1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the PowerPC implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCInstrInfo.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCHazardRecognizers.h" 18 #include "PPCInstrBuilder.h" 19 #include "PPCMachineFunctionInfo.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/PseudoSourceValue.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/TargetRegistry.h" 33 #include "llvm/Support/raw_ostream.h" 34 35 #define GET_INSTRMAP_INFO 36 #define GET_INSTRINFO_CTOR 37 #include "PPCGenInstrInfo.inc" 38 39 using namespace llvm; 40 41 static cl:: 42 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 43 cl::desc("Disable analysis for CTR loops")); 44 45 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 46 cl::desc("Disable compare instruction optimization"), cl::Hidden); 47 48 PPCInstrInfo::PPCInstrInfo(PPCTargetMachine &tm) 49 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP), 50 TM(tm), RI(*TM.getSubtargetImpl()) {} 51 52 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 53 /// this target when scheduling the DAG. 54 ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetHazardRecognizer( 55 const TargetMachine *TM, 56 const ScheduleDAG *DAG) const { 57 unsigned Directive = TM->getSubtarget<PPCSubtarget>().getDarwinDirective(); 58 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 59 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 60 const InstrItineraryData *II = TM->getInstrItineraryData(); 61 return new PPCScoreboardHazardRecognizer(II, DAG); 62 } 63 64 return TargetInstrInfo::CreateTargetHazardRecognizer(TM, DAG); 65 } 66 67 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 68 /// to use for this target when scheduling the DAG. 69 ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetPostRAHazardRecognizer( 70 const InstrItineraryData *II, 71 const ScheduleDAG *DAG) const { 72 unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective(); 73 74 // Most subtargets use a PPC970 recognizer. 75 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 76 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 77 assert(TM.getInstrInfo() && "No InstrInfo?"); 78 79 return new PPCHazardRecognizer970(TM); 80 } 81 82 return new PPCScoreboardHazardRecognizer(II, DAG); 83 } 84 85 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 86 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 87 unsigned &SrcReg, unsigned &DstReg, 88 unsigned &SubIdx) const { 89 switch (MI.getOpcode()) { 90 default: return false; 91 case PPC::EXTSW: 92 case PPC::EXTSW_32_64: 93 SrcReg = MI.getOperand(1).getReg(); 94 DstReg = MI.getOperand(0).getReg(); 95 SubIdx = PPC::sub_32; 96 return true; 97 } 98 } 99 100 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 101 int &FrameIndex) const { 102 // Note: This list must be kept consistent with LoadRegFromStackSlot. 103 switch (MI->getOpcode()) { 104 default: break; 105 case PPC::LD: 106 case PPC::LWZ: 107 case PPC::LFS: 108 case PPC::LFD: 109 case PPC::RESTORE_CR: 110 case PPC::LVX: 111 case PPC::RESTORE_VRSAVE: 112 // Check for the operands added by addFrameReference (the immediate is the 113 // offset which defaults to 0). 114 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 115 MI->getOperand(2).isFI()) { 116 FrameIndex = MI->getOperand(2).getIndex(); 117 return MI->getOperand(0).getReg(); 118 } 119 break; 120 } 121 return 0; 122 } 123 124 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI, 125 int &FrameIndex) const { 126 // Note: This list must be kept consistent with StoreRegToStackSlot. 127 switch (MI->getOpcode()) { 128 default: break; 129 case PPC::STD: 130 case PPC::STW: 131 case PPC::STFS: 132 case PPC::STFD: 133 case PPC::SPILL_CR: 134 case PPC::STVX: 135 case PPC::SPILL_VRSAVE: 136 // Check for the operands added by addFrameReference (the immediate is the 137 // offset which defaults to 0). 138 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 139 MI->getOperand(2).isFI()) { 140 FrameIndex = MI->getOperand(2).getIndex(); 141 return MI->getOperand(0).getReg(); 142 } 143 break; 144 } 145 return 0; 146 } 147 148 // commuteInstruction - We can commute rlwimi instructions, but only if the 149 // rotate amt is zero. We also have to munge the immediates a bit. 150 MachineInstr * 151 PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { 152 MachineFunction &MF = *MI->getParent()->getParent(); 153 154 // Normal instructions can be commuted the obvious way. 155 if (MI->getOpcode() != PPC::RLWIMI && 156 MI->getOpcode() != PPC::RLWIMIo) 157 return TargetInstrInfo::commuteInstruction(MI, NewMI); 158 159 // Cannot commute if it has a non-zero rotate count. 160 if (MI->getOperand(3).getImm() != 0) 161 return 0; 162 163 // If we have a zero rotate count, we have: 164 // M = mask(MB,ME) 165 // Op0 = (Op1 & ~M) | (Op2 & M) 166 // Change this to: 167 // M = mask((ME+1)&31, (MB-1)&31) 168 // Op0 = (Op2 & ~M) | (Op1 & M) 169 170 // Swap op1/op2 171 unsigned Reg0 = MI->getOperand(0).getReg(); 172 unsigned Reg1 = MI->getOperand(1).getReg(); 173 unsigned Reg2 = MI->getOperand(2).getReg(); 174 bool Reg1IsKill = MI->getOperand(1).isKill(); 175 bool Reg2IsKill = MI->getOperand(2).isKill(); 176 bool ChangeReg0 = false; 177 // If machine instrs are no longer in two-address forms, update 178 // destination register as well. 179 if (Reg0 == Reg1) { 180 // Must be two address instruction! 181 assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 182 "Expecting a two-address instruction!"); 183 Reg2IsKill = false; 184 ChangeReg0 = true; 185 } 186 187 // Masks. 188 unsigned MB = MI->getOperand(4).getImm(); 189 unsigned ME = MI->getOperand(5).getImm(); 190 191 if (NewMI) { 192 // Create a new instruction. 193 unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg(); 194 bool Reg0IsDead = MI->getOperand(0).isDead(); 195 return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) 196 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 197 .addReg(Reg2, getKillRegState(Reg2IsKill)) 198 .addReg(Reg1, getKillRegState(Reg1IsKill)) 199 .addImm((ME+1) & 31) 200 .addImm((MB-1) & 31); 201 } 202 203 if (ChangeReg0) 204 MI->getOperand(0).setReg(Reg2); 205 MI->getOperand(2).setReg(Reg1); 206 MI->getOperand(1).setReg(Reg2); 207 MI->getOperand(2).setIsKill(Reg1IsKill); 208 MI->getOperand(1).setIsKill(Reg2IsKill); 209 210 // Swap the mask around. 211 MI->getOperand(4).setImm((ME+1) & 31); 212 MI->getOperand(5).setImm((MB-1) & 31); 213 return MI; 214 } 215 216 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 217 MachineBasicBlock::iterator MI) const { 218 DebugLoc DL; 219 BuildMI(MBB, MI, DL, get(PPC::NOP)); 220 } 221 222 223 // Branch analysis. 