1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCInstrInfo.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCHazardRecognizers.h"
18 #include "PPCInstrBuilder.h"
19 #include "PPCMachineFunctionInfo.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCInst.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/raw_ostream.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "ppc-instr-info"
44 
45 #define GET_INSTRMAP_INFO
46 #define GET_INSTRINFO_CTOR_DTOR
47 #include "PPCGenInstrInfo.inc"
48 
49 static cl::
50 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
51             cl::desc("Disable analysis for CTR loops"));
52 
53 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
54 cl::desc("Disable compare instruction optimization"), cl::Hidden);
55 
56 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
57 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
58 cl::Hidden);
59 
60 static cl::opt<bool>
61 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
62   cl::desc("Use the old (incorrect) instruction latency calculation"));
63 
64 // Pin the vtable to this file.
65 void PPCInstrInfo::anchor() {}
66 
67 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
68     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
69       Subtarget(STI), RI(STI.getTargetMachine()) {}
70 
71 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
72 /// this target when scheduling the DAG.
73 ScheduleHazardRecognizer *
74 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
75                                            const ScheduleDAG *DAG) const {
76   unsigned Directive =
77       static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
78   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
79       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
80     const InstrItineraryData *II =
81         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
82     return new ScoreboardHazardRecognizer(II, DAG);
83   }
84 
85   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
86 }
87 
88 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
89 /// to use for this target when scheduling the DAG.
90 ScheduleHazardRecognizer *
91 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
92                                                  const ScheduleDAG *DAG) const {
93   unsigned Directive =
94       DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
95 
96   // FIXME: Leaving this as-is until we have POWER9 scheduling info
97   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
98     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
99 
100   // Most subtargets use a PPC970 recognizer.
101   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
102       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
103     assert(DAG->TII && "No InstrInfo?");
104 
105     return new PPCHazardRecognizer970(*DAG);
106   }
107 
108   return new ScoreboardHazardRecognizer(II, DAG);
109 }
110 
111 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
112                                        const MachineInstr *MI,
113                                        unsigned *PredCost) const {
114   if (!ItinData || UseOldLatencyCalc)
115     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
116 
117   // The default implementation of getInstrLatency calls getStageLatency, but
118   // getStageLatency does not do the right thing for us. While we have
119   // itinerary, most cores are fully pipelined, and so the itineraries only
120   // express the first part of the pipeline, not every stage. Instead, we need
121   // to use the listed output operand cycle number (using operand 0 here, which
122   // is an output).
123 
124   unsigned Latency = 1;
125   unsigned DefClass = MI->getDesc().getSchedClass();
126   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
127     const MachineOperand &MO = MI->getOperand(i);
128     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
129       continue;
130 
131     int Cycle = ItinData->getOperandCycle(DefClass, i);
132     if (Cycle < 0)
133       continue;
134 
135     Latency = std::max(Latency, (unsigned) Cycle);
136   }
137 
138   return Latency;
139 }
140 
141 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
142                                     const MachineInstr *DefMI, unsigned DefIdx,
143                                     const MachineInstr *UseMI,
144                                     unsigned UseIdx) const {
145   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
146                                                    UseMI, UseIdx);
147 
148   if (!DefMI->getParent())
149     return Latency;
150 
151   const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
152   unsigned Reg = DefMO.getReg();
153 
154   bool IsRegCR;
155   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
156     const MachineRegisterInfo *MRI =
157       &DefMI->getParent()->getParent()->getRegInfo();
158     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
159               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
160   } else {
161     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
162               PPC::CRBITRCRegClass.contains(Reg);
163   }
164 
165   if (UseMI->isBranch() && IsRegCR) {
166     if (Latency < 0)
167       Latency = getInstrLatency(ItinData, DefMI);
168 
169     // On some cores, there is an additional delay between writing to a condition
170     // register, and using it from a branch.
171     unsigned Directive = Subtarget.getDarwinDirective();
172     switch (Directive) {
173     default: break;
174     case PPC::DIR_7400:
175     case PPC::DIR_750:
176     case PPC::DIR_970:
177     case PPC::DIR_E5500:
178     case PPC::DIR_PWR4:
179     case PPC::DIR_PWR5:
180     case PPC::DIR_PWR5X:
181     case PPC::DIR_PWR6:
182     case PPC::DIR_PWR6X:
183     case PPC::DIR_PWR7:
184     case PPC::DIR_PWR8:
185     // FIXME: Is this needed for POWER9?
186       Latency += 2;
187       break;
188     }
189   }
190 
191   return Latency;
192 }
193 
194 // This function does not list all associative and commutative operations, but
195 // only those worth feeding through the machine combiner in an attempt to
196 // reduce the critical path. Mostly, this means floating-point operations,
197 // because they have high latencies (compared to other operations, such and
198 // and/or, which are also associative and commutative, but have low latencies).
199 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
200   switch (Inst.getOpcode()) {
201   // FP Add:
202   case PPC::FADD:
203   case PPC::FADDS:
204   // FP Multiply:
205   case PPC::FMUL:
206   case PPC::FMULS:
207   // Altivec Add:
208   case PPC::VADDFP:
209   // VSX Add:
210   case PPC::XSADDDP:
211   case PPC::XVADDDP:
212   case PPC::XVADDSP:
213   case PPC::XSADDSP:
214   // VSX Multiply:
215   case PPC::XSMULDP:
216   case PPC::XVMULDP:
217   case PPC::XVMULSP:
218   case PPC::XSMULSP:
219   // QPX Add:
220   case PPC::QVFADD:
221   case PPC::QVFADDS:
222   case PPC::QVFADDSs:
223   // QPX Multiply:
224   case PPC::QVFMUL:
225   case PPC::QVFMULS:
226   case PPC::QVFMULSs:
227     return true;
228   default:
229     return false;
230   }
231 }
232 
233 bool PPCInstrInfo::getMachineCombinerPatterns(
234     MachineInstr &Root,
235     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
236   // Using the machine combiner in this way is potentially expensive, so
237   // restrict to when aggressive optimizations are desired.
238   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
239     return false;
240 
241   // FP reassociation is only legal when we don't need strict IEEE semantics.
242   if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
243     return false;
244 
245   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
246 }
247 
248 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
249 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
250                                          unsigned &SrcReg, unsigned &DstReg,
251                                          unsigned &SubIdx) const {
252   switch (MI.getOpcode()) {
253   default: return false;
254   case PPC::EXTSW:
255   case PPC::EXTSW_32_64:
256     SrcReg = MI.getOperand(1).getReg();
257     DstReg = MI.getOperand(0).getReg();
258     SubIdx = PPC::sub_32;
259     return true;
260   }
261 }
262 
263 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
264                                            int &FrameIndex) const {
265   // Note: This list must be kept consistent with LoadRegFromStackSlot.
266   switch (MI->getOpcode()) {
267   default: break;
268   case PPC::LD:
269   case PPC::LWZ:
270   case PPC::LFS:
271   case PPC::LFD:
272   case PPC::RESTORE_CR:
273   case PPC::RESTORE_CRBIT:
274   case PPC::LVX:
275   case PPC::LXVD2X:
276   case PPC::QVLFDX:
277   case PPC::QVLFSXs:
278   case PPC::QVLFDXb:
279   case PPC::RESTORE_VRSAVE:
280     // Check for the operands added by addFrameReference (the immediate is the
281     // offset which defaults to 0).
