1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the PowerPC implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCInstrInfo.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCHazardRecognizers.h" 18 #include "PPCInstrBuilder.h" 19 #include "PPCMachineFunctionInfo.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/ScheduleDAG.h" 31 #include "llvm/CodeGen/SlotIndexes.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/TargetRegistry.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "ppc-instr-info" 42 43 #define GET_INSTRMAP_INFO 44 #define GET_INSTRINFO_CTOR_DTOR 45 #include "PPCGenInstrInfo.inc" 46 47 static cl:: 48 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 49 cl::desc("Disable analysis for CTR loops")); 50 51 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 52 cl::desc("Disable compare instruction optimization"), cl::Hidden); 53 54 static cl::opt<bool> DisableVSXFMAMutate("disable-ppc-vsx-fma-mutation", 55 cl::desc("Disable VSX FMA instruction mutation"), cl::Hidden); 56 57 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 58 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 59 cl::Hidden); 60 61 // Pin the vtable to this file. 62 void PPCInstrInfo::anchor() {} 63 64 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 65 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP), 66 Subtarget(STI), RI(STI) {} 67 68 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 69 /// this target when scheduling the DAG. 70 ScheduleHazardRecognizer * 71 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 72 const ScheduleDAG *DAG) const { 73 unsigned Directive = 74 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); 75 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 76 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 77 const InstrItineraryData *II = 78 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 79 return new ScoreboardHazardRecognizer(II, DAG); 80 } 81 82 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 83 } 84 85 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 86 /// to use for this target when scheduling the DAG. 87 ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetPostRAHazardRecognizer( 88 const InstrItineraryData *II, 89 const ScheduleDAG *DAG) const { 90 unsigned Directive = 91 DAG->TM.getSubtarget<PPCSubtarget>().getDarwinDirective(); 92 93 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 94 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 95 96 // Most subtargets use a PPC970 recognizer. 97 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 98 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 99 assert(DAG->TII && "No InstrInfo?"); 100 101 return new PPCHazardRecognizer970(*DAG); 102 } 103 104 return new ScoreboardHazardRecognizer(II, DAG); 105 } 106 107 108 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 109 const MachineInstr *DefMI, unsigned DefIdx, 110 const MachineInstr *UseMI, 111 unsigned UseIdx) const { 112 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 113 UseMI, UseIdx); 114 115 const MachineOperand &DefMO = DefMI->getOperand(DefIdx); 116 unsigned Reg = DefMO.getReg(); 117 118 const TargetRegisterInfo *TRI = &getRegisterInfo(); 119 bool IsRegCR; 120 if (TRI->isVirtualRegister(Reg)) { 121 const MachineRegisterInfo *MRI = 122 &DefMI->getParent()->getParent()->getRegInfo(); 123 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 124 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 125 } else { 126 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 127 PPC::CRBITRCRegClass.contains(Reg); 128 } 129 130 if (UseMI->isBranch() && IsRegCR) { 131 if (Latency < 0) 132 Latency = getInstrLatency(ItinData, DefMI); 133 134 // On some cores, there is an additional delay between writing to a condition 135 // register, and using it from a branch. 136 unsigned Directive = Subtarget.getDarwinDirective(); 137 switch (Directive) { 138 default: break; 139 case PPC::DIR_7400: 140 case PPC::DIR_750: 141 case PPC::DIR_970: 142 case PPC::DIR_E5500: 143 case PPC::DIR_PWR4: 144 case PPC::DIR_PWR5: 145 case PPC::DIR_PWR5X: 146 case PPC::DIR_PWR6: 147 case PPC::DIR_PWR6X: 148 case PPC::DIR_PWR7: 149 case PPC::DIR_PWR8: 150 Latency += 2; 151 break; 152 } 153 } 154 155 return Latency; 156 } 157 158 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 159 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 160 unsigned &SrcReg, unsigned &DstReg, 161 unsigned &SubIdx) const { 162 switch (MI.getOpcode()) { 163 default: return false; 164 case PPC::EXTSW: 165 case PPC::EXTSW_32_64: 166 SrcReg = MI.getOperand(1).getReg(); 167 DstReg = MI.getOperand(0).getReg(); 168 SubIdx = PPC::sub_32; 169 return true; 170 } 171 } 172 173 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 174 int &FrameIndex) const { 175 // Note: This list must be kept consistent with LoadRegFromStackSlot. 176 switch (MI->getOpcode()) { 177 default: break; 178 case PPC::LD: 179 case PPC::LWZ: 180 case PPC::LFS: 181 case PPC::LFD: 182 case PPC::RESTORE_CR: 183 case PPC::RESTORE_CRBIT: 184 case PPC::LVX: 185 case PPC::LXVD2X: 186 case PPC::RESTORE_VRSAVE: 187 // Check for the operands added by addFrameReference (the immediate is the 188 // offset which defaults to 0). 189 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 190 MI->getOperand(2).isFI()) { 191 FrameIndex = MI->getOperand(2).getIndex(); 192 return MI->getOperand(0).getReg(); 193 } 194 break; 195 } 196 return 0; 197 } 198 199 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI, 200 int &FrameIndex) const { 201 // Note: This list must be kept consistent with StoreRegToStackSlot. 202 switch (MI->getOpcode()) { 203 default: break; 204 case PPC::STD: 205 case PPC::STW: 206 case PPC::STFS: 207 case PPC::STFD: 208 case PPC::SPILL_CR: 209 case PPC::SPILL_CRBIT: 210 case PPC::STVX: 211 case PPC::STXVD2X: 212 case PPC::SPILL_VRSAVE: 213 // Check for the operands added by addFrameReference (the immediate is the 214 // offset which defaults to 0). 215 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 216 MI->getOperand(2).isFI()) { 217 FrameIndex = MI->getOperand(2).getIndex(); 218 return MI->getOperand(0).getReg(); 219 } 220 break; 221 } 222 return 0; 223 } 224 225 // commuteInstruction - We can commute rlwimi instructions, but only if the 226 // rotate amt is zero. We also have to munge the immediates a bit. 227 MachineInstr * 228 PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { 229 MachineFunction &MF = *MI->getParent()->getParent(); 230 231 // Normal instructions can be commuted the obvious way. 232 if (MI->getOpcode() != PPC::RLWIMI && 233 MI->getOpcode() != PPC::RLWIMIo && 234 MI->getOpcode() != PPC::RLWIMI8 && 235 MI->getOpcode() != PPC::RLWIMI8o) 236 return TargetInstrInfo::commuteInstruction(MI, NewMI); 237 238 // Cannot commute if it has a non-zero rotate count. 239 if (MI->getOperand(3).getImm() != 0) 240 return nullptr; 241 242 // If we have a zero rotate count, we have: 243 // M = mask(MB,ME) 244 // Op0 = (Op1 & ~M) | (Op2 & M) 245 // Change this to: 246 // M = mask((ME+1)&31, (MB-1)&31) 247 // Op0 = (Op2 & ~M) | (Op1 & M) 248 249 // Swap op1/op2 250 unsigned Reg0 = MI->getOperand(0).getReg(); 251 unsigned Reg1 = MI->getOperand(1).getReg(); 252 unsigned Reg2 = MI->getOperand(2).getReg(); 253 unsigned SubReg1 = MI->getOperand(1).getSubReg(); 254 unsigned SubReg2 = MI->getOperand(2).getSubReg(); 255 bool Reg1IsKill = MI->getOperand(1).isKill(); 256 bool Reg2IsKill = MI->getOperand(2).isKill(); 257 bool ChangeReg0 = false; 258 // If machine instrs are no longer in two-address forms, update 259 // destination register as well. 260 if (Reg0 == Reg1) { 261 // Must be two address instruction! 262 assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 263 "Expecting a two-address instruction!"); 264 assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 265 Reg2IsKill = false; 266 ChangeReg0 = true; 267 } 268 269 // Masks. 270 unsigned MB = MI->getOperand(4).getImm(); 271 unsigned ME = MI->getOperand(5).getImm(); 272 273 if (NewMI) { 274 // Create a new instruction. 275 unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg(); 276 bool Reg0IsDead = MI->getOperand(0).isDead(); 277 return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) 278 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 279 .addReg(Reg2, getKillRegState(Reg2IsKill)) 280 .addReg(Reg1, getKillRegState(Reg1IsKill)) 281 .addImm((ME+1) & 31) 282 .addImm((MB-1) & 31); 283 } 284 285 if (ChangeReg0) { 286 MI->getOperand(0).setReg(Reg2); 287 MI->getOperand(0).setSubReg(SubReg2); 288 } 289 MI->getOperand(2).setReg(Reg1); 290 MI->getOperand(1).setReg(Reg2); 291 MI->getOperand(2).setSubReg(SubReg1); 292 MI->getOperand(1).setSubReg(SubReg2); 293 MI->getOperand(2).setIsKill(Reg1IsKill); 294 MI->getOperand(1).setIsKill(Reg2IsKill); 295 296 // Swap the mask around. 297 MI->getOperand(4).setImm((ME+1) & 31); 298 MI->getOperand(5).setImm((MB-1) & 31); 299 return MI; 300 } 301 302 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1, 303 unsigned &SrcOpIdx2) const { 304 // For VSX A-Type FMA instructions, it is the first two operands that can be 305 // commuted, however, because the non-encoded tied input operand is listed 306 // first, the operands to swap are actually the second and third. 307 308 int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode()); 309 if (AltOpc == -1) 310 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 311 312 SrcOpIdx1 = 2; 313 SrcOpIdx2 = 3; 314 return true; 315 } 316 317 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 318 MachineBasicBlock::iterator MI) const { 319 // This function is used for scheduling, and the nop wanted here is the type 320 // that terminates dispatch groups on the POWER cores. 