1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCInst.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/raw_ostream.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "ppc-instr-info"
44 
45 #define GET_INSTRMAP_INFO
46 #define GET_INSTRINFO_CTOR_DTOR
47 #include "PPCGenInstrInfo.inc"
48 
49 STATISTIC(NumStoreSPILLVSRRCAsVec,
50           "Number of spillvsrrc spilled to stack as vec");
51 STATISTIC(NumStoreSPILLVSRRCAsGpr,
52           "Number of spillvsrrc spilled to stack as gpr");
53 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
54 STATISTIC(CmpIselsConverted,
55           "Number of ISELs that depend on comparison of constants converted");
56 STATISTIC(MissedConvertibleImmediateInstrs,
57           "Number of compare-immediate instructions fed by constants");
58 STATISTIC(NumRcRotatesConvertedToRcAnd,
59           "Number of record-form rotates converted to record-form andi");
60 
61 static cl::
62 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
63             cl::desc("Disable analysis for CTR loops"));
64 
65 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
66 cl::desc("Disable compare instruction optimization"), cl::Hidden);
67 
68 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
69 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
70 cl::Hidden);
71 
72 static cl::opt<bool>
73 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
74   cl::desc("Use the old (incorrect) instruction latency calculation"));
75 
76 // Pin the vtable to this file.
77 void PPCInstrInfo::anchor() {}
78 
79 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
80     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
81                       /* CatchRetOpcode */ -1,
82                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
83       Subtarget(STI), RI(STI.getTargetMachine()) {}
84 
85 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
86 /// this target when scheduling the DAG.
87 ScheduleHazardRecognizer *
88 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
89                                            const ScheduleDAG *DAG) const {
90   unsigned Directive =
91       static_cast<const PPCSubtarget *>(STI)->getCPUDirective();
92   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
93       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
94     const InstrItineraryData *II =
95         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
96     return new ScoreboardHazardRecognizer(II, DAG);
97   }
98 
99   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
100 }
101 
102 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
103 /// to use for this target when scheduling the DAG.
104 ScheduleHazardRecognizer *
105 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
106                                                  const ScheduleDAG *DAG) const {
107   unsigned Directive =
108       DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective();
109 
110   // FIXME: Leaving this as-is until we have POWER9 scheduling info
111   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
112     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
113 
114   // Most subtargets use a PPC970 recognizer.
115   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
116       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
117     assert(DAG->TII && "No InstrInfo?");
118 
119     return new PPCHazardRecognizer970(*DAG);
120   }
121 
122   return new ScoreboardHazardRecognizer(II, DAG);
123 }
124 
125 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
126                                        const MachineInstr &MI,
127                                        unsigned *PredCost) const {
128   if (!ItinData || UseOldLatencyCalc)
129     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
130 
131   // The default implementation of getInstrLatency calls getStageLatency, but
132   // getStageLatency does not do the right thing for us. While we have
133   // itinerary, most cores are fully pipelined, and so the itineraries only
134   // express the first part of the pipeline, not every stage. Instead, we need
135   // to use the listed output operand cycle number (using operand 0 here, which
136   // is an output).
137 
138   unsigned Latency = 1;
139   unsigned DefClass = MI.getDesc().getSchedClass();
140   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
141     const MachineOperand &MO = MI.getOperand(i);
142     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
143       continue;
144 
145     int Cycle = ItinData->getOperandCycle(DefClass, i);
146     if (Cycle < 0)
147       continue;
148 
149     Latency = std::max(Latency, (unsigned) Cycle);
150   }
151 
152   return Latency;
153 }
154 
155 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
156                                     const MachineInstr &DefMI, unsigned DefIdx,
157                                     const MachineInstr &UseMI,
158                                     unsigned UseIdx) const {
159   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
160                                                    UseMI, UseIdx);
161 
162   if (!DefMI.getParent())
163     return Latency;
164 
165   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
166   Register Reg = DefMO.getReg();
167 
168   bool IsRegCR;
169   if (Register::isVirtualRegister(Reg)) {
170     const MachineRegisterInfo *MRI =
171         &DefMI.getParent()->getParent()->getRegInfo();
172     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
173               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
174   } else {
175     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
176               PPC::CRBITRCRegClass.contains(Reg);
177   }
178 
179   if (UseMI.isBranch() && IsRegCR) {
180     if (Latency < 0)
181       Latency = getInstrLatency(ItinData, DefMI);
182 
183     // On some cores, there is an additional delay between writing to a condition
184     // register, and using it from a branch.
185     unsigned Directive = Subtarget.getCPUDirective();
186     switch (Directive) {
187     default: break;
188     case PPC::DIR_7400:
189     case PPC::DIR_750:
190     case PPC::DIR_970:
191     case PPC::DIR_E5500:
192     case PPC::DIR_PWR4:
193     case PPC::DIR_PWR5:
194     case PPC::DIR_PWR5X:
195     case PPC::DIR_PWR6:
196     case PPC::DIR_PWR6X:
197     case PPC::DIR_PWR7:
198     case PPC::DIR_PWR8:
199     // FIXME: Is this needed for POWER9?
200       Latency += 2;
201       break;
202     }
203   }
204 
205   return Latency;
206 }
207 
208 /// This is an architecture-specific helper function of reassociateOps.
209 /// Set special operand attributes for new instructions after reassociation.
210 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
211                                          MachineInstr &OldMI2,
212                                          MachineInstr &NewMI1,
213                                          MachineInstr &NewMI2) const {
214   // Propagate FP flags from the original instructions.
215   // But clear poison-generating flags because those may not be valid now.
216   uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
217   NewMI1.setFlags(IntersectedFlags);
218   NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
219   NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
220   NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
221 
222   NewMI2.setFlags(IntersectedFlags);
223   NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
224   NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
225   NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
226 }
227 
228 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI,
229                                          uint16_t Flags) const {
230   MI.setFlags(Flags);
231   MI.clearFlag(MachineInstr::MIFlag::NoSWrap);
232   MI.clearFlag(MachineInstr::MIFlag::NoUWrap);
233   MI.clearFlag(MachineInstr::MIFlag::IsExact);
234 }
235 
236 // This function does not list all associative and commutative operations, but
237 // only those worth feeding through the machine combiner in an attempt to
238 // reduce the critical path. Mostly, this means floating-point operations,
239 // because they have high latencies(>=5) (compared to other operations, such as
240 // and/or, which are also associative and commutative, but have low latencies).
241 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
242   switch (Inst.getOpcode()) {
243   // Floating point:
244   // FP Add:
245   case PPC::FADD:
246   case PPC::FADDS:
247   // FP Multiply:
248   case PPC::FMUL:
249   case PPC::FMULS:
250   // Altivec Add:
251   case PPC::VADDFP:
252   // VSX Add:
253   case PPC::XSADDDP:
254   case PPC::XVADDDP:
255   case PPC::XVADDSP:
256   case PPC::XSADDSP:
257   // VSX Multiply:
258   case PPC::XSMULDP:
259   case PPC::XVMULDP:
260   case PPC::XVMULSP:
261   case PPC::XSMULSP:
262     return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
263            Inst.getFlag(MachineInstr::MIFlag::FmNsz);
264   // Fixed point:
265   // Multiply:
266   case PPC::MULHD:
267   case PPC::MULLD:
268   case PPC::MULHW:
269   case PPC::MULLW:
270     return true;
271   default:
272     return false;
273   }
274 }
275 
276 #define InfoArrayIdxFMAInst 0
277 #define InfoArrayIdxFAddInst 1
278 #define InfoArrayIdxFMULInst 2
279 #define InfoArrayIdxAddOpIdx 3
280 #define InfoArrayIdxMULOpIdx 4
281 // Array keeps info for FMA instructions:
282 // Index 0(InfoArrayIdxFMAInst): FMA instruction;
283 // Index 1(InfoArrayIdxFAddInst): ADD instruction assoaicted with FMA;
284 // Index 2(InfoArrayIdxFMULInst): MUL instruction assoaicted with FMA;
285 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands;
286 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands;
287 //                                second MUL operand index is plus 1.
288 static const uint16_t FMAOpIdxInfo[][5] = {
289     // FIXME: Add more FMA instructions like XSNMADDADP and so on.
290     {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2},
291     {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2},
292     {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2},
293     {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2},
294     {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1},
295     {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1}};
296 
297 // Check if an opcode is a FMA instruction. If it is, return the index in array
298 // FMAOpIdxInfo. Otherwise, return -1.
299 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const {
300   for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++)
301     if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode)
302       return I;
303   return -1;
304 }
305 
306 // Try to reassociate FMA chains like below:
307 //
308 // Pattern 1:
309 //   A =  FADD X,  Y          (Leaf)
310 //   B =  FMA  A,  M21,  M22  (Prev)
311 //   C =  FMA  B,  M31,  M32  (Root)
312 // -->
313 //   A =  FMA  X,  M21,  M22
314 //   B =  FMA  Y,  M31,  M32
315 //   C =  FADD A,  B
316 //
317 // Pattern 2:
318 //   A =  FMA  X,  M11,  M12  (Leaf)
319 //   B =  FMA  A,  M21,  M22  (Prev)
320 //   C =  FMA  B,  M31,  M32  (Root)
321 // -->
322 //   A =  FMUL M11,  M12
323 //   B =  FMA  X,  M21,  M22
324 //   D =  FMA  A,  M31,  M32
325 //   C =  FADD B,  D
326 //
327 // breaking the dependency between A and B, allowing FMA to be executed in
328 // parallel (or back-to-back in a pipeline) instead of depending on each other.
329 bool PPCInstrInfo::getFMAPatterns(
330     MachineInstr &Root,
331     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
332   MachineBasicBlock *MBB = Root.getParent();
333   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
334 
335   auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) {
336     for (const auto &MO : Instr.explicit_operands())
337       if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
338         return false;
339     return true;
340   };
341 
342   auto IsReassociableAdd = [&](const MachineInstr &Instr) {
343     if (Instr.getOpcode() !=
344         FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][InfoArrayIdxFAddInst])
345       return false;
346 
347     // Instruction can be reassociated.
348     // fast math flags may prohibit reassociation.
349     if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
350           Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
351       return false;
352 
353     // Instruction operands are virtual registers for reassociation.
354     if (!IsAllOpsVirtualReg(Instr))
355       return false;
356 
357     return true;
358   };
359 
360   auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx,
361                                bool IsLeaf) {
362     int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode());
363     if (Idx < 0)
364       return false;
365 
366     // Instruction can be reassociated.
367     // fast math flags may prohibit reassociation.
368     if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
369           Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
370       return false;
371 
372     // Instruction operands are virtual registers for reassociation.
373     if (!IsAllOpsVirtualReg(Instr))
374       return false;
375 
376     if (IsLeaf)
377       return true;
378 
379     AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
380 
381     const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx);
382     MachineInstr *MIAdd = MRI.getUniqueVRegDef(OpAdd.getReg());
383     // If 'add' operand's def is not in current block, don't do ILP related opt.
384     if (!MIAdd || MIAdd->getParent() != MBB)
385       return false;
386 
387     // If this is not Leaf FMA Instr, its 'add' operand should only have one use
388     // as this fma will be changed later.
389     return IsLeaf ? true : MRI.hasOneNonDBGUse(OpAdd.getReg());
390   };
391 
392   int16_t AddOpIdx = -1;
393   // Root must be a valid FMA like instruction.
394   if (!IsReassociableFMA(Root, AddOpIdx, false))
395     return false;
396 
397   assert((AddOpIdx >= 0) && "add operand index not right!");
398 
399   Register RegB = Root.getOperand(AddOpIdx).getReg();
400   MachineInstr *Prev = MRI.getUniqueVRegDef(RegB);
401 
402   // Prev must be a valid FMA like instruction.
403   AddOpIdx = -1;
404   if (!IsReassociableFMA(*Prev, AddOpIdx, false))
405     return false;
406 
407   assert((AddOpIdx >= 0) && "add operand index not right!");
408 
409   Register RegA = Prev->getOperand(AddOpIdx).getReg();
410   MachineInstr *Leaf = MRI.getUniqueVRegDef(RegA);
411   AddOpIdx = -1;
412   if (IsReassociableFMA(*Leaf, AddOpIdx, true)) {
413     Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM);
414     return true;
415   }
416   if (IsReassociableAdd(*Leaf)) {
417     Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM);
418     return true;
419   }
420   return false;
421 }
422 
423 bool PPCInstrInfo::getMachineCombinerPatterns(
424     MachineInstr &Root,
425     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
426   // Using the machine combiner in this way is potentially expensive, so
427   // restrict to when aggressive optimizations are desired.
428   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
429     return false;
430 
431   if (getFMAPatterns(Root, Patterns))
432     return true;
433 
434   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
435 }
436 
437 void PPCInstrInfo::genAlternativeCodeSequence(
438     MachineInstr &Root, MachineCombinerPattern Pattern,
439     SmallVectorImpl<MachineInstr *> &InsInstrs,
440     SmallVectorImpl<MachineInstr *> &DelInstrs,
441     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
442   switch (Pattern) {
443   case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
444   case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
445     reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg);
446     break;
447   default:
448     // Reassociate default patterns.
449     TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
450                                                 DelInstrs, InstrIdxForVirtReg);
451     break;
452   }
453 }
454 
455 // Currently, only handle two patterns REASSOC_XY_AMM_BMM and
456 // REASSOC_XMM_AMM_BMM. See comments for getFMAPatterns.
457 void PPCInstrInfo::reassociateFMA(
458     MachineInstr &Root, MachineCombinerPattern Pattern,
459     SmallVectorImpl<MachineInstr *> &InsInstrs,
460     SmallVectorImpl<MachineInstr *> &DelInstrs,
461     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
462   MachineFunction *MF = Root.getMF();
463   MachineRegisterInfo &MRI = MF->getRegInfo();
464   MachineOperand &OpC = Root.getOperand(0);
465   Register RegC = OpC.getReg();
466   const TargetRegisterClass *RC = MRI.getRegClass(RegC);
467   MRI.constrainRegClass(RegC, RC);
468 
469   unsigned FmaOp = Root.getOpcode();
470   int16_t Idx = getFMAOpIdxInfo(FmaOp);
471   assert(Idx >= 0 && "Root must be a FMA instruction");
472 
473   uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
474   uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
475   MachineInstr *Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg());
476   MachineInstr *Leaf =
477       MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg());
478   uint16_t IntersectedFlags =
479       Root.getFlags() & Prev->getFlags() & Leaf->getFlags();
480 
481   auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg,
482                             bool &KillFlag) {
483     Reg = Operand.getReg();
484     MRI.constrainRegClass(Reg, RC);
485     KillFlag = Operand.isKill();
486   };
487 
488   auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1,
489                              Register &MulOp2, bool &MulOp1KillFlag,
490                              bool &MulOp2KillFlag) {
491     GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag);
492     GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag);
493   };
494 
495   Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32;
496   bool KillX = false, KillY = false, KillM11 = false, KillM12 = false,
497        KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false;
498 
499   GetFMAInstrInfo(Root, RegM31, RegM32, KillM31, KillM32);
500   GetFMAInstrInfo(*Prev, RegM21, RegM22, KillM21, KillM22);
501 
502   if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
503     GetFMAInstrInfo(*Leaf, RegM11, RegM12, KillM11, KillM12);
504     GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX);
505   } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) {
506     GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
507     GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
508   }
509 
510   // Create new virtual registers for the new results instead of
511   // recycling legacy ones because the MachineCombiner's computation of the
512   // critical path requires a new register definition rather than an existing
513   // one.
514   Register NewVRA = MRI.createVirtualRegister(RC);
515   InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0));
516 
517   Register NewVRB = MRI.createVirtualRegister(RC);
518   InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1));
519 
520   Register NewVRD = 0;
521   if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
522     NewVRD = MRI.createVirtualRegister(RC);
523     InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2));
524   }
525 
526   auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd,
527                                 Register RegMul1, bool KillRegMul1,
528                                 Register RegMul2, bool KillRegMul2) {
529     MI->getOperand(AddOpIdx).setReg(RegAdd);
530     MI->getOperand(AddOpIdx).setIsKill(KillAdd);
531     MI->getOperand(FirstMulOpIdx).setReg(RegMul1);
532     MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1);
533     MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2);
534     MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2);
535   };
536 
537   if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) {
538     // Create new instructions for insertion.
539     MachineInstrBuilder MINewB =
540         BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
541             .addReg(RegX, getKillRegState(KillX))
542             .addReg(RegM21, getKillRegState(KillM21))
543             .addReg(RegM22, getKillRegState(KillM22));
544     MachineInstrBuilder MINewA =
545         BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
546             .addReg(RegY, getKillRegState(KillY))
547             .addReg(RegM31, getKillRegState(KillM31))
548             .addReg(RegM32, getKillRegState(KillM32));
549     // If AddOpIdx is not 1, adjust the order.
550     if (AddOpIdx != 1) {
551       AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
552       AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32);
553     }
554 
555     MachineInstrBuilder MINewC =
556         BuildMI(*MF, Root.getDebugLoc(),
557                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
558             .addReg(NewVRB, getKillRegState(true))
559             .addReg(NewVRA, getKillRegState(true));
560 
561     // Update flags for newly created instructions.
562     setSpecialOperandAttr(*MINewA, IntersectedFlags);
563     setSpecialOperandAttr(*MINewB, IntersectedFlags);
564     setSpecialOperandAttr(*MINewC, IntersectedFlags);
565 
566     // Record new instructions for insertion.
567     InsInstrs.push_back(MINewA);
568     InsInstrs.push_back(MINewB);
569     InsInstrs.push_back(MINewC);
570   } else if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
571     assert(NewVRD && "new FMA register not created!");
572     // Create new instructions for insertion.
573     MachineInstrBuilder MINewA =
574         BuildMI(*MF, Leaf->getDebugLoc(),
575                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA)
576             .addReg(RegM11, getKillRegState(KillM11))
577             .addReg(RegM12, getKillRegState(KillM12));
578     MachineInstrBuilder MINewB =
579         BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
580             .addReg(RegX, getKillRegState(KillX))
581             .addReg(RegM21, getKillRegState(KillM21))
582             .addReg(RegM22, getKillRegState(KillM22));
583     MachineInstrBuilder MINewD =
584         BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD)
585             .addReg(NewVRA, getKillRegState(true))
586             .addReg(RegM31, getKillRegState(KillM31))
587             .addReg(RegM32, getKillRegState(KillM32));
588     // If AddOpIdx is not 1, adjust the order.
589     if (AddOpIdx != 1) {
590       AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
591       AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32,
592                          KillM32);
593     }
594 
595     MachineInstrBuilder MINewC =
596         BuildMI(*MF, Root.getDebugLoc(),
597                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
598             .addReg(NewVRB, getKillRegState(true))
599             .addReg(NewVRD, getKillRegState(true));
600 
601     // Update flags for newly created instructions.
602     setSpecialOperandAttr(*MINewA, IntersectedFlags);
603     setSpecialOperandAttr(*MINewB, IntersectedFlags);
604     setSpecialOperandAttr(*MINewD, IntersectedFlags);
605     setSpecialOperandAttr(*MINewC, IntersectedFlags);
606 
607     // Record new instructions for insertion.
608     InsInstrs.push_back(MINewA);
609     InsInstrs.push_back(MINewB);
610     InsInstrs.push_back(MINewD);
611     InsInstrs.push_back(MINewC);
612   }
613 
614   assert(!InsInstrs.empty() &&
615          "Insertion instructions set should not be empty!");
616 
617   // Record old instructions for deletion.
