1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/PseudoSourceValue.h" 29 #include "llvm/CodeGen/ScheduleDAG.h" 30 #include "llvm/CodeGen/SlotIndexes.h" 31 #include "llvm/CodeGen/StackMaps.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "ppc-instr-info" 43 44 #define GET_INSTRMAP_INFO 45 #define GET_INSTRINFO_CTOR_DTOR 46 #include "PPCGenInstrInfo.inc" 47 48 STATISTIC(NumStoreSPILLVSRRCAsVec, 49 "Number of spillvsrrc spilled to stack as vec"); 50 STATISTIC(NumStoreSPILLVSRRCAsGpr, 51 "Number of spillvsrrc spilled to stack as gpr"); 52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 53 STATISTIC(CmpIselsConverted, 54 "Number of ISELs that depend on comparison of constants converted"); 55 STATISTIC(MissedConvertibleImmediateInstrs, 56 "Number of compare-immediate instructions fed by constants"); 57 STATISTIC(NumRcRotatesConvertedToRcAnd, 58 "Number of record-form rotates converted to record-form andi"); 59 60 static cl:: 61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 62 cl::desc("Disable analysis for CTR loops")); 63 64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 65 cl::desc("Disable compare instruction optimization"), cl::Hidden); 66 67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 69 cl::Hidden); 70 71 static cl::opt<bool> 72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 73 cl::desc("Use the old (incorrect) instruction latency calculation")); 74 75 // Index into the OpcodesForSpill array. 76 enum SpillOpcodeKey { 77 SOK_Int4Spill, 78 SOK_Int8Spill, 79 SOK_Float8Spill, 80 SOK_Float4Spill, 81 SOK_CRSpill, 82 SOK_CRBitSpill, 83 SOK_VRVectorSpill, 84 SOK_VSXVectorSpill, 85 SOK_VectorFloat8Spill, 86 SOK_VectorFloat4Spill, 87 SOK_VRSaveSpill, 88 SOK_QuadFloat8Spill, 89 SOK_QuadFloat4Spill, 90 SOK_QuadBitSpill, 91 SOK_SpillToVSR, 92 SOK_SPESpill, 93 SOK_LastOpcodeSpill // This must be last on the enum. 94 }; 95 96 // Pin the vtable to this file. 97 void PPCInstrInfo::anchor() {} 98 99 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 100 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 101 /* CatchRetOpcode */ -1, 102 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 103 Subtarget(STI), RI(STI.getTargetMachine()) {} 104 105 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 106 /// this target when scheduling the DAG. 107 ScheduleHazardRecognizer * 108 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 109 const ScheduleDAG *DAG) const { 110 unsigned Directive = 111 static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); 112 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 113 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 114 const InstrItineraryData *II = 115 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 116 return new ScoreboardHazardRecognizer(II, DAG); 117 } 118 119 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 120 } 121 122 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 123 /// to use for this target when scheduling the DAG. 124 ScheduleHazardRecognizer * 125 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 126 const ScheduleDAG *DAG) const { 127 unsigned Directive = 128 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); 129 130 // FIXME: Leaving this as-is until we have POWER9 scheduling info 131 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 132 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 133 134 // Most subtargets use a PPC970 recognizer. 135 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 136 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 137 assert(DAG->TII && "No InstrInfo?"); 138 139 return new PPCHazardRecognizer970(*DAG); 140 } 141 142 return new ScoreboardHazardRecognizer(II, DAG); 143 } 144 145 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 146 const MachineInstr &MI, 147 unsigned *PredCost) const { 148 if (!ItinData || UseOldLatencyCalc) 149 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 150 151 // The default implementation of getInstrLatency calls getStageLatency, but 152 // getStageLatency does not do the right thing for us. While we have 153 // itinerary, most cores are fully pipelined, and so the itineraries only 154 // express the first part of the pipeline, not every stage. Instead, we need 155 // to use the listed output operand cycle number (using operand 0 here, which 156 // is an output). 157 158 unsigned Latency = 1; 159 unsigned DefClass = MI.getDesc().getSchedClass(); 160 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 161 const MachineOperand &MO = MI.getOperand(i); 162 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 163 continue; 164 165 int Cycle = ItinData->getOperandCycle(DefClass, i); 166 if (Cycle < 0) 167 continue; 168 169 Latency = std::max(Latency, (unsigned) Cycle); 170 } 171 172 return Latency; 173 } 174 175 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 176 const MachineInstr &DefMI, unsigned DefIdx, 177 const MachineInstr &UseMI, 178 unsigned UseIdx) const { 179 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 180 UseMI, UseIdx); 181 182 if (!DefMI.getParent()) 183 return Latency; 184 185 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 186 Register Reg = DefMO.getReg(); 187 188 bool IsRegCR; 189 if (Register::isVirtualRegister(Reg)) { 190 const MachineRegisterInfo *MRI = 191 &DefMI.getParent()->getParent()->getRegInfo(); 192 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 193 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 194 } else { 195 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 196 PPC::CRBITRCRegClass.contains(Reg); 197 } 198 199 if (UseMI.isBranch() && IsRegCR) { 200 if (Latency < 0) 201 Latency = getInstrLatency(ItinData, DefMI); 202 203 // On some cores, there is an additional delay between writing to a condition 204 // register, and using it from a branch. 205 unsigned Directive = Subtarget.getCPUDirective(); 206 switch (Directive) { 207 default: break; 208 case PPC::DIR_7400: 209 case PPC::DIR_750: 210 case PPC::DIR_970: 211 case PPC::DIR_E5500: 212 case PPC::DIR_PWR4: 213 case PPC::DIR_PWR5: 214 case PPC::DIR_PWR5X: 215 case PPC::DIR_PWR6: 216 case PPC::DIR_PWR6X: 217 case PPC::DIR_PWR7: 218 case PPC::DIR_PWR8: 219 // FIXME: Is this needed for POWER9? 220 Latency += 2; 221 break; 222 } 223 } 224 225 return Latency; 226 } 227 228 // This function does not list all associative and commutative operations, but 229 // only those worth feeding through the machine combiner in an attempt to 230 // reduce the critical path. Mostly, this means floating-point operations, 231 // because they have high latencies (compared to other operations, such and 232 // and/or, which are also associative and commutative, but have low latencies). 233 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 234 switch (Inst.getOpcode()) { 235 // FP Add: 236 case PPC::FADD: 237 case PPC::FADDS: 238 // FP Multiply: 239 case PPC::FMUL: 240 case PPC::FMULS: 241 // Altivec Add: 242 case PPC::VADDFP: 243 // VSX Add: 244 case PPC::XSADDDP: 245 case PPC::XVADDDP: 246 case PPC::XVADDSP: 247 case PPC::XSADDSP: 248 // VSX Multiply: 249 case PPC::XSMULDP: 250 case PPC::XVMULDP: 251 case PPC::XVMULSP: 252 case PPC::XSMULSP: 253 // QPX Add: 254 case PPC::QVFADD: 255 case PPC::QVFADDS: 256 case PPC::QVFADDSs: 257 // QPX Multiply: 258 case PPC::QVFMUL: 259 case PPC::QVFMULS: 260 case PPC::QVFMULSs: 261 return true; 262 default: 263 return false; 264 } 265 } 266 267 bool PPCInstrInfo::getMachineCombinerPatterns( 268 MachineInstr &Root, 269 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 270 // Using the machine combiner in this way is potentially expensive, so 271 // restrict to when aggressive optimizations are desired. 272 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 273 return false; 274 275 // FP reassociation is only legal when we don't need strict IEEE semantics. 276 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) 277 return false; 278 279 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 280 } 281 282 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 283 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 284 unsigned &SrcReg, unsigned &DstReg, 285 unsigned &SubIdx) const { 286 switch (MI.getOpcode()) { 287 default: return false; 288 case PPC::EXTSW: 289 case PPC::EXTSW_32: 290 case PPC::EXTSW_32_64: 291 SrcReg = MI.getOperand(1).getReg(); 292 DstReg = MI.getOperand(0).getReg(); 293 SubIdx = PPC::sub_32; 294 return true; 295 } 296 } 297 298 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 299 int &FrameIndex) const { 300 unsigned Opcode = MI.getOpcode(); 301 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 302 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 303 304 if (End != std::find(OpcodesForSpill, End, Opcode)) { 305 // Check for the operands added by addFrameReference (the immediate is the 306 // offset which defaults to 0). 307 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 308 MI.getOperand(2).isFI()) { 309 FrameIndex = MI.getOperand(2).getIndex(); 310 return MI.getOperand(0).getReg(); 311 } 312 } 313 return 0; 314 } 315 316 // For opcodes with the ReMaterializable flag set, this function is called to 317 // verify the instruction is really rematable. 318 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 319 AliasAnalysis *AA) const { 320 switch (MI.getOpcode()) { 321 default: 322 // This function should only be called for opcodes with the ReMaterializable 323 // flag set. 324 llvm_unreachable("Unknown rematerializable operation!"); 325 break; 326 case PPC::LI: 327 case PPC::LI8: 328 case PPC::LIS: 329 case PPC::LIS8: 330 case PPC::QVGPCI: 331 case PPC::ADDIStocHA: 332 case PPC::ADDIStocHA8: 333 case PPC::ADDItocL: 334 case PPC::LOAD_STACK_GUARD: 335 case PPC::XXLXORz: 336 case PPC::XXLXORspz: 337 case PPC::XXLXORdpz: 338 case PPC::XXLEQVOnes: 339 case PPC::V_SET0B: 340 case PPC::V_SET0H: 341 case PPC::V_SET0: 342 case PPC::V_SETALLONESB: 343 case PPC::V_SETALLONESH: 344 case PPC::V_SETALLONES: 345 case PPC::CRSET: 346 case PPC::CRUNSET: 347 return true; 348 } 349 return false; 350 } 351 352 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 353 int &FrameIndex) const { 354 unsigned Opcode = MI.getOpcode(); 355 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 356 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 357 358 if (End != std::find(OpcodesForSpill, End, Opcode)) { 359 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 360 MI.getOperand(2).isFI()) { 361 FrameIndex = MI.getOperand(2).getIndex(); 362 return MI.getOperand(0).getReg(); 363 } 364 } 365 return 0; 366 } 367 368 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 369 unsigned OpIdx1, 370 unsigned OpIdx2) const { 371 MachineFunction &MF = *MI.getParent()->getParent(); 372 373 // Normal instructions can be commuted the obvious way. 374 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) 375 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 376 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 377 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 378 // changing the relative order of the mask operands might change what happens 379 // to the high-bits of the mask (and, thus, the result). 380 381 // Cannot commute if it has a non-zero rotate count. 382 if (MI.getOperand(3).getImm() != 0) 383 return nullptr; 384 385 // If we have a zero rotate count, we have: 386 // M = mask(MB,ME) 387 // Op0 = (Op1 & ~M) | (Op2 & M) 388 // Change this to: 389 // M = mask((ME+1)&31, (MB-1)&31) 390 // Op0 = (Op2 & ~M) | (Op1 & M) 391 392 // Swap op1/op2 393 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 394 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); 395 Register Reg0 = MI.getOperand(0).getReg(); 396 Register Reg1 = MI.getOperand(1).getReg(); 397 Register Reg2 = MI.getOperand(2).getReg(); 398 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 399 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 400 bool Reg1IsKill = MI.getOperand(1).isKill(); 401 bool Reg2IsKill = MI.getOperand(2).isKill(); 402 bool ChangeReg0 = false; 403 // If machine instrs are no longer in two-address forms, update 404 // destination register as well. 405 if (Reg0 == Reg1) { 406 // Must be two address instruction! 407 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 408 "Expecting a two-address instruction!"); 409 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 410 Reg2IsKill = false; 411 ChangeReg0 = true; 412 } 413 414 // Masks. 415 unsigned MB = MI.getOperand(4).getImm(); 416 unsigned ME = MI.getOperand(5).getImm(); 417 418 // We can't commute a trivial mask (there is no way to represent an all-zero 419 // mask). 420 if (MB == 0 && ME == 31) 421 return nullptr; 422 423 if (NewMI) { 424 // Create a new instruction. 425 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 426 bool Reg0IsDead = MI.getOperand(0).isDead(); 427 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 428 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 429 .addReg(Reg2, getKillRegState(Reg2IsKill)) 430 .addReg(Reg1, getKillRegState(Reg1IsKill)) 431 .addImm((ME + 1) & 31) 432 .addImm((MB - 1) & 31); 433 } 434 435 if (ChangeReg0) { 436 MI.getOperand(0).setReg(Reg2); 437 MI.getOperand(0).setSubReg(SubReg2); 438 } 439 MI.getOperand(2).setReg(Reg1); 440 MI.getOperand(1).setReg(Reg2); 441 MI.getOperand(2).setSubReg(SubReg1); 442 MI.getOperand(1).setSubReg(SubReg2); 443 MI.getOperand(2).setIsKill(Reg1IsKill); 444 MI.getOperand(1).setIsKill(Reg2IsKill); 445 446 // Swap the mask around. 447 MI.getOperand(4).setImm((ME + 1) & 31); 448 MI.getOperand(5).setImm((MB - 1) & 31); 449 return &MI; 450 } 451 452 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 453 unsigned &SrcOpIdx1, 454 unsigned &SrcOpIdx2) const { 455 // For VSX A-Type FMA instructions, it is the first two operands that can be 456 // commuted, however, because the non-encoded tied input operand is listed 457 // first, the operands to swap are actually the second and third. 458 459 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 460 if (AltOpc == -1) 461 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 462 463 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 464 // and SrcOpIdx2. 465 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 466 } 467 468 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 469 MachineBasicBlock::iterator MI) const { 470 // This function is used for scheduling, and the nop wanted here is the type 471 // that terminates dispatch groups on the POWER cores. 472 unsigned Directive = Subtarget.getCPUDirective(); 473 unsigned Opcode; 474 switch (Directive) { 475 default: Opcode = PPC::NOP; break; 476 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 477 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 478 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 479 // FIXME: Update when POWER9 scheduling model is ready. 480 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 481 } 482 483 DebugLoc DL; 484 BuildMI(MBB, MI, DL, get(Opcode)); 485 } 486 487 /// Return the noop instruction to use for a noop. 488 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 489 NopInst.setOpcode(PPC::NOP); 490 } 491 492 // Branch analysis. 493 // Note: If the condition register is set to CTR or CTR8 then this is a 494 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 495 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 496 MachineBasicBlock *&TBB, 497 MachineBasicBlock *&FBB, 498 SmallVectorImpl<MachineOperand> &Cond, 499 bool AllowModify) const { 500 bool isPPC64 = Subtarget.isPPC64(); 501 502 // If the block has no terminators, it just falls into the block after it. 503 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 504 if (I == MBB.end()) 505 return false; 506 507 if (!isUnpredicatedTerminator(*I)) 508 return false; 509 510 if (AllowModify) { 511 // If the BB ends with an unconditional branch to the fallthrough BB, 512 // we eliminate the branch instruction. 513 if (I->getOpcode() == PPC::B && 514 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 515 I->eraseFromParent(); 516 517 // We update iterator after deleting the last branch. 518 I = MBB.getLastNonDebugInstr(); 519 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 520 return false; 521 } 522 } 523 524 // Get the last instruction in the block. 525 MachineInstr &LastInst = *I; 526 527 // If there is only one terminator instruction, process it. 528 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 529 if (LastInst.getOpcode() == PPC::B) { 530 if (!LastInst.getOperand(0).isMBB()) 531 return true; 532 TBB = LastInst.getOperand(0).getMBB(); 533 return false; 534 } else if (LastInst.getOpcode() == PPC::BCC) { 535 if (!LastInst.getOperand(2).isMBB()) 536 return true; 537 // Block ends with fall-through condbranch. 538 TBB = LastInst.getOperand(2).getMBB(); 539 Cond.push_back(LastInst.getOperand(0)); 540 Cond.push_back(LastInst.getOperand(1)); 541 return false; 542 } else if (LastInst.getOpcode() == PPC::BC) { 543 if (!LastInst.getOperand(1).isMBB()) 544 return true; 545 // Block ends with fall-through condbranch. 546 TBB = LastInst.getOperand(1).getMBB(); 547 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 548 Cond.push_back(LastInst.getOperand(0)); 549 return false; 550 } else if (LastInst.getOpcode() == PPC::BCn) { 551 if (!LastInst.getOperand(1).isMBB()) 552 return true; 553 // Block ends with fall-through condbranch. 554 TBB = LastInst.getOperand(1).getMBB(); 555 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 556 Cond.push_back(LastInst.getOperand(0)); 557 return false; 558 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 559 LastInst.getOpcode() == PPC::BDNZ) { 560 if (!LastInst.getOperand(0).isMBB()) 561 return true; 562 if (DisableCTRLoopAnal) 563 return true; 564 TBB = LastInst.getOperand(0).getMBB(); 565 Cond.push_back(MachineOperand::CreateImm(1)); 566 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 567 true)); 568 return false; 569 } else if (LastInst.getOpcode() == PPC::BDZ8 || 570 LastInst.getOpcode() == PPC::BDZ) { 571 if (!LastInst.getOperand(0).isMBB()) 572 return true; 573 if (DisableCTRLoopAnal) 574 return true; 575 TBB = LastInst.getOperand(0).getMBB(); 576 Cond.push_back(MachineOperand::CreateImm(0)); 577 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 578 true)); 579 return false; 580 } 581 582 // Otherwise, don't know what this is. 583 return true; 584 } 585 586 // Get the instruction before it if it's a terminator. 