321 unsigned Directive = Subtarget.getDarwinDirective(); 322 unsigned Opcode; 323 switch (Directive) { 324 default: Opcode = PPC::NOP; break; 325 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 326 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 327 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 328 } 329 330 DebugLoc DL; 331 BuildMI(MBB, MI, DL, get(Opcode)); 332 } 333 334 /// getNoopForMachoTarget - Return the noop instruction to use for a noop. 335 void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { 336 NopInst.setOpcode(PPC::NOP); 337 } 338 339 // Branch analysis. 340 // Note: If the condition register is set to CTR or CTR8 then this is a 341 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 342 bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, 343 MachineBasicBlock *&FBB, 344 SmallVectorImpl<MachineOperand> &Cond, 345 bool AllowModify) const { 346 bool isPPC64 = Subtarget.isPPC64(); 347 348 // If the block has no terminators, it just falls into the block after it. 349 MachineBasicBlock::iterator I = MBB.end(); 350 if (I == MBB.begin()) 351 return false; 352 --I; 353 while (I->isDebugValue()) { 354 if (I == MBB.begin()) 355 return false; 356 --I; 357 } 358 if (!isUnpredicatedTerminator(I)) 359 return false; 360 361 // Get the last instruction in the block. 362 MachineInstr *LastInst = I; 363 364 // If there is only one terminator instruction, process it. 365 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { 366 if (LastInst->getOpcode() == PPC::B) { 367 if (!LastInst->getOperand(0).isMBB()) 368 return true; 369 TBB = LastInst->getOperand(0).getMBB(); 370 return false; 371 } else if (LastInst->getOpcode() == PPC::BCC) { 372 if (!LastInst->getOperand(2).isMBB()) 373 return true; 374 // Block ends with fall-through condbranch. 375 TBB = LastInst->getOperand(2).getMBB(); 376 Cond.push_back(LastInst->getOperand(0)); 377 Cond.push_back(LastInst->getOperand(1)); 378 return false; 379 } else if (LastInst->getOpcode() == PPC::BC) { 380 if (!LastInst->getOperand(1).isMBB()) 381 return true; 382 // Block ends with fall-through condbranch. 383 TBB = LastInst->getOperand(1).getMBB(); 384 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 385 Cond.push_back(LastInst->getOperand(0)); 386 return false; 387 } else if (LastInst->getOpcode() == PPC::BCn) { 388 if (!LastInst->getOperand(1).isMBB()) 389 return true; 390 // Block ends with fall-through condbranch. 391 TBB = LastInst->getOperand(1).getMBB(); 392 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 393 Cond.push_back(LastInst->getOperand(0)); 394 return false; 395 } else if (LastInst->getOpcode() == PPC::BDNZ8 || 396 LastInst->getOpcode() == PPC::BDNZ) { 397 if (!LastInst->getOperand(0).isMBB()) 398 return true; 399 if (DisableCTRLoopAnal) 400 return true; 401 TBB = LastInst->getOperand(0).getMBB(); 402 Cond.push_back(MachineOperand::CreateImm(1)); 403 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 404 true)); 405 return false; 406 } else if (LastInst->getOpcode() == PPC::BDZ8 || 407 LastInst->getOpcode() == PPC::BDZ) { 408 if (!LastInst->getOperand(0).isMBB()) 409 return true; 410 if (DisableCTRLoopAnal) 411 return true; 412 TBB = LastInst->getOperand(0).getMBB(); 413 Cond.push_back(MachineOperand::CreateImm(0)); 414 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 415 true)); 416 return false; 417 } 418 419 // Otherwise, don't know what this is. 420 return true; 421 } 422 423 // Get the instruction before it if it's a terminator. 424 MachineInstr *SecondLastInst = I; 425 426 // If there are three terminators, we don't know what sort of block this is. 427 if (SecondLastInst && I != MBB.begin() && 428 isUnpredicatedTerminator(--I)) 429 return true; 430 431 // If the block ends with PPC::B and PPC:BCC, handle it. 432 if (SecondLastInst->getOpcode() == PPC::BCC && 433 LastInst->getOpcode() == PPC::B) { 434 if (!SecondLastInst->getOperand(2).isMBB() || 435 !LastInst->getOperand(0).isMBB()) 436 return true; 437 TBB = SecondLastInst->getOperand(2).getMBB(); 438 Cond.push_back(SecondLastInst->getOperand(0)); 439 Cond.push_back(SecondLastInst->getOperand(1)); 440 FBB = LastInst->getOperand(0).getMBB(); 441 return false; 442 } else if (SecondLastInst->getOpcode() == PPC::BC && 443 LastInst->getOpcode() == PPC::B) { 444 if (!SecondLastInst->getOperand(1).isMBB() || 445 !LastInst->getOperand(0).isMBB()) 446 return true; 447 TBB = SecondLastInst->getOperand(1).getMBB(); 448 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 449 Cond.push_back(SecondLastInst->getOperand(0)); 450 FBB = LastInst->getOperand(0).getMBB(); 451 return false; 452 } else if (SecondLastInst->getOpcode() == PPC::BCn && 453 LastInst->getOpcode() == PPC::B) { 454 if (!SecondLastInst->getOperand(1).isMBB() || 455 !LastInst->getOperand(0).isMBB()) 456 return true; 457 TBB = SecondLastInst->getOperand(1).getMBB(); 458 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 459 Cond.push_back(SecondLastInst->getOperand(0)); 460 FBB = LastInst->getOperand(0).getMBB(); 461 return false; 462 } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 || 463 SecondLastInst->getOpcode() == PPC::BDNZ) && 464 LastInst->getOpcode() == PPC::B) { 465 if (!SecondLastInst->getOperand(0).isMBB() || 466 !LastInst->getOperand(0).isMBB()) 467 return true; 468 if (DisableCTRLoopAnal) 469 return true; 470 TBB = SecondLastInst->getOperand(0).getMBB(); 471 Cond.push_back(MachineOperand::CreateImm(1)); 472 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 473 true)); 474 FBB = LastInst->getOperand(0).getMBB(); 475 return false; 476 } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 || 477 SecondLastInst->getOpcode() == PPC::BDZ) && 478 LastInst->getOpcode() == PPC::B) { 479 if (!SecondLastInst->getOperand(0).isMBB() || 480 !LastInst->getOperand(0).isMBB()) 481 return true; 482 if (DisableCTRLoopAnal) 483 return true; 484 TBB = SecondLastInst->getOperand(0).getMBB(); 485 Cond.push_back(MachineOperand::CreateImm(0)); 486 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 487 true)); 488 FBB = LastInst->getOperand(0).getMBB(); 489 return false; 490 } 491 492 // If the block ends with two PPC:Bs, handle it. The second one is not 493 // executed, so remove it. 494 if (SecondLastInst->getOpcode() == PPC::B && 495 LastInst->getOpcode() == PPC::B) { 496 if (!SecondLastInst->getOperand(0).isMBB()) 497 return true; 498 TBB = SecondLastInst->getOperand(0).getMBB(); 499 I = LastInst; 500 if (AllowModify) 501 I->eraseFromParent(); 502 return false; 503 } 504 505 // Otherwise, can't handle this. 506 return true; 507 } 508 509 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 510 MachineBasicBlock::iterator I = MBB.end(); 511 if (I == MBB.begin()) return 0; 512 --I; 513 while (I->isDebugValue()) { 514 if (I == MBB.begin()) 515 return 0; 516 --I; 517 } 518 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 519 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 520 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 521 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 522 return 0; 523 524 // Remove the branch. 525 I->eraseFromParent(); 526 527 I = MBB.end(); 528 529 if (I == MBB.begin()) return 1; 530 --I; 531 if (I->getOpcode() != PPC::BCC && 532 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 533 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 534 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 535 return 1; 536 537 // Remove the branch. 538 I->eraseFromParent(); 539 return 2; 540 } 541 542 unsigned 543 PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 544 MachineBasicBlock *FBB, 545 const SmallVectorImpl<MachineOperand> &Cond, 546 DebugLoc DL) const { 547 // Shouldn't be a fall through. 548 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 549 assert((Cond.size() == 2 || Cond.size() == 0) && 550 "PPC branch conditions have two components!"); 551 552 bool isPPC64 = Subtarget.isPPC64(); 553 554 // One-way branch. 555 if (!FBB) { 556 if (Cond.empty()) // Unconditional branch 557 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 558 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 559 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 560 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 561 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 562 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 563 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); 564 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 565 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); 566 else // Conditional branch 567 BuildMI(&MBB, DL, get(PPC::BCC)) 568 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); 569 return 1; 570 } 571 572 // Two-way Conditional Branch. 573 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 574 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 575 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 576 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 577 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 578 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); 579 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 580 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); 581 else 582 BuildMI(&MBB, DL, get(PPC::BCC)) 583 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); 584 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 585 return 2; 586 } 587 588 // Select analysis. 589 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 590 const SmallVectorImpl<MachineOperand> &Cond, 591 unsigned TrueReg, unsigned FalseReg, 592 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 593 if (!Subtarget.hasISEL()) 594 return false; 595 596 if (Cond.size() != 2) 597 return false; 598 599 // If this is really a bdnz-like condition, then it cannot be turned into a 600 // select. 