1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the PowerPC implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCInstrInfo.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCHazardRecognizers.h" 18 #include "PPCInstrBuilder.h" 19 #include "PPCMachineFunctionInfo.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/ScheduleDAG.h" 31 #include "llvm/CodeGen/SlotIndexes.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCInst.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "ppc-instr-info" 44 45 #define GET_INSTRMAP_INFO 46 #define GET_INSTRINFO_CTOR_DTOR 47 #include "PPCGenInstrInfo.inc" 48 49 STATISTIC(NumStoreSPILLVSRRCAsVec, 50 "Number of spillvsrrc spilled to stack as vec"); 51 STATISTIC(NumStoreSPILLVSRRCAsGpr, 52 "Number of spillvsrrc spilled to stack as gpr"); 53 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 54 STATISTIC(CmpIselsConverted, 55 "Number of ISELs that depend on comparison of constants converted"); 56 STATISTIC(MissedConvertibleImmediateInstrs, 57 "Number of compare-immediate instructions fed by constants"); 58 STATISTIC(NumRcRotatesConvertedToRcAnd, 59 "Number of record-form rotates converted to record-form andi"); 60 61 static cl:: 62 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 63 cl::desc("Disable analysis for CTR loops")); 64 65 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 66 cl::desc("Disable compare instruction optimization"), cl::Hidden); 67 68 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 69 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 70 cl::Hidden); 71 72 static cl::opt<bool> 73 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 74 cl::desc("Use the old (incorrect) instruction latency calculation")); 75 76 // Index into the OpcodesForSpill array. 77 enum SpillOpcodeKey { 78 SOK_Int4Spill, 79 SOK_Int8Spill, 80 SOK_Float8Spill, 81 SOK_Float4Spill, 82 SOK_CRSpill, 83 SOK_CRBitSpill, 84 SOK_VRVectorSpill, 85 SOK_VSXVectorSpill, 86 SOK_VectorFloat8Spill, 87 SOK_VectorFloat4Spill, 88 SOK_VRSaveSpill, 89 SOK_QuadFloat8Spill, 90 SOK_QuadFloat4Spill, 91 SOK_QuadBitSpill, 92 SOK_SpillToVSR, 93 SOK_SPESpill, 94 SOK_SPE4Spill, 95 SOK_LastOpcodeSpill // This must be last on the enum. 96 }; 97 98 // Pin the vtable to this file. 99 void PPCInstrInfo::anchor() {} 100 101 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 102 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 103 /* CatchRetOpcode */ -1, 104 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 105 Subtarget(STI), RI(STI.getTargetMachine()) {} 106 107 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 108 /// this target when scheduling the DAG. 109 ScheduleHazardRecognizer * 110 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 111 const ScheduleDAG *DAG) const { 112 unsigned Directive = 113 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); 114 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 115 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 116 const InstrItineraryData *II = 117 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 118 return new ScoreboardHazardRecognizer(II, DAG); 119 } 120 121 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 122 } 123 124 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 125 /// to use for this target when scheduling the DAG. 126 ScheduleHazardRecognizer * 127 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 128 const ScheduleDAG *DAG) const { 129 unsigned Directive = 130 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective(); 131 132 // FIXME: Leaving this as-is until we have POWER9 scheduling info 133 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 134 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 135 136 // Most subtargets use a PPC970 recognizer. 137 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 138 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 139 assert(DAG->TII && "No InstrInfo?"); 140 141 return new PPCHazardRecognizer970(*DAG); 142 } 143 144 return new ScoreboardHazardRecognizer(II, DAG); 145 } 146 147 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 148 const MachineInstr &MI, 149 unsigned *PredCost) const { 150 if (!ItinData || UseOldLatencyCalc) 151 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 152 153 // The default implementation of getInstrLatency calls getStageLatency, but 154 // getStageLatency does not do the right thing for us. While we have 155 // itinerary, most cores are fully pipelined, and so the itineraries only 156 // express the first part of the pipeline, not every stage. Instead, we need 157 // to use the listed output operand cycle number (using operand 0 here, which 158 // is an output). 159 160 unsigned Latency = 1; 161 unsigned DefClass = MI.getDesc().getSchedClass(); 162 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 163 const MachineOperand &MO = MI.getOperand(i); 164 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 165 continue; 166 167 int Cycle = ItinData->getOperandCycle(DefClass, i); 168 if (Cycle < 0) 169 continue; 170 171 Latency = std::max(Latency, (unsigned) Cycle); 172 } 173 174 return Latency; 175 } 176 177 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 178 const MachineInstr &DefMI, unsigned DefIdx, 179 const MachineInstr &UseMI, 180 unsigned UseIdx) const { 181 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 182 UseMI, UseIdx); 183 184 if (!DefMI.getParent()) 185 return Latency; 186 187 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 188 unsigned Reg = DefMO.getReg(); 189 190 bool IsRegCR; 191 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 192 const MachineRegisterInfo *MRI = 193 &DefMI.getParent()->getParent()->getRegInfo(); 194 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 195 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 196 } else { 197 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 198 PPC::CRBITRCRegClass.contains(Reg); 199 } 200 201 if (UseMI.isBranch() && IsRegCR) { 202 if (Latency < 0) 203 Latency = getInstrLatency(ItinData, DefMI); 204 205 // On some cores, there is an additional delay between writing to a condition 206 // register, and using it from a branch. 207 unsigned Directive = Subtarget.getDarwinDirective(); 208 switch (Directive) { 209 default: break; 210 case PPC::DIR_7400: 211 case PPC::DIR_750: 212 case PPC::DIR_970: 213 case PPC::DIR_E5500: 214 case PPC::DIR_PWR4: 215 case PPC::DIR_PWR5: 216 case PPC::DIR_PWR5X: 217 case PPC::DIR_PWR6: 218 case PPC::DIR_PWR6X: 219 case PPC::DIR_PWR7: 220 case PPC::DIR_PWR8: 221 // FIXME: Is this needed for POWER9? 222 Latency += 2; 223 break; 224 } 225 } 226 227 return Latency; 228 } 229 230 // This function does not list all associative and commutative operations, but 231 // only those worth feeding through the machine combiner in an attempt to 232 // reduce the critical path. Mostly, this means floating-point operations, 233 // because they have high latencies (compared to other operations, such and 234 // and/or, which are also associative and commutative, but have low latencies). 235 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 236 switch (Inst.getOpcode()) { 237 // FP Add: 238 case PPC::FADD: 239 case PPC::FADDS: 240 // FP Multiply: 241 case PPC::FMUL: 242 case PPC::FMULS: 243 // Altivec Add: 244 case PPC::VADDFP: 245 // VSX Add: 246 case PPC::XSADDDP: 247 case PPC::XVADDDP: 248 case PPC::XVADDSP: 249 case PPC::XSADDSP: 250 // VSX Multiply: 251 case PPC::XSMULDP: 252 case PPC::XVMULDP: 253 case PPC::XVMULSP: 254 case PPC::XSMULSP: 255 // QPX Add: 256 case PPC::QVFADD: 257 case PPC::QVFADDS: 258 case PPC::QVFADDSs: 259 // QPX Multiply: 260 case PPC::QVFMUL: 261 case PPC::QVFMULS: 262 case PPC::QVFMULSs: 263 return true; 264 default: 265 return false; 266 } 267 } 268 269 bool PPCInstrInfo::getMachineCombinerPatterns( 270 MachineInstr &Root, 271 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 272 // Using the machine combiner in this way is potentially expensive, so 273 // restrict to when aggressive optimizations are desired. 274 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 275 return false; 276 277 // FP reassociation is only legal when we don't need strict IEEE semantics. 278 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) 279 return false; 280 281 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 282 } 283 284 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 285 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 286 unsigned &SrcReg, unsigned &DstReg, 287 unsigned &SubIdx) const { 288 switch (MI.getOpcode()) { 289 default: return false; 290 case PPC::EXTSW: 291 case PPC::EXTSW_32: 292 case PPC::EXTSW_32_64: 293 SrcReg = MI.getOperand(1).getReg(); 294 DstReg = MI.getOperand(0).getReg(); 295 SubIdx = PPC::sub_32; 296 return true; 297 } 298 } 299 300 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 301 int &FrameIndex) const { 302 unsigned Opcode = MI.getOpcode(); 303 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 304 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 305 306 if (End != std::find(OpcodesForSpill, End, Opcode)) { 307 // Check for the operands added by addFrameReference (the immediate is the 308 // offset which defaults to 0). 309 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 310 MI.getOperand(2).isFI()) { 311 FrameIndex = MI.getOperand(2).getIndex(); 312 return MI.getOperand(0).getReg(); 313 } 314 } 315 return 0; 316 } 317 318 // For opcodes with the ReMaterializable flag set, this function is called to 319 // verify the instruction is really rematable. 320 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 321 AliasAnalysis *AA) const { 322 switch (MI.getOpcode()) { 323 default: 324 // This function should only be called for opcodes with the ReMaterializable 325 // flag set. 326 llvm_unreachable("Unknown rematerializable operation!"); 327 break; 328 case PPC::LI: 329 case PPC::LI8: 330 case PPC::LIS: 331 case PPC::LIS8: 332 case PPC::QVGPCI: 333 case PPC::ADDIStocHA: 334 case PPC::ADDItocL: 335 case PPC::LOAD_STACK_GUARD: 336 return true; 337 } 338 return false; 339 } 340 341 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 342 int &FrameIndex) const { 343 unsigned Opcode = MI.getOpcode(); 344 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 345 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 346 347 if (End != std::find(OpcodesForSpill, End, Opcode)) { 348 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 349 MI.getOperand(2).isFI()) { 350 FrameIndex = MI.getOperand(2).getIndex(); 351 return MI.getOperand(0).getReg(); 352 } 353 } 354 return 0; 355 } 356 357 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 358 unsigned OpIdx1, 359 unsigned OpIdx2) const { 360 MachineFunction &MF = *MI.getParent()->getParent(); 361 362 // Normal instructions can be commuted the obvious way. 363 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo) 364 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 365 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 366 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 367 // changing the relative order of the mask operands might change what happens 368 // to the high-bits of the mask (and, thus, the result). 369 370 // Cannot commute if it has a non-zero rotate count. 371 if (MI.getOperand(3).getImm() != 0) 372 return nullptr; 373 374 // If we have a zero rotate count, we have: 375 // M = mask(MB,ME) 376 // Op0 = (Op1 & ~M) | (Op2 & M) 377 // Change this to: 378 // M = mask((ME+1)&31, (MB-1)&31) 379 // Op0 = (Op2 & ~M) | (Op1 & M) 380 381 // Swap op1/op2 382 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 383 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo."); 384 unsigned Reg0 = MI.getOperand(0).getReg(); 385 unsigned Reg1 = MI.getOperand(1).getReg(); 386 unsigned Reg2 = MI.getOperand(2).getReg(); 387 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 388 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 389 bool Reg1IsKill = MI.getOperand(1).isKill(); 390 bool Reg2IsKill = MI.getOperand(2).isKill(); 391 bool ChangeReg0 = false; 392 // If machine instrs are no longer in two-address forms, update 393 // destination register as well. 394 if (Reg0 == Reg1) { 395 // Must be two address instruction! 396 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 397 "Expecting a two-address instruction!"); 398 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 399 Reg2IsKill = false; 400 ChangeReg0 = true; 401 } 402 403 // Masks. 404 unsigned MB = MI.getOperand(4).getImm(); 405 unsigned ME = MI.getOperand(5).getImm(); 406 407 // We can't commute a trivial mask (there is no way to represent an all-zero 408 // mask). 409 if (MB == 0 && ME == 31) 410 return nullptr; 411 412 if (NewMI) { 413 // Create a new instruction. 414 unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 415 bool Reg0IsDead = MI.getOperand(0).isDead(); 416 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 417 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 418 .addReg(Reg2, getKillRegState(Reg2IsKill)) 419 .addReg(Reg1, getKillRegState(Reg1IsKill)) 420 .addImm((ME + 1) & 31) 421 .addImm((MB - 1) & 31); 422 } 423 424 if (ChangeReg0) { 425 MI.getOperand(0).setReg(Reg2); 426 MI.getOperand(0).setSubReg(SubReg2); 427 } 428 MI.getOperand(2).setReg(Reg1); 429 MI.getOperand(1).setReg(Reg2); 430 MI.getOperand(2).setSubReg(SubReg1); 431 MI.getOperand(1).setSubReg(SubReg2); 432 MI.getOperand(2).setIsKill(Reg1IsKill); 433 MI.getOperand(1).setIsKill(Reg2IsKill); 434 435 // Swap the mask around. 436 MI.getOperand(4).setImm((ME + 1) & 31); 437 MI.getOperand(5).setImm((MB - 1) & 31); 438 return &MI; 439 } 440 441 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, 442 unsigned &SrcOpIdx2) const { 443 // For VSX A-Type FMA instructions, it is the first two operands that can be 444 // commuted, however, because the non-encoded tied input operand is listed 445 // first, the operands to swap are actually the second and third. 446 447 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 448 if (AltOpc == -1) 449 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 450 451 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 452 // and SrcOpIdx2. 453 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 454 } 455 456 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 457 MachineBasicBlock::iterator MI) const { 458 // This function is used for scheduling, and the nop wanted here is the type 459 // that terminates dispatch groups on the POWER cores. 460 unsigned Directive = Subtarget.getDarwinDirective(); 461 unsigned Opcode; 462 switch (Directive) { 463 default: Opcode = PPC::NOP; break; 464 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 465 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 466 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 467 // FIXME: Update when POWER9 scheduling model is ready. 468 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 469 } 470 471 DebugLoc DL; 472 BuildMI(MBB, MI, DL, get(Opcode)); 473 } 474 475 /// Return the noop instruction to use for a noop. 476 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 477 NopInst.setOpcode(PPC::NOP); 478 } 479 480 // Branch analysis. 481 // Note: If the condition register is set to CTR or CTR8 then this is a 482 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 483 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 484 MachineBasicBlock *&TBB, 485 MachineBasicBlock *&FBB, 486 SmallVectorImpl<MachineOperand> &Cond, 487 bool AllowModify) const { 488 bool isPPC64 = Subtarget.isPPC64(); 489 490 // If the block has no terminators, it just falls into the block after it. 491 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 492 if (I == MBB.end()) 493 return false; 494 495 if (!isUnpredicatedTerminator(*I)) 496 return false; 497 498 if (AllowModify) { 499 // If the BB ends with an unconditional branch to the fallthrough BB, 500 // we eliminate the branch instruction. 501 if (I->getOpcode() == PPC::B && 502 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 503 I->eraseFromParent(); 504 505 // We update iterator after deleting the last branch. 506 I = MBB.getLastNonDebugInstr(); 507 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 508 return false; 509 } 510 } 511 512 // Get the last instruction in the block. 513 MachineInstr &LastInst = *I; 514 515 // If there is only one terminator instruction, process it. 516 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 517 if (LastInst.getOpcode() == PPC::B) { 518 if (!LastInst.getOperand(0).isMBB()) 519 return true; 520 TBB = LastInst.getOperand(0).getMBB(); 521 return false; 522 } else if (LastInst.getOpcode() == PPC::BCC) { 523 if (!LastInst.getOperand(2).isMBB()) 524 return true; 525 // Block ends with fall-through condbranch. 