282     if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
283         MI->getOperand(2).isFI()) {
284       FrameIndex = MI->getOperand(2).getIndex();
285       return MI->getOperand(0).getReg();
286     }
287     break;
288   }
289   return 0;
290 }
291 
292 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
293                                           int &FrameIndex) const {
294   // Note: This list must be kept consistent with StoreRegToStackSlot.
295   switch (MI->getOpcode()) {
296   default: break;
297   case PPC::STD:
298   case PPC::STW:
299   case PPC::STFS:
300   case PPC::STFD:
301   case PPC::SPILL_CR:
302   case PPC::SPILL_CRBIT:
303   case PPC::STVX:
304   case PPC::STXVD2X:
305   case PPC::QVSTFDX:
306   case PPC::QVSTFSXs:
307   case PPC::QVSTFDXb:
308   case PPC::SPILL_VRSAVE:
309     // Check for the operands added by addFrameReference (the immediate is the
310     // offset which defaults to 0).
311     if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
312         MI->getOperand(2).isFI()) {
313       FrameIndex = MI->getOperand(2).getIndex();
314       return MI->getOperand(0).getReg();
315     }
316     break;
317   }
318   return 0;
319 }
320 
321 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr *MI,
322                                                    bool NewMI,
323                                                    unsigned OpIdx1,
324                                                    unsigned OpIdx2) const {
325   MachineFunction &MF = *MI->getParent()->getParent();
326 
327   // Normal instructions can be commuted the obvious way.
328   if (MI->getOpcode() != PPC::RLWIMI &&
329       MI->getOpcode() != PPC::RLWIMIo)
330     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
331   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
332   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
333   // changing the relative order of the mask operands might change what happens
334   // to the high-bits of the mask (and, thus, the result).
335 
336   // Cannot commute if it has a non-zero rotate count.
337   if (MI->getOperand(3).getImm() != 0)
338     return nullptr;
339 
340   // If we have a zero rotate count, we have:
341   //   M = mask(MB,ME)
342   //   Op0 = (Op1 & ~M) | (Op2 & M)
343   // Change this to:
344   //   M = mask((ME+1)&31, (MB-1)&31)
345   //   Op0 = (Op2 & ~M) | (Op1 & M)
346 
347   // Swap op1/op2
348   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
349          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
350   unsigned Reg0 = MI->getOperand(0).getReg();
351   unsigned Reg1 = MI->getOperand(1).getReg();
352   unsigned Reg2 = MI->getOperand(2).getReg();
353   unsigned SubReg1 = MI->getOperand(1).getSubReg();
354   unsigned SubReg2 = MI->getOperand(2).getSubReg();
355   bool Reg1IsKill = MI->getOperand(1).isKill();
356   bool Reg2IsKill = MI->getOperand(2).isKill();
357   bool ChangeReg0 = false;
358   // If machine instrs are no longer in two-address forms, update
359   // destination register as well.
360   if (Reg0 == Reg1) {
361     // Must be two address instruction!
362     assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
363            "Expecting a two-address instruction!");
364     assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
365     Reg2IsKill = false;
366     ChangeReg0 = true;
367   }
368 
369   // Masks.
370   unsigned MB = MI->getOperand(4).getImm();
371   unsigned ME = MI->getOperand(5).getImm();
372 
373   // We can't commute a trivial mask (there is no way to represent an all-zero
374   // mask).
375   if (MB == 0 && ME == 31)
376     return nullptr;
377 
378   if (NewMI) {
379     // Create a new instruction.
380     unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
381     bool Reg0IsDead = MI->getOperand(0).isDead();
382     return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
383       .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
384       .addReg(Reg2, getKillRegState(Reg2IsKill))
385       .addReg(Reg1, getKillRegState(Reg1IsKill))
386       .addImm((ME+1) & 31)
387       .addImm((MB-1) & 31);
388   }
389 
390   if (ChangeReg0) {
391     MI->getOperand(0).setReg(Reg2);
392     MI->getOperand(0).setSubReg(SubReg2);
393   }
394   MI->getOperand(2).setReg(Reg1);
395   MI->getOperand(1).setReg(Reg2);
396   MI->getOperand(2).setSubReg(SubReg1);
397   MI->getOperand(1).setSubReg(SubReg2);
398   MI->getOperand(2).setIsKill(Reg1IsKill);
399   MI->getOperand(1).setIsKill(Reg2IsKill);
400 
401   // Swap the mask around.
402   MI->getOperand(4).setImm((ME+1) & 31);
403   MI->getOperand(5).setImm((MB-1) & 31);
404   return MI;
405 }
406 
407 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
408                                          unsigned &SrcOpIdx2) const {
409   // For VSX A-Type FMA instructions, it is the first two operands that can be
410   // commuted, however, because the non-encoded tied input operand is listed
411   // first, the operands to swap are actually the second and third.
412 
413   int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
414   if (AltOpc == -1)
415     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
416 
417   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
418   // and SrcOpIdx2.
419   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
420 }
421 
422 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
423                               MachineBasicBlock::iterator MI) const {
424   // This function is used for scheduling, and the nop wanted here is the type
425   // that terminates dispatch groups on the POWER cores.
426   unsigned Directive = Subtarget.getDarwinDirective();
427   unsigned Opcode;
428   switch (Directive) {
429   default:            Opcode = PPC::NOP; break;
430   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
431   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
432   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
433   // FIXME: Update when POWER9 scheduling model is ready.
434   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
435   }
436 
437   DebugLoc DL;
438   BuildMI(MBB, MI, DL, get(Opcode));
439 }
440 
441 /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
442 void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
443   NopInst.setOpcode(PPC::NOP);
444 }
445 
446 // Branch analysis.
447 // Note: If the condition register is set to CTR or CTR8 then this is a
448 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
449 bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
450                                  MachineBasicBlock *&FBB,
451                                  SmallVectorImpl<MachineOperand> &Cond,
452                                  bool AllowModify) const {
453   bool isPPC64 = Subtarget.isPPC64();
454 
455   // If the block has no terminators, it just falls into the block after it.
456   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
457   if (I == MBB.end())
458     return false;
459 
460   if (!isUnpredicatedTerminator(*I))
461     return false;
462 
463   // Get the last instruction in the block.
464   MachineInstr *LastInst = I;
465 
466   // If there is only one terminator instruction, process it.
467   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
468     if (LastInst->getOpcode() == PPC::B) {
469       if (!LastInst->getOperand(0).isMBB())
470         return true;
471       TBB = LastInst->getOperand(0).getMBB();
472       return false;
473     } else if (LastInst->getOpcode() == PPC::BCC) {
474       if (!LastInst->getOperand(2).isMBB())
475         return true;
476       // Block ends with fall-through condbranch.
477       TBB = LastInst->getOperand(2).getMBB();
478       Cond.push_back(LastInst->getOperand(0));
479       Cond.push_back(LastInst->getOperand(1));
480       return false;
481     } else if (LastInst->getOpcode() == PPC::BC) {
482       if (!LastInst->getOperand(1).isMBB())
483         return true;
484       // Block ends with fall-through condbranch.
485       TBB = LastInst->getOperand(1).getMBB();
486       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
487       Cond.push_back(LastInst->getOperand(0));
488       return false;
489     } else if (LastInst->getOpcode() == PPC::BCn) {
490       if (!LastInst->getOperand(1).isMBB())
491         return true;
492       // Block ends with fall-through condbranch.