601 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 602 return false; 603 604 // Check register classes. 605 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 606 const TargetRegisterClass *RC = 607 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 608 if (!RC) 609 return false; 610 611 // isel is for regular integer GPRs only. 612 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 613 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 614 !PPC::G8RCRegClass.hasSubClassEq(RC) && 615 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 616 return false; 617 618 // FIXME: These numbers are for the A2, how well they work for other cores is 619 // an open question. On the A2, the isel instruction has a 2-cycle latency 620 // but single-cycle throughput. These numbers are used in combination with 621 // the MispredictPenalty setting from the active SchedMachineModel. 622 CondCycles = 1; 623 TrueCycles = 1; 624 FalseCycles = 1; 625 626 return true; 627 } 628 629 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 630 MachineBasicBlock::iterator MI, DebugLoc dl, 631 unsigned DestReg, 632 const SmallVectorImpl<MachineOperand> &Cond, 633 unsigned TrueReg, unsigned FalseReg) const { 634 assert(Cond.size() == 2 && 635 "PPC branch conditions have two components!"); 636 637 assert(Subtarget.hasISEL() && 638 "Cannot insert select on target without ISEL support"); 639 640 // Get the register classes. 641 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 642 const TargetRegisterClass *RC = 643 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 644 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 645 646 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 647 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 648 assert((Is64Bit || 649 PPC::GPRCRegClass.hasSubClassEq(RC) || 650 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 651 "isel is for regular integer GPRs only"); 652 653 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 654 unsigned SelectPred = Cond[0].getImm(); 655 656 unsigned SubIdx; 657 bool SwapOps; 658 switch (SelectPred) { 659 default: llvm_unreachable("invalid predicate for isel"); 660 case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break; 661 case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break; 662 case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break; 663 case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break; 664 case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break; 665 case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break; 666 case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break; 667 case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break; 668 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 669 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 670 } 671 672 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 673 SecondReg = SwapOps ? TrueReg : FalseReg; 674 675 // The first input register of isel cannot be r0. If it is a member 676 // of a register class that can be r0, then copy it first (the 677 // register allocator should eliminate the copy). 678 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 679 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 680 const TargetRegisterClass *FirstRC = 681 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 682 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 683 unsigned OldFirstReg = FirstReg; 684 FirstReg = MRI.createVirtualRegister(FirstRC); 685 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 686 .addReg(OldFirstReg); 687 } 688 689 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 690 .addReg(FirstReg).addReg(SecondReg) 691 .addReg(Cond[1].getReg(), 0, SubIdx); 692 } 693 694 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 695 MachineBasicBlock::iterator I, DebugLoc DL, 696 unsigned DestReg, unsigned SrcReg, 697 bool KillSrc) const { 698 // We can end up with self copies and similar things as a result of VSX copy 699 // legalization. Promote them here. 700 const TargetRegisterInfo *TRI = &getRegisterInfo(); 701 if (PPC::F8RCRegClass.contains(DestReg) && 702 PPC::VSLRCRegClass.contains(SrcReg)) { 703 unsigned SuperReg = 704 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 705 706 if (VSXSelfCopyCrash && SrcReg == SuperReg) 707 llvm_unreachable("nop VSX copy"); 708 709 DestReg = SuperReg; 710 } else if (PPC::VRRCRegClass.contains(DestReg) && 711 PPC::VSHRCRegClass.contains(SrcReg)) { 712 unsigned SuperReg = 713 TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass); 714 715 if (VSXSelfCopyCrash && SrcReg == SuperReg) 716 llvm_unreachable("nop VSX copy"); 717 718 DestReg = SuperReg; 719 } else if (PPC::F8RCRegClass.contains(SrcReg) && 720 PPC::VSLRCRegClass.contains(DestReg)) { 721 unsigned SuperReg = 722 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 723 724 if (VSXSelfCopyCrash && DestReg == SuperReg) 725 llvm_unreachable("nop VSX copy"); 726 727 SrcReg = SuperReg; 728 } else if (PPC::VRRCRegClass.contains(SrcReg) && 729 PPC::VSHRCRegClass.contains(DestReg)) { 730 unsigned SuperReg = 731 TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass); 732 733 if (VSXSelfCopyCrash && DestReg == SuperReg) 734 llvm_unreachable("nop VSX copy"); 735 736 SrcReg = SuperReg; 737 } 738 739 unsigned Opc; 740 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 741 Opc = PPC::OR; 742 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 743 Opc = PPC::OR8; 744 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 745 Opc = PPC::FMR; 746 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 747 Opc = PPC::MCRF; 748 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 749 Opc = PPC::VOR; 750 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 751 // There are two different ways this can be done: 752 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 753 // issue in VSU pipeline 0. 754 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 755 // can go to either pipeline. 756 // We'll always use xxlor here, because in practically all cases where 757 // copies are generated, they are close enough to some use that the 758 // lower-latency form is preferable. 759 Opc = PPC::XXLOR; 760 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg)) 761 Opc = PPC::XXLORf; 762 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 763 Opc = PPC::CROR; 764 else 765 llvm_unreachable("Impossible reg-to-reg copy"); 766 767 const MCInstrDesc &MCID = get(Opc); 768 if (MCID.getNumOperands() == 3) 769 BuildMI(MBB, I, DL, MCID, DestReg) 770 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 771 else 772 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 773 } 774 775 // This function returns true if a CR spill is necessary and false otherwise. 776 bool 777 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, 778 unsigned SrcReg, bool isKill, 779 int FrameIdx, 780 const TargetRegisterClass *RC, 781 SmallVectorImpl<MachineInstr*> &NewMIs, 782 bool &NonRI, bool &SpillsVRS) const{ 783 // Note: If additional store instructions are added here, 784 // update isStoreToStackSlot. 785 786 DebugLoc DL; 787 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 788 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 789 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) 790 .addReg(SrcReg, 791 getKillRegState(isKill)), 792 FrameIdx)); 793 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 794 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 795 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) 796 .addReg(SrcReg, 797 getKillRegState(isKill)), 798 FrameIdx)); 799 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 800 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) 801 .addReg(SrcReg, 802 getKillRegState(isKill)), 803 FrameIdx)); 804 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 805 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) 806 .addReg(SrcReg, 807 getKillRegState(isKill)), 808 FrameIdx)); 809 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 810 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) 811 .addReg(SrcReg, 812 getKillRegState(isKill)), 813 FrameIdx)); 814 return true; 815 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 816 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT)) 817 .addReg(SrcReg, 818 getKillRegState(isKill)), 819 FrameIdx)); 820 return true; 821 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 822 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX)) 823 .addReg(SrcReg, 824 getKillRegState(isKill)), 825 FrameIdx)); 826 NonRI = true; 827 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 828 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X)) 829 .addReg(SrcReg, 830 getKillRegState(isKill)), 831 FrameIdx)); 832 NonRI = true; 833 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 834 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX)) 835 .addReg(SrcReg, 836 getKillRegState(isKill)), 837 FrameIdx)); 838 NonRI = true; 839 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 840 assert(Subtarget.isDarwin() && 841 "VRSAVE only needs spill/restore on Darwin"); 842 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE)) 843 .addReg(SrcReg, 844 getKillRegState(isKill)), 845 FrameIdx)); 846 SpillsVRS = true; 847 } else { 848 llvm_unreachable("Unknown regclass!"); 849 } 850 851 return false; 852 } 853 854 void 855 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 856 MachineBasicBlock::iterator MI, 857 unsigned SrcReg, bool isKill, int FrameIdx, 858 const TargetRegisterClass *RC, 859 const TargetRegisterInfo *TRI) const { 860 MachineFunction &MF = *MBB.getParent(); 861 SmallVector<MachineInstr*, 4> NewMIs; 862 863 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 864 FuncInfo->setHasSpills(); 865 866 bool NonRI = false, SpillsVRS = false; 867 if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs, 868 NonRI, SpillsVRS)) 869 FuncInfo->setSpillsCR(); 870 871 if (SpillsVRS) 872 FuncInfo->setSpillsVRSAVE(); 873 874 if (NonRI) 875 FuncInfo->setHasNonRISpills(); 876 877 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 878 MBB.insert(MI, NewMIs[i]); 879 880 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 881 MachineMemOperand *MMO = 882 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 883 MachineMemOperand::MOStore, 884 MFI.getObjectSize(FrameIdx), 885 MFI.getObjectAlignment(FrameIdx)); 886 NewMIs.back()->addMemOperand(MF, MMO); 887 } 888 889 bool 890 PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL, 891 unsigned DestReg, int FrameIdx, 892 const TargetRegisterClass *RC, 893 SmallVectorImpl<MachineInstr*> &NewMIs, 894 bool &NonRI, bool &SpillsVRS) const{ 895 // Note: If additional load instructions are added here, 896 // update isLoadFromStackSlot. 