPC::ANDIS_rec: 5242 case PPC::ORI: 5243 case PPC::ORIS: 5244 case PPC::XORI: 5245 case PPC::XORIS: 5246 case PPC::ANDI8_rec: 5247 case PPC::ANDIS8_rec: 5248 case PPC::ORI8: 5249 case PPC::ORIS8: 5250 case PPC::XORI8: 5251 case PPC::XORIS8: { 5252 // logical operation with 16-bit immediate does not change the upper bits. 5253 // So, we track the operand register as we do for register copy. 5254 Register SrcReg = MI.getOperand(1).getReg(); 5255 if (!Register::isVirtualRegister(SrcReg)) 5256 return false; 5257 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 5258 if (SrcMI != NULL) 5259 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 5260 5261 return false; 5262 } 5263 5264 // If all incoming values are sign-/zero-extended, 5265 // the output of OR, ISEL or PHI is also sign-/zero-extended. 5266 case PPC::OR: 5267 case PPC::OR8: 5268 case PPC::ISEL: 5269 case PPC::PHI: { 5270 if (Depth >= MAX_DEPTH) 5271 return false; 5272 5273 // The input registers for PHI are operand 1, 3, ... 5274 // The input registers for others are operand 1 and 2. 5275 unsigned E = 3, D = 1; 5276 if (MI.getOpcode() == PPC::PHI) { 5277 E = MI.getNumOperands(); 5278 D = 2; 5279 } 5280 5281 for (unsigned I = 1; I != E; I += D) { 5282 if (MI.getOperand(I).isReg()) { 5283 Register SrcReg = MI.getOperand(I).getReg(); 5284 if (!Register::isVirtualRegister(SrcReg)) 5285 return false; 5286 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 5287 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 5288 return false; 5289 } 5290 else 5291 return false; 5292 } 5293 return true; 5294 } 5295 5296 // If at least one of the incoming values of an AND is zero extended 5297 // then the output is also zero-extended. If both of the incoming values 5298 // are sign-extended then the output is also sign extended. 5299 case PPC::AND: 5300 case PPC::AND8: { 5301 if (Depth >= MAX_DEPTH) 5302 return false; 5303 5304 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 5305 5306 Register SrcReg1 = MI.getOperand(1).getReg(); 5307 Register SrcReg2 = MI.getOperand(2).getReg(); 5308 5309 if (!Register::isVirtualRegister(SrcReg1) || 5310 !Register::isVirtualRegister(SrcReg2)) 5311 return false; 5312 5313 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 5314 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 5315 if (!MISrc1 || !MISrc2) 5316 return false; 5317 5318 if(SignExt) 5319 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 5320 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 5321 else 5322 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 5323 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 5324 } 5325 5326 default: 5327 break; 5328 } 5329 return false; 5330 } 5331 5332 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 5333 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 5334 } 5335 5336 namespace { 5337 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 5338 MachineInstr *Loop, *EndLoop, *LoopCount; 5339 MachineFunction *MF; 5340 const TargetInstrInfo *TII; 5341 int64_t TripCount; 5342 5343 public: 5344 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 5345 MachineInstr *LoopCount) 5346 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 5347 MF(Loop->getParent()->getParent()), 5348 TII(MF->getSubtarget().getInstrInfo()) { 5349 // Inspect the Loop instruction up-front, as it may be deleted when we call 5350 // createTripCountGreaterCondition. 5351 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 5352 TripCount = LoopCount->getOperand(1).getImm(); 5353 else 5354 TripCount = -1; 5355 } 5356 5357 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 5358 // Only ignore the terminator. 5359 return MI == EndLoop; 5360 } 5361 5362 Optional<bool> 5363 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 5364 SmallVectorImpl<MachineOperand> &Cond) override { 5365 if (TripCount == -1) { 5366 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 5367 // so we don't need to generate any thing here. 5368 Cond.push_back(MachineOperand::CreateImm(0)); 5369 Cond.push_back(MachineOperand::CreateReg( 5370 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 5371 true)); 5372 return {}; 5373 } 5374 5375 return TripCount > TC; 5376 } 5377 5378 void setPreheader(MachineBasicBlock *NewPreheader) override { 5379 // Do nothing. We want the LOOP setup instruction to stay in the *old* 5380 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 5381 } 5382 5383 void adjustTripCount(int TripCountAdjust) override { 5384 // If the loop trip count is a compile-time value, then just change the 5385 // value. 5386 if (LoopCount->getOpcode() == PPC::LI8 || 5387 LoopCount->getOpcode() == PPC::LI) { 5388 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 5389 LoopCount->getOperand(1).setImm(TripCount); 5390 return; 5391 } 5392 5393 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 5394 // so we don't need to generate any thing here. 5395 } 5396 5397 void disposed() override { 5398 Loop->eraseFromParent(); 5399 // Ensure the loop setup instruction is deleted too. 5400 LoopCount->eraseFromParent(); 5401 } 5402 }; 5403 } // namespace 5404 5405 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 5406 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 5407 // We really "analyze" only hardware loops right now. 5408 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 5409 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 5410 if (Preheader == LoopBB) 5411 Preheader = *std::next(LoopBB->pred_begin()); 5412 MachineFunction *MF = Preheader->getParent(); 5413 5414 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 5415 SmallPtrSet<MachineBasicBlock *, 8> Visited; 5416 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 5417 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 5418 MachineRegisterInfo &MRI = MF->getRegInfo(); 5419 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 5420 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 5421 } 5422 } 5423 return nullptr; 5424 } 5425 5426 MachineInstr *PPCInstrInfo::findLoopInstr( 5427 MachineBasicBlock &PreHeader, 5428 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 5429 5430 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 5431 5432 // The loop set-up instruction should be in preheader 5433 for (auto &I : PreHeader.instrs()) 5434 if (I.getOpcode() == LOOPi) 5435 return &I; 5436 return nullptr; 5437 } 5438 5439 // Return true if get the base operand, byte offset of an instruction and the 5440 // memory width. Width is the size of memory that is being loaded/stored. 5441 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 5442 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, 5443 unsigned &Width, const TargetRegisterInfo *TRI) const { 5444 if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3) 5445 return false; 5446 5447 // Handle only loads/stores with base register followed by immediate offset. 5448 if (!LdSt.getOperand(1).isImm() || 5449 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 5450 return false; 5451 if (!LdSt.getOperand(1).isImm() || 5452 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 5453 return false; 5454 5455 if (!LdSt.hasOneMemOperand()) 5456 return false; 5457 5458 Width = (*LdSt.memoperands_begin())->getSize(); 5459 Offset = LdSt.getOperand(1).getImm(); 5460 BaseReg = &LdSt.getOperand(2); 5461 return true; 5462 } 5463 5464 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 5465 const MachineInstr &MIa, const MachineInstr &MIb) const { 5466 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 5467 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 5468 5469 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 5470 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 5471 return false; 5472 5473 // Retrieve the base register, offset from the base register and width. Width 5474 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 5475 // base registers are identical, and the offset of a lower memory access + 5476 // the width doesn't overlap the offset of a higher memory access, 5477 // then the memory accesses are different. 5478 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5479 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 5480 int64_t OffsetA = 0, OffsetB = 0; 5481 unsigned int WidthA = 0, WidthB = 0; 5482 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 5483 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 5484 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 5485 int LowOffset = std::min(OffsetA, OffsetB); 5486 int HighOffset = std::max(OffsetA, OffsetB); 5487 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 5488 if (LowOffset + LowWidth <= HighOffset) 5489 return true; 5490 } 5491 } 5492 return false; 5493 } 5494