587 MachineInstr &SecondLastInst = *I; 588 589 // If there are three terminators, we don't know what sort of block this is. 590 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 591 return true; 592 593 // If the block ends with PPC::B and PPC:BCC, handle it. 594 if (SecondLastInst.getOpcode() == PPC::BCC && 595 LastInst.getOpcode() == PPC::B) { 596 if (!SecondLastInst.getOperand(2).isMBB() || 597 !LastInst.getOperand(0).isMBB()) 598 return true; 599 TBB = SecondLastInst.getOperand(2).getMBB(); 600 Cond.push_back(SecondLastInst.getOperand(0)); 601 Cond.push_back(SecondLastInst.getOperand(1)); 602 FBB = LastInst.getOperand(0).getMBB(); 603 return false; 604 } else if (SecondLastInst.getOpcode() == PPC::BC && 605 LastInst.getOpcode() == PPC::B) { 606 if (!SecondLastInst.getOperand(1).isMBB() || 607 !LastInst.getOperand(0).isMBB()) 608 return true; 609 TBB = SecondLastInst.getOperand(1).getMBB(); 610 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 611 Cond.push_back(SecondLastInst.getOperand(0)); 612 FBB = LastInst.getOperand(0).getMBB(); 613 return false; 614 } else if (SecondLastInst.getOpcode() == PPC::BCn && 615 LastInst.getOpcode() == PPC::B) { 616 if (!SecondLastInst.getOperand(1).isMBB() || 617 !LastInst.getOperand(0).isMBB()) 618 return true; 619 TBB = SecondLastInst.getOperand(1).getMBB(); 620 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 621 Cond.push_back(SecondLastInst.getOperand(0)); 622 FBB = LastInst.getOperand(0).getMBB(); 623 return false; 624 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 625 SecondLastInst.getOpcode() == PPC::BDNZ) && 626 LastInst.getOpcode() == PPC::B) { 627 if (!SecondLastInst.getOperand(0).isMBB() || 628 !LastInst.getOperand(0).isMBB()) 629 return true; 630 if (DisableCTRLoopAnal) 631 return true; 632 TBB = SecondLastInst.getOperand(0).getMBB(); 633 Cond.push_back(MachineOperand::CreateImm(1)); 634 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 635 true)); 636 FBB = LastInst.getOperand(0).getMBB(); 637 return false; 638 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 639 SecondLastInst.getOpcode() == PPC::BDZ) && 640 LastInst.getOpcode() == PPC::B) { 641 if (!SecondLastInst.getOperand(0).isMBB() || 642 !LastInst.getOperand(0).isMBB()) 643 return true; 644 if (DisableCTRLoopAnal) 645 return true; 646 TBB = SecondLastInst.getOperand(0).getMBB(); 647 Cond.push_back(MachineOperand::CreateImm(0)); 648 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 649 true)); 650 FBB = LastInst.getOperand(0).getMBB(); 651 return false; 652 } 653 654 // If the block ends with two PPC:Bs, handle it. The second one is not 655 // executed, so remove it. 656 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 657 if (!SecondLastInst.getOperand(0).isMBB()) 658 return true; 659 TBB = SecondLastInst.getOperand(0).getMBB(); 660 I = LastInst; 661 if (AllowModify) 662 I->eraseFromParent(); 663 return false; 664 } 665 666 // Otherwise, can't handle this. 667 return true; 668 } 669 670 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 671 int *BytesRemoved) const { 672 assert(!BytesRemoved && "code size not handled"); 673 674 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 675 if (I == MBB.end()) 676 return 0; 677 678 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 679 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 680 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 681 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 682 return 0; 683 684 // Remove the branch. 685 I->eraseFromParent(); 686 687 I = MBB.end(); 688 689 if (I == MBB.begin()) return 1; 690 --I; 691 if (I->getOpcode() != PPC::BCC && 692 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 693 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 694 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 695 return 1; 696 697 // Remove the branch. 698 I->eraseFromParent(); 699 return 2; 700 } 701 702 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 703 MachineBasicBlock *TBB, 704 MachineBasicBlock *FBB, 705 ArrayRef<MachineOperand> Cond, 706 const DebugLoc &DL, 707 int *BytesAdded) const { 708 // Shouldn't be a fall through. 709 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 710 assert((Cond.size() == 2 || Cond.size() == 0) && 711 "PPC branch conditions have two components!"); 712 assert(!BytesAdded && "code size not handled"); 713 714 bool isPPC64 = Subtarget.isPPC64(); 715 716 // One-way branch. 717 if (!FBB) { 718 if (Cond.empty()) // Unconditional branch 719 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 720 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 721 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 722 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 723 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 724 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 725 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 726 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 727 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 728 else // Conditional branch 729 BuildMI(&MBB, DL, get(PPC::BCC)) 730 .addImm(Cond[0].getImm()) 731 .add(Cond[1]) 732 .addMBB(TBB); 733 return 1; 734 } 735 736 // Two-way Conditional Branch. 737 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 738 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 739 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 740 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 741 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 742 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 743 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 744 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 745 else 746 BuildMI(&MBB, DL, get(PPC::BCC)) 747 .addImm(Cond[0].getImm()) 748 .add(Cond[1]) 749 .addMBB(TBB); 750 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 751 return 2; 752 } 753 754 // Select analysis. 755 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 756 ArrayRef<MachineOperand> Cond, 757 unsigned DstReg, unsigned TrueReg, 758 unsigned FalseReg, int &CondCycles, 759 int &TrueCycles, int &FalseCycles) const { 760 if (Cond.size() != 2) 761 return false; 762 763 // If this is really a bdnz-like condition, then it cannot be turned into a 764 // select. 765 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 766 return false; 767 768 // Check register classes. 769 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 770 const TargetRegisterClass *RC = 771 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 772 if (!RC) 773 return false; 774 775 // isel is for regular integer GPRs only. 776 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 777 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 778 !PPC::G8RCRegClass.hasSubClassEq(RC) && 779 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 780 return false; 781 782 // FIXME: These numbers are for the A2, how well they work for other cores is 783 // an open question. On the A2, the isel instruction has a 2-cycle latency 784 // but single-cycle throughput. These numbers are used in combination with 785 // the MispredictPenalty setting from the active SchedMachineModel. 786 CondCycles = 1; 787 TrueCycles = 1; 788 FalseCycles = 1; 789 790 return true; 791 } 792 793 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 794 MachineBasicBlock::iterator MI, 795 const DebugLoc &dl, unsigned DestReg, 796 ArrayRef<MachineOperand> Cond, unsigned TrueReg, 797 unsigned FalseReg) const { 798 assert(Cond.size() == 2 && 799 "PPC branch conditions have two components!"); 800 801 // Get the register classes. 802 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 803 const TargetRegisterClass *RC = 804 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 805 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 806 807 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 808 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 809 assert((Is64Bit || 810 PPC::GPRCRegClass.hasSubClassEq(RC) || 811 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 812 "isel is for regular integer GPRs only"); 813 814 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 815 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 816 817 unsigned SubIdx = 0; 818 bool SwapOps = false; 819 switch (SelectPred) { 820 case PPC::PRED_EQ: 821 case PPC::PRED_EQ_MINUS: 822 case PPC::PRED_EQ_PLUS: 823 SubIdx = PPC::sub_eq; SwapOps = false; break; 824 case PPC::PRED_NE: 825 case PPC::PRED_NE_MINUS: 826 case PPC::PRED_NE_PLUS: 827 SubIdx = PPC::sub_eq; SwapOps = true; break; 828 case PPC::PRED_LT: 829 case PPC::PRED_LT_MINUS: 830 case PPC::PRED_LT_PLUS: 831 SubIdx = PPC::sub_lt; SwapOps = false; break; 832 case PPC::PRED_GE: 833 case PPC::PRED_GE_MINUS: 834 case PPC::PRED_GE_PLUS: 835 SubIdx = PPC::sub_lt; SwapOps = true; break; 836 case PPC::PRED_GT: 837 case PPC::PRED_GT_MINUS: 838 case PPC::PRED_GT_PLUS: 839 SubIdx = PPC::sub_gt; SwapOps = false; break; 840 case PPC::PRED_LE: 841 case PPC::PRED_LE_MINUS: 842 case PPC::PRED_LE_PLUS: 843 SubIdx = PPC::sub_gt; SwapOps = true; break; 844 case PPC::PRED_UN: 845 case PPC::PRED_UN_MINUS: 846 case PPC::PRED_UN_PLUS: 847 SubIdx = PPC::sub_un; SwapOps = false; break; 848 case PPC::PRED_NU: 849 case PPC::PRED_NU_MINUS: 850 case PPC::PRED_NU_PLUS: 851 SubIdx = PPC::sub_un; SwapOps = true; break; 852 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 853 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 854 } 855 856 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 857 SecondReg = SwapOps ? TrueReg : FalseReg; 858 859 // The first input register of isel cannot be r0. If it is a member 860 // of a register class that can be r0, then copy it first (the 861 // register allocator should eliminate the copy). 862 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 863 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 864 const TargetRegisterClass *FirstRC = 865 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 866 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 867 unsigned OldFirstReg = FirstReg; 868 FirstReg = MRI.createVirtualRegister(FirstRC); 869 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 870 .addReg(OldFirstReg); 871 } 872 873 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 874 .addReg(FirstReg).addReg(SecondReg) 875 .addReg(Cond[1].getReg(), 0, SubIdx); 876 } 877 878 static unsigned getCRBitValue(unsigned CRBit) { 879 unsigned Ret = 4; 880 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 881 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 882 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 883 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 884 Ret = 3; 885 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 886 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 887 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 888 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 889 Ret = 2; 890 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 891 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 892 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 893 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 894 Ret = 1; 895 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 896 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 897 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 898 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 899 Ret = 0; 900 901 assert(Ret != 4 && "Invalid CR bit register"); 902 return Ret; 903 } 904 905 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 906 MachineBasicBlock::iterator I, 907 const DebugLoc &DL, MCRegister DestReg, 908 MCRegister SrcReg, bool KillSrc) const { 909 // We can end up with self copies and similar things as a result of VSX copy 910 // legalization. Promote them here. 911 const TargetRegisterInfo *TRI = &getRegisterInfo(); 912 if (PPC::F8RCRegClass.contains(DestReg) && 913 PPC::VSRCRegClass.contains(SrcReg)) { 914 MCRegister SuperReg = 915 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 916 917 if (VSXSelfCopyCrash && SrcReg == SuperReg) 918 llvm_unreachable("nop VSX copy"); 919 920 DestReg = SuperReg; 921 } else if (PPC::F8RCRegClass.contains(SrcReg) && 922 PPC::VSRCRegClass.contains(DestReg)) { 923 MCRegister SuperReg = 924 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 925 926 if (VSXSelfCopyCrash && DestReg == SuperReg) 927 llvm_unreachable("nop VSX copy"); 928 929 SrcReg = SuperReg; 930 } 931 932 // Different class register copy 933 if (PPC::CRBITRCRegClass.contains(SrcReg) && 934 PPC::GPRCRegClass.contains(DestReg)) { 935 MCRegister CRReg = getCRFromCRBit(SrcReg); 936 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 937 getKillRegState(KillSrc); 938 // Rotate the CR bit in the CR fields to be the least significant bit and 939 // then mask with 0x1 (MB = ME = 31). 940 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 941 .addReg(DestReg, RegState::Kill) 942 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 943 .addImm(31) 944 .addImm(31); 945 return; 946 } else if (PPC::CRRCRegClass.contains(SrcReg) && 947 PPC::G8RCRegClass.contains(DestReg)) { 948 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 949 getKillRegState(KillSrc); 950 return; 951 } else if (PPC::CRRCRegClass.contains(SrcReg) && 952 PPC::GPRCRegClass.contains(DestReg)) { 953 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 954 getKillRegState(KillSrc); 955 return; 956 } else if (PPC::G8RCRegClass.contains(SrcReg) && 957 PPC::VSFRCRegClass.contains(DestReg)) { 958 assert(Subtarget.hasDirectMove() && 959 "Subtarget doesn't support directmove, don't know how to copy."); 960 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 961 NumGPRtoVSRSpill++; 962 getKillRegState(KillSrc); 963 return; 964 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 965 PPC::G8RCRegClass.contains(DestReg)) { 966 assert(Subtarget.hasDirectMove() && 967 "Subtarget doesn't support directmove, don't know how to copy."); 968 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 969 getKillRegState(KillSrc); 970 return; 971 } else if (PPC::SPERCRegClass.contains(SrcReg) && 972 PPC::GPRCRegClass.contains(DestReg)) { 973 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 974 getKillRegState(KillSrc); 975 return; 976 } else if (PPC::GPRCRegClass.contains(SrcReg) && 977 PPC::SPERCRegClass.contains(DestReg)) { 978 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 979 getKillRegState(KillSrc); 980 return; 981 } 982 983 unsigned Opc; 984 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 985 Opc = PPC::OR; 986 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 987 Opc = PPC::OR8; 988 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 989 Opc = PPC::FMR; 990 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 991 Opc = PPC::MCRF; 992 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 993 Opc = PPC::VOR; 994 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 995 // There are two different ways this can be done: 996 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 997 // issue in VSU pipeline 0. 998 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 999 // can go to either pipeline. 1000 // We'll always use xxlor here, because in practically all cases where 1001 // copies are generated, they are close enough to some use that the 1002 // lower-latency form is preferable. 1003 Opc = PPC::XXLOR; 1004 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1005 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1006 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1007 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 1008 Opc = PPC::QVFMR; 1009 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 1010 Opc = PPC::QVFMRs; 1011 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 1012 Opc = PPC::QVFMRb; 1013 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1014 Opc = PPC::CROR; 1015 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1016 Opc = PPC::EVOR; 1017 else 1018 llvm_unreachable("Impossible reg-to-reg copy"); 1019 1020 const MCInstrDesc &MCID = get(Opc); 1021 if (MCID.getNumOperands() == 3) 1022 BuildMI(MBB, I, DL, MCID, DestReg) 1023 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1024 else 1025 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1026 } 1027 1028 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg, 1029 const TargetRegisterClass *RC) 1030 const { 1031 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1032 int OpcodeIndex = 0; 1033 1034 if (RC != nullptr) { 1035 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1036 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1037 OpcodeIndex = SOK_Int4Spill; 1038 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1039 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1040 OpcodeIndex = SOK_Int8Spill; 1041 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1042 OpcodeIndex = SOK_Float8Spill; 1043 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1044 OpcodeIndex = SOK_Float4Spill; 1045 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1046 OpcodeIndex = SOK_SPESpill; 1047 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1048 OpcodeIndex = SOK_CRSpill; 1049 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1050 OpcodeIndex = SOK_CRBitSpill; 1051 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1052 OpcodeIndex = SOK_VRVectorSpill; 1053 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1054 OpcodeIndex = SOK_VSXVectorSpill; 1055 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1056 OpcodeIndex = SOK_VectorFloat8Spill; 1057 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1058 OpcodeIndex = SOK_VectorFloat4Spill; 1059 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1060 OpcodeIndex = SOK_VRSaveSpill; 1061 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1062 OpcodeIndex = SOK_QuadFloat8Spill; 1063 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1064 OpcodeIndex = SOK_QuadFloat4Spill; 1065 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1066 OpcodeIndex = SOK_QuadBitSpill; 1067 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1068 OpcodeIndex = SOK_SpillToVSR; 1069 } else { 1070 llvm_unreachable("Unknown regclass!"); 1071 } 1072 } else { 1073 if (PPC::GPRCRegClass.contains(Reg) || 1074 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1075 OpcodeIndex = SOK_Int4Spill; 1076 } else if (PPC::G8RCRegClass.contains(Reg) || 1077 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1078 OpcodeIndex = SOK_Int8Spill; 1079 } else if (PPC::F8RCRegClass.contains(Reg)) { 1080 OpcodeIndex = SOK_Float8Spill; 1081 } else if (PPC::F4RCRegClass.contains(Reg)) { 1082 OpcodeIndex = SOK_Float4Spill; 1083 } else if (PPC::SPERCRegClass.contains(Reg)) { 1084 OpcodeIndex = SOK_SPESpill; 1085 } else if (PPC::CRRCRegClass.contains(Reg)) { 1086 OpcodeIndex = SOK_CRSpill; 1087 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1088 OpcodeIndex = SOK_CRBitSpill; 1089 } else if (PPC::VRRCRegClass.contains(Reg)) { 1090 OpcodeIndex = SOK_VRVectorSpill; 1091 } else if (PPC::VSRCRegClass.contains(Reg)) { 1092 OpcodeIndex = SOK_VSXVectorSpill; 1093 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1094 OpcodeIndex = SOK_VectorFloat8Spill; 1095 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1096 OpcodeIndex = SOK_VectorFloat4Spill; 1097 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1098 OpcodeIndex = SOK_VRSaveSpill; 1099 } else if (PPC::QFRCRegClass.contains(Reg)) { 1100 OpcodeIndex = SOK_QuadFloat8Spill; 1101 } else if (PPC::QSRCRegClass.contains(Reg)) { 1102 OpcodeIndex = SOK_QuadFloat4Spill; 1103 } else if (PPC::QBRCRegClass.contains(Reg)) { 1104 OpcodeIndex = SOK_QuadBitSpill; 1105 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1106 OpcodeIndex = SOK_SpillToVSR; 1107 } else { 1108 llvm_unreachable("Unknown regclass!"); 1109 } 1110 } 1111 return OpcodesForSpill[OpcodeIndex]; 1112 } 1113 1114 unsigned 1115 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg, 1116 const TargetRegisterClass *RC) const { 1117 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1118 int OpcodeIndex = 0; 1119 1120 if (RC != nullptr) { 