526 TBB = LastInst.getOperand(2).getMBB(); 527 Cond.push_back(LastInst.getOperand(0)); 528 Cond.push_back(LastInst.getOperand(1)); 529 return false; 530 } else if (LastInst.getOpcode() == PPC::BC) { 531 if (!LastInst.getOperand(1).isMBB()) 532 return true; 533 // Block ends with fall-through condbranch. 534 TBB = LastInst.getOperand(1).getMBB(); 535 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 536 Cond.push_back(LastInst.getOperand(0)); 537 return false; 538 } else if (LastInst.getOpcode() == PPC::BCn) { 539 if (!LastInst.getOperand(1).isMBB()) 540 return true; 541 // Block ends with fall-through condbranch. 542 TBB = LastInst.getOperand(1).getMBB(); 543 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 544 Cond.push_back(LastInst.getOperand(0)); 545 return false; 546 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 547 LastInst.getOpcode() == PPC::BDNZ) { 548 if (!LastInst.getOperand(0).isMBB()) 549 return true; 550 if (DisableCTRLoopAnal) 551 return true; 552 TBB = LastInst.getOperand(0).getMBB(); 553 Cond.push_back(MachineOperand::CreateImm(1)); 554 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 555 true)); 556 return false; 557 } else if (LastInst.getOpcode() == PPC::BDZ8 || 558 LastInst.getOpcode() == PPC::BDZ) { 559 if (!LastInst.getOperand(0).isMBB()) 560 return true; 561 if (DisableCTRLoopAnal) 562 return true; 563 TBB = LastInst.getOperand(0).getMBB(); 564 Cond.push_back(MachineOperand::CreateImm(0)); 565 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 566 true)); 567 return false; 568 } 569 570 // Otherwise, don't know what this is. 571 return true; 572 } 573 574 // Get the instruction before it if it's a terminator. 575 MachineInstr &SecondLastInst = *I; 576 577 // If there are three terminators, we don't know what sort of block this is. 578 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 579 return true; 580 581 // If the block ends with PPC::B and PPC:BCC, handle it. 582 if (SecondLastInst.getOpcode() == PPC::BCC && 583 LastInst.getOpcode() == PPC::B) { 584 if (!SecondLastInst.getOperand(2).isMBB() || 585 !LastInst.getOperand(0).isMBB()) 586 return true; 587 TBB = SecondLastInst.getOperand(2).getMBB(); 588 Cond.push_back(SecondLastInst.getOperand(0)); 589 Cond.push_back(SecondLastInst.getOperand(1)); 590 FBB = LastInst.getOperand(0).getMBB(); 591 return false; 592 } else if (SecondLastInst.getOpcode() == PPC::BC && 593 LastInst.getOpcode() == PPC::B) { 594 if (!SecondLastInst.getOperand(1).isMBB() || 595 !LastInst.getOperand(0).isMBB()) 596 return true; 597 TBB = SecondLastInst.getOperand(1).getMBB(); 598 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 599 Cond.push_back(SecondLastInst.getOperand(0)); 600 FBB = LastInst.getOperand(0).getMBB(); 601 return false; 602 } else if (SecondLastInst.getOpcode() == PPC::BCn && 603 LastInst.getOpcode() == PPC::B) { 604 if (!SecondLastInst.getOperand(1).isMBB() || 605 !LastInst.getOperand(0).isMBB()) 606 return true; 607 TBB = SecondLastInst.getOperand(1).getMBB(); 608 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 609 Cond.push_back(SecondLastInst.getOperand(0)); 610 FBB = LastInst.getOperand(0).getMBB(); 611 return false; 612 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 613 SecondLastInst.getOpcode() == PPC::BDNZ) && 614 LastInst.getOpcode() == PPC::B) { 615 if (!SecondLastInst.getOperand(0).isMBB() || 616 !LastInst.getOperand(0).isMBB()) 617 return true; 618 if (DisableCTRLoopAnal) 619 return true; 620 TBB = SecondLastInst.getOperand(0).getMBB(); 621 Cond.push_back(MachineOperand::CreateImm(1)); 622 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 623 true)); 624 FBB = LastInst.getOperand(0).getMBB(); 625 return false; 626 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 627 SecondLastInst.getOpcode() == PPC::BDZ) && 628 LastInst.getOpcode() == PPC::B) { 629 if (!SecondLastInst.getOperand(0).isMBB() || 630 !LastInst.getOperand(0).isMBB()) 631 return true; 632 if (DisableCTRLoopAnal) 633 return true; 634 TBB = SecondLastInst.getOperand(0).getMBB(); 635 Cond.push_back(MachineOperand::CreateImm(0)); 636 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 637 true)); 638 FBB = LastInst.getOperand(0).getMBB(); 639 return false; 640 } 641 642 // If the block ends with two PPC:Bs, handle it. The second one is not 643 // executed, so remove it. 644 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 645 if (!SecondLastInst.getOperand(0).isMBB()) 646 return true; 647 TBB = SecondLastInst.getOperand(0).getMBB(); 648 I = LastInst; 649 if (AllowModify) 650 I->eraseFromParent(); 651 return false; 652 } 653 654 // Otherwise, can't handle this. 655 return true; 656 } 657 658 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 659 int *BytesRemoved) const { 660 assert(!BytesRemoved && "code size not handled"); 661 662 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 663 if (I == MBB.end()) 664 return 0; 665 666 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 667 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 668 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 669 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 670 return 0; 671 672 // Remove the branch. 673 I->eraseFromParent(); 674 675 I = MBB.end(); 676 677 if (I == MBB.begin()) return 1; 678 --I; 679 if (I->getOpcode() != PPC::BCC && 680 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 681 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 682 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 683 return 1; 684 685 // Remove the branch. 686 I->eraseFromParent(); 687 return 2; 688 } 689 690 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 691 MachineBasicBlock *TBB, 692 MachineBasicBlock *FBB, 693 ArrayRef<MachineOperand> Cond, 694 const DebugLoc &DL, 695 int *BytesAdded) const { 696 // Shouldn't be a fall through. 697 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 698 assert((Cond.size() == 2 || Cond.size() == 0) && 699 "PPC branch conditions have two components!"); 700 assert(!BytesAdded && "code size not handled"); 701 702 bool isPPC64 = Subtarget.isPPC64(); 703 704 // One-way branch. 705 if (!FBB) { 706 if (Cond.empty()) // Unconditional branch 707 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 708 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 709 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 710 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 711 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 712 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 713 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 714 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 715 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 716 else // Conditional branch 717 BuildMI(&MBB, DL, get(PPC::BCC)) 718 .addImm(Cond[0].getImm()) 719 .add(Cond[1]) 720 .addMBB(TBB); 721 return 1; 722 } 723 724 // Two-way Conditional Branch. 725 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 726 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 727 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 728 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 729 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 730 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 731 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 732 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 733 else 734 BuildMI(&MBB, DL, get(PPC::BCC)) 735 .addImm(Cond[0].getImm()) 736 .add(Cond[1]) 737 .addMBB(TBB); 738 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 739 return 2; 740 } 741 742 // Select analysis. 743 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 744 ArrayRef<MachineOperand> Cond, 745 unsigned TrueReg, unsigned FalseReg, 746 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 747 if (Cond.size() != 2) 748 return false; 749 750 // If this is really a bdnz-like condition, then it cannot be turned into a 751 // select. 752 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 753 return false; 754 755 // Check register classes. 756 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 757 const TargetRegisterClass *RC = 758 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 759 if (!RC) 760 return false; 761 762 // isel is for regular integer GPRs only. 763 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 764 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 765 !PPC::G8RCRegClass.hasSubClassEq(RC) && 766 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 767 return false; 768 769 // FIXME: These numbers are for the A2, how well they work for other cores is 770 // an open question. On the A2, the isel instruction has a 2-cycle latency 771 // but single-cycle throughput. These numbers are used in combination with 772 // the MispredictPenalty setting from the active SchedMachineModel. 773 CondCycles = 1; 774 TrueCycles = 1; 775 FalseCycles = 1; 776 777 return true; 778 } 779 780 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 781 MachineBasicBlock::iterator MI, 782 const DebugLoc &dl, unsigned DestReg, 783 ArrayRef<MachineOperand> Cond, unsigned TrueReg, 784 unsigned FalseReg) const { 785 assert(Cond.size() == 2 && 786 "PPC branch conditions have two components!"); 787 788 // Get the register classes. 789 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 790 const TargetRegisterClass *RC = 791 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 792 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 793 794 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 795 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 796 assert((Is64Bit || 797 PPC::GPRCRegClass.hasSubClassEq(RC) || 798 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 799 "isel is for regular integer GPRs only"); 800 801 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 802 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 803 804 unsigned SubIdx = 0; 805 bool SwapOps = false; 806 switch (SelectPred) { 807 case PPC::PRED_EQ: 808 case PPC::PRED_EQ_MINUS: 809 case PPC::PRED_EQ_PLUS: 810 SubIdx = PPC::sub_eq; SwapOps = false; break; 811 case PPC::PRED_NE: 812 case PPC::PRED_NE_MINUS: 813 case PPC::PRED_NE_PLUS: 814 SubIdx = PPC::sub_eq; SwapOps = true; break; 815 case PPC::PRED_LT: 816 case PPC::PRED_LT_MINUS: 817 case PPC::PRED_LT_PLUS: 818 SubIdx = PPC::sub_lt; SwapOps = false; break; 819 case PPC::PRED_GE: 820 case PPC::PRED_GE_MINUS: 821 case PPC::PRED_GE_PLUS: 822 SubIdx = PPC::sub_lt; SwapOps = true; break; 823 case PPC::PRED_GT: 824 case PPC::PRED_GT_MINUS: 825 case PPC::PRED_GT_PLUS: 826 SubIdx = PPC::sub_gt; SwapOps = false; break; 827 case PPC::PRED_LE: 828 case PPC::PRED_LE_MINUS: 829 case PPC::PRED_LE_PLUS: 830 SubIdx = PPC::sub_gt; SwapOps = true; break; 831 case PPC::PRED_UN: 832 case PPC::PRED_UN_MINUS: 833 case PPC::PRED_UN_PLUS: 834 SubIdx = PPC::sub_un; SwapOps = false; break; 835 case PPC::PRED_NU: 836 case PPC::PRED_NU_MINUS: 837 case PPC::PRED_NU_PLUS: 838 SubIdx = PPC::sub_un; SwapOps = true; break; 839 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 840 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 841 } 842 843 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 844 SecondReg = SwapOps ? TrueReg : FalseReg; 845 846 // The first input register of isel cannot be r0. If it is a member 847 // of a register class that can be r0, then copy it first (the 848 // register allocator should eliminate the copy). 849 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 850 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 851 const TargetRegisterClass *FirstRC = 852 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 853 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 854 unsigned OldFirstReg = FirstReg; 855 FirstReg = MRI.createVirtualRegister(FirstRC); 856 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 857 .addReg(OldFirstReg); 858 } 859 860 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 861 .addReg(FirstReg).addReg(SecondReg) 862 .addReg(Cond[1].getReg(), 0, SubIdx); 863 } 864 865 static unsigned getCRBitValue(unsigned CRBit) { 866 unsigned Ret = 4; 867 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 868 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 869 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 870 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 871 Ret = 3; 872 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 873 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 874 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 875 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 876 Ret = 2; 877 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 878 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 879 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 880 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 881 Ret = 1; 882 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 883 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 884 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 885 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 886 Ret = 0; 887 888 assert(Ret != 4 && "Invalid CR bit register"); 889 return Ret; 890 } 891 892 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 893 MachineBasicBlock::iterator I, 894 const DebugLoc &DL, unsigned DestReg, 895 unsigned SrcReg, bool KillSrc) const { 896 // We can end up with self copies and similar things as a result of VSX copy 897 // legalization. Promote them here. 898 const TargetRegisterInfo *TRI = &getRegisterInfo(); 899 if (PPC::F8RCRegClass.contains(DestReg) && 900 PPC::VSRCRegClass.contains(SrcReg)) { 901 unsigned SuperReg = 902 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 903 904 if (VSXSelfCopyCrash && SrcReg == SuperReg) 905 llvm_unreachable("nop VSX copy"); 906 907 DestReg = SuperReg; 908 } else if (PPC::F8RCRegClass.contains(SrcReg) && 909 PPC::VSRCRegClass.contains(DestReg)) { 910 unsigned SuperReg = 911 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 912 913 if (VSXSelfCopyCrash && DestReg == SuperReg) 914 llvm_unreachable("nop VSX copy"); 915 916 SrcReg = SuperReg; 917 } 918 919 // Different class register copy 920 if (PPC::CRBITRCRegClass.contains(SrcReg) && 921 PPC::GPRCRegClass.contains(DestReg)) { 922 unsigned CRReg = getCRFromCRBit(SrcReg); 923 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 924 getKillRegState(KillSrc); 925 // Rotate the CR bit in the CR fields to be the least significant bit and 926 // then mask with 0x1 (MB = ME = 31). 927 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 928 .addReg(DestReg, RegState::Kill) 929 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 930 .addImm(31) 931 .addImm(31); 932 return; 933 } else if (PPC::CRRCRegClass.contains(SrcReg) && 934 PPC::G8RCRegClass.contains(DestReg)) { 935 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 936 getKillRegState(KillSrc); 937 return; 938 } else if (PPC::CRRCRegClass.contains(SrcReg) && 939 PPC::GPRCRegClass.contains(DestReg)) { 940 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 941 getKillRegState(KillSrc); 942 return; 943 } else if (PPC::G8RCRegClass.contains(SrcReg) && 944 PPC::VSFRCRegClass.contains(DestReg)) { 945 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 946 NumGPRtoVSRSpill++; 947 getKillRegState(KillSrc); 948 return; 949 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 950 PPC::G8RCRegClass.contains(DestReg)) { 951 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 952 getKillRegState(KillSrc); 953 return; 954 } else if (PPC::SPERCRegClass.contains(SrcReg) && 955 PPC::SPE4RCRegClass.contains(DestReg)) { 956 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 957 getKillRegState(KillSrc); 958 return; 959 } else if (PPC::SPE4RCRegClass.contains(SrcReg) && 960 PPC::SPERCRegClass.contains(DestReg)) { 961 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 962 getKillRegState(KillSrc); 963 return; 964 } 965 966 967 unsigned Opc; 968 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 969 Opc = PPC::OR; 970 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 971 Opc = PPC::OR8; 972 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 973 Opc = PPC::FMR; 974 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 975 Opc = PPC::MCRF; 976 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 977 Opc = PPC::VOR; 978 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 979 // There are two different ways this can be done: 980 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 981 // issue in VSU pipeline 0. 982 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 983 // can go to either pipeline. 984 // We'll always use xxlor here, because in practically all cases where 985 // copies are generated, they are close enough to some use that the 986 // lower-latency form is preferable. 