493       TBB = LastInst->getOperand(1).getMBB();
494       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
495       Cond.push_back(LastInst->getOperand(0));
496       return false;
497     } else if (LastInst->getOpcode() == PPC::BDNZ8 ||
498                LastInst->getOpcode() == PPC::BDNZ) {
499       if (!LastInst->getOperand(0).isMBB())
500         return true;
501       if (DisableCTRLoopAnal)
502         return true;
503       TBB = LastInst->getOperand(0).getMBB();
504       Cond.push_back(MachineOperand::CreateImm(1));
505       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
506                                                true));
507       return false;
508     } else if (LastInst->getOpcode() == PPC::BDZ8 ||
509                LastInst->getOpcode() == PPC::BDZ) {
510       if (!LastInst->getOperand(0).isMBB())
511         return true;
512       if (DisableCTRLoopAnal)
513         return true;
514       TBB = LastInst->getOperand(0).getMBB();
515       Cond.push_back(MachineOperand::CreateImm(0));
516       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
517                                                true));
518       return false;
519     }
520 
521     // Otherwise, don't know what this is.
522     return true;
523   }
524 
525   // Get the instruction before it if it's a terminator.
526   MachineInstr *SecondLastInst = I;
527 
528   // If there are three terminators, we don't know what sort of block this is.
529   if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(*--I))
530     return true;
531 
532   // If the block ends with PPC::B and PPC:BCC, handle it.
533   if (SecondLastInst->getOpcode() == PPC::BCC &&
534       LastInst->getOpcode() == PPC::B) {
535     if (!SecondLastInst->getOperand(2).isMBB() ||
536         !LastInst->getOperand(0).isMBB())
537       return true;
538     TBB =  SecondLastInst->getOperand(2).getMBB();
539     Cond.push_back(SecondLastInst->getOperand(0));
540     Cond.push_back(SecondLastInst->getOperand(1));
541     FBB = LastInst->getOperand(0).getMBB();
542     return false;
543   } else if (SecondLastInst->getOpcode() == PPC::BC &&
544       LastInst->getOpcode() == PPC::B) {
545     if (!SecondLastInst->getOperand(1).isMBB() ||
546         !LastInst->getOperand(0).isMBB())
547       return true;
548     TBB =  SecondLastInst->getOperand(1).getMBB();
549     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
550     Cond.push_back(SecondLastInst->getOperand(0));
551     FBB = LastInst->getOperand(0).getMBB();
552     return false;
553   } else if (SecondLastInst->getOpcode() == PPC::BCn &&
554       LastInst->getOpcode() == PPC::B) {
555     if (!SecondLastInst->getOperand(1).isMBB() ||
556         !LastInst->getOperand(0).isMBB())
557       return true;
558     TBB =  SecondLastInst->getOperand(1).getMBB();
559     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
560     Cond.push_back(SecondLastInst->getOperand(0));
561     FBB = LastInst->getOperand(0).getMBB();
562     return false;
563   } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 ||
564               SecondLastInst->getOpcode() == PPC::BDNZ) &&
565       LastInst->getOpcode() == PPC::B) {
566     if (!SecondLastInst->getOperand(0).isMBB() ||
567         !LastInst->getOperand(0).isMBB())
568       return true;
569     if (DisableCTRLoopAnal)
570       return true;
571     TBB = SecondLastInst->getOperand(0).getMBB();
572     Cond.push_back(MachineOperand::CreateImm(1));
573     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
574                                              true));
575     FBB = LastInst->getOperand(0).getMBB();
576     return false;
577   } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 ||
578               SecondLastInst->getOpcode() == PPC::BDZ) &&
579       LastInst->getOpcode() == PPC::B) {
580     if (!SecondLastInst->getOperand(0).isMBB() ||
581         !LastInst->getOperand(0).isMBB())
582       return true;
583     if (DisableCTRLoopAnal)
584       return true;
585     TBB = SecondLastInst->getOperand(0).getMBB();
586     Cond.push_back(MachineOperand::CreateImm(0));
587     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
588                                              true));
589     FBB = LastInst->getOperand(0).getMBB();
590     return false;
591   }
592 
593   // If the block ends with two PPC:Bs, handle it.  The second one is not
594   // executed, so remove it.
595   if (SecondLastInst->getOpcode() == PPC::B &&
596       LastInst->getOpcode() == PPC::B) {
597     if (!SecondLastInst->getOperand(0).isMBB())
598       return true;
599     TBB = SecondLastInst->getOperand(0).getMBB();
600     I = LastInst;
601     if (AllowModify)
602       I->eraseFromParent();
603     return false;
604   }
605 
606   // Otherwise, can't handle this.
607   return true;
608 }
609 
610 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
611   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
612   if (I == MBB.end())
613     return 0;
614 
615   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
616       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
617       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
618       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
619     return 0;
620 
621   // Remove the branch.
622   I->eraseFromParent();
623 
624   I = MBB.end();
625 
626   if (I == MBB.begin()) return 1;
627   --I;
628   if (I->getOpcode() != PPC::BCC &&
629       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
630       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
631       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
632     return 1;
633 
634   // Remove the branch.
635   I->eraseFromParent();
636   return 2;
637 }
638 
639 unsigned
640 PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
641                            MachineBasicBlock *FBB,
642                            ArrayRef<MachineOperand> Cond,
643                            DebugLoc DL) const {
644   // Shouldn't be a fall through.
645   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
646   assert((Cond.size() == 2 || Cond.size() == 0) &&
647          "PPC branch conditions have two components!");
648 
649   bool isPPC64 = Subtarget.isPPC64();
650 
651   // One-way branch.
652   if (!FBB) {
653     if (Cond.empty())   // Unconditional branch
654       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
655     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
656       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
657                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
658                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
659     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
660       BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
661     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
662       BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
663     else                // Conditional branch
664       BuildMI(&MBB, DL, get(PPC::BCC))
665         .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
666     return 1;
667   }
668 
669   // Two-way Conditional Branch.
670   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
671     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
672                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
673                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
674   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
675     BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
676   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
677     BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
678   else
679     BuildMI(&MBB, DL, get(PPC::BCC))
680       .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
681   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
682   return 2;
683 }
684 
685 // Select analysis.
686 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
687                 ArrayRef<MachineOperand> Cond,
688                 unsigned TrueReg, unsigned FalseReg,
689                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
690   if (!Subtarget.hasISEL())
691     return false;
692 
693   if (Cond.size() != 2)
694     return false;
695 
696   // If this is really a bdnz-like condition, then it cannot be turned into a
697   // select.
698   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
699     return false;
700 
701   // Check register classes.
702   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
703   const TargetRegisterClass *RC =
704     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
705   if (!RC)
706     return false;
707 
708   // isel is for regular integer GPRs only.
709   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
710       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
711       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
712       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
713     return false;
714 
715   // FIXME: These numbers are for the A2, how well they work for other cores is
716   // an open question. On the A2, the isel instruction has a 2-cycle latency
717   // but single-cycle throughput. These numbers are used in combination with
718   // the MispredictPenalty setting from the active SchedMachineModel.
719   CondCycles = 1;
720   TrueCycles = 1;
721   FalseCycles = 1;
722 
723   return true;
724 }
725 
726 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
727                                 MachineBasicBlock::iterator MI, DebugLoc dl,
728                                 unsigned DestReg, ArrayRef<MachineOperand> Cond,
729                                 unsigned TrueReg, unsigned FalseReg) const {
730   assert(Cond.size() == 2 &&
731          "PPC branch conditions have two components!");
732 
733   assert(Subtarget.hasISEL() &&
734          "Cannot insert select on target without ISEL support");
735 
736   // Get the register classes.