224 // Note: If the condition register is set to CTR or CTR8 then this is a 225 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 226 bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, 227 MachineBasicBlock *&FBB, 228 SmallVectorImpl<MachineOperand> &Cond, 229 bool AllowModify) const { 230 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 231 232 // If the block has no terminators, it just falls into the block after it. 233 MachineBasicBlock::iterator I = MBB.end(); 234 if (I == MBB.begin()) 235 return false; 236 --I; 237 while (I->isDebugValue()) { 238 if (I == MBB.begin()) 239 return false; 240 --I; 241 } 242 if (!isUnpredicatedTerminator(I)) 243 return false; 244 245 // Get the last instruction in the block. 246 MachineInstr *LastInst = I; 247 248 // If there is only one terminator instruction, process it. 249 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { 250 if (LastInst->getOpcode() == PPC::B) { 251 if (!LastInst->getOperand(0).isMBB()) 252 return true; 253 TBB = LastInst->getOperand(0).getMBB(); 254 return false; 255 } else if (LastInst->getOpcode() == PPC::BCC) { 256 if (!LastInst->getOperand(2).isMBB()) 257 return true; 258 // Block ends with fall-through condbranch. 259 TBB = LastInst->getOperand(2).getMBB(); 260 Cond.push_back(LastInst->getOperand(0)); 261 Cond.push_back(LastInst->getOperand(1)); 262 return false; 263 } else if (LastInst->getOpcode() == PPC::BDNZ8 || 264 LastInst->getOpcode() == PPC::BDNZ) { 265 if (!LastInst->getOperand(0).isMBB()) 266 return true; 267 if (DisableCTRLoopAnal) 268 return true; 269 TBB = LastInst->getOperand(0).getMBB(); 270 Cond.push_back(MachineOperand::CreateImm(1)); 271 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 272 true)); 273 return false; 274 } else if (LastInst->getOpcode() == PPC::BDZ8 || 275 LastInst->getOpcode() == PPC::BDZ) { 276 if (!LastInst->getOperand(0).isMBB()) 277 return true; 278 if (DisableCTRLoopAnal) 279 return true; 280 TBB = LastInst->getOperand(0).getMBB(); 281 Cond.push_back(MachineOperand::CreateImm(0)); 282 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 283 true)); 284 return false; 285 } 286 287 // Otherwise, don't know what this is. 288 return true; 289 } 290 291 // Get the instruction before it if it's a terminator. 292 MachineInstr *SecondLastInst = I; 293 294 // If there are three terminators, we don't know what sort of block this is. 295 if (SecondLastInst && I != MBB.begin() && 296 isUnpredicatedTerminator(--I)) 297 return true; 298 299 // If the block ends with PPC::B and PPC:BCC, handle it. 300 if (SecondLastInst->getOpcode() == PPC::BCC && 301 LastInst->getOpcode() == PPC::B) { 302 if (!SecondLastInst->getOperand(2).isMBB() || 303 !LastInst->getOperand(0).isMBB()) 304 return true; 305 TBB = SecondLastInst->getOperand(2).getMBB(); 306 Cond.push_back(SecondLastInst->getOperand(0)); 307 Cond.push_back(SecondLastInst->getOperand(1)); 308 FBB = LastInst->getOperand(0).getMBB(); 309 return false; 310 } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 || 311 SecondLastInst->getOpcode() == PPC::BDNZ) && 312 LastInst->getOpcode() == PPC::B) { 313 if (!SecondLastInst->getOperand(0).isMBB() || 314 !LastInst->getOperand(0).isMBB()) 315 return true; 316 if (DisableCTRLoopAnal) 317 return true; 318 TBB = SecondLastInst->getOperand(0).getMBB(); 319 Cond.push_back(MachineOperand::CreateImm(1)); 320 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 321 true)); 322 FBB = LastInst->getOperand(0).getMBB(); 323 return false; 324 } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 || 325 SecondLastInst->getOpcode() == PPC::BDZ) && 326 LastInst->getOpcode() == PPC::B) { 327 if (!SecondLastInst->getOperand(0).isMBB() || 328 !LastInst->getOperand(0).isMBB()) 329 return true; 330 if (DisableCTRLoopAnal) 331 return true; 332 TBB = SecondLastInst->getOperand(0).getMBB(); 333 Cond.push_back(MachineOperand::CreateImm(0)); 334 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 335 true)); 336 FBB = LastInst->getOperand(0).getMBB(); 337 return false; 338 } 339 340 // If the block ends with two PPC:Bs, handle it. The second one is not 341 // executed, so remove it. 342 if (SecondLastInst->getOpcode() == PPC::B && 343 LastInst->getOpcode() == PPC::B) { 344 if (!SecondLastInst->getOperand(0).isMBB()) 345 return true; 346 TBB = SecondLastInst->getOperand(0).getMBB(); 347 I = LastInst; 348 if (AllowModify) 349 I->eraseFromParent(); 350 return false; 351 } 352 353 // Otherwise, can't handle this. 354 return true; 355 } 356 357 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 358 MachineBasicBlock::iterator I = MBB.end(); 359 if (I == MBB.begin()) return 0; 360 --I; 361 while (I->isDebugValue()) { 362 if (I == MBB.begin()) 363 return 0; 364 --I; 365 } 366 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 367 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 368 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 369 return 0; 370 371 // Remove the branch. 372 I->eraseFromParent(); 373 374 I = MBB.end(); 375 376 if (I == MBB.begin()) return 1; 377 --I; 378 if (I->getOpcode() != PPC::BCC && 379 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 380 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 381 return 1; 382 383 // Remove the branch. 384 I->eraseFromParent(); 385 return 2; 386 } 387 388 unsigned 389 PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 390 MachineBasicBlock *FBB, 391 const SmallVectorImpl<MachineOperand> &Cond, 392 DebugLoc DL) const { 393 // Shouldn't be a fall through. 394 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 395 assert((Cond.size() == 2 || Cond.size() == 0) && 396 "PPC branch conditions have two components!"); 397 398 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 399 400 // One-way branch. 401 if (FBB == 0) { 402 if (Cond.empty()) // Unconditional branch 403 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 404 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 405 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 406 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 407 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 408 else // Conditional branch 409 BuildMI(&MBB, DL, get(PPC::BCC)) 410 .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB); 411 return 1; 412 } 413 414 // Two-way Conditional Branch. 