618   DelInstrs.push_back(Leaf);
619   DelInstrs.push_back(Prev);
620   DelInstrs.push_back(&Root);
621 }
622 
623 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
624 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
625                                          Register &SrcReg, Register &DstReg,
626                                          unsigned &SubIdx) const {
627   switch (MI.getOpcode()) {
628   default: return false;
629   case PPC::EXTSW:
630   case PPC::EXTSW_32:
631   case PPC::EXTSW_32_64:
632     SrcReg = MI.getOperand(1).getReg();
633     DstReg = MI.getOperand(0).getReg();
634     SubIdx = PPC::sub_32;
635     return true;
636   }
637 }
638 
639 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
640                                            int &FrameIndex) const {
641   unsigned Opcode = MI.getOpcode();
642   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
643   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
644 
645   if (End != std::find(OpcodesForSpill, End, Opcode)) {
646     // Check for the operands added by addFrameReference (the immediate is the
647     // offset which defaults to 0).
648     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
649         MI.getOperand(2).isFI()) {
650       FrameIndex = MI.getOperand(2).getIndex();
651       return MI.getOperand(0).getReg();
652     }
653   }
654   return 0;
655 }
656 
657 // For opcodes with the ReMaterializable flag set, this function is called to
658 // verify the instruction is really rematable.
659 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
660                                                      AliasAnalysis *AA) const {
661   switch (MI.getOpcode()) {
662   default:
663     // This function should only be called for opcodes with the ReMaterializable
664     // flag set.
665     llvm_unreachable("Unknown rematerializable operation!");
666     break;
667   case PPC::LI:
668   case PPC::LI8:
669   case PPC::LIS:
670   case PPC::LIS8:
671   case PPC::ADDIStocHA:
672   case PPC::ADDIStocHA8:
673   case PPC::ADDItocL:
674   case PPC::LOAD_STACK_GUARD:
675   case PPC::XXLXORz:
676   case PPC::XXLXORspz:
677   case PPC::XXLXORdpz:
678   case PPC::XXLEQVOnes:
679   case PPC::V_SET0B:
680   case PPC::V_SET0H:
681   case PPC::V_SET0:
682   case PPC::V_SETALLONESB:
683   case PPC::V_SETALLONESH:
684   case PPC::V_SETALLONES:
685   case PPC::CRSET:
686   case PPC::CRUNSET:
687   case PPC::XXSETACCZ:
688     return true;
689   }
690   return false;
691 }
692 
693 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
694                                           int &FrameIndex) const {
695   unsigned Opcode = MI.getOpcode();
696   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
697   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
698 
699   if (End != std::find(OpcodesForSpill, End, Opcode)) {
700     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
701         MI.getOperand(2).isFI()) {
702       FrameIndex = MI.getOperand(2).getIndex();
703       return MI.getOperand(0).getReg();
704     }
705   }
706   return 0;
707 }
708 
709 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
710                                                    unsigned OpIdx1,
711                                                    unsigned OpIdx2) const {
712   MachineFunction &MF = *MI.getParent()->getParent();
713 
714   // Normal instructions can be commuted the obvious way.
715   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec)
716     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
717   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
718   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
719   // changing the relative order of the mask operands might change what happens
720   // to the high-bits of the mask (and, thus, the result).
721 
722   // Cannot commute if it has a non-zero rotate count.
723   if (MI.getOperand(3).getImm() != 0)
724     return nullptr;
725 
726   // If we have a zero rotate count, we have:
727   //   M = mask(MB,ME)
728   //   Op0 = (Op1 & ~M) | (Op2 & M)
729   // Change this to:
730   //   M = mask((ME+1)&31, (MB-1)&31)
731   //   Op0 = (Op2 & ~M) | (Op1 & M)
732 
733   // Swap op1/op2
734   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
735          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec.");
736   Register Reg0 = MI.getOperand(0).getReg();
737   Register Reg1 = MI.getOperand(1).getReg();
738   Register Reg2 = MI.getOperand(2).getReg();
739   unsigned SubReg1 = MI.getOperand(1).getSubReg();
740   unsigned SubReg2 = MI.getOperand(2).getSubReg();
741   bool Reg1IsKill = MI.getOperand(1).isKill();
742   bool Reg2IsKill = MI.getOperand(2).isKill();
743   bool ChangeReg0 = false;
744   // If machine instrs are no longer in two-address forms, update
745   // destination register as well.
746   if (Reg0 == Reg1) {
747     // Must be two address instruction!
748     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
749            "Expecting a two-address instruction!");
750     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
751     Reg2IsKill = false;
752     ChangeReg0 = true;
753   }
754 
755   // Masks.
756   unsigned MB = MI.getOperand(4).getImm();
757   unsigned ME = MI.getOperand(5).getImm();
758 
759   // We can't commute a trivial mask (there is no way to represent an all-zero
760   // mask).
761   if (MB == 0 && ME == 31)
762     return nullptr;
763 
764   if (NewMI) {
765     // Create a new instruction.
766     Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
767     bool Reg0IsDead = MI.getOperand(0).isDead();
768     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
769         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
770         .addReg(Reg2, getKillRegState(Reg2IsKill))
771         .addReg(Reg1, getKillRegState(Reg1IsKill))
772         .addImm((ME + 1) & 31)
773         .addImm((MB - 1) & 31);
774   }
775 
776   if (ChangeReg0) {
777     MI.getOperand(0).setReg(Reg2);
778     MI.getOperand(0).setSubReg(SubReg2);
779   }
780   MI.getOperand(2).setReg(Reg1);
781   MI.getOperand(1).setReg(Reg2);
782   MI.getOperand(2).setSubReg(SubReg1);
783   MI.getOperand(1).setSubReg(SubReg2);
784   MI.getOperand(2).setIsKill(Reg1IsKill);
785   MI.getOperand(1).setIsKill(Reg2IsKill);
786 
787   // Swap the mask around.
788   MI.getOperand(4).setImm((ME + 1) & 31);
789   MI.getOperand(5).setImm((MB - 1) & 31);
790   return &MI;
791 }
792 
793 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
794                                          unsigned &SrcOpIdx1,
795                                          unsigned &SrcOpIdx2) const {
796   // For VSX A-Type FMA instructions, it is the first two operands that can be
797   // commuted, however, because the non-encoded tied input operand is listed
798   // first, the operands to swap are actually the second and third.
799 
800   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
801   if (AltOpc == -1)
802     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
803 
804   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
805   // and SrcOpIdx2.
806   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
807 }
808 
809 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
810                               MachineBasicBlock::iterator MI) const {
811   // This function is used for scheduling, and the nop wanted here is the type
812   // that terminates dispatch groups on the POWER cores.
813   unsigned Directive = Subtarget.getCPUDirective();
814   unsigned Opcode;
815   switch (Directive) {
816   default:            Opcode = PPC::NOP; break;
817   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
818   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
819   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
820   // FIXME: Update when POWER9 scheduling model is ready.
821   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
822   }
823 
824   DebugLoc DL;
825   BuildMI(MBB, MI, DL, get(Opcode));
826 }
827 
828 /// Return the noop instruction to use for a noop.
829 void PPCInstrInfo::getNoop(MCInst &NopInst) const {
830   NopInst.setOpcode(PPC::NOP);
831 }
832 
833 // Branch analysis.
834 // Note: If the condition register is set to CTR or CTR8 then this is a
835 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
836 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
837                                  MachineBasicBlock *&TBB,
838                                  MachineBasicBlock *&FBB,
839                                  SmallVectorImpl<MachineOperand> &Cond,
840                                  bool AllowModify) const {
841   bool isPPC64 = Subtarget.isPPC64();
842 
843   // If the block has no terminators, it just falls into the block after it.
844   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
845   if (I == MBB.end())
846     return false;
847 
848   if (!isUnpredicatedTerminator(*I))
849     return false;
850 
851   if (AllowModify) {
852     // If the BB ends with an unconditional branch to the fallthrough BB,
853     // we eliminate the branch instruction.
854     if (I->getOpcode() == PPC::B &&
855         MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
856       I->eraseFromParent();
857 
858       // We update iterator after deleting the last branch.
859       I = MBB.getLastNonDebugInstr();
860       if (I == MBB.end() || !isUnpredicatedTerminator(*I))
861         return false;
862     }
863   }
864 
865   // Get the last instruction in the block.
866   MachineInstr &LastInst = *I;
867 
868   // If there is only one terminator instruction, process it.
869   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
870     if (LastInst.getOpcode() == PPC::B) {
871       if (!LastInst.getOperand(0).isMBB())
872         return true;
873       TBB = LastInst.getOperand(0).getMBB();
874       return false;
875     } else if (LastInst.getOpcode() == PPC::BCC) {
876       if (!LastInst.getOperand(2).isMBB())
877         return true;
878       // Block ends with fall-through condbranch.
879       TBB = LastInst.getOperand(2).getMBB();
880       Cond.push_back(LastInst.getOperand(0));
881       Cond.push_back(LastInst.getOperand(1));
882       return false;
883     } else if (LastInst.getOpcode() == PPC::BC) {
884       if (!LastInst.getOperand(1).isMBB())
885         return true;
886       // Block ends with fall-through condbranch.
887       TBB = LastInst.getOperand(1).getMBB();
888       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
889       Cond.push_back(LastInst.getOperand(0));
890       return false;
891     } else if (LastInst.getOpcode() == PPC::BCn) {
892       if (!LastInst.getOperand(1).isMBB())
893         return true;
894       // Block ends with fall-through condbranch.
895       TBB = LastInst.getOperand(1).getMBB();
896       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
897       Cond.push_back(LastInst.getOperand(0));
898       return false;
899     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
900                LastInst.getOpcode() == PPC::BDNZ) {
901       if (!LastInst.getOperand(0).isMBB())
902         return true;
903       if (DisableCTRLoopAnal)
904         return true;
905       TBB = LastInst.getOperand(0).getMBB();
906       Cond.push_back(MachineOperand::CreateImm(1));
907       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
908                                                true));
909       return false;
910     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
911                LastInst.getOpcode() == PPC::BDZ) {
912       if (!LastInst.getOperand(0).isMBB())
913         return true;
914       if (DisableCTRLoopAnal)
915         return true;
916       TBB = LastInst.getOperand(0).getMBB();
917       Cond.push_back(MachineOperand::CreateImm(0));
918       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
919                                                true));
920       return false;
921     }
922 
923     // Otherwise, don't know what this is.
924     return true;
925   }
926 
927   // Get the instruction before it if it's a terminator.
928   MachineInstr &SecondLastInst = *I;
929 
930   // If there are three terminators, we don't know what sort of block this is.
931   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
932     return true;
933 
934   // If the block ends with PPC::B and PPC:BCC, handle it.
935   if (SecondLastInst.getOpcode() == PPC::BCC &&
936       LastInst.getOpcode() == PPC::B) {
937     if (!SecondLastInst.getOperand(2).isMBB() ||
938         !LastInst.getOperand(0).isMBB())
939       return true;
940     TBB = SecondLastInst.getOperand(2).getMBB();
941     Cond.push_back(SecondLastInst.getOperand(0));
942     Cond.push_back(SecondLastInst.getOperand(1));
943     FBB = LastInst.getOperand(0).getMBB();
944     return false;
945   } else if (SecondLastInst.getOpcode() == PPC::BC &&
946              LastInst.getOpcode() == PPC::B) {
947     if (!SecondLastInst.getOperand(1).isMBB() ||
948         !LastInst.getOperand(0).isMBB())
949       return true;
950     TBB = SecondLastInst.getOperand(1).getMBB();
951     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
952     Cond.push_back(SecondLastInst.getOperand(0));
953     FBB = LastInst.getOperand(0).getMBB();
954     return false;
955   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
956              LastInst.getOpcode() == PPC::B) {
957     if (!SecondLastInst.getOperand(1).isMBB() ||
958         !LastInst.getOperand(0).isMBB())
959       return true;
960     TBB = SecondLastInst.getOperand(1).getMBB();
961     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
962     Cond.push_back(SecondLastInst.getOperand(0));
963     FBB = LastInst.getOperand(0).getMBB();
964     return false;
965   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
966               SecondLastInst.getOpcode() == PPC::BDNZ) &&
967              LastInst.getOpcode() == PPC::B) {
968     if (!SecondLastInst.getOperand(0).isMBB() ||
969         !LastInst.getOperand(0).isMBB())
970       return true;
971     if (DisableCTRLoopAnal)
972       return true;
973     TBB = SecondLastInst.getOperand(0).getMBB();
974     Cond.push_back(MachineOperand::CreateImm(1));
975     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
976                                              true));
977     FBB = LastInst.getOperand(0).getMBB();
978     return false;
979   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
980               SecondLastInst.getOpcode() == PPC::BDZ) &&
981              LastInst.getOpcode() == PPC::B) {
982     if (!SecondLastInst.getOperand(0).isMBB() ||
983         !LastInst.getOperand(0).isMBB())
984       return true;
985     if (DisableCTRLoopAnal)
986       return true;
987     TBB = SecondLastInst.getOperand(0).getMBB();
988     Cond.push_back(MachineOperand::CreateImm(0));
989     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
990                                              true));
991     FBB = LastInst.getOperand(0).getMBB();
992     return false;
993   }
994 
995   // If the block ends with two PPC:Bs, handle it.  The second one is not
996   // executed, so remove it.
997   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
998     if (!SecondLastInst.getOperand(0).isMBB())
999       return true;
1000     TBB = SecondLastInst.getOperand(0).getMBB();
1001     I = LastInst;
1002     if (AllowModify)
1003       I->eraseFromParent();
1004     return false;
1005   }
1006 
1007   // Otherwise, can't handle this.
1008   return true;
1009 }
1010 
1011 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
1012                                     int *BytesRemoved) const {
1013   assert(!BytesRemoved && "code size not handled");
1014 
1015   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1016   if (I == MBB.end())
1017     return 0;
1018 
1019   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
1020       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1021       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1022       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
1023     return 0;
1024 
1025   // Remove the branch.
1026   I->eraseFromParent();
1027 
1028   I = MBB.end();
1029 
1030   if (I == MBB.begin()) return 1;
1031   --I;
1032   if (I->getOpcode() != PPC::BCC &&
1033       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1034       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1035       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
1036     return 1;
1037 
1038   // Remove the branch.
1039   I->eraseFromParent();
1040   return 2;
1041 }
1042 
1043 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
1044                                     MachineBasicBlock *TBB,
1045                                     MachineBasicBlock *FBB,
1046                                     ArrayRef<MachineOperand> Cond,
1047                                     const DebugLoc &DL,
1048                                     int *BytesAdded) const {
1049   // Shouldn't be a fall through.
1050   assert(TBB && "insertBranch must not be told to insert a fallthrough");
1051   assert((Cond.size() == 2 || Cond.size() == 0) &&
1052          "PPC branch conditions have two components!");
1053   assert(!BytesAdded && "code size not handled");
1054 
1055   bool isPPC64 = Subtarget.isPPC64();
1056 
1057   // One-way branch.
1058   if (!FBB) {
1059     if (Cond.empty())   // Unconditional branch
1060       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
1061     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1062       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1063                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1064                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
1065     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1066       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1067     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1068       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1069     else                // Conditional branch
1070       BuildMI(&MBB, DL, get(PPC::BCC))
1071           .addImm(Cond[0].getImm())
1072           .add(Cond[1])
1073           .addMBB(TBB);
1074     return 1;
1075   }
1076 
1077   // Two-way Conditional Branch.
1078   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1079     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1080                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1081                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
1082   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1083     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1084   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1085     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1086   else
1087     BuildMI(&MBB, DL, get(PPC::BCC))
1088         .addImm(Cond[0].getImm())
1089         .add(Cond[1])
1090         .addMBB(TBB);
1091   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
1092   return 2;
1093 }
1094 
1095 // Select analysis.
1096 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
1097                                    ArrayRef<MachineOperand> Cond,
1098                                    Register DstReg, Register TrueReg,
1099                                    Register FalseReg, int &CondCycles,
1100                                    int &TrueCycles, int &FalseCycles) const {
1101   if (Cond.size() != 2)
1102     return false;
1103 
1104   // If this is really a bdnz-like condition, then it cannot be turned into a
1105   // select.
1106   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1107     return false;
1108 
1109   // Check register classes.
1110   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1111   const TargetRegisterClass *RC =
1112     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1113   if (!RC)
1114     return false;
1115 
1116   // isel is for regular integer GPRs only.
1117   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
1118       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
1119       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
1120       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
1121     return false;
1122 
1123   // FIXME: These numbers are for the A2, how well they work for other cores is
1124   // an open question. On the A2, the isel instruction has a 2-cycle latency
1125   // but single-cycle throughput. These numbers are used in combination with
1126   // the MispredictPenalty setting from the active SchedMachineModel.
1127   CondCycles = 1;
1128   TrueCycles = 1;
1129   FalseCycles = 1;
1130 
1131   return true;
1132 }
1133 
1134 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
1135                                 MachineBasicBlock::iterator MI,
1136                                 const DebugLoc &dl, Register DestReg,
1137                                 ArrayRef<MachineOperand> Cond, Register TrueReg,
1138                                 Register FalseReg) const {
1139   assert(Cond.size() == 2 &&
1140          "PPC branch conditions have two components!");
1141 
1142   // Get the register classes.
1143   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1144   const TargetRegisterClass *RC =
1145     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1146   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
1147 
1148   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
1149                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
1150   assert((Is64Bit ||
1151           PPC::GPRCRegClass.hasSubClassEq(RC) ||
1152           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
1153          "isel is for regular integer GPRs only");
1154 
1155   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
1156   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
1157 
1158   unsigned SubIdx = 0;
1159   bool SwapOps = false;
1160   switch (SelectPred) {
1161   case PPC::PRED_EQ:
1162   case PPC::PRED_EQ_MINUS:
1163   case PPC::PRED_EQ_PLUS:
1164       SubIdx = PPC::sub_eq; SwapOps = false; break;
1165   case PPC::PRED_NE:
1166   case PPC::PRED_NE_MINUS:
1167   case PPC::PRED_NE_PLUS:
1168       SubIdx = PPC::sub_eq; SwapOps = true; break;
1169   case PPC::PRED_LT:
1170   case PPC::PRED_LT_MINUS:
1171   case PPC::PRED_LT_PLUS:
1172       SubIdx = PPC::sub_lt; SwapOps = false; break;
1173   case PPC::PRED_GE:
1174   case PPC::PRED_GE_MINUS:
1175   case PPC::PRED_GE_PLUS:
1176       SubIdx = PPC::sub_lt; SwapOps = true; break;
1177   case PPC::PRED_GT:
1178   case PPC::PRED_GT_MINUS:
1179   case PPC::PRED_GT_PLUS:
1180       SubIdx = PPC::sub_gt; SwapOps = false; break;
1181   case PPC::PRED_LE:
1182   case PPC::PRED_LE_MINUS:
1183   case PPC::PRED_LE_PLUS:
1184       SubIdx = PPC::sub_gt; SwapOps = true; break;
1185   case PPC::PRED_UN:
1186   case PPC::PRED_UN_MINUS:
1187   case PPC::PRED_UN_PLUS:
1188       SubIdx = PPC::sub_un; SwapOps = false; break;
1189   case PPC::PRED_NU:
1190   case PPC::PRED_NU_MINUS:
1191   case PPC::PRED_NU_PLUS:
1192       SubIdx = PPC::sub_un; SwapOps = true; break;
1193   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
1194   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
1195   }
1196 
1197   Register FirstReg =  SwapOps ? FalseReg : TrueReg,
1198            SecondReg = SwapOps ? TrueReg  : FalseReg;
1199 
1200   // The first input register of isel cannot be r0. If it is a member
1201   // of a register class that can be r0, then copy it first (the
1202   // register allocator should eliminate the copy).