1121 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1122 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1123 OpcodeIndex = SOK_Int4Spill; 1124 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1125 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1126 OpcodeIndex = SOK_Int8Spill; 1127 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1128 OpcodeIndex = SOK_Float8Spill; 1129 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1130 OpcodeIndex = SOK_Float4Spill; 1131 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1132 OpcodeIndex = SOK_SPESpill; 1133 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1134 OpcodeIndex = SOK_CRSpill; 1135 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1136 OpcodeIndex = SOK_CRBitSpill; 1137 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1138 OpcodeIndex = SOK_VRVectorSpill; 1139 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1140 OpcodeIndex = SOK_VSXVectorSpill; 1141 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1142 OpcodeIndex = SOK_VectorFloat8Spill; 1143 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1144 OpcodeIndex = SOK_VectorFloat4Spill; 1145 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1146 OpcodeIndex = SOK_VRSaveSpill; 1147 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1148 OpcodeIndex = SOK_QuadFloat8Spill; 1149 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1150 OpcodeIndex = SOK_QuadFloat4Spill; 1151 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1152 OpcodeIndex = SOK_QuadBitSpill; 1153 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1154 OpcodeIndex = SOK_SpillToVSR; 1155 } else { 1156 llvm_unreachable("Unknown regclass!"); 1157 } 1158 } else { 1159 if (PPC::GPRCRegClass.contains(Reg) || 1160 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1161 OpcodeIndex = SOK_Int4Spill; 1162 } else if (PPC::G8RCRegClass.contains(Reg) || 1163 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1164 OpcodeIndex = SOK_Int8Spill; 1165 } else if (PPC::F8RCRegClass.contains(Reg)) { 1166 OpcodeIndex = SOK_Float8Spill; 1167 } else if (PPC::F4RCRegClass.contains(Reg)) { 1168 OpcodeIndex = SOK_Float4Spill; 1169 } else if (PPC::SPERCRegClass.contains(Reg)) { 1170 OpcodeIndex = SOK_SPESpill; 1171 } else if (PPC::CRRCRegClass.contains(Reg)) { 1172 OpcodeIndex = SOK_CRSpill; 1173 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1174 OpcodeIndex = SOK_CRBitSpill; 1175 } else if (PPC::VRRCRegClass.contains(Reg)) { 1176 OpcodeIndex = SOK_VRVectorSpill; 1177 } else if (PPC::VSRCRegClass.contains(Reg)) { 1178 OpcodeIndex = SOK_VSXVectorSpill; 1179 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1180 OpcodeIndex = SOK_VectorFloat8Spill; 1181 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1182 OpcodeIndex = SOK_VectorFloat4Spill; 1183 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1184 OpcodeIndex = SOK_VRSaveSpill; 1185 } else if (PPC::QFRCRegClass.contains(Reg)) { 1186 OpcodeIndex = SOK_QuadFloat8Spill; 1187 } else if (PPC::QSRCRegClass.contains(Reg)) { 1188 OpcodeIndex = SOK_QuadFloat4Spill; 1189 } else if (PPC::QBRCRegClass.contains(Reg)) { 1190 OpcodeIndex = SOK_QuadBitSpill; 1191 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1192 OpcodeIndex = SOK_SpillToVSR; 1193 } else { 1194 llvm_unreachable("Unknown regclass!"); 1195 } 1196 } 1197 return OpcodesForSpill[OpcodeIndex]; 1198 } 1199 1200 void PPCInstrInfo::StoreRegToStackSlot( 1201 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1202 const TargetRegisterClass *RC, 1203 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1204 unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC); 1205 DebugLoc DL; 1206 1207 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1208 FuncInfo->setHasSpills(); 1209 1210 NewMIs.push_back(addFrameReference( 1211 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1212 FrameIdx)); 1213 1214 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1215 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1216 FuncInfo->setSpillsCR(); 1217 1218 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1219 FuncInfo->setSpillsVRSAVE(); 1220 1221 if (isXFormMemOp(Opcode)) 1222 FuncInfo->setHasNonRISpills(); 1223 } 1224 1225 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1226 MachineBasicBlock::iterator MI, 1227 unsigned SrcReg, bool isKill, 1228 int FrameIdx, 1229 const TargetRegisterClass *RC, 1230 const TargetRegisterInfo *TRI) const { 1231 MachineFunction &MF = *MBB.getParent(); 1232 SmallVector<MachineInstr *, 4> NewMIs; 1233 1234 // We need to avoid a situation in which the value from a VRRC register is 1235 // spilled using an Altivec instruction and reloaded into a VSRC register 1236 // using a VSX instruction. The issue with this is that the VSX 1237 // load/store instructions swap the doublewords in the vector and the Altivec 1238 // ones don't. The register classes on the spill/reload may be different if 1239 // the register is defined using an Altivec instruction and is then used by a 1240 // VSX instruction. 1241 RC = updatedRC(RC); 1242 1243 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1244 1245 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1246 MBB.insert(MI, NewMIs[i]); 1247 1248 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1249 MachineMemOperand *MMO = MF.getMachineMemOperand( 1250 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1251 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1252 MFI.getObjectAlignment(FrameIdx)); 1253 NewMIs.back()->addMemOperand(MF, MMO); 1254 } 1255 1256 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1257 unsigned DestReg, int FrameIdx, 1258 const TargetRegisterClass *RC, 1259 SmallVectorImpl<MachineInstr *> &NewMIs) 1260 const { 1261 unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC); 1262 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1263 FrameIdx)); 1264 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1265 1266 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1267 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1268 FuncInfo->setSpillsCR(); 1269 1270 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1271 FuncInfo->setSpillsVRSAVE(); 1272 1273 if (isXFormMemOp(Opcode)) 1274 FuncInfo->setHasNonRISpills(); 1275 } 1276 1277 void 1278 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1279 MachineBasicBlock::iterator MI, 1280 unsigned DestReg, int FrameIdx, 1281 const TargetRegisterClass *RC, 1282 const TargetRegisterInfo *TRI) const { 1283 MachineFunction &MF = *MBB.getParent(); 1284 SmallVector<MachineInstr*, 4> NewMIs; 1285 DebugLoc DL; 1286 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1287 1288 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1289 FuncInfo->setHasSpills(); 1290 1291 // We need to avoid a situation in which the value from a VRRC register is 1292 // spilled using an Altivec instruction and reloaded into a VSRC register 1293 // using a VSX instruction. The issue with this is that the VSX 1294 // load/store instructions swap the doublewords in the vector and the Altivec 1295 // ones don't. The register classes on the spill/reload may be different if 1296 // the register is defined using an Altivec instruction and is then used by a 1297 // VSX instruction. 1298 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 1299 RC = &PPC::VSRCRegClass; 1300 1301 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1302 1303 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1304 MBB.insert(MI, NewMIs[i]); 1305 1306 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1307 MachineMemOperand *MMO = MF.getMachineMemOperand( 1308 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1309 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1310 MFI.getObjectAlignment(FrameIdx)); 1311 NewMIs.back()->addMemOperand(MF, MMO); 1312 } 1313 1314 bool PPCInstrInfo:: 1315 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1316 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1317 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1318 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1319 else 1320 // Leave the CR# the same, but invert the condition. 1321 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1322 return false; 1323 } 1324 1325 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1326 unsigned Reg, MachineRegisterInfo *MRI) const { 1327 // For some instructions, it is legal to fold ZERO into the RA register field. 1328 // A zero immediate should always be loaded with a single li. 1329 unsigned DefOpc = DefMI.getOpcode(); 1330 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1331 return false; 1332 if (!DefMI.getOperand(1).isImm()) 1333 return false; 1334 if (DefMI.getOperand(1).getImm() != 0) 1335 return false; 1336 1337 // Note that we cannot here invert the arguments of an isel in order to fold 1338 // a ZERO into what is presented as the second argument. All we have here 1339 // is the condition bit, and that might come from a CR-logical bit operation. 1340 1341 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1342 1343 // Only fold into real machine instructions. 1344 if (UseMCID.isPseudo()) 1345 return false; 1346 1347 unsigned UseIdx; 1348 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1349 if (UseMI.getOperand(UseIdx).isReg() && 1350 UseMI.getOperand(UseIdx).getReg() == Reg) 1351 break; 1352 1353 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1354 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1355 1356 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1357 1358 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1359 // register (which might also be specified as a pointer class kind). 1360 if (UseInfo->isLookupPtrRegClass()) { 1361 if (UseInfo->RegClass /* Kind */ != 1) 1362 return false; 1363 } else { 1364 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1365 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1366 return false; 1367 } 1368 1369 // Make sure this is not tied to an output register (or otherwise 1370 // constrained). This is true for ST?UX registers, for example, which 1371 // are tied to their output registers. 1372 if (UseInfo->Constraints != 0) 1373 return false; 1374 1375 unsigned ZeroReg; 1376 if (UseInfo->isLookupPtrRegClass()) { 1377 bool isPPC64 = Subtarget.isPPC64(); 1378 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1379 } else { 1380 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1381 PPC::ZERO8 : PPC::ZERO; 1382 } 1383 1384 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1385 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1386 1387 if (DeleteDef) 1388 DefMI.eraseFromParent(); 1389 1390 return true; 1391 } 1392 1393 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1394 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1395 I != IE; ++I) 1396 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1397 return true; 1398 return false; 1399 } 1400 1401 // We should make sure that, if we're going to predicate both sides of a 1402 // condition (a diamond), that both sides don't define the counter register. We 1403 // can predicate counter-decrement-based branches, but while that predicates 1404 // the branching, it does not predicate the counter decrement. If we tried to 1405 // merge the triangle into one predicated block, we'd decrement the counter 1406 // twice. 1407 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1408 unsigned NumT, unsigned ExtraT, 1409 MachineBasicBlock &FMBB, 1410 unsigned NumF, unsigned ExtraF, 1411 BranchProbability Probability) const { 1412 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1413 } 1414 1415 1416 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1417 // The predicated branches are identified by their type, not really by the 1418 // explicit presence of a predicate. Furthermore, some of them can be 1419 // predicated more than once. Because if conversion won't try to predicate 1420 // any instruction which already claims to be predicated (by returning true 1421 // here), always return false. In doing so, we let isPredicable() be the 1422 // final word on whether not the instruction can be (further) predicated. 1423 1424 return false; 1425 } 1426 1427 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 1428 if (!MI.isTerminator()) 1429 return false; 1430 1431 // Conditional branch is a special case. 1432 if (MI.isBranch() && !MI.isBarrier()) 1433 return true; 1434 1435 return !isPredicated(MI); 1436 } 1437 1438 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1439 ArrayRef<MachineOperand> Pred) const { 1440 unsigned OpC = MI.getOpcode(); 1441 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1442 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1443 bool isPPC64 = Subtarget.isPPC64(); 1444 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1445 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1446 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1447 MI.setDesc(get(PPC::BCLR)); 1448 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1449 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1450 MI.setDesc(get(PPC::BCLRn)); 1451 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1452 } else { 1453 MI.setDesc(get(PPC::BCCLR)); 1454 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1455 .addImm(Pred[0].getImm()) 1456 .add(Pred[1]); 1457 } 1458 1459 return true; 1460 } else if (OpC == PPC::B) { 1461 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1462 bool isPPC64 = Subtarget.isPPC64(); 1463 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1464 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1465 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1466 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1467 MI.RemoveOperand(0); 1468 1469 MI.setDesc(get(PPC::BC)); 1470 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1471 .add(Pred[1]) 1472 .addMBB(MBB); 1473 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1474 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1475 MI.RemoveOperand(0); 1476 1477 MI.setDesc(get(PPC::BCn)); 1478 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1479 .add(Pred[1]) 1480 .addMBB(MBB); 1481 } else { 1482 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1483 MI.RemoveOperand(0); 1484 1485 MI.setDesc(get(PPC::BCC)); 1486 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1487 .addImm(Pred[0].getImm()) 1488 .add(Pred[1]) 1489 .addMBB(MBB); 1490 } 1491 1492 return true; 1493 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 1494 OpC == PPC::BCTRL8) { 1495 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1496 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1497 1498 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1499 bool isPPC64 = Subtarget.isPPC64(); 1500 1501 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1502 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1503 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1504 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1505 return true; 1506 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1507 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1508 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1509 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1510 return true; 1511 } 1512 1513 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1514 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1515 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1516 .addImm(Pred[0].getImm()) 1517 .add(Pred[1]); 1518 return true; 1519 } 1520 1521 return false; 1522 } 1523 1524 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1525 ArrayRef<MachineOperand> Pred2) const { 1526 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1527 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1528 1529 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1530 return false; 1531 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1532 return false; 1533 1534 // P1 can only subsume P2 if they test the same condition register. 1535 if (Pred1[1].getReg() != Pred2[1].getReg()) 1536 return false; 1537 1538 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1539 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1540 1541 if (P1 == P2) 1542 return true; 1543 1544 // Does P1 subsume P2, e.g. GE subsumes GT. 1545 if (P1 == PPC::PRED_LE && 1546 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1547 return true; 1548 if (P1 == PPC::PRED_GE && 1549 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1550 return true; 1551 1552 return false; 1553 } 1554 1555 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1556 std::vector<MachineOperand> &Pred) const { 1557 // Note: At the present time, the contents of Pred from this function is 1558 // unused by IfConversion. This implementation follows ARM by pushing the 1559 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1560 // predicate, instructions defining CTR or CTR8 are also included as 1561 // predicate-defining instructions. 1562 1563 const TargetRegisterClass *RCs[] = 1564 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1565 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1566 1567 bool Found = false; 1568 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1569 const MachineOperand &MO = MI.getOperand(i); 1570 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1571 const TargetRegisterClass *RC = RCs[c]; 1572 if (MO.isReg()) { 1573 if (MO.isDef() && RC->contains(MO.getReg())) { 1574 Pred.push_back(MO); 1575 Found = true; 1576 } 1577 } else if (MO.isRegMask()) { 1578 for (TargetRegisterClass::iterator I = RC->begin(), 1579 IE = RC->end(); I != IE; ++I) 1580 if (MO.clobbersPhysReg(*I)) { 1581 Pred.push_back(MO); 1582 Found = true; 1583 } 1584 } 1585 } 1586 } 1587 1588 return Found; 1589 } 1590 1591 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 1592 unsigned &SrcReg2, int &Mask, 1593 int &Value) const { 1594 unsigned Opc = MI.getOpcode(); 1595 1596 switch (Opc) { 1597 default: return false; 1598 case PPC::CMPWI: 1599 case PPC::CMPLWI: 1600 case PPC::CMPDI: 1601 case PPC::CMPLDI: 1602 SrcReg = MI.getOperand(1).getReg(); 1603 SrcReg2 = 0; 1604 Value = MI.getOperand(2).getImm(); 1605 Mask = 0xFFFF; 1606 return true; 1607 case PPC::CMPW: 1608 case PPC::CMPLW: 1609 case PPC::CMPD: 1610 case PPC::CMPLD: 1611 case PPC::FCMPUS: 1612 case PPC::FCMPUD: 1613 SrcReg = MI.getOperand(1).getReg(); 1614 SrcReg2 = MI.getOperand(2).getReg(); 1615 Value = 0; 1616 Mask = 0; 1617 return true; 1618 } 1619 } 1620 1621 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, 1622 unsigned SrcReg2, int Mask, int Value, 1623 const MachineRegisterInfo *MRI) const { 1624 if (DisableCmpOpt) 1625 return false; 1626 1627 int OpC = CmpInstr.getOpcode(); 1628 Register CRReg = CmpInstr.getOperand(0).getReg(); 1629 1630 // FP record forms set CR1 based on the exception status bits, not a 1631 // comparison with zero. 1632 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1633 return false; 1634 1635 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1636 // The record forms set the condition register based on a signed comparison 1637 // with zero (so says the ISA manual). This is not as straightforward as it 1638 // seems, however, because this is always a 64-bit comparison on PPC64, even 1639 // for instructions that are 32-bit in nature (like slw for example). 