1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCInstrInfo.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCHazardRecognizers.h"
18 #include "PPCInstrBuilder.h"
19 #include "PPCMachineFunctionInfo.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCInst.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/raw_ostream.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "ppc-instr-info"
44 
45 #define GET_INSTRMAP_INFO
46 #define GET_INSTRINFO_CTOR_DTOR
47 #include "PPCGenInstrInfo.inc"
48 
49 STATISTIC(NumStoreSPILLVSRRCAsVec,
50           "Number of spillvsrrc spilled to stack as vec");
51 STATISTIC(NumStoreSPILLVSRRCAsGpr,
52           "Number of spillvsrrc spilled to stack as gpr");
53 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
54 STATISTIC(CmpIselsConverted,
55           "Number of ISELs that depend on comparison of constants converted");
56 STATISTIC(MissedConvertibleImmediateInstrs,
57           "Number of compare-immediate instructions fed by constants");
58 STATISTIC(NumRcRotatesConvertedToRcAnd,
59           "Number of record-form rotates converted to record-form andi");
60 
61 static cl::
62 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
63             cl::desc("Disable analysis for CTR loops"));
64 
65 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
66 cl::desc("Disable compare instruction optimization"), cl::Hidden);
67 
68 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
69 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
70 cl::Hidden);
71 
72 static cl::opt<bool>
73 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
74   cl::desc("Use the old (incorrect) instruction latency calculation"));
75 
76 // Index into the OpcodesForSpill array.
77 enum SpillOpcodeKey {
78   SOK_Int4Spill,
79   SOK_Int8Spill,
80   SOK_Float8Spill,
81   SOK_Float4Spill,
82   SOK_CRSpill,
83   SOK_CRBitSpill,
84   SOK_VRVectorSpill,
85   SOK_VSXVectorSpill,
86   SOK_VectorFloat8Spill,
87   SOK_VectorFloat4Spill,
88   SOK_VRSaveSpill,
89   SOK_QuadFloat8Spill,
90   SOK_QuadFloat4Spill,
91   SOK_QuadBitSpill,
92   SOK_SpillToVSR,
93   SOK_SPESpill,
94   SOK_SPE4Spill,
95   SOK_LastOpcodeSpill  // This must be last on the enum.
96 };
97 
98 // Pin the vtable to this file.
99 void PPCInstrInfo::anchor() {}
100 
101 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
102     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
103                       /* CatchRetOpcode */ -1,
104                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
105       Subtarget(STI), RI(STI.getTargetMachine()) {}
106 
107 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
108 /// this target when scheduling the DAG.
109 ScheduleHazardRecognizer *
110 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
111                                            const ScheduleDAG *DAG) const {
112   unsigned Directive =
113       static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
114   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
115       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
116     const InstrItineraryData *II =
117         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
118     return new ScoreboardHazardRecognizer(II, DAG);
119   }
120 
121   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
122 }
123 
124 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
125 /// to use for this target when scheduling the DAG.
126 ScheduleHazardRecognizer *
127 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
128                                                  const ScheduleDAG *DAG) const {
129   unsigned Directive =
130       DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
131 
132   // FIXME: Leaving this as-is until we have POWER9 scheduling info
133   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
134     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
135 
136   // Most subtargets use a PPC970 recognizer.
137   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
138       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
139     assert(DAG->TII && "No InstrInfo?");
140 
141     return new PPCHazardRecognizer970(*DAG);
142   }
143 
144   return new ScoreboardHazardRecognizer(II, DAG);
145 }
146 
147 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
148                                        const MachineInstr &MI,
149                                        unsigned *PredCost) const {
150   if (!ItinData || UseOldLatencyCalc)
151     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
152 
153   // The default implementation of getInstrLatency calls getStageLatency, but
154   // getStageLatency does not do the right thing for us. While we have
155   // itinerary, most cores are fully pipelined, and so the itineraries only
156   // express the first part of the pipeline, not every stage. Instead, we need
157   // to use the listed output operand cycle number (using operand 0 here, which
158   // is an output).
159 
160   unsigned Latency = 1;
161   unsigned DefClass = MI.getDesc().getSchedClass();
162   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
163     const MachineOperand &MO = MI.getOperand(i);
164     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
165       continue;
166 
167     int Cycle = ItinData->getOperandCycle(DefClass, i);
168     if (Cycle < 0)
169       continue;
170 
171     Latency = std::max(Latency, (unsigned) Cycle);
172   }
173 
174   return Latency;
175 }
176 
177 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
178                                     const MachineInstr &DefMI, unsigned DefIdx,
179                                     const MachineInstr &UseMI,
180                                     unsigned UseIdx) const {
181   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
182                                                    UseMI, UseIdx);
183 
184   if (!DefMI.getParent())
185     return Latency;
186 
187   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
188   unsigned Reg = DefMO.getReg();
189 
190   bool IsRegCR;
191   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
192     const MachineRegisterInfo *MRI =
193         &DefMI.getParent()->getParent()->getRegInfo();
194     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
195               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
196   } else {
197     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
198               PPC::CRBITRCRegClass.contains(Reg);
199   }
200 
201   if (UseMI.isBranch() && IsRegCR) {
202     if (Latency < 0)
203       Latency = getInstrLatency(ItinData, DefMI);
204 
205     // On some cores, there is an additional delay between writing to a condition
206     // register, and using it from a branch.
207     unsigned Directive = Subtarget.getDarwinDirective();
208     switch (Directive) {
209     default: break;
210     case PPC::DIR_7400:
211     case PPC::DIR_750:
212     case PPC::DIR_970:
213     case PPC::DIR_E5500:
214     case PPC::DIR_PWR4:
215     case PPC::DIR_PWR5:
216     case PPC::DIR_PWR5X:
217     case PPC::DIR_PWR6:
218     case PPC::DIR_PWR6X:
219     case PPC::DIR_PWR7:
220     case PPC::DIR_PWR8:
221     // FIXME: Is this needed for POWER9?
222       Latency += 2;
223       break;
224     }
225   }
226 
227   return Latency;
228 }
229 
230 // This function does not list all associative and commutative operations, but
231 // only those worth feeding through the machine combiner in an attempt to
232 // reduce the critical path. Mostly, this means floating-point operations,
233 // because they have high latencies (compared to other operations, such and
234 // and/or, which are also associative and commutative, but have low latencies).
235 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
236   switch (Inst.getOpcode()) {
237   // FP Add:
238   case PPC::FADD:
239   case PPC::FADDS:
240   // FP Multiply:
241   case PPC::FMUL:
242   case PPC::FMULS:
243   // Altivec Add:
244   case PPC::VADDFP:
245   // VSX Add:
246   case PPC::XSADDDP:
247   case PPC::XVADDDP:
248   case PPC::XVADDSP:
249   case PPC::XSADDSP:
250   // VSX Multiply:
251   case PPC::XSMULDP:
252   case PPC::XVMULDP:
253   case PPC::XVMULSP:
254   case PPC::XSMULSP:
255   // QPX Add:
256   case PPC::QVFADD:
257   case PPC::QVFADDS:
258   case PPC::QVFADDSs:
259   // QPX Multiply:
260   case PPC::QVFMUL:
261   case PPC::QVFMULS:
262   case PPC::QVFMULSs:
263     return true;
264   default:
265     return false;
266   }
267 }
268 
269 bool PPCInstrInfo::getMachineCombinerPatterns(
270     MachineInstr &Root,
271     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
272   // Using the machine combiner in this way is potentially expensive, so
273   // restrict to when aggressive optimizations are desired.
274   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
275     return false;
276 
277   // FP reassociation is only legal when we don't need strict IEEE semantics.
278   if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
279     return false;
280 
281   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
282 }
283 
284 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
285 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
286                                          unsigned &SrcReg, unsigned &DstReg,
287                                          unsigned &SubIdx) const {
288   switch (MI.getOpcode()) {
289   default: return false;
290   case PPC::EXTSW:
291   case PPC::EXTSW_32:
292   case PPC::EXTSW_32_64:
293     SrcReg = MI.getOperand(1).getReg();
294     DstReg = MI.getOperand(0).getReg();
295     SubIdx = PPC::sub_32;
296     return true;
297   }
298 }
299 
300 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
301                                            int &FrameIndex) const {
302   unsigned Opcode = MI.getOpcode();
303   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
304   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
305 
306   if (End != std::find(OpcodesForSpill, End, Opcode)) {
307     // Check for the operands added by addFrameReference (the immediate is the
308     // offset which defaults to 0).
309     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
310         MI.getOperand(2).isFI()) {
311       FrameIndex = MI.getOperand(2).getIndex();
312       return MI.getOperand(0).getReg();
313     }
314   }
315   return 0;
316 }
317 
318 // For opcodes with the ReMaterializable flag set, this function is called to
319 // verify the instruction is really rematable.
320 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
321                                                      AliasAnalysis *AA) const {
322   switch (MI.getOpcode()) {
323   default:
324     // This function should only be called for opcodes with the ReMaterializable
325     // flag set.
326     llvm_unreachable("Unknown rematerializable operation!");
327     break;
328   case PPC::LI:
329   case PPC::LI8:
330   case PPC::LIS:
331   case PPC::LIS8:
332   case PPC::QVGPCI:
333   case PPC::ADDIStocHA:
334   case PPC::ADDItocL:
335   case PPC::LOAD_STACK_GUARD:
336     return true;
337   }
338   return false;
339 }
340 
341 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
342                                           int &FrameIndex) const {
343   unsigned Opcode = MI.getOpcode();
344   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
345   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
346 
347   if (End != std::find(OpcodesForSpill, End, Opcode)) {
348     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
349         MI.getOperand(2).isFI()) {
350       FrameIndex = MI.getOperand(2).getIndex();
351       return MI.getOperand(0).getReg();
352     }
353   }
354   return 0;
355 }
356 
357 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
358                                                    unsigned OpIdx1,
359                                                    unsigned OpIdx2) const {
360   MachineFunction &MF = *MI.getParent()->getParent();
361 
362   // Normal instructions can be commuted the obvious way.
363   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
364     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
365   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
366   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
367   // changing the relative order of the mask operands might change what happens
368   // to the high-bits of the mask (and, thus, the result).
369 
370   // Cannot commute if it has a non-zero rotate count.
371   if (MI.getOperand(3).getImm() != 0)
372     return nullptr;
373 
374   // If we have a zero rotate count, we have:
375   //   M = mask(MB,ME)
376   //   Op0 = (Op1 & ~M) | (Op2 & M)
377   // Change this to:
378   //   M = mask((ME+1)&31, (MB-1)&31)
379   //   Op0 = (Op2 & ~M) | (Op1 & M)
380 
381   // Swap op1/op2
382   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
383          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
384   unsigned Reg0 = MI.getOperand(0).getReg();
385   unsigned Reg1 = MI.getOperand(1).getReg();
386   unsigned Reg2 = MI.getOperand(2).getReg();
387   unsigned SubReg1 = MI.getOperand(1).getSubReg();
388   unsigned SubReg2 = MI.getOperand(2).getSubReg();
389   bool Reg1IsKill = MI.getOperand(1).isKill();
390   bool Reg2IsKill = MI.getOperand(2).isKill();
391   bool ChangeReg0 = false;
392   // If machine instrs are no longer in two-address forms, update
393   // destination register as well.
394   if (Reg0 == Reg1) {
395     // Must be two address instruction!
396     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
397            "Expecting a two-address instruction!");
398     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
399     Reg2IsKill = false;
400     ChangeReg0 = true;
401   }
402 
403   // Masks.
404   unsigned MB = MI.getOperand(4).getImm();
405   unsigned ME = MI.getOperand(5).getImm();
406 
407   // We can't commute a trivial mask (there is no way to represent an all-zero
408   // mask).
409   if (MB == 0 && ME == 31)
410     return nullptr;
411 
412   if (NewMI) {
413     // Create a new instruction.
414     unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
415     bool Reg0IsDead = MI.getOperand(0).isDead();
416     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
417         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
418         .addReg(Reg2, getKillRegState(Reg2IsKill))
419         .addReg(Reg1, getKillRegState(Reg1IsKill))
420         .addImm((ME + 1) & 31)
421         .addImm((MB - 1) & 31);
422   }
423 
424   if (ChangeReg0) {
425     MI.getOperand(0).setReg(Reg2);
426     MI.getOperand(0).setSubReg(SubReg2);
427   }
428   MI.getOperand(2).setReg(Reg1);
429   MI.getOperand(1).setReg(Reg2);
430   MI.getOperand(2).setSubReg(SubReg1);
431   MI.getOperand(1).setSubReg(SubReg2);
432   MI.getOperand(2).setIsKill(Reg1IsKill);
433   MI.getOperand(1).setIsKill(Reg2IsKill);
434 
435   // Swap the mask around.
436   MI.getOperand(4).setImm((ME + 1) & 31);
437   MI.getOperand(5).setImm((MB - 1) & 31);
438   return &MI;
439 }
440 
441 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
442                                          unsigned &SrcOpIdx2) const {
443   // For VSX A-Type FMA instructions, it is the first two operands that can be
444   // commuted, however, because the non-encoded tied input operand is listed
445   // first, the operands to swap are actually the second and third.
446 
447   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
448   if (AltOpc == -1)
449     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
450 
451   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
452   // and SrcOpIdx2.
453   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
454 }
455 
456 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
457                               MachineBasicBlock::iterator MI) const {
458   // This function is used for scheduling, and the nop wanted here is the type
459   // that terminates dispatch groups on the POWER cores.
460   unsigned Directive = Subtarget.getDarwinDirective();
461   unsigned Opcode;
462   switch (Directive) {
463   default:            Opcode = PPC::NOP; break;
464   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
465   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
466   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
467   // FIXME: Update when POWER9 scheduling model is ready.
468   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
469   }
470 
471   DebugLoc DL;
472   BuildMI(MBB, MI, DL, get(Opcode));
473 }
474 
475 /// Return the noop instruction to use for a noop.
476 void PPCInstrInfo::getNoop(MCInst &NopInst) const {
477   NopInst.setOpcode(PPC::NOP);
478 }
479 
480 // Branch analysis.
481 // Note: If the condition register is set to CTR or CTR8 then this is a
482 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
483 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
484                                  MachineBasicBlock *&TBB,
485                                  MachineBasicBlock *&FBB,
486                                  SmallVectorImpl<MachineOperand> &Cond,
487                                  bool AllowModify) const {
488   bool isPPC64 = Subtarget.isPPC64();
489 
490   // If the block has no terminators, it just falls into the block after it.
491   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
492   if (I == MBB.end())
493     return false;
494 
495   if (!isUnpredicatedTerminator(*I))
496     return false;
497 
498   if (AllowModify) {
499     // If the BB ends with an unconditional branch to the fallthrough BB,
500     // we eliminate the branch instruction.
501     if (I->getOpcode() == PPC::B &&
502         MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
503       I->eraseFromParent();
504 
505       // We update iterator after deleting the last branch.
506       I = MBB.getLastNonDebugInstr();
507       if (I == MBB.end() || !isUnpredicatedTerminator(*I))
508         return false;
509     }
510   }
511 
512   // Get the last instruction in the block.
513   MachineInstr &LastInst = *I;
514 
515   // If there is only one terminator instruction, process it.
516   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
517     if (LastInst.getOpcode() == PPC::B) {
518       if (!LastInst.getOperand(0).isMBB())
519         return true;
520       TBB = LastInst.getOperand(0).getMBB();
521       return false;
522     } else if (LastInst.getOpcode() == PPC::BCC) {
523       if (!LastInst.getOperand(2).isMBB())
524         return true;
525       // Block ends with fall-through condbranch.
526       TBB = LastInst.getOperand(2).getMBB();
527       Cond.push_back(LastInst.getOperand(0));
528       Cond.push_back(LastInst.getOperand(1));
529       return false;
530     } else if (LastInst.getOpcode() == PPC::BC) {
531       if (!LastInst.getOperand(1).isMBB())
532         return true;
533       // Block ends with fall-through condbranch.
534       TBB = LastInst.getOperand(1).getMBB();
535       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
536       Cond.push_back(LastInst.getOperand(0));
537       return false;
538     } else if (LastInst.getOpcode() == PPC::BCn) {
539       if (!LastInst.getOperand(1).isMBB())
540         return true;
541       // Block ends with fall-through condbranch.