1203   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
1204       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
1205     const TargetRegisterClass *FirstRC =
1206       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
1207         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
1208     Register OldFirstReg = FirstReg;
1209     FirstReg = MRI.createVirtualRegister(FirstRC);
1210     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
1211       .addReg(OldFirstReg);
1212   }
1213 
1214   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
1215     .addReg(FirstReg).addReg(SecondReg)
1216     .addReg(Cond[1].getReg(), 0, SubIdx);
1217 }
1218 
1219 static unsigned getCRBitValue(unsigned CRBit) {
1220   unsigned Ret = 4;
1221   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
1222       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
1223       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
1224       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
1225     Ret = 3;
1226   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
1227       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
1228       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
1229       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
1230     Ret = 2;
1231   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
1232       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
1233       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
1234       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
1235     Ret = 1;
1236   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
1237       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
1238       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
1239       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
1240     Ret = 0;
1241 
1242   assert(Ret != 4 && "Invalid CR bit register");
1243   return Ret;
1244 }
1245 
1246 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1247                                MachineBasicBlock::iterator I,
1248                                const DebugLoc &DL, MCRegister DestReg,
1249                                MCRegister SrcReg, bool KillSrc) const {
1250   // We can end up with self copies and similar things as a result of VSX copy
1251   // legalization. Promote them here.
1252   const TargetRegisterInfo *TRI = &getRegisterInfo();
1253   if (PPC::F8RCRegClass.contains(DestReg) &&
1254       PPC::VSRCRegClass.contains(SrcReg)) {
1255     MCRegister SuperReg =
1256         TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
1257 
1258     if (VSXSelfCopyCrash && SrcReg == SuperReg)
1259       llvm_unreachable("nop VSX copy");
1260 
1261     DestReg = SuperReg;
1262   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
1263              PPC::VSRCRegClass.contains(DestReg)) {
1264     MCRegister SuperReg =
1265         TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
1266 
1267     if (VSXSelfCopyCrash && DestReg == SuperReg)
1268       llvm_unreachable("nop VSX copy");
1269 
1270     SrcReg = SuperReg;
1271   }
1272 
1273   // Different class register copy
1274   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
1275       PPC::GPRCRegClass.contains(DestReg)) {
1276     MCRegister CRReg = getCRFromCRBit(SrcReg);
1277     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
1278     getKillRegState(KillSrc);
1279     // Rotate the CR bit in the CR fields to be the least significant bit and
1280     // then mask with 0x1 (MB = ME = 31).
1281     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
1282        .addReg(DestReg, RegState::Kill)
1283        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
1284        .addImm(31)
1285        .addImm(31);
1286     return;
1287   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
1288              (PPC::G8RCRegClass.contains(DestReg) ||
1289               PPC::GPRCRegClass.contains(DestReg))) {
1290     bool Is64Bit = PPC::G8RCRegClass.contains(DestReg);
1291     unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF;
1292     unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM;
1293     unsigned CRNum = TRI->getEncodingValue(SrcReg);
1294     BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg);
1295     getKillRegState(KillSrc);
1296     if (CRNum == 7)
1297       return;
1298     // Shift the CR bits to make the CR field in the lowest 4 bits of GRC.
1299     BuildMI(MBB, I, DL, get(ShCode), DestReg)
1300         .addReg(DestReg, RegState::Kill)
1301         .addImm(CRNum * 4 + 4)
1302         .addImm(28)
1303         .addImm(31);
1304     return;
1305   } else if (PPC::G8RCRegClass.contains(SrcReg) &&
1306              PPC::VSFRCRegClass.contains(DestReg)) {
1307     assert(Subtarget.hasDirectMove() &&
1308            "Subtarget doesn't support directmove, don't know how to copy.");
1309     BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
1310     NumGPRtoVSRSpill++;
1311     getKillRegState(KillSrc);
1312     return;
1313   } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
1314              PPC::G8RCRegClass.contains(DestReg)) {
1315     assert(Subtarget.hasDirectMove() &&
1316            "Subtarget doesn't support directmove, don't know how to copy.");
1317     BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
1318     getKillRegState(KillSrc);
1319     return;
1320   } else if (PPC::SPERCRegClass.contains(SrcReg) &&
1321              PPC::GPRCRegClass.contains(DestReg)) {
1322     BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
1323     getKillRegState(KillSrc);
1324     return;
1325   } else if (PPC::GPRCRegClass.contains(SrcReg) &&
1326              PPC::SPERCRegClass.contains(DestReg)) {
1327     BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
1328     getKillRegState(KillSrc);
1329     return;
1330   }
1331 
1332   unsigned Opc;
1333   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
1334     Opc = PPC::OR;
1335   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
1336     Opc = PPC::OR8;
1337   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
1338     Opc = PPC::FMR;
1339   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
1340     Opc = PPC::MCRF;
1341   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
1342     Opc = PPC::VOR;
1343   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
1344     // There are two different ways this can be done:
1345     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
1346     //      issue in VSU pipeline 0.
1347     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
1348     //      can go to either pipeline.
1349     // We'll always use xxlor here, because in practically all cases where
1350     // copies are generated, they are close enough to some use that the
1351     // lower-latency form is preferable.
1352     Opc = PPC::XXLOR;
1353   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1354            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1355     Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1356   else if (Subtarget.pairedVectorMemops() &&
1357            PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) {
1358     if (SrcReg > PPC::VSRp15)
1359       SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2;
1360     else
1361       SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2;
1362     if (DestReg > PPC::VSRp15)
1363       DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2;
1364     else
1365       DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2;
1366     BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg).
1367       addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1368     BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1).
1369       addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc));
1370     return;
1371   }
1372   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1373     Opc = PPC::CROR;
1374   else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1375     Opc = PPC::EVOR;
1376   else if ((PPC::ACCRCRegClass.contains(DestReg) ||
1377             PPC::UACCRCRegClass.contains(DestReg)) &&
1378            (PPC::ACCRCRegClass.contains(SrcReg) ||
1379             PPC::UACCRCRegClass.contains(SrcReg))) {
1380     // If primed, de-prime the source register, copy the individual registers
1381     // and prime the destination if needed. The vector subregisters are
1382     // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the
1383     // source is primed, we need to re-prime it after the copy as well.
1384     PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg);
1385     bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg);
1386     bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg);
1387     MCRegister VSLSrcReg =
1388         PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
1389     MCRegister VSLDestReg =
1390         PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
1391     if (SrcPrimed)
1392       BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
1393     for (unsigned Idx = 0; Idx < 4; Idx++)
1394       BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx)
1395           .addReg(VSLSrcReg + Idx)
1396           .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc));
1397     if (DestPrimed)
1398       BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg);
1399     if (SrcPrimed && !KillSrc)
1400       BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
1401     return;
1402   } else
1403     llvm_unreachable("Impossible reg-to-reg copy");
1404 
1405   const MCInstrDesc &MCID = get(Opc);
1406   if (MCID.getNumOperands() == 3)
1407     BuildMI(MBB, I, DL, MCID, DestReg)
1408       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1409   else
1410     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1411 }
1412 
1413 unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const {
1414   int OpcodeIndex = 0;
1415 
1416   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1417       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1418     OpcodeIndex = SOK_Int4Spill;
1419   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1420              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1421     OpcodeIndex = SOK_Int8Spill;
1422   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1423     OpcodeIndex = SOK_Float8Spill;
1424   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1425     OpcodeIndex = SOK_Float4Spill;
1426   } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1427     OpcodeIndex = SOK_SPESpill;
1428   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1429     OpcodeIndex = SOK_CRSpill;
1430   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1431     OpcodeIndex = SOK_CRBitSpill;
1432   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1433     OpcodeIndex = SOK_VRVectorSpill;
1434   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1435     OpcodeIndex = SOK_VSXVectorSpill;
1436   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1437     OpcodeIndex = SOK_VectorFloat8Spill;
1438   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1439     OpcodeIndex = SOK_VectorFloat4Spill;
1440   } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1441     OpcodeIndex = SOK_SpillToVSR;
1442   } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) {
1443     assert(Subtarget.pairedVectorMemops() &&
1444            "Register unexpected when paired memops are disabled.");
1445     OpcodeIndex = SOK_AccumulatorSpill;
1446   } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) {
1447     assert(Subtarget.pairedVectorMemops() &&
1448            "Register unexpected when paired memops are disabled.");
1449     OpcodeIndex = SOK_UAccumulatorSpill;
1450   } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) {
1451     assert(Subtarget.pairedVectorMemops() &&
1452            "Register unexpected when paired memops are disabled.");
1453     OpcodeIndex = SOK_PairedVecSpill;
1454   } else {
1455     llvm_unreachable("Unknown regclass!");
1456   }
1457   return OpcodeIndex;
1458 }
1459 
1460 unsigned
1461 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const {
1462   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1463   return OpcodesForSpill[getSpillIndex(RC)];
1464 }
1465 
1466 unsigned
1467 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const {
1468   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1469   return OpcodesForSpill[getSpillIndex(RC)];
1470 }
1471 
1472 void PPCInstrInfo::StoreRegToStackSlot(
1473     MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1474     const TargetRegisterClass *RC,
1475     SmallVectorImpl<MachineInstr *> &NewMIs) const {
1476   unsigned Opcode = getStoreOpcodeForSpill(RC);
1477   DebugLoc DL;
1478 
1479   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1480   FuncInfo->setHasSpills();
1481 
1482   NewMIs.push_back(addFrameReference(
1483       BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1484       FrameIdx));
1485 
1486   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1487       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1488     FuncInfo->setSpillsCR();
1489 
1490   if (isXFormMemOp(Opcode))
1491     FuncInfo->setHasNonRISpills();
1492 }
1493 
1494 void PPCInstrInfo::storeRegToStackSlotNoUpd(
1495     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg,
1496     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
1497     const TargetRegisterInfo *TRI) const {
1498   MachineFunction &MF = *MBB.getParent();
1499   SmallVector<MachineInstr *, 4> NewMIs;
1500 
1501   StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1502 
1503   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1504     MBB.insert(MI, NewMIs[i]);
1505 
1506   const MachineFrameInfo &MFI = MF.getFrameInfo();
1507   MachineMemOperand *MMO = MF.getMachineMemOperand(
1508       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1509       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1510       MFI.getObjectAlign(FrameIdx));
1511   NewMIs.back()->addMemOperand(MF, MMO);
1512 }
1513 
1514 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1515                                        MachineBasicBlock::iterator MI,
1516                                        Register SrcReg, bool isKill,
1517                                        int FrameIdx,
1518                                        const TargetRegisterClass *RC,
1519                                        const TargetRegisterInfo *TRI) const {
1520   // We need to avoid a situation in which the value from a VRRC register is
1521   // spilled using an Altivec instruction and reloaded into a VSRC register
1522   // using a VSX instruction. The issue with this is that the VSX
1523   // load/store instructions swap the doublewords in the vector and the Altivec
1524   // ones don't. The register classes on the spill/reload may be different if
1525   // the register is defined using an Altivec instruction and is then used by a
1526   // VSX instruction.
1527   RC = updatedRC(RC);
1528   storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI);
1529 }
1530 
1531 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1532                                         unsigned DestReg, int FrameIdx,
1533                                         const TargetRegisterClass *RC,
1534                                         SmallVectorImpl<MachineInstr *> &NewMIs)
1535                                         const {
1536   unsigned Opcode = getLoadOpcodeForSpill(RC);
1537   NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1538                                      FrameIdx));
1539   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1540 
1541   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1542       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1543     FuncInfo->setSpillsCR();
1544 
1545   if (isXFormMemOp(Opcode))
1546     FuncInfo->setHasNonRISpills();
1547 }
1548 
1549 void PPCInstrInfo::loadRegFromStackSlotNoUpd(
1550     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg,
1551     int FrameIdx, const TargetRegisterClass *RC,
1552     const TargetRegisterInfo *TRI) const {
1553   MachineFunction &MF = *MBB.getParent();
1554   SmallVector<MachineInstr*, 4> NewMIs;
1555   DebugLoc DL;
1556   if (MI != MBB.end()) DL = MI->getDebugLoc();
1557 
1558   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1559   FuncInfo->setHasSpills();
1560 
1561   LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
1562 
1563   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1564     MBB.insert(MI, NewMIs[i]);
1565 
1566   const MachineFrameInfo &MFI = MF.getFrameInfo();
1567   MachineMemOperand *MMO = MF.getMachineMemOperand(
1568       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1569       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1570       MFI.getObjectAlign(FrameIdx));
1571   NewMIs.back()->addMemOperand(MF, MMO);
1572 }
1573 
1574 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1575                                         MachineBasicBlock::iterator MI,
1576                                         Register DestReg, int FrameIdx,
1577                                         const TargetRegisterClass *RC,
1578                                         const TargetRegisterInfo *TRI) const {
1579   // We need to avoid a situation in which the value from a VRRC register is
1580   // spilled using an Altivec instruction and reloaded into a VSRC register
1581   // using a VSX instruction. The issue with this is that the VSX
1582   // load/store instructions swap the doublewords in the vector and the Altivec
1583   // ones don't. The register classes on the spill/reload may be different if
1584   // the register is defined using an Altivec instruction and is then used by a
1585   // VSX instruction.
1586   RC = updatedRC(RC);
1587 
1588   loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI);
1589 }
1590 
1591 bool PPCInstrInfo::
1592 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1593   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1594   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1595     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1596   else
1597     // Leave the CR# the same, but invert the condition.
1598     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1599   return false;
1600 }
1601 
1602 // For some instructions, it is legal to fold ZERO into the RA register field.
1603 // This function performs that fold by replacing the operand with PPC::ZERO,
1604 // it does not consider whether the load immediate zero is no longer in use.
1605 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1606                                      Register Reg) const {
1607   // A zero immediate should always be loaded with a single li.
1608   unsigned DefOpc = DefMI.getOpcode();
1609   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1610     return false;
1611   if (!DefMI.getOperand(1).isImm())
1612     return false;
1613   if (DefMI.getOperand(1).getImm() != 0)
1614     return false;
1615 
1616   // Note that we cannot here invert the arguments of an isel in order to fold
1617   // a ZERO into what is presented as the second argument. All we have here
1618   // is the condition bit, and that might come from a CR-logical bit operation.
1619 
1620   const MCInstrDesc &UseMCID = UseMI.getDesc();
1621 
1622   // Only fold into real machine instructions.
1623   if (UseMCID.isPseudo())
1624     return false;
1625 
1626   // We need to find which of the User's operands is to be folded, that will be
1627   // the operand that matches the given register ID.
1628   unsigned UseIdx;
1629   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1630     if (UseMI.getOperand(UseIdx).isReg() &&
1631         UseMI.getOperand(UseIdx).getReg() == Reg)
1632       break;
1633 
1634   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1635   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1636 
1637   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1638 
1639   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1640   // register (which might also be specified as a pointer class kind).
1641   if (UseInfo->isLookupPtrRegClass()) {
1642     if (UseInfo->RegClass /* Kind */ != 1)
1643       return false;
1644   } else {
1645     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1646         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1647       return false;
1648   }
1649 
1650   // Make sure this is not tied to an output register (or otherwise
1651   // constrained). This is true for ST?UX registers, for example, which
1652   // are tied to their output registers.
1653   if (UseInfo->Constraints != 0)
1654     return false;
1655 
1656   MCRegister ZeroReg;
1657   if (UseInfo->isLookupPtrRegClass()) {
1658     bool isPPC64 = Subtarget.isPPC64();
1659     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1660   } else {
1661     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1662               PPC::ZERO8 : PPC::ZERO;
1663   }
1664 
1665   UseMI.getOperand(UseIdx).setReg(ZeroReg);
1666   return true;
1667 }
1668 
1669 // Folds zero into instructions which have a load immediate zero as an operand
1670 // but also recognize zero as immediate zero. If the definition of the load
1671 // has no more users it is deleted.
1672 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1673                                  Register Reg, MachineRegisterInfo *MRI) const {
1674   bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg);
1675   if (MRI->use_nodbg_empty(Reg))
1676     DefMI.eraseFromParent();
1677   return Changed;
1678 }
1679 
1680 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1681   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1682        I != IE; ++I)
1683     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1684       return true;
1685   return false;
1686 }
1687 
1688 // We should make sure that, if we're going to predicate both sides of a
1689 // condition (a diamond), that both sides don't define the counter register. We
1690 // can predicate counter-decrement-based branches, but while that predicates
1691 // the branching, it does not predicate the counter decrement. If we tried to
1692 // merge the triangle into one predicated block, we'd decrement the counter
1693 // twice.
1694 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1695                      unsigned NumT, unsigned ExtraT,
1696                      MachineBasicBlock &FMBB,
1697                      unsigned NumF, unsigned ExtraF,
1698                      BranchProbability Probability) const {
1699   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1700 }
1701 
1702 
1703 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1704   // The predicated branches are identified by their type, not really by the
1705   // explicit presence of a predicate. Furthermore, some of them can be
1706   // predicated more than once. Because if conversion won't try to predicate
1707   // any instruction which already claims to be predicated (by returning true
1708   // here), always return false. In doing so, we let isPredicable() be the
1709   // final word on whether not the instruction can be (further) predicated.
1710 
1711   return false;
1712 }
1713 
1714 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1715                                         const MachineBasicBlock *MBB,
1716                                         const MachineFunction &MF) const {
1717   // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion
1718   // across them, since some FP operations may change content of FPSCR.
1719   // TODO: Model FPSCR in PPC instruction definitions and remove the workaround
1720   if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF)
1721     return true;
1722   return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
1723 }
1724 
1725 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1726                                         ArrayRef<MachineOperand> Pred) const {
1727   unsigned OpC = MI.getOpcode();
1728   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1729     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1730       bool isPPC64 = Subtarget.isPPC64();
1731       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1732                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1733       // Need add Def and Use for CTR implicit operand.
1734       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1735           .addReg(Pred[1].getReg(), RegState::Implicit)
1736           .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
1737     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1738       MI.setDesc(get(PPC::BCLR));
1739       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1740     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1741       MI.setDesc(get(PPC::BCLRn));
1742       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1743     } else {
1744       MI.setDesc(get(PPC::BCCLR));
1745       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1746           .addImm(Pred[0].getImm())
1747           .add(Pred[1]);
1748     }
1749 
1750     return true;
1751   } else if (OpC == PPC::B) {
1752     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1753       bool isPPC64 = Subtarget.isPPC64();
1754       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1755                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1756       // Need add Def and Use for CTR implicit operand.
1757       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1758           .addReg(Pred[1].getReg(), RegState::Implicit)
1759           .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
1760     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1761       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1762       MI.RemoveOperand(0);
1763 
1764       MI.setDesc(get(PPC::BC));
1765       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1766           .add(Pred[1])
1767           .addMBB(MBB);
1768     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1769       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1770       MI.RemoveOperand(0);
1771 
1772       MI.setDesc(get(PPC::BCn));
1773       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1774           .add(Pred[1])
1775           .addMBB(MBB);
1776     } else {
1777       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1778       MI.RemoveOperand(0);
1779 
1780       MI.setDesc(get(PPC::BCC));
1781       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1782           .addImm(Pred[0].getImm())
1783           .add(Pred[1])
1784           .addMBB(MBB);
1785     }
1786 
1787     return true;
1788   } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
1789              OpC == PPC::BCTRL8) {
1790     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1791       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1792 
1793     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1794     bool isPPC64 = Subtarget.isPPC64();
1795 
1796     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1797       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1798                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1799       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1800     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1801       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1802                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1803       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1804     } else {
1805       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1806                              : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1807       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1808           .addImm(Pred[0].getImm())
1809           .add(Pred[1]);
1810     }
1811 
1812     // Need add Def and Use for LR implicit operand.