1640 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1641 // for equality checks (as those don't depend on the sign). On PPC64, 1642 // we are restricted to equality for unsigned 64-bit comparisons and for 1643 // signed 32-bit comparisons the applicability is more restricted. 1644 bool isPPC64 = Subtarget.isPPC64(); 1645 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1646 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1647 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1648 1649 // Look through copies unless that gets us to a physical register. 1650 unsigned ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 1651 if (Register::isVirtualRegister(ActualSrc)) 1652 SrcReg = ActualSrc; 1653 1654 // Get the unique definition of SrcReg. 1655 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1656 if (!MI) return false; 1657 1658 bool equalityOnly = false; 1659 bool noSub = false; 1660 if (isPPC64) { 1661 if (is32BitSignedCompare) { 1662 // We can perform this optimization only if MI is sign-extending. 1663 if (isSignExtended(*MI)) 1664 noSub = true; 1665 else 1666 return false; 1667 } else if (is32BitUnsignedCompare) { 1668 // We can perform this optimization, equality only, if MI is 1669 // zero-extending. 1670 if (isZeroExtended(*MI)) { 1671 noSub = true; 1672 equalityOnly = true; 1673 } else 1674 return false; 1675 } else 1676 equalityOnly = is64BitUnsignedCompare; 1677 } else 1678 equalityOnly = is32BitUnsignedCompare; 1679 1680 if (equalityOnly) { 1681 // We need to check the uses of the condition register in order to reject 1682 // non-equality comparisons. 1683 for (MachineRegisterInfo::use_instr_iterator 1684 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1685 I != IE; ++I) { 1686 MachineInstr *UseMI = &*I; 1687 if (UseMI->getOpcode() == PPC::BCC) { 1688 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1689 unsigned PredCond = PPC::getPredicateCondition(Pred); 1690 // We ignore hint bits when checking for non-equality comparisons. 1691 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1692 return false; 1693 } else if (UseMI->getOpcode() == PPC::ISEL || 1694 UseMI->getOpcode() == PPC::ISEL8) { 1695 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1696 if (SubIdx != PPC::sub_eq) 1697 return false; 1698 } else 1699 return false; 1700 } 1701 } 1702 1703 MachineBasicBlock::iterator I = CmpInstr; 1704 1705 // Scan forward to find the first use of the compare. 1706 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1707 ++I) { 1708 bool FoundUse = false; 1709 for (MachineRegisterInfo::use_instr_iterator 1710 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 1711 J != JE; ++J) 1712 if (&*J == &*I) { 1713 FoundUse = true; 1714 break; 1715 } 1716 1717 if (FoundUse) 1718 break; 1719 } 1720 1721 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1722 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1723 1724 // There are two possible candidates which can be changed to set CR[01]. 1725 // One is MI, the other is a SUB instruction. 1726 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1727 MachineInstr *Sub = nullptr; 1728 if (SrcReg2 != 0) 1729 // MI is not a candidate for CMPrr. 1730 MI = nullptr; 1731 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1732 // same BB as the comparison. This is to allow the check below to avoid calls 1733 // (and other explicit clobbers); instead we should really check for these 1734 // more explicitly (in at least a few predecessors). 1735 else if (MI->getParent() != CmpInstr.getParent()) 1736 return false; 1737 else if (Value != 0) { 1738 // The record-form instructions set CR bit based on signed comparison 1739 // against 0. We try to convert a compare against 1 or -1 into a compare 1740 // against 0 to exploit record-form instructions. For example, we change 1741 // the condition "greater than -1" into "greater than or equal to 0" 1742 // and "less than 1" into "less than or equal to 0". 1743 1744 // Since we optimize comparison based on a specific branch condition, 1745 // we don't optimize if condition code is used by more than once. 1746 if (equalityOnly || !MRI->hasOneUse(CRReg)) 1747 return false; 1748 1749 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 1750 if (UseMI->getOpcode() != PPC::BCC) 1751 return false; 1752 1753 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1754 unsigned PredCond = PPC::getPredicateCondition(Pred); 1755 unsigned PredHint = PPC::getPredicateHint(Pred); 1756 int16_t Immed = (int16_t)Value; 1757 1758 // When modifying the condition in the predicate, we propagate hint bits 1759 // from the original predicate to the new one. 1760 if (Immed == -1 && PredCond == PPC::PRED_GT) 1761 // We convert "greater than -1" into "greater than or equal to 0", 1762 // since we are assuming signed comparison by !equalityOnly 1763 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 1764 else if (Immed == -1 && PredCond == PPC::PRED_LE) 1765 // We convert "less than or equal to -1" into "less than 0". 1766 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 1767 else if (Immed == 1 && PredCond == PPC::PRED_LT) 1768 // We convert "less than 1" into "less than or equal to 0". 1769 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 1770 else if (Immed == 1 && PredCond == PPC::PRED_GE) 1771 // We convert "greater than or equal to 1" into "greater than 0". 1772 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 1773 else 1774 return false; 1775 1776 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred)); 1777 } 1778 1779 // Search for Sub. 1780 --I; 1781 1782 // Get ready to iterate backward from CmpInstr. 1783 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 1784 1785 for (; I != E && !noSub; --I) { 1786 const MachineInstr &Instr = *I; 1787 unsigned IOpC = Instr.getOpcode(); 1788 1789 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 1790 Instr.readsRegister(PPC::CR0, TRI))) 1791 // This instruction modifies or uses the record condition register after 1792 // the one we want to change. While we could do this transformation, it 1793 // would likely not be profitable. This transformation removes one 1794 // instruction, and so even forcing RA to generate one move probably 1795 // makes it unprofitable. 1796 return false; 1797 1798 // Check whether CmpInstr can be made redundant by the current instruction. 1799 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1800 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1801 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1802 ((Instr.getOperand(1).getReg() == SrcReg && 1803 Instr.getOperand(2).getReg() == SrcReg2) || 1804 (Instr.getOperand(1).getReg() == SrcReg2 && 1805 Instr.getOperand(2).getReg() == SrcReg))) { 1806 Sub = &*I; 1807 break; 1808 } 1809 1810 if (I == B) 1811 // The 'and' is below the comparison instruction. 1812 return false; 1813 } 1814 1815 // Return false if no candidates exist. 1816 if (!MI && !Sub) 1817 return false; 1818 1819 // The single candidate is called MI. 1820 if (!MI) MI = Sub; 1821 1822 int NewOpC = -1; 1823 int MIOpC = MI->getOpcode(); 1824 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || 1825 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) 1826 NewOpC = MIOpC; 1827 else { 1828 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1829 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1830 NewOpC = MIOpC; 1831 } 1832 1833 // FIXME: On the non-embedded POWER architectures, only some of the record 1834 // forms are fast, and we should use only the fast ones. 1835 1836 // The defining instruction has a record form (or is already a record 1837 // form). It is possible, however, that we'll need to reverse the condition 1838 // code of the users. 1839 if (NewOpC == -1) 1840 return false; 1841 1842 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1843 // needs to be updated to be based on SUB. Push the condition code 1844 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1845 // condition code of these operands will be modified. 1846 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 1847 // comparison against 0, which may modify predicate. 1848 bool ShouldSwap = false; 1849 if (Sub && Value == 0) { 1850 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1851 Sub->getOperand(2).getReg() == SrcReg; 1852 1853 // The operands to subf are the opposite of sub, so only in the fixed-point 1854 // case, invert the order. 1855 ShouldSwap = !ShouldSwap; 1856 } 1857 1858 if (ShouldSwap) 1859 for (MachineRegisterInfo::use_instr_iterator 1860 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1861 I != IE; ++I) { 1862 MachineInstr *UseMI = &*I; 1863 if (UseMI->getOpcode() == PPC::BCC) { 1864 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1865 unsigned PredCond = PPC::getPredicateCondition(Pred); 1866 assert((!equalityOnly || 1867 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 1868 "Invalid predicate for equality-only optimization"); 1869 (void)PredCond; // To suppress warning in release build. 1870 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1871 PPC::getSwappedPredicate(Pred))); 1872 } else if (UseMI->getOpcode() == PPC::ISEL || 1873 UseMI->getOpcode() == PPC::ISEL8) { 1874 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1875 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1876 "Invalid CR bit for equality-only optimization"); 1877 1878 if (NewSubReg == PPC::sub_lt) 1879 NewSubReg = PPC::sub_gt; 1880 else if (NewSubReg == PPC::sub_gt) 1881 NewSubReg = PPC::sub_lt; 1882 1883 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1884 NewSubReg)); 1885 } else // We need to abort on a user we don't understand. 1886 return false; 1887 } 1888 assert(!(Value != 0 && ShouldSwap) && 1889 "Non-zero immediate support and ShouldSwap" 1890 "may conflict in updating predicate"); 1891 1892 // Create a new virtual register to hold the value of the CR set by the 1893 // record-form instruction. If the instruction was not previously in 1894 // record form, then set the kill flag on the CR. 1895 CmpInstr.eraseFromParent(); 1896 1897 MachineBasicBlock::iterator MII = MI; 1898 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1899 get(TargetOpcode::COPY), CRReg) 1900 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1901 1902 // Even if CR0 register were dead before, it is alive now since the 1903 // instruction we just built uses it. 1904 MI->clearRegisterDeads(PPC::CR0); 1905 1906 if (MIOpC != NewOpC) { 1907 // We need to be careful here: we're replacing one instruction with 1908 // another, and we need to make sure that we get all of the right 1909 // implicit uses and defs. On the other hand, the caller may be holding 1910 // an iterator to this instruction, and so we can't delete it (this is 1911 // specifically the case if this is the instruction directly after the 1912 // compare). 1913 1914 // Rotates are expensive instructions. If we're emitting a record-form 1915 // rotate that can just be an andi/andis, we should just emit that. 1916 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 1917 Register GPRRes = MI->getOperand(0).getReg(); 1918 int64_t SH = MI->getOperand(2).getImm(); 1919 int64_t MB = MI->getOperand(3).getImm(); 1920 int64_t ME = MI->getOperand(4).getImm(); 1921 // We can only do this if both the start and end of the mask are in the 1922 // same halfword. 1923 bool MBInLoHWord = MB >= 16; 1924 bool MEInLoHWord = ME >= 16; 1925 uint64_t Mask = ~0LLU; 1926 1927 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 1928 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 1929 // The mask value needs to shift right 16 if we're emitting andis. 1930 Mask >>= MBInLoHWord ? 0 : 16; 1931 NewOpC = MIOpC == PPC::RLWINM 1932 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) 1933 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); 1934 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 1935 (ME - MB + 1 == SH) && (MB >= 16)) { 1936 // If we are rotating by the exact number of bits as are in the mask 1937 // and the mask is in the least significant bits of the register, 1938 // that's just an andis. (as long as the GPR result has no uses). 1939 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 1940 Mask >>= 16; 1941 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; 1942 } 1943 // If we've set the mask, we can transform. 1944 if (Mask != ~0LLU) { 1945 MI->RemoveOperand(4); 1946 MI->RemoveOperand(3); 1947 MI->getOperand(2).setImm(Mask); 1948 NumRcRotatesConvertedToRcAnd++; 1949 } 1950 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 1951 int64_t MB = MI->getOperand(3).getImm(); 1952 if (MB >= 48) { 1953 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 1954 NewOpC = PPC::ANDI8_rec; 1955 MI->RemoveOperand(3); 1956 MI->getOperand(2).setImm(Mask); 1957 NumRcRotatesConvertedToRcAnd++; 1958 } 1959 } 1960 1961 const MCInstrDesc &NewDesc = get(NewOpC); 1962 MI->setDesc(NewDesc); 1963 1964 if (NewDesc.ImplicitDefs) 1965 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 1966 *ImpDefs; ++ImpDefs) 1967 if (!MI->definesRegister(*ImpDefs)) 1968 MI->addOperand(*MI->getParent()->getParent(), 1969 MachineOperand::CreateReg(*ImpDefs, true, true)); 1970 if (NewDesc.ImplicitUses) 1971 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 1972 *ImpUses; ++ImpUses) 1973 if (!MI->readsRegister(*ImpUses)) 1974 MI->addOperand(*MI->getParent()->getParent(), 1975 MachineOperand::CreateReg(*ImpUses, false, true)); 1976 } 1977 assert(MI->definesRegister(PPC::CR0) && 1978 "Record-form instruction does not define cr0?"); 1979 1980 // Modify the condition code of operands in OperandsToUpdate. 1981 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1982 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1983 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1984 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1985 1986 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1987 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1988 1989 return true; 1990 } 1991 1992 /// GetInstSize - Return the number of bytes of code the specified 1993 /// instruction may be. This returns the maximum number of bytes. 1994 /// 1995 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 1996 unsigned Opcode = MI.getOpcode(); 1997 1998 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 1999 const MachineFunction *MF = MI.getParent()->getParent(); 2000 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2001 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2002 } else if (Opcode == TargetOpcode::STACKMAP) { 2003 StackMapOpers Opers(&MI); 2004 return Opers.getNumPatchBytes(); 2005 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2006 PatchPointOpers Opers(&MI); 2007 return Opers.getNumPatchBytes(); 2008 } else { 2009 return get(Opcode).getSize(); 2010 } 2011 } 2012 2013 std::pair<unsigned, unsigned> 2014 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2015 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2016 return std::make_pair(TF & Mask, TF & ~Mask); 2017 } 2018 2019 ArrayRef<std::pair<unsigned, const char *>> 2020 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2021 using namespace PPCII; 2022 static const std::pair<unsigned, const char *> TargetFlags[] = { 2023 {MO_LO, "ppc-lo"}, 2024 {MO_HA, "ppc-ha"}, 2025 {MO_TPREL_LO, "ppc-tprel-lo"}, 2026 {MO_TPREL_HA, "ppc-tprel-ha"}, 2027 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2028 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2029 {MO_TOC_LO, "ppc-toc-lo"}, 2030 {MO_TLS, "ppc-tls"}}; 2031 return makeArrayRef(TargetFlags); 2032 } 2033 2034 ArrayRef<std::pair<unsigned, const char *>> 2035 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2036 using namespace PPCII; 2037 static const std::pair<unsigned, const char *> TargetFlags[] = { 2038 {MO_PLT, "ppc-plt"}, {MO_PIC_FLAG, "ppc-pic"}}; 2039 return makeArrayRef(TargetFlags); 2040 } 2041 2042 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2043 // The VSX versions have the advantage of a full 64-register target whereas 2044 // the FP ones have the advantage of lower latency and higher throughput. So 2045 // what we are after is using the faster instructions in low register pressure 2046 // situations and using the larger register file in high register pressure 2047 // situations. 2048 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2049 unsigned UpperOpcode, LowerOpcode; 2050 switch (MI.getOpcode()) { 2051 case PPC::DFLOADf32: 2052 UpperOpcode = PPC::LXSSP; 2053 LowerOpcode = PPC::LFS; 2054 break; 2055 case PPC::DFLOADf64: 2056 UpperOpcode = PPC::LXSD; 2057 LowerOpcode = PPC::LFD; 2058 break; 2059 case PPC::DFSTOREf32: 2060 UpperOpcode = PPC::STXSSP; 2061 LowerOpcode = PPC::STFS; 2062 break; 2063 case PPC::DFSTOREf64: 2064 UpperOpcode = PPC::STXSD; 2065 LowerOpcode = PPC::STFD; 2066 break; 2067 case PPC::XFLOADf32: 2068 UpperOpcode = PPC::LXSSPX; 2069 LowerOpcode = PPC::LFSX; 2070 break; 2071 case PPC::XFLOADf64: 2072 UpperOpcode = PPC::LXSDX; 2073 LowerOpcode = PPC::LFDX; 2074 break; 2075 case PPC::XFSTOREf32: 2076 UpperOpcode = PPC::STXSSPX; 2077 LowerOpcode = PPC::STFSX; 2078 break; 2079 case PPC::XFSTOREf64: 2080 UpperOpcode = PPC::STXSDX; 2081 LowerOpcode = PPC::STFDX; 2082 break; 2083 case PPC::LIWAX: 2084 UpperOpcode = PPC::LXSIWAX; 2085 LowerOpcode = PPC::LFIWAX; 2086 break; 2087 case PPC::LIWZX: 2088 UpperOpcode = PPC::LXSIWZX; 2089 LowerOpcode = PPC::LFIWZX; 2090 break; 2091 case PPC::STIWX: 2092 UpperOpcode = PPC::STXSIWX; 2093 LowerOpcode = PPC::STFIWX; 2094 break; 2095 default: 2096 llvm_unreachable("Unknown Operation!"); 2097 } 2098 2099 Register TargetReg = MI.getOperand(0).getReg(); 2100 unsigned Opcode; 2101 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2102 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2103 Opcode = LowerOpcode; 2104 else 2105 Opcode = UpperOpcode; 2106 MI.setDesc(get(Opcode)); 2107 return true; 2108 } 2109 2110 static bool isAnImmediateOperand(const MachineOperand &MO) { 2111 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2112 } 2113 2114 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2115 auto &MBB = *MI.getParent(); 2116 auto DL = MI.getDebugLoc(); 2117 2118 switch (MI.getOpcode()) { 2119 case TargetOpcode::LOAD_STACK_GUARD: { 2120 assert(Subtarget.isTargetLinux() && 2121 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 2122 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 2123 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 2124 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 2125 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2126 .addImm(Offset) 2127 .addReg(Reg); 2128 return true; 2129 } 2130 case PPC::DFLOADf32: 2131 case PPC::DFLOADf64: 2132 case PPC::DFSTOREf32: 2133 case PPC::DFSTOREf64: { 2134 assert(Subtarget.hasP9Vector() && 2135 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 2136 assert(MI.getOperand(2).isReg() && 2137 isAnImmediateOperand(MI.getOperand(1)) && 2138 "D-form op must have register and immediate operands"); 2139 return expandVSXMemPseudo(MI); 2140 } 2141 case PPC::XFLOADf32: 2142 case PPC::XFSTOREf32: 2143 case PPC::LIWAX: 2144 case PPC::LIWZX: 2145 case PPC::STIWX: { 2146 assert(Subtarget.hasP8Vector() && 2147 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 2148 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2149 "X-form op must have register and register operands"); 2150 return expandVSXMemPseudo(MI); 2151 } 2152 case PPC::XFLOADf64: 2153 case PPC::XFSTOREf64: { 2154 assert(Subtarget.hasVSX() && 2155 "Invalid X-Form Pseudo-ops on target that has no VSX."); 2156 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2157 "X-form op must have register and register operands"); 2158 return expandVSXMemPseudo(MI); 2159 } 2160 case PPC::SPILLTOVSR_LD: { 2161 Register TargetReg = MI.getOperand(0).getReg(); 2162 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2163 MI.setDesc(get(PPC::DFLOADf64)); 2164 return expandPostRAPseudo(MI); 2165 } 2166 else 2167 MI.setDesc(get(PPC::LD)); 2168 return true; 2169 } 2170 case PPC::SPILLTOVSR_ST: { 2171 Register SrcReg = MI.getOperand(0).getReg(); 2172 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2173 NumStoreSPILLVSRRCAsVec++; 2174 MI.setDesc(get(PPC::DFSTOREf64)); 2175 return expandPostRAPseudo(MI); 2176 } else { 2177 NumStoreSPILLVSRRCAsGpr++; 2178 MI.setDesc(get(PPC::STD)); 2179 } 2180 return true; 2181 } 2182 case PPC::SPILLTOVSR_LDX: { 2183 Register TargetReg = MI.getOperand(0).getReg(); 2184 if (PPC::VSFRCRegClass.contains(TargetReg)) 2185 MI.setDesc(get(PPC::LXSDX)); 2186 else 2187 MI.setDesc(get(PPC::LDX)); 2188 return true; 2189 } 2190 case PPC::SPILLTOVSR_STX: { 2191 Register SrcReg = MI.getOperand(0).getReg(); 2192 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2193 NumStoreSPILLVSRRCAsVec++; 2194 MI.setDesc(get(PPC::STXSDX)); 2195 } else { 2196 NumStoreSPILLVSRRCAsGpr++; 2197 MI.setDesc(get(PPC::STDX)); 2198 } 2199 return true; 2200 } 2201 2202 case PPC::CFENCE8: { 2203 auto Val = MI.getOperand(0).getReg(); 2204 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2205 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2206 .addImm(PPC::PRED_NE_MINUS) 2207 .addReg(PPC::CR7) 2208 .addImm(1); 2209 MI.setDesc(get(PPC::ISYNC)); 2210 MI.RemoveOperand(0); 2211 return true; 2212 } 2213 } 2214 return false; 2215 } 2216 2217 // Essentially a compile-time implementation of a compare->isel sequence. 