542       TBB = LastInst.getOperand(1).getMBB();
543       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
544       Cond.push_back(LastInst.getOperand(0));
545       return false;
546     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
547                LastInst.getOpcode() == PPC::BDNZ) {
548       if (!LastInst.getOperand(0).isMBB())
549         return true;
550       if (DisableCTRLoopAnal)
551         return true;
552       TBB = LastInst.getOperand(0).getMBB();
553       Cond.push_back(MachineOperand::CreateImm(1));
554       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
555                                                true));
556       return false;
557     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
558                LastInst.getOpcode() == PPC::BDZ) {
559       if (!LastInst.getOperand(0).isMBB())
560         return true;
561       if (DisableCTRLoopAnal)
562         return true;
563       TBB = LastInst.getOperand(0).getMBB();
564       Cond.push_back(MachineOperand::CreateImm(0));
565       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
566                                                true));
567       return false;
568     }
569 
570     // Otherwise, don't know what this is.
571     return true;
572   }
573 
574   // Get the instruction before it if it's a terminator.
575   MachineInstr &SecondLastInst = *I;
576 
577   // If there are three terminators, we don't know what sort of block this is.
578   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
579     return true;
580 
581   // If the block ends with PPC::B and PPC:BCC, handle it.
582   if (SecondLastInst.getOpcode() == PPC::BCC &&
583       LastInst.getOpcode() == PPC::B) {
584     if (!SecondLastInst.getOperand(2).isMBB() ||
585         !LastInst.getOperand(0).isMBB())
586       return true;
587     TBB = SecondLastInst.getOperand(2).getMBB();
588     Cond.push_back(SecondLastInst.getOperand(0));
589     Cond.push_back(SecondLastInst.getOperand(1));
590     FBB = LastInst.getOperand(0).getMBB();
591     return false;
592   } else if (SecondLastInst.getOpcode() == PPC::BC &&
593              LastInst.getOpcode() == PPC::B) {
594     if (!SecondLastInst.getOperand(1).isMBB() ||
595         !LastInst.getOperand(0).isMBB())
596       return true;
597     TBB = SecondLastInst.getOperand(1).getMBB();
598     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
599     Cond.push_back(SecondLastInst.getOperand(0));
600     FBB = LastInst.getOperand(0).getMBB();
601     return false;
602   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
603              LastInst.getOpcode() == PPC::B) {
604     if (!SecondLastInst.getOperand(1).isMBB() ||
605         !LastInst.getOperand(0).isMBB())
606       return true;
607     TBB = SecondLastInst.getOperand(1).getMBB();
608     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
609     Cond.push_back(SecondLastInst.getOperand(0));
610     FBB = LastInst.getOperand(0).getMBB();
611     return false;
612   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
613               SecondLastInst.getOpcode() == PPC::BDNZ) &&
614              LastInst.getOpcode() == PPC::B) {
615     if (!SecondLastInst.getOperand(0).isMBB() ||
616         !LastInst.getOperand(0).isMBB())
617       return true;
618     if (DisableCTRLoopAnal)
619       return true;
620     TBB = SecondLastInst.getOperand(0).getMBB();
621     Cond.push_back(MachineOperand::CreateImm(1));
622     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
623                                              true));
624     FBB = LastInst.getOperand(0).getMBB();
625     return false;
626   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
627               SecondLastInst.getOpcode() == PPC::BDZ) &&
628              LastInst.getOpcode() == PPC::B) {
629     if (!SecondLastInst.getOperand(0).isMBB() ||
630         !LastInst.getOperand(0).isMBB())
631       return true;
632     if (DisableCTRLoopAnal)
633       return true;
634     TBB = SecondLastInst.getOperand(0).getMBB();
635     Cond.push_back(MachineOperand::CreateImm(0));
636     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
637                                              true));
638     FBB = LastInst.getOperand(0).getMBB();
639     return false;
640   }
641 
642   // If the block ends with two PPC:Bs, handle it.  The second one is not
643   // executed, so remove it.
644   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
645     if (!SecondLastInst.getOperand(0).isMBB())
646       return true;
647     TBB = SecondLastInst.getOperand(0).getMBB();
648     I = LastInst;
649     if (AllowModify)
650       I->eraseFromParent();
651     return false;
652   }
653 
654   // Otherwise, can't handle this.
655   return true;
656 }
657 
658 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
659                                     int *BytesRemoved) const {
660   assert(!BytesRemoved && "code size not handled");
661 
662   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
663   if (I == MBB.end())
664     return 0;
665 
666   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
667       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
668       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
669       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
670     return 0;
671 
672   // Remove the branch.
673   I->eraseFromParent();
674 
675   I = MBB.end();
676 
677   if (I == MBB.begin()) return 1;
678   --I;
679   if (I->getOpcode() != PPC::BCC &&
680       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
681       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
682       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
683     return 1;
684 
685   // Remove the branch.
686   I->eraseFromParent();
687   return 2;
688 }
689 
690 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
691                                     MachineBasicBlock *TBB,
692                                     MachineBasicBlock *FBB,
693                                     ArrayRef<MachineOperand> Cond,
694                                     const DebugLoc &DL,
695                                     int *BytesAdded) const {
696   // Shouldn't be a fall through.
697   assert(TBB && "insertBranch must not be told to insert a fallthrough");
698   assert((Cond.size() == 2 || Cond.size() == 0) &&
699          "PPC branch conditions have two components!");
700   assert(!BytesAdded && "code size not handled");
701 
702   bool isPPC64 = Subtarget.isPPC64();
703 
704   // One-way branch.
705   if (!FBB) {
706     if (Cond.empty())   // Unconditional branch
707       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
708     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
709       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
710                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
711                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
712     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
713       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
714     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
715       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
716     else                // Conditional branch
717       BuildMI(&MBB, DL, get(PPC::BCC))
718           .addImm(Cond[0].getImm())
719           .add(Cond[1])
720           .addMBB(TBB);
721     return 1;
722   }
723 
724   // Two-way Conditional Branch.
725   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
726     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
727                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
728                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
729   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
730     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
731   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
732     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
733   else
734     BuildMI(&MBB, DL, get(PPC::BCC))
735         .addImm(Cond[0].getImm())
736         .add(Cond[1])
737         .addMBB(TBB);
738   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
739   return 2;
740 }
741 
742 // Select analysis.
743 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
744                 ArrayRef<MachineOperand> Cond,
745                 unsigned TrueReg, unsigned FalseReg,
746                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
747   if (Cond.size() != 2)
748     return false;
749 
750   // If this is really a bdnz-like condition, then it cannot be turned into a
751   // select.
752   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
753     return false;
754 
755   // Check register classes.
756   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
757   const TargetRegisterClass *RC =
758     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
759   if (!RC)
760     return false;
761 
762   // isel is for regular integer GPRs only.
763   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
764       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
765       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
766       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
767     return false;
768 
769   // FIXME: These numbers are for the A2, how well they work for other cores is
770   // an open question. On the A2, the isel instruction has a 2-cycle latency
771   // but single-cycle throughput. These numbers are used in combination with
772   // the MispredictPenalty setting from the active SchedMachineModel.
773   CondCycles = 1;
774   TrueCycles = 1;
775   FalseCycles = 1;
776 
777   return true;
778 }
779 
780 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
781                                 MachineBasicBlock::iterator MI,
782                                 const DebugLoc &dl, unsigned DestReg,
783                                 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
784                                 unsigned FalseReg) const {
785   assert(Cond.size() == 2 &&
786          "PPC branch conditions have two components!");
787 
788   // Get the register classes.
789   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
790   const TargetRegisterClass *RC =
791     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
792   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
793 
794   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
795                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
796   assert((Is64Bit ||
797           PPC::GPRCRegClass.hasSubClassEq(RC) ||
798           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
799          "isel is for regular integer GPRs only");
800 
801   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
802   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
803 
804   unsigned SubIdx = 0;
805   bool SwapOps = false;
806   switch (SelectPred) {
807   case PPC::PRED_EQ:
808   case PPC::PRED_EQ_MINUS:
809   case PPC::PRED_EQ_PLUS:
810       SubIdx = PPC::sub_eq; SwapOps = false; break;
811   case PPC::PRED_NE:
812   case PPC::PRED_NE_MINUS:
813   case PPC::PRED_NE_PLUS:
814       SubIdx = PPC::sub_eq; SwapOps = true; break;
815   case PPC::PRED_LT:
816   case PPC::PRED_LT_MINUS:
817   case PPC::PRED_LT_PLUS:
818       SubIdx = PPC::sub_lt; SwapOps = false; break;
819   case PPC::PRED_GE:
820   case PPC::PRED_GE_MINUS:
821   case PPC::PRED_GE_PLUS:
822       SubIdx = PPC::sub_lt; SwapOps = true; break;
823   case PPC::PRED_GT:
824   case PPC::PRED_GT_MINUS:
825   case PPC::PRED_GT_PLUS:
826       SubIdx = PPC::sub_gt; SwapOps = false; break;
827   case PPC::PRED_LE:
828   case PPC::PRED_LE_MINUS:
829   case PPC::PRED_LE_PLUS:
830       SubIdx = PPC::sub_gt; SwapOps = true; break;
831   case PPC::PRED_UN:
832   case PPC::PRED_UN_MINUS:
833   case PPC::PRED_UN_PLUS:
834       SubIdx = PPC::sub_un; SwapOps = false; break;
835   case PPC::PRED_NU:
836   case PPC::PRED_NU_MINUS:
837   case PPC::PRED_NU_PLUS:
838       SubIdx = PPC::sub_un; SwapOps = true; break;
839   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
840   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
841   }
842 
843   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
844            SecondReg = SwapOps ? TrueReg  : FalseReg;
845 
846   // The first input register of isel cannot be r0. If it is a member
847   // of a register class that can be r0, then copy it first (the
848   // register allocator should eliminate the copy).
849   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
850       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
851     const TargetRegisterClass *FirstRC =
852       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
853         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
854     unsigned OldFirstReg = FirstReg;
855     FirstReg = MRI.createVirtualRegister(FirstRC);
856     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
857       .addReg(OldFirstReg);
858   }
859 
860   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
861     .addReg(FirstReg).addReg(SecondReg)
862     .addReg(Cond[1].getReg(), 0, SubIdx);
863 }
864 
865 static unsigned getCRBitValue(unsigned CRBit) {
866   unsigned Ret = 4;
867   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
868       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
869       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
870       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
871     Ret = 3;
872   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
873       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
874       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
875       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
876     Ret = 2;
877   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
878       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
879       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
880       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
881     Ret = 1;
882   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
883       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
884       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
885       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
886     Ret = 0;
887 
888   assert(Ret != 4 && "Invalid CR bit register");
889   return Ret;
890 }
891 
892 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
893                                MachineBasicBlock::iterator I,
894                                const DebugLoc &DL, unsigned DestReg,
895                                unsigned SrcReg, bool KillSrc) const {
896   // We can end up with self copies and similar things as a result of VSX copy
897   // legalization. Promote them here.
898   const TargetRegisterInfo *TRI = &getRegisterInfo();
899   if (PPC::F8RCRegClass.contains(DestReg) &&
900       PPC::VSRCRegClass.contains(SrcReg)) {
901     unsigned SuperReg =
902       TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
903 
904     if (VSXSelfCopyCrash && SrcReg == SuperReg)
905       llvm_unreachable("nop VSX copy");
906 
907     DestReg = SuperReg;
908   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
909              PPC::VSRCRegClass.contains(DestReg)) {
910     unsigned SuperReg =
911       TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
912 
913     if (VSXSelfCopyCrash && DestReg == SuperReg)
914       llvm_unreachable("nop VSX copy");
915 
916     SrcReg = SuperReg;
917   }
918 
919   // Different class register copy
920   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
921       PPC::GPRCRegClass.contains(DestReg)) {
922     unsigned CRReg = getCRFromCRBit(SrcReg);
923     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
924     getKillRegState(KillSrc);
925     // Rotate the CR bit in the CR fields to be the least significant bit and
926     // then mask with 0x1 (MB = ME = 31).
927     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
928        .addReg(DestReg, RegState::Kill)
929        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
930        .addImm(31)
931        .addImm(31);
932     return;
933   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
934       PPC::G8RCRegClass.contains(DestReg)) {
935     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
936     getKillRegState(KillSrc);
937     return;
938   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
939       PPC::GPRCRegClass.contains(DestReg)) {
940     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
941     getKillRegState(KillSrc);
942     return;
943   } else if (PPC::G8RCRegClass.contains(SrcReg) &&
944              PPC::VSFRCRegClass.contains(DestReg)) {
945     BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
946     NumGPRtoVSRSpill++;
947     getKillRegState(KillSrc);
948     return;
949   } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
950              PPC::G8RCRegClass.contains(DestReg)) {
951     BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
952     getKillRegState(KillSrc);
953     return;
954   } else if (PPC::SPERCRegClass.contains(SrcReg) &&
955              PPC::SPE4RCRegClass.contains(DestReg)) {
956     BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
957     getKillRegState(KillSrc);
958     return;
959   } else if (PPC::SPE4RCRegClass.contains(SrcReg) &&
960              PPC::SPERCRegClass.contains(DestReg)) {
961     BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
962     getKillRegState(KillSrc);
963     return;
964   }
965 
966 
967   unsigned Opc;
968   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
969     Opc = PPC::OR;
970   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
971     Opc = PPC::OR8;
972   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
973     Opc = PPC::FMR;
974   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
975     Opc = PPC::MCRF;
976   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
977     Opc = PPC::VOR;
978   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
979     // There are two different ways this can be done:
980     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
981     //      issue in VSU pipeline 0.
982     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
983     //      can go to either pipeline.
984     // We'll always use xxlor here, because in practically all cases where
985     // copies are generated, they are close enough to some use that the
986     // lower-latency form is preferable.