737   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
738   const TargetRegisterClass *RC =
739     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
740   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
741 
742   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
743                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
744   assert((Is64Bit ||
745           PPC::GPRCRegClass.hasSubClassEq(RC) ||
746           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
747          "isel is for regular integer GPRs only");
748 
749   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
750   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
751 
752   unsigned SubIdx = 0;
753   bool SwapOps = false;
754   switch (SelectPred) {
755   case PPC::PRED_EQ:
756   case PPC::PRED_EQ_MINUS:
757   case PPC::PRED_EQ_PLUS:
758       SubIdx = PPC::sub_eq; SwapOps = false; break;
759   case PPC::PRED_NE:
760   case PPC::PRED_NE_MINUS:
761   case PPC::PRED_NE_PLUS:
762       SubIdx = PPC::sub_eq; SwapOps = true; break;
763   case PPC::PRED_LT:
764   case PPC::PRED_LT_MINUS:
765   case PPC::PRED_LT_PLUS:
766       SubIdx = PPC::sub_lt; SwapOps = false; break;
767   case PPC::PRED_GE:
768   case PPC::PRED_GE_MINUS:
769   case PPC::PRED_GE_PLUS:
770       SubIdx = PPC::sub_lt; SwapOps = true; break;
771   case PPC::PRED_GT:
772   case PPC::PRED_GT_MINUS:
773   case PPC::PRED_GT_PLUS:
774       SubIdx = PPC::sub_gt; SwapOps = false; break;
775   case PPC::PRED_LE:
776   case PPC::PRED_LE_MINUS:
777   case PPC::PRED_LE_PLUS:
778       SubIdx = PPC::sub_gt; SwapOps = true; break;
779   case PPC::PRED_UN:
780   case PPC::PRED_UN_MINUS:
781   case PPC::PRED_UN_PLUS:
782       SubIdx = PPC::sub_un; SwapOps = false; break;
783   case PPC::PRED_NU:
784   case PPC::PRED_NU_MINUS:
785   case PPC::PRED_NU_PLUS:
786       SubIdx = PPC::sub_un; SwapOps = true; break;
787   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
788   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
789   }
790 
791   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
792            SecondReg = SwapOps ? TrueReg  : FalseReg;
793 
794   // The first input register of isel cannot be r0. If it is a member
795   // of a register class that can be r0, then copy it first (the
796   // register allocator should eliminate the copy).
797   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
798       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
799     const TargetRegisterClass *FirstRC =
800       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
801         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
802     unsigned OldFirstReg = FirstReg;
803     FirstReg = MRI.createVirtualRegister(FirstRC);
804     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
805       .addReg(OldFirstReg);
806   }
807 
808   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
809     .addReg(FirstReg).addReg(SecondReg)
810     .addReg(Cond[1].getReg(), 0, SubIdx);
811 }
812 
813 static unsigned getCRBitValue(unsigned CRBit) {
814   unsigned Ret = 4;
815   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
816       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
817       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
818       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
819     Ret = 3;
820   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
821       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
822       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
823       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
824     Ret = 2;
825   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
826       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
827       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
828       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
829     Ret = 1;
830   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
831       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
832       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
833       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
834     Ret = 0;
835 
836   assert(Ret != 4 && "Invalid CR bit register");
837   return Ret;
838 }
839 
840 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
841                                MachineBasicBlock::iterator I, DebugLoc DL,
842                                unsigned DestReg, unsigned SrcReg,
843                                bool KillSrc) const {
844   // We can end up with self copies and similar things as a result of VSX copy
845   // legalization. Promote them here.
846   const TargetRegisterInfo *TRI = &getRegisterInfo();
847   if (PPC::F8RCRegClass.contains(DestReg) &&
848       PPC::VSRCRegClass.contains(SrcReg)) {
849     unsigned SuperReg =
850       TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
851 
852     if (VSXSelfCopyCrash && SrcReg == SuperReg)
853       llvm_unreachable("nop VSX copy");
854 
855     DestReg = SuperReg;
856   } else if (PPC::VRRCRegClass.contains(DestReg) &&
857              PPC::VSRCRegClass.contains(SrcReg)) {
858     unsigned SuperReg =
859       TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass);
860 
861     if (VSXSelfCopyCrash && SrcReg == SuperReg)
862       llvm_unreachable("nop VSX copy");
863 
864     DestReg = SuperReg;
865   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
866              PPC::VSRCRegClass.contains(DestReg)) {
867     unsigned SuperReg =
868       TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
869 
870     if (VSXSelfCopyCrash && DestReg == SuperReg)
871       llvm_unreachable("nop VSX copy");
872 
873     SrcReg = SuperReg;
874   } else if (PPC::VRRCRegClass.contains(SrcReg) &&
875              PPC::VSRCRegClass.contains(DestReg)) {
876     unsigned SuperReg =
877       TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass);
878 
879     if (VSXSelfCopyCrash && DestReg == SuperReg)
880       llvm_unreachable("nop VSX copy");
881 
882     SrcReg = SuperReg;
883   }
884 
885   // Different class register copy
886   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
887       PPC::GPRCRegClass.contains(DestReg)) {
888     unsigned CRReg = getCRFromCRBit(SrcReg);
889     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
890     getKillRegState(KillSrc);
891     // Rotate the CR bit in the CR fields to be the least significant bit and
892     // then mask with 0x1 (MB = ME = 31).
893     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
894        .addReg(DestReg, RegState::Kill)
895        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
896        .addImm(31)
897        .addImm(31);
898     return;
899   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
900       PPC::G8RCRegClass.contains(DestReg)) {
901     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
902     getKillRegState(KillSrc);
903     return;
904   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
905       PPC::GPRCRegClass.contains(DestReg)) {
906     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
907     getKillRegState(KillSrc);
908     return;
909    }
910 
911   unsigned Opc;
912   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
913     Opc = PPC::OR;
914   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
915     Opc = PPC::OR8;
916   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
917     Opc = PPC::FMR;
918   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
919     Opc = PPC::MCRF;
920   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
921     Opc = PPC::VOR;
922   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
923     // There are two different ways this can be done:
924     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
925     //      issue in VSU pipeline 0.
926     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
927     //      can go to either pipeline.
928     // We'll always use xxlor here, because in practically all cases where
929     // copies are generated, they are close enough to some use that the
930     // lower-latency form is preferable.
931     Opc = PPC::XXLOR;
932   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
933            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
934     Opc = PPC::XXLORf;
935   else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
936     Opc = PPC::QVFMR;
937   else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
938     Opc = PPC::QVFMRs;
939   else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
940     Opc = PPC::QVFMRb;
941   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
942     Opc = PPC::CROR;
943   else
944     llvm_unreachable("Impossible reg-to-reg copy");
945 
946   const MCInstrDesc &MCID = get(Opc);
947   if (MCID.getNumOperands() == 3)
948     BuildMI(MBB, I, DL, MCID, DestReg)
949       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
950   else
951     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
952 }
953 
954 // This function returns true if a CR spill is necessary and false otherwise.
955 bool
956 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
957                                   unsigned SrcReg, bool isKill,
958                                   int FrameIdx,
959                                   const TargetRegisterClass *RC,
960                                   SmallVectorImpl<MachineInstr*> &NewMIs,
961                                   bool &NonRI, bool &SpillsVRS) const{
962   // Note: If additional store instructions are added here,
963   // update isStoreToStackSlot.