415 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 416 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 417 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 418 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 419 else 420 BuildMI(&MBB, DL, get(PPC::BCC)) 421 .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB); 422 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 423 return 2; 424 } 425 426 // Select analysis. 427 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 428 const SmallVectorImpl<MachineOperand> &Cond, 429 unsigned TrueReg, unsigned FalseReg, 430 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 431 if (!TM.getSubtargetImpl()->hasISEL()) 432 return false; 433 434 if (Cond.size() != 2) 435 return false; 436 437 // If this is really a bdnz-like condition, then it cannot be turned into a 438 // select. 439 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 440 return false; 441 442 // Check register classes. 443 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 444 const TargetRegisterClass *RC = 445 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 446 if (!RC) 447 return false; 448 449 // isel is for regular integer GPRs only. 450 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 451 !PPC::G8RCRegClass.hasSubClassEq(RC)) 452 return false; 453 454 // FIXME: These numbers are for the A2, how well they work for other cores is 455 // an open question. On the A2, the isel instruction has a 2-cycle latency 456 // but single-cycle throughput. These numbers are used in combination with 457 // the MispredictPenalty setting from the active SchedMachineModel. 458 CondCycles = 1; 459 TrueCycles = 1; 460 FalseCycles = 1; 461 462 return true; 463 } 464 465 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 466 MachineBasicBlock::iterator MI, DebugLoc dl, 467 unsigned DestReg, 468 const SmallVectorImpl<MachineOperand> &Cond, 469 unsigned TrueReg, unsigned FalseReg) const { 470 assert(Cond.size() == 2 && 471 "PPC branch conditions have two components!"); 472 473 assert(TM.getSubtargetImpl()->hasISEL() && 474 "Cannot insert select on target without ISEL support"); 475 476 // Get the register classes. 477 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 478 const TargetRegisterClass *RC = 479 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 480 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 481 assert((PPC::GPRCRegClass.hasSubClassEq(RC) || 482 PPC::G8RCRegClass.hasSubClassEq(RC)) && 483 "isel is for regular integer GPRs only"); 484 485 unsigned OpCode = 486 PPC::GPRCRegClass.hasSubClassEq(RC) ? PPC::ISEL : PPC::ISEL8; 487 unsigned SelectPred = Cond[0].getImm(); 488 489 unsigned SubIdx; 490 bool SwapOps; 491 switch (SelectPred) { 492 default: llvm_unreachable("invalid predicate for isel"); 493 case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break; 494 case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break; 495 case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break; 496 case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break; 497 case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break; 498 case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break; 499 case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break; 500 case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break; 501 } 502 503 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 504 SecondReg = SwapOps ? TrueReg : FalseReg; 505 506 // The first input register of isel cannot be r0. If it is a member 507 // of a register class that can be r0, then copy it first (the 508 // register allocator should eliminate the copy). 509 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 510 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 511 const TargetRegisterClass *FirstRC = 512 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 513 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 514 unsigned OldFirstReg = FirstReg; 515 FirstReg = MRI.createVirtualRegister(FirstRC); 516 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 517 .addReg(OldFirstReg); 518 } 519 520 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 521 .addReg(FirstReg).addReg(SecondReg) 522 .addReg(Cond[1].getReg(), 0, SubIdx); 523 } 524 525 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 526 MachineBasicBlock::iterator I, DebugLoc DL, 527 unsigned DestReg, unsigned SrcReg, 528 bool KillSrc) const { 529 unsigned Opc; 530 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 531 Opc = PPC::OR; 532 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 533 Opc = PPC::OR8; 534 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 535 Opc = PPC::FMR; 536 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 537 Opc = PPC::MCRF; 538 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 539 Opc = PPC::VOR; 540 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 541 Opc = PPC::CROR; 542 else 543 llvm_unreachable("Impossible reg-to-reg copy"); 544 545 const MCInstrDesc &MCID = get(Opc); 546 if (MCID.getNumOperands() == 3) 547 BuildMI(MBB, I, DL, MCID, DestReg) 548 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 549 else 550 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 551 } 552 553 // This function returns true if a CR spill is necessary and false otherwise. 554 bool 555 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, 556 unsigned SrcReg, bool isKill, 557 int FrameIdx, 558 const TargetRegisterClass *RC, 559 SmallVectorImpl<MachineInstr*> &NewMIs, 560 bool &NonRI, bool &SpillsVRS) const{ 561 // Note: If additional store instructions are added here, 562 // update isStoreToStackSlot. 563 564 DebugLoc DL; 565 if (PPC::GPRCRegClass.hasSubClassEq(RC)) { 566 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) 567 .addReg(SrcReg, 568 getKillRegState(isKill)), 569 FrameIdx)); 570 } else if (PPC::G8RCRegClass.hasSubClassEq(RC)) { 571 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) 572 .addReg(SrcReg, 573 getKillRegState(isKill)), 574 FrameIdx)); 575 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 576 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) 577 .addReg(SrcReg, 578 getKillRegState(isKill)), 579 FrameIdx)); 580 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 581 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) 582 .addReg(SrcReg, 583 getKillRegState(isKill)), 584 FrameIdx)); 585 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 586 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) 587 .addReg(SrcReg, 588 getKillRegState(isKill)), 589 FrameIdx)); 590 return true; 591 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 592 // FIXME: We use CRi here because there is no mtcrf on a bit. Since the 593 // backend currently only uses CR1EQ as an individual bit, this should 594 // not cause any bug. If we need other uses of CR bits, the following 595 // code may be invalid. 