2218 // It takes two constants to compare, along with the true/false registers 2219 // and the comparison type (as a subreg to a CR field) and returns one 2220 // of the true/false registers, depending on the comparison results. 2221 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 2222 unsigned TrueReg, unsigned FalseReg, 2223 unsigned CRSubReg) { 2224 // Signed comparisons. The immediates are assumed to be sign-extended. 2225 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 2226 switch (CRSubReg) { 2227 default: llvm_unreachable("Unknown integer comparison type."); 2228 case PPC::sub_lt: 2229 return Imm1 < Imm2 ? TrueReg : FalseReg; 2230 case PPC::sub_gt: 2231 return Imm1 > Imm2 ? TrueReg : FalseReg; 2232 case PPC::sub_eq: 2233 return Imm1 == Imm2 ? TrueReg : FalseReg; 2234 } 2235 } 2236 // Unsigned comparisons. 2237 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 2238 switch (CRSubReg) { 2239 default: llvm_unreachable("Unknown integer comparison type."); 2240 case PPC::sub_lt: 2241 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 2242 case PPC::sub_gt: 2243 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 2244 case PPC::sub_eq: 2245 return Imm1 == Imm2 ? TrueReg : FalseReg; 2246 } 2247 } 2248 return PPC::NoRegister; 2249 } 2250 2251 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 2252 unsigned OpNo, 2253 int64_t Imm) const { 2254 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 2255 // Replace the REG with the Immediate. 2256 Register InUseReg = MI.getOperand(OpNo).getReg(); 2257 MI.getOperand(OpNo).ChangeToImmediate(Imm); 2258 2259 if (MI.implicit_operands().empty()) 2260 return; 2261 2262 // We need to make sure that the MI didn't have any implicit use 2263 // of this REG any more. 2264 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2265 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 2266 if (UseOpIdx >= 0) { 2267 MachineOperand &MO = MI.getOperand(UseOpIdx); 2268 if (MO.isImplicit()) 2269 // The operands must always be in the following order: 2270 // - explicit reg defs, 2271 // - other explicit operands (reg uses, immediates, etc.), 2272 // - implicit reg defs 2273 // - implicit reg uses 2274 // Therefore, removing the implicit operand won't change the explicit 2275 // operands layout. 2276 MI.RemoveOperand(UseOpIdx); 2277 } 2278 } 2279 2280 // Replace an instruction with one that materializes a constant (and sets 2281 // CR0 if the original instruction was a record-form instruction). 2282 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 2283 const LoadImmediateInfo &LII) const { 2284 // Remove existing operands. 2285 int OperandToKeep = LII.SetCR ? 1 : 0; 2286 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 2287 MI.RemoveOperand(i); 2288 2289 // Replace the instruction. 2290 if (LII.SetCR) { 2291 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 2292 // Set the immediate. 2293 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2294 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 2295 return; 2296 } 2297 else 2298 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 2299 2300 // Set the immediate. 2301 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2302 .addImm(LII.Imm); 2303 } 2304 2305 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 2306 bool &SeenIntermediateUse) const { 2307 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 2308 "Should be called after register allocation."); 2309 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2310 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 2311 It++; 2312 SeenIntermediateUse = false; 2313 for (; It != E; ++It) { 2314 if (It->modifiesRegister(Reg, TRI)) 2315 return &*It; 2316 if (It->readsRegister(Reg, TRI)) 2317 SeenIntermediateUse = true; 2318 } 2319 return nullptr; 2320 } 2321 2322 MachineInstr *PPCInstrInfo::getForwardingDefMI( 2323 MachineInstr &MI, 2324 unsigned &OpNoForForwarding, 2325 bool &SeenIntermediateUse) const { 2326 OpNoForForwarding = ~0U; 2327 MachineInstr *DefMI = nullptr; 2328 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 2329 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2330 // If we're in SSA, get the defs through the MRI. Otherwise, only look 2331 // within the basic block to see if the register is defined using an LI/LI8. 2332 if (MRI->isSSA()) { 2333 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2334 if (!MI.getOperand(i).isReg()) 2335 continue; 2336 Register Reg = MI.getOperand(i).getReg(); 2337 if (!Register::isVirtualRegister(Reg)) 2338 continue; 2339 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 2340 if (Register::isVirtualRegister(TrueReg)) { 2341 DefMI = MRI->getVRegDef(TrueReg); 2342 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) { 2343 OpNoForForwarding = i; 2344 break; 2345 } 2346 } 2347 } 2348 } else { 2349 // Looking back through the definition for each operand could be expensive, 2350 // so exit early if this isn't an instruction that either has an immediate 2351 // form or is already an immediate form that we can handle. 2352 ImmInstrInfo III; 2353 unsigned Opc = MI.getOpcode(); 2354 bool ConvertibleImmForm = 2355 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || 2356 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || 2357 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || 2358 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || 2359 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 2360 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || 2361 Opc == PPC::RLWINM8_rec; 2362 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 2363 ? isVFRegister(MI.getOperand(0).getReg()) 2364 : false; 2365 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 2366 return nullptr; 2367 2368 // Don't convert or %X, %Y, %Y since that's just a register move. 2369 if ((Opc == PPC::OR || Opc == PPC::OR8) && 2370 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 2371 return nullptr; 2372 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2373 MachineOperand &MO = MI.getOperand(i); 2374 SeenIntermediateUse = false; 2375 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 2376 Register Reg = MI.getOperand(i).getReg(); 2377 // If we see another use of this reg between the def and the MI, 2378 // we want to flat it so the def isn't deleted. 2379 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 2380 if (DefMI) { 2381 // Is this register defined by some form of add-immediate (including 2382 // load-immediate) within this basic block? 2383 switch (DefMI->getOpcode()) { 2384 default: 2385 break; 2386 case PPC::LI: 2387 case PPC::LI8: 2388 case PPC::ADDItocL: 2389 case PPC::ADDI: 2390 case PPC::ADDI8: 2391 OpNoForForwarding = i; 2392 return DefMI; 2393 } 2394 } 2395 } 2396 } 2397 } 2398 return OpNoForForwarding == ~0U ? nullptr : DefMI; 2399 } 2400 2401 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 2402 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2403 // Power 8 2404 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2405 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, 2406 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2407 PPC::SPILLTOVSR_ST, PPC::EVSTDD}, 2408 // Power 9 2409 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2410 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, 2411 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2412 PPC::SPILLTOVSR_ST}}; 2413 2414 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2415 } 2416 2417 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 2418 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2419 // Power 8 2420 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2421 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX, 2422 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2423 PPC::SPILLTOVSR_LD, PPC::EVLDD}, 2424 // Power 9 2425 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2426 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32, 2427 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2428 PPC::SPILLTOVSR_LD}}; 2429 2430 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2431 } 2432 2433 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI, 2434 unsigned RegNo) const { 2435 const MachineRegisterInfo &MRI = 2436 StartMI.getParent()->getParent()->getRegInfo(); 2437 if (MRI.isSSA()) 2438 return; 2439 2440 // Instructions between [StartMI, EndMI] should be in same basic block. 2441 assert((StartMI.getParent() == EndMI.getParent()) && 2442 "Instructions are not in same basic block"); 2443 2444 bool IsKillSet = false; 2445 2446 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 2447 MachineOperand &MO = MI.getOperand(Index); 2448 if (MO.isReg() && MO.isUse() && MO.isKill() && 2449 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 2450 MO.setIsKill(false); 2451 }; 2452 2453 // Set killed flag for EndMI. 2454 // No need to do anything if EndMI defines RegNo. 2455 int UseIndex = 2456 EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 2457 if (UseIndex != -1) { 2458 EndMI.getOperand(UseIndex).setIsKill(true); 2459 IsKillSet = true; 2460 // Clear killed flag for other EndMI operands related to RegNo. In some 2461 // upexpected cases, killed may be set multiple times for same register 2462 // operand in same MI. 2463 for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i) 2464 if (i != UseIndex) 2465 clearOperandKillInfo(EndMI, i); 2466 } 2467 2468 // Walking the inst in reverse order (EndMI -> StartMI]. 2469 MachineBasicBlock::reverse_iterator It = EndMI; 2470 MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend(); 2471 // EndMI has been handled above, skip it here. 2472 It++; 2473 MachineOperand *MO = nullptr; 2474 for (; It != E; ++It) { 2475 // Skip insturctions which could not be a def/use of RegNo. 2476 if (It->isDebugInstr() || It->isPosition()) 2477 continue; 2478 2479 // Clear killed flag for all It operands related to RegNo. In some 2480 // upexpected cases, killed may be set multiple times for same register 2481 // operand in same MI. 2482 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 2483 clearOperandKillInfo(*It, i); 2484 2485 // If killed is not set, set killed for its last use or set dead for its def 2486 // if no use found. 2487 if (!IsKillSet) { 2488 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 2489 // Use found, set it killed. 2490 IsKillSet = true; 2491 MO->setIsKill(true); 2492 continue; 2493 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 2494 &getRegisterInfo()))) { 2495 // No use found, set dead for its def. 2496 assert(&*It == &StartMI && "No new def between StartMI and EndMI."); 2497 MO->setIsDead(true); 2498 break; 2499 } 2500 } 2501 2502 if ((&*It) == &StartMI) 2503 break; 2504 } 2505 // Ensure RegMo liveness is killed after EndMI. 2506 assert((IsKillSet || (MO && MO->isDead())) && 2507 "RegNo should be killed or dead"); 2508 } 2509 2510 // This opt tries to convert the following imm form to an index form to save an 2511 // add for stack variables. 2512 // Return false if no such pattern found. 2513 // 2514 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 2515 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg 2516 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) 2517 // 2518 // can be converted to: 2519 // 2520 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) 2521 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) 2522 // 2523 // In order to eliminate ADD instr, make sure that: 2524 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in 2525 // new ADDI instr and ADDI can only take int16 Imm. 2526 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use 2527 // between ADDI and ADD instr since its original def in ADDI will be changed 2528 // in new ADDI instr. And also there should be no new def for it between 2529 // ADD and Imm instr as ToBeChangedReg will be used in Index instr. 2530 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use 2531 // between ADD and Imm instr since ADD instr will be eliminated. 2532 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be 2533 // moved to Index instr. 2534 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { 2535 MachineFunction *MF = MI.getParent()->getParent(); 2536 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2537 bool PostRA = !MRI->isSSA(); 2538 // Do this opt after PEI which is after RA. The reason is stack slot expansion 2539 // in PEI may expose such opportunities since in PEI, stack slot offsets to 2540 // frame base(OffsetAddi) are determined. 2541 if (!PostRA) 2542 return false; 2543 unsigned ToBeDeletedReg = 0; 2544 int64_t OffsetImm = 0; 2545 unsigned XFormOpcode = 0; 2546 ImmInstrInfo III; 2547 2548 // Check if Imm instr meets requirement. 2549 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, 2550 III)) 2551 return false; 2552 2553 bool OtherIntermediateUse = false; 2554 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); 2555 2556 // Exit if there is other use between ADD and Imm instr or no def found. 2557 if (OtherIntermediateUse || !ADDMI) 2558 return false; 2559 2560 // Check if ADD instr meets requirement. 2561 if (!isADDInstrEligibleForFolding(*ADDMI)) 2562 return false; 2563 2564 unsigned ScaleRegIdx = 0; 2565 int64_t OffsetAddi = 0; 2566 MachineInstr *ADDIMI = nullptr; 2567 2568 // Check if there is a valid ToBeChangedReg in ADDMI. 2569 // 1: It must be killed. 2570 // 2: Its definition must be a valid ADDIMI. 2571 // 3: It must satify int16 offset requirement. 2572 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) 2573 ScaleRegIdx = 2; 2574 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) 2575 ScaleRegIdx = 1; 2576 else 2577 return false; 2578 2579 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); 2580 unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg(); 2581 unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); 2582 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, 2583 MachineBasicBlock::iterator End) { 2584 for (auto It = ++Start; It != End; It++) 2585 if (It->modifiesRegister(Reg, &getRegisterInfo())) 2586 return true; 2587 return false; 2588 }; 2589 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr 2590 // and Imm Instr. 2591 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) 2592 return false; 2593 2594 // Now start to do the transformation. 2595 LLVM_DEBUG(dbgs() << "Replace instruction: " 2596 << "\n"); 2597 LLVM_DEBUG(ADDIMI->dump()); 2598 LLVM_DEBUG(ADDMI->dump()); 2599 LLVM_DEBUG(MI.dump()); 2600 LLVM_DEBUG(dbgs() << "with: " 2601 << "\n"); 2602 2603 // Update ADDI instr. 2604 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); 2605 2606 // Update Imm instr. 2607 MI.setDesc(get(XFormOpcode)); 2608 MI.getOperand(III.ImmOpNo) 2609 .ChangeToRegister(ScaleReg, false, false, 2610 ADDMI->getOperand(ScaleRegIdx).isKill()); 2611 2612 MI.getOperand(III.OpNoForForwarding) 2613 .ChangeToRegister(ToBeChangedReg, false, false, true); 2614 2615 // Eliminate ADD instr. 2616 ADDMI->eraseFromParent(); 2617 2618 LLVM_DEBUG(ADDIMI->dump()); 2619 LLVM_DEBUG(MI.dump()); 2620 2621 return true; 2622 } 2623 2624 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, 2625 int64_t &Imm) const { 2626 unsigned Opc = ADDIMI.getOpcode(); 2627 2628 // Exit if the instruction is not ADDI. 2629 if (Opc != PPC::ADDI && Opc != PPC::ADDI8) 2630 return false; 2631 2632 Imm = ADDIMI.getOperand(2).getImm(); 2633 2634 return true; 2635 } 2636 2637 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { 2638 unsigned Opc = ADDMI.getOpcode(); 2639 2640 // Exit if the instruction is not ADD. 2641 return Opc == PPC::ADD4 || Opc == PPC::ADD8; 2642 } 2643 2644 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, 2645 unsigned &ToBeDeletedReg, 2646 unsigned &XFormOpcode, 2647 int64_t &OffsetImm, 2648 ImmInstrInfo &III) const { 2649 // Only handle load/store. 2650 if (!MI.mayLoadOrStore()) 2651 return false; 2652 2653 unsigned Opc = MI.getOpcode(); 2654 2655 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); 2656 2657 // Exit if instruction has no index form. 2658 if (XFormOpcode == PPC::INSTRUCTION_LIST_END) 2659 return false; 2660 2661 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. 2662 if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()), 2663 III, true)) 2664 return false; 2665 2666 if (!III.IsSummingOperands) 2667 return false; 2668 2669 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); 2670 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); 2671 // Only support imm operands, not relocation slots or others. 2672 if (!ImmOperand.isImm()) 2673 return false; 2674 2675 assert(RegOperand.isReg() && "Instruction format is not right"); 2676 2677 // There are other use for ToBeDeletedReg after Imm instr, can not delete it. 2678 if (!RegOperand.isKill()) 2679 return false; 2680 2681 ToBeDeletedReg = RegOperand.getReg(); 2682 OffsetImm = ImmOperand.getImm(); 2683 2684 return true; 2685 } 2686 2687 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, 2688 MachineInstr *&ADDIMI, 2689 int64_t &OffsetAddi, 2690 int64_t OffsetImm) const { 2691 assert((Index == 1 || Index == 2) && "Invalid operand index for add."); 2692 MachineOperand &MO = ADDMI->getOperand(Index); 2693 2694 if (!MO.isKill()) 2695 return false; 2696 2697 bool OtherIntermediateUse = false; 2698 2699 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); 2700 // Currently handle only one "add + Imminstr" pair case, exit if other 2701 // intermediate use for ToBeChangedReg found. 