987 Opc = PPC::XXLOR; 988 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 989 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 990 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 991 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 992 Opc = PPC::QVFMR; 993 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 994 Opc = PPC::QVFMRs; 995 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 996 Opc = PPC::QVFMRb; 997 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 998 Opc = PPC::CROR; 999 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1000 Opc = PPC::EVOR; 1001 else 1002 llvm_unreachable("Impossible reg-to-reg copy"); 1003 1004 const MCInstrDesc &MCID = get(Opc); 1005 if (MCID.getNumOperands() == 3) 1006 BuildMI(MBB, I, DL, MCID, DestReg) 1007 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1008 else 1009 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1010 } 1011 1012 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg, 1013 const TargetRegisterClass *RC) 1014 const { 1015 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1016 int OpcodeIndex = 0; 1017 1018 if (RC != nullptr) { 1019 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1020 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1021 OpcodeIndex = SOK_Int4Spill; 1022 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1023 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1024 OpcodeIndex = SOK_Int8Spill; 1025 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1026 OpcodeIndex = SOK_Float8Spill; 1027 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1028 OpcodeIndex = SOK_Float4Spill; 1029 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1030 OpcodeIndex = SOK_SPESpill; 1031 } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) { 1032 OpcodeIndex = SOK_SPE4Spill; 1033 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1034 OpcodeIndex = SOK_CRSpill; 1035 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1036 OpcodeIndex = SOK_CRBitSpill; 1037 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1038 OpcodeIndex = SOK_VRVectorSpill; 1039 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1040 OpcodeIndex = SOK_VSXVectorSpill; 1041 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1042 OpcodeIndex = SOK_VectorFloat8Spill; 1043 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1044 OpcodeIndex = SOK_VectorFloat4Spill; 1045 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1046 OpcodeIndex = SOK_VRSaveSpill; 1047 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1048 OpcodeIndex = SOK_QuadFloat8Spill; 1049 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1050 OpcodeIndex = SOK_QuadFloat4Spill; 1051 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1052 OpcodeIndex = SOK_QuadBitSpill; 1053 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1054 OpcodeIndex = SOK_SpillToVSR; 1055 } else { 1056 llvm_unreachable("Unknown regclass!"); 1057 } 1058 } else { 1059 if (PPC::GPRCRegClass.contains(Reg) || 1060 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1061 OpcodeIndex = SOK_Int4Spill; 1062 } else if (PPC::G8RCRegClass.contains(Reg) || 1063 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1064 OpcodeIndex = SOK_Int8Spill; 1065 } else if (PPC::F8RCRegClass.contains(Reg)) { 1066 OpcodeIndex = SOK_Float8Spill; 1067 } else if (PPC::F4RCRegClass.contains(Reg)) { 1068 OpcodeIndex = SOK_Float4Spill; 1069 } else if (PPC::CRRCRegClass.contains(Reg)) { 1070 OpcodeIndex = SOK_CRSpill; 1071 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1072 OpcodeIndex = SOK_CRBitSpill; 1073 } else if (PPC::VRRCRegClass.contains(Reg)) { 1074 OpcodeIndex = SOK_VRVectorSpill; 1075 } else if (PPC::VSRCRegClass.contains(Reg)) { 1076 OpcodeIndex = SOK_VSXVectorSpill; 1077 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1078 OpcodeIndex = SOK_VectorFloat8Spill; 1079 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1080 OpcodeIndex = SOK_VectorFloat4Spill; 1081 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1082 OpcodeIndex = SOK_VRSaveSpill; 1083 } else if (PPC::QFRCRegClass.contains(Reg)) { 1084 OpcodeIndex = SOK_QuadFloat8Spill; 1085 } else if (PPC::QSRCRegClass.contains(Reg)) { 1086 OpcodeIndex = SOK_QuadFloat4Spill; 1087 } else if (PPC::QBRCRegClass.contains(Reg)) { 1088 OpcodeIndex = SOK_QuadBitSpill; 1089 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1090 OpcodeIndex = SOK_SpillToVSR; 1091 } else { 1092 llvm_unreachable("Unknown regclass!"); 1093 } 1094 } 1095 return OpcodesForSpill[OpcodeIndex]; 1096 } 1097 1098 unsigned 1099 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg, 1100 const TargetRegisterClass *RC) const { 1101 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1102 int OpcodeIndex = 0; 1103 1104 if (RC != nullptr) { 1105 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1106 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1107 OpcodeIndex = SOK_Int4Spill; 1108 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1109 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1110 OpcodeIndex = SOK_Int8Spill; 1111 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1112 OpcodeIndex = SOK_Float8Spill; 1113 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1114 OpcodeIndex = SOK_Float4Spill; 1115 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1116 OpcodeIndex = SOK_SPESpill; 1117 } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) { 1118 OpcodeIndex = SOK_SPE4Spill; 1119 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1120 OpcodeIndex = SOK_CRSpill; 1121 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1122 OpcodeIndex = SOK_CRBitSpill; 1123 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1124 OpcodeIndex = SOK_VRVectorSpill; 1125 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1126 OpcodeIndex = SOK_VSXVectorSpill; 1127 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1128 OpcodeIndex = SOK_VectorFloat8Spill; 1129 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1130 OpcodeIndex = SOK_VectorFloat4Spill; 1131 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1132 OpcodeIndex = SOK_VRSaveSpill; 1133 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1134 OpcodeIndex = SOK_QuadFloat8Spill; 1135 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1136 OpcodeIndex = SOK_QuadFloat4Spill; 1137 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1138 OpcodeIndex = SOK_QuadBitSpill; 1139 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1140 OpcodeIndex = SOK_SpillToVSR; 1141 } else { 1142 llvm_unreachable("Unknown regclass!"); 1143 } 1144 } else { 1145 if (PPC::GPRCRegClass.contains(Reg) || 1146 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1147 OpcodeIndex = SOK_Int4Spill; 1148 } else if (PPC::G8RCRegClass.contains(Reg) || 1149 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1150 OpcodeIndex = SOK_Int8Spill; 1151 } else if (PPC::F8RCRegClass.contains(Reg)) { 1152 OpcodeIndex = SOK_Float8Spill; 1153 } else if (PPC::F4RCRegClass.contains(Reg)) { 1154 OpcodeIndex = SOK_Float4Spill; 1155 } else if (PPC::CRRCRegClass.contains(Reg)) { 1156 OpcodeIndex = SOK_CRSpill; 1157 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1158 OpcodeIndex = SOK_CRBitSpill; 1159 } else if (PPC::VRRCRegClass.contains(Reg)) { 1160 OpcodeIndex = SOK_VRVectorSpill; 1161 } else if (PPC::VSRCRegClass.contains(Reg)) { 1162 OpcodeIndex = SOK_VSXVectorSpill; 1163 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1164 OpcodeIndex = SOK_VectorFloat8Spill; 1165 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1166 OpcodeIndex = SOK_VectorFloat4Spill; 1167 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1168 OpcodeIndex = SOK_VRSaveSpill; 1169 } else if (PPC::QFRCRegClass.contains(Reg)) { 1170 OpcodeIndex = SOK_QuadFloat8Spill; 1171 } else if (PPC::QSRCRegClass.contains(Reg)) { 1172 OpcodeIndex = SOK_QuadFloat4Spill; 1173 } else if (PPC::QBRCRegClass.contains(Reg)) { 1174 OpcodeIndex = SOK_QuadBitSpill; 1175 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1176 OpcodeIndex = SOK_SpillToVSR; 1177 } else { 1178 llvm_unreachable("Unknown regclass!"); 1179 } 1180 } 1181 return OpcodesForSpill[OpcodeIndex]; 1182 } 1183 1184 void PPCInstrInfo::StoreRegToStackSlot( 1185 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1186 const TargetRegisterClass *RC, 1187 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1188 unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC); 1189 DebugLoc DL; 1190 1191 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1192 FuncInfo->setHasSpills(); 1193 1194 NewMIs.push_back(addFrameReference( 1195 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1196 FrameIdx)); 1197 1198 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1199 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1200 FuncInfo->setSpillsCR(); 1201 1202 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1203 FuncInfo->setSpillsVRSAVE(); 1204 1205 if (isXFormMemOp(Opcode)) 1206 FuncInfo->setHasNonRISpills(); 1207 } 1208 1209 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1210 MachineBasicBlock::iterator MI, 1211 unsigned SrcReg, bool isKill, 1212 int FrameIdx, 1213 const TargetRegisterClass *RC, 1214 const TargetRegisterInfo *TRI) const { 1215 MachineFunction &MF = *MBB.getParent(); 1216 SmallVector<MachineInstr *, 4> NewMIs; 1217 1218 // We need to avoid a situation in which the value from a VRRC register is 1219 // spilled using an Altivec instruction and reloaded into a VSRC register 1220 // using a VSX instruction. The issue with this is that the VSX 1221 // load/store instructions swap the doublewords in the vector and the Altivec 1222 // ones don't. The register classes on the spill/reload may be different if 1223 // the register is defined using an Altivec instruction and is then used by a 1224 // VSX instruction. 1225 RC = updatedRC(RC); 1226 1227 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1228 1229 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1230 MBB.insert(MI, NewMIs[i]); 1231 1232 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1233 MachineMemOperand *MMO = MF.getMachineMemOperand( 1234 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1235 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1236 MFI.getObjectAlignment(FrameIdx)); 1237 NewMIs.back()->addMemOperand(MF, MMO); 1238 } 1239 1240 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1241 unsigned DestReg, int FrameIdx, 1242 const TargetRegisterClass *RC, 1243 SmallVectorImpl<MachineInstr *> &NewMIs) 1244 const { 1245 unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC); 1246 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1247 FrameIdx)); 1248 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1249 1250 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1251 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1252 FuncInfo->setSpillsCR(); 1253 1254 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1255 FuncInfo->setSpillsVRSAVE(); 1256 1257 if (isXFormMemOp(Opcode)) 1258 FuncInfo->setHasNonRISpills(); 1259 } 1260 1261 void 1262 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1263 MachineBasicBlock::iterator MI, 1264 unsigned DestReg, int FrameIdx, 1265 const TargetRegisterClass *RC, 1266 const TargetRegisterInfo *TRI) const { 1267 MachineFunction &MF = *MBB.getParent(); 1268 SmallVector<MachineInstr*, 4> NewMIs; 1269 DebugLoc DL; 1270 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1271 1272 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1273 FuncInfo->setHasSpills(); 1274 1275 // We need to avoid a situation in which the value from a VRRC register is 1276 // spilled using an Altivec instruction and reloaded into a VSRC register 1277 // using a VSX instruction. The issue with this is that the VSX 1278 // load/store instructions swap the doublewords in the vector and the Altivec 1279 // ones don't. The register classes on the spill/reload may be different if 1280 // the register is defined using an Altivec instruction and is then used by a 1281 // VSX instruction. 1282 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 1283 RC = &PPC::VSRCRegClass; 1284 1285 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1286 1287 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1288 MBB.insert(MI, NewMIs[i]); 1289 1290 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1291 MachineMemOperand *MMO = MF.getMachineMemOperand( 1292 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1293 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1294 MFI.getObjectAlignment(FrameIdx)); 1295 NewMIs.back()->addMemOperand(MF, MMO); 1296 } 1297 1298 bool PPCInstrInfo:: 1299 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1300 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1301 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1302 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1303 else 1304 // Leave the CR# the same, but invert the condition. 1305 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1306 return false; 1307 } 1308 1309 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1310 unsigned Reg, MachineRegisterInfo *MRI) const { 1311 // For some instructions, it is legal to fold ZERO into the RA register field. 1312 // A zero immediate should always be loaded with a single li. 1313 unsigned DefOpc = DefMI.getOpcode(); 1314 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1315 return false; 1316 if (!DefMI.getOperand(1).isImm()) 1317 return false; 1318 if (DefMI.getOperand(1).getImm() != 0) 1319 return false; 1320 1321 // Note that we cannot here invert the arguments of an isel in order to fold 1322 // a ZERO into what is presented as the second argument. All we have here 1323 // is the condition bit, and that might come from a CR-logical bit operation. 1324 1325 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1326 1327 // Only fold into real machine instructions. 1328 if (UseMCID.isPseudo()) 1329 return false; 1330 1331 unsigned UseIdx; 1332 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1333 if (UseMI.getOperand(UseIdx).isReg() && 1334 UseMI.getOperand(UseIdx).getReg() == Reg) 1335 break; 1336 1337 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1338 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1339 1340 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1341 1342 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1343 // register (which might also be specified as a pointer class kind). 1344 if (UseInfo->isLookupPtrRegClass()) { 1345 if (UseInfo->RegClass /* Kind */ != 1) 1346 return false; 1347 } else { 1348 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1349 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1350 return false; 1351 } 1352 1353 // Make sure this is not tied to an output register (or otherwise 1354 // constrained). This is true for ST?UX registers, for example, which 1355 // are tied to their output registers. 1356 if (UseInfo->Constraints != 0) 1357 return false; 1358 1359 unsigned ZeroReg; 1360 if (UseInfo->isLookupPtrRegClass()) { 1361 bool isPPC64 = Subtarget.isPPC64(); 1362 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1363 } else { 1364 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1365 PPC::ZERO8 : PPC::ZERO; 1366 } 1367 1368 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1369 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1370 1371 if (DeleteDef) 1372 DefMI.eraseFromParent(); 1373 1374 return true; 1375 } 1376 1377 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1378 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1379 I != IE; ++I) 1380 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1381 return true; 1382 return false; 1383 } 1384 1385 // We should make sure that, if we're going to predicate both sides of a 1386 // condition (a diamond), that both sides don't define the counter register. We 1387 // can predicate counter-decrement-based branches, but while that predicates 1388 // the branching, it does not predicate the counter decrement. If we tried to 1389 // merge the triangle into one predicated block, we'd decrement the counter 1390 // twice. 1391 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1392 unsigned NumT, unsigned ExtraT, 1393 MachineBasicBlock &FMBB, 1394 unsigned NumF, unsigned ExtraF, 1395 BranchProbability Probability) const { 1396 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1397 } 1398 1399 1400 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1401 // The predicated branches are identified by their type, not really by the 1402 // explicit presence of a predicate. Furthermore, some of them can be 1403 // predicated more than once. Because if conversion won't try to predicate 1404 // any instruction which already claims to be predicated (by returning true 1405 // here), always return false. In doing so, we let isPredicable() be the 1406 // final word on whether not the instruction can be (further) predicated. 