964 
965   DebugLoc DL;
966   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
967       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
968     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
969                                        .addReg(SrcReg,
970                                                getKillRegState(isKill)),
971                                        FrameIdx));
972   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
973              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
974     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
975                                        .addReg(SrcReg,
976                                                getKillRegState(isKill)),
977                                        FrameIdx));
978   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
979     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
980                                        .addReg(SrcReg,
981                                                getKillRegState(isKill)),
982                                        FrameIdx));
983   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
984     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
985                                        .addReg(SrcReg,
986                                                getKillRegState(isKill)),
987                                        FrameIdx));
988   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
989     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
990                                        .addReg(SrcReg,
991                                                getKillRegState(isKill)),
992                                        FrameIdx));
993     return true;
994   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
995     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
996                                        .addReg(SrcReg,
997                                                getKillRegState(isKill)),
998                                        FrameIdx));
999     return true;
1000   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1001     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
1002                                        .addReg(SrcReg,
1003                                                getKillRegState(isKill)),
1004                                        FrameIdx));
1005     NonRI = true;
1006   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1007     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X))
1008                                        .addReg(SrcReg,
1009                                                getKillRegState(isKill)),
1010                                        FrameIdx));
1011     NonRI = true;
1012   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1013     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX))
1014                                        .addReg(SrcReg,
1015                                                getKillRegState(isKill)),
1016                                        FrameIdx));
1017     NonRI = true;
1018   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1019     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSSPX))
1020                                        .addReg(SrcReg,
1021                                                getKillRegState(isKill)),
1022                                        FrameIdx));
1023     NonRI = true;
1024   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1025     assert(Subtarget.isDarwin() &&
1026            "VRSAVE only needs spill/restore on Darwin");
1027     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
1028                                        .addReg(SrcReg,
1029                                                getKillRegState(isKill)),
1030                                        FrameIdx));
1031     SpillsVRS = true;
1032   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1033     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX))
1034                                        .addReg(SrcReg,
1035                                                getKillRegState(isKill)),
1036                                        FrameIdx));
1037     NonRI = true;
1038   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1039     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs))
1040                                        .addReg(SrcReg,
1041                                                getKillRegState(isKill)),
1042                                        FrameIdx));
1043     NonRI = true;
1044   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1045     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb))
1046                                        .addReg(SrcReg,
1047                                                getKillRegState(isKill)),
1048                                        FrameIdx));
1049     NonRI = true;
1050   } else {
1051     llvm_unreachable("Unknown regclass!");
1052   }
1053 
1054   return false;
1055 }
1056 
1057 void
1058 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1059                                   MachineBasicBlock::iterator MI,
1060                                   unsigned SrcReg, bool isKill, int FrameIdx,
1061                                   const TargetRegisterClass *RC,
1062                                   const TargetRegisterInfo *TRI) const {
1063   MachineFunction &MF = *MBB.getParent();
1064   SmallVector<MachineInstr*, 4> NewMIs;
1065 
1066   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1067   FuncInfo->setHasSpills();
1068 
1069   bool NonRI = false, SpillsVRS = false;
1070   if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
1071                           NonRI, SpillsVRS))
1072     FuncInfo->setSpillsCR();
1073 
1074   if (SpillsVRS)
1075     FuncInfo->setSpillsVRSAVE();
1076 
1077   if (NonRI)
1078     FuncInfo->setHasNonRISpills();
1079 
1080   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1081     MBB.insert(MI, NewMIs[i]);
1082 
1083   const MachineFrameInfo &MFI = *MF.getFrameInfo();
1084   MachineMemOperand *MMO = MF.getMachineMemOperand(
1085       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1086       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1087       MFI.getObjectAlignment(FrameIdx));
1088   NewMIs.back()->addMemOperand(MF, MMO);
1089 }
1090 
1091 bool
1092 PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
1093                                    unsigned DestReg, int FrameIdx,
1094                                    const TargetRegisterClass *RC,
1095                                    SmallVectorImpl<MachineInstr*> &NewMIs,
1096                                    bool &NonRI, bool &SpillsVRS) const{
1097   // Note: If additional load instructions are added here,
1098   // update isLoadFromStackSlot.
1099 
1100   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1101       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1102     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
1103                                                DestReg), FrameIdx));
1104   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1105              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1106     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
1107                                        FrameIdx));
1108   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1109     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
1110                                        FrameIdx));
1111   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1112     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
1113                                        FrameIdx));
1114   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1115     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1116                                                get(PPC::RESTORE_CR), DestReg),
1117                                        FrameIdx));
1118     return true;
1119   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1120     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1121                                                get(PPC::RESTORE_CRBIT), DestReg),
1122                                        FrameIdx));
1123     return true;
1124   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1125     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
1126                                        FrameIdx));
1127     NonRI = true;
1128   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1129     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg),
1130                                        FrameIdx));
1131     NonRI = true;
1132   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1133     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg),
1134                                        FrameIdx));
1135     NonRI = true;
1136   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1137     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSSPX), DestReg),
1138                                        FrameIdx));
1139     NonRI = true;
1140   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1141     assert(Subtarget.isDarwin() &&
1142            "VRSAVE only needs spill/restore on Darwin");
1143     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1144                                                get(PPC::RESTORE_VRSAVE),
1145                                                DestReg),
1146                                        FrameIdx));
1147     SpillsVRS = true;
1148   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1149     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg),
1150                                        FrameIdx));
1151     NonRI = true;
1152   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1153     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg),
1154                                        FrameIdx));
1155     NonRI = true;
1156   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1157     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg),
1158                                        FrameIdx));
1159     NonRI = true;
1160   } else {
1161     llvm_unreachable("Unknown regclass!");
1162   }
1163 
1164   return false;
1165 }
1166 
1167 void
1168 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1169                                    MachineBasicBlock::iterator MI,
1170                                    unsigned DestReg, int FrameIdx,
1171                                    const TargetRegisterClass *RC,
1172                                    const TargetRegisterInfo *TRI) const {
1173   MachineFunction &MF = *MBB.getParent();
1174   SmallVector<MachineInstr*, 4> NewMIs;
1175   DebugLoc DL;
1176   if (MI != MBB.end()) DL = MI->getDebugLoc();
1177 
1178   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1179   FuncInfo->setHasSpills();
1180 
1181   bool NonRI = false, SpillsVRS = false;
1182   if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
1183                            NonRI, SpillsVRS))
1184     FuncInfo->setSpillsCR();
1185 
1186   if (SpillsVRS)
1187     FuncInfo->setSpillsVRSAVE();
1188 
1189   if (NonRI)
1190     FuncInfo->setHasNonRISpills();
1191 
1192   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1193     MBB.insert(MI, NewMIs[i]);
1194 
1195   const MachineFrameInfo &MFI = *MF.getFrameInfo();
1196   MachineMemOperand *MMO = MF.getMachineMemOperand(
1197       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1198       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1199       MFI.getObjectAlignment(FrameIdx));
1200   NewMIs.back()->addMemOperand(MF, MMO);
1201 }
1202 
1203 bool PPCInstrInfo::
1204 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1205   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1206   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1207     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1208   else
1209     // Leave the CR# the same, but invert the condition.
1210     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1211   return false;
1212 }
1213 
1214 bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
1215                              unsigned Reg, MachineRegisterInfo *MRI) const {
1216   // For some instructions, it is legal to fold ZERO into the RA register field.