987     Opc = PPC::XXLOR;
988   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
989            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
990     Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
991   else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
992     Opc = PPC::QVFMR;
993   else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
994     Opc = PPC::QVFMRs;
995   else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
996     Opc = PPC::QVFMRb;
997   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
998     Opc = PPC::CROR;
999   else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1000     Opc = PPC::EVOR;
1001   else
1002     llvm_unreachable("Impossible reg-to-reg copy");
1003 
1004   const MCInstrDesc &MCID = get(Opc);
1005   if (MCID.getNumOperands() == 3)
1006     BuildMI(MBB, I, DL, MCID, DestReg)
1007       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1008   else
1009     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1010 }
1011 
1012 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg,
1013                                               const TargetRegisterClass *RC)
1014                                               const {
1015   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1016   int OpcodeIndex = 0;
1017 
1018   if (RC != nullptr) {
1019     if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1020         PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1021       OpcodeIndex = SOK_Int4Spill;
1022     } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1023                PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1024       OpcodeIndex = SOK_Int8Spill;
1025     } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1026       OpcodeIndex = SOK_Float8Spill;
1027     } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1028       OpcodeIndex = SOK_Float4Spill;
1029     } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1030       OpcodeIndex = SOK_SPESpill;
1031     } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) {
1032       OpcodeIndex = SOK_SPE4Spill;
1033     } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1034       OpcodeIndex = SOK_CRSpill;
1035     } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1036       OpcodeIndex = SOK_CRBitSpill;
1037     } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1038       OpcodeIndex = SOK_VRVectorSpill;
1039     } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1040       OpcodeIndex = SOK_VSXVectorSpill;
1041     } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1042       OpcodeIndex = SOK_VectorFloat8Spill;
1043     } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1044       OpcodeIndex = SOK_VectorFloat4Spill;
1045     } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1046       OpcodeIndex = SOK_VRSaveSpill;
1047     } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1048       OpcodeIndex = SOK_QuadFloat8Spill;
1049     } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1050       OpcodeIndex = SOK_QuadFloat4Spill;
1051     } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1052       OpcodeIndex = SOK_QuadBitSpill;
1053     } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1054       OpcodeIndex = SOK_SpillToVSR;
1055     } else {
1056       llvm_unreachable("Unknown regclass!");
1057     }
1058   } else {
1059     if (PPC::GPRCRegClass.contains(Reg) ||
1060         PPC::GPRC_NOR0RegClass.contains(Reg)) {
1061       OpcodeIndex = SOK_Int4Spill;
1062     } else if (PPC::G8RCRegClass.contains(Reg) ||
1063                PPC::G8RC_NOX0RegClass.contains(Reg)) {
1064       OpcodeIndex = SOK_Int8Spill;
1065     } else if (PPC::F8RCRegClass.contains(Reg)) {
1066       OpcodeIndex = SOK_Float8Spill;
1067     } else if (PPC::F4RCRegClass.contains(Reg)) {
1068       OpcodeIndex = SOK_Float4Spill;
1069     } else if (PPC::CRRCRegClass.contains(Reg)) {
1070       OpcodeIndex = SOK_CRSpill;
1071     } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1072       OpcodeIndex = SOK_CRBitSpill;
1073     } else if (PPC::VRRCRegClass.contains(Reg)) {
1074       OpcodeIndex = SOK_VRVectorSpill;
1075     } else if (PPC::VSRCRegClass.contains(Reg)) {
1076       OpcodeIndex = SOK_VSXVectorSpill;
1077     } else if (PPC::VSFRCRegClass.contains(Reg)) {
1078       OpcodeIndex = SOK_VectorFloat8Spill;
1079     } else if (PPC::VSSRCRegClass.contains(Reg)) {
1080       OpcodeIndex = SOK_VectorFloat4Spill;
1081     } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1082       OpcodeIndex = SOK_VRSaveSpill;
1083     } else if (PPC::QFRCRegClass.contains(Reg)) {
1084       OpcodeIndex = SOK_QuadFloat8Spill;
1085     } else if (PPC::QSRCRegClass.contains(Reg)) {
1086       OpcodeIndex = SOK_QuadFloat4Spill;
1087     } else if (PPC::QBRCRegClass.contains(Reg)) {
1088       OpcodeIndex = SOK_QuadBitSpill;
1089     } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1090       OpcodeIndex = SOK_SpillToVSR;
1091     } else {
1092       llvm_unreachable("Unknown regclass!");
1093     }
1094   }
1095   return OpcodesForSpill[OpcodeIndex];
1096 }
1097 
1098 unsigned
1099 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg,
1100                                     const TargetRegisterClass *RC) const {
1101   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1102   int OpcodeIndex = 0;
1103 
1104   if (RC != nullptr) {
1105     if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1106         PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1107       OpcodeIndex = SOK_Int4Spill;
1108     } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1109                PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1110       OpcodeIndex = SOK_Int8Spill;
1111     } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1112       OpcodeIndex = SOK_Float8Spill;
1113     } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1114       OpcodeIndex = SOK_Float4Spill;
1115     } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1116       OpcodeIndex = SOK_SPESpill;
1117     } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) {
1118       OpcodeIndex = SOK_SPE4Spill;
1119     } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1120       OpcodeIndex = SOK_CRSpill;
1121     } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1122       OpcodeIndex = SOK_CRBitSpill;
1123     } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1124       OpcodeIndex = SOK_VRVectorSpill;
1125     } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1126       OpcodeIndex = SOK_VSXVectorSpill;
1127     } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1128       OpcodeIndex = SOK_VectorFloat8Spill;
1129     } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1130       OpcodeIndex = SOK_VectorFloat4Spill;
1131     } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1132       OpcodeIndex = SOK_VRSaveSpill;
1133     } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1134       OpcodeIndex = SOK_QuadFloat8Spill;
1135     } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1136       OpcodeIndex = SOK_QuadFloat4Spill;
1137     } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1138       OpcodeIndex = SOK_QuadBitSpill;
1139     } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1140       OpcodeIndex = SOK_SpillToVSR;
1141     } else {
1142       llvm_unreachable("Unknown regclass!");
1143     }
1144   } else {
1145     if (PPC::GPRCRegClass.contains(Reg) ||
1146         PPC::GPRC_NOR0RegClass.contains(Reg)) {
1147       OpcodeIndex = SOK_Int4Spill;
1148     } else if (PPC::G8RCRegClass.contains(Reg) ||
1149                PPC::G8RC_NOX0RegClass.contains(Reg)) {
1150       OpcodeIndex = SOK_Int8Spill;
1151     } else if (PPC::F8RCRegClass.contains(Reg)) {
1152       OpcodeIndex = SOK_Float8Spill;
1153     } else if (PPC::F4RCRegClass.contains(Reg)) {
1154       OpcodeIndex = SOK_Float4Spill;
1155     } else if (PPC::CRRCRegClass.contains(Reg)) {
1156       OpcodeIndex = SOK_CRSpill;
1157     } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1158       OpcodeIndex = SOK_CRBitSpill;
1159     } else if (PPC::VRRCRegClass.contains(Reg)) {
1160       OpcodeIndex = SOK_VRVectorSpill;
1161     } else if (PPC::VSRCRegClass.contains(Reg)) {
1162       OpcodeIndex = SOK_VSXVectorSpill;
1163     } else if (PPC::VSFRCRegClass.contains(Reg)) {
1164       OpcodeIndex = SOK_VectorFloat8Spill;
1165     } else if (PPC::VSSRCRegClass.contains(Reg)) {
1166       OpcodeIndex = SOK_VectorFloat4Spill;
1167     } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1168       OpcodeIndex = SOK_VRSaveSpill;
1169     } else if (PPC::QFRCRegClass.contains(Reg)) {
1170       OpcodeIndex = SOK_QuadFloat8Spill;
1171     } else if (PPC::QSRCRegClass.contains(Reg)) {
1172       OpcodeIndex = SOK_QuadFloat4Spill;
1173     } else if (PPC::QBRCRegClass.contains(Reg)) {
1174       OpcodeIndex = SOK_QuadBitSpill;
1175     } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1176       OpcodeIndex = SOK_SpillToVSR;
1177     } else {
1178       llvm_unreachable("Unknown regclass!");
1179     }
1180   }
1181   return OpcodesForSpill[OpcodeIndex];
1182 }
1183 
1184 void PPCInstrInfo::StoreRegToStackSlot(
1185     MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1186     const TargetRegisterClass *RC,
1187     SmallVectorImpl<MachineInstr *> &NewMIs) const {
1188   unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC);
1189   DebugLoc DL;
1190 
1191   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1192   FuncInfo->setHasSpills();
1193 
1194   NewMIs.push_back(addFrameReference(
1195       BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1196       FrameIdx));
1197 
1198   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1199       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1200     FuncInfo->setSpillsCR();
1201 
1202   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1203     FuncInfo->setSpillsVRSAVE();
1204 
1205   if (isXFormMemOp(Opcode))
1206     FuncInfo->setHasNonRISpills();
1207 }
1208 
1209 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1210                                        MachineBasicBlock::iterator MI,
1211                                        unsigned SrcReg, bool isKill,
1212                                        int FrameIdx,
1213                                        const TargetRegisterClass *RC,
1214                                        const TargetRegisterInfo *TRI) const {
1215   MachineFunction &MF = *MBB.getParent();
1216   SmallVector<MachineInstr *, 4> NewMIs;
1217 
1218   // We need to avoid a situation in which the value from a VRRC register is
1219   // spilled using an Altivec instruction and reloaded into a VSRC register
1220   // using a VSX instruction. The issue with this is that the VSX
1221   // load/store instructions swap the doublewords in the vector and the Altivec
1222   // ones don't. The register classes on the spill/reload may be different if
1223   // the register is defined using an Altivec instruction and is then used by a
1224   // VSX instruction.
1225   RC = updatedRC(RC);
1226 
1227   StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1228 
1229   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1230     MBB.insert(MI, NewMIs[i]);
1231 
1232   const MachineFrameInfo &MFI = MF.getFrameInfo();
1233   MachineMemOperand *MMO = MF.getMachineMemOperand(
1234       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1235       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1236       MFI.getObjectAlignment(FrameIdx));
1237   NewMIs.back()->addMemOperand(MF, MMO);
1238 }
1239 
1240 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1241                                         unsigned DestReg, int FrameIdx,
1242                                         const TargetRegisterClass *RC,
1243                                         SmallVectorImpl<MachineInstr *> &NewMIs)
1244                                         const {
1245   unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC);
1246   NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1247                                      FrameIdx));
1248   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1249 
1250   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1251       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1252     FuncInfo->setSpillsCR();
1253 
1254   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1255     FuncInfo->setSpillsVRSAVE();
1256 
1257   if (isXFormMemOp(Opcode))
1258     FuncInfo->setHasNonRISpills();
1259 }
1260 
1261 void
1262 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1263                                    MachineBasicBlock::iterator MI,
1264                                    unsigned DestReg, int FrameIdx,
1265                                    const TargetRegisterClass *RC,
1266                                    const TargetRegisterInfo *TRI) const {
1267   MachineFunction &MF = *MBB.getParent();
1268   SmallVector<MachineInstr*, 4> NewMIs;
1269   DebugLoc DL;
1270   if (MI != MBB.end()) DL = MI->getDebugLoc();
1271 
1272   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1273   FuncInfo->setHasSpills();
1274 
1275   // We need to avoid a situation in which the value from a VRRC register is
1276   // spilled using an Altivec instruction and reloaded into a VSRC register
1277   // using a VSX instruction. The issue with this is that the VSX
1278   // load/store instructions swap the doublewords in the vector and the Altivec
1279   // ones don't. The register classes on the spill/reload may be different if
1280   // the register is defined using an Altivec instruction and is then used by a
1281   // VSX instruction.
1282   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
1283     RC = &PPC::VSRCRegClass;
1284 
1285   LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
1286 
1287   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1288     MBB.insert(MI, NewMIs[i]);
1289 
1290   const MachineFrameInfo &MFI = MF.getFrameInfo();
1291   MachineMemOperand *MMO = MF.getMachineMemOperand(
1292       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1293       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1294       MFI.getObjectAlignment(FrameIdx));
1295   NewMIs.back()->addMemOperand(MF, MMO);
1296 }
1297 
1298 bool PPCInstrInfo::
1299 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1300   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1301   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1302     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1303   else
1304     // Leave the CR# the same, but invert the condition.
1305     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1306   return false;
1307 }
1308 
1309 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1310                                  unsigned Reg, MachineRegisterInfo *MRI) const {
1311   // For some instructions, it is legal to fold ZERO into the RA register field.
1312   // A zero immediate should always be loaded with a single li.
1313   unsigned DefOpc = DefMI.getOpcode();
1314   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1315     return false;
1316   if (!DefMI.getOperand(1).isImm())
1317     return false;
1318   if (DefMI.getOperand(1).getImm() != 0)
1319     return false;
1320 
1321   // Note that we cannot here invert the arguments of an isel in order to fold
1322   // a ZERO into what is presented as the second argument. All we have here
1323   // is the condition bit, and that might come from a CR-logical bit operation.
1324 
1325   const MCInstrDesc &UseMCID = UseMI.getDesc();
1326 
1327   // Only fold into real machine instructions.
1328   if (UseMCID.isPseudo())
1329     return false;
1330 
1331   unsigned UseIdx;
1332   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1333     if (UseMI.getOperand(UseIdx).isReg() &&
1334         UseMI.getOperand(UseIdx).getReg() == Reg)
1335       break;
1336 
1337   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1338   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1339 
1340   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1341 
1342   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1343   // register (which might also be specified as a pointer class kind).
1344   if (UseInfo->isLookupPtrRegClass()) {
1345     if (UseInfo->RegClass /* Kind */ != 1)
1346       return false;
1347   } else {
1348     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1349         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1350       return false;
1351   }
1352 
1353   // Make sure this is not tied to an output register (or otherwise
1354   // constrained). This is true for ST?UX registers, for example, which
1355   // are tied to their output registers.
1356   if (UseInfo->Constraints != 0)
1357     return false;
1358 
1359   unsigned ZeroReg;
1360   if (UseInfo->isLookupPtrRegClass()) {
1361     bool isPPC64 = Subtarget.isPPC64();
1362     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1363   } else {
1364     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1365               PPC::ZERO8 : PPC::ZERO;
1366   }
1367 
1368   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1369   UseMI.getOperand(UseIdx).setReg(ZeroReg);
1370 
1371   if (DeleteDef)
1372     DefMI.eraseFromParent();
1373 
1374   return true;
1375 }
1376 
1377 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1378   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1379        I != IE; ++I)
1380     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1381       return true;
1382   return false;
1383 }
1384 
1385 // We should make sure that, if we're going to predicate both sides of a
1386 // condition (a diamond), that both sides don't define the counter register. We
1387 // can predicate counter-decrement-based branches, but while that predicates
1388 // the branching, it does not predicate the counter decrement. If we tried to
1389 // merge the triangle into one predicated block, we'd decrement the counter
1390 // twice.
1391 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1392                      unsigned NumT, unsigned ExtraT,
1393                      MachineBasicBlock &FMBB,
1394                      unsigned NumF, unsigned ExtraF,
1395                      BranchProbability Probability) const {
1396   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1397 }
1398 
1399 
1400 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1401   // The predicated branches are identified by their type, not really by the
1402   // explicit presence of a predicate. Furthermore, some of them can be
1403   // predicated more than once. Because if conversion won't try to predicate
1404   // any instruction which already claims to be predicated (by returning true
1405   // here), always return false. In doing so, we let isPredicable() be the
1406   // final word on whether not the instruction can be (further) predicated.
1407 
1408   return false;
1409 }
1410 
1411 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1412   if (!MI.isTerminator())
1413     return false;
1414 
1415   // Conditional branch is a special case.
1416   if (MI.isBranch() && !MI.isBarrier())
1417     return true;
1418 
1419   return !isPredicated(MI);
1420 }
1421 
1422 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1423                                         ArrayRef<MachineOperand> Pred) const {
1424   unsigned OpC = MI.getOpcode();
1425   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1426     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1427       bool isPPC64 = Subtarget.isPPC64();
1428       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1429                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1430     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1431       MI.setDesc(get(PPC::BCLR));
1432       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1433           .addReg(Pred[1].getReg());
1434     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1435       MI.setDesc(get(PPC::BCLRn));
1436       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1437           .addReg(Pred[1].getReg());
1438     } else {
1439       MI.setDesc(get(PPC::BCCLR));
1440       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1441           .addImm(Pred[0].getImm())
1442           .addReg(Pred[1].getReg());
1443     }
1444 
1445     return true;
1446   } else if (OpC == PPC::B) {
1447     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1448       bool isPPC64 = Subtarget.isPPC64();
1449       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1450                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1451     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1452       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1453       MI.RemoveOperand(0);
1454 
1455       MI.setDesc(get(PPC::BC));
1456       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1457           .addReg(Pred[1].getReg())
1458           .addMBB(MBB);
1459     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1460       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1461       MI.RemoveOperand(0);
1462 
1463       MI.setDesc(get(PPC::BCn));
1464       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1465           .addReg(Pred[1].getReg())
1466           .addMBB(MBB);
1467     } else {
1468       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1469       MI.RemoveOperand(0);
1470 
1471       MI.setDesc(get(PPC::BCC));
1472       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1473           .addImm(Pred[0].getImm())
1474           .addReg(Pred[1].getReg())
1475           .addMBB(MBB);
1476     }
1477 
1478     return true;
1479   } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
1480              OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
1481     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1482       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1483 
1484     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1485     bool isPPC64 = Subtarget.isPPC64();
1486 
1487     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1488       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1489                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1490       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1491           .addReg(Pred[1].getReg());
1492       return true;
1493     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1494       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1495                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1496       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1497           .addReg(Pred[1].getReg());
1498       return true;
1499     }
1500 
1501     MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1502                            : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1503     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1504         .addImm(Pred[0].getImm())
1505         .addReg(Pred[1].getReg());
1506     return true;
1507   }
1508 
1509   return false;
1510 }
1511 
1512 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1513                                      ArrayRef<MachineOperand> Pred2) const {
1514   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1515   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1516 
1517   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1518     return false;
1519   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1520     return false;
1521 
1522   // P1 can only subsume P2 if they test the same condition register.
1523   if (Pred1[1].getReg() != Pred2[1].getReg())
1524     return false;
1525 
1526   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1527   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1528 
1529   if (P1 == P2)
1530     return true;
1531 
1532   // Does P1 subsume P2, e.g. GE subsumes GT.