1407 1408 return false; 1409 } 1410 1411 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 1412 if (!MI.isTerminator()) 1413 return false; 1414 1415 // Conditional branch is a special case. 1416 if (MI.isBranch() && !MI.isBarrier()) 1417 return true; 1418 1419 return !isPredicated(MI); 1420 } 1421 1422 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1423 ArrayRef<MachineOperand> Pred) const { 1424 unsigned OpC = MI.getOpcode(); 1425 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1426 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1427 bool isPPC64 = Subtarget.isPPC64(); 1428 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1429 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1430 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1431 MI.setDesc(get(PPC::BCLR)); 1432 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1433 .addReg(Pred[1].getReg()); 1434 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1435 MI.setDesc(get(PPC::BCLRn)); 1436 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1437 .addReg(Pred[1].getReg()); 1438 } else { 1439 MI.setDesc(get(PPC::BCCLR)); 1440 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1441 .addImm(Pred[0].getImm()) 1442 .addReg(Pred[1].getReg()); 1443 } 1444 1445 return true; 1446 } else if (OpC == PPC::B) { 1447 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1448 bool isPPC64 = Subtarget.isPPC64(); 1449 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1450 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1451 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1452 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1453 MI.RemoveOperand(0); 1454 1455 MI.setDesc(get(PPC::BC)); 1456 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1457 .addReg(Pred[1].getReg()) 1458 .addMBB(MBB); 1459 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1460 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1461 MI.RemoveOperand(0); 1462 1463 MI.setDesc(get(PPC::BCn)); 1464 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1465 .addReg(Pred[1].getReg()) 1466 .addMBB(MBB); 1467 } else { 1468 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1469 MI.RemoveOperand(0); 1470 1471 MI.setDesc(get(PPC::BCC)); 1472 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1473 .addImm(Pred[0].getImm()) 1474 .addReg(Pred[1].getReg()) 1475 .addMBB(MBB); 1476 } 1477 1478 return true; 1479 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || 1480 OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { 1481 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1482 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1483 1484 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1485 bool isPPC64 = Subtarget.isPPC64(); 1486 1487 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1488 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1489 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1490 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1491 .addReg(Pred[1].getReg()); 1492 return true; 1493 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1494 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1495 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1496 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1497 .addReg(Pred[1].getReg()); 1498 return true; 1499 } 1500 1501 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1502 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1503 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1504 .addImm(Pred[0].getImm()) 1505 .addReg(Pred[1].getReg()); 1506 return true; 1507 } 1508 1509 return false; 1510 } 1511 1512 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1513 ArrayRef<MachineOperand> Pred2) const { 1514 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1515 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1516 1517 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1518 return false; 1519 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1520 return false; 1521 1522 // P1 can only subsume P2 if they test the same condition register. 1523 if (Pred1[1].getReg() != Pred2[1].getReg()) 1524 return false; 1525 1526 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1527 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1528 1529 if (P1 == P2) 1530 return true; 1531 1532 // Does P1 subsume P2, e.g. GE subsumes GT. 1533 if (P1 == PPC::PRED_LE && 1534 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1535 return true; 1536 if (P1 == PPC::PRED_GE && 1537 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1538 return true; 1539 1540 return false; 1541 } 1542 1543 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1544 std::vector<MachineOperand> &Pred) const { 1545 // Note: At the present time, the contents of Pred from this function is 1546 // unused by IfConversion. This implementation follows ARM by pushing the 1547 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1548 // predicate, instructions defining CTR or CTR8 are also included as 1549 // predicate-defining instructions. 1550 1551 const TargetRegisterClass *RCs[] = 1552 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1553 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1554 1555 bool Found = false; 1556 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1557 const MachineOperand &MO = MI.getOperand(i); 1558 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1559 const TargetRegisterClass *RC = RCs[c]; 1560 if (MO.isReg()) { 1561 if (MO.isDef() && RC->contains(MO.getReg())) { 1562 Pred.push_back(MO); 1563 Found = true; 1564 } 1565 } else if (MO.isRegMask()) { 1566 for (TargetRegisterClass::iterator I = RC->begin(), 1567 IE = RC->end(); I != IE; ++I) 1568 if (MO.clobbersPhysReg(*I)) { 1569 Pred.push_back(MO); 1570 Found = true; 1571 } 1572 } 1573 } 1574 } 1575 1576 return Found; 1577 } 1578 1579 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const { 1580 unsigned OpC = MI.getOpcode(); 1581 switch (OpC) { 1582 default: 1583 return false; 1584 case PPC::B: 1585 case PPC::BLR: 1586 case PPC::BLR8: 1587 case PPC::BCTR: 1588 case PPC::BCTR8: 1589 case PPC::BCTRL: 1590 case PPC::BCTRL8: 1591 return true; 1592 } 1593 } 1594 1595 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 1596 unsigned &SrcReg2, int &Mask, 1597 int &Value) const { 1598 unsigned Opc = MI.getOpcode(); 1599 1600 switch (Opc) { 1601 default: return false; 1602 case PPC::CMPWI: 1603 case PPC::CMPLWI: 1604 case PPC::CMPDI: 1605 case PPC::CMPLDI: 1606 SrcReg = MI.getOperand(1).getReg(); 1607 SrcReg2 = 0; 1608 Value = MI.getOperand(2).getImm(); 1609 Mask = 0xFFFF; 1610 return true; 1611 case PPC::CMPW: 1612 case PPC::CMPLW: 1613 case PPC::CMPD: 1614 case PPC::CMPLD: 1615 case PPC::FCMPUS: 1616 case PPC::FCMPUD: 1617 SrcReg = MI.getOperand(1).getReg(); 1618 SrcReg2 = MI.getOperand(2).getReg(); 1619 Value = 0; 1620 Mask = 0; 1621 return true; 1622 } 1623 } 1624 1625 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, 1626 unsigned SrcReg2, int Mask, int Value, 1627 const MachineRegisterInfo *MRI) const { 1628 if (DisableCmpOpt) 1629 return false; 1630 1631 int OpC = CmpInstr.getOpcode(); 1632 unsigned CRReg = CmpInstr.getOperand(0).getReg(); 1633 1634 // FP record forms set CR1 based on the exception status bits, not a 1635 // comparison with zero. 1636 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1637 return false; 1638 1639 // The record forms set the condition register based on a signed comparison 1640 // with zero (so says the ISA manual). This is not as straightforward as it 1641 // seems, however, because this is always a 64-bit comparison on PPC64, even 1642 // for instructions that are 32-bit in nature (like slw for example). 1643 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1644 // for equality checks (as those don't depend on the sign). On PPC64, 1645 // we are restricted to equality for unsigned 64-bit comparisons and for 1646 // signed 32-bit comparisons the applicability is more restricted. 1647 bool isPPC64 = Subtarget.isPPC64(); 1648 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1649 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1650 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1651 1652 // Get the unique definition of SrcReg. 1653 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1654 if (!MI) return false; 1655 1656 bool equalityOnly = false; 1657 bool noSub = false; 1658 if (isPPC64) { 1659 if (is32BitSignedCompare) { 1660 // We can perform this optimization only if MI is sign-extending. 1661 if (isSignExtended(*MI)) 1662 noSub = true; 1663 else 1664 return false; 1665 } else if (is32BitUnsignedCompare) { 1666 // We can perform this optimization, equality only, if MI is 1667 // zero-extending. 1668 if (isZeroExtended(*MI)) { 1669 noSub = true; 1670 equalityOnly = true; 1671 } else 1672 return false; 1673 } else 1674 equalityOnly = is64BitUnsignedCompare; 1675 } else 1676 equalityOnly = is32BitUnsignedCompare; 1677 1678 if (equalityOnly) { 1679 // We need to check the uses of the condition register in order to reject 1680 // non-equality comparisons. 1681 for (MachineRegisterInfo::use_instr_iterator 1682 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1683 I != IE; ++I) { 1684 MachineInstr *UseMI = &*I; 1685 if (UseMI->getOpcode() == PPC::BCC) { 1686 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1687 unsigned PredCond = PPC::getPredicateCondition(Pred); 1688 // We ignore hint bits when checking for non-equality comparisons. 1689 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1690 return false; 1691 } else if (UseMI->getOpcode() == PPC::ISEL || 1692 UseMI->getOpcode() == PPC::ISEL8) { 1693 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1694 if (SubIdx != PPC::sub_eq) 1695 return false; 1696 } else 1697 return false; 1698 } 1699 } 1700 1701 MachineBasicBlock::iterator I = CmpInstr; 1702 1703 // Scan forward to find the first use of the compare. 1704 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1705 ++I) { 1706 bool FoundUse = false; 1707 for (MachineRegisterInfo::use_instr_iterator 1708 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 1709 J != JE; ++J) 1710 if (&*J == &*I) { 1711 FoundUse = true; 1712 break; 1713 } 1714 1715 if (FoundUse) 1716 break; 1717 } 1718 1719 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1720 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1721 1722 // There are two possible candidates which can be changed to set CR[01]. 1723 // One is MI, the other is a SUB instruction. 1724 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1725 MachineInstr *Sub = nullptr; 1726 if (SrcReg2 != 0) 1727 // MI is not a candidate for CMPrr. 1728 MI = nullptr; 1729 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1730 // same BB as the comparison. This is to allow the check below to avoid calls 1731 // (and other explicit clobbers); instead we should really check for these 1732 // more explicitly (in at least a few predecessors). 1733 else if (MI->getParent() != CmpInstr.getParent()) 1734 return false; 1735 else if (Value != 0) { 1736 // The record-form instructions set CR bit based on signed comparison 1737 // against 0. We try to convert a compare against 1 or -1 into a compare 1738 // against 0 to exploit record-form instructions. For example, we change 1739 // the condition "greater than -1" into "greater than or equal to 0" 1740 // and "less than 1" into "less than or equal to 0". 1741 1742 // Since we optimize comparison based on a specific branch condition, 1743 // we don't optimize if condition code is used by more than once. 1744 if (equalityOnly || !MRI->hasOneUse(CRReg)) 1745 return false; 1746 1747 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 1748 if (UseMI->getOpcode() != PPC::BCC) 1749 return false; 1750 1751 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1752 PPC::Predicate NewPred = Pred; 1753 unsigned PredCond = PPC::getPredicateCondition(Pred); 1754 unsigned PredHint = PPC::getPredicateHint(Pred); 1755 int16_t Immed = (int16_t)Value; 1756 1757 // When modifying the condition in the predicate, we propagate hint bits 1758 // from the original predicate to the new one. 1759 if (Immed == -1 && PredCond == PPC::PRED_GT) 1760 // We convert "greater than -1" into "greater than or equal to 0", 1761 // since we are assuming signed comparison by !equalityOnly 1762 NewPred = PPC::getPredicate(PPC::PRED_GE, PredHint); 1763 else if (Immed == -1 && PredCond == PPC::PRED_LE) 1764 // We convert "less than or equal to -1" into "less than 0". 1765 NewPred = PPC::getPredicate(PPC::PRED_LT, PredHint); 1766 else if (Immed == 1 && PredCond == PPC::PRED_LT) 1767 // We convert "less than 1" into "less than or equal to 0". 1768 NewPred = PPC::getPredicate(PPC::PRED_LE, PredHint); 1769 else if (Immed == 1 && PredCond == PPC::PRED_GE) 1770 // We convert "greater than or equal to 1" into "greater than 0". 1771 NewPred = PPC::getPredicate(PPC::PRED_GT, PredHint); 1772 else 1773 return false; 1774 1775 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1776 NewPred)); 1777 } 1778 1779 // Search for Sub. 1780 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1781 --I; 1782 1783 // Get ready to iterate backward from CmpInstr. 1784 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 1785 1786 for (; I != E && !noSub; --I) { 1787 const MachineInstr &Instr = *I; 1788 unsigned IOpC = Instr.getOpcode(); 1789 1790 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 1791 Instr.readsRegister(PPC::CR0, TRI))) 1792 // This instruction modifies or uses the record condition register after 1793 // the one we want to change. While we could do this transformation, it 1794 // would likely not be profitable. This transformation removes one 1795 // instruction, and so even forcing RA to generate one move probably 1796 // makes it unprofitable. 1797 return false; 1798 1799 // Check whether CmpInstr can be made redundant by the current instruction. 1800 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1801 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1802 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1803 ((Instr.getOperand(1).getReg() == SrcReg && 1804 Instr.getOperand(2).getReg() == SrcReg2) || 1805 (Instr.getOperand(1).getReg() == SrcReg2 && 1806 Instr.getOperand(2).getReg() == SrcReg))) { 1807 Sub = &*I; 1808 break; 1809 } 1810 1811 if (I == B) 1812 // The 'and' is below the comparison instruction. 1813 return false; 1814 } 1815 1816 // Return false if no candidates exist. 1817 if (!MI && !Sub) 1818 return false; 1819 1820 // The single candidate is called MI. 1821 if (!MI) MI = Sub; 1822 1823 int NewOpC = -1; 1824 int MIOpC = MI->getOpcode(); 1825 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 || 1826 MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8) 1827 NewOpC = MIOpC; 1828 else { 1829 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1830 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1831 NewOpC = MIOpC; 1832 } 1833 1834 // FIXME: On the non-embedded POWER architectures, only some of the record 1835 // forms are fast, and we should use only the fast ones. 1836 1837 // The defining instruction has a record form (or is already a record 1838 // form). It is possible, however, that we'll need to reverse the condition 1839 // code of the users. 1840 if (NewOpC == -1) 1841 return false; 1842 1843 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1844 // needs to be updated to be based on SUB. Push the condition code 1845 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1846 // condition code of these operands will be modified. 1847 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 1848 // comparison against 0, which may modify predicate. 1849 bool ShouldSwap = false; 1850 if (Sub && Value == 0) { 1851 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1852 Sub->getOperand(2).getReg() == SrcReg; 1853 1854 // The operands to subf are the opposite of sub, so only in the fixed-point 1855 // case, invert the order. 1856 ShouldSwap = !ShouldSwap; 1857 } 1858 1859 if (ShouldSwap) 1860 for (MachineRegisterInfo::use_instr_iterator 1861 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1862 I != IE; ++I) { 1863 MachineInstr *UseMI = &*I; 1864 if (UseMI->getOpcode() == PPC::BCC) { 1865 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1866 unsigned PredCond = PPC::getPredicateCondition(Pred); 1867 assert((!equalityOnly || 1868 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 1869 "Invalid predicate for equality-only optimization"); 1870 (void)PredCond; // To suppress warning in release build. 