596 unsigned Reg = 0; 597 if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR0GT || 598 SrcReg == PPC::CR0EQ || SrcReg == PPC::CR0UN) 599 Reg = PPC::CR0; 600 else if (SrcReg == PPC::CR1LT || SrcReg == PPC::CR1GT || 601 SrcReg == PPC::CR1EQ || SrcReg == PPC::CR1UN) 602 Reg = PPC::CR1; 603 else if (SrcReg == PPC::CR2LT || SrcReg == PPC::CR2GT || 604 SrcReg == PPC::CR2EQ || SrcReg == PPC::CR2UN) 605 Reg = PPC::CR2; 606 else if (SrcReg == PPC::CR3LT || SrcReg == PPC::CR3GT || 607 SrcReg == PPC::CR3EQ || SrcReg == PPC::CR3UN) 608 Reg = PPC::CR3; 609 else if (SrcReg == PPC::CR4LT || SrcReg == PPC::CR4GT || 610 SrcReg == PPC::CR4EQ || SrcReg == PPC::CR4UN) 611 Reg = PPC::CR4; 612 else if (SrcReg == PPC::CR5LT || SrcReg == PPC::CR5GT || 613 SrcReg == PPC::CR5EQ || SrcReg == PPC::CR5UN) 614 Reg = PPC::CR5; 615 else if (SrcReg == PPC::CR6LT || SrcReg == PPC::CR6GT || 616 SrcReg == PPC::CR6EQ || SrcReg == PPC::CR6UN) 617 Reg = PPC::CR6; 618 else if (SrcReg == PPC::CR7LT || SrcReg == PPC::CR7GT || 619 SrcReg == PPC::CR7EQ || SrcReg == PPC::CR7UN) 620 Reg = PPC::CR7; 621 622 return StoreRegToStackSlot(MF, Reg, isKill, FrameIdx, 623 &PPC::CRRCRegClass, NewMIs, NonRI, SpillsVRS); 624 625 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 626 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX)) 627 .addReg(SrcReg, 628 getKillRegState(isKill)), 629 FrameIdx)); 630 NonRI = true; 631 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 632 assert(TM.getSubtargetImpl()->isDarwin() && 633 "VRSAVE only needs spill/restore on Darwin"); 634 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE)) 635 .addReg(SrcReg, 636 getKillRegState(isKill)), 637 FrameIdx)); 638 SpillsVRS = true; 639 } else { 640 llvm_unreachable("Unknown regclass!"); 641 } 642 643 return false; 644 } 645 646 void 647 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 648 MachineBasicBlock::iterator MI, 649 unsigned SrcReg, bool isKill, int FrameIdx, 650 const TargetRegisterClass *RC, 651 const TargetRegisterInfo *TRI) const { 652 MachineFunction &MF = *MBB.getParent(); 653 SmallVector<MachineInstr*, 4> NewMIs; 654 655 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 656 FuncInfo->setHasSpills(); 657 658 bool NonRI = false, SpillsVRS = false; 659 if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs, 660 NonRI, SpillsVRS)) 661 FuncInfo->setSpillsCR(); 662 663 if (SpillsVRS) 664 FuncInfo->setSpillsVRSAVE(); 665 666 if (NonRI) 667 FuncInfo->setHasNonRISpills(); 668 669 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 670 MBB.insert(MI, NewMIs[i]); 671 672 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 673 MachineMemOperand *MMO = 674 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 675 MachineMemOperand::MOStore, 676 MFI.getObjectSize(FrameIdx), 677 MFI.getObjectAlignment(FrameIdx)); 678 NewMIs.back()->addMemOperand(MF, MMO); 679 } 680 681 bool 682 PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL, 683 unsigned DestReg, int FrameIdx, 684 const TargetRegisterClass *RC, 685 SmallVectorImpl<MachineInstr*> &NewMIs, 686 bool &NonRI, bool &SpillsVRS) const{ 687 // Note: If additional load instructions are added here, 688 // update isLoadFromStackSlot. 689 690 if (PPC::GPRCRegClass.hasSubClassEq(RC)) { 691 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), 692 DestReg), FrameIdx)); 693 } else if (PPC::G8RCRegClass.hasSubClassEq(RC)) { 694 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), 695 FrameIdx)); 696 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 697 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), 698 FrameIdx)); 699 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 700 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), 701 FrameIdx)); 702 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 703 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 704 get(PPC::RESTORE_CR), DestReg), 705 FrameIdx)); 706 return true; 707 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 708 709 unsigned Reg = 0; 710 if (DestReg == PPC::CR0LT || DestReg == PPC::CR0GT || 711 DestReg == PPC::CR0EQ || DestReg == PPC::CR0UN) 712 Reg = PPC::CR0; 713 else if (DestReg == PPC::CR1LT || DestReg == PPC::CR1GT || 714 DestReg == PPC::CR1EQ || DestReg == PPC::CR1UN) 715 Reg = PPC::CR1; 716 else if (DestReg == PPC::CR2LT || DestReg == PPC::CR2GT || 717 DestReg == PPC::CR2EQ || DestReg == PPC::CR2UN) 718 Reg = PPC::CR2; 719 else if (DestReg == PPC::CR3LT || DestReg == PPC::CR3GT || 720 DestReg == PPC::CR3EQ || DestReg == PPC::CR3UN) 721 Reg = PPC::CR3; 722 else if (DestReg == PPC::CR4LT || DestReg == PPC::CR4GT || 723 DestReg == PPC::CR4EQ || DestReg == PPC::CR4UN) 724 Reg = PPC::CR4; 725 else if (DestReg == PPC::CR5LT || DestReg == PPC::CR5GT || 726 DestReg == PPC::CR5EQ || DestReg == PPC::CR5UN) 727 Reg = PPC::CR5; 728 else if (DestReg == PPC::CR6LT || DestReg == PPC::CR6GT || 729 DestReg == PPC::CR6EQ || DestReg == PPC::CR6UN) 730 Reg = PPC::CR6; 731 else if (DestReg == PPC::CR7LT || DestReg == PPC::CR7GT || 732 DestReg == PPC::CR7EQ || DestReg == PPC::CR7UN) 733 Reg = PPC::CR7; 734 735 return LoadRegFromStackSlot(MF, DL, Reg, FrameIdx, 736 &PPC::CRRCRegClass, NewMIs, NonRI, SpillsVRS); 737 738 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 739 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg), 740 FrameIdx)); 741 NonRI = true; 742 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 743 assert(TM.getSubtargetImpl()->isDarwin() && 744 "VRSAVE only needs spill/restore on Darwin"); 745 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 746 get(PPC::RESTORE_VRSAVE), 747 DestReg), 748 FrameIdx)); 749 SpillsVRS = true; 750 } else { 751 llvm_unreachable("Unknown regclass!"); 752 } 753 754 return false; 755 } 756 757 void 758 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 759 MachineBasicBlock::iterator MI, 760 unsigned DestReg, int FrameIdx, 761 const TargetRegisterClass *RC, 762 const TargetRegisterInfo *TRI) const { 763 MachineFunction &MF = *MBB.getParent(); 764 SmallVector<MachineInstr*, 4> NewMIs; 765 DebugLoc DL; 766 if (MI != MBB.end()) DL = MI->getDebugLoc(); 767 768 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 769 FuncInfo->setHasSpills(); 770 771 bool NonRI = false, SpillsVRS = false; 772 if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs, 773 NonRI, SpillsVRS)) 774 FuncInfo->setSpillsCR(); 775 776 if (SpillsVRS) 777 FuncInfo->setSpillsVRSAVE(); 778 779 if (NonRI) 780 FuncInfo->setHasNonRISpills(); 781 782 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 783 MBB.insert(MI, NewMIs[i]); 784 785 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 786 MachineMemOperand *MMO = 787 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 788 MachineMemOperand::MOLoad, 789 MFI.getObjectSize(FrameIdx), 790 MFI.getObjectAlignment(FrameIdx)); 791 NewMIs.back()->addMemOperand(MF, MMO); 792 } 793 794 bool PPCInstrInfo:: 795 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 796 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 797 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 798 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 799 else 800 // Leave the CR# the same, but invert the condition. 