1533   if (P1 == PPC::PRED_LE &&
1534       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1535     return true;
1536   if (P1 == PPC::PRED_GE &&
1537       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1538     return true;
1539 
1540   return false;
1541 }
1542 
1543 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1544                                     std::vector<MachineOperand> &Pred) const {
1545   // Note: At the present time, the contents of Pred from this function is
1546   // unused by IfConversion. This implementation follows ARM by pushing the
1547   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1548   // predicate, instructions defining CTR or CTR8 are also included as
1549   // predicate-defining instructions.
1550 
1551   const TargetRegisterClass *RCs[] =
1552     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1553       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1554 
1555   bool Found = false;
1556   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1557     const MachineOperand &MO = MI.getOperand(i);
1558     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1559       const TargetRegisterClass *RC = RCs[c];
1560       if (MO.isReg()) {
1561         if (MO.isDef() && RC->contains(MO.getReg())) {
1562           Pred.push_back(MO);
1563           Found = true;
1564         }
1565       } else if (MO.isRegMask()) {
1566         for (TargetRegisterClass::iterator I = RC->begin(),
1567              IE = RC->end(); I != IE; ++I)
1568           if (MO.clobbersPhysReg(*I)) {
1569             Pred.push_back(MO);
1570             Found = true;
1571           }
1572       }
1573     }
1574   }
1575 
1576   return Found;
1577 }
1578 
1579 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const {
1580   unsigned OpC = MI.getOpcode();
1581   switch (OpC) {
1582   default:
1583     return false;
1584   case PPC::B:
1585   case PPC::BLR:
1586   case PPC::BLR8:
1587   case PPC::BCTR:
1588   case PPC::BCTR8:
1589   case PPC::BCTRL:
1590   case PPC::BCTRL8:
1591     return true;
1592   }
1593 }
1594 
1595 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1596                                   unsigned &SrcReg2, int &Mask,
1597                                   int &Value) const {
1598   unsigned Opc = MI.getOpcode();
1599 
1600   switch (Opc) {
1601   default: return false;
1602   case PPC::CMPWI:
1603   case PPC::CMPLWI:
1604   case PPC::CMPDI:
1605   case PPC::CMPLDI:
1606     SrcReg = MI.getOperand(1).getReg();
1607     SrcReg2 = 0;
1608     Value = MI.getOperand(2).getImm();
1609     Mask = 0xFFFF;
1610     return true;
1611   case PPC::CMPW:
1612   case PPC::CMPLW:
1613   case PPC::CMPD:
1614   case PPC::CMPLD:
1615   case PPC::FCMPUS:
1616   case PPC::FCMPUD:
1617     SrcReg = MI.getOperand(1).getReg();
1618     SrcReg2 = MI.getOperand(2).getReg();
1619     Value = 0;
1620     Mask = 0;
1621     return true;
1622   }
1623 }
1624 
1625 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1626                                         unsigned SrcReg2, int Mask, int Value,
1627                                         const MachineRegisterInfo *MRI) const {
1628   if (DisableCmpOpt)
1629     return false;
1630 
1631   int OpC = CmpInstr.getOpcode();
1632   unsigned CRReg = CmpInstr.getOperand(0).getReg();
1633 
1634   // FP record forms set CR1 based on the exception status bits, not a
1635   // comparison with zero.
1636   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1637     return false;
1638 
1639   // The record forms set the condition register based on a signed comparison
1640   // with zero (so says the ISA manual). This is not as straightforward as it
1641   // seems, however, because this is always a 64-bit comparison on PPC64, even
1642   // for instructions that are 32-bit in nature (like slw for example).
1643   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1644   // for equality checks (as those don't depend on the sign). On PPC64,
1645   // we are restricted to equality for unsigned 64-bit comparisons and for
1646   // signed 32-bit comparisons the applicability is more restricted.
1647   bool isPPC64 = Subtarget.isPPC64();
1648   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1649   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1650   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1651 
1652   // Get the unique definition of SrcReg.
1653   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1654   if (!MI) return false;
1655 
1656   bool equalityOnly = false;
1657   bool noSub = false;
1658   if (isPPC64) {
1659     if (is32BitSignedCompare) {
1660       // We can perform this optimization only if MI is sign-extending.
1661       if (isSignExtended(*MI))
1662         noSub = true;
1663       else
1664         return false;
1665     } else if (is32BitUnsignedCompare) {
1666       // We can perform this optimization, equality only, if MI is
1667       // zero-extending.
1668       if (isZeroExtended(*MI)) {
1669         noSub = true;
1670         equalityOnly = true;
1671       } else
1672         return false;
1673     } else
1674       equalityOnly = is64BitUnsignedCompare;
1675   } else
1676     equalityOnly = is32BitUnsignedCompare;
1677 
1678   if (equalityOnly) {
1679     // We need to check the uses of the condition register in order to reject
1680     // non-equality comparisons.
1681     for (MachineRegisterInfo::use_instr_iterator
1682          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1683          I != IE; ++I) {
1684       MachineInstr *UseMI = &*I;
1685       if (UseMI->getOpcode() == PPC::BCC) {
1686         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1687         unsigned PredCond = PPC::getPredicateCondition(Pred);
1688         // We ignore hint bits when checking for non-equality comparisons.
1689         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
1690           return false;
1691       } else if (UseMI->getOpcode() == PPC::ISEL ||
1692                  UseMI->getOpcode() == PPC::ISEL8) {
1693         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1694         if (SubIdx != PPC::sub_eq)
1695           return false;
1696       } else
1697         return false;
1698     }
1699   }
1700 
1701   MachineBasicBlock::iterator I = CmpInstr;
1702 
1703   // Scan forward to find the first use of the compare.
1704   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1705        ++I) {
1706     bool FoundUse = false;
1707     for (MachineRegisterInfo::use_instr_iterator
1708          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
1709          J != JE; ++J)
1710       if (&*J == &*I) {
1711         FoundUse = true;
1712         break;
1713       }
1714 
1715     if (FoundUse)
1716       break;
1717   }
1718 
1719   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1720   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1721 
1722   // There are two possible candidates which can be changed to set CR[01].
1723   // One is MI, the other is a SUB instruction.
1724   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1725   MachineInstr *Sub = nullptr;
1726   if (SrcReg2 != 0)
1727     // MI is not a candidate for CMPrr.
1728     MI = nullptr;
1729   // FIXME: Conservatively refuse to convert an instruction which isn't in the
1730   // same BB as the comparison. This is to allow the check below to avoid calls
1731   // (and other explicit clobbers); instead we should really check for these
1732   // more explicitly (in at least a few predecessors).
1733   else if (MI->getParent() != CmpInstr.getParent())
1734     return false;
1735   else if (Value != 0) {
1736     // The record-form instructions set CR bit based on signed comparison
1737     // against 0. We try to convert a compare against 1 or -1 into a compare
1738     // against 0 to exploit record-form instructions. For example, we change
1739     // the condition "greater than -1" into "greater than or equal to 0"
1740     // and "less than 1" into "less than or equal to 0".
1741 
1742     // Since we optimize comparison based on a specific branch condition,
1743     // we don't optimize if condition code is used by more than once.
1744     if (equalityOnly || !MRI->hasOneUse(CRReg))
1745       return false;
1746 
1747     MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
1748     if (UseMI->getOpcode() != PPC::BCC)
1749       return false;
1750 
1751     PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1752     PPC::Predicate NewPred = Pred;
1753     unsigned PredCond = PPC::getPredicateCondition(Pred);
1754     unsigned PredHint = PPC::getPredicateHint(Pred);
1755     int16_t Immed = (int16_t)Value;
1756 
1757     // When modifying the condition in the predicate, we propagate hint bits
1758     // from the original predicate to the new one.
1759     if (Immed == -1 && PredCond == PPC::PRED_GT)
1760       // We convert "greater than -1" into "greater than or equal to 0",
1761       // since we are assuming signed comparison by !equalityOnly
1762       NewPred = PPC::getPredicate(PPC::PRED_GE, PredHint);
1763     else if (Immed == -1 && PredCond == PPC::PRED_LE)
1764       // We convert "less than or equal to -1" into "less than 0".
1765       NewPred = PPC::getPredicate(PPC::PRED_LT, PredHint);
1766     else if (Immed == 1 && PredCond == PPC::PRED_LT)
1767       // We convert "less than 1" into "less than or equal to 0".
1768       NewPred = PPC::getPredicate(PPC::PRED_LE, PredHint);
1769     else if (Immed == 1 && PredCond == PPC::PRED_GE)
1770       // We convert "greater than or equal to 1" into "greater than 0".
1771       NewPred = PPC::getPredicate(PPC::PRED_GT, PredHint);
1772     else
1773       return false;
1774 
1775     PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1776                                             NewPred));
1777   }
1778 
1779   // Search for Sub.
1780   const TargetRegisterInfo *TRI = &getRegisterInfo();
1781   --I;
1782 
1783   // Get ready to iterate backward from CmpInstr.
1784   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
1785 
1786   for (; I != E && !noSub; --I) {
1787     const MachineInstr &Instr = *I;
1788     unsigned IOpC = Instr.getOpcode();
1789 
1790     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
1791                              Instr.readsRegister(PPC::CR0, TRI)))
1792       // This instruction modifies or uses the record condition register after
1793       // the one we want to change. While we could do this transformation, it
1794       // would likely not be profitable. This transformation removes one
1795       // instruction, and so even forcing RA to generate one move probably
1796       // makes it unprofitable.
1797       return false;
1798 
1799     // Check whether CmpInstr can be made redundant by the current instruction.
1800     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1801          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1802         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1803         ((Instr.getOperand(1).getReg() == SrcReg &&
1804           Instr.getOperand(2).getReg() == SrcReg2) ||
1805         (Instr.getOperand(1).getReg() == SrcReg2 &&
1806          Instr.getOperand(2).getReg() == SrcReg))) {
1807       Sub = &*I;
1808       break;
1809     }
1810 
1811     if (I == B)
1812       // The 'and' is below the comparison instruction.
1813       return false;
1814   }
1815 
1816   // Return false if no candidates exist.
1817   if (!MI && !Sub)
1818     return false;
1819 
1820   // The single candidate is called MI.
1821   if (!MI) MI = Sub;
1822 
1823   int NewOpC = -1;
1824   int MIOpC = MI->getOpcode();
1825   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 ||
1826       MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8)
1827     NewOpC = MIOpC;
1828   else {
1829     NewOpC = PPC::getRecordFormOpcode(MIOpC);
1830     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1831       NewOpC = MIOpC;
1832   }
1833 
1834   // FIXME: On the non-embedded POWER architectures, only some of the record
1835   // forms are fast, and we should use only the fast ones.
1836 
1837   // The defining instruction has a record form (or is already a record
1838   // form). It is possible, however, that we'll need to reverse the condition
1839   // code of the users.
1840   if (NewOpC == -1)
1841     return false;
1842 
1843   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1844   // needs to be updated to be based on SUB.  Push the condition code
1845   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1846   // condition code of these operands will be modified.
1847   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
1848   // comparison against 0, which may modify predicate.
1849   bool ShouldSwap = false;
1850   if (Sub && Value == 0) {
1851     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1852       Sub->getOperand(2).getReg() == SrcReg;
1853 
1854     // The operands to subf are the opposite of sub, so only in the fixed-point
1855     // case, invert the order.
1856     ShouldSwap = !ShouldSwap;
1857   }
1858 
1859   if (ShouldSwap)
1860     for (MachineRegisterInfo::use_instr_iterator
1861          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1862          I != IE; ++I) {
1863       MachineInstr *UseMI = &*I;
1864       if (UseMI->getOpcode() == PPC::BCC) {
1865         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1866         unsigned PredCond = PPC::getPredicateCondition(Pred);
1867         assert((!equalityOnly ||
1868                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
1869                "Invalid predicate for equality-only optimization");
1870         (void)PredCond; // To suppress warning in release build.
1871         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1872                                 PPC::getSwappedPredicate(Pred)));
1873       } else if (UseMI->getOpcode() == PPC::ISEL ||
1874                  UseMI->getOpcode() == PPC::ISEL8) {
1875         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1876         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1877                "Invalid CR bit for equality-only optimization");
1878 
1879         if (NewSubReg == PPC::sub_lt)
1880           NewSubReg = PPC::sub_gt;
1881         else if (NewSubReg == PPC::sub_gt)
1882           NewSubReg = PPC::sub_lt;
1883 
1884         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1885                                                  NewSubReg));
1886       } else // We need to abort on a user we don't understand.
1887         return false;
1888     }
1889   assert(!(Value != 0 && ShouldSwap) &&
1890          "Non-zero immediate support and ShouldSwap"
1891          "may conflict in updating predicate");
1892 
1893   // Create a new virtual register to hold the value of the CR set by the
1894   // record-form instruction. If the instruction was not previously in
1895   // record form, then set the kill flag on the CR.
1896   CmpInstr.eraseFromParent();
1897 
1898   MachineBasicBlock::iterator MII = MI;
1899   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1900           get(TargetOpcode::COPY), CRReg)
1901     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1902 
1903   // Even if CR0 register were dead before, it is alive now since the
1904   // instruction we just built uses it.
1905   MI->clearRegisterDeads(PPC::CR0);
1906 
1907   if (MIOpC != NewOpC) {
1908     // We need to be careful here: we're replacing one instruction with
1909     // another, and we need to make sure that we get all of the right
1910     // implicit uses and defs. On the other hand, the caller may be holding
1911     // an iterator to this instruction, and so we can't delete it (this is
1912     // specifically the case if this is the instruction directly after the
1913     // compare).
1914 
1915     // Rotates are expensive instructions. If we're emitting a record-form
1916     // rotate that can just be an andi/andis, we should just emit that.
1917     if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
1918       unsigned GPRRes = MI->getOperand(0).getReg();
1919       int64_t SH = MI->getOperand(2).getImm();
1920       int64_t MB = MI->getOperand(3).getImm();
1921       int64_t ME = MI->getOperand(4).getImm();
1922       // We can only do this if both the start and end of the mask are in the
1923       // same halfword.
1924       bool MBInLoHWord = MB >= 16;
1925       bool MEInLoHWord = ME >= 16;
1926       uint64_t Mask = ~0LLU;
1927 
1928       if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
1929         Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
1930         // The mask value needs to shift right 16 if we're emitting andis.
1931         Mask >>= MBInLoHWord ? 0 : 16;
1932         NewOpC = MIOpC == PPC::RLWINM ?
1933           (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) :
1934           (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8);
1935       } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
1936                  (ME - MB + 1 == SH) && (MB >= 16)) {
1937         // If we are rotating by the exact number of bits as are in the mask
1938         // and the mask is in the least significant bits of the register,
1939         // that's just an andis. (as long as the GPR result has no uses).
1940         Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
1941         Mask >>= 16;
1942         NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8;
1943       }
1944       // If we've set the mask, we can transform.
1945       if (Mask != ~0LLU) {
1946         MI->RemoveOperand(4);
1947         MI->RemoveOperand(3);
1948         MI->getOperand(2).setImm(Mask);
1949         NumRcRotatesConvertedToRcAnd++;
1950       }
1951     } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
1952       int64_t MB = MI->getOperand(3).getImm();
1953       if (MB >= 48) {
1954         uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
1955         NewOpC = PPC::ANDIo8;
1956         MI->RemoveOperand(3);
1957         MI->getOperand(2).setImm(Mask);
1958         NumRcRotatesConvertedToRcAnd++;
1959       }
1960     }
1961 
1962     const MCInstrDesc &NewDesc = get(NewOpC);
1963     MI->setDesc(NewDesc);
1964 
1965     if (NewDesc.ImplicitDefs)
1966       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1967            *ImpDefs; ++ImpDefs)
1968         if (!MI->definesRegister(*ImpDefs))
1969           MI->addOperand(*MI->getParent()->getParent(),
1970                          MachineOperand::CreateReg(*ImpDefs, true, true));
1971     if (NewDesc.ImplicitUses)
1972       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1973            *ImpUses; ++ImpUses)
1974         if (!MI->readsRegister(*ImpUses))
1975           MI->addOperand(*MI->getParent()->getParent(),
1976                          MachineOperand::CreateReg(*ImpUses, false, true));
1977   }
1978   assert(MI->definesRegister(PPC::CR0) &&
1979          "Record-form instruction does not define cr0?");
1980 
1981   // Modify the condition code of operands in OperandsToUpdate.