1871 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1872 PPC::getSwappedPredicate(Pred))); 1873 } else if (UseMI->getOpcode() == PPC::ISEL || 1874 UseMI->getOpcode() == PPC::ISEL8) { 1875 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1876 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1877 "Invalid CR bit for equality-only optimization"); 1878 1879 if (NewSubReg == PPC::sub_lt) 1880 NewSubReg = PPC::sub_gt; 1881 else if (NewSubReg == PPC::sub_gt) 1882 NewSubReg = PPC::sub_lt; 1883 1884 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1885 NewSubReg)); 1886 } else // We need to abort on a user we don't understand. 1887 return false; 1888 } 1889 assert(!(Value != 0 && ShouldSwap) && 1890 "Non-zero immediate support and ShouldSwap" 1891 "may conflict in updating predicate"); 1892 1893 // Create a new virtual register to hold the value of the CR set by the 1894 // record-form instruction. If the instruction was not previously in 1895 // record form, then set the kill flag on the CR. 1896 CmpInstr.eraseFromParent(); 1897 1898 MachineBasicBlock::iterator MII = MI; 1899 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1900 get(TargetOpcode::COPY), CRReg) 1901 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1902 1903 // Even if CR0 register were dead before, it is alive now since the 1904 // instruction we just built uses it. 1905 MI->clearRegisterDeads(PPC::CR0); 1906 1907 if (MIOpC != NewOpC) { 1908 // We need to be careful here: we're replacing one instruction with 1909 // another, and we need to make sure that we get all of the right 1910 // implicit uses and defs. On the other hand, the caller may be holding 1911 // an iterator to this instruction, and so we can't delete it (this is 1912 // specifically the case if this is the instruction directly after the 1913 // compare). 1914 1915 // Rotates are expensive instructions. If we're emitting a record-form 1916 // rotate that can just be an andi/andis, we should just emit that. 1917 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 1918 unsigned GPRRes = MI->getOperand(0).getReg(); 1919 int64_t SH = MI->getOperand(2).getImm(); 1920 int64_t MB = MI->getOperand(3).getImm(); 1921 int64_t ME = MI->getOperand(4).getImm(); 1922 // We can only do this if both the start and end of the mask are in the 1923 // same halfword. 1924 bool MBInLoHWord = MB >= 16; 1925 bool MEInLoHWord = ME >= 16; 1926 uint64_t Mask = ~0LLU; 1927 1928 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 1929 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 1930 // The mask value needs to shift right 16 if we're emitting andis. 1931 Mask >>= MBInLoHWord ? 0 : 16; 1932 NewOpC = MIOpC == PPC::RLWINM ? 1933 (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) : 1934 (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8); 1935 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 1936 (ME - MB + 1 == SH) && (MB >= 16)) { 1937 // If we are rotating by the exact number of bits as are in the mask 1938 // and the mask is in the least significant bits of the register, 1939 // that's just an andis. (as long as the GPR result has no uses). 1940 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 1941 Mask >>= 16; 1942 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8; 1943 } 1944 // If we've set the mask, we can transform. 1945 if (Mask != ~0LLU) { 1946 MI->RemoveOperand(4); 1947 MI->RemoveOperand(3); 1948 MI->getOperand(2).setImm(Mask); 1949 NumRcRotatesConvertedToRcAnd++; 1950 } 1951 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 1952 int64_t MB = MI->getOperand(3).getImm(); 1953 if (MB >= 48) { 1954 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 1955 NewOpC = PPC::ANDIo8; 1956 MI->RemoveOperand(3); 1957 MI->getOperand(2).setImm(Mask); 1958 NumRcRotatesConvertedToRcAnd++; 1959 } 1960 } 1961 1962 const MCInstrDesc &NewDesc = get(NewOpC); 1963 MI->setDesc(NewDesc); 1964 1965 if (NewDesc.ImplicitDefs) 1966 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 1967 *ImpDefs; ++ImpDefs) 1968 if (!MI->definesRegister(*ImpDefs)) 1969 MI->addOperand(*MI->getParent()->getParent(), 1970 MachineOperand::CreateReg(*ImpDefs, true, true)); 1971 if (NewDesc.ImplicitUses) 1972 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 1973 *ImpUses; ++ImpUses) 1974 if (!MI->readsRegister(*ImpUses)) 1975 MI->addOperand(*MI->getParent()->getParent(), 1976 MachineOperand::CreateReg(*ImpUses, false, true)); 1977 } 1978 assert(MI->definesRegister(PPC::CR0) && 1979 "Record-form instruction does not define cr0?"); 1980 1981 // Modify the condition code of operands in OperandsToUpdate. 1982 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1983 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1984 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1985 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1986 1987 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1988 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1989 1990 return true; 1991 } 1992 1993 /// GetInstSize - Return the number of bytes of code the specified 1994 /// instruction may be. This returns the maximum number of bytes. 1995 /// 1996 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 1997 unsigned Opcode = MI.getOpcode(); 1998 1999 if (Opcode == PPC::INLINEASM) { 2000 const MachineFunction *MF = MI.getParent()->getParent(); 2001 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2002 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2003 } else if (Opcode == TargetOpcode::STACKMAP) { 2004 StackMapOpers Opers(&MI); 2005 return Opers.getNumPatchBytes(); 2006 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2007 PatchPointOpers Opers(&MI); 2008 return Opers.getNumPatchBytes(); 2009 } else { 2010 return get(Opcode).getSize(); 2011 } 2012 } 2013 2014 std::pair<unsigned, unsigned> 2015 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2016 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2017 return std::make_pair(TF & Mask, TF & ~Mask); 2018 } 2019 2020 ArrayRef<std::pair<unsigned, const char *>> 2021 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2022 using namespace PPCII; 2023 static const std::pair<unsigned, const char *> TargetFlags[] = { 2024 {MO_LO, "ppc-lo"}, 2025 {MO_HA, "ppc-ha"}, 2026 {MO_TPREL_LO, "ppc-tprel-lo"}, 2027 {MO_TPREL_HA, "ppc-tprel-ha"}, 2028 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2029 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2030 {MO_TOC_LO, "ppc-toc-lo"}, 2031 {MO_TLS, "ppc-tls"}}; 2032 return makeArrayRef(TargetFlags); 2033 } 2034 2035 ArrayRef<std::pair<unsigned, const char *>> 2036 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2037 using namespace PPCII; 2038 static const std::pair<unsigned, const char *> TargetFlags[] = { 2039 {MO_PLT, "ppc-plt"}, 2040 {MO_PIC_FLAG, "ppc-pic"}, 2041 {MO_NLP_FLAG, "ppc-nlp"}, 2042 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}}; 2043 return makeArrayRef(TargetFlags); 2044 } 2045 2046 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2047 // The VSX versions have the advantage of a full 64-register target whereas 2048 // the FP ones have the advantage of lower latency and higher throughput. So 2049 // what we are after is using the faster instructions in low register pressure 2050 // situations and using the larger register file in high register pressure 2051 // situations. 2052 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2053 unsigned UpperOpcode, LowerOpcode; 2054 switch (MI.getOpcode()) { 2055 case PPC::DFLOADf32: 2056 UpperOpcode = PPC::LXSSP; 2057 LowerOpcode = PPC::LFS; 2058 break; 2059 case PPC::DFLOADf64: 2060 UpperOpcode = PPC::LXSD; 2061 LowerOpcode = PPC::LFD; 2062 break; 2063 case PPC::DFSTOREf32: 2064 UpperOpcode = PPC::STXSSP; 2065 LowerOpcode = PPC::STFS; 2066 break; 2067 case PPC::DFSTOREf64: 2068 UpperOpcode = PPC::STXSD; 2069 LowerOpcode = PPC::STFD; 2070 break; 2071 case PPC::XFLOADf32: 2072 UpperOpcode = PPC::LXSSPX; 2073 LowerOpcode = PPC::LFSX; 2074 break; 2075 case PPC::XFLOADf64: 2076 UpperOpcode = PPC::LXSDX; 2077 LowerOpcode = PPC::LFDX; 2078 break; 2079 case PPC::XFSTOREf32: 2080 UpperOpcode = PPC::STXSSPX; 2081 LowerOpcode = PPC::STFSX; 2082 break; 2083 case PPC::XFSTOREf64: 2084 UpperOpcode = PPC::STXSDX; 2085 LowerOpcode = PPC::STFDX; 2086 break; 2087 case PPC::LIWAX: 2088 UpperOpcode = PPC::LXSIWAX; 2089 LowerOpcode = PPC::LFIWAX; 2090 break; 2091 case PPC::LIWZX: 2092 UpperOpcode = PPC::LXSIWZX; 2093 LowerOpcode = PPC::LFIWZX; 2094 break; 2095 case PPC::STIWX: 2096 UpperOpcode = PPC::STXSIWX; 2097 LowerOpcode = PPC::STFIWX; 2098 break; 2099 default: 2100 llvm_unreachable("Unknown Operation!"); 2101 } 2102 2103 unsigned TargetReg = MI.getOperand(0).getReg(); 2104 unsigned Opcode; 2105 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2106 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2107 Opcode = LowerOpcode; 2108 else 2109 Opcode = UpperOpcode; 2110 MI.setDesc(get(Opcode)); 2111 return true; 2112 } 2113 2114 static bool isAnImmediateOperand(const MachineOperand &MO) { 2115 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2116 } 2117 2118 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2119 auto &MBB = *MI.getParent(); 2120 auto DL = MI.getDebugLoc(); 2121 2122 switch (MI.getOpcode()) { 2123 case TargetOpcode::LOAD_STACK_GUARD: { 2124 assert(Subtarget.isTargetLinux() && 2125 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 2126 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 2127 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 2128 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 2129 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2130 .addImm(Offset) 2131 .addReg(Reg); 2132 return true; 2133 } 2134 case PPC::DFLOADf32: 2135 case PPC::DFLOADf64: 2136 case PPC::DFSTOREf32: 2137 case PPC::DFSTOREf64: { 2138 assert(Subtarget.hasP9Vector() && 2139 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 2140 assert(MI.getOperand(2).isReg() && 2141 isAnImmediateOperand(MI.getOperand(1)) && 2142 "D-form op must have register and immediate operands"); 2143 return expandVSXMemPseudo(MI); 2144 } 2145 case PPC::XFLOADf32: 2146 case PPC::XFSTOREf32: 2147 case PPC::LIWAX: 2148 case PPC::LIWZX: 2149 case PPC::STIWX: { 2150 assert(Subtarget.hasP8Vector() && 2151 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 2152 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2153 "X-form op must have register and register operands"); 2154 return expandVSXMemPseudo(MI); 2155 } 2156 case PPC::XFLOADf64: 2157 case PPC::XFSTOREf64: { 2158 assert(Subtarget.hasVSX() && 2159 "Invalid X-Form Pseudo-ops on target that has no VSX."); 2160 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2161 "X-form op must have register and register operands"); 2162 return expandVSXMemPseudo(MI); 2163 } 2164 case PPC::SPILLTOVSR_LD: { 2165 unsigned TargetReg = MI.getOperand(0).getReg(); 2166 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2167 MI.setDesc(get(PPC::DFLOADf64)); 2168 return expandPostRAPseudo(MI); 2169 } 2170 else 2171 MI.setDesc(get(PPC::LD)); 2172 return true; 2173 } 2174 case PPC::SPILLTOVSR_ST: { 2175 unsigned SrcReg = MI.getOperand(0).getReg(); 2176 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2177 NumStoreSPILLVSRRCAsVec++; 2178 MI.setDesc(get(PPC::DFSTOREf64)); 2179 return expandPostRAPseudo(MI); 2180 } else { 2181 NumStoreSPILLVSRRCAsGpr++; 2182 MI.setDesc(get(PPC::STD)); 2183 } 2184 return true; 2185 } 2186 case PPC::SPILLTOVSR_LDX: { 2187 unsigned TargetReg = MI.getOperand(0).getReg(); 2188 if (PPC::VSFRCRegClass.contains(TargetReg)) 2189 MI.setDesc(get(PPC::LXSDX)); 2190 else 2191 MI.setDesc(get(PPC::LDX)); 2192 return true; 2193 } 2194 case PPC::SPILLTOVSR_STX: { 2195 unsigned SrcReg = MI.getOperand(0).getReg(); 2196 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2197 NumStoreSPILLVSRRCAsVec++; 2198 MI.setDesc(get(PPC::STXSDX)); 2199 } else { 2200 NumStoreSPILLVSRRCAsGpr++; 2201 MI.setDesc(get(PPC::STDX)); 2202 } 2203 return true; 2204 } 2205 2206 case PPC::CFENCE8: { 2207 auto Val = MI.getOperand(0).getReg(); 2208 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2209 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2210 .addImm(PPC::PRED_NE_MINUS) 2211 .addReg(PPC::CR7) 2212 .addImm(1); 2213 MI.setDesc(get(PPC::ISYNC)); 2214 MI.RemoveOperand(0); 2215 return true; 2216 } 2217 } 2218 return false; 2219 } 2220 2221 // Essentially a compile-time implementation of a compare->isel sequence. 2222 // It takes two constants to compare, along with the true/false registers 2223 // and the comparison type (as a subreg to a CR field) and returns one 2224 // of the true/false registers, depending on the comparison results. 2225 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 2226 unsigned TrueReg, unsigned FalseReg, 2227 unsigned CRSubReg) { 2228 // Signed comparisons. The immediates are assumed to be sign-extended. 2229 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 2230 switch (CRSubReg) { 2231 default: llvm_unreachable("Unknown integer comparison type."); 2232 case PPC::sub_lt: 2233 return Imm1 < Imm2 ? TrueReg : FalseReg; 2234 case PPC::sub_gt: 2235 return Imm1 > Imm2 ? TrueReg : FalseReg; 2236 case PPC::sub_eq: 2237 return Imm1 == Imm2 ? TrueReg : FalseReg; 2238 } 2239 } 2240 // Unsigned comparisons. 2241 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 2242 switch (CRSubReg) { 2243 default: llvm_unreachable("Unknown integer comparison type."); 2244 case PPC::sub_lt: 2245 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 2246 case PPC::sub_gt: 2247 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 2248 case PPC::sub_eq: 2249 return Imm1 == Imm2 ? TrueReg : FalseReg; 2250 } 2251 } 2252 return PPC::NoRegister; 2253 } 2254 2255 // Replace an instruction with one that materializes a constant (and sets 2256 // CR0 if the original instruction was a record-form instruction). 2257 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 2258 const LoadImmediateInfo &LII) const { 2259 // Remove existing operands. 2260 int OperandToKeep = LII.SetCR ? 1 : 0; 2261 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 2262 MI.RemoveOperand(i); 2263 2264 // Replace the instruction. 2265 if (LII.SetCR) { 2266 MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo)); 2267 // Set the immediate. 2268 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2269 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 2270 return; 2271 } 2272 else 2273 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 2274 2275 // Set the immediate. 2276 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2277 .addImm(LII.Imm); 2278 } 2279 2280 MachineInstr *PPCInstrInfo::getForwardingDefMI( 2281 MachineInstr &MI, 2282 unsigned &OpNoForForwarding, 2283 bool &SeenIntermediateUse) const { 2284 OpNoForForwarding = ~0U; 2285 MachineInstr *DefMI = nullptr; 2286 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 2287 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2288 // If we're in SSA, get the defs through the MRI. Otherwise, only look 2289 // within the basic block to see if the register is defined using an LI/LI8. 2290 if (MRI->isSSA()) { 2291 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2292 if (!MI.getOperand(i).isReg()) 2293 continue; 2294 unsigned Reg = MI.getOperand(i).getReg(); 2295 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 2296 continue; 2297 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 2298 if (TargetRegisterInfo::isVirtualRegister(TrueReg)) { 2299 DefMI = MRI->getVRegDef(TrueReg); 2300 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) { 2301 OpNoForForwarding = i; 2302 break; 2303 } 2304 } 2305 } 2306 } else { 2307 // Looking back through the definition for each operand could be expensive, 2308 // so exit early if this isn't an instruction that either has an immediate 2309 // form or is already an immediate form that we can handle. 2310 ImmInstrInfo III; 2311 unsigned Opc = MI.getOpcode(); 2312 bool ConvertibleImmForm = 2313 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || 2314 Opc == PPC::CMPDI || Opc == PPC::CMPLDI || 2315 Opc == PPC::ADDI || Opc == PPC::ADDI8 || 2316 Opc == PPC::ORI || Opc == PPC::ORI8 || 2317 Opc == PPC::XORI || Opc == PPC::XORI8 || 2318 Opc == PPC::RLDICL || Opc == PPC::RLDICLo || 2319 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 2320 Opc == PPC::RLWINM || Opc == PPC::RLWINMo || 2321 Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o; 2322 if (!instrHasImmForm(MI, III) && !ConvertibleImmForm) 2323 return nullptr; 2324 2325 // Don't convert or %X, %Y, %Y since that's just a register move. 2326 if ((Opc == PPC::OR || Opc == PPC::OR8) && 2327 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 2328 return nullptr; 2329 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2330 MachineOperand &MO = MI.getOperand(i); 2331 SeenIntermediateUse = false; 2332 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 2333 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 2334 It++; 2335 unsigned Reg = MI.getOperand(i).getReg(); 2336 // MachineInstr::readsRegister only returns true if the machine 2337 // instruction reads the exact register or its super-register. It 2338 // does not consider uses of sub-registers which seems like strange 2339 // behaviour. Nonetheless, if we end up with a 64-bit register here, 2340 // get the corresponding 32-bit register to check. 