1813     if (setLR)
1814       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1815           .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit)
1816           .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine);
1817 
1818     return true;
1819   }
1820 
1821   return false;
1822 }
1823 
1824 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1825                                      ArrayRef<MachineOperand> Pred2) const {
1826   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1827   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1828 
1829   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1830     return false;
1831   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1832     return false;
1833 
1834   // P1 can only subsume P2 if they test the same condition register.
1835   if (Pred1[1].getReg() != Pred2[1].getReg())
1836     return false;
1837 
1838   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1839   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1840 
1841   if (P1 == P2)
1842     return true;
1843 
1844   // Does P1 subsume P2, e.g. GE subsumes GT.
1845   if (P1 == PPC::PRED_LE &&
1846       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1847     return true;
1848   if (P1 == PPC::PRED_GE &&
1849       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1850     return true;
1851 
1852   return false;
1853 }
1854 
1855 bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI,
1856                                      std::vector<MachineOperand> &Pred,
1857                                      bool SkipDead) const {
1858   // Note: At the present time, the contents of Pred from this function is
1859   // unused by IfConversion. This implementation follows ARM by pushing the
1860   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1861   // predicate, instructions defining CTR or CTR8 are also included as
1862   // predicate-defining instructions.
1863 
1864   const TargetRegisterClass *RCs[] =
1865     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1866       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1867 
1868   bool Found = false;
1869   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1870     const MachineOperand &MO = MI.getOperand(i);
1871     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1872       const TargetRegisterClass *RC = RCs[c];
1873       if (MO.isReg()) {
1874         if (MO.isDef() && RC->contains(MO.getReg())) {
1875           Pred.push_back(MO);
1876           Found = true;
1877         }
1878       } else if (MO.isRegMask()) {
1879         for (TargetRegisterClass::iterator I = RC->begin(),
1880              IE = RC->end(); I != IE; ++I)
1881           if (MO.clobbersPhysReg(*I)) {
1882             Pred.push_back(MO);
1883             Found = true;
1884           }
1885       }
1886     }
1887   }
1888 
1889   return Found;
1890 }
1891 
1892 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1893                                   Register &SrcReg2, int &Mask,
1894                                   int &Value) const {
1895   unsigned Opc = MI.getOpcode();
1896 
1897   switch (Opc) {
1898   default: return false;
1899   case PPC::CMPWI:
1900   case PPC::CMPLWI:
1901   case PPC::CMPDI:
1902   case PPC::CMPLDI:
1903     SrcReg = MI.getOperand(1).getReg();
1904     SrcReg2 = 0;
1905     Value = MI.getOperand(2).getImm();
1906     Mask = 0xFFFF;
1907     return true;
1908   case PPC::CMPW:
1909   case PPC::CMPLW:
1910   case PPC::CMPD:
1911   case PPC::CMPLD:
1912   case PPC::FCMPUS:
1913   case PPC::FCMPUD:
1914     SrcReg = MI.getOperand(1).getReg();
1915     SrcReg2 = MI.getOperand(2).getReg();
1916     Value = 0;
1917     Mask = 0;
1918     return true;
1919   }
1920 }
1921 
1922 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
1923                                         Register SrcReg2, int Mask, int Value,
1924                                         const MachineRegisterInfo *MRI) const {
1925   if (DisableCmpOpt)
1926     return false;
1927 
1928   int OpC = CmpInstr.getOpcode();
1929   Register CRReg = CmpInstr.getOperand(0).getReg();
1930 
1931   // FP record forms set CR1 based on the exception status bits, not a
1932   // comparison with zero.
1933   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1934     return false;
1935 
1936   const TargetRegisterInfo *TRI = &getRegisterInfo();
1937   // The record forms set the condition register based on a signed comparison
1938   // with zero (so says the ISA manual). This is not as straightforward as it
1939   // seems, however, because this is always a 64-bit comparison on PPC64, even
1940   // for instructions that are 32-bit in nature (like slw for example).
1941   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1942   // for equality checks (as those don't depend on the sign). On PPC64,
1943   // we are restricted to equality for unsigned 64-bit comparisons and for
1944   // signed 32-bit comparisons the applicability is more restricted.
1945   bool isPPC64 = Subtarget.isPPC64();
1946   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1947   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1948   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1949 
1950   // Look through copies unless that gets us to a physical register.
1951   Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
1952   if (ActualSrc.isVirtual())
1953     SrcReg = ActualSrc;
1954 
1955   // Get the unique definition of SrcReg.
1956   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1957   if (!MI) return false;
1958 
1959   bool equalityOnly = false;
1960   bool noSub = false;
1961   if (isPPC64) {
1962     if (is32BitSignedCompare) {
1963       // We can perform this optimization only if MI is sign-extending.
1964       if (isSignExtended(*MI))
1965         noSub = true;
1966       else
1967         return false;
1968     } else if (is32BitUnsignedCompare) {
1969       // We can perform this optimization, equality only, if MI is
1970       // zero-extending.
1971       if (isZeroExtended(*MI)) {
1972         noSub = true;
1973         equalityOnly = true;
1974       } else
1975         return false;
1976     } else
1977       equalityOnly = is64BitUnsignedCompare;
1978   } else
1979     equalityOnly = is32BitUnsignedCompare;
1980 
1981   if (equalityOnly) {
1982     // We need to check the uses of the condition register in order to reject
1983     // non-equality comparisons.
1984     for (MachineRegisterInfo::use_instr_iterator
1985          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1986          I != IE; ++I) {
1987       MachineInstr *UseMI = &*I;
1988       if (UseMI->getOpcode() == PPC::BCC) {
1989         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1990         unsigned PredCond = PPC::getPredicateCondition(Pred);
1991         // We ignore hint bits when checking for non-equality comparisons.
1992         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
1993           return false;
1994       } else if (UseMI->getOpcode() == PPC::ISEL ||
1995                  UseMI->getOpcode() == PPC::ISEL8) {
1996         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1997         if (SubIdx != PPC::sub_eq)
1998           return false;
1999       } else
2000         return false;
2001     }
2002   }
2003 
2004   MachineBasicBlock::iterator I = CmpInstr;
2005 
2006   // Scan forward to find the first use of the compare.
2007   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
2008        ++I) {
2009     bool FoundUse = false;
2010     for (MachineRegisterInfo::use_instr_iterator
2011          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
2012          J != JE; ++J)
2013       if (&*J == &*I) {
2014         FoundUse = true;
2015         break;
2016       }
2017 
2018     if (FoundUse)
2019       break;
2020   }
2021 
2022   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
2023   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
2024 
2025   // There are two possible candidates which can be changed to set CR[01].
2026   // One is MI, the other is a SUB instruction.
2027   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
2028   MachineInstr *Sub = nullptr;
2029   if (SrcReg2 != 0)
2030     // MI is not a candidate for CMPrr.
2031     MI = nullptr;
2032   // FIXME: Conservatively refuse to convert an instruction which isn't in the
2033   // same BB as the comparison. This is to allow the check below to avoid calls
2034   // (and other explicit clobbers); instead we should really check for these
2035   // more explicitly (in at least a few predecessors).
2036   else if (MI->getParent() != CmpInstr.getParent())
2037     return false;
2038   else if (Value != 0) {
2039     // The record-form instructions set CR bit based on signed comparison
2040     // against 0. We try to convert a compare against 1 or -1 into a compare
2041     // against 0 to exploit record-form instructions. For example, we change
2042     // the condition "greater than -1" into "greater than or equal to 0"
2043     // and "less than 1" into "less than or equal to 0".
2044 
2045     // Since we optimize comparison based on a specific branch condition,
2046     // we don't optimize if condition code is used by more than once.
2047     if (equalityOnly || !MRI->hasOneUse(CRReg))
2048       return false;
2049 
2050     MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
2051     if (UseMI->getOpcode() != PPC::BCC)
2052       return false;
2053 
2054     PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
2055     unsigned PredCond = PPC::getPredicateCondition(Pred);
2056     unsigned PredHint = PPC::getPredicateHint(Pred);
2057     int16_t Immed = (int16_t)Value;
2058 
2059     // When modifying the condition in the predicate, we propagate hint bits
2060     // from the original predicate to the new one.
2061     if (Immed == -1 && PredCond == PPC::PRED_GT)
2062       // We convert "greater than -1" into "greater than or equal to 0",
2063       // since we are assuming signed comparison by !equalityOnly
2064       Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
2065     else if (Immed == -1 && PredCond == PPC::PRED_LE)
2066       // We convert "less than or equal to -1" into "less than 0".
2067       Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
2068     else if (Immed == 1 && PredCond == PPC::PRED_LT)
2069       // We convert "less than 1" into "less than or equal to 0".
2070       Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
2071     else if (Immed == 1 && PredCond == PPC::PRED_GE)
2072       // We convert "greater than or equal to 1" into "greater than 0".
2073       Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
2074     else
2075       return false;
2076 
2077     PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
2078   }
2079 
2080   // Search for Sub.
2081   --I;
2082 
2083   // Get ready to iterate backward from CmpInstr.
2084   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
2085 
2086   for (; I != E && !noSub; --I) {
2087     const MachineInstr &Instr = *I;
2088     unsigned IOpC = Instr.getOpcode();
2089 
2090     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
2091                              Instr.readsRegister(PPC::CR0, TRI)))
2092       // This instruction modifies or uses the record condition register after
2093       // the one we want to change. While we could do this transformation, it
2094       // would likely not be profitable. This transformation removes one
2095       // instruction, and so even forcing RA to generate one move probably
2096       // makes it unprofitable.
2097       return false;
2098 
2099     // Check whether CmpInstr can be made redundant by the current instruction.
2100     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
2101          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
2102         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
2103         ((Instr.getOperand(1).getReg() == SrcReg &&
2104           Instr.getOperand(2).getReg() == SrcReg2) ||
2105         (Instr.getOperand(1).getReg() == SrcReg2 &&
2106          Instr.getOperand(2).getReg() == SrcReg))) {
2107       Sub = &*I;
2108       break;
2109     }
2110 
2111     if (I == B)
2112       // The 'and' is below the comparison instruction.
2113       return false;
2114   }
2115 
2116   // Return false if no candidates exist.
2117   if (!MI && !Sub)
2118     return false;
2119 
2120   // The single candidate is called MI.
2121   if (!MI) MI = Sub;
2122 
2123   int NewOpC = -1;
2124   int MIOpC = MI->getOpcode();
2125   if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec ||
2126       MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec)
2127     NewOpC = MIOpC;
2128   else {
2129     NewOpC = PPC::getRecordFormOpcode(MIOpC);
2130     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
2131       NewOpC = MIOpC;
2132   }
2133 
2134   // FIXME: On the non-embedded POWER architectures, only some of the record
2135   // forms are fast, and we should use only the fast ones.
2136 
2137   // The defining instruction has a record form (or is already a record
2138   // form). It is possible, however, that we'll need to reverse the condition
2139   // code of the users.
2140   if (NewOpC == -1)
2141     return false;
2142 
2143   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
2144   // needs to be updated to be based on SUB.  Push the condition code
2145   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
2146   // condition code of these operands will be modified.
2147   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
2148   // comparison against 0, which may modify predicate.
2149   bool ShouldSwap = false;
2150   if (Sub && Value == 0) {
2151     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2152       Sub->getOperand(2).getReg() == SrcReg;
2153 
2154     // The operands to subf are the opposite of sub, so only in the fixed-point
2155     // case, invert the order.
2156     ShouldSwap = !ShouldSwap;
2157   }
2158 
2159   if (ShouldSwap)
2160     for (MachineRegisterInfo::use_instr_iterator
2161          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
2162          I != IE; ++I) {
2163       MachineInstr *UseMI = &*I;
2164       if (UseMI->getOpcode() == PPC::BCC) {
2165         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
2166         unsigned PredCond = PPC::getPredicateCondition(Pred);
2167         assert((!equalityOnly ||
2168                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
2169                "Invalid predicate for equality-only optimization");
2170         (void)PredCond; // To suppress warning in release build.
2171         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
2172                                 PPC::getSwappedPredicate(Pred)));
2173       } else if (UseMI->getOpcode() == PPC::ISEL ||
2174                  UseMI->getOpcode() == PPC::ISEL8) {
2175         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
2176         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
2177                "Invalid CR bit for equality-only optimization");
2178 
2179         if (NewSubReg == PPC::sub_lt)
2180           NewSubReg = PPC::sub_gt;
2181         else if (NewSubReg == PPC::sub_gt)
2182           NewSubReg = PPC::sub_lt;
2183 
2184         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
2185                                                  NewSubReg));
2186       } else // We need to abort on a user we don't understand.
2187         return false;
2188     }
2189   assert(!(Value != 0 && ShouldSwap) &&
2190          "Non-zero immediate support and ShouldSwap"
2191          "may conflict in updating predicate");
2192 
2193   // Create a new virtual register to hold the value of the CR set by the
2194   // record-form instruction. If the instruction was not previously in
2195   // record form, then set the kill flag on the CR.
2196   CmpInstr.eraseFromParent();
2197 
2198   MachineBasicBlock::iterator MII = MI;
2199   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
2200           get(TargetOpcode::COPY), CRReg)
2201     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
2202 
2203   // Even if CR0 register were dead before, it is alive now since the
2204   // instruction we just built uses it.
2205   MI->clearRegisterDeads(PPC::CR0);
2206 
2207   if (MIOpC != NewOpC) {
2208     // We need to be careful here: we're replacing one instruction with
2209     // another, and we need to make sure that we get all of the right
2210     // implicit uses and defs. On the other hand, the caller may be holding
2211     // an iterator to this instruction, and so we can't delete it (this is
2212     // specifically the case if this is the instruction directly after the
2213     // compare).
2214 
2215     // Rotates are expensive instructions. If we're emitting a record-form
2216     // rotate that can just be an andi/andis, we should just emit that.
2217     if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
2218       Register GPRRes = MI->getOperand(0).getReg();
2219       int64_t SH = MI->getOperand(2).getImm();
2220       int64_t MB = MI->getOperand(3).getImm();
2221       int64_t ME = MI->getOperand(4).getImm();
2222       // We can only do this if both the start and end of the mask are in the
2223       // same halfword.
2224       bool MBInLoHWord = MB >= 16;
2225       bool MEInLoHWord = ME >= 16;
2226       uint64_t Mask = ~0LLU;
2227 
2228       if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
2229         Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2230         // The mask value needs to shift right 16 if we're emitting andis.
2231         Mask >>= MBInLoHWord ? 0 : 16;
2232         NewOpC = MIOpC == PPC::RLWINM
2233                      ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec)
2234                      : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec);
2235       } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
2236                  (ME - MB + 1 == SH) && (MB >= 16)) {
2237         // If we are rotating by the exact number of bits as are in the mask
2238         // and the mask is in the least significant bits of the register,
2239         // that's just an andis. (as long as the GPR result has no uses).
2240         Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
2241         Mask >>= 16;
2242         NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec;
2243       }
2244       // If we've set the mask, we can transform.
2245       if (Mask != ~0LLU) {
2246         MI->RemoveOperand(4);
2247         MI->RemoveOperand(3);
2248         MI->getOperand(2).setImm(Mask);
2249         NumRcRotatesConvertedToRcAnd++;
2250       }
2251     } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
2252       int64_t MB = MI->getOperand(3).getImm();
2253       if (MB >= 48) {
2254         uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2255         NewOpC = PPC::ANDI8_rec;
2256         MI->RemoveOperand(3);
2257         MI->getOperand(2).setImm(Mask);
2258         NumRcRotatesConvertedToRcAnd++;
2259       }
2260     }
2261 
2262     const MCInstrDesc &NewDesc = get(NewOpC);
2263     MI->setDesc(NewDesc);
2264 
2265     if (NewDesc.ImplicitDefs)
2266       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
2267            *ImpDefs; ++ImpDefs)
2268         if (!MI->definesRegister(*ImpDefs))
2269           MI->addOperand(*MI->getParent()->getParent(),
2270                          MachineOperand::CreateReg(*ImpDefs, true, true));
2271     if (NewDesc.ImplicitUses)
2272       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
2273            *ImpUses; ++ImpUses)
2274         if (!MI->readsRegister(*ImpUses))
2275           MI->addOperand(*MI->getParent()->getParent(),
2276                          MachineOperand::CreateReg(*ImpUses, false, true));
2277   }
2278   assert(MI->definesRegister(PPC::CR0) &&
2279          "Record-form instruction does not define cr0?");
2280 
2281   // Modify the condition code of operands in OperandsToUpdate.
2282   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2283   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2284   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
2285     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
2286 
2287   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2288     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2289 
2290   return true;
2291 }
2292 
2293 bool PPCInstrInfo::getMemOperandsWithOffsetWidth(
2294     const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
2295     int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
2296     const TargetRegisterInfo *TRI) const {
2297   const MachineOperand *BaseOp;
2298   OffsetIsScalable = false;
2299   if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI))
2300     return false;
2301   BaseOps.push_back(BaseOp);
2302   return true;
2303 }
2304 
2305 static bool isLdStSafeToCluster(const MachineInstr &LdSt,
2306                                 const TargetRegisterInfo *TRI) {
2307   // If this is a volatile load/store, don't mess with it.
2308   if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3)
2309     return false;
2310 
2311   if (LdSt.getOperand(2).isFI())
2312     return true;
2313 
2314   assert(LdSt.getOperand(2).isReg() && "Expected a reg operand.");
2315   // Can't cluster if the instruction modifies the base register
2316   // or it is update form. e.g. ld r2,3(r2)
2317   if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI))
2318     return false;
2319 
2320   return true;
2321 }
2322 
2323 // Only cluster instruction pair that have the same opcode, and they are
2324 // clusterable according to PowerPC specification.
2325 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc,
2326                                      const PPCSubtarget &Subtarget) {
2327   switch (FirstOpc) {
2328   default:
2329     return false;
2330   case PPC::STD:
2331   case PPC::STFD:
2332   case PPC::STXSD:
2333   case PPC::DFSTOREf64:
2334     return FirstOpc == SecondOpc;
2335   // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with
2336   // 32bit and 64bit instruction selection. They are clusterable pair though
2337   // they are different opcode.
2338   case PPC::STW:
2339   case PPC::STW8:
2340     return SecondOpc == PPC::STW || SecondOpc == PPC::STW8;
2341   }
2342 }
2343 
2344 bool PPCInstrInfo::shouldClusterMemOps(
2345     ArrayRef<const MachineOperand *> BaseOps1,
2346     ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads,
2347     unsigned NumBytes) const {
2348 
2349   assert(BaseOps1.size() == 1 && BaseOps2.size() == 1);
2350   const MachineOperand &BaseOp1 = *BaseOps1.front();
2351   const MachineOperand &BaseOp2 = *BaseOps2.front();
2352   assert((BaseOp1.isReg() || BaseOp1.isFI()) &&
2353          "Only base registers and frame indices are supported.");
2354 
2355   // The NumLoads means the number of loads that has been clustered.
2356   // Don't cluster memory op if there are already two ops clustered at least.
2357   if (NumLoads > 2)
2358     return false;
2359 
2360   // Cluster the load/store only when they have the same base
2361   // register or FI.
2362   if ((BaseOp1.isReg() != BaseOp2.isReg()) ||
2363       (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) ||
2364       (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex()))
2365     return false;
2366 
2367   // Check if the load/store are clusterable according to the PowerPC
2368   // specification.
2369   const MachineInstr &FirstLdSt = *BaseOp1.getParent();
2370   const MachineInstr &SecondLdSt = *BaseOp2.getParent();
2371   unsigned FirstOpc = FirstLdSt.getOpcode();
2372   unsigned SecondOpc = SecondLdSt.getOpcode();
2373   const TargetRegisterInfo *TRI = &getRegisterInfo();
2374   // Cluster the load/store only when they have the same opcode, and they are
2375   // clusterable opcode according to PowerPC specification.