1982   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1983   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1984   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1985     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1986 
1987   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1988     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1989 
1990   return true;
1991 }
1992 
1993 /// GetInstSize - Return the number of bytes of code the specified
1994 /// instruction may be.  This returns the maximum number of bytes.
1995 ///
1996 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1997   unsigned Opcode = MI.getOpcode();
1998 
1999   if (Opcode == PPC::INLINEASM) {
2000     const MachineFunction *MF = MI.getParent()->getParent();
2001     const char *AsmStr = MI.getOperand(0).getSymbolName();
2002     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2003   } else if (Opcode == TargetOpcode::STACKMAP) {
2004     StackMapOpers Opers(&MI);
2005     return Opers.getNumPatchBytes();
2006   } else if (Opcode == TargetOpcode::PATCHPOINT) {
2007     PatchPointOpers Opers(&MI);
2008     return Opers.getNumPatchBytes();
2009   } else {
2010     return get(Opcode).getSize();
2011   }
2012 }
2013 
2014 std::pair<unsigned, unsigned>
2015 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2016   const unsigned Mask = PPCII::MO_ACCESS_MASK;
2017   return std::make_pair(TF & Mask, TF & ~Mask);
2018 }
2019 
2020 ArrayRef<std::pair<unsigned, const char *>>
2021 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2022   using namespace PPCII;
2023   static const std::pair<unsigned, const char *> TargetFlags[] = {
2024       {MO_LO, "ppc-lo"},
2025       {MO_HA, "ppc-ha"},
2026       {MO_TPREL_LO, "ppc-tprel-lo"},
2027       {MO_TPREL_HA, "ppc-tprel-ha"},
2028       {MO_DTPREL_LO, "ppc-dtprel-lo"},
2029       {MO_TLSLD_LO, "ppc-tlsld-lo"},
2030       {MO_TOC_LO, "ppc-toc-lo"},
2031       {MO_TLS, "ppc-tls"}};
2032   return makeArrayRef(TargetFlags);
2033 }
2034 
2035 ArrayRef<std::pair<unsigned, const char *>>
2036 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2037   using namespace PPCII;
2038   static const std::pair<unsigned, const char *> TargetFlags[] = {
2039       {MO_PLT, "ppc-plt"},
2040       {MO_PIC_FLAG, "ppc-pic"},
2041       {MO_NLP_FLAG, "ppc-nlp"},
2042       {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
2043   return makeArrayRef(TargetFlags);
2044 }
2045 
2046 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2047 // The VSX versions have the advantage of a full 64-register target whereas
2048 // the FP ones have the advantage of lower latency and higher throughput. So
2049 // what we are after is using the faster instructions in low register pressure
2050 // situations and using the larger register file in high register pressure
2051 // situations.
2052 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2053     unsigned UpperOpcode, LowerOpcode;
2054     switch (MI.getOpcode()) {
2055     case PPC::DFLOADf32:
2056       UpperOpcode = PPC::LXSSP;
2057       LowerOpcode = PPC::LFS;
2058       break;
2059     case PPC::DFLOADf64:
2060       UpperOpcode = PPC::LXSD;
2061       LowerOpcode = PPC::LFD;
2062       break;
2063     case PPC::DFSTOREf32:
2064       UpperOpcode = PPC::STXSSP;
2065       LowerOpcode = PPC::STFS;
2066       break;
2067     case PPC::DFSTOREf64:
2068       UpperOpcode = PPC::STXSD;
2069       LowerOpcode = PPC::STFD;
2070       break;
2071     case PPC::XFLOADf32:
2072       UpperOpcode = PPC::LXSSPX;
2073       LowerOpcode = PPC::LFSX;
2074       break;
2075     case PPC::XFLOADf64:
2076       UpperOpcode = PPC::LXSDX;
2077       LowerOpcode = PPC::LFDX;
2078       break;
2079     case PPC::XFSTOREf32:
2080       UpperOpcode = PPC::STXSSPX;
2081       LowerOpcode = PPC::STFSX;
2082       break;
2083     case PPC::XFSTOREf64:
2084       UpperOpcode = PPC::STXSDX;
2085       LowerOpcode = PPC::STFDX;
2086       break;
2087     case PPC::LIWAX:
2088       UpperOpcode = PPC::LXSIWAX;
2089       LowerOpcode = PPC::LFIWAX;
2090       break;
2091     case PPC::LIWZX:
2092       UpperOpcode = PPC::LXSIWZX;
2093       LowerOpcode = PPC::LFIWZX;
2094       break;
2095     case PPC::STIWX:
2096       UpperOpcode = PPC::STXSIWX;
2097       LowerOpcode = PPC::STFIWX;
2098       break;
2099     default:
2100       llvm_unreachable("Unknown Operation!");
2101     }
2102 
2103     unsigned TargetReg = MI.getOperand(0).getReg();
2104     unsigned Opcode;
2105     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2106         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2107       Opcode = LowerOpcode;
2108     else
2109       Opcode = UpperOpcode;
2110     MI.setDesc(get(Opcode));
2111     return true;
2112 }
2113 
2114 static bool isAnImmediateOperand(const MachineOperand &MO) {
2115   return MO.isCPI() || MO.isGlobal() || MO.isImm();
2116 }
2117 
2118 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2119   auto &MBB = *MI.getParent();
2120   auto DL = MI.getDebugLoc();
2121 
2122   switch (MI.getOpcode()) {
2123   case TargetOpcode::LOAD_STACK_GUARD: {
2124     assert(Subtarget.isTargetLinux() &&
2125            "Only Linux target is expected to contain LOAD_STACK_GUARD");
2126     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
2127     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
2128     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
2129     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2130         .addImm(Offset)
2131         .addReg(Reg);
2132     return true;
2133   }
2134   case PPC::DFLOADf32:
2135   case PPC::DFLOADf64:
2136   case PPC::DFSTOREf32:
2137   case PPC::DFSTOREf64: {
2138     assert(Subtarget.hasP9Vector() &&
2139            "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2140     assert(MI.getOperand(2).isReg() &&
2141            isAnImmediateOperand(MI.getOperand(1)) &&
2142            "D-form op must have register and immediate operands");
2143     return expandVSXMemPseudo(MI);
2144   }
2145   case PPC::XFLOADf32:
2146   case PPC::XFSTOREf32:
2147   case PPC::LIWAX:
2148   case PPC::LIWZX:
2149   case PPC::STIWX: {
2150     assert(Subtarget.hasP8Vector() &&
2151            "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2152     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2153            "X-form op must have register and register operands");
2154     return expandVSXMemPseudo(MI);
2155   }
2156   case PPC::XFLOADf64:
2157   case PPC::XFSTOREf64: {
2158     assert(Subtarget.hasVSX() &&
2159            "Invalid X-Form Pseudo-ops on target that has no VSX.");
2160     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2161            "X-form op must have register and register operands");
2162     return expandVSXMemPseudo(MI);
2163   }
2164   case PPC::SPILLTOVSR_LD: {
2165     unsigned TargetReg = MI.getOperand(0).getReg();
2166     if (PPC::VSFRCRegClass.contains(TargetReg)) {
2167       MI.setDesc(get(PPC::DFLOADf64));
2168       return expandPostRAPseudo(MI);
2169     }
2170     else
2171       MI.setDesc(get(PPC::LD));
2172     return true;
2173   }
2174   case PPC::SPILLTOVSR_ST: {
2175     unsigned SrcReg = MI.getOperand(0).getReg();
2176     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2177       NumStoreSPILLVSRRCAsVec++;
2178       MI.setDesc(get(PPC::DFSTOREf64));
2179       return expandPostRAPseudo(MI);
2180     } else {
2181       NumStoreSPILLVSRRCAsGpr++;
2182       MI.setDesc(get(PPC::STD));
2183     }
2184     return true;
2185   }
2186   case PPC::SPILLTOVSR_LDX: {
2187     unsigned TargetReg = MI.getOperand(0).getReg();
2188     if (PPC::VSFRCRegClass.contains(TargetReg))
2189       MI.setDesc(get(PPC::LXSDX));
2190     else
2191       MI.setDesc(get(PPC::LDX));
2192     return true;
2193   }
2194   case PPC::SPILLTOVSR_STX: {
2195     unsigned SrcReg = MI.getOperand(0).getReg();
2196     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2197       NumStoreSPILLVSRRCAsVec++;
2198       MI.setDesc(get(PPC::STXSDX));
2199     } else {
2200       NumStoreSPILLVSRRCAsGpr++;
2201       MI.setDesc(get(PPC::STDX));
2202     }
2203     return true;
2204   }
2205 
2206   case PPC::CFENCE8: {
2207     auto Val = MI.getOperand(0).getReg();
2208     BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
2209     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
2210         .addImm(PPC::PRED_NE_MINUS)
2211         .addReg(PPC::CR7)
2212         .addImm(1);
2213     MI.setDesc(get(PPC::ISYNC));
2214     MI.RemoveOperand(0);
2215     return true;
2216   }
2217   }
2218   return false;
2219 }
2220 
2221 // Essentially a compile-time implementation of a compare->isel sequence.
2222 // It takes two constants to compare, along with the true/false registers
2223 // and the comparison type (as a subreg to a CR field) and returns one
2224 // of the true/false registers, depending on the comparison results.
2225 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
2226                           unsigned TrueReg, unsigned FalseReg,
2227                           unsigned CRSubReg) {
2228   // Signed comparisons. The immediates are assumed to be sign-extended.
2229   if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
2230     switch (CRSubReg) {
2231     default: llvm_unreachable("Unknown integer comparison type.");
2232     case PPC::sub_lt:
2233       return Imm1 < Imm2 ? TrueReg : FalseReg;
2234     case PPC::sub_gt:
2235       return Imm1 > Imm2 ? TrueReg : FalseReg;
2236     case PPC::sub_eq:
2237       return Imm1 == Imm2 ? TrueReg : FalseReg;
2238     }
2239   }
2240   // Unsigned comparisons.
2241   else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
2242     switch (CRSubReg) {
2243     default: llvm_unreachable("Unknown integer comparison type.");
2244     case PPC::sub_lt:
2245       return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
2246     case PPC::sub_gt:
2247       return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
2248     case PPC::sub_eq:
2249       return Imm1 == Imm2 ? TrueReg : FalseReg;
2250     }
2251   }
2252   return PPC::NoRegister;
2253 }
2254 
2255 // Replace an instruction with one that materializes a constant (and sets
2256 // CR0 if the original instruction was a record-form instruction).
2257 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
2258                                       const LoadImmediateInfo &LII) const {
2259   // Remove existing operands.
2260   int OperandToKeep = LII.SetCR ? 1 : 0;
2261   for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
2262     MI.RemoveOperand(i);
2263 
2264   // Replace the instruction.
2265   if (LII.SetCR) {
2266     MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo));
2267     // Set the immediate.
2268     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2269         .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
2270     return;
2271   }
2272   else
2273     MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
2274 
2275   // Set the immediate.
2276   MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2277       .addImm(LII.Imm);
2278 }
2279 
2280 MachineInstr *PPCInstrInfo::getForwardingDefMI(
2281   MachineInstr &MI,
2282   unsigned &OpNoForForwarding,
2283   bool &SeenIntermediateUse) const {
2284   OpNoForForwarding = ~0U;
2285   MachineInstr *DefMI = nullptr;
2286   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
2287   const TargetRegisterInfo *TRI = &getRegisterInfo();
2288   // If we're in SSA, get the defs through the MRI. Otherwise, only look
2289   // within the basic block to see if the register is defined using an LI/LI8.
2290   if (MRI->isSSA()) {
2291     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2292       if (!MI.getOperand(i).isReg())
2293         continue;
2294       unsigned Reg = MI.getOperand(i).getReg();
2295       if (!TargetRegisterInfo::isVirtualRegister(Reg))
2296         continue;
2297       unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
2298       if (TargetRegisterInfo::isVirtualRegister(TrueReg)) {
2299         DefMI = MRI->getVRegDef(TrueReg);
2300         if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) {
2301           OpNoForForwarding = i;
2302           break;
2303         }
2304       }
2305     }
2306   } else {
2307     // Looking back through the definition for each operand could be expensive,
2308     // so exit early if this isn't an instruction that either has an immediate
2309     // form or is already an immediate form that we can handle.
2310     ImmInstrInfo III;
2311     unsigned Opc = MI.getOpcode();
2312     bool ConvertibleImmForm =
2313       Opc == PPC::CMPWI || Opc == PPC::CMPLWI ||
2314       Opc == PPC::CMPDI || Opc == PPC::CMPLDI ||
2315       Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
2316       Opc == PPC::ORI || Opc == PPC::ORI8 ||
2317       Opc == PPC::XORI || Opc == PPC::XORI8 ||
2318       Opc == PPC::RLDICL || Opc == PPC::RLDICLo ||
2319       Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
2320       Opc == PPC::RLWINM || Opc == PPC::RLWINMo ||
2321       Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2322     if (!instrHasImmForm(MI, III) && !ConvertibleImmForm)
2323       return nullptr;
2324 
2325     // Don't convert or %X, %Y, %Y since that's just a register move.
2326     if ((Opc == PPC::OR || Opc == PPC::OR8) &&
2327         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
2328       return nullptr;
2329     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2330       MachineOperand &MO = MI.getOperand(i);
2331       SeenIntermediateUse = false;
2332       if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
2333         MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
2334         It++;
2335         unsigned Reg = MI.getOperand(i).getReg();
2336         // MachineInstr::readsRegister only returns true if the machine
2337         // instruction reads the exact register or its super-register. It
2338         // does not consider uses of sub-registers which seems like strange
2339         // behaviour. Nonetheless, if we end up with a 64-bit register here,
2340         // get the corresponding 32-bit register to check.
2341         if (PPC::G8RCRegClass.contains(Reg))
2342           Reg = Reg - PPC::X0 + PPC::R0;
2343 
2344         // Is this register defined by some form of add-immediate (including
2345         // load-immediate) within this basic block?
2346         for ( ; It != E; ++It) {
2347           if (It->modifiesRegister(Reg, &getRegisterInfo())) {
2348             switch (It->getOpcode()) {
2349             default: break;
2350             case PPC::LI:
2351             case PPC::LI8:
2352             case PPC::ADDItocL:
2353             case PPC::ADDI:
2354             case PPC::ADDI8:
2355               OpNoForForwarding = i;
2356               return &*It;
2357             }
2358             break;
2359           } else if (It->readsRegister(Reg, &getRegisterInfo()))
2360             // If we see another use of this reg between the def and the MI,
2361             // we want to flat it so the def isn't deleted.
2362             SeenIntermediateUse = true;
2363         }
2364       }
2365     }
2366   }
2367   return OpNoForForwarding == ~0U ? nullptr : DefMI;
2368 }
2369 
2370 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2371   static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2372       // Power 8
2373       {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2374        PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX,
2375        PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2376        PPC::SPILLTOVSR_ST, PPC::EVSTDD, PPC::SPESTW},
2377       // Power 9
2378       {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2379        PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32,
2380        PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2381        PPC::SPILLTOVSR_ST}};
2382 
2383   return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2384 }
2385 
2386 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2387   static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2388       // Power 8
2389       {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2390        PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX,
2391        PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2392        PPC::SPILLTOVSR_LD, PPC::EVLDD, PPC::SPELWZ},
2393       // Power 9
2394       {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2395        PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32,
2396        PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2397        PPC::SPILLTOVSR_LD}};
2398 
2399   return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2400 }
2401 
2402 // If this instruction has an immediate form and one of its operands is a
2403 // result of a load-immediate or an add-immediate, convert it to
2404 // the immediate form if the constant is in range.