897 898 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 899 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 900 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), 901 DestReg), FrameIdx)); 902 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 903 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 904 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), 905 FrameIdx)); 906 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 907 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), 908 FrameIdx)); 909 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 910 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), 911 FrameIdx)); 912 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 913 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 914 get(PPC::RESTORE_CR), DestReg), 915 FrameIdx)); 916 return true; 917 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 918 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 919 get(PPC::RESTORE_CRBIT), DestReg), 920 FrameIdx)); 921 return true; 922 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 923 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg), 924 FrameIdx)); 925 NonRI = true; 926 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 927 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg), 928 FrameIdx)); 929 NonRI = true; 930 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 931 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg), 932 FrameIdx)); 933 NonRI = true; 934 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 935 assert(Subtarget.isDarwin() && 936 "VRSAVE only needs spill/restore on Darwin"); 937 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 938 get(PPC::RESTORE_VRSAVE), 939 DestReg), 940 FrameIdx)); 941 SpillsVRS = true; 942 } else { 943 llvm_unreachable("Unknown regclass!"); 944 } 945 946 return false; 947 } 948 949 void 950 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 951 MachineBasicBlock::iterator MI, 952 unsigned DestReg, int FrameIdx, 953 const TargetRegisterClass *RC, 954 const TargetRegisterInfo *TRI) const { 955 MachineFunction &MF = *MBB.getParent(); 956 SmallVector<MachineInstr*, 4> NewMIs; 957 DebugLoc DL; 958 if (MI != MBB.end()) DL = MI->getDebugLoc(); 959 960 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 961 FuncInfo->setHasSpills(); 962 963 bool NonRI = false, SpillsVRS = false; 964 if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs, 965 NonRI, SpillsVRS)) 966 FuncInfo->setSpillsCR(); 967 968 if (SpillsVRS) 969 FuncInfo->setSpillsVRSAVE(); 970 971 if (NonRI) 972 FuncInfo->setHasNonRISpills(); 973 974 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 975 MBB.insert(MI, NewMIs[i]); 976 977 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 978 MachineMemOperand *MMO = 979 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 980 MachineMemOperand::MOLoad, 981 MFI.getObjectSize(FrameIdx), 982 MFI.getObjectAlignment(FrameIdx)); 983 NewMIs.back()->addMemOperand(MF, MMO); 984 } 985 986 bool PPCInstrInfo:: 987 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 988 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 989 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 990 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 991 else 992 // Leave the CR# the same, but invert the condition. 993 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 994 return false; 995 } 996 997 bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, 998 unsigned Reg, MachineRegisterInfo *MRI) const { 999 // For some instructions, it is legal to fold ZERO into the RA register field. 1000 // A zero immediate should always be loaded with a single li. 1001 unsigned DefOpc = DefMI->getOpcode(); 1002 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1003 return false; 1004 if (!DefMI->getOperand(1).isImm()) 1005 return false; 1006 if (DefMI->getOperand(1).getImm() != 0) 1007 return false; 1008 1009 // Note that we cannot here invert the arguments of an isel in order to fold 1010 // a ZERO into what is presented as the second argument. All we have here 1011 // is the condition bit, and that might come from a CR-logical bit operation. 1012 1013 const MCInstrDesc &UseMCID = UseMI->getDesc(); 1014 1015 // Only fold into real machine instructions. 1016 if (UseMCID.isPseudo()) 1017 return false; 1018 1019 unsigned UseIdx; 1020 for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx) 1021 if (UseMI->getOperand(UseIdx).isReg() && 1022 UseMI->getOperand(UseIdx).getReg() == Reg) 1023 break; 1024 1025 assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI"); 1026 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1027 1028 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1029 1030 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1031 // register (which might also be specified as a pointer class kind). 1032 if (UseInfo->isLookupPtrRegClass()) { 1033 if (UseInfo->RegClass /* Kind */ != 1) 1034 return false; 1035 } else { 1036 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1037 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1038 return false; 1039 } 1040 1041 // Make sure this is not tied to an output register (or otherwise 1042 // constrained). This is true for ST?UX registers, for example, which 1043 // are tied to their output registers. 1044 if (UseInfo->Constraints != 0) 1045 return false; 1046 1047 unsigned ZeroReg; 1048 if (UseInfo->isLookupPtrRegClass()) { 1049 bool isPPC64 = Subtarget.isPPC64(); 1050 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1051 } else { 1052 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1053 PPC::ZERO8 : PPC::ZERO; 1054 } 1055 1056 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1057 UseMI->getOperand(UseIdx).setReg(ZeroReg); 1058 1059 if (DeleteDef) 1060 DefMI->eraseFromParent(); 1061 1062 return true; 1063 } 1064 1065 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1066 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1067 I != IE; ++I) 1068 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1069 return true; 1070 return false; 1071 } 1072 1073 // We should make sure that, if we're going to predicate both sides of a 1074 // condition (a diamond), that both sides don't define the counter register. We 1075 // can predicate counter-decrement-based branches, but while that predicates 1076 // the branching, it does not predicate the counter decrement. If we tried to 1077 // merge the triangle into one predicated block, we'd decrement the counter 1078 // twice. 1079 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1080 unsigned NumT, unsigned ExtraT, 1081 MachineBasicBlock &FMBB, 1082 unsigned NumF, unsigned ExtraF, 1083 const BranchProbability &Probability) const { 1084 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1085 } 1086 1087 1088 bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const { 1089 // The predicated branches are identified by their type, not really by the 1090 // explicit presence of a predicate. Furthermore, some of them can be 1091 // predicated more than once. Because if conversion won't try to predicate 1092 // any instruction which already claims to be predicated (by returning true 1093 // here), always return false. In doing so, we let isPredicable() be the 1094 // final word on whether not the instruction can be (further) predicated. 1095 1096 return false; 1097 } 1098 1099 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 1100 if (!MI->isTerminator()) 1101 return false; 1102 1103 // Conditional branch is a special case. 1104 if (MI->isBranch() && !MI->isBarrier()) 1105 return true; 1106 1107 return !isPredicated(MI); 1108 } 1109 1110 bool PPCInstrInfo::PredicateInstruction( 1111 MachineInstr *MI, 1112 const SmallVectorImpl<MachineOperand> &Pred) const { 1113 unsigned OpC = MI->getOpcode(); 1114 if (OpC == PPC::BLR) { 1115 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1116 bool isPPC64 = Subtarget.isPPC64(); 1117 MI->setDesc(get(Pred[0].getImm() ? 