2376   if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget))
2377     return false;
2378 
2379   // Can't cluster load/store that have ordered or volatile memory reference.
2380   if (!isLdStSafeToCluster(FirstLdSt, TRI) ||
2381       !isLdStSafeToCluster(SecondLdSt, TRI))
2382     return false;
2383 
2384   int64_t Offset1 = 0, Offset2 = 0;
2385   unsigned Width1 = 0, Width2 = 0;
2386   const MachineOperand *Base1 = nullptr, *Base2 = nullptr;
2387   if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) ||
2388       !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) ||
2389       Width1 != Width2)
2390     return false;
2391 
2392   assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 &&
2393          "getMemOperandWithOffsetWidth return incorrect base op");
2394   // The caller should already have ordered FirstMemOp/SecondMemOp by offset.
2395   assert(Offset1 <= Offset2 && "Caller should have ordered offsets.");
2396   return Offset1 + Width1 == Offset2;
2397 }
2398 
2399 /// GetInstSize - Return the number of bytes of code the specified
2400 /// instruction may be.  This returns the maximum number of bytes.
2401 ///
2402 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2403   unsigned Opcode = MI.getOpcode();
2404 
2405   if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
2406     const MachineFunction *MF = MI.getParent()->getParent();
2407     const char *AsmStr = MI.getOperand(0).getSymbolName();
2408     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2409   } else if (Opcode == TargetOpcode::STACKMAP) {
2410     StackMapOpers Opers(&MI);
2411     return Opers.getNumPatchBytes();
2412   } else if (Opcode == TargetOpcode::PATCHPOINT) {
2413     PatchPointOpers Opers(&MI);
2414     return Opers.getNumPatchBytes();
2415   } else {
2416     return get(Opcode).getSize();
2417   }
2418 }
2419 
2420 std::pair<unsigned, unsigned>
2421 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2422   const unsigned Mask = PPCII::MO_ACCESS_MASK;
2423   return std::make_pair(TF & Mask, TF & ~Mask);
2424 }
2425 
2426 ArrayRef<std::pair<unsigned, const char *>>
2427 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2428   using namespace PPCII;
2429   static const std::pair<unsigned, const char *> TargetFlags[] = {
2430       {MO_LO, "ppc-lo"},
2431       {MO_HA, "ppc-ha"},
2432       {MO_TPREL_LO, "ppc-tprel-lo"},
2433       {MO_TPREL_HA, "ppc-tprel-ha"},
2434       {MO_DTPREL_LO, "ppc-dtprel-lo"},
2435       {MO_TLSLD_LO, "ppc-tlsld-lo"},
2436       {MO_TOC_LO, "ppc-toc-lo"},
2437       {MO_TLS, "ppc-tls"}};
2438   return makeArrayRef(TargetFlags);
2439 }
2440 
2441 ArrayRef<std::pair<unsigned, const char *>>
2442 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2443   using namespace PPCII;
2444   static const std::pair<unsigned, const char *> TargetFlags[] = {
2445       {MO_PLT, "ppc-plt"},
2446       {MO_PIC_FLAG, "ppc-pic"},
2447       {MO_PCREL_FLAG, "ppc-pcrel"},
2448       {MO_GOT_FLAG, "ppc-got"},
2449       {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"},
2450       {MO_TLSGD_FLAG, "ppc-tlsgd"},
2451       {MO_TLSLD_FLAG, "ppc-tlsld"},
2452       {MO_TPREL_FLAG, "ppc-tprel"},
2453       {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"},
2454       {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"},
2455       {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}};
2456   return makeArrayRef(TargetFlags);
2457 }
2458 
2459 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2460 // The VSX versions have the advantage of a full 64-register target whereas
2461 // the FP ones have the advantage of lower latency and higher throughput. So
2462 // what we are after is using the faster instructions in low register pressure
2463 // situations and using the larger register file in high register pressure
2464 // situations.
2465 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2466     unsigned UpperOpcode, LowerOpcode;
2467     switch (MI.getOpcode()) {
2468     case PPC::DFLOADf32:
2469       UpperOpcode = PPC::LXSSP;
2470       LowerOpcode = PPC::LFS;
2471       break;
2472     case PPC::DFLOADf64:
2473       UpperOpcode = PPC::LXSD;
2474       LowerOpcode = PPC::LFD;
2475       break;
2476     case PPC::DFSTOREf32:
2477       UpperOpcode = PPC::STXSSP;
2478       LowerOpcode = PPC::STFS;
2479       break;
2480     case PPC::DFSTOREf64:
2481       UpperOpcode = PPC::STXSD;
2482       LowerOpcode = PPC::STFD;
2483       break;
2484     case PPC::XFLOADf32:
2485       UpperOpcode = PPC::LXSSPX;
2486       LowerOpcode = PPC::LFSX;
2487       break;
2488     case PPC::XFLOADf64:
2489       UpperOpcode = PPC::LXSDX;
2490       LowerOpcode = PPC::LFDX;
2491       break;
2492     case PPC::XFSTOREf32:
2493       UpperOpcode = PPC::STXSSPX;
2494       LowerOpcode = PPC::STFSX;
2495       break;
2496     case PPC::XFSTOREf64:
2497       UpperOpcode = PPC::STXSDX;
2498       LowerOpcode = PPC::STFDX;
2499       break;
2500     case PPC::LIWAX:
2501       UpperOpcode = PPC::LXSIWAX;
2502       LowerOpcode = PPC::LFIWAX;
2503       break;
2504     case PPC::LIWZX:
2505       UpperOpcode = PPC::LXSIWZX;
2506       LowerOpcode = PPC::LFIWZX;
2507       break;
2508     case PPC::STIWX:
2509       UpperOpcode = PPC::STXSIWX;
2510       LowerOpcode = PPC::STFIWX;
2511       break;
2512     default:
2513       llvm_unreachable("Unknown Operation!");
2514     }
2515 
2516     Register TargetReg = MI.getOperand(0).getReg();
2517     unsigned Opcode;
2518     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2519         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2520       Opcode = LowerOpcode;
2521     else
2522       Opcode = UpperOpcode;
2523     MI.setDesc(get(Opcode));
2524     return true;
2525 }
2526 
2527 static bool isAnImmediateOperand(const MachineOperand &MO) {
2528   return MO.isCPI() || MO.isGlobal() || MO.isImm();
2529 }
2530 
2531 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2532   auto &MBB = *MI.getParent();
2533   auto DL = MI.getDebugLoc();
2534 
2535   switch (MI.getOpcode()) {
2536   case PPC::BUILD_UACC: {
2537     MCRegister ACC = MI.getOperand(0).getReg();
2538     MCRegister UACC = MI.getOperand(1).getReg();
2539     if (ACC - PPC::ACC0 != UACC - PPC::UACC0) {
2540       MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4;
2541       MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4;
2542       // FIXME: This can easily be improved to look up to the top of the MBB
2543       // to see if the inputs are XXLOR's. If they are and SrcReg is killed,
2544       // we can just re-target any such XXLOR's to DstVSR + offset.
2545       for (int VecNo = 0; VecNo < 4; VecNo++)
2546         BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo)
2547             .addReg(SrcVSR + VecNo)
2548             .addReg(SrcVSR + VecNo);
2549     }
2550     // BUILD_UACC is expanded to 4 copies of the underlying vsx regisers.
2551     // So after building the 4 copies, we can replace the BUILD_UACC instruction
2552     // with a NOP.
2553     LLVM_FALLTHROUGH;
2554   }
2555   case PPC::KILL_PAIR: {
2556     MI.setDesc(get(PPC::UNENCODED_NOP));
2557     MI.RemoveOperand(1);
2558     MI.RemoveOperand(0);
2559     return true;
2560   }
2561   case TargetOpcode::LOAD_STACK_GUARD: {
2562     assert(Subtarget.isTargetLinux() &&
2563            "Only Linux target is expected to contain LOAD_STACK_GUARD");
2564     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
2565     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
2566     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
2567     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2568         .addImm(Offset)
2569         .addReg(Reg);
2570     return true;
2571   }
2572   case PPC::DFLOADf32:
2573   case PPC::DFLOADf64:
2574   case PPC::DFSTOREf32:
2575   case PPC::DFSTOREf64: {
2576     assert(Subtarget.hasP9Vector() &&
2577            "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2578     assert(MI.getOperand(2).isReg() &&
2579            isAnImmediateOperand(MI.getOperand(1)) &&
2580            "D-form op must have register and immediate operands");
2581     return expandVSXMemPseudo(MI);
2582   }
2583   case PPC::XFLOADf32:
2584   case PPC::XFSTOREf32:
2585   case PPC::LIWAX:
2586   case PPC::LIWZX:
2587   case PPC::STIWX: {
2588     assert(Subtarget.hasP8Vector() &&
2589            "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2590     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2591            "X-form op must have register and register operands");
2592     return expandVSXMemPseudo(MI);
2593   }
2594   case PPC::XFLOADf64:
2595   case PPC::XFSTOREf64: {
2596     assert(Subtarget.hasVSX() &&
2597            "Invalid X-Form Pseudo-ops on target that has no VSX.");
2598     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2599            "X-form op must have register and register operands");
2600     return expandVSXMemPseudo(MI);
2601   }
2602   case PPC::SPILLTOVSR_LD: {
2603     Register TargetReg = MI.getOperand(0).getReg();
2604     if (PPC::VSFRCRegClass.contains(TargetReg)) {
2605       MI.setDesc(get(PPC::DFLOADf64));
2606       return expandPostRAPseudo(MI);
2607     }
2608     else
2609       MI.setDesc(get(PPC::LD));
2610     return true;
2611   }
2612   case PPC::SPILLTOVSR_ST: {
2613     Register SrcReg = MI.getOperand(0).getReg();
2614     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2615       NumStoreSPILLVSRRCAsVec++;
2616       MI.setDesc(get(PPC::DFSTOREf64));
2617       return expandPostRAPseudo(MI);
2618     } else {
2619       NumStoreSPILLVSRRCAsGpr++;
2620       MI.setDesc(get(PPC::STD));
2621     }
2622     return true;
2623   }
2624   case PPC::SPILLTOVSR_LDX: {
2625     Register TargetReg = MI.getOperand(0).getReg();
2626     if (PPC::VSFRCRegClass.contains(TargetReg))
2627       MI.setDesc(get(PPC::LXSDX));
2628     else
2629       MI.setDesc(get(PPC::LDX));
2630     return true;
2631   }
2632   case PPC::SPILLTOVSR_STX: {
2633     Register SrcReg = MI.getOperand(0).getReg();
2634     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2635       NumStoreSPILLVSRRCAsVec++;
2636       MI.setDesc(get(PPC::STXSDX));
2637     } else {
2638       NumStoreSPILLVSRRCAsGpr++;
2639       MI.setDesc(get(PPC::STDX));
2640     }
2641     return true;
2642   }
2643 
2644   case PPC::CFENCE8: {
2645     auto Val = MI.getOperand(0).getReg();
2646     BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
2647     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
2648         .addImm(PPC::PRED_NE_MINUS)
2649         .addReg(PPC::CR7)
2650         .addImm(1);
2651     MI.setDesc(get(PPC::ISYNC));
2652     MI.RemoveOperand(0);
2653     return true;
2654   }
2655   }
2656   return false;
2657 }
2658 
2659 // Essentially a compile-time implementation of a compare->isel sequence.
2660 // It takes two constants to compare, along with the true/false registers
2661 // and the comparison type (as a subreg to a CR field) and returns one
2662 // of the true/false registers, depending on the comparison results.
2663 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
2664                           unsigned TrueReg, unsigned FalseReg,
2665                           unsigned CRSubReg) {
2666   // Signed comparisons. The immediates are assumed to be sign-extended.
2667   if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
2668     switch (CRSubReg) {
2669     default: llvm_unreachable("Unknown integer comparison type.");
2670     case PPC::sub_lt:
2671       return Imm1 < Imm2 ? TrueReg : FalseReg;
2672     case PPC::sub_gt:
2673       return Imm1 > Imm2 ? TrueReg : FalseReg;
2674     case PPC::sub_eq:
2675       return Imm1 == Imm2 ? TrueReg : FalseReg;
2676     }
2677   }
2678   // Unsigned comparisons.
2679   else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
2680     switch (CRSubReg) {
2681     default: llvm_unreachable("Unknown integer comparison type.");
2682     case PPC::sub_lt:
2683       return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
2684     case PPC::sub_gt:
2685       return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
2686     case PPC::sub_eq:
2687       return Imm1 == Imm2 ? TrueReg : FalseReg;
2688     }
2689   }
2690   return PPC::NoRegister;
2691 }
2692 
2693 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
2694                                               unsigned OpNo,
2695                                               int64_t Imm) const {
2696   assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
2697   // Replace the REG with the Immediate.
2698   Register InUseReg = MI.getOperand(OpNo).getReg();
2699   MI.getOperand(OpNo).ChangeToImmediate(Imm);
2700 
2701   if (MI.implicit_operands().empty())
2702     return;
2703 
2704   // We need to make sure that the MI didn't have any implicit use
2705   // of this REG any more.
2706   const TargetRegisterInfo *TRI = &getRegisterInfo();
2707   int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
2708   if (UseOpIdx >= 0) {
2709     MachineOperand &MO = MI.getOperand(UseOpIdx);
2710     if (MO.isImplicit())
2711       // The operands must always be in the following order:
2712       // - explicit reg defs,
2713       // - other explicit operands (reg uses, immediates, etc.),
2714       // - implicit reg defs
2715       // - implicit reg uses
2716       // Therefore, removing the implicit operand won't change the explicit
2717       // operands layout.
2718       MI.RemoveOperand(UseOpIdx);
2719   }
2720 }
2721 
2722 // Replace an instruction with one that materializes a constant (and sets
2723 // CR0 if the original instruction was a record-form instruction).
2724 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
2725                                       const LoadImmediateInfo &LII) const {
2726   // Remove existing operands.
2727   int OperandToKeep = LII.SetCR ? 1 : 0;
2728   for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
2729     MI.RemoveOperand(i);
2730 
2731   // Replace the instruction.
2732   if (LII.SetCR) {
2733     MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
2734     // Set the immediate.
2735     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2736         .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
2737     return;
2738   }
2739   else
2740     MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
2741 
2742   // Set the immediate.
2743   MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2744       .addImm(LII.Imm);
2745 }
2746 
2747 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
2748                                            bool &SeenIntermediateUse) const {
2749   assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
2750          "Should be called after register allocation.");
2751   const TargetRegisterInfo *TRI = &getRegisterInfo();
2752   MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
2753   It++;
2754   SeenIntermediateUse = false;
2755   for (; It != E; ++It) {
2756     if (It->modifiesRegister(Reg, TRI))
2757       return &*It;
2758     if (It->readsRegister(Reg, TRI))
2759       SeenIntermediateUse = true;
2760   }
2761   return nullptr;
2762 }
2763 
2764 MachineInstr *PPCInstrInfo::getForwardingDefMI(
2765   MachineInstr &MI,
2766   unsigned &OpNoForForwarding,
2767   bool &SeenIntermediateUse) const {
2768   OpNoForForwarding = ~0U;
2769   MachineInstr *DefMI = nullptr;
2770   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
2771   const TargetRegisterInfo *TRI = &getRegisterInfo();
2772   // If we're in SSA, get the defs through the MRI. Otherwise, only look
2773   // within the basic block to see if the register is defined using an
2774   // LI/LI8/ADDI/ADDI8.
2775   if (MRI->isSSA()) {
2776     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2777       if (!MI.getOperand(i).isReg())
2778         continue;
2779       Register Reg = MI.getOperand(i).getReg();
2780       if (!Register::isVirtualRegister(Reg))
2781         continue;
2782       unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
2783       if (Register::isVirtualRegister(TrueReg)) {
2784         DefMI = MRI->getVRegDef(TrueReg);
2785         if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 ||
2786             DefMI->getOpcode() == PPC::ADDI ||
2787             DefMI->getOpcode() == PPC::ADDI8) {
2788           OpNoForForwarding = i;
2789           // The ADDI and LI operand maybe exist in one instruction at same
2790           // time. we prefer to fold LI operand as LI only has one Imm operand
2791           // and is more possible to be converted. So if current DefMI is
2792           // ADDI/ADDI8, we continue to find possible LI/LI8.
2793           if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8)
2794             break;
2795         }
2796       }
2797     }
2798   } else {
2799     // Looking back through the definition for each operand could be expensive,
2800     // so exit early if this isn't an instruction that either has an immediate
2801     // form or is already an immediate form that we can handle.
2802     ImmInstrInfo III;
2803     unsigned Opc = MI.getOpcode();
2804     bool ConvertibleImmForm =
2805         Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI ||
2806         Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
2807         Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI ||
2808         Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec ||
2809         Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
2810         Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 ||
2811         Opc == PPC::RLWINM8_rec;
2812     bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
2813                        ? isVFRegister(MI.getOperand(0).getReg())
2814                        : false;
2815     if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
2816       return nullptr;
2817 
2818     // Don't convert or %X, %Y, %Y since that's just a register move.
2819     if ((Opc == PPC::OR || Opc == PPC::OR8) &&
2820         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
2821       return nullptr;
2822     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2823       MachineOperand &MO = MI.getOperand(i);
2824       SeenIntermediateUse = false;
2825       if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
2826         Register Reg = MI.getOperand(i).getReg();
2827         // If we see another use of this reg between the def and the MI,
2828         // we want to flat it so the def isn't deleted.
2829         MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
2830         if (DefMI) {
2831           // Is this register defined by some form of add-immediate (including
2832           // load-immediate) within this basic block?
2833           switch (DefMI->getOpcode()) {
2834           default:
2835             break;
2836           case PPC::LI:
2837           case PPC::LI8:
2838           case PPC::ADDItocL:
2839           case PPC::ADDI:
2840           case PPC::ADDI8:
2841             OpNoForForwarding = i;
2842             return DefMI;
2843           }
2844         }
2845       }
2846     }
2847   }
2848   return OpNoForForwarding == ~0U ? nullptr : DefMI;
2849 }
2850 
2851 unsigned PPCInstrInfo::getSpillTarget() const {
2852   // With P10, we may need to spill paired vector registers or accumulator
2853   // registers. MMA implies paired vectors, so we can just check that.
2854   bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops();
2855   return IsP10Variant ? 2 : Subtarget.hasP9Vector() ? 1 : 0;
2856 }
2857 
2858 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2859   return StoreSpillOpcodesArray[getSpillTarget()];
2860 }
2861 
2862 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2863   return LoadSpillOpcodesArray[getSpillTarget()];
2864 }
2865 
2866 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI,
2867                                      unsigned RegNo) const {
2868   // Conservatively clear kill flag for the register if the instructions are in
2869   // different basic blocks and in SSA form, because the kill flag may no longer
2870   // be right. There is no need to bother with dead flags since defs with no
2871   // uses will be handled by DCE.
2872   MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo();
2873   if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) {
2874     MRI.clearKillFlags(RegNo);
2875     return;
2876   }
2877 
2878   // Instructions between [StartMI, EndMI] should be in same basic block.
2879   assert((StartMI->getParent() == EndMI->getParent()) &&
2880          "Instructions are not in same basic block");
2881 
2882   // If before RA, StartMI may be def through COPY, we need to adjust it to the
2883   // real def. See function getForwardingDefMI.
2884   if (MRI.isSSA()) {
2885     bool Reads, Writes;
2886     std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo);
2887     if (!Reads && !Writes) {
2888       assert(Register::isVirtualRegister(RegNo) &&
2889              "Must be a virtual register");
2890       // Get real def and ignore copies.