2405 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
2406                                           MachineInstr **KilledDef) const {
2407   MachineFunction *MF = MI.getParent()->getParent();
2408   MachineRegisterInfo *MRI = &MF->getRegInfo();
2409   bool PostRA = !MRI->isSSA();
2410   bool SeenIntermediateUse = true;
2411   unsigned ForwardingOperand = ~0U;
2412   MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
2413                                            SeenIntermediateUse);
2414   if (!DefMI)
2415     return false;
2416   assert(ForwardingOperand < MI.getNumOperands() &&
2417          "The forwarding operand needs to be valid at this point");
2418   bool KillFwdDefMI = !SeenIntermediateUse &&
2419     MI.getOperand(ForwardingOperand).isKill();
2420   if (KilledDef && KillFwdDefMI)
2421     *KilledDef = DefMI;
2422 
2423   ImmInstrInfo III;
2424   bool HasImmForm = instrHasImmForm(MI, III);
2425   // If this is a reg+reg instruction that has a reg+imm form,
2426   // and one of the operands is produced by an add-immediate,
2427   // try to convert it.
2428   if (HasImmForm && transformToImmFormFedByAdd(MI, III, ForwardingOperand,
2429                                                *DefMI, KillFwdDefMI))
2430     return true;
2431 
2432   if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) ||
2433       !DefMI->getOperand(1).isImm())
2434     return false;
2435 
2436   int64_t Immediate = DefMI->getOperand(1).getImm();
2437   // Sign-extend to 64-bits.
2438   int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
2439     (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
2440 
2441   // If this is a reg+reg instruction that has a reg+imm form,
2442   // and one of the operands is produced by LI, convert it now.
2443   if (HasImmForm)
2444     return transformToImmFormFedByLI(MI, III, ForwardingOperand, SExtImm);
2445 
2446   bool ReplaceWithLI = false;
2447   bool Is64BitLI = false;
2448   int64_t NewImm = 0;
2449   bool SetCR = false;
2450   unsigned Opc = MI.getOpcode();
2451   switch (Opc) {
2452   default: return false;
2453 
2454   // FIXME: Any branches conditional on such a comparison can be made
2455   // unconditional. At this time, this happens too infrequently to be worth
2456   // the implementation effort, but if that ever changes, we could convert
2457   // such a pattern here.
2458   case PPC::CMPWI:
2459   case PPC::CMPLWI:
2460   case PPC::CMPDI:
2461   case PPC::CMPLDI: {
2462     // Doing this post-RA would require dataflow analysis to reliably find uses
2463     // of the CR register set by the compare.
2464     if (PostRA)
2465       return false;
2466     // If a compare-immediate is fed by an immediate and is itself an input of
2467     // an ISEL (the most common case) into a COPY of the correct register.
2468     bool Changed = false;
2469     unsigned DefReg = MI.getOperand(0).getReg();
2470     int64_t Comparand = MI.getOperand(2).getImm();
2471     int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ?
2472       (Comparand | 0xFFFFFFFFFFFF0000) : Comparand;
2473 
2474     for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
2475       unsigned UseOpc = CompareUseMI.getOpcode();
2476       if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
2477         continue;
2478       unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
2479       unsigned TrueReg = CompareUseMI.getOperand(1).getReg();
2480       unsigned FalseReg = CompareUseMI.getOperand(2).getReg();
2481       unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg,
2482                                      FalseReg, CRSubReg);
2483       if (RegToCopy == PPC::NoRegister)
2484         continue;
2485       // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
2486       if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
2487         CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
2488         CompareUseMI.getOperand(1).ChangeToImmediate(0);
2489         CompareUseMI.RemoveOperand(3);
2490         CompareUseMI.RemoveOperand(2);
2491         continue;
2492       }
2493       LLVM_DEBUG(
2494           dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
2495       LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump());
2496       LLVM_DEBUG(dbgs() << "Is converted to:\n");
2497       // Convert to copy and remove unneeded operands.
2498       CompareUseMI.setDesc(get(PPC::COPY));
2499       CompareUseMI.RemoveOperand(3);
2500       CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
2501       CmpIselsConverted++;
2502       Changed = true;
2503       LLVM_DEBUG(CompareUseMI.dump());
2504     }
2505     if (Changed)
2506       return true;
2507     // This may end up incremented multiple times since this function is called
2508     // during a fixed-point transformation, but it is only meant to indicate the
2509     // presence of this opportunity.
2510     MissedConvertibleImmediateInstrs++;
2511     return false;
2512   }
2513 
2514   // Immediate forms - may simply be convertable to an LI.
2515   case PPC::ADDI:
2516   case PPC::ADDI8: {
2517     // Does the sum fit in a 16-bit signed field?
2518     int64_t Addend = MI.getOperand(2).getImm();
2519     if (isInt<16>(Addend + SExtImm)) {
2520       ReplaceWithLI = true;
2521       Is64BitLI = Opc == PPC::ADDI8;
2522       NewImm = Addend + SExtImm;
2523       break;
2524     }
2525     return false;
2526   }
2527   case PPC::RLDICL:
2528   case PPC::RLDICLo:
2529   case PPC::RLDICL_32:
2530   case PPC::RLDICL_32_64: {
2531     // Use APInt's rotate function.
2532     int64_t SH = MI.getOperand(2).getImm();
2533     int64_t MB = MI.getOperand(3).getImm();
2534     APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ?
2535                 64 : 32, SExtImm, true);
2536     InVal = InVal.rotl(SH);
2537     uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2538     InVal &= Mask;
2539     // Can't replace negative values with an LI as that will sign-extend
2540     // and not clear the left bits. If we're setting the CR bit, we will use
2541     // ANDIo which won't sign extend, so that's safe.
2542     if (isUInt<15>(InVal.getSExtValue()) ||
2543         (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) {
2544       ReplaceWithLI = true;
2545       Is64BitLI = Opc != PPC::RLDICL_32;
2546       NewImm = InVal.getSExtValue();
2547       SetCR = Opc == PPC::RLDICLo;
2548       break;
2549     }
2550     return false;
2551   }
2552   case PPC::RLWINM:
2553   case PPC::RLWINM8:
2554   case PPC::RLWINMo:
2555   case PPC::RLWINM8o: {
2556     int64_t SH = MI.getOperand(2).getImm();
2557     int64_t MB = MI.getOperand(3).getImm();
2558     int64_t ME = MI.getOperand(4).getImm();
2559     APInt InVal(32, SExtImm, true);
2560     InVal = InVal.rotl(SH);
2561     // Set the bits (        MB + 32        ) to (        ME + 32        ).
2562     uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2563     InVal &= Mask;
2564     // Can't replace negative values with an LI as that will sign-extend
2565     // and not clear the left bits. If we're setting the CR bit, we will use
2566     // ANDIo which won't sign extend, so that's safe.
2567     bool ValueFits = isUInt<15>(InVal.getSExtValue());
2568     ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) &&
2569                   isUInt<16>(InVal.getSExtValue()));
2570     if (ValueFits) {
2571       ReplaceWithLI = true;
2572       Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2573       NewImm = InVal.getSExtValue();
2574       SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o;
2575       break;
2576     }
2577     return false;
2578   }
2579   case PPC::ORI:
2580   case PPC::ORI8:
2581   case PPC::XORI:
2582   case PPC::XORI8: {
2583     int64_t LogicalImm = MI.getOperand(2).getImm();
2584     int64_t Result = 0;
2585     if (Opc == PPC::ORI || Opc == PPC::ORI8)
2586       Result = LogicalImm | SExtImm;
2587     else
2588       Result = LogicalImm ^ SExtImm;
2589     if (isInt<16>(Result)) {
2590       ReplaceWithLI = true;
2591       Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
2592       NewImm = Result;
2593       break;
2594     }
2595     return false;
2596   }
2597   }
2598 
2599   if (ReplaceWithLI) {
2600     // We need to be careful with CR-setting instructions we're replacing.
2601     if (SetCR) {
2602       // We don't know anything about uses when we're out of SSA, so only
2603       // replace if the new immediate will be reproduced.
2604       bool ImmChanged = (SExtImm & NewImm) != NewImm;
2605       if (PostRA && ImmChanged)
2606         return false;
2607 
2608       if (!PostRA) {
2609         // If the defining load-immediate has no other uses, we can just replace
2610         // the immediate with the new immediate.
2611         if (MRI->hasOneUse(DefMI->getOperand(0).getReg()))
2612           DefMI->getOperand(1).setImm(NewImm);
2613 
2614         // If we're not using the GPR result of the CR-setting instruction, we
2615         // just need to and with zero/non-zero depending on the new immediate.
2616         else if (MRI->use_empty(MI.getOperand(0).getReg())) {
2617           if (NewImm) {
2618             assert(Immediate && "Transformation converted zero to non-zero?");
2619             NewImm = Immediate;
2620           }
2621         }
2622         else if (ImmChanged)
2623           return false;
2624       }
2625     }
2626 
2627     LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
2628     LLVM_DEBUG(MI.dump());
2629     LLVM_DEBUG(dbgs() << "Fed by:\n");
2630     LLVM_DEBUG(DefMI->dump());
2631     LoadImmediateInfo LII;
2632     LII.Imm = NewImm;
2633     LII.Is64Bit = Is64BitLI;
2634     LII.SetCR = SetCR;
2635     // If we're setting the CR, the original load-immediate must be kept (as an
2636     // operand to ANDIo/ANDI8o).
2637     if (KilledDef && SetCR)
2638       *KilledDef = nullptr;
2639     replaceInstrWithLI(MI, LII);
2640     LLVM_DEBUG(dbgs() << "With:\n");
2641     LLVM_DEBUG(MI.dump());
2642     return true;
2643   }
2644   return false;
2645 }
2646 
2647 bool PPCInstrInfo::instrHasImmForm(const MachineInstr &MI,
2648                                    ImmInstrInfo &III) const {
2649   unsigned Opc = MI.getOpcode();
2650   // The vast majority of the instructions would need their operand 2 replaced
2651   // with an immediate when switching to the reg+imm form. A marked exception
2652   // are the update form loads/stores for which a constant operand 2 would need
2653   // to turn into a displacement and move operand 1 to the operand 2 position.
2654   III.ImmOpNo = 2;
2655   III.OpNoForForwarding = 2;
2656   III.ImmWidth = 16;
2657   III.ImmMustBeMultipleOf = 1;
2658   III.TruncateImmTo = 0;
2659   III.IsSummingOperands = false;
2660   switch (Opc) {
2661   default: return false;
2662   case PPC::ADD4:
2663   case PPC::ADD8:
2664     III.SignedImm = true;
2665     III.ZeroIsSpecialOrig = 0;
2666     III.ZeroIsSpecialNew = 1;
2667     III.IsCommutative = true;
2668     III.IsSummingOperands = true;
2669     III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
2670     break;
2671   case PPC::ADDC:
2672   case PPC::ADDC8:
2673     III.SignedImm = true;
2674     III.ZeroIsSpecialOrig = 0;
2675     III.ZeroIsSpecialNew = 0;
2676     III.IsCommutative = true;
2677     III.IsSummingOperands = true;
2678     III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
2679     break;
2680   case PPC::ADDCo:
2681     III.SignedImm = true;
2682     III.ZeroIsSpecialOrig = 0;
2683     III.ZeroIsSpecialNew = 0;
2684     III.IsCommutative = true;
2685     III.IsSummingOperands = true;
2686     III.ImmOpcode = PPC::ADDICo;
2687     break;
2688   case PPC::SUBFC:
2689   case PPC::SUBFC8:
2690     III.SignedImm = true;
2691     III.ZeroIsSpecialOrig = 0;
2692     III.ZeroIsSpecialNew = 0;
2693     III.IsCommutative = false;
2694     III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
2695     break;
2696   case PPC::CMPW:
2697   case PPC::CMPD:
2698     III.SignedImm = true;
2699     III.ZeroIsSpecialOrig = 0;
2700     III.ZeroIsSpecialNew = 0;
2701     III.IsCommutative = false;
2702     III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
2703     break;
2704   case PPC::CMPLW:
2705   case PPC::CMPLD:
2706     III.SignedImm = false;
2707     III.ZeroIsSpecialOrig = 0;
2708     III.ZeroIsSpecialNew = 0;
2709     III.IsCommutative = false;
2710     III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
2711     break;
2712   case PPC::ANDo:
2713   case PPC::AND8o:
2714   case PPC::OR:
2715   case PPC::OR8:
2716   case PPC::XOR:
2717   case PPC::XOR8:
2718     III.SignedImm = false;
2719     III.ZeroIsSpecialOrig = 0;
2720     III.ZeroIsSpecialNew = 0;
2721     III.IsCommutative = true;
2722     switch(Opc) {
2723     default: llvm_unreachable("Unknown opcode");
2724     case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break;
2725     case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break;
2726     case PPC::OR: III.ImmOpcode = PPC::ORI; break;
2727     case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
2728     case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
2729     case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
2730     }
2731     break;
2732   case PPC::RLWNM:
2733   case PPC::RLWNM8:
2734   case PPC::RLWNMo:
2735   case PPC::RLWNM8o:
2736   case PPC::SLW:
2737   case PPC::SLW8:
2738   case PPC::SLWo:
2739   case PPC::SLW8o:
2740   case PPC::SRW:
2741   case PPC::SRW8:
2742   case PPC::SRWo:
2743   case PPC::SRW8o:
2744   case PPC::SRAW:
2745   case PPC::SRAWo:
2746     III.SignedImm = false;
2747     III.ZeroIsSpecialOrig = 0;
2748     III.ZeroIsSpecialNew = 0;
2749     III.IsCommutative = false;
2750     // This isn't actually true, but the instructions ignore any of the
2751     // upper bits, so any immediate loaded with an LI is acceptable.
2752     // This does not apply to shift right algebraic because a value
2753     // out of range will produce a -1/0.
2754     III.ImmWidth = 16;
2755     if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 ||
2756         Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o)
2757       III.TruncateImmTo = 5;
2758     else
2759       III.TruncateImmTo = 6;
2760     switch(Opc) {
2761     default: llvm_unreachable("Unknown opcode");
2762     case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
2763     case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
2764     case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break;
2765     case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break;
2766     case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
2767     case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
2768     case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break;
2769     case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2770     case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
2771     case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
2772     case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break;
2773     case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2774     case PPC::SRAW:
2775       III.ImmWidth = 5;
2776       III.TruncateImmTo = 0;
2777       III.ImmOpcode = PPC::SRAWI;
2778       break;
2779     case PPC::SRAWo:
2780       III.ImmWidth = 5;
2781       III.TruncateImmTo = 0;
2782       III.ImmOpcode = PPC::SRAWIo;
2783       break;
2784     }
2785     break;
2786   case PPC::RLDCL:
2787   case PPC::RLDCLo:
2788   case PPC::RLDCR:
2789   case PPC::RLDCRo:
2790   case PPC::SLD:
2791   case PPC::SLDo:
2792   case PPC::SRD:
2793   case PPC::SRDo:
2794   case PPC::SRAD:
2795   case PPC::SRADo:
2796     III.SignedImm = false;
2797     III.ZeroIsSpecialOrig = 0;
2798     III.ZeroIsSpecialNew = 0;
2799     III.IsCommutative = false;
2800     // This isn't actually true, but the instructions ignore any of the
2801     // upper bits, so any immediate loaded with an LI is acceptable.
2802     // This does not apply to shift right algebraic because a value
2803     // out of range will produce a -1/0.