2341 if (PPC::G8RCRegClass.contains(Reg)) 2342 Reg = Reg - PPC::X0 + PPC::R0; 2343 2344 // Is this register defined by some form of add-immediate (including 2345 // load-immediate) within this basic block? 2346 for ( ; It != E; ++It) { 2347 if (It->modifiesRegister(Reg, &getRegisterInfo())) { 2348 switch (It->getOpcode()) { 2349 default: break; 2350 case PPC::LI: 2351 case PPC::LI8: 2352 case PPC::ADDItocL: 2353 case PPC::ADDI: 2354 case PPC::ADDI8: 2355 OpNoForForwarding = i; 2356 return &*It; 2357 } 2358 break; 2359 } else if (It->readsRegister(Reg, &getRegisterInfo())) 2360 // If we see another use of this reg between the def and the MI, 2361 // we want to flat it so the def isn't deleted. 2362 SeenIntermediateUse = true; 2363 } 2364 } 2365 } 2366 } 2367 return OpNoForForwarding == ~0U ? nullptr : DefMI; 2368 } 2369 2370 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 2371 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2372 // Power 8 2373 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2374 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, 2375 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2376 PPC::SPILLTOVSR_ST, PPC::EVSTDD, PPC::SPESTW}, 2377 // Power 9 2378 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2379 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, 2380 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2381 PPC::SPILLTOVSR_ST}}; 2382 2383 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2384 } 2385 2386 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 2387 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2388 // Power 8 2389 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2390 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX, 2391 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2392 PPC::SPILLTOVSR_LD, PPC::EVLDD, PPC::SPELWZ}, 2393 // Power 9 2394 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2395 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32, 2396 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2397 PPC::SPILLTOVSR_LD}}; 2398 2399 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2400 } 2401 2402 // If this instruction has an immediate form and one of its operands is a 2403 // result of a load-immediate or an add-immediate, convert it to 2404 // the immediate form if the constant is in range. 2405 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 2406 MachineInstr **KilledDef) const { 2407 MachineFunction *MF = MI.getParent()->getParent(); 2408 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2409 bool PostRA = !MRI->isSSA(); 2410 bool SeenIntermediateUse = true; 2411 unsigned ForwardingOperand = ~0U; 2412 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 2413 SeenIntermediateUse); 2414 if (!DefMI) 2415 return false; 2416 assert(ForwardingOperand < MI.getNumOperands() && 2417 "The forwarding operand needs to be valid at this point"); 2418 bool KillFwdDefMI = !SeenIntermediateUse && 2419 MI.getOperand(ForwardingOperand).isKill(); 2420 if (KilledDef && KillFwdDefMI) 2421 *KilledDef = DefMI; 2422 2423 ImmInstrInfo III; 2424 bool HasImmForm = instrHasImmForm(MI, III); 2425 // If this is a reg+reg instruction that has a reg+imm form, 2426 // and one of the operands is produced by an add-immediate, 2427 // try to convert it. 2428 if (HasImmForm && transformToImmFormFedByAdd(MI, III, ForwardingOperand, 2429 *DefMI, KillFwdDefMI)) 2430 return true; 2431 2432 if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) || 2433 !DefMI->getOperand(1).isImm()) 2434 return false; 2435 2436 int64_t Immediate = DefMI->getOperand(1).getImm(); 2437 // Sign-extend to 64-bits. 2438 int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 2439 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 2440 2441 // If this is a reg+reg instruction that has a reg+imm form, 2442 // and one of the operands is produced by LI, convert it now. 2443 if (HasImmForm) 2444 return transformToImmFormFedByLI(MI, III, ForwardingOperand, SExtImm); 2445 2446 bool ReplaceWithLI = false; 2447 bool Is64BitLI = false; 2448 int64_t NewImm = 0; 2449 bool SetCR = false; 2450 unsigned Opc = MI.getOpcode(); 2451 switch (Opc) { 2452 default: return false; 2453 2454 // FIXME: Any branches conditional on such a comparison can be made 2455 // unconditional. At this time, this happens too infrequently to be worth 2456 // the implementation effort, but if that ever changes, we could convert 2457 // such a pattern here. 2458 case PPC::CMPWI: 2459 case PPC::CMPLWI: 2460 case PPC::CMPDI: 2461 case PPC::CMPLDI: { 2462 // Doing this post-RA would require dataflow analysis to reliably find uses 2463 // of the CR register set by the compare. 2464 if (PostRA) 2465 return false; 2466 // If a compare-immediate is fed by an immediate and is itself an input of 2467 // an ISEL (the most common case) into a COPY of the correct register. 2468 bool Changed = false; 2469 unsigned DefReg = MI.getOperand(0).getReg(); 2470 int64_t Comparand = MI.getOperand(2).getImm(); 2471 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ? 2472 (Comparand | 0xFFFFFFFFFFFF0000) : Comparand; 2473 2474 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 2475 unsigned UseOpc = CompareUseMI.getOpcode(); 2476 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 2477 continue; 2478 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 2479 unsigned TrueReg = CompareUseMI.getOperand(1).getReg(); 2480 unsigned FalseReg = CompareUseMI.getOperand(2).getReg(); 2481 unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg, 2482 FalseReg, CRSubReg); 2483 if (RegToCopy == PPC::NoRegister) 2484 continue; 2485 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 2486 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 2487 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 2488 CompareUseMI.getOperand(1).ChangeToImmediate(0); 2489 CompareUseMI.RemoveOperand(3); 2490 CompareUseMI.RemoveOperand(2); 2491 continue; 2492 } 2493 LLVM_DEBUG( 2494 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 2495 LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump()); 2496 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 2497 // Convert to copy and remove unneeded operands. 2498 CompareUseMI.setDesc(get(PPC::COPY)); 2499 CompareUseMI.RemoveOperand(3); 2500 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 2501 CmpIselsConverted++; 2502 Changed = true; 2503 LLVM_DEBUG(CompareUseMI.dump()); 2504 } 2505 if (Changed) 2506 return true; 2507 // This may end up incremented multiple times since this function is called 2508 // during a fixed-point transformation, but it is only meant to indicate the 2509 // presence of this opportunity. 2510 MissedConvertibleImmediateInstrs++; 2511 return false; 2512 } 2513 2514 // Immediate forms - may simply be convertable to an LI. 2515 case PPC::ADDI: 2516 case PPC::ADDI8: { 2517 // Does the sum fit in a 16-bit signed field? 2518 int64_t Addend = MI.getOperand(2).getImm(); 2519 if (isInt<16>(Addend + SExtImm)) { 2520 ReplaceWithLI = true; 2521 Is64BitLI = Opc == PPC::ADDI8; 2522 NewImm = Addend + SExtImm; 2523 break; 2524 } 2525 return false; 2526 } 2527 case PPC::RLDICL: 2528 case PPC::RLDICLo: 2529 case PPC::RLDICL_32: 2530 case PPC::RLDICL_32_64: { 2531 // Use APInt's rotate function. 2532 int64_t SH = MI.getOperand(2).getImm(); 2533 int64_t MB = MI.getOperand(3).getImm(); 2534 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ? 2535 64 : 32, SExtImm, true); 2536 InVal = InVal.rotl(SH); 2537 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2538 InVal &= Mask; 2539 // Can't replace negative values with an LI as that will sign-extend 2540 // and not clear the left bits. If we're setting the CR bit, we will use 2541 // ANDIo which won't sign extend, so that's safe. 2542 if (isUInt<15>(InVal.getSExtValue()) || 2543 (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) { 2544 ReplaceWithLI = true; 2545 Is64BitLI = Opc != PPC::RLDICL_32; 2546 NewImm = InVal.getSExtValue(); 2547 SetCR = Opc == PPC::RLDICLo; 2548 break; 2549 } 2550 return false; 2551 } 2552 case PPC::RLWINM: 2553 case PPC::RLWINM8: 2554 case PPC::RLWINMo: 2555 case PPC::RLWINM8o: { 2556 int64_t SH = MI.getOperand(2).getImm(); 2557 int64_t MB = MI.getOperand(3).getImm(); 2558 int64_t ME = MI.getOperand(4).getImm(); 2559 APInt InVal(32, SExtImm, true); 2560 InVal = InVal.rotl(SH); 2561 // Set the bits ( MB + 32 ) to ( ME + 32 ). 2562 uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2563 InVal &= Mask; 2564 // Can't replace negative values with an LI as that will sign-extend 2565 // and not clear the left bits. If we're setting the CR bit, we will use 2566 // ANDIo which won't sign extend, so that's safe. 2567 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 2568 ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) && 2569 isUInt<16>(InVal.getSExtValue())); 2570 if (ValueFits) { 2571 ReplaceWithLI = true; 2572 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o; 2573 NewImm = InVal.getSExtValue(); 2574 SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o; 2575 break; 2576 } 2577 return false; 2578 } 2579 case PPC::ORI: 2580 case PPC::ORI8: 2581 case PPC::XORI: 2582 case PPC::XORI8: { 2583 int64_t LogicalImm = MI.getOperand(2).getImm(); 2584 int64_t Result = 0; 2585 if (Opc == PPC::ORI || Opc == PPC::ORI8) 2586 Result = LogicalImm | SExtImm; 2587 else 2588 Result = LogicalImm ^ SExtImm; 2589 if (isInt<16>(Result)) { 2590 ReplaceWithLI = true; 2591 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 2592 NewImm = Result; 2593 break; 2594 } 2595 return false; 2596 } 2597 } 2598 2599 if (ReplaceWithLI) { 2600 // We need to be careful with CR-setting instructions we're replacing. 2601 if (SetCR) { 2602 // We don't know anything about uses when we're out of SSA, so only 2603 // replace if the new immediate will be reproduced. 2604 bool ImmChanged = (SExtImm & NewImm) != NewImm; 2605 if (PostRA && ImmChanged) 2606 return false; 2607 2608 if (!PostRA) { 2609 // If the defining load-immediate has no other uses, we can just replace 2610 // the immediate with the new immediate. 2611 if (MRI->hasOneUse(DefMI->getOperand(0).getReg())) 2612 DefMI->getOperand(1).setImm(NewImm); 2613 2614 // If we're not using the GPR result of the CR-setting instruction, we 2615 // just need to and with zero/non-zero depending on the new immediate. 2616 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 2617 if (NewImm) { 2618 assert(Immediate && "Transformation converted zero to non-zero?"); 2619 NewImm = Immediate; 2620 } 2621 } 2622 else if (ImmChanged) 2623 return false; 2624 } 2625 } 2626 2627 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 2628 LLVM_DEBUG(MI.dump()); 2629 LLVM_DEBUG(dbgs() << "Fed by:\n"); 2630 LLVM_DEBUG(DefMI->dump()); 2631 LoadImmediateInfo LII; 2632 LII.Imm = NewImm; 2633 LII.Is64Bit = Is64BitLI; 2634 LII.SetCR = SetCR; 2635 // If we're setting the CR, the original load-immediate must be kept (as an 2636 // operand to ANDIo/ANDI8o). 2637 if (KilledDef && SetCR) 2638 *KilledDef = nullptr; 2639 replaceInstrWithLI(MI, LII); 2640 LLVM_DEBUG(dbgs() << "With:\n"); 2641 LLVM_DEBUG(MI.dump()); 2642 return true; 2643 } 2644 return false; 2645 } 2646 2647 bool PPCInstrInfo::instrHasImmForm(const MachineInstr &MI, 2648 ImmInstrInfo &III) const { 2649 unsigned Opc = MI.getOpcode(); 2650 // The vast majority of the instructions would need their operand 2 replaced 2651 // with an immediate when switching to the reg+imm form. A marked exception 2652 // are the update form loads/stores for which a constant operand 2 would need 2653 // to turn into a displacement and move operand 1 to the operand 2 position. 2654 III.ImmOpNo = 2; 2655 III.OpNoForForwarding = 2; 2656 III.ImmWidth = 16; 2657 III.ImmMustBeMultipleOf = 1; 2658 III.TruncateImmTo = 0; 2659 III.IsSummingOperands = false; 2660 switch (Opc) { 2661 default: return false; 2662 case PPC::ADD4: 2663 case PPC::ADD8: 2664 III.SignedImm = true; 2665 III.ZeroIsSpecialOrig = 0; 2666 III.ZeroIsSpecialNew = 1; 2667 III.IsCommutative = true; 2668 III.IsSummingOperands = true; 2669 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 2670 break; 2671 case PPC::ADDC: 2672 case PPC::ADDC8: 2673 III.SignedImm = true; 2674 III.ZeroIsSpecialOrig = 0; 2675 III.ZeroIsSpecialNew = 0; 2676 III.IsCommutative = true; 2677 III.IsSummingOperands = true; 2678 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 2679 break; 2680 case PPC::ADDCo: 2681 III.SignedImm = true; 2682 III.ZeroIsSpecialOrig = 0; 2683 III.ZeroIsSpecialNew = 0; 2684 III.IsCommutative = true; 2685 III.IsSummingOperands = true; 2686 III.ImmOpcode = PPC::ADDICo; 2687 break; 2688 case PPC::SUBFC: 2689 case PPC::SUBFC8: 2690 III.SignedImm = true; 2691 III.ZeroIsSpecialOrig = 0; 2692 III.ZeroIsSpecialNew = 0; 2693 III.IsCommutative = false; 2694 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 2695 break; 2696 case PPC::CMPW: 2697 case PPC::CMPD: 2698 III.SignedImm = true; 2699 III.ZeroIsSpecialOrig = 0; 2700 III.ZeroIsSpecialNew = 0; 2701 III.IsCommutative = false; 2702 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 2703 break; 2704 case PPC::CMPLW: 2705 case PPC::CMPLD: 2706 III.SignedImm = false; 2707 III.ZeroIsSpecialOrig = 0; 2708 III.ZeroIsSpecialNew = 0; 2709 III.IsCommutative = false; 2710 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 2711 break; 2712 case PPC::ANDo: 2713 case PPC::AND8o: 2714 case PPC::OR: 2715 case PPC::OR8: 2716 case PPC::XOR: 2717 case PPC::XOR8: 2718 III.SignedImm = false; 2719 III.ZeroIsSpecialOrig = 0; 2720 III.ZeroIsSpecialNew = 0; 2721 III.IsCommutative = true; 2722 switch(Opc) { 2723 default: llvm_unreachable("Unknown opcode"); 2724 case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break; 2725 case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break; 2726 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 2727 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 2728 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 2729 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 2730 } 2731 break; 2732 case PPC::RLWNM: 2733 case PPC::RLWNM8: 2734 case PPC::RLWNMo: 2735 case PPC::RLWNM8o: 2736 case PPC::SLW: 2737 case PPC::SLW8: 2738 case PPC::SLWo: 2739 case PPC::SLW8o: 2740 case PPC::SRW: 2741 case PPC::SRW8: 2742 case PPC::SRWo: 2743 case PPC::SRW8o: 2744 case PPC::SRAW: 2745 case PPC::SRAWo: 2746 III.SignedImm = false; 2747 III.ZeroIsSpecialOrig = 0; 2748 III.ZeroIsSpecialNew = 0; 2749 III.IsCommutative = false; 2750 // This isn't actually true, but the instructions ignore any of the 2751 // upper bits, so any immediate loaded with an LI is acceptable. 2752 // This does not apply to shift right algebraic because a value 2753 // out of range will produce a -1/0. 2754 III.ImmWidth = 16; 2755 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || 2756 Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o) 2757 III.TruncateImmTo = 5; 2758 else 2759 III.TruncateImmTo = 6; 2760 switch(Opc) { 2761 default: llvm_unreachable("Unknown opcode"); 2762 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 2763 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 2764 case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break; 2765 case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break; 2766 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 2767 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 2768 case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break; 2769 case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break; 2770 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 2771 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 2772 case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break; 2773 case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break; 2774 case PPC::SRAW: 2775 III.ImmWidth = 5; 2776 III.TruncateImmTo = 0; 2777 III.ImmOpcode = PPC::SRAWI; 2778 break; 2779 case PPC::SRAWo: 2780 III.ImmWidth = 5; 2781 III.TruncateImmTo = 0; 2782 III.ImmOpcode = PPC::SRAWIo; 2783 break; 2784 } 2785 break; 2786 case PPC::RLDCL: 2787 case PPC::RLDCLo: 2788 case PPC::RLDCR: 2789 case PPC::RLDCRo: 2790 case PPC::SLD: 2791 case PPC::SLDo: 2792 case PPC::SRD: 2793 case PPC::SRDo: 2794 case PPC::SRAD: 2795 case PPC::SRADo: 2796 III.SignedImm = false; 2797 III.ZeroIsSpecialOrig = 0; 2798 III.ZeroIsSpecialNew = 0; 2799 III.IsCommutative = false; 2800 // This isn't actually true, but the instructions ignore any of the 2801 // upper bits, so any immediate loaded with an LI is acceptable. 