2891       StartMI = MRI.getVRegDef(RegNo);
2892     }
2893   }
2894 
2895   bool IsKillSet = false;
2896 
2897   auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
2898     MachineOperand &MO = MI.getOperand(Index);
2899     if (MO.isReg() && MO.isUse() && MO.isKill() &&
2900         getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
2901       MO.setIsKill(false);
2902   };
2903 
2904   // Set killed flag for EndMI.
2905   // No need to do anything if EndMI defines RegNo.
2906   int UseIndex =
2907       EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
2908   if (UseIndex != -1) {
2909     EndMI->getOperand(UseIndex).setIsKill(true);
2910     IsKillSet = true;
2911     // Clear killed flag for other EndMI operands related to RegNo. In some
2912     // upexpected cases, killed may be set multiple times for same register
2913     // operand in same MI.
2914     for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i)
2915       if (i != UseIndex)
2916         clearOperandKillInfo(*EndMI, i);
2917   }
2918 
2919   // Walking the inst in reverse order (EndMI -> StartMI].
2920   MachineBasicBlock::reverse_iterator It = *EndMI;
2921   MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend();
2922   // EndMI has been handled above, skip it here.
2923   It++;
2924   MachineOperand *MO = nullptr;
2925   for (; It != E; ++It) {
2926     // Skip insturctions which could not be a def/use of RegNo.
2927     if (It->isDebugInstr() || It->isPosition())
2928       continue;
2929 
2930     // Clear killed flag for all It operands related to RegNo. In some
2931     // upexpected cases, killed may be set multiple times for same register
2932     // operand in same MI.
2933     for (int i = 0, e = It->getNumOperands(); i != e; ++i)
2934         clearOperandKillInfo(*It, i);
2935 
2936     // If killed is not set, set killed for its last use or set dead for its def
2937     // if no use found.
2938     if (!IsKillSet) {
2939       if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
2940         // Use found, set it killed.
2941         IsKillSet = true;
2942         MO->setIsKill(true);
2943         continue;
2944       } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
2945                                                   &getRegisterInfo()))) {
2946         // No use found, set dead for its def.
2947         assert(&*It == StartMI && "No new def between StartMI and EndMI.");
2948         MO->setIsDead(true);
2949         break;
2950       }
2951     }
2952 
2953     if ((&*It) == StartMI)
2954       break;
2955   }
2956   // Ensure RegMo liveness is killed after EndMI.
2957   assert((IsKillSet || (MO && MO->isDead())) &&
2958          "RegNo should be killed or dead");
2959 }
2960 
2961 // This opt tries to convert the following imm form to an index form to save an
2962 // add for stack variables.
2963 // Return false if no such pattern found.
2964 //
2965 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
2966 // ADD instr:  ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg
2967 // Imm instr:  Reg            = op OffsetImm, ToBeDeletedReg(killed)
2968 //
2969 // can be converted to:
2970 //
2971 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm)
2972 // Index instr:    Reg            = opx ScaleReg, ToBeChangedReg(killed)
2973 //
2974 // In order to eliminate ADD instr, make sure that:
2975 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in
2976 //    new ADDI instr and ADDI can only take int16 Imm.
2977 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use
2978 //    between ADDI and ADD instr since its original def in ADDI will be changed
2979 //    in new ADDI instr. And also there should be no new def for it between
2980 //    ADD and Imm instr as ToBeChangedReg will be used in Index instr.
2981 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use
2982 //    between ADD and Imm instr since ADD instr will be eliminated.
2983 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be
2984 //    moved to Index instr.
2985 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const {
2986   MachineFunction *MF = MI.getParent()->getParent();
2987   MachineRegisterInfo *MRI = &MF->getRegInfo();
2988   bool PostRA = !MRI->isSSA();
2989   // Do this opt after PEI which is after RA. The reason is stack slot expansion
2990   // in PEI may expose such opportunities since in PEI, stack slot offsets to
2991   // frame base(OffsetAddi) are determined.
2992   if (!PostRA)
2993     return false;
2994   unsigned ToBeDeletedReg = 0;
2995   int64_t OffsetImm = 0;
2996   unsigned XFormOpcode = 0;
2997   ImmInstrInfo III;
2998 
2999   // Check if Imm instr meets requirement.
3000   if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm,
3001                                     III))
3002     return false;
3003 
3004   bool OtherIntermediateUse = false;
3005   MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse);
3006 
3007   // Exit if there is other use between ADD and Imm instr or no def found.
3008   if (OtherIntermediateUse || !ADDMI)
3009     return false;
3010 
3011   // Check if ADD instr meets requirement.
3012   if (!isADDInstrEligibleForFolding(*ADDMI))
3013     return false;
3014 
3015   unsigned ScaleRegIdx = 0;
3016   int64_t OffsetAddi = 0;
3017   MachineInstr *ADDIMI = nullptr;
3018 
3019   // Check if there is a valid ToBeChangedReg in ADDMI.
3020   // 1: It must be killed.
3021   // 2: Its definition must be a valid ADDIMI.
3022   // 3: It must satify int16 offset requirement.
3023   if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm))
3024     ScaleRegIdx = 2;
3025   else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm))
3026     ScaleRegIdx = 1;
3027   else
3028     return false;
3029 
3030   assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg.");
3031   unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg();
3032   unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg();
3033   auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start,
3034                        MachineBasicBlock::iterator End) {
3035     for (auto It = ++Start; It != End; It++)
3036       if (It->modifiesRegister(Reg, &getRegisterInfo()))
3037         return true;
3038     return false;
3039   };
3040 
3041   // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is
3042   // treated as special zero when ScaleReg is R0/X0 register.
3043   if (III.ZeroIsSpecialOrig == III.ImmOpNo &&
3044       (ScaleReg == PPC::R0 || ScaleReg == PPC::X0))
3045     return false;
3046 
3047   // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr
3048   // and Imm Instr.
3049   if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI))
3050     return false;
3051 
3052   // Now start to do the transformation.
3053   LLVM_DEBUG(dbgs() << "Replace instruction: "
3054                     << "\n");
3055   LLVM_DEBUG(ADDIMI->dump());
3056   LLVM_DEBUG(ADDMI->dump());
3057   LLVM_DEBUG(MI.dump());
3058   LLVM_DEBUG(dbgs() << "with: "
3059                     << "\n");
3060 
3061   // Update ADDI instr.
3062   ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm);
3063 
3064   // Update Imm instr.
3065   MI.setDesc(get(XFormOpcode));
3066   MI.getOperand(III.ImmOpNo)
3067       .ChangeToRegister(ScaleReg, false, false,
3068                         ADDMI->getOperand(ScaleRegIdx).isKill());
3069 
3070   MI.getOperand(III.OpNoForForwarding)
3071       .ChangeToRegister(ToBeChangedReg, false, false, true);
3072 
3073   // Eliminate ADD instr.
3074   ADDMI->eraseFromParent();
3075 
3076   LLVM_DEBUG(ADDIMI->dump());
3077   LLVM_DEBUG(MI.dump());
3078 
3079   return true;
3080 }
3081 
3082 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI,
3083                                                  int64_t &Imm) const {
3084   unsigned Opc = ADDIMI.getOpcode();
3085 
3086   // Exit if the instruction is not ADDI.
3087   if (Opc != PPC::ADDI && Opc != PPC::ADDI8)
3088     return false;
3089 
3090   // The operand may not necessarily be an immediate - it could be a relocation.
3091   if (!ADDIMI.getOperand(2).isImm())
3092     return false;
3093 
3094   Imm = ADDIMI.getOperand(2).getImm();
3095 
3096   return true;
3097 }
3098 
3099 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const {
3100   unsigned Opc = ADDMI.getOpcode();
3101 
3102   // Exit if the instruction is not ADD.
3103   return Opc == PPC::ADD4 || Opc == PPC::ADD8;
3104 }
3105 
3106 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI,
3107                                                 unsigned &ToBeDeletedReg,
3108                                                 unsigned &XFormOpcode,
3109                                                 int64_t &OffsetImm,
3110                                                 ImmInstrInfo &III) const {
3111   // Only handle load/store.
3112   if (!MI.mayLoadOrStore())
3113     return false;
3114 
3115   unsigned Opc = MI.getOpcode();
3116 
3117   XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc);
3118 
3119   // Exit if instruction has no index form.
3120   if (XFormOpcode == PPC::INSTRUCTION_LIST_END)
3121     return false;
3122 
3123   // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap.
3124   if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()),
3125                        III, true))
3126     return false;
3127 
3128   if (!III.IsSummingOperands)
3129     return false;
3130 
3131   MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo);
3132   MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding);
3133   // Only support imm operands, not relocation slots or others.
3134   if (!ImmOperand.isImm())
3135     return false;
3136 
3137   assert(RegOperand.isReg() && "Instruction format is not right");
3138 
3139   // There are other use for ToBeDeletedReg after Imm instr, can not delete it.
3140   if (!RegOperand.isKill())
3141     return false;
3142 
3143   ToBeDeletedReg = RegOperand.getReg();
3144   OffsetImm = ImmOperand.getImm();
3145 
3146   return true;
3147 }
3148 
3149 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
3150                                          MachineInstr *&ADDIMI,
3151                                          int64_t &OffsetAddi,
3152                                          int64_t OffsetImm) const {
3153   assert((Index == 1 || Index == 2) && "Invalid operand index for add.");
3154   MachineOperand &MO = ADDMI->getOperand(Index);
3155 
3156   if (!MO.isKill())
3157     return false;
3158 
3159   bool OtherIntermediateUse = false;
3160 
3161   ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse);
3162   // Currently handle only one "add + Imminstr" pair case, exit if other
3163   // intermediate use for ToBeChangedReg found.
3164   // TODO: handle the cases where there are other "add + Imminstr" pairs
3165   // with same offset in Imminstr which is like:
3166   //
3167   // ADDI instr: ToBeChangedReg  = ADDI FrameBaseReg, OffsetAddi
3168   // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1
3169   // Imm instr1: Reg1            = op1 OffsetImm, ToBeDeletedReg1(killed)
3170   // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2
3171   // Imm instr2: Reg2            = op2 OffsetImm, ToBeDeletedReg2(killed)
3172   //
3173   // can be converted to:
3174   //
3175   // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg,
3176   //                                       (OffsetAddi + OffsetImm)
3177   // Index instr1:   Reg1           = opx1 ScaleReg1, ToBeChangedReg
3178   // Index instr2:   Reg2           = opx2 ScaleReg2, ToBeChangedReg(killed)
3179 
3180   if (OtherIntermediateUse || !ADDIMI)
3181     return false;
3182   // Check if ADDI instr meets requirement.
3183   if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi))
3184     return false;
3185 
3186   if (isInt<16>(OffsetAddi + OffsetImm))
3187     return true;
3188   return false;
3189 }
3190 
3191 // If this instruction has an immediate form and one of its operands is a
3192 // result of a load-immediate or an add-immediate, convert it to
3193 // the immediate form if the constant is in range.
3194 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
3195                                           MachineInstr **KilledDef) const {
3196   MachineFunction *MF = MI.getParent()->getParent();
3197   MachineRegisterInfo *MRI = &MF->getRegInfo();
3198   bool PostRA = !MRI->isSSA();
3199   bool SeenIntermediateUse = true;
3200   unsigned ForwardingOperand = ~0U;
3201   MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
3202                                            SeenIntermediateUse);
3203   if (!DefMI)
3204     return false;
3205   assert(ForwardingOperand < MI.getNumOperands() &&
3206          "The forwarding operand needs to be valid at this point");
3207   bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
3208   bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
3209   if (KilledDef && KillFwdDefMI)
3210     *KilledDef = DefMI;
3211 
3212   // If this is a imm instruction and its register operands is produced by ADDI,
3213   // put the imm into imm inst directly.
3214   if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) !=
3215           PPC::INSTRUCTION_LIST_END &&
3216       transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand))
3217     return true;
3218 
3219   ImmInstrInfo III;
3220   bool IsVFReg = MI.getOperand(0).isReg()
3221                      ? isVFRegister(MI.getOperand(0).getReg())
3222                      : false;
3223   bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
3224   // If this is a reg+reg instruction that has a reg+imm form,
3225   // and one of the operands is produced by an add-immediate,
3226   // try to convert it.
3227   if (HasImmForm &&
3228       transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
3229                                  KillFwdDefMI))
3230     return true;
3231 
3232   // If this is a reg+reg instruction that has a reg+imm form,
3233   // and one of the operands is produced by LI, convert it now.
3234   if (HasImmForm &&
3235       transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI))
3236     return true;
3237 
3238   // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI
3239   // can be simpified to LI.
3240   if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef))
3241     return true;
3242 
3243   return false;
3244 }
3245 
3246 // This function tries to combine two RLWINMs. We not only perform such
3247 // optimization in SSA, but also after RA, since some RLWINM is generated after
3248 // RA.
3249 bool PPCInstrInfo::simplifyRotateAndMaskInstr(MachineInstr &MI,
3250                                               MachineInstr *&ToErase) const {
3251   bool Is64Bit = false;
3252   switch (MI.getOpcode()) {
3253   case PPC::RLWINM:
3254   case PPC::RLWINM_rec:
3255     break;
3256   case PPC::RLWINM8:
3257   case PPC::RLWINM8_rec:
3258     Is64Bit = true;
3259     break;
3260   default:
3261     return false;
3262   }
3263   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
3264   Register FoldingReg = MI.getOperand(1).getReg();
3265   MachineInstr *SrcMI = nullptr;
3266   bool CanErase = false;
3267   bool OtherIntermediateUse = true;
3268   if (MRI->isSSA()) {
3269     if (!Register::isVirtualRegister(FoldingReg))
3270       return false;
3271     SrcMI = MRI->getVRegDef(FoldingReg);
3272   } else {
3273     SrcMI = getDefMIPostRA(FoldingReg, MI, OtherIntermediateUse);
3274   }
3275   if (!SrcMI)
3276     return false;
3277   // TODO: The pairs of RLWINM8(RLWINM) or RLWINM(RLWINM8) never occur before
3278   // RA, but after RA. And We can fold RLWINM8(RLWINM) -> RLWINM8, or
3279   // RLWINM(RLWINM8) -> RLWINM.
3280   switch (SrcMI->getOpcode()) {
3281   case PPC::RLWINM:
3282   case PPC::RLWINM_rec:
3283     if (Is64Bit)
3284       return false;
3285     break;
3286   case PPC::RLWINM8:
3287   case PPC::RLWINM8_rec:
3288     if (!Is64Bit)
3289       return false;
3290     break;
3291   default:
3292     return false;
3293   }
3294   if (MRI->isSSA()) {
3295     CanErase = !SrcMI->hasImplicitDef() && MRI->hasOneNonDBGUse(FoldingReg);
3296   } else {
3297     CanErase = !OtherIntermediateUse && MI.getOperand(1).isKill() &&
3298                !SrcMI->hasImplicitDef();
3299     // In post-RA, if SrcMI also defines the register to be forwarded, we can
3300     // only do the folding if SrcMI is going to be erased.
3301     if (!CanErase && SrcMI->definesRegister(SrcMI->getOperand(1).getReg()))
3302       return false;
3303   }
3304   assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() &&
3305           MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() &&
3306           SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) &&
3307          "Invalid PPC::RLWINM Instruction!");
3308   uint64_t SHSrc = SrcMI->getOperand(2).getImm();
3309   uint64_t SHMI = MI.getOperand(2).getImm();
3310   uint64_t MBSrc = SrcMI->getOperand(3).getImm();
3311   uint64_t MBMI = MI.getOperand(3).getImm();
3312   uint64_t MESrc = SrcMI->getOperand(4).getImm();
3313   uint64_t MEMI = MI.getOperand(4).getImm();
3314   assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) &&
3315          "Invalid PPC::RLWINM Instruction!");
3316   // If MBMI is bigger than MEMI, we always can not get run of ones.
3317   // RotatedSrcMask non-wrap:
3318   //                 0........31|32........63
3319   // RotatedSrcMask:   B---E        B---E
3320   // MaskMI:         -----------|--E  B------
3321   // Result:           -----          ---      (Bad candidate)
3322   //
3323   // RotatedSrcMask wrap:
3324   //                 0........31|32........63
3325   // RotatedSrcMask: --E   B----|--E    B----
3326   // MaskMI:         -----------|--E  B------
3327   // Result:         ---   -----|---    -----  (Bad candidate)
3328   //
3329   // One special case is RotatedSrcMask is a full set mask.
3330   // RotatedSrcMask full:
3331   //                 0........31|32........63
3332   // RotatedSrcMask: ------EB---|-------EB---
3333   // MaskMI:         -----------|--E  B------
3334   // Result:         -----------|---  -------  (Good candidate)
3335 
3336   // Mark special case.
3337   bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31);
3338 
3339   // For other MBMI > MEMI cases, just return.
3340   if ((MBMI > MEMI) && !SrcMaskFull)
3341     return false;
3342 
3343   // Handle MBMI <= MEMI cases.
3344   APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI);
3345   // In MI, we only need low 32 bits of SrcMI, just consider about low 32
3346   // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0,
3347   // while in PowerPC ISA, lowerest bit is at index 63.
3348   APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc);
3349 
3350   APInt RotatedSrcMask = MaskSrc.rotl(SHMI);
3351   APInt FinalMask = RotatedSrcMask & MaskMI;
3352   uint32_t NewMB, NewME;
3353   bool Simplified = false;
3354 
3355   // If final mask is 0, MI result should be 0 too.
3356   if (FinalMask.isNullValue()) {
3357     Simplified = true;
3358     LLVM_DEBUG(dbgs() << "Replace Instr: ");
3359     LLVM_DEBUG(MI.dump());
3360 
3361     if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) {
3362       // Replace MI with "LI 0"
3363       MI.RemoveOperand(4);
3364       MI.RemoveOperand(3);
3365       MI.RemoveOperand(2);
3366       MI.getOperand(1).ChangeToImmediate(0);
3367       MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI));
3368     } else {
3369       // Replace MI with "ANDI_rec reg, 0"
3370       MI.RemoveOperand(4);
3371       MI.RemoveOperand(3);
3372       MI.getOperand(2).setImm(0);
3373       MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
3374       MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
3375       if (SrcMI->getOperand(1).isKill()) {
3376         MI.getOperand(1).setIsKill(true);
3377         SrcMI->getOperand(1).setIsKill(false);
3378       } else
3379         // About to replace MI.getOperand(1), clear its kill flag.
3380         MI.getOperand(1).setIsKill(false);
3381     }
3382 
3383     LLVM_DEBUG(dbgs() << "With: ");
3384     LLVM_DEBUG(MI.dump());
3385 
3386   } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) &&
3387               NewMB <= NewME) ||
3388              SrcMaskFull) {
3389     // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger
3390     // than NewME. Otherwise we get a 64 bit value after folding, but MI
3391     // return a 32 bit value.
3392     Simplified = true;
3393     LLVM_DEBUG(dbgs() << "Converting Instr: ");
3394     LLVM_DEBUG(MI.dump());
3395 
3396     uint16_t NewSH = (SHSrc + SHMI) % 32;
3397     MI.getOperand(2).setImm(NewSH);
3398     // If SrcMI mask is full, no need to update MBMI and MEMI.
3399     if (!SrcMaskFull) {
3400       MI.getOperand(3).setImm(NewMB);
3401       MI.getOperand(4).setImm(NewME);
3402     }
3403     MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
3404     if (SrcMI->getOperand(1).isKill()) {
3405       MI.getOperand(1).setIsKill(true);
3406       SrcMI->getOperand(1).setIsKill(false);
3407     } else
3408       // About to replace MI.getOperand(1), clear its kill flag.