2702 // TODO: handle the cases where there are other "add + Imminstr" pairs 2703 // with same offset in Imminstr which is like: 2704 // 2705 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 2706 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 2707 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) 2708 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 2709 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) 2710 // 2711 // can be converted to: 2712 // 2713 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, 2714 // (OffsetAddi + OffsetImm) 2715 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg 2716 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) 2717 2718 if (OtherIntermediateUse || !ADDIMI) 2719 return false; 2720 // Check if ADDI instr meets requirement. 2721 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) 2722 return false; 2723 2724 if (isInt<16>(OffsetAddi + OffsetImm)) 2725 return true; 2726 return false; 2727 } 2728 2729 // If this instruction has an immediate form and one of its operands is a 2730 // result of a load-immediate or an add-immediate, convert it to 2731 // the immediate form if the constant is in range. 2732 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 2733 MachineInstr **KilledDef) const { 2734 MachineFunction *MF = MI.getParent()->getParent(); 2735 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2736 bool PostRA = !MRI->isSSA(); 2737 bool SeenIntermediateUse = true; 2738 unsigned ForwardingOperand = ~0U; 2739 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 2740 SeenIntermediateUse); 2741 if (!DefMI) 2742 return false; 2743 assert(ForwardingOperand < MI.getNumOperands() && 2744 "The forwarding operand needs to be valid at this point"); 2745 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 2746 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 2747 Register ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg(); 2748 if (KilledDef && KillFwdDefMI) 2749 *KilledDef = DefMI; 2750 2751 ImmInstrInfo III; 2752 bool IsVFReg = MI.getOperand(0).isReg() 2753 ? isVFRegister(MI.getOperand(0).getReg()) 2754 : false; 2755 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 2756 // If this is a reg+reg instruction that has a reg+imm form, 2757 // and one of the operands is produced by an add-immediate, 2758 // try to convert it. 2759 if (HasImmForm && 2760 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 2761 KillFwdDefMI)) 2762 return true; 2763 2764 if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) || 2765 !DefMI->getOperand(1).isImm()) 2766 return false; 2767 2768 int64_t Immediate = DefMI->getOperand(1).getImm(); 2769 // Sign-extend to 64-bits. 2770 int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 2771 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 2772 2773 // If this is a reg+reg instruction that has a reg+imm form, 2774 // and one of the operands is produced by LI, convert it now. 2775 if (HasImmForm) 2776 return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm); 2777 2778 bool ReplaceWithLI = false; 2779 bool Is64BitLI = false; 2780 int64_t NewImm = 0; 2781 bool SetCR = false; 2782 unsigned Opc = MI.getOpcode(); 2783 switch (Opc) { 2784 default: return false; 2785 2786 // FIXME: Any branches conditional on such a comparison can be made 2787 // unconditional. At this time, this happens too infrequently to be worth 2788 // the implementation effort, but if that ever changes, we could convert 2789 // such a pattern here. 2790 case PPC::CMPWI: 2791 case PPC::CMPLWI: 2792 case PPC::CMPDI: 2793 case PPC::CMPLDI: { 2794 // Doing this post-RA would require dataflow analysis to reliably find uses 2795 // of the CR register set by the compare. 2796 // No need to fixup killed/dead flag since this transformation is only valid 2797 // before RA. 2798 if (PostRA) 2799 return false; 2800 // If a compare-immediate is fed by an immediate and is itself an input of 2801 // an ISEL (the most common case) into a COPY of the correct register. 2802 bool Changed = false; 2803 Register DefReg = MI.getOperand(0).getReg(); 2804 int64_t Comparand = MI.getOperand(2).getImm(); 2805 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ? 2806 (Comparand | 0xFFFFFFFFFFFF0000) : Comparand; 2807 2808 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 2809 unsigned UseOpc = CompareUseMI.getOpcode(); 2810 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 2811 continue; 2812 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 2813 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 2814 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 2815 unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg, 2816 FalseReg, CRSubReg); 2817 if (RegToCopy == PPC::NoRegister) 2818 continue; 2819 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 2820 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 2821 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 2822 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 2823 CompareUseMI.RemoveOperand(3); 2824 CompareUseMI.RemoveOperand(2); 2825 continue; 2826 } 2827 LLVM_DEBUG( 2828 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 2829 LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump()); 2830 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 2831 // Convert to copy and remove unneeded operands. 2832 CompareUseMI.setDesc(get(PPC::COPY)); 2833 CompareUseMI.RemoveOperand(3); 2834 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 2835 CmpIselsConverted++; 2836 Changed = true; 2837 LLVM_DEBUG(CompareUseMI.dump()); 2838 } 2839 if (Changed) 2840 return true; 2841 // This may end up incremented multiple times since this function is called 2842 // during a fixed-point transformation, but it is only meant to indicate the 2843 // presence of this opportunity. 2844 MissedConvertibleImmediateInstrs++; 2845 return false; 2846 } 2847 2848 // Immediate forms - may simply be convertable to an LI. 2849 case PPC::ADDI: 2850 case PPC::ADDI8: { 2851 // Does the sum fit in a 16-bit signed field? 2852 int64_t Addend = MI.getOperand(2).getImm(); 2853 if (isInt<16>(Addend + SExtImm)) { 2854 ReplaceWithLI = true; 2855 Is64BitLI = Opc == PPC::ADDI8; 2856 NewImm = Addend + SExtImm; 2857 break; 2858 } 2859 return false; 2860 } 2861 case PPC::RLDICL: 2862 case PPC::RLDICL_rec: 2863 case PPC::RLDICL_32: 2864 case PPC::RLDICL_32_64: { 2865 // Use APInt's rotate function. 2866 int64_t SH = MI.getOperand(2).getImm(); 2867 int64_t MB = MI.getOperand(3).getImm(); 2868 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, 2869 SExtImm, true); 2870 InVal = InVal.rotl(SH); 2871 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2872 InVal &= Mask; 2873 // Can't replace negative values with an LI as that will sign-extend 2874 // and not clear the left bits. If we're setting the CR bit, we will use 2875 // ANDI_rec which won't sign extend, so that's safe. 2876 if (isUInt<15>(InVal.getSExtValue()) || 2877 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { 2878 ReplaceWithLI = true; 2879 Is64BitLI = Opc != PPC::RLDICL_32; 2880 NewImm = InVal.getSExtValue(); 2881 SetCR = Opc == PPC::RLDICL_rec; 2882 break; 2883 } 2884 return false; 2885 } 2886 case PPC::RLWINM: 2887 case PPC::RLWINM8: 2888 case PPC::RLWINM_rec: 2889 case PPC::RLWINM8_rec: { 2890 int64_t SH = MI.getOperand(2).getImm(); 2891 int64_t MB = MI.getOperand(3).getImm(); 2892 int64_t ME = MI.getOperand(4).getImm(); 2893 APInt InVal(32, SExtImm, true); 2894 InVal = InVal.rotl(SH); 2895 // Set the bits ( MB + 32 ) to ( ME + 32 ). 2896 uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2897 InVal &= Mask; 2898 // Can't replace negative values with an LI as that will sign-extend 2899 // and not clear the left bits. If we're setting the CR bit, we will use 2900 // ANDI_rec which won't sign extend, so that's safe. 2901 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 2902 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && 2903 isUInt<16>(InVal.getSExtValue())); 2904 if (ValueFits) { 2905 ReplaceWithLI = true; 2906 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; 2907 NewImm = InVal.getSExtValue(); 2908 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; 2909 break; 2910 } 2911 return false; 2912 } 2913 case PPC::ORI: 2914 case PPC::ORI8: 2915 case PPC::XORI: 2916 case PPC::XORI8: { 2917 int64_t LogicalImm = MI.getOperand(2).getImm(); 2918 int64_t Result = 0; 2919 if (Opc == PPC::ORI || Opc == PPC::ORI8) 2920 Result = LogicalImm | SExtImm; 2921 else 2922 Result = LogicalImm ^ SExtImm; 2923 if (isInt<16>(Result)) { 2924 ReplaceWithLI = true; 2925 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 2926 NewImm = Result; 2927 break; 2928 } 2929 return false; 2930 } 2931 } 2932 2933 if (ReplaceWithLI) { 2934 // We need to be careful with CR-setting instructions we're replacing. 2935 if (SetCR) { 2936 // We don't know anything about uses when we're out of SSA, so only 2937 // replace if the new immediate will be reproduced. 2938 bool ImmChanged = (SExtImm & NewImm) != NewImm; 2939 if (PostRA && ImmChanged) 2940 return false; 2941 2942 if (!PostRA) { 2943 // If the defining load-immediate has no other uses, we can just replace 2944 // the immediate with the new immediate. 2945 if (MRI->hasOneUse(DefMI->getOperand(0).getReg())) 2946 DefMI->getOperand(1).setImm(NewImm); 2947 2948 // If we're not using the GPR result of the CR-setting instruction, we 2949 // just need to and with zero/non-zero depending on the new immediate. 2950 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 2951 if (NewImm) { 2952 assert(Immediate && "Transformation converted zero to non-zero?"); 2953 NewImm = Immediate; 2954 } 2955 } 2956 else if (ImmChanged) 2957 return false; 2958 } 2959 } 2960 2961 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 2962 LLVM_DEBUG(MI.dump()); 2963 LLVM_DEBUG(dbgs() << "Fed by:\n"); 2964 LLVM_DEBUG(DefMI->dump()); 2965 LoadImmediateInfo LII; 2966 LII.Imm = NewImm; 2967 LII.Is64Bit = Is64BitLI; 2968 LII.SetCR = SetCR; 2969 // If we're setting the CR, the original load-immediate must be kept (as an 2970 // operand to ANDI_rec/ANDI8_rec). 2971 if (KilledDef && SetCR) 2972 *KilledDef = nullptr; 2973 replaceInstrWithLI(MI, LII); 2974 2975 // Fixup killed/dead flag after transformation. 2976 // Pattern: 2977 // ForwardingOperandReg = LI imm1 2978 // y = op2 imm2, ForwardingOperandReg(killed) 2979 if (IsForwardingOperandKilled) 2980 fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg); 2981 2982 LLVM_DEBUG(dbgs() << "With:\n"); 2983 LLVM_DEBUG(MI.dump()); 2984 return true; 2985 } 2986 return false; 2987 } 2988 2989 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 2990 ImmInstrInfo &III, bool PostRA) const { 2991 // The vast majority of the instructions would need their operand 2 replaced 2992 // with an immediate when switching to the reg+imm form. A marked exception 2993 // are the update form loads/stores for which a constant operand 2 would need 2994 // to turn into a displacement and move operand 1 to the operand 2 position. 2995 III.ImmOpNo = 2; 2996 III.OpNoForForwarding = 2; 2997 III.ImmWidth = 16; 2998 III.ImmMustBeMultipleOf = 1; 2999 III.TruncateImmTo = 0; 3000 III.IsSummingOperands = false; 3001 switch (Opc) { 3002 default: return false; 3003 case PPC::ADD4: 3004 case PPC::ADD8: 3005 III.SignedImm = true; 3006 III.ZeroIsSpecialOrig = 0; 3007 III.ZeroIsSpecialNew = 1; 3008 III.IsCommutative = true; 3009 III.IsSummingOperands = true; 3010 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 3011 break; 3012 case PPC::ADDC: 3013 case PPC::ADDC8: 3014 III.SignedImm = true; 3015 III.ZeroIsSpecialOrig = 0; 3016 III.ZeroIsSpecialNew = 0; 3017 III.IsCommutative = true; 3018 III.IsSummingOperands = true; 3019 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 3020 break; 3021 case PPC::ADDC_rec: 3022 III.SignedImm = true; 3023 III.ZeroIsSpecialOrig = 0; 3024 III.ZeroIsSpecialNew = 0; 3025 III.IsCommutative = true; 3026 III.IsSummingOperands = true; 3027 III.ImmOpcode = PPC::ADDIC_rec; 3028 break; 3029 case PPC::SUBFC: 3030 case PPC::SUBFC8: 3031 III.SignedImm = true; 3032 III.ZeroIsSpecialOrig = 0; 3033 III.ZeroIsSpecialNew = 0; 3034 III.IsCommutative = false; 3035 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 3036 break; 3037 case PPC::CMPW: 3038 case PPC::CMPD: 3039 III.SignedImm = true; 3040 III.ZeroIsSpecialOrig = 0; 3041 III.ZeroIsSpecialNew = 0; 3042 III.IsCommutative = false; 3043 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 3044 break; 3045 case PPC::CMPLW: 3046 case PPC::CMPLD: 3047 III.SignedImm = false; 3048 III.ZeroIsSpecialOrig = 0; 3049 III.ZeroIsSpecialNew = 0; 3050 III.IsCommutative = false; 3051 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 3052 break; 3053 case PPC::AND_rec: 3054 case PPC::AND8_rec: 3055 case PPC::OR: 3056 case PPC::OR8: 3057 case PPC::XOR: 3058 case PPC::XOR8: 3059 III.SignedImm = false; 3060 III.ZeroIsSpecialOrig = 0; 3061 III.ZeroIsSpecialNew = 0; 3062 III.IsCommutative = true; 3063 switch(Opc) { 3064 default: llvm_unreachable("Unknown opcode"); 3065 case PPC::AND_rec: 3066 III.ImmOpcode = PPC::ANDI_rec; 3067 break; 3068 case PPC::AND8_rec: 3069 III.ImmOpcode = PPC::ANDI8_rec; 3070 break; 3071 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 3072 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 3073 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 3074 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 3075 } 3076 break; 3077 case PPC::RLWNM: 3078 case PPC::RLWNM8: 3079 case PPC::RLWNM_rec: 3080 case PPC::RLWNM8_rec: 3081 case PPC::SLW: 3082 case PPC::SLW8: 3083 case PPC::SLW_rec: 3084 case PPC::SLW8_rec: 3085 case PPC::SRW: 3086 case PPC::SRW8: 3087 case PPC::SRW_rec: 3088 case PPC::SRW8_rec: 3089 case PPC::SRAW: 3090 case PPC::SRAW_rec: 3091 III.SignedImm = false; 3092 III.ZeroIsSpecialOrig = 0; 3093 III.ZeroIsSpecialNew = 0; 3094 III.IsCommutative = false; 3095 // This isn't actually true, but the instructions ignore any of the 3096 // upper bits, so any immediate loaded with an LI is acceptable. 3097 // This does not apply to shift right algebraic because a value 3098 // out of range will produce a -1/0. 3099 III.ImmWidth = 16; 3100 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || 3101 Opc == PPC::RLWNM8_rec) 3102 III.TruncateImmTo = 5; 3103 else 3104 III.TruncateImmTo = 6; 3105 switch(Opc) { 3106 default: llvm_unreachable("Unknown opcode"); 3107 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 3108 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 3109 case PPC::RLWNM_rec: 3110 III.ImmOpcode = PPC::RLWINM_rec; 3111 break; 3112 case PPC::RLWNM8_rec: 3113 III.ImmOpcode = PPC::RLWINM8_rec; 3114 break; 3115 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 3116 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 3117 case PPC::SLW_rec: 3118 III.ImmOpcode = PPC::RLWINM_rec; 3119 break; 3120 case PPC::SLW8_rec: 3121 III.ImmOpcode = PPC::RLWINM8_rec; 3122 break; 3123 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 3124 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 3125 case PPC::SRW_rec: 3126 III.ImmOpcode = PPC::RLWINM_rec; 3127 break; 3128 case PPC::SRW8_rec: 3129 III.ImmOpcode = PPC::RLWINM8_rec; 3130 break; 3131 case PPC::SRAW: 3132 III.ImmWidth = 5; 3133 III.TruncateImmTo = 0; 3134 III.ImmOpcode = PPC::SRAWI; 3135 break; 3136 case PPC::SRAW_rec: 3137 III.ImmWidth = 5; 3138 III.TruncateImmTo = 0; 3139 III.ImmOpcode = PPC::SRAWI_rec; 3140 break; 3141 } 3142 break; 3143 case PPC::RLDCL: 3144 case PPC::RLDCL_rec: 3145 case PPC::RLDCR: 3146 case PPC::RLDCR_rec: 3147 case PPC::SLD: 3148 case PPC::SLD_rec: 3149 case PPC::SRD: 3150 case PPC::SRD_rec: 3151 case PPC::SRAD: 3152 case PPC::SRAD_rec: 3153 III.SignedImm = false; 3154 III.ZeroIsSpecialOrig = 0; 3155 III.ZeroIsSpecialNew = 0; 3156 III.IsCommutative = false; 3157 // This isn't actually true, but the instructions ignore any of the 3158 // upper bits, so any immediate loaded with an LI is acceptable. 3159 // This does not apply to shift right algebraic because a value 3160 // out of range will produce a -1/0. 3161 III.ImmWidth = 16; 3162 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || 3163 Opc == PPC::RLDCR_rec) 3164 III.TruncateImmTo = 6; 3165 else 3166 III.TruncateImmTo = 7; 3167 switch(Opc) { 3168 default: llvm_unreachable("Unknown opcode"); 3169 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 3170 case PPC::RLDCL_rec: 3171 III.ImmOpcode = PPC::RLDICL_rec; 3172 break; 3173 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 3174 case PPC::RLDCR_rec: 3175 III.ImmOpcode = PPC::RLDICR_rec; 3176 break; 3177 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 3178 case PPC::SLD_rec: 3179 III.ImmOpcode = PPC::RLDICR_rec; 3180 break; 3181 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 3182 case PPC::SRD_rec: 3183 III.ImmOpcode = PPC::RLDICL_rec; 3184 break; 3185 case PPC::SRAD: 3186 III.ImmWidth = 6; 3187 III.TruncateImmTo = 0; 3188 III.ImmOpcode = PPC::SRADI; 3189 break; 3190 case PPC::SRAD_rec: 3191 III.ImmWidth = 6; 3192 III.TruncateImmTo = 0; 3193 III.ImmOpcode = PPC::SRADI_rec; 3194 break; 3195 } 3196 break; 3197 // Loads and stores: 3198 case PPC::LBZX: 3199 case PPC::LBZX8: 3200 case PPC::LHZX: 3201 case PPC::LHZX8: 3202 case PPC::LHAX: 3203 case PPC::LHAX8: 3204 case PPC::LWZX: 3205 case PPC::LWZX8: 3206 case PPC::LWAX: 3207 case PPC::LDX: 3208 case PPC::LFSX: 3209 case PPC::LFDX: 3210 case PPC::STBX: 3211 case PPC::STBX8: 3212 case PPC::STHX: 3213 case PPC::STHX8: 3214 case PPC::STWX: 3215 case PPC::STWX8: 3216 case PPC::STDX: 3217 case PPC::STFSX: 3218 case PPC::STFDX: 3219 III.SignedImm = true; 3220 III.ZeroIsSpecialOrig = 1; 3221 III.ZeroIsSpecialNew = 2; 3222 III.IsCommutative = true; 3223 III.IsSummingOperands = true; 3224 III.ImmOpNo = 1; 3225 III.OpNoForForwarding = 2; 3226 switch(Opc) { 3227 default: llvm_unreachable("Unknown opcode"); 3228 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 3229 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 3230 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 3231 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 3232 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 3233 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 3234 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 3235 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 3236 case PPC::LWAX: 3237 III.ImmOpcode = PPC::LWA; 3238 III.ImmMustBeMultipleOf = 4; 3239 break; 3240 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 3241 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 3242 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 3243 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 3244 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 3245 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 3246 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 3247 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 3248 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 3249 case PPC::STDX: 3250 III.ImmOpcode = PPC::STD; 3251 III.ImmMustBeMultipleOf = 4; 3252 break; 3253 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 3254 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 3255 } 3256 break; 3257 case PPC::LBZUX: 3258 case PPC::LBZUX8: 3259 case PPC::LHZUX: 3260 case PPC::LHZUX8: 3261 case PPC::LHAUX: 3262 case PPC::LHAUX8: 3263 case PPC::LWZUX: 3264 case PPC::LWZUX8: 3265 case PPC::LDUX: 3266 case PPC::LFSUX: 3267 case PPC::LFDUX: 3268 case PPC::STBUX: 3269 case PPC::STBUX8: 3270 case PPC::STHUX: 3271 case PPC::STHUX8: 3272 case PPC::STWUX: 3273 case PPC::STWUX8: 3274 case PPC::STDUX: 3275 case PPC::STFSUX: 3276 case PPC::STFDUX: 3277 III.SignedImm = true; 3278 III.ZeroIsSpecialOrig = 2; 3279 III.ZeroIsSpecialNew = 3; 3280 III.IsCommutative = false; 3281 III.IsSummingOperands = true; 3282 III.ImmOpNo = 2; 3283 III.OpNoForForwarding = 3; 3284 switch(Opc) { 3285 default: llvm_unreachable("Unknown opcode"); 3286 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 3287 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 3288 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 3289 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 3290 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 3291 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 3292 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 3293 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 3294 case PPC::LDUX: 3295 III.ImmOpcode = PPC::LDU; 3296 III.ImmMustBeMultipleOf = 4; 3297 break; 3298 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 3299 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 3300 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 3301 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 3302 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 3303 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 3304 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 3305 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 3306 case PPC::STDUX: 3307 III.ImmOpcode = PPC::STDU; 3308 III.ImmMustBeMultipleOf = 4; 3309 break; 3310 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 3311 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 3312 } 3313 break; 3314 // Power9 and up only. For some of these, the X-Form version has access to all 3315 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 3316 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 3317 // into or stored from is one of the VR registers. 