1118 (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) : 1119 (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1120 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1121 MI->setDesc(get(PPC::BCLR)); 1122 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1123 .addReg(Pred[1].getReg()); 1124 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1125 MI->setDesc(get(PPC::BCLRn)); 1126 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1127 .addReg(Pred[1].getReg()); 1128 } else { 1129 MI->setDesc(get(PPC::BCCLR)); 1130 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1131 .addImm(Pred[0].getImm()) 1132 .addReg(Pred[1].getReg()); 1133 } 1134 1135 return true; 1136 } else if (OpC == PPC::B) { 1137 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1138 bool isPPC64 = Subtarget.isPPC64(); 1139 MI->setDesc(get(Pred[0].getImm() ? 1140 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1141 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1142 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1143 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1144 MI->RemoveOperand(0); 1145 1146 MI->setDesc(get(PPC::BC)); 1147 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1148 .addReg(Pred[1].getReg()) 1149 .addMBB(MBB); 1150 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1151 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1152 MI->RemoveOperand(0); 1153 1154 MI->setDesc(get(PPC::BCn)); 1155 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1156 .addReg(Pred[1].getReg()) 1157 .addMBB(MBB); 1158 } else { 1159 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1160 MI->RemoveOperand(0); 1161 1162 MI->setDesc(get(PPC::BCC)); 1163 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1164 .addImm(Pred[0].getImm()) 1165 .addReg(Pred[1].getReg()) 1166 .addMBB(MBB); 1167 } 1168 1169 return true; 1170 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || 1171 OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { 1172 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1173 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1174 1175 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1176 bool isPPC64 = Subtarget.isPPC64(); 1177 1178 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1179 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) : 1180 (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1181 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1182 .addReg(Pred[1].getReg()); 1183 return true; 1184 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1185 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) : 1186 (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1187 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1188 .addReg(Pred[1].getReg()); 1189 return true; 1190 } 1191 1192 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) : 1193 (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1194 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1195 .addImm(Pred[0].getImm()) 1196 .addReg(Pred[1].getReg()); 1197 return true; 1198 } 1199 1200 return false; 1201 } 1202 1203 bool PPCInstrInfo::SubsumesPredicate( 1204 const SmallVectorImpl<MachineOperand> &Pred1, 1205 const SmallVectorImpl<MachineOperand> &Pred2) const { 1206 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1207 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1208 1209 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1210 return false; 1211 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1212 return false; 1213 1214 // P1 can only subsume P2 if they test the same condition register. 1215 if (Pred1[1].getReg() != Pred2[1].getReg()) 1216 return false; 1217 1218 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1219 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1220 1221 if (P1 == P2) 1222 return true; 1223 1224 // Does P1 subsume P2, e.g. GE subsumes GT. 1225 if (P1 == PPC::PRED_LE && 1226 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1227 return true; 1228 if (P1 == PPC::PRED_GE && 1229 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1230 return true; 1231 1232 return false; 1233 } 1234 1235 bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI, 1236 std::vector<MachineOperand> &Pred) const { 1237 // Note: At the present time, the contents of Pred from this function is 1238 // unused by IfConversion. This implementation follows ARM by pushing the 1239 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1240 // predicate, instructions defining CTR or CTR8 are also included as 1241 // predicate-defining instructions. 1242 1243 const TargetRegisterClass *RCs[] = 1244 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1245 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1246 1247 bool Found = false; 1248 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1249 const MachineOperand &MO = MI->getOperand(i); 1250 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1251 const TargetRegisterClass *RC = RCs[c]; 1252 if (MO.isReg()) { 1253 if (MO.isDef() && RC->contains(MO.getReg())) { 1254 Pred.push_back(MO); 1255 Found = true; 1256 } 1257 } else if (MO.isRegMask()) { 1258 for (TargetRegisterClass::iterator I = RC->begin(), 1259 IE = RC->end(); I != IE; ++I) 1260 if (MO.clobbersPhysReg(*I)) { 1261 Pred.push_back(MO); 1262 Found = true; 1263 } 1264 } 1265 } 1266 } 1267 1268 return Found; 1269 } 1270 1271 bool PPCInstrInfo::isPredicable(MachineInstr *MI) const { 1272 unsigned OpC = MI->getOpcode(); 1273 switch (OpC) { 1274 default: 1275 return false; 1276 case PPC::B: 1277 case PPC::BLR: 1278 case PPC::BCTR: 1279 case PPC::BCTR8: 1280 case PPC::BCTRL: 1281 case PPC::BCTRL8: 1282 return true; 1283 } 1284 } 1285 1286 bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI, 1287 unsigned &SrcReg, unsigned &SrcReg2, 1288 int &Mask, int &Value) const { 1289 unsigned Opc = MI->getOpcode(); 1290 1291 switch (Opc) { 1292 default: return false; 1293 case PPC::CMPWI: 1294 case PPC::CMPLWI: 1295 case PPC::CMPDI: 1296 case PPC::CMPLDI: 1297 SrcReg = MI->getOperand(1).getReg(); 1298 SrcReg2 = 0; 1299 Value = MI->getOperand(2).getImm(); 1300 Mask = 0xFFFF; 1301 return true; 1302 case PPC::CMPW: 1303 case PPC::CMPLW: 1304 case PPC::CMPD: 1305 case PPC::CMPLD: 1306 case PPC::FCMPUS: 1307 case PPC::FCMPUD: 1308 SrcReg = MI->getOperand(1).getReg(); 1309 SrcReg2 = MI->getOperand(2).getReg(); 1310 return true; 1311 } 1312 } 1313 1314 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr, 1315 unsigned SrcReg, unsigned SrcReg2, 1316 int Mask, int Value, 1317 const MachineRegisterInfo *MRI) const { 1318 if (DisableCmpOpt) 1319 return false; 1320 1321 int OpC = CmpInstr->getOpcode(); 1322 unsigned CRReg = CmpInstr->getOperand(0).getReg(); 1323 1324 // FP record forms set CR1 based on the execption status bits, not a 1325 // comparison with zero. 1326 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1327 return false; 1328 1329 // The record forms set the condition register based on a signed comparison 1330 // with zero (so says the ISA manual). This is not as straightforward as it 1331 // seems, however, because this is always a 64-bit comparison on PPC64, even 1332 // for instructions that are 32-bit in nature (like slw for example). 1333 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1334 // for equality checks (as those don't depend on the sign). On PPC64, 1335 // we are restricted to equality for unsigned 64-bit comparisons and for 1336 // signed 32-bit comparisons the applicability is more restricted. 1337 bool isPPC64 = Subtarget.isPPC64(); 1338 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1339 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1340 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1341 1342 // Get the unique definition of SrcReg. 1343 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1344 if (!MI) return false; 1345 int MIOpC = MI->getOpcode(); 1346 1347 bool equalityOnly = false; 1348 bool noSub = false; 1349 if (isPPC64) { 1350 if (is32BitSignedCompare) { 1351 // We can perform this optimization only if MI is sign-extending. 1352 if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo || 1353 MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo || 1354 MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo || 1355 MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo || 1356 MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) { 1357 noSub = true; 1358 } else 1359 return false; 1360 } else if (is32BitUnsignedCompare) { 1361 // We can perform this optimization, equality only, if MI is 1362 // zero-extending. 1363 if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo || 1364 MIOpC == PPC::SLW || MIOpC == PPC::SLWo || 1365 MIOpC == PPC::SRW || MIOpC == PPC::SRWo) { 1366 noSub = true; 1367 equalityOnly = true; 1368 } else 1369 return false; 1370 } else 1371 equalityOnly = is64BitUnsignedCompare; 1372 } else 1373 equalityOnly = is32BitUnsignedCompare; 1374 1375 if (equalityOnly) { 1376 // We need to check the uses of the condition register in order to reject 1377 // non-equality comparisons. 1378 for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg), 1379 IE = MRI->use_instr_end(); I != IE; ++I) { 1380 MachineInstr *UseMI = &*I; 1381 if (UseMI->getOpcode() == PPC::BCC) { 1382 unsigned Pred = UseMI->getOperand(0).getImm(); 1383 if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE) 1384 return false; 1385 } else if (UseMI->getOpcode() == PPC::ISEL || 1386 UseMI->getOpcode() == PPC::ISEL8) { 1387 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1388 if (SubIdx != PPC::sub_eq) 1389 return false; 1390 } else 1391 return false; 1392 } 1393 } 1394 1395 MachineBasicBlock::iterator I = CmpInstr; 1396 1397 // Scan forward to find the first use of the compare. 1398 for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end(); 1399 I != EL; ++I) { 1400 bool FoundUse = false; 1401 for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg), 1402 JE = MRI->use_instr_end(); J != JE; ++J) 1403 if (&*J == &*I) { 1404 FoundUse = true; 1405 break; 1406 } 1407 1408 if (FoundUse) 1409 break; 1410 } 1411 1412 // There are two possible candidates which can be changed to set CR[01]. 