3409       MI.getOperand(1).setIsKill(false);
3410 
3411     LLVM_DEBUG(dbgs() << "To: ");
3412     LLVM_DEBUG(MI.dump());
3413   }
3414   if (Simplified && CanErase) {
3415     // If SrcMI has no implicit def, and FoldingReg has no non-debug use or
3416     // its flag is "killed", it's safe to delete SrcMI. Otherwise keep it.
3417     ToErase = SrcMI;
3418     LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
3419     LLVM_DEBUG(SrcMI->dump());
3420   }
3421   return Simplified;
3422 }
3423 
3424 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
3425                                    ImmInstrInfo &III, bool PostRA) const {
3426   // The vast majority of the instructions would need their operand 2 replaced
3427   // with an immediate when switching to the reg+imm form. A marked exception
3428   // are the update form loads/stores for which a constant operand 2 would need
3429   // to turn into a displacement and move operand 1 to the operand 2 position.
3430   III.ImmOpNo = 2;
3431   III.OpNoForForwarding = 2;
3432   III.ImmWidth = 16;
3433   III.ImmMustBeMultipleOf = 1;
3434   III.TruncateImmTo = 0;
3435   III.IsSummingOperands = false;
3436   switch (Opc) {
3437   default: return false;
3438   case PPC::ADD4:
3439   case PPC::ADD8:
3440     III.SignedImm = true;
3441     III.ZeroIsSpecialOrig = 0;
3442     III.ZeroIsSpecialNew = 1;
3443     III.IsCommutative = true;
3444     III.IsSummingOperands = true;
3445     III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
3446     break;
3447   case PPC::ADDC:
3448   case PPC::ADDC8:
3449     III.SignedImm = true;
3450     III.ZeroIsSpecialOrig = 0;
3451     III.ZeroIsSpecialNew = 0;
3452     III.IsCommutative = true;
3453     III.IsSummingOperands = true;
3454     III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
3455     break;
3456   case PPC::ADDC_rec:
3457     III.SignedImm = true;
3458     III.ZeroIsSpecialOrig = 0;
3459     III.ZeroIsSpecialNew = 0;
3460     III.IsCommutative = true;
3461     III.IsSummingOperands = true;
3462     III.ImmOpcode = PPC::ADDIC_rec;
3463     break;
3464   case PPC::SUBFC:
3465   case PPC::SUBFC8:
3466     III.SignedImm = true;
3467     III.ZeroIsSpecialOrig = 0;
3468     III.ZeroIsSpecialNew = 0;
3469     III.IsCommutative = false;
3470     III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
3471     break;
3472   case PPC::CMPW:
3473   case PPC::CMPD:
3474     III.SignedImm = true;
3475     III.ZeroIsSpecialOrig = 0;
3476     III.ZeroIsSpecialNew = 0;
3477     III.IsCommutative = false;
3478     III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
3479     break;
3480   case PPC::CMPLW:
3481   case PPC::CMPLD:
3482     III.SignedImm = false;
3483     III.ZeroIsSpecialOrig = 0;
3484     III.ZeroIsSpecialNew = 0;
3485     III.IsCommutative = false;
3486     III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
3487     break;
3488   case PPC::AND_rec:
3489   case PPC::AND8_rec:
3490   case PPC::OR:
3491   case PPC::OR8:
3492   case PPC::XOR:
3493   case PPC::XOR8:
3494     III.SignedImm = false;
3495     III.ZeroIsSpecialOrig = 0;
3496     III.ZeroIsSpecialNew = 0;
3497     III.IsCommutative = true;
3498     switch(Opc) {
3499     default: llvm_unreachable("Unknown opcode");
3500     case PPC::AND_rec:
3501       III.ImmOpcode = PPC::ANDI_rec;
3502       break;
3503     case PPC::AND8_rec:
3504       III.ImmOpcode = PPC::ANDI8_rec;
3505       break;
3506     case PPC::OR: III.ImmOpcode = PPC::ORI; break;
3507     case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
3508     case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
3509     case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
3510     }
3511     break;
3512   case PPC::RLWNM:
3513   case PPC::RLWNM8:
3514   case PPC::RLWNM_rec:
3515   case PPC::RLWNM8_rec:
3516   case PPC::SLW:
3517   case PPC::SLW8:
3518   case PPC::SLW_rec:
3519   case PPC::SLW8_rec:
3520   case PPC::SRW:
3521   case PPC::SRW8:
3522   case PPC::SRW_rec:
3523   case PPC::SRW8_rec:
3524   case PPC::SRAW:
3525   case PPC::SRAW_rec:
3526     III.SignedImm = false;
3527     III.ZeroIsSpecialOrig = 0;
3528     III.ZeroIsSpecialNew = 0;
3529     III.IsCommutative = false;
3530     // This isn't actually true, but the instructions ignore any of the
3531     // upper bits, so any immediate loaded with an LI is acceptable.
3532     // This does not apply to shift right algebraic because a value
3533     // out of range will produce a -1/0.
3534     III.ImmWidth = 16;
3535     if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec ||
3536         Opc == PPC::RLWNM8_rec)
3537       III.TruncateImmTo = 5;
3538     else
3539       III.TruncateImmTo = 6;
3540     switch(Opc) {
3541     default: llvm_unreachable("Unknown opcode");
3542     case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
3543     case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
3544     case PPC::RLWNM_rec:
3545       III.ImmOpcode = PPC::RLWINM_rec;
3546       break;
3547     case PPC::RLWNM8_rec:
3548       III.ImmOpcode = PPC::RLWINM8_rec;
3549       break;
3550     case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
3551     case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
3552     case PPC::SLW_rec:
3553       III.ImmOpcode = PPC::RLWINM_rec;
3554       break;
3555     case PPC::SLW8_rec:
3556       III.ImmOpcode = PPC::RLWINM8_rec;
3557       break;
3558     case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
3559     case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
3560     case PPC::SRW_rec:
3561       III.ImmOpcode = PPC::RLWINM_rec;
3562       break;
3563     case PPC::SRW8_rec:
3564       III.ImmOpcode = PPC::RLWINM8_rec;
3565       break;
3566     case PPC::SRAW:
3567       III.ImmWidth = 5;
3568       III.TruncateImmTo = 0;
3569       III.ImmOpcode = PPC::SRAWI;
3570       break;
3571     case PPC::SRAW_rec:
3572       III.ImmWidth = 5;
3573       III.TruncateImmTo = 0;
3574       III.ImmOpcode = PPC::SRAWI_rec;
3575       break;
3576     }
3577     break;
3578   case PPC::RLDCL:
3579   case PPC::RLDCL_rec:
3580   case PPC::RLDCR:
3581   case PPC::RLDCR_rec:
3582   case PPC::SLD:
3583   case PPC::SLD_rec:
3584   case PPC::SRD:
3585   case PPC::SRD_rec:
3586   case PPC::SRAD:
3587   case PPC::SRAD_rec:
3588     III.SignedImm = false;
3589     III.ZeroIsSpecialOrig = 0;
3590     III.ZeroIsSpecialNew = 0;
3591     III.IsCommutative = false;
3592     // This isn't actually true, but the instructions ignore any of the
3593     // upper bits, so any immediate loaded with an LI is acceptable.
3594     // This does not apply to shift right algebraic because a value
3595     // out of range will produce a -1/0.
3596     III.ImmWidth = 16;
3597     if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR ||
3598         Opc == PPC::RLDCR_rec)
3599       III.TruncateImmTo = 6;
3600     else
3601       III.TruncateImmTo = 7;
3602     switch(Opc) {
3603     default: llvm_unreachable("Unknown opcode");
3604     case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
3605     case PPC::RLDCL_rec:
3606       III.ImmOpcode = PPC::RLDICL_rec;
3607       break;
3608     case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
3609     case PPC::RLDCR_rec:
3610       III.ImmOpcode = PPC::RLDICR_rec;
3611       break;
3612     case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
3613     case PPC::SLD_rec:
3614       III.ImmOpcode = PPC::RLDICR_rec;
3615       break;
3616     case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
3617     case PPC::SRD_rec:
3618       III.ImmOpcode = PPC::RLDICL_rec;
3619       break;
3620     case PPC::SRAD:
3621       III.ImmWidth = 6;
3622       III.TruncateImmTo = 0;
3623       III.ImmOpcode = PPC::SRADI;
3624        break;
3625     case PPC::SRAD_rec:
3626       III.ImmWidth = 6;
3627       III.TruncateImmTo = 0;
3628       III.ImmOpcode = PPC::SRADI_rec;
3629       break;
3630     }
3631     break;
3632   // Loads and stores:
3633   case PPC::LBZX:
3634   case PPC::LBZX8:
3635   case PPC::LHZX:
3636   case PPC::LHZX8:
3637   case PPC::LHAX:
3638   case PPC::LHAX8:
3639   case PPC::LWZX:
3640   case PPC::LWZX8:
3641   case PPC::LWAX:
3642   case PPC::LDX:
3643   case PPC::LFSX:
3644   case PPC::LFDX:
3645   case PPC::STBX:
3646   case PPC::STBX8:
3647   case PPC::STHX:
3648   case PPC::STHX8:
3649   case PPC::STWX:
3650   case PPC::STWX8:
3651   case PPC::STDX:
3652   case PPC::STFSX:
3653   case PPC::STFDX:
3654     III.SignedImm = true;
3655     III.ZeroIsSpecialOrig = 1;
3656     III.ZeroIsSpecialNew = 2;
3657     III.IsCommutative = true;
3658     III.IsSummingOperands = true;
3659     III.ImmOpNo = 1;
3660     III.OpNoForForwarding = 2;
3661     switch(Opc) {
3662     default: llvm_unreachable("Unknown opcode");
3663     case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
3664     case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
3665     case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
3666     case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
3667     case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
3668     case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
3669     case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
3670     case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
3671     case PPC::LWAX:
3672       III.ImmOpcode = PPC::LWA;
3673       III.ImmMustBeMultipleOf = 4;
3674       break;
3675     case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
3676     case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
3677     case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
3678     case PPC::STBX: III.ImmOpcode = PPC::STB; break;
3679     case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
3680     case PPC::STHX: III.ImmOpcode = PPC::STH; break;
3681     case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
3682     case PPC::STWX: III.ImmOpcode = PPC::STW; break;
3683     case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
3684     case PPC::STDX:
3685       III.ImmOpcode = PPC::STD;
3686       III.ImmMustBeMultipleOf = 4;
3687       break;
3688     case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
3689     case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
3690     }
3691     break;
3692   case PPC::LBZUX:
3693   case PPC::LBZUX8:
3694   case PPC::LHZUX:
3695   case PPC::LHZUX8:
3696   case PPC::LHAUX:
3697   case PPC::LHAUX8:
3698   case PPC::LWZUX:
3699   case PPC::LWZUX8:
3700   case PPC::LDUX:
3701   case PPC::LFSUX:
3702   case PPC::LFDUX:
3703   case PPC::STBUX:
3704   case PPC::STBUX8:
3705   case PPC::STHUX:
3706   case PPC::STHUX8:
3707   case PPC::STWUX:
3708   case PPC::STWUX8:
3709   case PPC::STDUX:
3710   case PPC::STFSUX:
3711   case PPC::STFDUX:
3712     III.SignedImm = true;
3713     III.ZeroIsSpecialOrig = 2;
3714     III.ZeroIsSpecialNew = 3;
3715     III.IsCommutative = false;
3716     III.IsSummingOperands = true;
3717     III.ImmOpNo = 2;
3718     III.OpNoForForwarding = 3;
3719     switch(Opc) {
3720     default: llvm_unreachable("Unknown opcode");
3721     case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
3722     case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
3723     case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
3724     case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
3725     case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
3726     case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
3727     case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
3728     case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
3729     case PPC::LDUX:
3730       III.ImmOpcode = PPC::LDU;
3731       III.ImmMustBeMultipleOf = 4;
3732       break;
3733     case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
3734     case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
3735     case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
3736     case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
3737     case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
3738     case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
3739     case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
3740     case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
3741     case PPC::STDUX:
3742       III.ImmOpcode = PPC::STDU;
3743       III.ImmMustBeMultipleOf = 4;
3744       break;
3745     case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
3746     case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
3747     }
3748     break;
3749   // Power9 and up only. For some of these, the X-Form version has access to all
3750   // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
3751   // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
3752   // into or stored from is one of the VR registers.
3753   case PPC::LXVX:
3754   case PPC::LXSSPX:
3755   case PPC::LXSDX:
3756   case PPC::STXVX:
3757   case PPC::STXSSPX:
3758   case PPC::STXSDX:
3759   case PPC::XFLOADf32:
3760   case PPC::XFLOADf64:
3761   case PPC::XFSTOREf32:
3762   case PPC::XFSTOREf64:
3763     if (!Subtarget.hasP9Vector())
3764       return false;
3765     III.SignedImm = true;
3766     III.ZeroIsSpecialOrig = 1;
3767     III.ZeroIsSpecialNew = 2;
3768     III.IsCommutative = true;
3769     III.IsSummingOperands = true;
3770     III.ImmOpNo = 1;
3771     III.OpNoForForwarding = 2;
3772     III.ImmMustBeMultipleOf = 4;
3773     switch(Opc) {
3774     default: llvm_unreachable("Unknown opcode");
3775     case PPC::LXVX:
3776       III.ImmOpcode = PPC::LXV;
3777       III.ImmMustBeMultipleOf = 16;
3778       break;
3779     case PPC::LXSSPX:
3780       if (PostRA) {
3781         if (IsVFReg)
3782           III.ImmOpcode = PPC::LXSSP;
3783         else {
3784           III.ImmOpcode = PPC::LFS;
3785           III.ImmMustBeMultipleOf = 1;
3786         }
3787         break;
3788       }
3789       LLVM_FALLTHROUGH;
3790     case PPC::XFLOADf32:
3791       III.ImmOpcode = PPC::DFLOADf32;
3792       break;
3793     case PPC::LXSDX:
3794       if (PostRA) {
3795         if (IsVFReg)
3796           III.ImmOpcode = PPC::LXSD;
3797         else {
3798           III.ImmOpcode = PPC::LFD;
3799           III.ImmMustBeMultipleOf = 1;
3800         }
3801         break;
3802       }
3803       LLVM_FALLTHROUGH;
3804     case PPC::XFLOADf64:
3805       III.ImmOpcode = PPC::DFLOADf64;
3806       break;
3807     case PPC::STXVX:
3808       III.ImmOpcode = PPC::STXV;
3809       III.ImmMustBeMultipleOf = 16;
3810       break;
3811     case PPC::STXSSPX:
3812       if (PostRA) {
3813         if (IsVFReg)
3814           III.ImmOpcode = PPC::STXSSP;
3815         else {
3816           III.ImmOpcode = PPC::STFS;
3817           III.ImmMustBeMultipleOf = 1;
3818         }
3819         break;
3820       }
3821       LLVM_FALLTHROUGH;
3822     case PPC::XFSTOREf32:
3823       III.ImmOpcode = PPC::DFSTOREf32;
3824       break;
3825     case PPC::STXSDX:
3826       if (PostRA) {
3827         if (IsVFReg)
3828           III.ImmOpcode = PPC::STXSD;
3829         else {
3830           III.ImmOpcode = PPC::STFD;
3831           III.ImmMustBeMultipleOf = 1;
3832         }
3833         break;
3834       }
3835       LLVM_FALLTHROUGH;
3836     case PPC::XFSTOREf64:
3837       III.ImmOpcode = PPC::DFSTOREf64;
3838       break;
3839     }
3840     break;
3841   }
3842   return true;
3843 }
3844 
3845 // Utility function for swaping two arbitrary operands of an instruction.
3846 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
3847   assert(Op1 != Op2 && "Cannot swap operand with itself.");
3848 
3849   unsigned MaxOp = std::max(Op1, Op2);
3850   unsigned MinOp = std::min(Op1, Op2);
3851   MachineOperand MOp1 = MI.getOperand(MinOp);
3852   MachineOperand MOp2 = MI.getOperand(MaxOp);
3853   MI.RemoveOperand(std::max(Op1, Op2));
3854   MI.RemoveOperand(std::min(Op1, Op2));
3855 
3856   // If the operands we are swapping are the two at the end (the common case)
3857   // we can just remove both and add them in the opposite order.
3858   if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
3859     MI.addOperand(MOp2);
3860     MI.addOperand(MOp1);
3861   } else {
3862     // Store all operands in a temporary vector, remove them and re-add in the
3863     // right order.
3864     SmallVector<MachineOperand, 2> MOps;
3865     unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
3866     for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
3867       MOps.push_back(MI.getOperand(i));
3868       MI.RemoveOperand(i);
3869     }
3870     // MOp2 needs to be added next.
3871     MI.addOperand(MOp2);
3872     // Now add the rest.
3873     for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
3874       if (i == MaxOp)
3875         MI.addOperand(MOp1);
3876       else {
3877         MI.addOperand(MOps.back());
3878         MOps.pop_back();
3879       }
3880     }
3881   }
3882 }
3883 
3884 // Check if the 'MI' that has the index OpNoForForwarding
3885 // meets the requirement described in the ImmInstrInfo.
3886 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
3887                                                const ImmInstrInfo &III,
3888                                                unsigned OpNoForForwarding
3889                                                ) const {
3890   // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
3891   // would not work pre-RA, we can only do the check post RA.
3892   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3893   if (MRI.isSSA())
3894     return false;
3895 
3896   // Cannot do the transform if MI isn't summing the operands.
3897   if (!III.IsSummingOperands)
3898     return false;
3899 
3900   // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
3901   if (!III.ZeroIsSpecialOrig)
3902     return false;
3903 
3904   // We cannot do the transform if the operand we are trying to replace
3905   // isn't the same as the operand the instruction allows.
3906   if (OpNoForForwarding != III.OpNoForForwarding)
3907     return false;
3908 
3909   // Check if the instruction we are trying to transform really has
3910   // the special zero register as its operand.
3911   if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
3912       MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
3913     return false;
3914 
3915   // This machine instruction is convertible if it is,
3916   // 1. summing the operands.
3917   // 2. one of the operands is special zero register.
3918   // 3. the operand we are trying to replace is allowed by the MI.
3919   return true;
3920 }
3921 
3922 // Check if the DefMI is the add inst and set the ImmMO and RegMO
3923 // accordingly.
3924 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
3925                                                const ImmInstrInfo &III,
3926                                                MachineOperand *&ImmMO,
3927                                                MachineOperand *&RegMO) const {
3928   unsigned Opc = DefMI.getOpcode();
3929   if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
3930     return false;
3931 
3932   assert(DefMI.getNumOperands() >= 3 &&
3933          "Add inst must have at least three operands");
3934   RegMO = &DefMI.getOperand(1);
3935   ImmMO = &DefMI.getOperand(2);
3936 
3937   // Before RA, ADDI first operand could be a frame index.
3938   if (!RegMO->isReg())
3939     return false;
3940 
3941   // This DefMI is elgible for forwarding if it is:
3942   // 1. add inst
3943   // 2. one of the operands is Imm/CPI/Global.
3944   return isAnImmediateOperand(*ImmMO);
3945 }
3946 
3947 bool PPCInstrInfo::isRegElgibleForForwarding(
3948     const MachineOperand &RegMO, const MachineInstr &DefMI,
3949     const MachineInstr &MI, bool KillDefMI,
3950     bool &IsFwdFeederRegKilled) const {
3951   // x = addi y, imm
3952   // ...
3953   // z = lfdx 0, x   -> z = lfd imm(y)
3954   // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
3955   // of "y" between the DEF of "x" and "z".
3956   // The query is only valid post RA.
3957   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3958   if (MRI.isSSA())
3959     return false;
3960 
3961   Register Reg = RegMO.getReg();
3962 
3963   // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
3964   MachineBasicBlock::const_reverse_iterator It = MI;
3965   MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
3966   It++;
3967   for (; It != E; ++It) {
3968     if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3969       return false;
3970     else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3971       IsFwdFeederRegKilled = true;
3972     // Made it to DefMI without encountering a clobber.