801 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 802 return false; 803 } 804 805 bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, 806 unsigned Reg, MachineRegisterInfo *MRI) const { 807 // For some instructions, it is legal to fold ZERO into the RA register field. 808 // A zero immediate should always be loaded with a single li. 809 unsigned DefOpc = DefMI->getOpcode(); 810 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 811 return false; 812 if (!DefMI->getOperand(1).isImm()) 813 return false; 814 if (DefMI->getOperand(1).getImm() != 0) 815 return false; 816 817 // Note that we cannot here invert the arguments of an isel in order to fold 818 // a ZERO into what is presented as the second argument. All we have here 819 // is the condition bit, and that might come from a CR-logical bit operation. 820 821 const MCInstrDesc &UseMCID = UseMI->getDesc(); 822 823 // Only fold into real machine instructions. 824 if (UseMCID.isPseudo()) 825 return false; 826 827 unsigned UseIdx; 828 for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx) 829 if (UseMI->getOperand(UseIdx).isReg() && 830 UseMI->getOperand(UseIdx).getReg() == Reg) 831 break; 832 833 assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI"); 834 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 835 836 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 837 838 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 839 // register (which might also be specified as a pointer class kind). 840 if (UseInfo->isLookupPtrRegClass()) { 841 if (UseInfo->RegClass /* Kind */ != 1) 842 return false; 843 } else { 844 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 845 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 846 return false; 847 } 848 849 // Make sure this is not tied to an output register (or otherwise 850 // constrained). This is true for ST?UX registers, for example, which 851 // are tied to their output registers. 852 if (UseInfo->Constraints != 0) 853 return false; 854 855 unsigned ZeroReg; 856 if (UseInfo->isLookupPtrRegClass()) { 857 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 858 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 859 } else { 860 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 861 PPC::ZERO8 : PPC::ZERO; 862 } 863 864 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 865 UseMI->getOperand(UseIdx).setReg(ZeroReg); 866 867 if (DeleteDef) 868 DefMI->eraseFromParent(); 869 870 return true; 871 } 872 873 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 874 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 875 I != IE; ++I) 876 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 877 return true; 878 return false; 879 } 880 881 // We should make sure that, if we're going to predicate both sides of a 882 // condition (a diamond), that both sides don't define the counter register. We 883 // can predicate counter-decrement-based branches, but while that predicates 884 // the branching, it does not predicate the counter decrement. If we tried to 885 // merge the triangle into one predicated block, we'd decrement the counter 886 // twice. 887 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 888 unsigned NumT, unsigned ExtraT, 889 MachineBasicBlock &FMBB, 890 unsigned NumF, unsigned ExtraF, 891 const BranchProbability &Probability) const { 892 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 893 } 894 895 896 bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const { 897 // The predicated branches are identified by their type, not really by the 898 // explicit presence of a predicate. Furthermore, some of them can be 899 // predicated more than once. Because if conversion won't try to predicate 900 // any instruction which already claims to be predicated (by returning true 901 // here), always return false. In doing so, we let isPredicable() be the 902 // final word on whether not the instruction can be (further) predicated. 903 904 return false; 905 } 906 907 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 908 if (!MI->isTerminator()) 909 return false; 910 911 // Conditional branch is a special case. 912 if (MI->isBranch() && !MI->isBarrier()) 913 return true; 914 915 return !isPredicated(MI); 916 } 917 918 bool PPCInstrInfo::PredicateInstruction( 919 MachineInstr *MI, 920 const SmallVectorImpl<MachineOperand> &Pred) const { 921 unsigned OpC = MI->getOpcode(); 922 if (OpC == PPC::BLR) { 923 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 924 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 925 MI->setDesc(get(Pred[0].getImm() ? 926 (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) : 927 (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 928 } else { 929 MI->setDesc(get(PPC::BCLR)); 930 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 931 .addImm(Pred[0].getImm()) 932 .addReg(Pred[1].getReg()); 933 } 934 935 return true; 936 } else if (OpC == PPC::B) { 937 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 938 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 939 MI->setDesc(get(Pred[0].getImm() ? 