2804     III.ImmWidth = 16;
2805     if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo ||
2806         Opc == PPC::RLDCR || Opc == PPC::RLDCRo)
2807       III.TruncateImmTo = 6;
2808     else
2809       III.TruncateImmTo = 7;
2810     switch(Opc) {
2811     default: llvm_unreachable("Unknown opcode");
2812     case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
2813     case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break;
2814     case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
2815     case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break;
2816     case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
2817     case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break;
2818     case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
2819     case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break;
2820     case PPC::SRAD:
2821       III.ImmWidth = 6;
2822       III.TruncateImmTo = 0;
2823       III.ImmOpcode = PPC::SRADI;
2824        break;
2825     case PPC::SRADo:
2826       III.ImmWidth = 6;
2827       III.TruncateImmTo = 0;
2828       III.ImmOpcode = PPC::SRADIo;
2829       break;
2830     }
2831     break;
2832   // Loads and stores:
2833   case PPC::LBZX:
2834   case PPC::LBZX8:
2835   case PPC::LHZX:
2836   case PPC::LHZX8:
2837   case PPC::LHAX:
2838   case PPC::LHAX8:
2839   case PPC::LWZX:
2840   case PPC::LWZX8:
2841   case PPC::LWAX:
2842   case PPC::LDX:
2843   case PPC::LFSX:
2844   case PPC::LFDX:
2845   case PPC::STBX:
2846   case PPC::STBX8:
2847   case PPC::STHX:
2848   case PPC::STHX8:
2849   case PPC::STWX:
2850   case PPC::STWX8:
2851   case PPC::STDX:
2852   case PPC::STFSX:
2853   case PPC::STFDX:
2854     III.SignedImm = true;
2855     III.ZeroIsSpecialOrig = 1;
2856     III.ZeroIsSpecialNew = 2;
2857     III.IsCommutative = true;
2858     III.IsSummingOperands = true;
2859     III.ImmOpNo = 1;
2860     III.OpNoForForwarding = 2;
2861     switch(Opc) {
2862     default: llvm_unreachable("Unknown opcode");
2863     case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
2864     case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
2865     case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
2866     case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
2867     case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
2868     case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
2869     case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
2870     case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
2871     case PPC::LWAX:
2872       III.ImmOpcode = PPC::LWA;
2873       III.ImmMustBeMultipleOf = 4;
2874       break;
2875     case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
2876     case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
2877     case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
2878     case PPC::STBX: III.ImmOpcode = PPC::STB; break;
2879     case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
2880     case PPC::STHX: III.ImmOpcode = PPC::STH; break;
2881     case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
2882     case PPC::STWX: III.ImmOpcode = PPC::STW; break;
2883     case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
2884     case PPC::STDX:
2885       III.ImmOpcode = PPC::STD;
2886       III.ImmMustBeMultipleOf = 4;
2887       break;
2888     case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
2889     case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
2890     }
2891     break;
2892   case PPC::LBZUX:
2893   case PPC::LBZUX8:
2894   case PPC::LHZUX:
2895   case PPC::LHZUX8:
2896   case PPC::LHAUX:
2897   case PPC::LHAUX8:
2898   case PPC::LWZUX:
2899   case PPC::LWZUX8:
2900   case PPC::LDUX:
2901   case PPC::LFSUX:
2902   case PPC::LFDUX:
2903   case PPC::STBUX:
2904   case PPC::STBUX8:
2905   case PPC::STHUX:
2906   case PPC::STHUX8:
2907   case PPC::STWUX:
2908   case PPC::STWUX8:
2909   case PPC::STDUX:
2910   case PPC::STFSUX:
2911   case PPC::STFDUX:
2912     III.SignedImm = true;
2913     III.ZeroIsSpecialOrig = 2;
2914     III.ZeroIsSpecialNew = 3;
2915     III.IsCommutative = false;
2916     III.IsSummingOperands = true;
2917     III.ImmOpNo = 2;
2918     III.OpNoForForwarding = 3;
2919     switch(Opc) {
2920     default: llvm_unreachable("Unknown opcode");
2921     case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
2922     case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
2923     case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
2924     case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
2925     case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
2926     case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
2927     case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
2928     case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
2929     case PPC::LDUX:
2930       III.ImmOpcode = PPC::LDU;
2931       III.ImmMustBeMultipleOf = 4;
2932       break;
2933     case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
2934     case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
2935     case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
2936     case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
2937     case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
2938     case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
2939     case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
2940     case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
2941     case PPC::STDUX:
2942       III.ImmOpcode = PPC::STDU;
2943       III.ImmMustBeMultipleOf = 4;
2944       break;
2945     case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
2946     case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
2947     }
2948     break;
2949   // Power9 only.
2950   case PPC::LXVX:
2951   case PPC::LXSSPX:
2952   case PPC::LXSDX:
2953   case PPC::STXVX:
2954   case PPC::STXSSPX:
2955   case PPC::STXSDX:
2956     if (!Subtarget.hasP9Vector())
2957       return false;
2958     III.SignedImm = true;
2959     III.ZeroIsSpecialOrig = 1;
2960     III.ZeroIsSpecialNew = 2;
2961     III.IsCommutative = true;
2962     III.IsSummingOperands = true;
2963     III.ImmOpNo = 1;
2964     III.OpNoForForwarding = 2;
2965     switch(Opc) {
2966     default: llvm_unreachable("Unknown opcode");
2967     case PPC::LXVX:
2968       III.ImmOpcode = PPC::LXV;
2969       III.ImmMustBeMultipleOf = 16;
2970       break;
2971     case PPC::LXSSPX:
2972       III.ImmOpcode = PPC::LXSSP;
2973       III.ImmMustBeMultipleOf = 4;
2974       break;
2975     case PPC::LXSDX:
2976       III.ImmOpcode = PPC::LXSD;
2977       III.ImmMustBeMultipleOf = 4;
2978       break;
2979     case PPC::STXVX:
2980       III.ImmOpcode = PPC::STXV;
2981       III.ImmMustBeMultipleOf = 16;
2982       break;
2983     case PPC::STXSSPX:
2984       III.ImmOpcode = PPC::STXSSP;
2985       III.ImmMustBeMultipleOf = 4;
2986       break;
2987     case PPC::STXSDX:
2988       III.ImmOpcode = PPC::STXSD;
2989       III.ImmMustBeMultipleOf = 4;
2990       break;
2991     }
2992     break;
2993   }
2994   return true;
2995 }
2996 
2997 // Utility function for swaping two arbitrary operands of an instruction.
2998 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
2999   assert(Op1 != Op2 && "Cannot swap operand with itself.");
3000 
3001   unsigned MaxOp = std::max(Op1, Op2);
3002   unsigned MinOp = std::min(Op1, Op2);
3003   MachineOperand MOp1 = MI.getOperand(MinOp);
3004   MachineOperand MOp2 = MI.getOperand(MaxOp);
3005   MI.RemoveOperand(std::max(Op1, Op2));
3006   MI.RemoveOperand(std::min(Op1, Op2));
3007 
3008   // If the operands we are swapping are the two at the end (the common case)
3009   // we can just remove both and add them in the opposite order.
3010   if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
3011     MI.addOperand(MOp2);
3012     MI.addOperand(MOp1);
3013   } else {
3014     // Store all operands in a temporary vector, remove them and re-add in the
3015     // right order.
3016     SmallVector<MachineOperand, 2> MOps;
3017     unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
3018     for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
3019       MOps.push_back(MI.getOperand(i));
3020       MI.RemoveOperand(i);
3021     }
3022     // MOp2 needs to be added next.
3023     MI.addOperand(MOp2);
3024     // Now add the rest.
3025     for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
3026       if (i == MaxOp)
3027         MI.addOperand(MOp1);
3028       else {
3029         MI.addOperand(MOps.back());
3030         MOps.pop_back();
3031       }
3032     }
3033   }
3034 }
3035 
3036 // Check if the 'MI' that has the index OpNoForForwarding
3037 // meets the requirement described in the ImmInstrInfo.
3038 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
3039                                                const ImmInstrInfo &III,
3040                                                unsigned OpNoForForwarding
3041                                                ) const {
3042   // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
3043   // would not work pre-RA, we can only do the check post RA.
3044   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3045   if (MRI.isSSA())
3046     return false;
3047 
3048   // Cannot do the transform if MI isn't summing the operands.
3049   if (!III.IsSummingOperands)
3050     return false;
3051 
3052   // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
3053   if (!III.ZeroIsSpecialOrig)
3054     return false;
3055 
3056   // We cannot do the transform if the operand we are trying to replace
3057   // isn't the same as the operand the instruction allows.
3058   if (OpNoForForwarding != III.OpNoForForwarding)
3059     return false;
3060 
3061   // Check if the instruction we are trying to transform really has
3062   // the special zero register as its operand.
3063   if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
3064       MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
3065     return false;
3066 
3067   // This machine instruction is convertible if it is,
3068   // 1. summing the operands.
3069   // 2. one of the operands is special zero register.
3070   // 3. the operand we are trying to replace is allowed by the MI.
3071   return true;
3072 }
3073 
3074 // Check if the DefMI is the add inst and set the ImmMO and RegMO
3075 // accordingly.
3076 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
3077                                                const ImmInstrInfo &III,
3078                                                MachineOperand *&ImmMO,
3079                                                MachineOperand *&RegMO) const {
3080   unsigned Opc = DefMI.getOpcode();
3081   if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
3082     return false;
3083 
3084   assert(DefMI.getNumOperands() >= 3 &&
3085          "Add inst must have at least three operands");
3086   RegMO = &DefMI.getOperand(1);
3087   ImmMO = &DefMI.getOperand(2);
3088 
3089   // This DefMI is elgible for forwarding if it is:
3090   // 1. add inst
3091   // 2. one of the operands is Imm/CPI/Global.
3092   return isAnImmediateOperand(*ImmMO);
3093 }
3094 
3095 bool PPCInstrInfo::isRegElgibleForForwarding(const MachineOperand &RegMO,
3096                                              const MachineInstr &DefMI,
3097                                              const MachineInstr &MI,
3098                                              bool KillDefMI
3099                                              ) const {
3100   // x = addi y, imm
3101   // ...
3102   // z = lfdx 0, x   -> z = lfd imm(y)
3103   // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
3104   // of "y" between the DEF of "x" and "z".
3105   // The query is only valid post RA.
3106   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3107   if (MRI.isSSA())
3108     return false;
3109 
3110   // MachineInstr::readsRegister only returns true if the machine
3111   // instruction reads the exact register or its super-register. It
3112   // does not consider uses of sub-registers which seems like strange
3113   // behaviour. Nonetheless, if we end up with a 64-bit register here,
3114   // get the corresponding 32-bit register to check.
3115   unsigned Reg = RegMO.getReg();
3116   if (PPC::G8RCRegClass.contains(Reg))
3117     Reg = Reg - PPC::X0 + PPC::R0;
3118 
3119   // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
3120   MachineBasicBlock::const_reverse_iterator It = MI;
3121   MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
3122   It++;
3123   for (; It != E; ++It) {
3124     if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3125       return false;
3126     // Made it to DefMI without encountering a clobber.
3127     if ((&*It) == &DefMI)
3128       break;
3129   }
3130   assert((&*It) == &DefMI && "DefMI is missing");
3131 
3132   // If DefMI also uses the register to be forwarded, we can only forward it
3133   // if DefMI is being erased.
3134   if (DefMI.readsRegister(Reg, &getRegisterInfo()))
3135     return KillDefMI;
3136 
3137   return true;
3138 }
3139 
3140 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
3141                                              const MachineInstr &DefMI,
3142                                              const ImmInstrInfo &III,
3143                                              int64_t &Imm) const {
3144   assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
3145   if (DefMI.getOpcode() == PPC::ADDItocL) {
3146     // The operand for ADDItocL is CPI, which isn't imm at compiling time,
3147     // However, we know that, it is 16-bit width, and has the alignment of 4.
3148     // Check if the instruction met the requirement.
3149     if (III.ImmMustBeMultipleOf > 4 ||
3150        III.TruncateImmTo || III.ImmWidth != 16)
3151       return false;
3152 
3153     return true;
3154   }
3155 
3156   if (ImmMO.isImm()) {
3157     // It is Imm, we need to check if the Imm fit the range.
3158     int64_t Immediate = ImmMO.getImm();
3159     // Sign-extend to 64-bits.
3160     Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
3161       (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
3162 
3163     if (Imm % III.ImmMustBeMultipleOf)
3164       return false;
3165     if (III.TruncateImmTo)
3166       Imm &= ((1 << III.TruncateImmTo) - 1);
3167     if (III.SignedImm) {
3168       APInt ActualValue(64, Imm, true);
3169       if (!ActualValue.isSignedIntN(III.ImmWidth))
3170         return false;
3171     } else {
3172       uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3173       if ((uint64_t)Imm > UnsignedMax)
3174         return false;
3175     }
3176   }
3177   else
3178     return false;
3179 
3180   // This ImmMO is forwarded if it meets the requriement describle
3181   // in ImmInstrInfo
3182   return true;
3183 }
3184 
3185 // If an X-Form instruction is fed by an add-immediate and one of its operands
3186 // is the literal zero, attempt to forward the source of the add-immediate to
3187 // the corresponding D-Form instruction with the displacement coming from
3188 // the immediate being added.
3189 bool PPCInstrInfo::transformToImmFormFedByAdd(MachineInstr &MI,
3190                                               const ImmInstrInfo &III,
3191                                               unsigned OpNoForForwarding,
3192                                               MachineInstr &DefMI,
3193                                               bool KillDefMI) const {
3194   //         RegMO ImmMO
3195   //           |    |
3196   // x = addi reg, imm  <----- DefMI
3197   // y = op    0 ,  x   <----- MI
3198   //                |
3199   //         OpNoForForwarding
3200   // Check if the MI meet the requirement described in the III.
3201   if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
3202     return false;
3203 
3204   // Check if the DefMI meet the requirement
3205   // described in the III. If yes, set the ImmMO and RegMO accordingly.
3206   MachineOperand *ImmMO = nullptr;
3207   MachineOperand *RegMO = nullptr;
3208   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
3209     return false;
3210   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
3211 
3212   // As we get the Imm operand now, we need to check if the ImmMO meet
3213   // the requirement described in the III. If yes set the Imm.
3214   int64_t Imm = 0;
3215   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
3216     return false;
3217 
3218   // Check if the RegMO can be forwarded to MI.
3219   if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI))
3220     return false;
3221 
3222   // We know that, the MI and DefMI both meet the pattern, and
3223   // the Imm also meet the requirement with the new Imm-form.
3224   // It is safe to do the transformation now.
3225   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
3226   LLVM_DEBUG(MI.dump());
3227   LLVM_DEBUG(dbgs() << "Fed by:\n");
3228   LLVM_DEBUG(DefMI.dump());
3229 
3230   // Update the base reg first.
3231   MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
3232                                                         false, false,
3233                                                         RegMO->isKill());
3234 
3235   // Then, update the imm.
3236   if (ImmMO->isImm()) {
3237     // If the ImmMO is Imm, change the operand that has ZERO to that Imm
3238     // directly.
3239     MI.getOperand(III.ZeroIsSpecialOrig).ChangeToImmediate(Imm);
3240   }
3241   else {
3242     // Otherwise, it is Constant Pool Index(CPI) or Global,
3243     // which is relocation in fact. We need to replace the special zero
3244     // register with ImmMO.
3245     // Before that, we need to fixup the target flags for imm.
3246     // For some reason, we miss to set the flag for the ImmMO if it is CPI.
3247     if (DefMI.getOpcode() == PPC::ADDItocL)
3248       ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
3249 
3250     // MI didn't have the interface such as MI.setOperand(i) though
3251     // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
3252     // ImmMO, we need to remove ZERO operand and all the operands behind it,
3253     // and, add the ImmMO, then, move back all the operands behind ZERO.
3254     SmallVector<MachineOperand, 2> MOps;
3255     for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
3256       MOps.push_back(MI.getOperand(i));
3257       MI.RemoveOperand(i);
3258     }
3259 
3260     // Remove the last MO in the list, which is ZERO operand in fact.
3261     MOps.pop_back();
3262     // Add the imm operand.
3263     MI.addOperand(*ImmMO);
3264     // Now add the rest back.
3265     for (auto &MO : MOps)
3266       MI.addOperand(MO);
3267   }
3268 
3269   // Update the opcode.
3270   MI.setDesc(get(III.ImmOpcode));
3271 
3272   LLVM_DEBUG(dbgs() << "With:\n");
3273   LLVM_DEBUG(MI.dump());
3274 
3275   return true;
3276 }
3277 
3278 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
3279                                              const ImmInstrInfo &III,
3280                                              unsigned ConstantOpNo,
3281                                              int64_t Imm) const {
3282   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3283   bool PostRA = !MRI.isSSA();
3284   // Exit early if we can't convert this.
3285   if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
3286     return false;
3287   if (Imm % III.ImmMustBeMultipleOf)
3288     return false;
3289   if (III.TruncateImmTo)
3290     Imm &= ((1 << III.TruncateImmTo) - 1);
3291   if (III.SignedImm) {
3292     APInt ActualValue(64, Imm, true);
3293     if (!ActualValue.isSignedIntN(III.ImmWidth))
3294       return false;
3295   } else {
3296     uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3297     if ((uint64_t)Imm > UnsignedMax)
3298       return false;
3299   }
3300 
3301   // If we're post-RA, the instructions don't agree on whether register zero is
3302   // special, we can transform this as long as the register operand that will
3303   // end up in the location where zero is special isn't R0.