1413 // One is MI, the other is a SUB instruction. 1414 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1415 MachineInstr *Sub = nullptr; 1416 if (SrcReg2 != 0) 1417 // MI is not a candidate for CMPrr. 1418 MI = nullptr; 1419 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1420 // same BB as the comparison. This is to allow the check below to avoid calls 1421 // (and other explicit clobbers); instead we should really check for these 1422 // more explicitly (in at least a few predecessors). 1423 else if (MI->getParent() != CmpInstr->getParent() || Value != 0) { 1424 // PPC does not have a record-form SUBri. 1425 return false; 1426 } 1427 1428 // Search for Sub. 1429 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1430 --I; 1431 1432 // Get ready to iterate backward from CmpInstr. 1433 MachineBasicBlock::iterator E = MI, 1434 B = CmpInstr->getParent()->begin(); 1435 1436 for (; I != E && !noSub; --I) { 1437 const MachineInstr &Instr = *I; 1438 unsigned IOpC = Instr.getOpcode(); 1439 1440 if (&*I != CmpInstr && ( 1441 Instr.modifiesRegister(PPC::CR0, TRI) || 1442 Instr.readsRegister(PPC::CR0, TRI))) 1443 // This instruction modifies or uses the record condition register after 1444 // the one we want to change. While we could do this transformation, it 1445 // would likely not be profitable. This transformation removes one 1446 // instruction, and so even forcing RA to generate one move probably 1447 // makes it unprofitable. 1448 return false; 1449 1450 // Check whether CmpInstr can be made redundant by the current instruction. 1451 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1452 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1453 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1454 ((Instr.getOperand(1).getReg() == SrcReg && 1455 Instr.getOperand(2).getReg() == SrcReg2) || 1456 (Instr.getOperand(1).getReg() == SrcReg2 && 1457 Instr.getOperand(2).getReg() == SrcReg))) { 1458 Sub = &*I; 1459 break; 1460 } 1461 1462 if (I == B) 1463 // The 'and' is below the comparison instruction. 1464 return false; 1465 } 1466 1467 // Return false if no candidates exist. 1468 if (!MI && !Sub) 1469 return false; 1470 1471 // The single candidate is called MI. 1472 if (!MI) MI = Sub; 1473 1474 int NewOpC = -1; 1475 MIOpC = MI->getOpcode(); 1476 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8) 1477 NewOpC = MIOpC; 1478 else { 1479 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1480 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1481 NewOpC = MIOpC; 1482 } 1483 1484 // FIXME: On the non-embedded POWER architectures, only some of the record 1485 // forms are fast, and we should use only the fast ones. 1486 1487 // The defining instruction has a record form (or is already a record 1488 // form). It is possible, however, that we'll need to reverse the condition 1489 // code of the users. 1490 if (NewOpC == -1) 1491 return false; 1492 1493 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1494 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1495 1496 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1497 // needs to be updated to be based on SUB. Push the condition code 1498 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1499 // condition code of these operands will be modified. 1500 bool ShouldSwap = false; 1501 if (Sub) { 1502 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1503 Sub->getOperand(2).getReg() == SrcReg; 1504 1505 // The operands to subf are the opposite of sub, so only in the fixed-point 1506 // case, invert the order. 1507 ShouldSwap = !ShouldSwap; 1508 } 1509 1510 if (ShouldSwap) 1511 for (MachineRegisterInfo::use_instr_iterator 1512 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1513 I != IE; ++I) { 1514 MachineInstr *UseMI = &*I; 1515 if (UseMI->getOpcode() == PPC::BCC) { 1516 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1517 assert((!equalityOnly || 1518 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) && 1519 "Invalid predicate for equality-only optimization"); 1520 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1521 PPC::getSwappedPredicate(Pred))); 1522 } else if (UseMI->getOpcode() == PPC::ISEL || 1523 UseMI->getOpcode() == PPC::ISEL8) { 1524 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1525 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1526 "Invalid CR bit for equality-only optimization"); 1527 1528 if (NewSubReg == PPC::sub_lt) 1529 NewSubReg = PPC::sub_gt; 1530 else if (NewSubReg == PPC::sub_gt) 1531 NewSubReg = PPC::sub_lt; 1532 1533 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1534 NewSubReg)); 1535 } else // We need to abort on a user we don't understand. 1536 return false; 1537 } 1538 1539 // Create a new virtual register to hold the value of the CR set by the 1540 // record-form instruction. If the instruction was not previously in 1541 // record form, then set the kill flag on the CR. 1542 CmpInstr->eraseFromParent(); 1543 1544 MachineBasicBlock::iterator MII = MI; 1545 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1546 get(TargetOpcode::COPY), CRReg) 1547 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1548 1549 if (MIOpC != NewOpC) { 1550 // We need to be careful here: we're replacing one instruction with 1551 // another, and we need to make sure that we get all of the right 1552 // implicit uses and defs. On the other hand, the caller may be holding 1553 // an iterator to this instruction, and so we can't delete it (this is 1554 // specifically the case if this is the instruction directly after the 1555 // compare). 1556 1557 const MCInstrDesc &NewDesc = get(NewOpC); 1558 MI->setDesc(NewDesc); 1559 1560 if (NewDesc.ImplicitDefs) 1561 for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs(); 1562 *ImpDefs; ++ImpDefs) 1563 if (!MI->definesRegister(*ImpDefs)) 1564 MI->addOperand(*MI->getParent()->getParent(), 1565 MachineOperand::CreateReg(*ImpDefs, true, true)); 1566 if (NewDesc.ImplicitUses) 1567 for (const uint16_t *ImpUses = NewDesc.getImplicitUses(); 1568 *ImpUses; ++ImpUses) 1569 if (!MI->readsRegister(*ImpUses)) 1570 MI->addOperand(*MI->getParent()->getParent(), 1571 MachineOperand::CreateReg(*ImpUses, false, true)); 1572 } 1573 1574 // Modify the condition code of operands in OperandsToUpdate. 1575 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1576 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1577 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1578 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1579 1580 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1581 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1582 1583 return true; 1584 } 1585 1586 /// GetInstSize - Return the number of bytes of code the specified 1587 /// instruction may be. This returns the maximum number of bytes. 1588 /// 1589 unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { 1590 unsigned Opcode = MI->getOpcode(); 1591 1592 if (Opcode == PPC::INLINEASM) { 1593 const MachineFunction *MF = MI->getParent()->getParent(); 1594 const char *AsmStr = MI->getOperand(0).getSymbolName(); 1595 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1596 } else { 1597 const MCInstrDesc &Desc = get(Opcode); 1598 return Desc.getSize(); 1599 } 1600 } 1601 1602 #undef DEBUG_TYPE 1603 #define DEBUG_TYPE "ppc-vsx-fma-mutate" 1604 1605 namespace { 1606 // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers 1607 // (Altivec and scalar floating-point registers), we need to transform the 1608 // copies into subregister copies with other restrictions. 1609 struct PPCVSXFMAMutate : public MachineFunctionPass { 1610 static char ID; 1611 PPCVSXFMAMutate() : MachineFunctionPass(ID) { 1612 initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry()); 1613 } 1614 1615 LiveIntervals *LIS; 1616 1617 const PPCTargetMachine *TM; 1618 const PPCInstrInfo *TII; 1619 1620 protected: 1621 bool processBlock(MachineBasicBlock &MBB) { 1622 bool Changed = false; 1623 1624 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1625 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1626 I != IE; ++I) { 1627 MachineInstr *MI = I; 1628 1629 // The default (A-type) VSX FMA form kills the addend (it is taken from 1630 // the target register, which is then updated to reflect the result of 1631 // the FMA). If the instruction, however, kills one of the registers 1632 // used for the product, then we can use the M-form instruction (which 1633 // will take that value from the to-be-defined register). 1634 1635 int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode()); 1636 if (AltOpc == -1) 1637 continue; 1638 1639 // This pass is run after register coalescing, and so we're looking for 1640 // a situation like this: 1641 // ... 1642 // %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9 1643 // %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16, 1644 // %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16 1645 // ... 1646 // %vreg9<def,tied1> = XSMADDADP %vreg9<tied0>, %vreg17, %vreg19, 1647 // %RM<imp-use>; VSLRC:%vreg9,%vreg17,%vreg19 1648 // ... 1649 // Where we can eliminate the copy by changing from the A-type to the 1650 // M-type instruction. Specifically, for this example, this means: 1651 // %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16, 1652 // %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16 1653 // is replaced by: 1654 // %vreg16<def,tied1> = XSMADDMDP %vreg16<tied0>, %vreg18, %vreg9, 1655 // %RM<imp-use>; VSLRC:%vreg16,%vreg18,%vreg9 1656 // and we remove: %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9 1657 1658 SlotIndex FMAIdx = LIS->getInstructionIndex(MI); 1659 1660 VNInfo *AddendValNo = 1661 LIS->getInterval(MI->getOperand(1).getReg()).Query(FMAIdx).valueIn(); 1662 MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def); 1663 1664 // The addend and this instruction must be in the same block. 