3318 case PPC::LXVX: 3319 case PPC::LXSSPX: 3320 case PPC::LXSDX: 3321 case PPC::STXVX: 3322 case PPC::STXSSPX: 3323 case PPC::STXSDX: 3324 case PPC::XFLOADf32: 3325 case PPC::XFLOADf64: 3326 case PPC::XFSTOREf32: 3327 case PPC::XFSTOREf64: 3328 if (!Subtarget.hasP9Vector()) 3329 return false; 3330 III.SignedImm = true; 3331 III.ZeroIsSpecialOrig = 1; 3332 III.ZeroIsSpecialNew = 2; 3333 III.IsCommutative = true; 3334 III.IsSummingOperands = true; 3335 III.ImmOpNo = 1; 3336 III.OpNoForForwarding = 2; 3337 III.ImmMustBeMultipleOf = 4; 3338 switch(Opc) { 3339 default: llvm_unreachable("Unknown opcode"); 3340 case PPC::LXVX: 3341 III.ImmOpcode = PPC::LXV; 3342 III.ImmMustBeMultipleOf = 16; 3343 break; 3344 case PPC::LXSSPX: 3345 if (PostRA) { 3346 if (IsVFReg) 3347 III.ImmOpcode = PPC::LXSSP; 3348 else { 3349 III.ImmOpcode = PPC::LFS; 3350 III.ImmMustBeMultipleOf = 1; 3351 } 3352 break; 3353 } 3354 LLVM_FALLTHROUGH; 3355 case PPC::XFLOADf32: 3356 III.ImmOpcode = PPC::DFLOADf32; 3357 break; 3358 case PPC::LXSDX: 3359 if (PostRA) { 3360 if (IsVFReg) 3361 III.ImmOpcode = PPC::LXSD; 3362 else { 3363 III.ImmOpcode = PPC::LFD; 3364 III.ImmMustBeMultipleOf = 1; 3365 } 3366 break; 3367 } 3368 LLVM_FALLTHROUGH; 3369 case PPC::XFLOADf64: 3370 III.ImmOpcode = PPC::DFLOADf64; 3371 break; 3372 case PPC::STXVX: 3373 III.ImmOpcode = PPC::STXV; 3374 III.ImmMustBeMultipleOf = 16; 3375 break; 3376 case PPC::STXSSPX: 3377 if (PostRA) { 3378 if (IsVFReg) 3379 III.ImmOpcode = PPC::STXSSP; 3380 else { 3381 III.ImmOpcode = PPC::STFS; 3382 III.ImmMustBeMultipleOf = 1; 3383 } 3384 break; 3385 } 3386 LLVM_FALLTHROUGH; 3387 case PPC::XFSTOREf32: 3388 III.ImmOpcode = PPC::DFSTOREf32; 3389 break; 3390 case PPC::STXSDX: 3391 if (PostRA) { 3392 if (IsVFReg) 3393 III.ImmOpcode = PPC::STXSD; 3394 else { 3395 III.ImmOpcode = PPC::STFD; 3396 III.ImmMustBeMultipleOf = 1; 3397 } 3398 break; 3399 } 3400 LLVM_FALLTHROUGH; 3401 case PPC::XFSTOREf64: 3402 III.ImmOpcode = PPC::DFSTOREf64; 3403 break; 3404 } 3405 break; 3406 } 3407 return true; 3408 } 3409 3410 // Utility function for swaping two arbitrary operands of an instruction. 3411 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 3412 assert(Op1 != Op2 && "Cannot swap operand with itself."); 3413 3414 unsigned MaxOp = std::max(Op1, Op2); 3415 unsigned MinOp = std::min(Op1, Op2); 3416 MachineOperand MOp1 = MI.getOperand(MinOp); 3417 MachineOperand MOp2 = MI.getOperand(MaxOp); 3418 MI.RemoveOperand(std::max(Op1, Op2)); 3419 MI.RemoveOperand(std::min(Op1, Op2)); 3420 3421 // If the operands we are swapping are the two at the end (the common case) 3422 // we can just remove both and add them in the opposite order. 3423 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 3424 MI.addOperand(MOp2); 3425 MI.addOperand(MOp1); 3426 } else { 3427 // Store all operands in a temporary vector, remove them and re-add in the 3428 // right order. 3429 SmallVector<MachineOperand, 2> MOps; 3430 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 3431 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 3432 MOps.push_back(MI.getOperand(i)); 3433 MI.RemoveOperand(i); 3434 } 3435 // MOp2 needs to be added next. 3436 MI.addOperand(MOp2); 3437 // Now add the rest. 3438 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 3439 if (i == MaxOp) 3440 MI.addOperand(MOp1); 3441 else { 3442 MI.addOperand(MOps.back()); 3443 MOps.pop_back(); 3444 } 3445 } 3446 } 3447 } 3448 3449 // Check if the 'MI' that has the index OpNoForForwarding 3450 // meets the requirement described in the ImmInstrInfo. 3451 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 3452 const ImmInstrInfo &III, 3453 unsigned OpNoForForwarding 3454 ) const { 3455 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 3456 // would not work pre-RA, we can only do the check post RA. 3457 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3458 if (MRI.isSSA()) 3459 return false; 3460 3461 // Cannot do the transform if MI isn't summing the operands. 3462 if (!III.IsSummingOperands) 3463 return false; 3464 3465 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 3466 if (!III.ZeroIsSpecialOrig) 3467 return false; 3468 3469 // We cannot do the transform if the operand we are trying to replace 3470 // isn't the same as the operand the instruction allows. 3471 if (OpNoForForwarding != III.OpNoForForwarding) 3472 return false; 3473 3474 // Check if the instruction we are trying to transform really has 3475 // the special zero register as its operand. 3476 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 3477 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 3478 return false; 3479 3480 // This machine instruction is convertible if it is, 3481 // 1. summing the operands. 3482 // 2. one of the operands is special zero register. 3483 // 3. the operand we are trying to replace is allowed by the MI. 3484 return true; 3485 } 3486 3487 // Check if the DefMI is the add inst and set the ImmMO and RegMO 3488 // accordingly. 3489 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 3490 const ImmInstrInfo &III, 3491 MachineOperand *&ImmMO, 3492 MachineOperand *&RegMO) const { 3493 unsigned Opc = DefMI.getOpcode(); 3494 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 3495 return false; 3496 3497 assert(DefMI.getNumOperands() >= 3 && 3498 "Add inst must have at least three operands"); 3499 RegMO = &DefMI.getOperand(1); 3500 ImmMO = &DefMI.getOperand(2); 3501 3502 // This DefMI is elgible for forwarding if it is: 3503 // 1. add inst 3504 // 2. one of the operands is Imm/CPI/Global. 3505 return isAnImmediateOperand(*ImmMO); 3506 } 3507 3508 bool PPCInstrInfo::isRegElgibleForForwarding( 3509 const MachineOperand &RegMO, const MachineInstr &DefMI, 3510 const MachineInstr &MI, bool KillDefMI, 3511 bool &IsFwdFeederRegKilled) const { 3512 // x = addi y, imm 3513 // ... 3514 // z = lfdx 0, x -> z = lfd imm(y) 3515 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 3516 // of "y" between the DEF of "x" and "z". 3517 // The query is only valid post RA. 3518 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3519 if (MRI.isSSA()) 3520 return false; 3521 3522 Register Reg = RegMO.getReg(); 3523 3524 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 3525 MachineBasicBlock::const_reverse_iterator It = MI; 3526 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 3527 It++; 3528 for (; It != E; ++It) { 3529 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3530 return false; 3531 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3532 IsFwdFeederRegKilled = true; 3533 // Made it to DefMI without encountering a clobber. 3534 if ((&*It) == &DefMI) 3535 break; 3536 } 3537 assert((&*It) == &DefMI && "DefMI is missing"); 3538 3539 // If DefMI also defines the register to be forwarded, we can only forward it 3540 // if DefMI is being erased. 3541 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 3542 return KillDefMI; 3543 3544 return true; 3545 } 3546 3547 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 3548 const MachineInstr &DefMI, 3549 const ImmInstrInfo &III, 3550 int64_t &Imm) const { 3551 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 3552 if (DefMI.getOpcode() == PPC::ADDItocL) { 3553 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 3554 // However, we know that, it is 16-bit width, and has the alignment of 4. 3555 // Check if the instruction met the requirement. 3556 if (III.ImmMustBeMultipleOf > 4 || 3557 III.TruncateImmTo || III.ImmWidth != 16) 3558 return false; 3559 3560 // Going from XForm to DForm loads means that the displacement needs to be 3561 // not just an immediate but also a multiple of 4, or 16 depending on the 3562 // load. A DForm load cannot be represented if it is a multiple of say 2. 3563 // XForm loads do not have this restriction. 3564 if (ImmMO.isGlobal() && 3565 ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf) 3566 return false; 3567 3568 return true; 3569 } 3570 3571 if (ImmMO.isImm()) { 3572 // It is Imm, we need to check if the Imm fit the range. 3573 int64_t Immediate = ImmMO.getImm(); 3574 // Sign-extend to 64-bits. 3575 Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 3576 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 3577 3578 if (Imm % III.ImmMustBeMultipleOf) 3579 return false; 3580 if (III.TruncateImmTo) 3581 Imm &= ((1 << III.TruncateImmTo) - 1); 3582 if (III.SignedImm) { 3583 APInt ActualValue(64, Imm, true); 3584 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3585 return false; 3586 } else { 3587 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3588 if ((uint64_t)Imm > UnsignedMax) 3589 return false; 3590 } 3591 } 3592 else 3593 return false; 3594 3595 // This ImmMO is forwarded if it meets the requriement describle 3596 // in ImmInstrInfo 3597 return true; 3598 } 3599 3600 // If an X-Form instruction is fed by an add-immediate and one of its operands 3601 // is the literal zero, attempt to forward the source of the add-immediate to 3602 // the corresponding D-Form instruction with the displacement coming from 3603 // the immediate being added. 3604 bool PPCInstrInfo::transformToImmFormFedByAdd( 3605 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 3606 MachineInstr &DefMI, bool KillDefMI) const { 3607 // RegMO ImmMO 3608 // | | 3609 // x = addi reg, imm <----- DefMI 3610 // y = op 0 , x <----- MI 3611 // | 3612 // OpNoForForwarding 3613 // Check if the MI meet the requirement described in the III. 3614 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 3615 return false; 3616 3617 // Check if the DefMI meet the requirement 3618 // described in the III. If yes, set the ImmMO and RegMO accordingly. 3619 MachineOperand *ImmMO = nullptr; 3620 MachineOperand *RegMO = nullptr; 3621 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 3622 return false; 3623 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 3624 3625 // As we get the Imm operand now, we need to check if the ImmMO meet 3626 // the requirement described in the III. If yes set the Imm. 3627 int64_t Imm = 0; 3628 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 3629 return false; 3630 3631 bool IsFwdFeederRegKilled = false; 3632 // Check if the RegMO can be forwarded to MI. 3633 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 3634 IsFwdFeederRegKilled)) 3635 return false; 3636 3637 // Get killed info in case fixup needed after transformation. 3638 unsigned ForwardKilledOperandReg = ~0U; 3639 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3640 bool PostRA = !MRI.isSSA(); 3641 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 3642 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 3643 3644 // We know that, the MI and DefMI both meet the pattern, and 3645 // the Imm also meet the requirement with the new Imm-form. 3646 // It is safe to do the transformation now. 3647 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 3648 LLVM_DEBUG(MI.dump()); 3649 LLVM_DEBUG(dbgs() << "Fed by:\n"); 3650 LLVM_DEBUG(DefMI.dump()); 3651 3652 // Update the base reg first. 3653 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 3654 false, false, 3655 RegMO->isKill()); 3656 3657 // Then, update the imm. 3658 if (ImmMO->isImm()) { 3659 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 3660 // directly. 3661 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 3662 } 3663 else { 3664 // Otherwise, it is Constant Pool Index(CPI) or Global, 3665 // which is relocation in fact. We need to replace the special zero 3666 // register with ImmMO. 3667 // Before that, we need to fixup the target flags for imm. 3668 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 3669 if (DefMI.getOpcode() == PPC::ADDItocL) 3670 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 3671 3672 // MI didn't have the interface such as MI.setOperand(i) though 3673 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 3674 // ImmMO, we need to remove ZERO operand and all the operands behind it, 3675 // and, add the ImmMO, then, move back all the operands behind ZERO. 3676 SmallVector<MachineOperand, 2> MOps; 3677 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 3678 MOps.push_back(MI.getOperand(i)); 3679 MI.RemoveOperand(i); 3680 } 3681 3682 // Remove the last MO in the list, which is ZERO operand in fact. 3683 MOps.pop_back(); 3684 // Add the imm operand. 3685 MI.addOperand(*ImmMO); 3686 // Now add the rest back. 3687 for (auto &MO : MOps) 3688 MI.addOperand(MO); 3689 } 3690 3691 // Update the opcode. 3692 MI.setDesc(get(III.ImmOpcode)); 3693 3694 // Fix up killed/dead flag after transformation. 3695 // Pattern 1: 3696 // x = ADD KilledFwdFeederReg, imm 3697 // n = opn KilledFwdFeederReg(killed), regn 3698 // y = XOP 0, x 3699 // Pattern 2: 3700 // x = ADD reg(killed), imm 3701 // y = XOP 0, x 3702 if (IsFwdFeederRegKilled || RegMO->isKill()) 3703 fixupIsDeadOrKill(DefMI, MI, RegMO->getReg()); 3704 // Pattern 3: 3705 // ForwardKilledOperandReg = ADD reg, imm 3706 // y = XOP 0, ForwardKilledOperandReg(killed) 3707 if (ForwardKilledOperandReg != ~0U) 3708 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3709 3710 LLVM_DEBUG(dbgs() << "With:\n"); 3711 LLVM_DEBUG(MI.dump()); 3712 3713 return true; 3714 } 3715 3716 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 3717 const ImmInstrInfo &III, 3718 unsigned ConstantOpNo, 3719 MachineInstr &DefMI, 3720 int64_t Imm) const { 3721 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3722 bool PostRA = !MRI.isSSA(); 3723 // Exit early if we can't convert this. 3724 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 3725 return false; 3726 if (Imm % III.ImmMustBeMultipleOf) 3727 return false; 3728 if (III.TruncateImmTo) 3729 Imm &= ((1 << III.TruncateImmTo) - 1); 3730 if (III.SignedImm) { 3731 APInt ActualValue(64, Imm, true); 3732 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3733 return false; 3734 } else { 3735 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3736 if ((uint64_t)Imm > UnsignedMax) 3737 return false; 3738 } 3739 3740 // If we're post-RA, the instructions don't agree on whether register zero is 3741 // special, we can transform this as long as the register operand that will 3742 // end up in the location where zero is special isn't R0. 3743 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3744 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 3745 III.ZeroIsSpecialNew + 1; 3746 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 3747 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3748 // If R0 is in the operand where zero is special for the new instruction, 3749 // it is unsafe to transform if the constant operand isn't that operand. 3750 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 3751 ConstantOpNo != III.ZeroIsSpecialNew) 3752 return false; 3753 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 3754 ConstantOpNo != PosForOrigZero) 3755 return false; 3756 } 3757 3758 // Get killed info in case fixup needed after transformation. 3759 unsigned ForwardKilledOperandReg = ~0U; 3760 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 3761 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 3762 3763 unsigned Opc = MI.getOpcode(); 3764 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || 3765 Opc == PPC::SRW || Opc == PPC::SRW_rec || 3766 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || 3767 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; 3768 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || 3769 Opc == PPC::SRD || Opc == PPC::SRD_rec; 3770 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || 3771 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; 3772 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || 3773 Opc == PPC::SRD_rec; 3774 3775 MI.setDesc(get(III.ImmOpcode)); 3776 if (ConstantOpNo == III.OpNoForForwarding) { 3777 // Converting shifts to immediate form is a bit tricky since they may do 3778 // one of three things: 3779 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 3780 // 2. If the shift amount is zero, the result is unchanged (save for maybe 3781 // setting CR0) 3782 // 3. If the shift amount is in [1, OpSize), it's just a shift 3783 if (SpecialShift32 || SpecialShift64) { 3784 LoadImmediateInfo LII; 3785 LII.Imm = 0; 3786 LII.SetCR = SetCR; 3787 LII.Is64Bit = SpecialShift64; 3788 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 3789 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 3790 replaceInstrWithLI(MI, LII); 3791 // Shifts by zero don't change the value. If we don't need to set CR0, 3792 // just convert this to a COPY. Can't do this post-RA since we've already 3793 // cleaned up the copies. 3794 else if (!SetCR && ShAmt == 0 && !PostRA) { 3795 MI.RemoveOperand(2); 3796 MI.setDesc(get(PPC::COPY)); 3797 } else { 3798 // The 32 bit and 64 bit instructions are quite different. 