1217   // A zero immediate should always be loaded with a single li.
1218   unsigned DefOpc = DefMI->getOpcode();
1219   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1220     return false;
1221   if (!DefMI->getOperand(1).isImm())
1222     return false;
1223   if (DefMI->getOperand(1).getImm() != 0)
1224     return false;
1225 
1226   // Note that we cannot here invert the arguments of an isel in order to fold
1227   // a ZERO into what is presented as the second argument. All we have here
1228   // is the condition bit, and that might come from a CR-logical bit operation.
1229 
1230   const MCInstrDesc &UseMCID = UseMI->getDesc();
1231 
1232   // Only fold into real machine instructions.
1233   if (UseMCID.isPseudo())
1234     return false;
1235 
1236   unsigned UseIdx;
1237   for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx)
1238     if (UseMI->getOperand(UseIdx).isReg() &&
1239         UseMI->getOperand(UseIdx).getReg() == Reg)
1240       break;
1241 
1242   assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI");
1243   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1244 
1245   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1246 
1247   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1248   // register (which might also be specified as a pointer class kind).
1249   if (UseInfo->isLookupPtrRegClass()) {
1250     if (UseInfo->RegClass /* Kind */ != 1)
1251       return false;
1252   } else {
1253     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1254         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1255       return false;
1256   }
1257 
1258   // Make sure this is not tied to an output register (or otherwise
1259   // constrained). This is true for ST?UX registers, for example, which
1260   // are tied to their output registers.
1261   if (UseInfo->Constraints != 0)
1262     return false;
1263 
1264   unsigned ZeroReg;
1265   if (UseInfo->isLookupPtrRegClass()) {
1266     bool isPPC64 = Subtarget.isPPC64();
1267     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1268   } else {
1269     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1270               PPC::ZERO8 : PPC::ZERO;
1271   }
1272 
1273   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1274   UseMI->getOperand(UseIdx).setReg(ZeroReg);
1275 
1276   if (DeleteDef)
1277     DefMI->eraseFromParent();
1278 
1279   return true;
1280 }
1281 
1282 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1283   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1284        I != IE; ++I)
1285     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1286       return true;
1287   return false;
1288 }
1289 
1290 // We should make sure that, if we're going to predicate both sides of a
1291 // condition (a diamond), that both sides don't define the counter register. We
1292 // can predicate counter-decrement-based branches, but while that predicates
1293 // the branching, it does not predicate the counter decrement. If we tried to
1294 // merge the triangle into one predicated block, we'd decrement the counter
1295 // twice.
1296 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1297                      unsigned NumT, unsigned ExtraT,
1298                      MachineBasicBlock &FMBB,
1299                      unsigned NumF, unsigned ExtraF,
1300                      BranchProbability Probability) const {
1301   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1302 }
1303 
1304 
1305 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1306   // The predicated branches are identified by their type, not really by the
1307   // explicit presence of a predicate. Furthermore, some of them can be
1308   // predicated more than once. Because if conversion won't try to predicate
1309   // any instruction which already claims to be predicated (by returning true
1310   // here), always return false. In doing so, we let isPredicable() be the
1311   // final word on whether not the instruction can be (further) predicated.
1312 
1313   return false;
1314 }
1315 
1316 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1317   if (!MI.isTerminator())
1318     return false;
1319 
1320   // Conditional branch is a special case.
1321   if (MI.isBranch() && !MI.isBarrier())
1322     return true;
1323 
1324   return !isPredicated(MI);
1325 }
1326 
1327 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1328                                         ArrayRef<MachineOperand> Pred) const {
1329   unsigned OpC = MI.getOpcode();
1330   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1331     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1332       bool isPPC64 = Subtarget.isPPC64();
1333       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1334                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1335     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1336       MI.setDesc(get(PPC::BCLR));
1337       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1338           .addReg(Pred[1].getReg());
1339     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1340       MI.setDesc(get(PPC::BCLRn));
1341       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1342           .addReg(Pred[1].getReg());
1343     } else {
1344       MI.setDesc(get(PPC::BCCLR));
1345       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1346           .addImm(Pred[0].getImm())
1347           .addReg(Pred[1].getReg());
1348     }
1349 
1350     return true;
1351   } else if (OpC == PPC::B) {
1352     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1353       bool isPPC64 = Subtarget.isPPC64();
1354       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1355                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1356     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1357       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1358       MI.RemoveOperand(0);
1359 
1360       MI.setDesc(get(PPC::BC));
1361       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1362           .addReg(Pred[1].getReg())
1363           .addMBB(MBB);
1364     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1365       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1366       MI.RemoveOperand(0);
1367 
1368       MI.setDesc(get(PPC::BCn));
1369       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1370           .addReg(Pred[1].getReg())
1371           .addMBB(MBB);
1372     } else {
1373       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1374       MI.RemoveOperand(0);
1375 
1376       MI.setDesc(get(PPC::BCC));
1377       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1378           .addImm(Pred[0].getImm())
1379           .addReg(Pred[1].getReg())
1380           .addMBB(MBB);
1381     }
1382 
1383     return true;
1384   } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
1385              OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
1386     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1387       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1388 
1389     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1390     bool isPPC64 = Subtarget.isPPC64();
1391 
1392     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1393       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1394                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1395       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1396           .addReg(Pred[1].getReg());
1397       return true;
1398     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1399       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1400                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1401       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1402           .addReg(Pred[1].getReg());
1403       return true;
1404     }
1405 
1406     MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1407                            : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1408     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1409         .addImm(Pred[0].getImm())
1410         .addReg(Pred[1].getReg());
1411     return true;
1412   }
1413 
1414   return false;
1415 }
1416 
1417 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1418                                      ArrayRef<MachineOperand> Pred2) const {
1419   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1420   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1421 
1422   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1423     return false;
1424   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1425     return false;
1426 
1427   // P1 can only subsume P2 if they test the same condition register.
1428   if (Pred1[1].getReg() != Pred2[1].getReg())
1429     return false;
1430 
1431   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1432   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1433 
1434   if (P1 == P2)
1435     return true;
1436 
1437   // Does P1 subsume P2, e.g. GE subsumes GT.
1438   if (P1 == PPC::PRED_LE &&
1439       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1440     return true;
1441   if (P1 == PPC::PRED_GE &&
1442       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1443     return true;
1444 
1445   return false;
1446 }
1447 
1448 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1449                                     std::vector<MachineOperand> &Pred) const {
1450   // Note: At the present time, the contents of Pred from this function is
1451   // unused by IfConversion. This implementation follows ARM by pushing the
1452   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1453   // predicate, instructions defining CTR or CTR8 are also included as
1454   // predicate-defining instructions.