1665 1666 if (!AddendMI || AddendMI->getParent() != MI->getParent()) 1667 continue; 1668 1669 // The addend must be a full copy within the same register class. 1670 1671 if (!AddendMI->isFullCopy()) 1672 continue; 1673 1674 unsigned AddendSrcReg = AddendMI->getOperand(1).getReg(); 1675 if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg)) { 1676 if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) != 1677 MRI.getRegClass(AddendSrcReg)) 1678 continue; 1679 } else { 1680 // If AddendSrcReg is a physical register, make sure the destination 1681 // register class contains it. 1682 if (!MRI.getRegClass(AddendMI->getOperand(0).getReg()) 1683 ->contains(AddendSrcReg)) 1684 continue; 1685 } 1686 1687 // In theory, there could be other uses of the addend copy before this 1688 // fma. We could deal with this, but that would require additional 1689 // logic below and I suspect it will not occur in any relevant 1690 // situations. 1691 bool OtherUsers = false; 1692 for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI); 1693 J != JE; --J) 1694 if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) { 1695 OtherUsers = true; 1696 break; 1697 } 1698 1699 if (OtherUsers) 1700 continue; 1701 1702 // Find one of the product operands that is killed by this instruction. 1703 1704 unsigned KilledProdOp = 0, OtherProdOp = 0; 1705 if (LIS->getInterval(MI->getOperand(2).getReg()) 1706 .Query(FMAIdx).isKill()) { 1707 KilledProdOp = 2; 1708 OtherProdOp = 3; 1709 } else if (LIS->getInterval(MI->getOperand(3).getReg()) 1710 .Query(FMAIdx).isKill()) { 1711 KilledProdOp = 3; 1712 OtherProdOp = 2; 1713 } 1714 1715 // If there are no killed product operands, then this transformation is 1716 // likely not profitable. 1717 if (!KilledProdOp) 1718 continue; 1719 1720 // In order to replace the addend here with the source of the copy, 1721 // it must still be live here. 1722 if (!LIS->getInterval(AddendMI->getOperand(1).getReg()).liveAt(FMAIdx)) 1723 continue; 1724 1725 // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3. 1726 1727 unsigned AddReg = AddendMI->getOperand(1).getReg(); 1728 unsigned KilledProdReg = MI->getOperand(KilledProdOp).getReg(); 1729 unsigned OtherProdReg = MI->getOperand(OtherProdOp).getReg(); 1730 1731 unsigned AddSubReg = AddendMI->getOperand(1).getSubReg(); 1732 unsigned KilledProdSubReg = MI->getOperand(KilledProdOp).getSubReg(); 1733 unsigned OtherProdSubReg = MI->getOperand(OtherProdOp).getSubReg(); 1734 1735 bool AddRegKill = AddendMI->getOperand(1).isKill(); 1736 bool KilledProdRegKill = MI->getOperand(KilledProdOp).isKill(); 1737 bool OtherProdRegKill = MI->getOperand(OtherProdOp).isKill(); 1738 1739 bool AddRegUndef = AddendMI->getOperand(1).isUndef(); 1740 bool KilledProdRegUndef = MI->getOperand(KilledProdOp).isUndef(); 1741 bool OtherProdRegUndef = MI->getOperand(OtherProdOp).isUndef(); 1742 1743 unsigned OldFMAReg = MI->getOperand(0).getReg(); 1744 1745 assert(OldFMAReg == AddendMI->getOperand(0).getReg() && 1746 "Addend copy not tied to old FMA output!"); 1747 1748 DEBUG(dbgs() << "VSX FMA Mutation:\n " << *MI;); 1749 1750 MI->getOperand(0).setReg(KilledProdReg); 1751 MI->getOperand(1).setReg(KilledProdReg); 1752 MI->getOperand(3).setReg(AddReg); 1753 MI->getOperand(2).setReg(OtherProdReg); 1754 1755 MI->getOperand(0).setSubReg(KilledProdSubReg); 1756 MI->getOperand(1).setSubReg(KilledProdSubReg); 1757 MI->getOperand(3).setSubReg(AddSubReg); 1758 MI->getOperand(2).setSubReg(OtherProdSubReg); 1759 1760 MI->getOperand(1).setIsKill(KilledProdRegKill); 1761 MI->getOperand(3).setIsKill(AddRegKill); 1762 MI->getOperand(2).setIsKill(OtherProdRegKill); 1763 1764 MI->getOperand(1).setIsUndef(KilledProdRegUndef); 1765 MI->getOperand(3).setIsUndef(AddRegUndef); 1766 MI->getOperand(2).setIsUndef(OtherProdRegUndef); 1767 1768 MI->setDesc(TII->get(AltOpc)); 1769 1770 DEBUG(dbgs() << " -> " << *MI); 1771 1772 // The killed product operand was killed here, so we can reuse it now 1773 // for the result of the fma. 1774 1775 LiveInterval &FMAInt = LIS->getInterval(OldFMAReg); 1776 VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot()); 1777 for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end(); 1778 UI != UE;) { 1779 MachineOperand &UseMO = *UI; 1780 MachineInstr *UseMI = UseMO.getParent(); 1781 ++UI; 1782 1783 // Don't replace the result register of the copy we're about to erase. 1784 if (UseMI == AddendMI) 1785 continue; 1786 1787 UseMO.setReg(KilledProdReg); 1788 UseMO.setSubReg(KilledProdSubReg); 1789 } 1790 1791 // Extend the live intervals of the killed product operand to hold the 1792 // fma result. 1793 1794 LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg); 1795 for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end(); 1796 AI != AE; ++AI) { 1797 // Don't add the segment that corresponds to the original copy. 1798 if (AI->valno == AddendValNo) 1799 continue; 1800 1801 VNInfo *NewFMAValNo = 1802 NewFMAInt.getNextValue(AI->start, 1803 LIS->getVNInfoAllocator()); 1804 1805 NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end, 1806 NewFMAValNo)); 1807 } 1808 DEBUG(dbgs() << " extended: " << NewFMAInt << '\n'); 1809 1810 FMAInt.removeValNo(FMAValNo); 1811 DEBUG(dbgs() << " trimmed: " << FMAInt << '\n'); 1812 1813 // Remove the (now unused) copy. 1814 1815 DEBUG(dbgs() << " removing: " << *AddendMI << '\n'); 1816 LIS->RemoveMachineInstrFromMaps(AddendMI); 1817 AddendMI->eraseFromParent(); 1818 1819 Changed = true; 1820 } 1821 1822 return Changed; 1823 } 1824 1825 public: 1826 bool runOnMachineFunction(MachineFunction &MF) override { 1827 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 1828 // If we don't have VSX then go ahead and return without doing 1829 // anything. 1830 if (!TM->getSubtargetImpl()->hasVSX()) 1831 return false; 1832 1833 LIS = &getAnalysis<LiveIntervals>(); 1834 1835 TII = TM->getSubtargetImpl()->getInstrInfo(); 1836 1837 bool Changed = false; 1838 1839 if (DisableVSXFMAMutate) 1840 return Changed; 1841 1842 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 1843 MachineBasicBlock &B = *I++; 1844 if (processBlock(B)) 1845 Changed = true; 1846 } 1847 1848 return Changed; 1849 } 1850 1851 void getAnalysisUsage(AnalysisUsage &AU) const override { 1852 AU.addRequired<LiveIntervals>(); 1853 AU.addPreserved<LiveIntervals>(); 1854 AU.addRequired<SlotIndexes>(); 1855 AU.addPreserved<SlotIndexes>(); 1856 MachineFunctionPass::getAnalysisUsage(AU); 1857 } 1858 }; 1859 } 1860 1861 INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE, 1862 "PowerPC VSX FMA Mutation", false, false) 1863 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 1864 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 1865 INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE, 1866 "PowerPC VSX FMA Mutation", false, false) 1867 1868 char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID; 1869 1870 char PPCVSXFMAMutate::ID = 0; 1871 FunctionPass* 1872 llvm::createPPCVSXFMAMutatePass() { return new PPCVSXFMAMutate(); } 1873 1874 #undef DEBUG_TYPE 1875 #define DEBUG_TYPE "ppc-vsx-copy" 1876 1877 namespace llvm { 1878 void initializePPCVSXCopyPass(PassRegistry&); 1879 } 1880 1881 namespace { 1882 // PPCVSXCopy pass - For copies between VSX registers and non-VSX registers 1883 // (Altivec and scalar floating-point registers), we need to transform the 1884 // copies into subregister copies with other restrictions. 1885 struct PPCVSXCopy : public MachineFunctionPass { 1886 static char ID; 1887 PPCVSXCopy() : MachineFunctionPass(ID) { 1888 initializePPCVSXCopyPass(*PassRegistry::getPassRegistry()); 1889 } 1890 1891 const PPCTargetMachine *TM; 1892 const PPCInstrInfo *TII; 1893 1894 bool IsRegInClass(unsigned Reg, const TargetRegisterClass *RC, 1895 MachineRegisterInfo &MRI) { 1896 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1897 return RC->hasSubClassEq(MRI.getRegClass(Reg)); 1898 } else if (RC->contains(Reg)) { 1899 return true; 1900 } 1901 1902 return false; 1903 } 1904 1905 bool IsVSReg(unsigned Reg, MachineRegisterInfo &MRI) { 1906 return IsRegInClass(Reg, &PPC::VSRCRegClass, MRI); 1907 } 1908 1909 bool IsVRReg(unsigned Reg, MachineRegisterInfo &MRI) { 1910 return IsRegInClass(Reg, &PPC::VRRCRegClass, MRI); 1911 } 1912 1913 bool IsF8Reg(unsigned Reg, MachineRegisterInfo &MRI) { 1914 return IsRegInClass(Reg, &PPC::F8RCRegClass, MRI); 1915 } 1916 1917 protected: 1918 bool processBlock(MachineBasicBlock &MBB) { 1919 bool Changed = false; 1920 1921 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1922 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1923 I != IE; ++I) { 1924 MachineInstr *MI = I; 1925 if (!MI->isFullCopy()) 1926 continue; 1927 1928 MachineOperand &DstMO = MI->getOperand(0); 1929 MachineOperand &SrcMO = MI->getOperand(1); 1930 1931 if ( IsVSReg(DstMO.getReg(), MRI) && 1932 !IsVSReg(SrcMO.getReg(), MRI)) { 1933 // This is a copy *to* a VSX register from a non-VSX register. 1934 Changed = true; 1935 1936 const TargetRegisterClass *SrcRC = 1937 IsVRReg(SrcMO.getReg(), MRI) ? &PPC::VSHRCRegClass : 1938 &PPC::VSLRCRegClass; 1939 assert((IsF8Reg(SrcMO.getReg(), MRI) || 1940 IsVRReg(SrcMO.getReg(), MRI)) && 1941 "Unknown source for a VSX copy"); 1942 1943 unsigned NewVReg = MRI.createVirtualRegister(SrcRC); 1944 BuildMI(MBB, MI, MI->getDebugLoc(), 1945 TII->get(TargetOpcode::SUBREG_TO_REG), NewVReg) 1946 .addImm(1) // add 1, not 0, because there is no implicit clearing 1947 // of the high bits. 1948 .addOperand(SrcMO) 1949 .addImm(IsVRReg(SrcMO.getReg(), MRI) ? PPC::sub_128 : 1950 PPC::sub_64); 1951 1952 // The source of the original copy is now the new virtual register. 