3799 if (SpecialShift32) { 3800 // Left shifts use (N, 0, 31-N). 3801 // Right shifts use (32-N, N, 31) if 0 < N < 32. 3802 // use (0, 0, 31) if N == 0. 3803 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; 3804 uint64_t MB = RightShift ? ShAmt : 0; 3805 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 3806 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3807 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 3808 .addImm(ME); 3809 } else { 3810 // Left shifts use (N, 63-N). 3811 // Right shifts use (64-N, N) if 0 < N < 64. 3812 // use (0, 0) if N == 0. 3813 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; 3814 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 3815 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3816 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 3817 } 3818 } 3819 } else 3820 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3821 } 3822 // Convert commutative instructions (switch the operands and convert the 3823 // desired one to an immediate. 3824 else if (III.IsCommutative) { 3825 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3826 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 3827 } else 3828 llvm_unreachable("Should have exited early!"); 3829 3830 // For instructions for which the constant register replaces a different 3831 // operand than where the immediate goes, we need to swap them. 3832 if (III.OpNoForForwarding != III.ImmOpNo) 3833 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 3834 3835 // If the special R0/X0 register index are different for original instruction 3836 // and new instruction, we need to fix up the register class in new 3837 // instruction. 3838 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3839 if (III.ZeroIsSpecialNew) { 3840 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 3841 // need to fix up register class. 3842 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3843 if (Register::isVirtualRegister(RegToModify)) { 3844 const TargetRegisterClass *NewRC = 3845 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 3846 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 3847 MRI.setRegClass(RegToModify, NewRC); 3848 } 3849 } 3850 } 3851 3852 // Fix up killed/dead flag after transformation. 3853 // Pattern: 3854 // ForwardKilledOperandReg = LI imm 3855 // y = XOP reg, ForwardKilledOperandReg(killed) 3856 if (ForwardKilledOperandReg != ~0U) 3857 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3858 return true; 3859 } 3860 3861 const TargetRegisterClass * 3862 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 3863 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 3864 return &PPC::VSRCRegClass; 3865 return RC; 3866 } 3867 3868 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 3869 return PPC::getRecordFormOpcode(Opcode); 3870 } 3871 3872 // This function returns true if the machine instruction 3873 // always outputs a value by sign-extending a 32 bit value, 3874 // i.e. 0 to 31-th bits are same as 32-th bit. 3875 static bool isSignExtendingOp(const MachineInstr &MI) { 3876 int Opcode = MI.getOpcode(); 3877 if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS || 3878 Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec || 3879 Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA || 3880 Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 3881 Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 || 3882 Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3883 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU || 3884 Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3885 Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 || 3886 Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3887 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB || 3888 Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH || 3889 Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 || 3890 Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW || 3891 Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 || 3892 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 3893 Opcode == PPC::EXTSB8_32_64) 3894 return true; 3895 3896 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 3897 return true; 3898 3899 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 3900 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && 3901 MI.getOperand(3).getImm() > 0 && 3902 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3903 return true; 3904 3905 return false; 3906 } 3907 3908 // This function returns true if the machine instruction 3909 // always outputs zeros in higher 32 bits. 3910 static bool isZeroExtendingOp(const MachineInstr &MI) { 3911 int Opcode = MI.getOpcode(); 3912 // The 16-bit immediate is sign-extended in li/lis. 3913 // If the most significant bit is zero, all higher bits are zero. 3914 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3915 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 3916 int64_t Imm = MI.getOperand(1).getImm(); 3917 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 3918 return true; 3919 } 3920 3921 // We have some variations of rotate-and-mask instructions 3922 // that clear higher 32-bits. 3923 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 3924 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || 3925 Opcode == PPC::RLDICL_32_64) && 3926 MI.getOperand(3).getImm() >= 32) 3927 return true; 3928 3929 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 3930 MI.getOperand(3).getImm() >= 32 && 3931 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 3932 return true; 3933 3934 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 3935 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 3936 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 3937 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3938 return true; 3939 3940 // There are other instructions that clear higher 32-bits. 3941 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec || 3942 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec || 3943 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 3944 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec || 3945 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec || 3946 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW || 3947 Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec || 3948 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI || 3949 Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI || 3950 Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX || 3951 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX || 3952 Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3953 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ || 3954 Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 3955 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 || 3956 Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 3957 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 || 3958 Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 3959 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3960 Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec || 3961 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec || 3962 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec || 3963 Opcode == PPC::MFVSRWZ) 3964 return true; 3965 3966 return false; 3967 } 3968 3969 // This function returns true if the input MachineInstr is a TOC save 3970 // instruction. 3971 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 3972 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 3973 return false; 3974 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 3975 unsigned StackOffset = MI.getOperand(1).getImm(); 3976 Register StackReg = MI.getOperand(2).getReg(); 3977 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) 3978 return true; 3979 3980 return false; 3981 } 3982 3983 // We limit the max depth to track incoming values of PHIs or binary ops 3984 // (e.g. AND) to avoid excessive cost. 3985 const unsigned MAX_DEPTH = 1; 3986 3987 bool 3988 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 3989 const unsigned Depth) const { 3990 const MachineFunction *MF = MI.getParent()->getParent(); 3991 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 3992 3993 // If we know this instruction returns sign- or zero-extended result, 3994 // return true. 3995 if (SignExt ? isSignExtendingOp(MI): 3996 isZeroExtendingOp(MI)) 3997 return true; 3998 3999 switch (MI.getOpcode()) { 4000 case PPC::COPY: { 4001 Register SrcReg = MI.getOperand(1).getReg(); 4002 4003 // In both ELFv1 and v2 ABI, method parameters and the return value 4004 // are sign- or zero-extended. 4005 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 4006 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 4007 // We check the ZExt/SExt flags for a method parameter. 4008 if (MI.getParent()->getBasicBlock() == 4009 &MF->getFunction().getEntryBlock()) { 4010 Register VReg = MI.getOperand(0).getReg(); 4011 if (MF->getRegInfo().isLiveIn(VReg)) 4012 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 4013 FuncInfo->isLiveInZExt(VReg); 4014 } 4015 4016 // For a method return value, we check the ZExt/SExt flags in attribute. 4017 // We assume the following code sequence for method call. 4018 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 4019 // BL8_NOP @func,... 4020 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 4021 // %5 = COPY %x3; G8RC:%5 4022 if (SrcReg == PPC::X3) { 4023 const MachineBasicBlock *MBB = MI.getParent(); 4024 MachineBasicBlock::const_instr_iterator II = 4025 MachineBasicBlock::const_instr_iterator(&MI); 4026 if (II != MBB->instr_begin() && 4027 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 4028 const MachineInstr &CallMI = *(--II); 4029 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 4030 const Function *CalleeFn = 4031 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 4032 if (!CalleeFn) 4033 return false; 4034 const IntegerType *IntTy = 4035 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 4036 const AttributeSet &Attrs = 4037 CalleeFn->getAttributes().getRetAttributes(); 4038 if (IntTy && IntTy->getBitWidth() <= 32) 4039 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 4040 Attribute::ZExt); 4041 } 4042 } 4043 } 4044 } 4045 4046 // If this is a copy from another register, we recursively check source. 4047 if (!Register::isVirtualRegister(SrcReg)) 4048 return false; 4049 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4050 if (SrcMI != NULL) 4051 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 4052 4053 return false; 4054 } 4055 4056 case PPC::ANDI_rec: 4057 case PPC::ANDIS_rec: 4058 case PPC::ORI: 4059 case PPC::ORIS: 4060 case PPC::XORI: 4061 case PPC::XORIS: 4062 case PPC::ANDI8_rec: 4063 case PPC::ANDIS8_rec: 4064 case PPC::ORI8: 4065 case PPC::ORIS8: 4066 case PPC::XORI8: 4067 case PPC::XORIS8: { 4068 // logical operation with 16-bit immediate does not change the upper bits. 4069 // So, we track the operand register as we do for register copy. 4070 Register SrcReg = MI.getOperand(1).getReg(); 4071 if (!Register::isVirtualRegister(SrcReg)) 4072 return false; 4073 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4074 if (SrcMI != NULL) 4075 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 4076 4077 return false; 4078 } 4079 4080 // If all incoming values are sign-/zero-extended, 4081 // the output of OR, ISEL or PHI is also sign-/zero-extended. 4082 case PPC::OR: 4083 case PPC::OR8: 4084 case PPC::ISEL: 4085 case PPC::PHI: { 4086 if (Depth >= MAX_DEPTH) 4087 return false; 4088 4089 // The input registers for PHI are operand 1, 3, ... 4090 // The input registers for others are operand 1 and 2. 4091 unsigned E = 3, D = 1; 4092 if (MI.getOpcode() == PPC::PHI) { 4093 E = MI.getNumOperands(); 4094 D = 2; 4095 } 4096 4097 for (unsigned I = 1; I != E; I += D) { 4098 if (MI.getOperand(I).isReg()) { 4099 Register SrcReg = MI.getOperand(I).getReg(); 4100 if (!Register::isVirtualRegister(SrcReg)) 4101 return false; 4102 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4103 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 4104 return false; 4105 } 4106 else 4107 return false; 4108 } 4109 return true; 4110 } 4111 4112 // If at least one of the incoming values of an AND is zero extended 4113 // then the output is also zero-extended. If both of the incoming values 4114 // are sign-extended then the output is also sign extended. 4115 case PPC::AND: 4116 case PPC::AND8: { 4117 if (Depth >= MAX_DEPTH) 4118 return false; 4119 4120 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 4121 4122 Register SrcReg1 = MI.getOperand(1).getReg(); 4123 Register SrcReg2 = MI.getOperand(2).getReg(); 4124 4125 if (!Register::isVirtualRegister(SrcReg1) || 4126 !Register::isVirtualRegister(SrcReg2)) 4127 return false; 4128 4129 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 4130 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 4131 if (!MISrc1 || !MISrc2) 4132 return false; 4133 4134 if(SignExt) 4135 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 4136 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4137 else 4138 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 4139 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4140 } 4141 4142 default: 4143 break; 4144 } 4145 return false; 4146 } 4147 4148 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 4149 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 4150 } 4151 4152 namespace { 4153 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 4154 MachineInstr *Loop, *EndLoop, *LoopCount; 4155 MachineFunction *MF; 4156 const TargetInstrInfo *TII; 4157 int64_t TripCount; 4158 4159 public: 4160 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 4161 MachineInstr *LoopCount) 4162 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 4163 MF(Loop->getParent()->getParent()), 4164 TII(MF->getSubtarget().getInstrInfo()) { 4165 // Inspect the Loop instruction up-front, as it may be deleted when we call 4166 // createTripCountGreaterCondition. 4167 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 4168 TripCount = LoopCount->getOperand(1).getImm(); 4169 else 4170 TripCount = -1; 4171 } 4172 4173 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 4174 // Only ignore the terminator. 4175 return MI == EndLoop; 4176 } 4177 4178 Optional<bool> 4179 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 4180 SmallVectorImpl<MachineOperand> &Cond) override { 4181 if (TripCount == -1) { 4182 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4183 // so we don't need to generate any thing here. 4184 Cond.push_back(MachineOperand::CreateImm(0)); 4185 Cond.push_back(MachineOperand::CreateReg( 4186 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 4187 true)); 4188 return {}; 4189 } 4190 4191 return TripCount > TC; 4192 } 4193 4194 void setPreheader(MachineBasicBlock *NewPreheader) override { 4195 // Do nothing. We want the LOOP setup instruction to stay in the *old* 4196 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 4197 } 4198 4199 void adjustTripCount(int TripCountAdjust) override { 4200 // If the loop trip count is a compile-time value, then just change the 4201 // value. 4202 if (LoopCount->getOpcode() == PPC::LI8 || 4203 LoopCount->getOpcode() == PPC::LI) { 4204 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 4205 LoopCount->getOperand(1).setImm(TripCount); 4206 return; 4207 } 4208 4209 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4210 // so we don't need to generate any thing here. 4211 } 4212 4213 void disposed() override { 4214 Loop->eraseFromParent(); 4215 // Ensure the loop setup instruction is deleted too. 4216 LoopCount->eraseFromParent(); 4217 } 4218 }; 4219 } // namespace 4220 4221 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 4222 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 4223 // We really "analyze" only hardware loops right now. 4224 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 4225 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 4226 if (Preheader == LoopBB) 4227 Preheader = *std::next(LoopBB->pred_begin()); 4228 MachineFunction *MF = Preheader->getParent(); 4229 4230 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 4231 SmallPtrSet<MachineBasicBlock *, 8> Visited; 4232 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 4233 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 4234 MachineRegisterInfo &MRI = MF->getRegInfo(); 4235 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 4236 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 4237 } 4238 } 4239 return nullptr; 4240 } 4241 4242 MachineInstr *PPCInstrInfo::findLoopInstr( 4243 MachineBasicBlock &PreHeader, 4244 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 4245 4246 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 4247 4248 // The loop set-up instruction should be in preheader 4249 for (auto &I : PreHeader.instrs()) 4250 if (I.getOpcode() == LOOPi) 4251 return &I; 4252 return nullptr; 4253 } 4254 4255 // Return true if get the base operand, byte offset of an instruction and the 4256 // memory width. Width is the size of memory that is being loaded/stored. 4257 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 4258 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, 4259 unsigned &Width, const TargetRegisterInfo *TRI) const { 4260 if (!LdSt.mayLoadOrStore()) 4261 return false; 4262 4263 // Handle only loads/stores with base register followed by immediate offset. 4264 if (LdSt.getNumExplicitOperands() != 3) 4265 return false; 4266 if (!LdSt.getOperand(1).isImm() || !LdSt.getOperand(2).isReg()) 4267 return false; 4268 4269 if (!LdSt.hasOneMemOperand()) 4270 return false; 4271 4272 Width = (*LdSt.memoperands_begin())->getSize(); 4273 Offset = LdSt.getOperand(1).getImm(); 4274 BaseReg = &LdSt.getOperand(2); 4275 return true; 4276 } 4277 4278 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 4279 const MachineInstr &MIa, const MachineInstr &MIb) const { 4280 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 4281 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 4282 4283 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 4284 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 4285 return false; 4286 4287 // Retrieve the base register, offset from the base register and width. Width 4288 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 4289 // base registers are identical, and the offset of a lower memory access + 4290 // the width doesn't overlap the offset of a higher memory access, 4291 // then the memory accesses are different. 4292 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4293 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 4294 int64_t OffsetA = 0, OffsetB = 0; 4295 unsigned int WidthA = 0, WidthB = 0; 4296 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 4297 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 4298 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 4299 int LowOffset = std::min(OffsetA, OffsetB); 4300 int HighOffset = std::max(OffsetA, OffsetB); 4301 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 4302 if (LowOffset + LowWidth <= HighOffset) 4303 return true; 4304 } 4305 } 4306 return false; 4307 } 4308