940 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 941 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 942 } else { 943 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 944 MI->RemoveOperand(0); 945 946 MI->setDesc(get(PPC::BCC)); 947 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 948 .addImm(Pred[0].getImm()) 949 .addReg(Pred[1].getReg()) 950 .addMBB(MBB); 951 } 952 953 return true; 954 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || 955 OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { 956 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 957 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 958 959 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 960 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 961 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) : 962 (setLR ? PPC::BCCTRL : PPC::BCCTR))); 963 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 964 .addImm(Pred[0].getImm()) 965 .addReg(Pred[1].getReg()); 966 return true; 967 } 968 969 return false; 970 } 971 972 bool PPCInstrInfo::SubsumesPredicate( 973 const SmallVectorImpl<MachineOperand> &Pred1, 974 const SmallVectorImpl<MachineOperand> &Pred2) const { 975 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 976 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 977 978 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 979 return false; 980 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 981 return false; 982 983 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 984 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 985 986 if (P1 == P2) 987 return true; 988 989 // Does P1 subsume P2, e.g. GE subsumes GT. 990 if (P1 == PPC::PRED_LE && 991 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 992 return true; 993 if (P1 == PPC::PRED_GE && 994 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 995 return true; 996 997 return false; 998 } 999 1000 bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI, 1001 std::vector<MachineOperand> &Pred) const { 1002 // Note: At the present time, the contents of Pred from this function is 1003 // unused by IfConversion. This implementation follows ARM by pushing the 1004 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1005 // predicate, instructions defining CTR or CTR8 are also included as 1006 // predicate-defining instructions. 1007 1008 const TargetRegisterClass *RCs[] = 1009 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1010 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1011 1012 bool Found = false; 1013 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1014 const MachineOperand &MO = MI->getOperand(i); 1015 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1016 const TargetRegisterClass *RC = RCs[c]; 1017 if (MO.isReg()) { 1018 if (MO.isDef() && RC->contains(MO.getReg())) { 1019 Pred.push_back(MO); 1020 Found = true; 1021 } 1022 } else if (MO.isRegMask()) { 1023 for (TargetRegisterClass::iterator I = RC->begin(), 1024 IE = RC->end(); I != IE; ++I) 1025 if (MO.clobbersPhysReg(*I)) { 1026 Pred.push_back(MO); 1027 Found = true; 1028 } 1029 } 1030 } 1031 } 1032 1033 return Found; 1034 } 1035 1036 bool PPCInstrInfo::isPredicable(MachineInstr *MI) const { 1037 unsigned OpC = MI->getOpcode(); 1038 switch (OpC) { 1039 default: 1040 return false; 1041 case PPC::B: 1042 case PPC::BLR: 1043 case PPC::BCTR: 1044 case PPC::BCTR8: 1045 case PPC::BCTRL: 1046 case PPC::BCTRL8: 1047 return true; 1048 } 1049 } 1050 1051 bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI, 1052 unsigned &SrcReg, unsigned &SrcReg2, 1053 int &Mask, int &Value) const { 1054 unsigned Opc = MI->getOpcode(); 1055 1056 switch (Opc) { 1057 default: return false; 1058 case PPC::CMPWI: 1059 case PPC::CMPLWI: 1060 case PPC::CMPDI: 1061 case PPC::CMPLDI: 1062 SrcReg = MI->getOperand(1).getReg(); 1063 SrcReg2 = 0; 1064 Value = MI->getOperand(2).getImm(); 1065 Mask = 0xFFFF; 1066 return true; 1067 case PPC::CMPW: 1068 case PPC::CMPLW: 1069 case PPC::CMPD: 1070 case PPC::CMPLD: 1071 case PPC::FCMPUS: 1072 case PPC::FCMPUD: 1073 SrcReg = MI->getOperand(1).getReg(); 1074 SrcReg2 = MI->getOperand(2).getReg(); 1075 return true; 1076 } 1077 } 1078 1079 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr, 1080 unsigned SrcReg, unsigned SrcReg2, 1081 int Mask, int Value, 1082 const MachineRegisterInfo *MRI) const { 1083 if (DisableCmpOpt) 1084 return false; 1085 1086 int OpC = CmpInstr->getOpcode(); 1087 unsigned CRReg = CmpInstr->getOperand(0).getReg(); 1088 1089 // FP record forms set CR1 based on the execption status bits, not a 1090 // comparison with zero. 1091 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1092 return false; 1093 1094 // The record forms set the condition register based on a signed comparison 1095 // with zero (so says the ISA manual). This is not as straightforward as it 1096 // seems, however, because this is always a 64-bit comparison on PPC64, even 1097 // for instructions that are 32-bit in nature (like slw for example). 1098 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1099 // for equality checks (as those don't depend on the sign). On PPC64, 1100 // we are restricted to equality for unsigned 64-bit comparisons and for 1101 // signed 32-bit comparisons the applicability is more restricted. 1102 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 1103 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1104 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1105 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1106 1107 // Get the unique definition of SrcReg. 1108 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1109 if (!MI) return false; 1110 int MIOpC = MI->getOpcode(); 1111 1112 bool equalityOnly = false; 1113 bool noSub = false; 1114 if (isPPC64) { 1115 if (is32BitSignedCompare) { 1116 // We can perform this optimization only if MI is sign-extending. 1117 if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo || 1118 MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo || 1119 MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo || 1120 MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo || 1121 MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) { 1122 noSub = true; 1123 } else 1124 return false; 1125 } else if (is32BitUnsignedCompare) { 1126 // We can perform this optimization, equality only, if MI is 1127 // zero-extending. 1128 if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo || 1129 MIOpC == PPC::SLW || MIOpC == PPC::SLWo || 1130 MIOpC == PPC::SRW || MIOpC == PPC::SRWo) { 1131 noSub = true; 1132 equalityOnly = true; 1133 } else 1134 return false; 1135 } else 1136 equalityOnly = is64BitUnsignedCompare; 1137 } else 1138 equalityOnly = is32BitUnsignedCompare; 1139 1140 if (equalityOnly) { 1141 // We need to check the uses of the condition register in order to reject 1142 // non-equality comparisons. 