1455 
1456   const TargetRegisterClass *RCs[] =
1457     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1458       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1459 
1460   bool Found = false;
1461   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1462     const MachineOperand &MO = MI.getOperand(i);
1463     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1464       const TargetRegisterClass *RC = RCs[c];
1465       if (MO.isReg()) {
1466         if (MO.isDef() && RC->contains(MO.getReg())) {
1467           Pred.push_back(MO);
1468           Found = true;
1469         }
1470       } else if (MO.isRegMask()) {
1471         for (TargetRegisterClass::iterator I = RC->begin(),
1472              IE = RC->end(); I != IE; ++I)
1473           if (MO.clobbersPhysReg(*I)) {
1474             Pred.push_back(MO);
1475             Found = true;
1476           }
1477       }
1478     }
1479   }
1480 
1481   return Found;
1482 }
1483 
1484 bool PPCInstrInfo::isPredicable(MachineInstr &MI) const {
1485   unsigned OpC = MI.getOpcode();
1486   switch (OpC) {
1487   default:
1488     return false;
1489   case PPC::B:
1490   case PPC::BLR:
1491   case PPC::BLR8:
1492   case PPC::BCTR:
1493   case PPC::BCTR8:
1494   case PPC::BCTRL:
1495   case PPC::BCTRL8:
1496     return true;
1497   }
1498 }
1499 
1500 bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI,
1501                                   unsigned &SrcReg, unsigned &SrcReg2,
1502                                   int &Mask, int &Value) const {
1503   unsigned Opc = MI->getOpcode();
1504 
1505   switch (Opc) {
1506   default: return false;
1507   case PPC::CMPWI:
1508   case PPC::CMPLWI:
1509   case PPC::CMPDI:
1510   case PPC::CMPLDI:
1511     SrcReg = MI->getOperand(1).getReg();
1512     SrcReg2 = 0;
1513     Value = MI->getOperand(2).getImm();
1514     Mask = 0xFFFF;
1515     return true;
1516   case PPC::CMPW:
1517   case PPC::CMPLW:
1518   case PPC::CMPD:
1519   case PPC::CMPLD:
1520   case PPC::FCMPUS:
1521   case PPC::FCMPUD:
1522     SrcReg = MI->getOperand(1).getReg();
1523     SrcReg2 = MI->getOperand(2).getReg();
1524     return true;
1525   }
1526 }
1527 
1528 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr,
1529                                         unsigned SrcReg, unsigned SrcReg2,
1530                                         int Mask, int Value,
1531                                         const MachineRegisterInfo *MRI) const {
1532   if (DisableCmpOpt)
1533     return false;
1534 
1535   int OpC = CmpInstr->getOpcode();
1536   unsigned CRReg = CmpInstr->getOperand(0).getReg();
1537 
1538   // FP record forms set CR1 based on the execption status bits, not a
1539   // comparison with zero.
1540   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1541     return false;
1542 
1543   // The record forms set the condition register based on a signed comparison
1544   // with zero (so says the ISA manual). This is not as straightforward as it
1545   // seems, however, because this is always a 64-bit comparison on PPC64, even
1546   // for instructions that are 32-bit in nature (like slw for example).
1547   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1548   // for equality checks (as those don't depend on the sign). On PPC64,
1549   // we are restricted to equality for unsigned 64-bit comparisons and for
1550   // signed 32-bit comparisons the applicability is more restricted.
1551   bool isPPC64 = Subtarget.isPPC64();
1552   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1553   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1554   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1555 
1556   // Get the unique definition of SrcReg.
1557   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1558   if (!MI) return false;
1559   int MIOpC = MI->getOpcode();
1560 
1561   bool equalityOnly = false;
1562   bool noSub = false;
1563   if (isPPC64) {
1564     if (is32BitSignedCompare) {
1565       // We can perform this optimization only if MI is sign-extending.
1566       if (MIOpC == PPC::SRAW  || MIOpC == PPC::SRAWo ||
1567           MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
1568           MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
1569           MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
1570           MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
1571         noSub = true;
1572       } else
1573         return false;
1574     } else if (is32BitUnsignedCompare) {
1575       // 32-bit rotate and mask instructions are zero extending only if MB <= ME
1576       bool isZeroExtendingRotate  =
1577           (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINMo ||
1578            MIOpC == PPC::RLWNM || MIOpC == PPC::RLWNMo)
1579           && MI->getOperand(3).getImm() <= MI->getOperand(4).getImm();
1580 
1581       // We can perform this optimization, equality only, if MI is
1582       // zero-extending.
1583       if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
1584           MIOpC == PPC::SLW    || MIOpC == PPC::SLWo ||
1585           MIOpC == PPC::SRW    || MIOpC == PPC::SRWo ||
1586           isZeroExtendingRotate) {
1587         noSub = true;
1588         equalityOnly = true;
1589       } else
1590         return false;
1591     } else
1592       equalityOnly = is64BitUnsignedCompare;
1593   } else
1594     equalityOnly = is32BitUnsignedCompare;
1595 
1596   if (equalityOnly) {
1597     // We need to check the uses of the condition register in order to reject
1598     // non-equality comparisons.
1599     for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg),
1600          IE = MRI->use_instr_end(); I != IE; ++I) {
1601       MachineInstr *UseMI = &*I;
1602       if (UseMI->getOpcode() == PPC::BCC) {
1603         unsigned Pred = UseMI->getOperand(0).getImm();
1604         if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
1605           return false;
1606       } else if (UseMI->getOpcode() == PPC::ISEL ||
1607                  UseMI->getOpcode() == PPC::ISEL8) {
1608         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1609         if (SubIdx != PPC::sub_eq)
1610           return false;
1611       } else
1612         return false;
1613     }
1614   }
1615 
1616   MachineBasicBlock::iterator I = CmpInstr;
1617 
1618   // Scan forward to find the first use of the compare.
1619   for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end();
1620        I != EL; ++I) {
1621     bool FoundUse = false;
1622     for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg),
1623          JE = MRI->use_instr_end(); J != JE; ++J)
1624       if (&*J == &*I) {
1625         FoundUse = true;
1626         break;
1627       }
1628 
1629     if (FoundUse)
1630       break;
1631   }
1632 
1633   // There are two possible candidates which can be changed to set CR[01].
1634   // One is MI, the other is a SUB instruction.
1635   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1636   MachineInstr *Sub = nullptr;
1637   if (SrcReg2 != 0)
1638     // MI is not a candidate for CMPrr.
1639     MI = nullptr;
1640   // FIXME: Conservatively refuse to convert an instruction which isn't in the
1641   // same BB as the comparison. This is to allow the check below to avoid calls
1642   // (and other explicit clobbers); instead we should really check for these
1643   // more explicitly (in at least a few predecessors).
1644   else if (MI->getParent() != CmpInstr->getParent() || Value != 0) {
1645     // PPC does not have a record-form SUBri.
1646     return false;
1647   }
1648 
1649   // Search for Sub.
1650   const TargetRegisterInfo *TRI = &getRegisterInfo();
1651   --I;
1652 
1653   // Get ready to iterate backward from CmpInstr.
1654   MachineBasicBlock::iterator E = MI,
1655                               B = CmpInstr->getParent()->begin();
1656 
1657   for (; I != E && !noSub; --I) {
1658     const MachineInstr &Instr = *I;
1659     unsigned IOpC = Instr.getOpcode();
1660 
1661     if (&*I != CmpInstr && (
1662         Instr.modifiesRegister(PPC::CR0, TRI) ||
1663         Instr.readsRegister(PPC::CR0, TRI)))
1664       // This instruction modifies or uses the record condition register after
1665       // the one we want to change. While we could do this transformation, it
1666       // would likely not be profitable. This transformation removes one
1667       // instruction, and so even forcing RA to generate one move probably
1668       // makes it unprofitable.
1669       return false;
1670 
1671     // Check whether CmpInstr can be made redundant by the current instruction.