1953 SrcMO.setReg(NewVReg); 1954 } else if (!IsVSReg(DstMO.getReg(), MRI) && 1955 IsVSReg(SrcMO.getReg(), MRI)) { 1956 // This is a copy *from* a VSX register to a non-VSX register. 1957 Changed = true; 1958 1959 const TargetRegisterClass *DstRC = 1960 IsVRReg(DstMO.getReg(), MRI) ? &PPC::VSHRCRegClass : 1961 &PPC::VSLRCRegClass; 1962 assert((IsF8Reg(DstMO.getReg(), MRI) || 1963 IsVRReg(DstMO.getReg(), MRI)) && 1964 "Unknown destination for a VSX copy"); 1965 1966 // Copy the VSX value into a new VSX register of the correct subclass. 1967 unsigned NewVReg = MRI.createVirtualRegister(DstRC); 1968 BuildMI(MBB, MI, MI->getDebugLoc(), 1969 TII->get(TargetOpcode::COPY), NewVReg) 1970 .addOperand(SrcMO); 1971 1972 // Transform the original copy into a subregister extraction copy. 1973 SrcMO.setReg(NewVReg); 1974 SrcMO.setSubReg(IsVRReg(DstMO.getReg(), MRI) ? PPC::sub_128 : 1975 PPC::sub_64); 1976 } 1977 } 1978 1979 return Changed; 1980 } 1981 1982 public: 1983 bool runOnMachineFunction(MachineFunction &MF) override { 1984 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 1985 // If we don't have VSX on the subtarget, don't do anything. 1986 if (!TM->getSubtargetImpl()->hasVSX()) 1987 return false; 1988 TII = TM->getSubtargetImpl()->getInstrInfo(); 1989 1990 bool Changed = false; 1991 1992 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 1993 MachineBasicBlock &B = *I++; 1994 if (processBlock(B)) 1995 Changed = true; 1996 } 1997 1998 return Changed; 1999 } 2000 2001 void getAnalysisUsage(AnalysisUsage &AU) const override { 2002 MachineFunctionPass::getAnalysisUsage(AU); 2003 } 2004 }; 2005 } 2006 2007 INITIALIZE_PASS(PPCVSXCopy, DEBUG_TYPE, 2008 "PowerPC VSX Copy Legalization", false, false) 2009 2010 char PPCVSXCopy::ID = 0; 2011 FunctionPass* 2012 llvm::createPPCVSXCopyPass() { return new PPCVSXCopy(); } 2013 2014 #undef DEBUG_TYPE 2015 #define DEBUG_TYPE "ppc-vsx-copy-cleanup" 2016 2017 namespace llvm { 2018 void initializePPCVSXCopyCleanupPass(PassRegistry&); 2019 } 2020 2021 namespace { 2022 // PPCVSXCopyCleanup pass - We sometimes end up generating self copies of VSX 2023 // registers (mostly because the ABI code still places all values into the 2024 // "traditional" floating-point and vector registers). Remove them here. 2025 struct PPCVSXCopyCleanup : public MachineFunctionPass { 2026 static char ID; 2027 PPCVSXCopyCleanup() : MachineFunctionPass(ID) { 2028 initializePPCVSXCopyCleanupPass(*PassRegistry::getPassRegistry()); 2029 } 2030 2031 const PPCTargetMachine *TM; 2032 const PPCInstrInfo *TII; 2033 2034 protected: 2035 bool processBlock(MachineBasicBlock &MBB) { 2036 bool Changed = false; 2037 2038 SmallVector<MachineInstr *, 4> ToDelete; 2039 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 2040 I != IE; ++I) { 2041 MachineInstr *MI = I; 2042 if (MI->getOpcode() == PPC::XXLOR && 2043 MI->getOperand(0).getReg() == MI->getOperand(1).getReg() && 2044 MI->getOperand(0).getReg() == MI->getOperand(2).getReg()) 2045 ToDelete.push_back(MI); 2046 } 2047 2048 if (!ToDelete.empty()) 2049 Changed = true; 2050 2051 for (unsigned i = 0, ie = ToDelete.size(); i != ie; ++i) { 2052 DEBUG(dbgs() << "Removing VSX self-copy: " << *ToDelete[i]); 2053 ToDelete[i]->eraseFromParent(); 2054 } 2055 2056 return Changed; 2057 } 2058 2059 public: 2060 bool runOnMachineFunction(MachineFunction &MF) override { 2061 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 2062 // If we don't have VSX don't bother doing anything here. 2063 if (!TM->getSubtargetImpl()->hasVSX()) 2064 return false; 2065 TII = TM->getSubtargetImpl()->getInstrInfo(); 2066 2067 bool Changed = false; 2068 2069 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 2070 MachineBasicBlock &B = *I++; 2071 if (processBlock(B)) 2072 Changed = true; 2073 } 2074 2075 return Changed; 2076 } 2077 2078 void getAnalysisUsage(AnalysisUsage &AU) const override { 2079 MachineFunctionPass::getAnalysisUsage(AU); 2080 } 2081 }; 2082 } 2083 2084 INITIALIZE_PASS(PPCVSXCopyCleanup, DEBUG_TYPE, 2085 "PowerPC VSX Copy Cleanup", false, false) 2086 2087 char PPCVSXCopyCleanup::ID = 0; 2088 FunctionPass* 2089 llvm::createPPCVSXCopyCleanupPass() { return new PPCVSXCopyCleanup(); } 2090 2091 #undef DEBUG_TYPE 2092 #define DEBUG_TYPE "ppc-early-ret" 2093 STATISTIC(NumBCLR, "Number of early conditional returns"); 2094 STATISTIC(NumBLR, "Number of early returns"); 2095 2096 namespace llvm { 2097 void initializePPCEarlyReturnPass(PassRegistry&); 2098 } 2099 2100 namespace { 2101 // PPCEarlyReturn pass - For simple functions without epilogue code, move 2102 // returns up, and create conditional returns, to avoid unnecessary 2103 // branch-to-blr sequences. 2104 struct PPCEarlyReturn : public MachineFunctionPass { 2105 static char ID; 2106 PPCEarlyReturn() : MachineFunctionPass(ID) { 2107 initializePPCEarlyReturnPass(*PassRegistry::getPassRegistry()); 2108 } 2109 2110 const PPCTargetMachine *TM; 2111 const PPCInstrInfo *TII; 2112 2113 protected: 2114 bool processBlock(MachineBasicBlock &ReturnMBB) { 2115 bool Changed = false; 2116 2117 MachineBasicBlock::iterator I = ReturnMBB.begin(); 2118 I = ReturnMBB.SkipPHIsAndLabels(I); 2119 2120 // The block must be essentially empty except for the blr. 2121 if (I == ReturnMBB.end() || I->getOpcode() != PPC::BLR || 2122 I != ReturnMBB.getLastNonDebugInstr()) 2123 return Changed; 2124 2125 SmallVector<MachineBasicBlock*, 8> PredToRemove; 2126 for (MachineBasicBlock::pred_iterator PI = ReturnMBB.pred_begin(), 2127 PIE = ReturnMBB.pred_end(); PI != PIE; ++PI) { 2128 bool OtherReference = false, BlockChanged = false; 2129 for (MachineBasicBlock::iterator J = (*PI)->getLastNonDebugInstr();;) { 2130 if (J->getOpcode() == PPC::B) { 2131 if (J->getOperand(0).getMBB() == &ReturnMBB) { 2132 // This is an unconditional branch to the return. Replace the 2133 // branch with a blr. 2134 BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BLR)); 2135 MachineBasicBlock::iterator K = J--; 2136 K->eraseFromParent(); 2137 BlockChanged = true; 2138 ++NumBLR; 2139 continue; 2140 } 2141 } else if (J->getOpcode() == PPC::BCC) { 2142 if (J->getOperand(2).getMBB() == &ReturnMBB) { 2143 // This is a conditional branch to the return. Replace the branch 2144 // with a bclr. 2145 BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BCCLR)) 2146 .addImm(J->getOperand(0).getImm()) 2147 .addReg(J->getOperand(1).getReg()); 2148 MachineBasicBlock::iterator K = J--; 2149 K->eraseFromParent(); 2150 BlockChanged = true; 2151 ++NumBCLR; 2152 continue; 2153 } 2154 } else if (J->getOpcode() == PPC::BC || J->getOpcode() == PPC::BCn) { 2155 if (J->getOperand(1).getMBB() == &ReturnMBB) { 2156 // This is a conditional branch to the return. Replace the branch 2157 // with a bclr. 2158 BuildMI(**PI, J, J->getDebugLoc(), 2159 TII->get(J->getOpcode() == PPC::BC ? 2160 PPC::BCLR : PPC::BCLRn)) 2161 .addReg(J->getOperand(0).getReg()); 2162 MachineBasicBlock::iterator K = J--; 2163 K->eraseFromParent(); 2164 BlockChanged = true; 2165 ++NumBCLR; 2166 continue; 2167 } 2168 } else if (J->isBranch()) { 2169 if (J->isIndirectBranch()) { 2170 if (ReturnMBB.hasAddressTaken()) 2171 OtherReference = true; 2172 } else 2173 for (unsigned i = 0; i < J->getNumOperands(); ++i) 2174 if (J->getOperand(i).isMBB() && 2175 J->getOperand(i).getMBB() == &ReturnMBB) 2176 OtherReference = true; 2177 } else if (!J->isTerminator() && !J->isDebugValue()) 2178 break; 2179 2180 if (J == (*PI)->begin()) 2181 break; 2182 2183 --J; 2184 } 2185 2186 if ((*PI)->canFallThrough() && (*PI)->isLayoutSuccessor(&ReturnMBB)) 2187 OtherReference = true; 2188 2189 // Predecessors are stored in a vector and can't be removed here. 2190 if (!OtherReference && BlockChanged) { 2191 PredToRemove.push_back(*PI); 2192 } 2193 2194 if (BlockChanged) 2195 Changed = true; 2196 } 2197 2198 for (unsigned i = 0, ie = PredToRemove.size(); i != ie; ++i) 2199 PredToRemove[i]->removeSuccessor(&ReturnMBB); 2200 2201 if (Changed && !ReturnMBB.hasAddressTaken()) { 2202 // We now might be able to merge this blr-only block into its 2203 // by-layout predecessor. 2204 if (ReturnMBB.pred_size() == 1 && 2205 (*ReturnMBB.pred_begin())->isLayoutSuccessor(&ReturnMBB)) { 2206 // Move the blr into the preceding block. 2207 MachineBasicBlock &PrevMBB = **ReturnMBB.pred_begin(); 2208 PrevMBB.splice(PrevMBB.end(), &ReturnMBB, I); 2209 PrevMBB.removeSuccessor(&ReturnMBB); 2210 } 2211 2212 if (ReturnMBB.pred_empty()) 2213 ReturnMBB.eraseFromParent(); 2214 } 2215 2216 return Changed; 2217 } 2218 2219 public: 2220 bool runOnMachineFunction(MachineFunction &MF) override { 2221 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 2222 TII = TM->getSubtargetImpl()->getInstrInfo(); 2223 2224 bool Changed = false; 2225 2226 // If the function does not have at least two blocks, then there is 2227 // nothing to do. 2228 if (MF.size() < 2) 2229 return Changed; 2230 2231 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 2232 MachineBasicBlock &B = *I++; 2233 if (processBlock(B)) 2234 Changed = true; 2235 } 2236 2237 return Changed; 2238 } 2239 2240 void getAnalysisUsage(AnalysisUsage &AU) const override { 2241 MachineFunctionPass::getAnalysisUsage(AU); 2242 } 2243 }; 2244 } 2245 2246 INITIALIZE_PASS(PPCEarlyReturn, DEBUG_TYPE, 2247 "PowerPC Early-Return Creation", false, false) 2248 2249 char PPCEarlyReturn::ID = 0; 2250 FunctionPass* 2251 llvm::createPPCEarlyReturnPass() { return new PPCEarlyReturn(); } 2252