2802 // This does not apply to shift right algebraic because a value 2803 // out of range will produce a -1/0. 2804 III.ImmWidth = 16; 2805 if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo || 2806 Opc == PPC::RLDCR || Opc == PPC::RLDCRo) 2807 III.TruncateImmTo = 6; 2808 else 2809 III.TruncateImmTo = 7; 2810 switch(Opc) { 2811 default: llvm_unreachable("Unknown opcode"); 2812 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 2813 case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break; 2814 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 2815 case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break; 2816 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 2817 case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break; 2818 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 2819 case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break; 2820 case PPC::SRAD: 2821 III.ImmWidth = 6; 2822 III.TruncateImmTo = 0; 2823 III.ImmOpcode = PPC::SRADI; 2824 break; 2825 case PPC::SRADo: 2826 III.ImmWidth = 6; 2827 III.TruncateImmTo = 0; 2828 III.ImmOpcode = PPC::SRADIo; 2829 break; 2830 } 2831 break; 2832 // Loads and stores: 2833 case PPC::LBZX: 2834 case PPC::LBZX8: 2835 case PPC::LHZX: 2836 case PPC::LHZX8: 2837 case PPC::LHAX: 2838 case PPC::LHAX8: 2839 case PPC::LWZX: 2840 case PPC::LWZX8: 2841 case PPC::LWAX: 2842 case PPC::LDX: 2843 case PPC::LFSX: 2844 case PPC::LFDX: 2845 case PPC::STBX: 2846 case PPC::STBX8: 2847 case PPC::STHX: 2848 case PPC::STHX8: 2849 case PPC::STWX: 2850 case PPC::STWX8: 2851 case PPC::STDX: 2852 case PPC::STFSX: 2853 case PPC::STFDX: 2854 III.SignedImm = true; 2855 III.ZeroIsSpecialOrig = 1; 2856 III.ZeroIsSpecialNew = 2; 2857 III.IsCommutative = true; 2858 III.IsSummingOperands = true; 2859 III.ImmOpNo = 1; 2860 III.OpNoForForwarding = 2; 2861 switch(Opc) { 2862 default: llvm_unreachable("Unknown opcode"); 2863 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 2864 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 2865 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 2866 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 2867 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 2868 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 2869 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 2870 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 2871 case PPC::LWAX: 2872 III.ImmOpcode = PPC::LWA; 2873 III.ImmMustBeMultipleOf = 4; 2874 break; 2875 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 2876 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 2877 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 2878 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 2879 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 2880 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 2881 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 2882 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 2883 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 2884 case PPC::STDX: 2885 III.ImmOpcode = PPC::STD; 2886 III.ImmMustBeMultipleOf = 4; 2887 break; 2888 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 2889 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 2890 } 2891 break; 2892 case PPC::LBZUX: 2893 case PPC::LBZUX8: 2894 case PPC::LHZUX: 2895 case PPC::LHZUX8: 2896 case PPC::LHAUX: 2897 case PPC::LHAUX8: 2898 case PPC::LWZUX: 2899 case PPC::LWZUX8: 2900 case PPC::LDUX: 2901 case PPC::LFSUX: 2902 case PPC::LFDUX: 2903 case PPC::STBUX: 2904 case PPC::STBUX8: 2905 case PPC::STHUX: 2906 case PPC::STHUX8: 2907 case PPC::STWUX: 2908 case PPC::STWUX8: 2909 case PPC::STDUX: 2910 case PPC::STFSUX: 2911 case PPC::STFDUX: 2912 III.SignedImm = true; 2913 III.ZeroIsSpecialOrig = 2; 2914 III.ZeroIsSpecialNew = 3; 2915 III.IsCommutative = false; 2916 III.IsSummingOperands = true; 2917 III.ImmOpNo = 2; 2918 III.OpNoForForwarding = 3; 2919 switch(Opc) { 2920 default: llvm_unreachable("Unknown opcode"); 2921 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 2922 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 2923 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 2924 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 2925 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 2926 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 2927 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 2928 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 2929 case PPC::LDUX: 2930 III.ImmOpcode = PPC::LDU; 2931 III.ImmMustBeMultipleOf = 4; 2932 break; 2933 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 2934 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 2935 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 2936 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 2937 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 2938 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 2939 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 2940 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 2941 case PPC::STDUX: 2942 III.ImmOpcode = PPC::STDU; 2943 III.ImmMustBeMultipleOf = 4; 2944 break; 2945 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 2946 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 2947 } 2948 break; 2949 // Power9 only. 2950 case PPC::LXVX: 2951 case PPC::LXSSPX: 2952 case PPC::LXSDX: 2953 case PPC::STXVX: 2954 case PPC::STXSSPX: 2955 case PPC::STXSDX: 2956 if (!Subtarget.hasP9Vector()) 2957 return false; 2958 III.SignedImm = true; 2959 III.ZeroIsSpecialOrig = 1; 2960 III.ZeroIsSpecialNew = 2; 2961 III.IsCommutative = true; 2962 III.IsSummingOperands = true; 2963 III.ImmOpNo = 1; 2964 III.OpNoForForwarding = 2; 2965 switch(Opc) { 2966 default: llvm_unreachable("Unknown opcode"); 2967 case PPC::LXVX: 2968 III.ImmOpcode = PPC::LXV; 2969 III.ImmMustBeMultipleOf = 16; 2970 break; 2971 case PPC::LXSSPX: 2972 III.ImmOpcode = PPC::LXSSP; 2973 III.ImmMustBeMultipleOf = 4; 2974 break; 2975 case PPC::LXSDX: 2976 III.ImmOpcode = PPC::LXSD; 2977 III.ImmMustBeMultipleOf = 4; 2978 break; 2979 case PPC::STXVX: 2980 III.ImmOpcode = PPC::STXV; 2981 III.ImmMustBeMultipleOf = 16; 2982 break; 2983 case PPC::STXSSPX: 2984 III.ImmOpcode = PPC::STXSSP; 2985 III.ImmMustBeMultipleOf = 4; 2986 break; 2987 case PPC::STXSDX: 2988 III.ImmOpcode = PPC::STXSD; 2989 III.ImmMustBeMultipleOf = 4; 2990 break; 2991 } 2992 break; 2993 } 2994 return true; 2995 } 2996 2997 // Utility function for swaping two arbitrary operands of an instruction. 2998 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 2999 assert(Op1 != Op2 && "Cannot swap operand with itself."); 3000 3001 unsigned MaxOp = std::max(Op1, Op2); 3002 unsigned MinOp = std::min(Op1, Op2); 3003 MachineOperand MOp1 = MI.getOperand(MinOp); 3004 MachineOperand MOp2 = MI.getOperand(MaxOp); 3005 MI.RemoveOperand(std::max(Op1, Op2)); 3006 MI.RemoveOperand(std::min(Op1, Op2)); 3007 3008 // If the operands we are swapping are the two at the end (the common case) 3009 // we can just remove both and add them in the opposite order. 3010 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 3011 MI.addOperand(MOp2); 3012 MI.addOperand(MOp1); 3013 } else { 3014 // Store all operands in a temporary vector, remove them and re-add in the 3015 // right order. 3016 SmallVector<MachineOperand, 2> MOps; 3017 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 3018 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 3019 MOps.push_back(MI.getOperand(i)); 3020 MI.RemoveOperand(i); 3021 } 3022 // MOp2 needs to be added next. 3023 MI.addOperand(MOp2); 3024 // Now add the rest. 3025 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 3026 if (i == MaxOp) 3027 MI.addOperand(MOp1); 3028 else { 3029 MI.addOperand(MOps.back()); 3030 MOps.pop_back(); 3031 } 3032 } 3033 } 3034 } 3035 3036 // Check if the 'MI' that has the index OpNoForForwarding 3037 // meets the requirement described in the ImmInstrInfo. 3038 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 3039 const ImmInstrInfo &III, 3040 unsigned OpNoForForwarding 3041 ) const { 3042 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 3043 // would not work pre-RA, we can only do the check post RA. 3044 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3045 if (MRI.isSSA()) 3046 return false; 3047 3048 // Cannot do the transform if MI isn't summing the operands. 3049 if (!III.IsSummingOperands) 3050 return false; 3051 3052 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 3053 if (!III.ZeroIsSpecialOrig) 3054 return false; 3055 3056 // We cannot do the transform if the operand we are trying to replace 3057 // isn't the same as the operand the instruction allows. 3058 if (OpNoForForwarding != III.OpNoForForwarding) 3059 return false; 3060 3061 // Check if the instruction we are trying to transform really has 3062 // the special zero register as its operand. 3063 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 3064 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 3065 return false; 3066 3067 // This machine instruction is convertible if it is, 3068 // 1. summing the operands. 3069 // 2. one of the operands is special zero register. 3070 // 3. the operand we are trying to replace is allowed by the MI. 3071 return true; 3072 } 3073 3074 // Check if the DefMI is the add inst and set the ImmMO and RegMO 3075 // accordingly. 3076 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 3077 const ImmInstrInfo &III, 3078 MachineOperand *&ImmMO, 3079 MachineOperand *&RegMO) const { 3080 unsigned Opc = DefMI.getOpcode(); 3081 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 3082 return false; 3083 3084 assert(DefMI.getNumOperands() >= 3 && 3085 "Add inst must have at least three operands"); 3086 RegMO = &DefMI.getOperand(1); 3087 ImmMO = &DefMI.getOperand(2); 3088 3089 // This DefMI is elgible for forwarding if it is: 3090 // 1. add inst 3091 // 2. one of the operands is Imm/CPI/Global. 3092 return isAnImmediateOperand(*ImmMO); 3093 } 3094 3095 bool PPCInstrInfo::isRegElgibleForForwarding(const MachineOperand &RegMO, 3096 const MachineInstr &DefMI, 3097 const MachineInstr &MI, 3098 bool KillDefMI 3099 ) const { 3100 // x = addi y, imm 3101 // ... 3102 // z = lfdx 0, x -> z = lfd imm(y) 3103 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 3104 // of "y" between the DEF of "x" and "z". 3105 // The query is only valid post RA. 3106 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3107 if (MRI.isSSA()) 3108 return false; 3109 3110 // MachineInstr::readsRegister only returns true if the machine 3111 // instruction reads the exact register or its super-register. It 3112 // does not consider uses of sub-registers which seems like strange 3113 // behaviour. Nonetheless, if we end up with a 64-bit register here, 3114 // get the corresponding 32-bit register to check. 3115 unsigned Reg = RegMO.getReg(); 3116 if (PPC::G8RCRegClass.contains(Reg)) 3117 Reg = Reg - PPC::X0 + PPC::R0; 3118 3119 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 3120 MachineBasicBlock::const_reverse_iterator It = MI; 3121 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 3122 It++; 3123 for (; It != E; ++It) { 3124 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3125 return false; 3126 // Made it to DefMI without encountering a clobber. 3127 if ((&*It) == &DefMI) 3128 break; 3129 } 3130 assert((&*It) == &DefMI && "DefMI is missing"); 3131 3132 // If DefMI also uses the register to be forwarded, we can only forward it 3133 // if DefMI is being erased. 3134 if (DefMI.readsRegister(Reg, &getRegisterInfo())) 3135 return KillDefMI; 3136 3137 return true; 3138 } 3139 3140 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 3141 const MachineInstr &DefMI, 3142 const ImmInstrInfo &III, 3143 int64_t &Imm) const { 3144 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 3145 if (DefMI.getOpcode() == PPC::ADDItocL) { 3146 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 3147 // However, we know that, it is 16-bit width, and has the alignment of 4. 3148 // Check if the instruction met the requirement. 3149 if (III.ImmMustBeMultipleOf > 4 || 3150 III.TruncateImmTo || III.ImmWidth != 16) 3151 return false; 3152 3153 return true; 3154 } 3155 3156 if (ImmMO.isImm()) { 3157 // It is Imm, we need to check if the Imm fit the range. 3158 int64_t Immediate = ImmMO.getImm(); 3159 // Sign-extend to 64-bits. 3160 Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 3161 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 3162 3163 if (Imm % III.ImmMustBeMultipleOf) 3164 return false; 3165 if (III.TruncateImmTo) 3166 Imm &= ((1 << III.TruncateImmTo) - 1); 3167 if (III.SignedImm) { 3168 APInt ActualValue(64, Imm, true); 3169 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3170 return false; 3171 } else { 3172 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3173 if ((uint64_t)Imm > UnsignedMax) 3174 return false; 3175 } 3176 } 3177 else 3178 return false; 3179 3180 // This ImmMO is forwarded if it meets the requriement describle 3181 // in ImmInstrInfo 3182 return true; 3183 } 3184 3185 // If an X-Form instruction is fed by an add-immediate and one of its operands 3186 // is the literal zero, attempt to forward the source of the add-immediate to 3187 // the corresponding D-Form instruction with the displacement coming from 3188 // the immediate being added. 3189 bool PPCInstrInfo::transformToImmFormFedByAdd(MachineInstr &MI, 3190 const ImmInstrInfo &III, 3191 unsigned OpNoForForwarding, 3192 MachineInstr &DefMI, 3193 bool KillDefMI) const { 3194 // RegMO ImmMO 3195 // | | 3196 // x = addi reg, imm <----- DefMI 3197 // y = op 0 , x <----- MI 3198 // | 3199 // OpNoForForwarding 3200 // Check if the MI meet the requirement described in the III. 3201 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 3202 return false; 3203 3204 // Check if the DefMI meet the requirement 3205 // described in the III. If yes, set the ImmMO and RegMO accordingly. 3206 MachineOperand *ImmMO = nullptr; 3207 MachineOperand *RegMO = nullptr; 3208 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 3209 return false; 3210 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 3211 3212 // As we get the Imm operand now, we need to check if the ImmMO meet 3213 // the requirement described in the III. If yes set the Imm. 3214 int64_t Imm = 0; 3215 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 3216 return false; 3217 3218 // Check if the RegMO can be forwarded to MI. 3219 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI)) 3220 return false; 3221 3222 // We know that, the MI and DefMI both meet the pattern, and 3223 // the Imm also meet the requirement with the new Imm-form. 3224 // It is safe to do the transformation now. 3225 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 3226 LLVM_DEBUG(MI.dump()); 3227 LLVM_DEBUG(dbgs() << "Fed by:\n"); 3228 LLVM_DEBUG(DefMI.dump()); 3229 3230 // Update the base reg first. 3231 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 3232 false, false, 3233 RegMO->isKill()); 3234 3235 // Then, update the imm. 3236 if (ImmMO->isImm()) { 3237 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 3238 // directly. 3239 MI.getOperand(III.ZeroIsSpecialOrig).ChangeToImmediate(Imm); 3240 } 3241 else { 3242 // Otherwise, it is Constant Pool Index(CPI) or Global, 3243 // which is relocation in fact. We need to replace the special zero 3244 // register with ImmMO. 3245 // Before that, we need to fixup the target flags for imm. 3246 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 3247 if (DefMI.getOpcode() == PPC::ADDItocL) 3248 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 3249 3250 // MI didn't have the interface such as MI.setOperand(i) though 3251 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 3252 // ImmMO, we need to remove ZERO operand and all the operands behind it, 3253 // and, add the ImmMO, then, move back all the operands behind ZERO. 3254 SmallVector<MachineOperand, 2> MOps; 3255 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 3256 MOps.push_back(MI.getOperand(i)); 3257 MI.RemoveOperand(i); 3258 } 3259 3260 // Remove the last MO in the list, which is ZERO operand in fact. 3261 MOps.pop_back(); 3262 // Add the imm operand. 3263 MI.addOperand(*ImmMO); 3264 // Now add the rest back. 3265 for (auto &MO : MOps) 3266 MI.addOperand(MO); 3267 } 3268 3269 // Update the opcode. 