1672     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1673          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1674         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1675         ((Instr.getOperand(1).getReg() == SrcReg &&
1676           Instr.getOperand(2).getReg() == SrcReg2) ||
1677         (Instr.getOperand(1).getReg() == SrcReg2 &&
1678          Instr.getOperand(2).getReg() == SrcReg))) {
1679       Sub = &*I;
1680       break;
1681     }
1682 
1683     if (I == B)
1684       // The 'and' is below the comparison instruction.
1685       return false;
1686   }
1687 
1688   // Return false if no candidates exist.
1689   if (!MI && !Sub)
1690     return false;
1691 
1692   // The single candidate is called MI.
1693   if (!MI) MI = Sub;
1694 
1695   int NewOpC = -1;
1696   MIOpC = MI->getOpcode();
1697   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
1698     NewOpC = MIOpC;
1699   else {
1700     NewOpC = PPC::getRecordFormOpcode(MIOpC);
1701     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1702       NewOpC = MIOpC;
1703   }
1704 
1705   // FIXME: On the non-embedded POWER architectures, only some of the record
1706   // forms are fast, and we should use only the fast ones.
1707 
1708   // The defining instruction has a record form (or is already a record
1709   // form). It is possible, however, that we'll need to reverse the condition
1710   // code of the users.
1711   if (NewOpC == -1)
1712     return false;
1713 
1714   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1715   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1716 
1717   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1718   // needs to be updated to be based on SUB.  Push the condition code
1719   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1720   // condition code of these operands will be modified.
1721   bool ShouldSwap = false;
1722   if (Sub) {
1723     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1724       Sub->getOperand(2).getReg() == SrcReg;
1725 
1726     // The operands to subf are the opposite of sub, so only in the fixed-point
1727     // case, invert the order.
1728     ShouldSwap = !ShouldSwap;
1729   }
1730 
1731   if (ShouldSwap)
1732     for (MachineRegisterInfo::use_instr_iterator
1733          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1734          I != IE; ++I) {
1735       MachineInstr *UseMI = &*I;
1736       if (UseMI->getOpcode() == PPC::BCC) {
1737         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1738         assert((!equalityOnly ||
1739                 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
1740                "Invalid predicate for equality-only optimization");
1741         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1742                                 PPC::getSwappedPredicate(Pred)));
1743       } else if (UseMI->getOpcode() == PPC::ISEL ||
1744                  UseMI->getOpcode() == PPC::ISEL8) {
1745         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1746         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1747                "Invalid CR bit for equality-only optimization");
1748 
1749         if (NewSubReg == PPC::sub_lt)
1750           NewSubReg = PPC::sub_gt;
1751         else if (NewSubReg == PPC::sub_gt)
1752           NewSubReg = PPC::sub_lt;
1753 
1754         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1755                                                  NewSubReg));
1756       } else // We need to abort on a user we don't understand.
1757         return false;
1758     }
1759 
1760   // Create a new virtual register to hold the value of the CR set by the
1761   // record-form instruction. If the instruction was not previously in
1762   // record form, then set the kill flag on the CR.
1763   CmpInstr->eraseFromParent();
1764 
1765   MachineBasicBlock::iterator MII = MI;
1766   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1767           get(TargetOpcode::COPY), CRReg)
1768     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1769 
1770   // Even if CR0 register were dead before, it is alive now since the
1771   // instruction we just built uses it.
1772   MI->clearRegisterDeads(PPC::CR0);
1773 
1774   if (MIOpC != NewOpC) {
1775     // We need to be careful here: we're replacing one instruction with
1776     // another, and we need to make sure that we get all of the right
1777     // implicit uses and defs. On the other hand, the caller may be holding
1778     // an iterator to this instruction, and so we can't delete it (this is
1779     // specifically the case if this is the instruction directly after the
1780     // compare).
1781 
1782     const MCInstrDesc &NewDesc = get(NewOpC);
1783     MI->setDesc(NewDesc);
1784 
1785     if (NewDesc.ImplicitDefs)
1786       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1787            *ImpDefs; ++ImpDefs)
1788         if (!MI->definesRegister(*ImpDefs))
1789           MI->addOperand(*MI->getParent()->getParent(),
1790                          MachineOperand::CreateReg(*ImpDefs, true, true));
1791     if (NewDesc.ImplicitUses)
1792       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1793            *ImpUses; ++ImpUses)
1794         if (!MI->readsRegister(*ImpUses))
1795           MI->addOperand(*MI->getParent()->getParent(),
1796                          MachineOperand::CreateReg(*ImpUses, false, true));
1797   }
1798   assert(MI->definesRegister(PPC::CR0) &&
1799          "Record-form instruction does not define cr0?");
1800 
1801   // Modify the condition code of operands in OperandsToUpdate.
1802   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1803   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1804   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1805     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1806 
1807   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1808     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1809 
1810   return true;
1811 }
1812 
1813 /// GetInstSize - Return the number of bytes of code the specified
1814 /// instruction may be.  This returns the maximum number of bytes.
1815 ///
1816 unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
1817   unsigned Opcode = MI->getOpcode();
1818 
1819   if (Opcode == PPC::INLINEASM) {
1820     const MachineFunction *MF = MI->getParent()->getParent();
1821     const char *AsmStr = MI->getOperand(0).getSymbolName();
1822     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1823   } else if (Opcode == TargetOpcode::STACKMAP) {
1824     return MI->getOperand(1).getImm();
1825   } else if (Opcode == TargetOpcode::PATCHPOINT) {
1826     PatchPointOpers Opers(MI);
1827     return Opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
1828   } else {
1829     const MCInstrDesc &Desc = get(Opcode);
1830     return Desc.getSize();
1831   }
1832 }
1833 
1834 std::pair<unsigned, unsigned>
1835 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
1836   const unsigned Mask = PPCII::MO_ACCESS_MASK;
1837   return std::make_pair(TF & Mask, TF & ~Mask);
1838 }
1839 
1840 ArrayRef<std::pair<unsigned, const char *>>
1841 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
1842   using namespace PPCII;
1843   static const std::pair<unsigned, const char *> TargetFlags[] = {
1844       {MO_LO, "ppc-lo"},
1845       {MO_HA, "ppc-ha"},
1846       {MO_TPREL_LO, "ppc-tprel-lo"},
1847       {MO_TPREL_HA, "ppc-tprel-ha"},
1848       {MO_DTPREL_LO, "ppc-dtprel-lo"},
1849       {MO_TLSLD_LO, "ppc-tlsld-lo"},
1850       {MO_TOC_LO, "ppc-toc-lo"},
1851       {MO_TLS, "ppc-tls"}};
1852   return makeArrayRef(TargetFlags);
1853 }
1854 
1855 ArrayRef<std::pair<unsigned, const char *>>
1856 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
1857   using namespace PPCII;
1858   static const std::pair<unsigned, const char *> TargetFlags[] = {
1859       {MO_PLT_OR_STUB, "ppc-plt-or-stub"},
1860       {MO_PIC_FLAG, "ppc-pic"},
1861       {MO_NLP_FLAG, "ppc-nlp"},
1862       {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
1863   return makeArrayRef(TargetFlags);
1864 }
1865 
1866 bool PPCInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
1867   switch (MI->getOpcode()) {
1868   case TargetOpcode::LOAD_STACK_GUARD: {
1869     assert(Subtarget.isTargetLinux() &&
1870            "Only Linux target is expected to contain LOAD_STACK_GUARD");
1871     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
1872     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
1873     MI->setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
1874     MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1875         .addImm(Offset)
1876         .addReg(Reg);
1877     return true;
1878   }
1879   }
1880   return false;
1881 }
1882