1143 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(CRReg), 1144 IE = MRI->use_end(); I != IE; ++I) { 1145 MachineInstr *UseMI = &*I; 1146 if (UseMI->getOpcode() == PPC::BCC) { 1147 unsigned Pred = UseMI->getOperand(0).getImm(); 1148 if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE) 1149 return false; 1150 } else if (UseMI->getOpcode() == PPC::ISEL || 1151 UseMI->getOpcode() == PPC::ISEL8) { 1152 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1153 if (SubIdx != PPC::sub_eq) 1154 return false; 1155 } else 1156 return false; 1157 } 1158 } 1159 1160 MachineBasicBlock::iterator I = CmpInstr; 1161 1162 // Scan forward to find the first use of the compare. 1163 for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end(); 1164 I != EL; ++I) { 1165 bool FoundUse = false; 1166 for (MachineRegisterInfo::use_iterator J = MRI->use_begin(CRReg), 1167 JE = MRI->use_end(); J != JE; ++J) 1168 if (&*J == &*I) { 1169 FoundUse = true; 1170 break; 1171 } 1172 1173 if (FoundUse) 1174 break; 1175 } 1176 1177 // There are two possible candidates which can be changed to set CR[01]. 1178 // One is MI, the other is a SUB instruction. 1179 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1180 MachineInstr *Sub = NULL; 1181 if (SrcReg2 != 0) 1182 // MI is not a candidate for CMPrr. 1183 MI = NULL; 1184 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1185 // same BB as the comparison. This is to allow the check below to avoid calls 1186 // (and other explicit clobbers); instead we should really check for these 1187 // more explicitly (in at least a few predecessors). 1188 else if (MI->getParent() != CmpInstr->getParent() || Value != 0) { 1189 // PPC does not have a record-form SUBri. 1190 return false; 1191 } 1192 1193 // Search for Sub. 1194 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1195 --I; 1196 1197 // Get ready to iterate backward from CmpInstr. 1198 MachineBasicBlock::iterator E = MI, 1199 B = CmpInstr->getParent()->begin(); 1200 1201 for (; I != E && !noSub; --I) { 1202 const MachineInstr &Instr = *I; 1203 unsigned IOpC = Instr.getOpcode(); 1204 1205 if (&*I != CmpInstr && ( 1206 Instr.modifiesRegister(PPC::CR0, TRI) || 1207 Instr.readsRegister(PPC::CR0, TRI))) 1208 // This instruction modifies or uses the record condition register after 1209 // the one we want to change. While we could do this transformation, it 1210 // would likely not be profitable. This transformation removes one 1211 // instruction, and so even forcing RA to generate one move probably 1212 // makes it unprofitable. 1213 return false; 1214 1215 // Check whether CmpInstr can be made redundant by the current instruction. 1216 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1217 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1218 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1219 ((Instr.getOperand(1).getReg() == SrcReg && 1220 Instr.getOperand(2).getReg() == SrcReg2) || 1221 (Instr.getOperand(1).getReg() == SrcReg2 && 1222 Instr.getOperand(2).getReg() == SrcReg))) { 1223 Sub = &*I; 1224 break; 1225 } 1226 1227 if (I == B) 1228 // The 'and' is below the comparison instruction. 1229 return false; 1230 } 1231 1232 // Return false if no candidates exist. 1233 if (!MI && !Sub) 1234 return false; 1235 1236 // The single candidate is called MI. 1237 if (!MI) MI = Sub; 1238 1239 int NewOpC = -1; 1240 MIOpC = MI->getOpcode(); 1241 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8) 1242 NewOpC = MIOpC; 1243 else { 1244 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1245 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1246 NewOpC = MIOpC; 1247 } 1248 1249 // FIXME: On the non-embedded POWER architectures, only some of the record 1250 // forms are fast, and we should use only the fast ones. 1251 1252 // The defining instruction has a record form (or is already a record 1253 // form). It is possible, however, that we'll need to reverse the condition 1254 // code of the users. 1255 if (NewOpC == -1) 1256 return false; 1257 1258 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1259 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1260 1261 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1262 // needs to be updated to be based on SUB. Push the condition code 1263 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1264 // condition code of these operands will be modified. 1265 bool ShouldSwap = false; 1266 if (Sub) { 1267 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1268 Sub->getOperand(2).getReg() == SrcReg; 1269 1270 // The operands to subf are the opposite of sub, so only in the fixed-point 1271 // case, invert the order. 1272 ShouldSwap = !ShouldSwap; 1273 } 1274 1275 if (ShouldSwap) 1276 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(CRReg), 1277 IE = MRI->use_end(); I != IE; ++I) { 1278 MachineInstr *UseMI = &*I; 1279 if (UseMI->getOpcode() == PPC::BCC) { 1280 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1281 assert((!equalityOnly || 1282 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) && 1283 "Invalid predicate for equality-only optimization"); 1284 PredsToUpdate.push_back(std::make_pair(&((*I).getOperand(0)), 1285 PPC::getSwappedPredicate(Pred))); 1286 } else if (UseMI->getOpcode() == PPC::ISEL || 1287 UseMI->getOpcode() == PPC::ISEL8) { 1288 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1289 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1290 "Invalid CR bit for equality-only optimization"); 1291 1292 if (NewSubReg == PPC::sub_lt) 1293 NewSubReg = PPC::sub_gt; 1294 else if (NewSubReg == PPC::sub_gt) 1295 NewSubReg = PPC::sub_lt; 1296 1297 SubRegsToUpdate.push_back(std::make_pair(&((*I).getOperand(3)), 1298 NewSubReg)); 1299 } else // We need to abort on a user we don't understand. 1300 return false; 1301 } 1302 1303 // Create a new virtual register to hold the value of the CR set by the 1304 // record-form instruction. If the instruction was not previously in 1305 // record form, then set the kill flag on the CR. 1306 CmpInstr->eraseFromParent(); 1307 1308 MachineBasicBlock::iterator MII = MI; 1309 BuildMI(*MI->getParent(), llvm::next(MII), MI->getDebugLoc(), 1310 get(TargetOpcode::COPY), CRReg) 1311 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1312 1313 if (MIOpC != NewOpC) { 1314 // We need to be careful here: we're replacing one instruction with 1315 // another, and we need to make sure that we get all of the right 1316 // implicit uses and defs. On the other hand, the caller may be holding 1317 // an iterator to this instruction, and so we can't delete it (this is 1318 // specifically the case if this is the instruction directly after the 1319 // compare). 