3270 MI.setDesc(get(III.ImmOpcode)); 3271 3272 LLVM_DEBUG(dbgs() << "With:\n"); 3273 LLVM_DEBUG(MI.dump()); 3274 3275 return true; 3276 } 3277 3278 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 3279 const ImmInstrInfo &III, 3280 unsigned ConstantOpNo, 3281 int64_t Imm) const { 3282 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3283 bool PostRA = !MRI.isSSA(); 3284 // Exit early if we can't convert this. 3285 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 3286 return false; 3287 if (Imm % III.ImmMustBeMultipleOf) 3288 return false; 3289 if (III.TruncateImmTo) 3290 Imm &= ((1 << III.TruncateImmTo) - 1); 3291 if (III.SignedImm) { 3292 APInt ActualValue(64, Imm, true); 3293 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3294 return false; 3295 } else { 3296 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3297 if ((uint64_t)Imm > UnsignedMax) 3298 return false; 3299 } 3300 3301 // If we're post-RA, the instructions don't agree on whether register zero is 3302 // special, we can transform this as long as the register operand that will 3303 // end up in the location where zero is special isn't R0. 3304 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3305 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 3306 III.ZeroIsSpecialNew + 1; 3307 unsigned OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 3308 unsigned NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3309 // If R0 is in the operand where zero is special for the new instruction, 3310 // it is unsafe to transform if the constant operand isn't that operand. 3311 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 3312 ConstantOpNo != III.ZeroIsSpecialNew) 3313 return false; 3314 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 3315 ConstantOpNo != PosForOrigZero) 3316 return false; 3317 } 3318 3319 unsigned Opc = MI.getOpcode(); 3320 bool SpecialShift32 = 3321 Opc == PPC::SLW || Opc == PPC::SLWo || Opc == PPC::SRW || Opc == PPC::SRWo; 3322 bool SpecialShift64 = 3323 Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo; 3324 bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo || 3325 Opc == PPC::SLDo || Opc == PPC::SRDo; 3326 bool RightShift = 3327 Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo; 3328 3329 MI.setDesc(get(III.ImmOpcode)); 3330 if (ConstantOpNo == III.OpNoForForwarding) { 3331 // Converting shifts to immediate form is a bit tricky since they may do 3332 // one of three things: 3333 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 3334 // 2. If the shift amount is zero, the result is unchanged (save for maybe 3335 // setting CR0) 3336 // 3. If the shift amount is in [1, OpSize), it's just a shift 3337 if (SpecialShift32 || SpecialShift64) { 3338 LoadImmediateInfo LII; 3339 LII.Imm = 0; 3340 LII.SetCR = SetCR; 3341 LII.Is64Bit = SpecialShift64; 3342 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 3343 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 3344 replaceInstrWithLI(MI, LII); 3345 // Shifts by zero don't change the value. If we don't need to set CR0, 3346 // just convert this to a COPY. Can't do this post-RA since we've already 3347 // cleaned up the copies. 3348 else if (!SetCR && ShAmt == 0 && !PostRA) { 3349 MI.RemoveOperand(2); 3350 MI.setDesc(get(PPC::COPY)); 3351 } else { 3352 // The 32 bit and 64 bit instructions are quite different. 3353 if (SpecialShift32) { 3354 // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31). 3355 uint64_t SH = RightShift ? 32 - ShAmt : ShAmt; 3356 uint64_t MB = RightShift ? ShAmt : 0; 3357 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 3358 MI.getOperand(III.OpNoForForwarding).ChangeToImmediate(SH); 3359 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 3360 .addImm(ME); 3361 } else { 3362 // Left shifts use (N, 63-N), right shifts use (64-N, N). 3363 uint64_t SH = RightShift ? 64 - ShAmt : ShAmt; 3364 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 3365 MI.getOperand(III.OpNoForForwarding).ChangeToImmediate(SH); 3366 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 3367 } 3368 } 3369 } else 3370 MI.getOperand(ConstantOpNo).ChangeToImmediate(Imm); 3371 } 3372 // Convert commutative instructions (switch the operands and convert the 3373 // desired one to an immediate. 3374 else if (III.IsCommutative) { 3375 MI.getOperand(ConstantOpNo).ChangeToImmediate(Imm); 3376 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 3377 } else 3378 llvm_unreachable("Should have exited early!"); 3379 3380 // For instructions for which the constant register replaces a different 3381 // operand than where the immediate goes, we need to swap them. 3382 if (III.OpNoForForwarding != III.ImmOpNo) 3383 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 3384 3385 // If the R0/X0 register is special for the original instruction and not for 3386 // the new instruction (or vice versa), we need to fix up the register class. 3387 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3388 if (!III.ZeroIsSpecialOrig) { 3389 unsigned RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3390 const TargetRegisterClass *NewRC = 3391 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 3392 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 3393 MRI.setRegClass(RegToModify, NewRC); 3394 } 3395 } 3396 return true; 3397 } 3398 3399 const TargetRegisterClass * 3400 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 3401 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 3402 return &PPC::VSRCRegClass; 3403 return RC; 3404 } 3405 3406 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 3407 return PPC::getRecordFormOpcode(Opcode); 3408 } 3409 3410 // This function returns true if the machine instruction 3411 // always outputs a value by sign-extending a 32 bit value, 3412 // i.e. 0 to 31-th bits are same as 32-th bit. 3413 static bool isSignExtendingOp(const MachineInstr &MI) { 3414 int Opcode = MI.getOpcode(); 3415 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3416 Opcode == PPC::LIS || Opcode == PPC::LIS8 || 3417 Opcode == PPC::SRAW || Opcode == PPC::SRAWo || 3418 Opcode == PPC::SRAWI || Opcode == PPC::SRAWIo || 3419 Opcode == PPC::LWA || Opcode == PPC::LWAX || 3420 Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 3421 Opcode == PPC::LHA || Opcode == PPC::LHAX || 3422 Opcode == PPC::LHA8 || Opcode == PPC::LHAX8 || 3423 Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3424 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 3425 Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 3426 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3427 Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3428 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || 3429 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3430 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || 3431 Opcode == PPC::EXTSB || Opcode == PPC::EXTSBo || 3432 Opcode == PPC::EXTSH || Opcode == PPC::EXTSHo || 3433 Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8 || 3434 Opcode == PPC::EXTSW || Opcode == PPC::EXTSWo || 3435 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 3436 Opcode == PPC::EXTSB8_32_64) 3437 return true; 3438 3439 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 3440 return true; 3441 3442 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo || 3443 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo) && 3444 MI.getOperand(3).getImm() > 0 && 3445 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3446 return true; 3447 3448 return false; 3449 } 3450 3451 // This function returns true if the machine instruction 3452 // always outputs zeros in higher 32 bits. 3453 static bool isZeroExtendingOp(const MachineInstr &MI) { 3454 int Opcode = MI.getOpcode(); 3455 // The 16-bit immediate is sign-extended in li/lis. 3456 // If the most significant bit is zero, all higher bits are zero. 3457 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3458 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 3459 int64_t Imm = MI.getOperand(1).getImm(); 3460 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 3461 return true; 3462 } 3463 3464 // We have some variations of rotate-and-mask instructions 3465 // that clear higher 32-bits. 3466 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo || 3467 Opcode == PPC::RLDCL || Opcode == PPC::RLDCLo || 3468 Opcode == PPC::RLDICL_32_64) && 3469 MI.getOperand(3).getImm() >= 32) 3470 return true; 3471 3472 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) && 3473 MI.getOperand(3).getImm() >= 32 && 3474 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 3475 return true; 3476 3477 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo || 3478 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo || 3479 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 3480 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3481 return true; 3482 3483 // There are other instructions that clear higher 32-bits. 3484 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZWo || 3485 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZWo || 3486 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 3487 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZDo || 3488 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZDo || 3489 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || 3490 Opcode == PPC::SLW || Opcode == PPC::SLWo || 3491 Opcode == PPC::SRW || Opcode == PPC::SRWo || 3492 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || 3493 Opcode == PPC::SLWI || Opcode == PPC::SLWIo || 3494 Opcode == PPC::SRWI || Opcode == PPC::SRWIo || 3495 Opcode == PPC::LWZ || Opcode == PPC::LWZX || 3496 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || 3497 Opcode == PPC::LWBRX || Opcode == PPC::LHBRX || 3498 Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3499 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3500 Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3501 Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 3502 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || 3503 Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8 || 3504 Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 3505 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || 3506 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || 3507 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 3508 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3509 Opcode == PPC::ANDIo || Opcode == PPC::ANDISo || 3510 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWIo || 3511 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWIo || 3512 Opcode == PPC::MFVSRWZ) 3513 return true; 3514 3515 return false; 3516 } 3517 3518 // This function returns true if the input MachineInstr is a TOC save 3519 // instruction. 3520 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 3521 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 3522 return false; 3523 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 3524 unsigned StackOffset = MI.getOperand(1).getImm(); 3525 unsigned StackReg = MI.getOperand(2).getReg(); 3526 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) 3527 return true; 3528 3529 return false; 3530 } 3531 3532 // We limit the max depth to track incoming values of PHIs or binary ops 3533 // (e.g. AND) to avoid excessive cost. 3534 const unsigned MAX_DEPTH = 1; 3535 3536 bool 3537 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 3538 const unsigned Depth) const { 3539 const MachineFunction *MF = MI.getParent()->getParent(); 3540 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 3541 3542 // If we know this instruction returns sign- or zero-extended result, 3543 // return true. 3544 if (SignExt ? isSignExtendingOp(MI): 3545 isZeroExtendingOp(MI)) 3546 return true; 3547 3548 switch (MI.getOpcode()) { 3549 case PPC::COPY: { 3550 unsigned SrcReg = MI.getOperand(1).getReg(); 3551 3552 // In both ELFv1 and v2 ABI, method parameters and the return value 3553 // are sign- or zero-extended. 3554 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 3555 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 3556 // We check the ZExt/SExt flags for a method parameter. 3557 if (MI.getParent()->getBasicBlock() == 3558 &MF->getFunction().getEntryBlock()) { 3559 unsigned VReg = MI.getOperand(0).getReg(); 3560 if (MF->getRegInfo().isLiveIn(VReg)) 3561 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 3562 FuncInfo->isLiveInZExt(VReg); 3563 } 3564 3565 // For a method return value, we check the ZExt/SExt flags in attribute. 3566 // We assume the following code sequence for method call. 3567 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 3568 // BL8_NOP @func,... 3569 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 3570 // %5 = COPY %x3; G8RC:%5 3571 if (SrcReg == PPC::X3) { 3572 const MachineBasicBlock *MBB = MI.getParent(); 3573 MachineBasicBlock::const_instr_iterator II = 3574 MachineBasicBlock::const_instr_iterator(&MI); 3575 if (II != MBB->instr_begin() && 3576 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 3577 const MachineInstr &CallMI = *(--II); 3578 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 3579 const Function *CalleeFn = 3580 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 3581 if (!CalleeFn) 3582 return false; 3583 const IntegerType *IntTy = 3584 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 3585 const AttributeSet &Attrs = 3586 CalleeFn->getAttributes().getRetAttributes(); 3587 if (IntTy && IntTy->getBitWidth() <= 32) 3588 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 3589 Attribute::ZExt); 3590 } 3591 } 3592 } 3593 } 3594 3595 // If this is a copy from another register, we recursively check source. 3596 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 3597 return false; 3598 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3599 if (SrcMI != NULL) 3600 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 3601 3602 return false; 3603 } 3604 3605 case PPC::ANDIo: 3606 case PPC::ANDISo: 3607 case PPC::ORI: 3608 case PPC::ORIS: 3609 case PPC::XORI: 3610 case PPC::XORIS: 3611 case PPC::ANDIo8: 3612 case PPC::ANDISo8: 3613 case PPC::ORI8: 3614 case PPC::ORIS8: 3615 case PPC::XORI8: 3616 case PPC::XORIS8: { 3617 // logical operation with 16-bit immediate does not change the upper bits. 3618 // So, we track the operand register as we do for register copy. 3619 unsigned SrcReg = MI.getOperand(1).getReg(); 3620 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 3621 return false; 3622 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3623 if (SrcMI != NULL) 3624 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 3625 3626 return false; 3627 } 3628 3629 // If all incoming values are sign-/zero-extended, 3630 // the output of OR, ISEL or PHI is also sign-/zero-extended. 3631 case PPC::OR: 3632 case PPC::OR8: 3633 case PPC::ISEL: 3634 case PPC::PHI: { 3635 if (Depth >= MAX_DEPTH) 3636 return false; 3637 3638 // The input registers for PHI are operand 1, 3, ... 3639 // The input registers for others are operand 1 and 2. 3640 unsigned E = 3, D = 1; 3641 if (MI.getOpcode() == PPC::PHI) { 3642 E = MI.getNumOperands(); 3643 D = 2; 3644 } 3645 3646 for (unsigned I = 1; I != E; I += D) { 3647 if (MI.getOperand(I).isReg()) { 3648 unsigned SrcReg = MI.getOperand(I).getReg(); 3649 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 3650 return false; 3651 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3652 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 3653 return false; 3654 } 3655 else 3656 return false; 3657 } 3658 return true; 3659 } 3660 3661 // If at least one of the incoming values of an AND is zero extended 3662 // then the output is also zero-extended. If both of the incoming values 3663 // are sign-extended then the output is also sign extended. 3664 case PPC::AND: 3665 case PPC::AND8: { 3666 if (Depth >= MAX_DEPTH) 3667 return false; 3668 3669 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 3670 3671 unsigned SrcReg1 = MI.getOperand(1).getReg(); 3672 unsigned SrcReg2 = MI.getOperand(2).getReg(); 3673 3674 if (!TargetRegisterInfo::isVirtualRegister(SrcReg1) || 3675 !TargetRegisterInfo::isVirtualRegister(SrcReg2)) 3676 return false; 3677 3678 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 3679 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 3680 if (!MISrc1 || !MISrc2) 3681 return false; 3682 3683 if(SignExt) 3684 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 3685 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 3686 else 3687 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 3688 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 3689 } 3690 3691 default: 3692 break; 3693 } 3694 return false; 3695 } 3696