3304   if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3305     unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
3306       III.ZeroIsSpecialNew + 1;
3307     unsigned OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
3308     unsigned NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3309     // If R0 is in the operand where zero is special for the new instruction,
3310     // it is unsafe to transform if the constant operand isn't that operand.
3311     if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
3312         ConstantOpNo != III.ZeroIsSpecialNew)
3313       return false;
3314     if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
3315         ConstantOpNo != PosForOrigZero)
3316       return false;
3317   }
3318 
3319   unsigned Opc = MI.getOpcode();
3320   bool SpecialShift32 =
3321     Opc == PPC::SLW || Opc == PPC::SLWo || Opc == PPC::SRW || Opc == PPC::SRWo;
3322   bool SpecialShift64 =
3323     Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo;
3324   bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo ||
3325     Opc == PPC::SLDo || Opc == PPC::SRDo;
3326   bool RightShift =
3327     Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo;
3328 
3329   MI.setDesc(get(III.ImmOpcode));
3330   if (ConstantOpNo == III.OpNoForForwarding) {
3331     // Converting shifts to immediate form is a bit tricky since they may do
3332     // one of three things:
3333     // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
3334     // 2. If the shift amount is zero, the result is unchanged (save for maybe
3335     //    setting CR0)
3336     // 3. If the shift amount is in [1, OpSize), it's just a shift
3337     if (SpecialShift32 || SpecialShift64) {
3338       LoadImmediateInfo LII;
3339       LII.Imm = 0;
3340       LII.SetCR = SetCR;
3341       LII.Is64Bit = SpecialShift64;
3342       uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
3343       if (Imm & (SpecialShift32 ? 0x20 : 0x40))
3344         replaceInstrWithLI(MI, LII);
3345       // Shifts by zero don't change the value. If we don't need to set CR0,
3346       // just convert this to a COPY. Can't do this post-RA since we've already
3347       // cleaned up the copies.
3348       else if (!SetCR && ShAmt == 0 && !PostRA) {
3349         MI.RemoveOperand(2);
3350         MI.setDesc(get(PPC::COPY));
3351       } else {
3352         // The 32 bit and 64 bit instructions are quite different.
3353         if (SpecialShift32) {
3354           // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31).
3355           uint64_t SH = RightShift ? 32 - ShAmt : ShAmt;
3356           uint64_t MB = RightShift ? ShAmt : 0;
3357           uint64_t ME = RightShift ? 31 : 31 - ShAmt;
3358           MI.getOperand(III.OpNoForForwarding).ChangeToImmediate(SH);
3359           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
3360             .addImm(ME);
3361         } else {
3362           // Left shifts use (N, 63-N), right shifts use (64-N, N).
3363           uint64_t SH = RightShift ? 64 - ShAmt : ShAmt;
3364           uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
3365           MI.getOperand(III.OpNoForForwarding).ChangeToImmediate(SH);
3366           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
3367         }
3368       }
3369     } else
3370       MI.getOperand(ConstantOpNo).ChangeToImmediate(Imm);
3371   }
3372   // Convert commutative instructions (switch the operands and convert the
3373   // desired one to an immediate.
3374   else if (III.IsCommutative) {
3375     MI.getOperand(ConstantOpNo).ChangeToImmediate(Imm);
3376     swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
3377   } else
3378     llvm_unreachable("Should have exited early!");
3379 
3380   // For instructions for which the constant register replaces a different
3381   // operand than where the immediate goes, we need to swap them.
3382   if (III.OpNoForForwarding != III.ImmOpNo)
3383     swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
3384 
3385   // If the R0/X0 register is special for the original instruction and not for
3386   // the new instruction (or vice versa), we need to fix up the register class.
3387   if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3388     if (!III.ZeroIsSpecialOrig) {
3389       unsigned RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3390       const TargetRegisterClass *NewRC =
3391         MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
3392         &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
3393       MRI.setRegClass(RegToModify, NewRC);
3394     }
3395   }
3396   return true;
3397 }
3398 
3399 const TargetRegisterClass *
3400 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
3401   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
3402     return &PPC::VSRCRegClass;
3403   return RC;
3404 }
3405 
3406 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
3407   return PPC::getRecordFormOpcode(Opcode);
3408 }
3409 
3410 // This function returns true if the machine instruction
3411 // always outputs a value by sign-extending a 32 bit value,
3412 // i.e. 0 to 31-th bits are same as 32-th bit.
3413 static bool isSignExtendingOp(const MachineInstr &MI) {
3414   int Opcode = MI.getOpcode();
3415   if (Opcode == PPC::LI     || Opcode == PPC::LI8     ||
3416       Opcode == PPC::LIS    || Opcode == PPC::LIS8    ||
3417       Opcode == PPC::SRAW   || Opcode == PPC::SRAWo   ||
3418       Opcode == PPC::SRAWI  || Opcode == PPC::SRAWIo  ||
3419       Opcode == PPC::LWA    || Opcode == PPC::LWAX    ||
3420       Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
3421       Opcode == PPC::LHA    || Opcode == PPC::LHAX    ||
3422       Opcode == PPC::LHA8   || Opcode == PPC::LHAX8   ||
3423       Opcode == PPC::LBZ    || Opcode == PPC::LBZX    ||
3424       Opcode == PPC::LBZ8   || Opcode == PPC::LBZX8   ||
3425       Opcode == PPC::LBZU   || Opcode == PPC::LBZUX   ||
3426       Opcode == PPC::LBZU8  || Opcode == PPC::LBZUX8  ||
3427       Opcode == PPC::LHZ    || Opcode == PPC::LHZX    ||
3428       Opcode == PPC::LHZ8   || Opcode == PPC::LHZX8   ||
3429       Opcode == PPC::LHZU   || Opcode == PPC::LHZUX   ||
3430       Opcode == PPC::LHZU8  || Opcode == PPC::LHZUX8  ||
3431       Opcode == PPC::EXTSB  || Opcode == PPC::EXTSBo  ||
3432       Opcode == PPC::EXTSH  || Opcode == PPC::EXTSHo  ||
3433       Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8  ||
3434       Opcode == PPC::EXTSW  || Opcode == PPC::EXTSWo  ||
3435       Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
3436       Opcode == PPC::EXTSB8_32_64)
3437     return true;
3438 
3439   if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
3440     return true;
3441 
3442   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
3443        Opcode == PPC::RLWNM  || Opcode == PPC::RLWNMo) &&
3444       MI.getOperand(3).getImm() > 0 &&
3445       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3446     return true;
3447 
3448   return false;
3449 }
3450 
3451 // This function returns true if the machine instruction
3452 // always outputs zeros in higher 32 bits.
3453 static bool isZeroExtendingOp(const MachineInstr &MI) {
3454   int Opcode = MI.getOpcode();
3455   // The 16-bit immediate is sign-extended in li/lis.
3456   // If the most significant bit is zero, all higher bits are zero.
3457   if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
3458       Opcode == PPC::LIS || Opcode == PPC::LIS8) {
3459     int64_t Imm = MI.getOperand(1).getImm();
3460     if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
3461       return true;
3462   }
3463 
3464   // We have some variations of rotate-and-mask instructions
3465   // that clear higher 32-bits.
3466   if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
3467        Opcode == PPC::RLDCL  || Opcode == PPC::RLDCLo  ||
3468        Opcode == PPC::RLDICL_32_64) &&
3469       MI.getOperand(3).getImm() >= 32)
3470     return true;
3471 
3472   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
3473       MI.getOperand(3).getImm() >= 32 &&
3474       MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
3475     return true;
3476 
3477   if ((Opcode == PPC::RLWINM  || Opcode == PPC::RLWINMo ||
3478        Opcode == PPC::RLWNM   || Opcode == PPC::RLWNMo  ||
3479        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
3480       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3481     return true;
3482 
3483   // There are other instructions that clear higher 32-bits.
3484   if (Opcode == PPC::CNTLZW  || Opcode == PPC::CNTLZWo ||
3485       Opcode == PPC::CNTTZW  || Opcode == PPC::CNTTZWo ||
3486       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
3487       Opcode == PPC::CNTLZD  || Opcode == PPC::CNTLZDo ||
3488       Opcode == PPC::CNTTZD  || Opcode == PPC::CNTTZDo ||
3489       Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW ||
3490       Opcode == PPC::SLW     || Opcode == PPC::SLWo    ||
3491       Opcode == PPC::SRW     || Opcode == PPC::SRWo    ||
3492       Opcode == PPC::SLW8    || Opcode == PPC::SRW8    ||
3493       Opcode == PPC::SLWI    || Opcode == PPC::SLWIo   ||
3494       Opcode == PPC::SRWI    || Opcode == PPC::SRWIo   ||
3495       Opcode == PPC::LWZ     || Opcode == PPC::LWZX    ||
3496       Opcode == PPC::LWZU    || Opcode == PPC::LWZUX   ||
3497       Opcode == PPC::LWBRX   || Opcode == PPC::LHBRX   ||
3498       Opcode == PPC::LHZ     || Opcode == PPC::LHZX    ||
3499       Opcode == PPC::LHZU    || Opcode == PPC::LHZUX   ||
3500       Opcode == PPC::LBZ     || Opcode == PPC::LBZX    ||
3501       Opcode == PPC::LBZU    || Opcode == PPC::LBZUX   ||
3502       Opcode == PPC::LWZ8    || Opcode == PPC::LWZX8   ||
3503       Opcode == PPC::LWZU8   || Opcode == PPC::LWZUX8  ||
3504       Opcode == PPC::LWBRX8  || Opcode == PPC::LHBRX8  ||
3505       Opcode == PPC::LHZ8    || Opcode == PPC::LHZX8   ||
3506       Opcode == PPC::LHZU8   || Opcode == PPC::LHZUX8  ||
3507       Opcode == PPC::LBZ8    || Opcode == PPC::LBZX8   ||
3508       Opcode == PPC::LBZU8   || Opcode == PPC::LBZUX8  ||
3509       Opcode == PPC::ANDIo   || Opcode == PPC::ANDISo  ||
3510       Opcode == PPC::ROTRWI  || Opcode == PPC::ROTRWIo ||
3511       Opcode == PPC::EXTLWI  || Opcode == PPC::EXTLWIo ||
3512       Opcode == PPC::MFVSRWZ)
3513     return true;
3514 
3515   return false;
3516 }
3517 
3518 // This function returns true if the input MachineInstr is a TOC save
3519 // instruction.
3520 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
3521   if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
3522     return false;
3523   unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
3524   unsigned StackOffset = MI.getOperand(1).getImm();
3525   unsigned StackReg = MI.getOperand(2).getReg();
3526   if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
3527     return true;
3528 
3529   return false;
3530 }
3531 
3532 // We limit the max depth to track incoming values of PHIs or binary ops
3533 // (e.g. AND) to avoid excessive cost.
3534 const unsigned MAX_DEPTH = 1;
3535 
3536 bool
3537 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
3538                                    const unsigned Depth) const {
3539   const MachineFunction *MF = MI.getParent()->getParent();
3540   const MachineRegisterInfo *MRI = &MF->getRegInfo();
3541 
3542   // If we know this instruction returns sign- or zero-extended result,
3543   // return true.
3544   if (SignExt ? isSignExtendingOp(MI):
3545                 isZeroExtendingOp(MI))
3546     return true;
3547 
3548   switch (MI.getOpcode()) {
3549   case PPC::COPY: {
3550     unsigned SrcReg = MI.getOperand(1).getReg();
3551 
3552     // In both ELFv1 and v2 ABI, method parameters and the return value
3553     // are sign- or zero-extended.
3554     if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
3555       const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
3556       // We check the ZExt/SExt flags for a method parameter.
3557       if (MI.getParent()->getBasicBlock() ==
3558           &MF->getFunction().getEntryBlock()) {
3559         unsigned VReg = MI.getOperand(0).getReg();
3560         if (MF->getRegInfo().isLiveIn(VReg))
3561           return SignExt ? FuncInfo->isLiveInSExt(VReg) :
3562                            FuncInfo->isLiveInZExt(VReg);
3563       }
3564 
3565       // For a method return value, we check the ZExt/SExt flags in attribute.
3566       // We assume the following code sequence for method call.
3567       //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
3568       //   BL8_NOP @func,...
3569       //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
3570       //   %5 = COPY %x3; G8RC:%5
3571       if (SrcReg == PPC::X3) {
3572         const MachineBasicBlock *MBB = MI.getParent();
3573         MachineBasicBlock::const_instr_iterator II =
3574           MachineBasicBlock::const_instr_iterator(&MI);
3575         if (II != MBB->instr_begin() &&
3576             (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
3577           const MachineInstr &CallMI = *(--II);
3578           if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
3579             const Function *CalleeFn =
3580               dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
3581             if (!CalleeFn)
3582               return false;
3583             const IntegerType *IntTy =
3584               dyn_cast<IntegerType>(CalleeFn->getReturnType());
3585             const AttributeSet &Attrs =
3586               CalleeFn->getAttributes().getRetAttributes();
3587             if (IntTy && IntTy->getBitWidth() <= 32)
3588               return Attrs.hasAttribute(SignExt ? Attribute::SExt :
3589                                                   Attribute::ZExt);
3590           }
3591         }
3592       }
3593     }
3594 
3595     // If this is a copy from another register, we recursively check source.
3596     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3597       return false;
3598     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3599     if (SrcMI != NULL)
3600       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3601 
3602     return false;
3603   }
3604 
3605   case PPC::ANDIo:
3606   case PPC::ANDISo:
3607   case PPC::ORI:
3608   case PPC::ORIS:
3609   case PPC::XORI:
3610   case PPC::XORIS:
3611   case PPC::ANDIo8:
3612   case PPC::ANDISo8:
3613   case PPC::ORI8:
3614   case PPC::ORIS8:
3615   case PPC::XORI8:
3616   case PPC::XORIS8: {
3617     // logical operation with 16-bit immediate does not change the upper bits.
3618     // So, we track the operand register as we do for register copy.
3619     unsigned SrcReg = MI.getOperand(1).getReg();
3620     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3621       return false;
3622     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3623     if (SrcMI != NULL)
3624       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3625 
3626     return false;
3627   }
3628 
3629   // If all incoming values are sign-/zero-extended,
3630   // the output of OR, ISEL or PHI is also sign-/zero-extended.
3631   case PPC::OR:
3632   case PPC::OR8:
3633   case PPC::ISEL:
3634   case PPC::PHI: {
3635     if (Depth >= MAX_DEPTH)
3636       return false;
3637 
3638     // The input registers for PHI are operand 1, 3, ...
3639     // The input registers for others are operand 1 and 2.
3640     unsigned E = 3, D = 1;
3641     if (MI.getOpcode() == PPC::PHI) {
3642       E = MI.getNumOperands();
3643       D = 2;
3644     }
3645 
3646     for (unsigned I = 1; I != E; I += D) {
3647       if (MI.getOperand(I).isReg()) {
3648         unsigned SrcReg = MI.getOperand(I).getReg();
3649         if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3650           return false;
3651         const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3652         if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
3653           return false;
3654       }
3655       else
3656         return false;
3657     }
3658     return true;
3659   }
3660 
3661   // If at least one of the incoming values of an AND is zero extended
3662   // then the output is also zero-extended. If both of the incoming values
3663   // are sign-extended then the output is also sign extended.
3664   case PPC::AND:
3665   case PPC::AND8: {
3666     if (Depth >= MAX_DEPTH)
3667        return false;
3668 
3669     assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
3670 
3671     unsigned SrcReg1 = MI.getOperand(1).getReg();
3672     unsigned SrcReg2 = MI.getOperand(2).getReg();
3673 
3674     if (!TargetRegisterInfo::isVirtualRegister(SrcReg1) ||
3675         !TargetRegisterInfo::isVirtualRegister(SrcReg2))
3676        return false;
3677 
3678     const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
3679     const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
3680     if (!MISrc1 || !MISrc2)
3681         return false;
3682 
3683     if(SignExt)
3684         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
3685                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3686     else
3687         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
3688                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3689   }
3690 
3691   default:
3692     break;
3693   }
3694   return false;
3695 }
3696