1320 1321 const MCInstrDesc &NewDesc = get(NewOpC); 1322 MI->setDesc(NewDesc); 1323 1324 if (NewDesc.ImplicitDefs) 1325 for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs(); 1326 *ImpDefs; ++ImpDefs) 1327 if (!MI->definesRegister(*ImpDefs)) 1328 MI->addOperand(*MI->getParent()->getParent(), 1329 MachineOperand::CreateReg(*ImpDefs, true, true)); 1330 if (NewDesc.ImplicitUses) 1331 for (const uint16_t *ImpUses = NewDesc.getImplicitUses(); 1332 *ImpUses; ++ImpUses) 1333 if (!MI->readsRegister(*ImpUses)) 1334 MI->addOperand(*MI->getParent()->getParent(), 1335 MachineOperand::CreateReg(*ImpUses, false, true)); 1336 } 1337 1338 // Modify the condition code of operands in OperandsToUpdate. 1339 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1340 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1341 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1342 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1343 1344 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1345 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1346 1347 return true; 1348 } 1349 1350 /// GetInstSize - Return the number of bytes of code the specified 1351 /// instruction may be. This returns the maximum number of bytes. 1352 /// 1353 unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { 1354 switch (MI->getOpcode()) { 1355 case PPC::INLINEASM: { // Inline Asm: Variable size. 1356 const MachineFunction *MF = MI->getParent()->getParent(); 1357 const char *AsmStr = MI->getOperand(0).getSymbolName(); 1358 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1359 } 1360 case PPC::PROLOG_LABEL: 1361 case PPC::EH_LABEL: 1362 case PPC::GC_LABEL: 1363 case PPC::DBG_VALUE: 1364 return 0; 1365 case PPC::BL8_NOP: 1366 case PPC::BLA8_NOP: 1367 return 8; 1368 default: 1369 return 4; // PowerPC instructions are all 4 bytes 1370 } 1371 } 1372 1373 #undef DEBUG_TYPE 1374 #define DEBUG_TYPE "ppc-early-ret" 1375 STATISTIC(NumBCLR, "Number of early conditional returns"); 1376 STATISTIC(NumBLR, "Number of early returns"); 1377 1378 namespace llvm { 1379 void initializePPCEarlyReturnPass(PassRegistry&); 1380 } 1381 1382 namespace { 1383 // PPCEarlyReturn pass - For simple functions without epilogue code, move 1384 // returns up, and create conditional returns, to avoid unnecessary 1385 // branch-to-blr sequences. 1386 struct PPCEarlyReturn : public MachineFunctionPass { 1387 static char ID; 1388 PPCEarlyReturn() : MachineFunctionPass(ID) { 1389 initializePPCEarlyReturnPass(*PassRegistry::getPassRegistry()); 1390 } 1391 1392 const PPCTargetMachine *TM; 1393 const PPCInstrInfo *TII; 1394 1395 protected: 1396 bool processBlock(MachineBasicBlock &ReturnMBB) { 1397 bool Changed = false; 1398 1399 MachineBasicBlock::iterator I = ReturnMBB.begin(); 1400 I = ReturnMBB.SkipPHIsAndLabels(I); 1401 1402 // The block must be essentially empty except for the blr. 1403 if (I == ReturnMBB.end() || I->getOpcode() != PPC::BLR || 1404 I != ReturnMBB.getLastNonDebugInstr()) 1405 return Changed; 1406 1407 SmallVector<MachineBasicBlock*, 8> PredToRemove; 1408 for (MachineBasicBlock::pred_iterator PI = ReturnMBB.pred_begin(), 1409 PIE = ReturnMBB.pred_end(); PI != PIE; ++PI) { 1410 bool OtherReference = false, BlockChanged = false; 1411 for (MachineBasicBlock::iterator J = (*PI)->getLastNonDebugInstr();;) { 1412 if (J->getOpcode() == PPC::B) { 1413 if (J->getOperand(0).getMBB() == &ReturnMBB) { 1414 // This is an unconditional branch to the return. Replace the 1415 // branch with a blr. 1416 BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BLR)); 1417 MachineBasicBlock::iterator K = J--; 1418 K->eraseFromParent(); 1419 BlockChanged = true; 1420 ++NumBLR; 1421 continue; 1422 } 1423 } else if (J->getOpcode() == PPC::BCC) { 1424 if (J->getOperand(2).getMBB() == &ReturnMBB) { 1425 // This is a conditional branch to the return. Replace the branch 1426 // with a bclr. 1427 BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BCLR)) 1428 .addImm(J->getOperand(0).getImm()) 1429 .addReg(J->getOperand(1).getReg()); 1430 MachineBasicBlock::iterator K = J--; 1431 K->eraseFromParent(); 1432 BlockChanged = true; 1433 ++NumBCLR; 1434 continue; 1435 } 1436 } else if (J->isBranch()) { 1437 if (J->isIndirectBranch()) { 1438 if (ReturnMBB.hasAddressTaken()) 1439 OtherReference = true; 1440 } else 1441 for (unsigned i = 0; i < J->getNumOperands(); ++i) 1442 if (J->getOperand(i).isMBB() && 1443 J->getOperand(i).getMBB() == &ReturnMBB) 1444 OtherReference = true; 1445 } else if (!J->isTerminator() && !J->isDebugValue()) 1446 break; 1447 1448 if (J == (*PI)->begin()) 1449 break; 1450 1451 --J; 1452 } 1453 1454 if ((*PI)->canFallThrough() && (*PI)->isLayoutSuccessor(&ReturnMBB)) 1455 OtherReference = true; 1456 1457 // Predecessors are stored in a vector and can't be removed here. 1458 if (!OtherReference && BlockChanged) { 1459 PredToRemove.push_back(*PI); 1460 } 1461 1462 if (BlockChanged) 1463 Changed = true; 1464 } 1465 1466 for (unsigned i = 0, ie = PredToRemove.size(); i != ie; ++i) 1467 PredToRemove[i]->removeSuccessor(&ReturnMBB); 1468 1469 if (Changed && !ReturnMBB.hasAddressTaken()) { 1470 // We now might be able to merge this blr-only block into its 1471 // by-layout predecessor. 1472 if (ReturnMBB.pred_size() == 1 && 1473 (*ReturnMBB.pred_begin())->isLayoutSuccessor(&ReturnMBB)) { 1474 // Move the blr into the preceding block. 1475 MachineBasicBlock &PrevMBB = **ReturnMBB.pred_begin(); 1476 PrevMBB.splice(PrevMBB.end(), &ReturnMBB, I); 1477 PrevMBB.removeSuccessor(&ReturnMBB); 1478 } 1479 1480 if (ReturnMBB.pred_empty()) 1481 ReturnMBB.eraseFromParent(); 1482 } 1483 1484 return Changed; 1485 } 1486 1487 public: 1488 virtual bool runOnMachineFunction(MachineFunction &MF) { 1489 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 1490 TII = TM->getInstrInfo(); 1491 1492 bool Changed = false; 1493 1494 // If the function does not have at least two blocks, then there is 1495 // nothing to do. 1496 if (MF.size() < 2) 1497 return Changed; 1498 1499 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 1500 MachineBasicBlock &B = *I++; 1501 if (processBlock(B)) 1502 Changed = true; 1503 } 1504 1505 return Changed; 1506 } 1507 1508 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1509 MachineFunctionPass::getAnalysisUsage(AU); 1510 } 1511 }; 1512 } 1513 1514 INITIALIZE_PASS(PPCEarlyReturn, DEBUG_TYPE, 1515 "PowerPC Early-Return Creation", false, false) 1516 1517 char PPCEarlyReturn::ID = 0; 1518 FunctionPass* 1519 llvm::createPPCEarlyReturnPass() { return new PPCEarlyReturn(); } 1520 1521