3973     if ((&*It) == &DefMI)
3974       break;
3975   }
3976   assert((&*It) == &DefMI && "DefMI is missing");
3977 
3978   // If DefMI also defines the register to be forwarded, we can only forward it
3979   // if DefMI is being erased.
3980   if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
3981     return KillDefMI;
3982 
3983   return true;
3984 }
3985 
3986 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
3987                                              const MachineInstr &DefMI,
3988                                              const ImmInstrInfo &III,
3989                                              int64_t &Imm,
3990                                              int64_t BaseImm) const {
3991   assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
3992   if (DefMI.getOpcode() == PPC::ADDItocL) {
3993     // The operand for ADDItocL is CPI, which isn't imm at compiling time,
3994     // However, we know that, it is 16-bit width, and has the alignment of 4.
3995     // Check if the instruction met the requirement.
3996     if (III.ImmMustBeMultipleOf > 4 ||
3997        III.TruncateImmTo || III.ImmWidth != 16)
3998       return false;
3999 
4000     // Going from XForm to DForm loads means that the displacement needs to be
4001     // not just an immediate but also a multiple of 4, or 16 depending on the
4002     // load. A DForm load cannot be represented if it is a multiple of say 2.
4003     // XForm loads do not have this restriction.
4004     if (ImmMO.isGlobal()) {
4005       const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout();
4006       if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf)
4007         return false;
4008     }
4009 
4010     return true;
4011   }
4012 
4013   if (ImmMO.isImm()) {
4014     // It is Imm, we need to check if the Imm fit the range.
4015     // Sign-extend to 64-bits.
4016     // DefMI may be folded with another imm form instruction, the result Imm is
4017     // the sum of Imm of DefMI and BaseImm which is from imm form instruction.
4018     Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm);
4019 
4020     if (Imm % III.ImmMustBeMultipleOf)
4021       return false;
4022     if (III.TruncateImmTo)
4023       Imm &= ((1 << III.TruncateImmTo) - 1);
4024     if (III.SignedImm) {
4025       APInt ActualValue(64, Imm, true);
4026       if (!ActualValue.isSignedIntN(III.ImmWidth))
4027         return false;
4028     } else {
4029       uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
4030       if ((uint64_t)Imm > UnsignedMax)
4031         return false;
4032     }
4033   }
4034   else
4035     return false;
4036 
4037   // This ImmMO is forwarded if it meets the requriement describle
4038   // in ImmInstrInfo
4039   return true;
4040 }
4041 
4042 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
4043                                 unsigned OpNoForForwarding,
4044                                 MachineInstr **KilledDef) const {
4045   if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
4046       !DefMI.getOperand(1).isImm())
4047     return false;
4048 
4049   MachineFunction *MF = MI.getParent()->getParent();
4050   MachineRegisterInfo *MRI = &MF->getRegInfo();
4051   bool PostRA = !MRI->isSSA();
4052 
4053   int64_t Immediate = DefMI.getOperand(1).getImm();
4054   // Sign-extend to 64-bits.
4055   int64_t SExtImm = SignExtend64<16>(Immediate);
4056 
4057   bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill();
4058   Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg();
4059 
4060   bool ReplaceWithLI = false;
4061   bool Is64BitLI = false;
4062   int64_t NewImm = 0;
4063   bool SetCR = false;
4064   unsigned Opc = MI.getOpcode();
4065   switch (Opc) {
4066   default:
4067     return false;
4068 
4069   // FIXME: Any branches conditional on such a comparison can be made
4070   // unconditional. At this time, this happens too infrequently to be worth
4071   // the implementation effort, but if that ever changes, we could convert
4072   // such a pattern here.
4073   case PPC::CMPWI:
4074   case PPC::CMPLWI:
4075   case PPC::CMPDI:
4076   case PPC::CMPLDI: {
4077     // Doing this post-RA would require dataflow analysis to reliably find uses
4078     // of the CR register set by the compare.
4079     // No need to fixup killed/dead flag since this transformation is only valid
4080     // before RA.
4081     if (PostRA)
4082       return false;
4083     // If a compare-immediate is fed by an immediate and is itself an input of
4084     // an ISEL (the most common case) into a COPY of the correct register.
4085     bool Changed = false;
4086     Register DefReg = MI.getOperand(0).getReg();
4087     int64_t Comparand = MI.getOperand(2).getImm();
4088     int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0
4089                                 ? (Comparand | 0xFFFFFFFFFFFF0000)
4090                                 : Comparand;
4091 
4092     for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
4093       unsigned UseOpc = CompareUseMI.getOpcode();
4094       if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
4095         continue;
4096       unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
4097       Register TrueReg = CompareUseMI.getOperand(1).getReg();
4098       Register FalseReg = CompareUseMI.getOperand(2).getReg();
4099       unsigned RegToCopy =
4100           selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg);
4101       if (RegToCopy == PPC::NoRegister)
4102         continue;
4103       // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
4104       if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
4105         CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
4106         replaceInstrOperandWithImm(CompareUseMI, 1, 0);
4107         CompareUseMI.RemoveOperand(3);
4108         CompareUseMI.RemoveOperand(2);
4109         continue;
4110       }
4111       LLVM_DEBUG(
4112           dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
4113       LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump());
4114       LLVM_DEBUG(dbgs() << "Is converted to:\n");
4115       // Convert to copy and remove unneeded operands.
4116       CompareUseMI.setDesc(get(PPC::COPY));
4117       CompareUseMI.RemoveOperand(3);
4118       CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
4119       CmpIselsConverted++;
4120       Changed = true;
4121       LLVM_DEBUG(CompareUseMI.dump());
4122     }
4123     if (Changed)
4124       return true;
4125     // This may end up incremented multiple times since this function is called
4126     // during a fixed-point transformation, but it is only meant to indicate the
4127     // presence of this opportunity.
4128     MissedConvertibleImmediateInstrs++;
4129     return false;
4130   }
4131 
4132   // Immediate forms - may simply be convertable to an LI.
4133   case PPC::ADDI:
4134   case PPC::ADDI8: {
4135     // Does the sum fit in a 16-bit signed field?
4136     int64_t Addend = MI.getOperand(2).getImm();
4137     if (isInt<16>(Addend + SExtImm)) {
4138       ReplaceWithLI = true;
4139       Is64BitLI = Opc == PPC::ADDI8;
4140       NewImm = Addend + SExtImm;
4141       break;
4142     }
4143     return false;
4144   }
4145   case PPC::SUBFIC:
4146   case PPC::SUBFIC8: {
4147     // Only transform this if the CARRY implicit operand is dead.
4148     if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead())
4149       return false;
4150     int64_t Minuend = MI.getOperand(2).getImm();
4151     if (isInt<16>(Minuend - SExtImm)) {
4152       ReplaceWithLI = true;
4153       Is64BitLI = Opc == PPC::SUBFIC8;
4154       NewImm = Minuend - SExtImm;
4155       break;
4156     }
4157     return false;
4158   }
4159   case PPC::RLDICL:
4160   case PPC::RLDICL_rec:
4161   case PPC::RLDICL_32:
4162   case PPC::RLDICL_32_64: {
4163     // Use APInt's rotate function.
4164     int64_t SH = MI.getOperand(2).getImm();
4165     int64_t MB = MI.getOperand(3).getImm();
4166     APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32,
4167                 SExtImm, true);
4168     InVal = InVal.rotl(SH);
4169     uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1;
4170     InVal &= Mask;
4171     // Can't replace negative values with an LI as that will sign-extend
4172     // and not clear the left bits. If we're setting the CR bit, we will use
4173     // ANDI_rec which won't sign extend, so that's safe.
4174     if (isUInt<15>(InVal.getSExtValue()) ||
4175         (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) {
4176       ReplaceWithLI = true;
4177       Is64BitLI = Opc != PPC::RLDICL_32;
4178       NewImm = InVal.getSExtValue();
4179       SetCR = Opc == PPC::RLDICL_rec;
4180       break;
4181     }
4182     return false;
4183   }
4184   case PPC::RLWINM:
4185   case PPC::RLWINM8:
4186   case PPC::RLWINM_rec:
4187   case PPC::RLWINM8_rec: {
4188     int64_t SH = MI.getOperand(2).getImm();
4189     int64_t MB = MI.getOperand(3).getImm();
4190     int64_t ME = MI.getOperand(4).getImm();
4191     APInt InVal(32, SExtImm, true);
4192     InVal = InVal.rotl(SH);
4193     APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB);
4194     InVal &= Mask;
4195     // Can't replace negative values with an LI as that will sign-extend
4196     // and not clear the left bits. If we're setting the CR bit, we will use
4197     // ANDI_rec which won't sign extend, so that's safe.
4198     bool ValueFits = isUInt<15>(InVal.getSExtValue());
4199     ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) &&
4200                   isUInt<16>(InVal.getSExtValue()));
4201     if (ValueFits) {
4202       ReplaceWithLI = true;
4203       Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec;
4204       NewImm = InVal.getSExtValue();
4205       SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec;
4206       break;
4207     }
4208     return false;
4209   }
4210   case PPC::ORI:
4211   case PPC::ORI8:
4212   case PPC::XORI:
4213   case PPC::XORI8: {
4214     int64_t LogicalImm = MI.getOperand(2).getImm();
4215     int64_t Result = 0;
4216     if (Opc == PPC::ORI || Opc == PPC::ORI8)
4217       Result = LogicalImm | SExtImm;
4218     else
4219       Result = LogicalImm ^ SExtImm;
4220     if (isInt<16>(Result)) {
4221       ReplaceWithLI = true;
4222       Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
4223       NewImm = Result;
4224       break;
4225     }
4226     return false;
4227   }
4228   }
4229 
4230   if (ReplaceWithLI) {
4231     // We need to be careful with CR-setting instructions we're replacing.
4232     if (SetCR) {
4233       // We don't know anything about uses when we're out of SSA, so only
4234       // replace if the new immediate will be reproduced.
4235       bool ImmChanged = (SExtImm & NewImm) != NewImm;
4236       if (PostRA && ImmChanged)
4237         return false;
4238 
4239       if (!PostRA) {
4240         // If the defining load-immediate has no other uses, we can just replace
4241         // the immediate with the new immediate.
4242         if (MRI->hasOneUse(DefMI.getOperand(0).getReg()))
4243           DefMI.getOperand(1).setImm(NewImm);
4244 
4245         // If we're not using the GPR result of the CR-setting instruction, we
4246         // just need to and with zero/non-zero depending on the new immediate.
4247         else if (MRI->use_empty(MI.getOperand(0).getReg())) {
4248           if (NewImm) {
4249             assert(Immediate && "Transformation converted zero to non-zero?");
4250             NewImm = Immediate;
4251           }
4252         } else if (ImmChanged)
4253           return false;
4254       }
4255     }
4256 
4257     LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4258     LLVM_DEBUG(MI.dump());
4259     LLVM_DEBUG(dbgs() << "Fed by:\n");
4260     LLVM_DEBUG(DefMI.dump());
4261     LoadImmediateInfo LII;
4262     LII.Imm = NewImm;
4263     LII.Is64Bit = Is64BitLI;
4264     LII.SetCR = SetCR;
4265     // If we're setting the CR, the original load-immediate must be kept (as an
4266     // operand to ANDI_rec/ANDI8_rec).
4267     if (KilledDef && SetCR)
4268       *KilledDef = nullptr;
4269     replaceInstrWithLI(MI, LII);
4270 
4271     // Fixup killed/dead flag after transformation.
4272     // Pattern:
4273     // ForwardingOperandReg = LI imm1
4274     // y = op2 imm2, ForwardingOperandReg(killed)
4275     if (IsForwardingOperandKilled)
4276       fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg);
4277 
4278     LLVM_DEBUG(dbgs() << "With:\n");
4279     LLVM_DEBUG(MI.dump());
4280     return true;
4281   }
4282   return false;
4283 }
4284 
4285 bool PPCInstrInfo::transformToNewImmFormFedByAdd(
4286     MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const {
4287   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
4288   bool PostRA = !MRI->isSSA();
4289   // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI
4290   // for post-ra.
4291   if (PostRA)
4292     return false;
4293 
4294   // Only handle load/store.
4295   if (!MI.mayLoadOrStore())
4296     return false;
4297 
4298   unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode());
4299 
4300   assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) &&
4301          "MI must have x-form opcode");
4302 
4303   // get Imm Form info.
4304   ImmInstrInfo III;
4305   bool IsVFReg = MI.getOperand(0).isReg()
4306                      ? isVFRegister(MI.getOperand(0).getReg())
4307                      : false;
4308 
4309   if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA))
4310     return false;
4311 
4312   if (!III.IsSummingOperands)
4313     return false;
4314 
4315   if (OpNoForForwarding != III.OpNoForForwarding)
4316     return false;
4317 
4318   MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo);
4319   if (!ImmOperandMI.isImm())
4320     return false;
4321 
4322   // Check DefMI.
4323   MachineOperand *ImmMO = nullptr;
4324   MachineOperand *RegMO = nullptr;
4325   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
4326     return false;
4327   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
4328 
4329   // Check Imm.
4330   // Set ImmBase from imm instruction as base and get new Imm inside
4331   // isImmElgibleForForwarding.
4332   int64_t ImmBase = ImmOperandMI.getImm();
4333   int64_t Imm = 0;
4334   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase))
4335     return false;
4336 
4337   // Get killed info in case fixup needed after transformation.
4338   unsigned ForwardKilledOperandReg = ~0U;
4339   if (MI.getOperand(III.OpNoForForwarding).isKill())
4340     ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg();
4341 
4342   // Do the transform
4343   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4344   LLVM_DEBUG(MI.dump());
4345   LLVM_DEBUG(dbgs() << "Fed by:\n");
4346   LLVM_DEBUG(DefMI.dump());
4347 
4348   MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg());
4349   MI.getOperand(III.OpNoForForwarding).setIsKill(RegMO->isKill());
4350   MI.getOperand(III.ImmOpNo).setImm(Imm);
4351 
4352   // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block.
4353   if (DefMI.getParent() == MI.getParent()) {
4354     // Check if reg is killed between MI and DefMI.
4355     auto IsKilledFor = [&](unsigned Reg) {
4356       MachineBasicBlock::const_reverse_iterator It = MI;
4357       MachineBasicBlock::const_reverse_iterator E = DefMI;
4358       It++;
4359       for (; It != E; ++It) {
4360         if (It->killsRegister(Reg))
4361           return true;
4362       }
4363       return false;
4364     };
4365 
4366     // Update kill flag
4367     if (RegMO->isKill() || IsKilledFor(RegMO->getReg()))
4368       fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
4369     if (ForwardKilledOperandReg != ~0U)
4370       fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
4371   }
4372 
4373   LLVM_DEBUG(dbgs() << "With:\n");
4374   LLVM_DEBUG(MI.dump());
4375   return true;
4376 }
4377 
4378 // If an X-Form instruction is fed by an add-immediate and one of its operands
4379 // is the literal zero, attempt to forward the source of the add-immediate to
4380 // the corresponding D-Form instruction with the displacement coming from
4381 // the immediate being added.
4382 bool PPCInstrInfo::transformToImmFormFedByAdd(
4383     MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
4384     MachineInstr &DefMI, bool KillDefMI) const {
4385   //         RegMO ImmMO
4386   //           |    |
4387   // x = addi reg, imm  <----- DefMI
4388   // y = op    0 ,  x   <----- MI
4389   //                |
4390   //         OpNoForForwarding
4391   // Check if the MI meet the requirement described in the III.
4392   if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
4393     return false;
4394 
4395   // Check if the DefMI meet the requirement
4396   // described in the III. If yes, set the ImmMO and RegMO accordingly.
4397   MachineOperand *ImmMO = nullptr;
4398   MachineOperand *RegMO = nullptr;
4399   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
4400     return false;
4401   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
4402 
4403   // As we get the Imm operand now, we need to check if the ImmMO meet
4404   // the requirement described in the III. If yes set the Imm.
4405   int64_t Imm = 0;
4406   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
4407     return false;
4408 
4409   bool IsFwdFeederRegKilled = false;
4410   // Check if the RegMO can be forwarded to MI.
4411   if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
4412                                  IsFwdFeederRegKilled))
4413     return false;
4414 
4415   // Get killed info in case fixup needed after transformation.
4416   unsigned ForwardKilledOperandReg = ~0U;
4417   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4418   bool PostRA = !MRI.isSSA();
4419   if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
4420     ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
4421 
4422   // We know that, the MI and DefMI both meet the pattern, and
4423   // the Imm also meet the requirement with the new Imm-form.
4424   // It is safe to do the transformation now.
4425   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4426   LLVM_DEBUG(MI.dump());
4427   LLVM_DEBUG(dbgs() << "Fed by:\n");
4428   LLVM_DEBUG(DefMI.dump());
4429 
4430   // Update the base reg first.
4431   MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
4432                                                         false, false,
4433                                                         RegMO->isKill());
4434 
4435   // Then, update the imm.
4436   if (ImmMO->isImm()) {
4437     // If the ImmMO is Imm, change the operand that has ZERO to that Imm
4438     // directly.
4439     replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
4440   }
4441   else {
4442     // Otherwise, it is Constant Pool Index(CPI) or Global,
4443     // which is relocation in fact. We need to replace the special zero
4444     // register with ImmMO.
4445     // Before that, we need to fixup the target flags for imm.
4446     // For some reason, we miss to set the flag for the ImmMO if it is CPI.
4447     if (DefMI.getOpcode() == PPC::ADDItocL)
4448       ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
4449 
4450     // MI didn't have the interface such as MI.setOperand(i) though
4451     // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
4452     // ImmMO, we need to remove ZERO operand and all the operands behind it,
4453     // and, add the ImmMO, then, move back all the operands behind ZERO.
4454     SmallVector<MachineOperand, 2> MOps;
4455     for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
4456       MOps.push_back(MI.getOperand(i));
4457       MI.RemoveOperand(i);
4458     }
4459 
4460     // Remove the last MO in the list, which is ZERO operand in fact.
4461     MOps.pop_back();
4462     // Add the imm operand.
4463     MI.addOperand(*ImmMO);
4464     // Now add the rest back.
4465     for (auto &MO : MOps)
4466       MI.addOperand(MO);
4467   }
4468 
4469   // Update the opcode.
4470   MI.setDesc(get(III.ImmOpcode));
4471 
4472   // Fix up killed/dead flag after transformation.
4473   // Pattern 1:
4474   // x = ADD KilledFwdFeederReg, imm
4475   // n = opn KilledFwdFeederReg(killed), regn
4476   // y = XOP 0, x
4477   // Pattern 2:
4478   // x = ADD reg(killed), imm
4479   // y = XOP 0, x
4480   if (IsFwdFeederRegKilled || RegMO->isKill())
4481     fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
4482   // Pattern 3:
4483   // ForwardKilledOperandReg = ADD reg, imm
4484   // y = XOP 0, ForwardKilledOperandReg(killed)
4485   if (ForwardKilledOperandReg != ~0U)
4486     fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
4487 
4488   LLVM_DEBUG(dbgs() << "With:\n");
4489   LLVM_DEBUG(MI.dump());
4490 
4491   return true;
4492 }
4493 
4494 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
4495                                              const ImmInstrInfo &III,
4496                                              unsigned ConstantOpNo,
4497                                              MachineInstr &DefMI) const {
4498   // DefMI must be LI or LI8.
4499   if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
4500       !DefMI.getOperand(1).isImm())
4501     return false;
4502 
4503   // Get Imm operand and Sign-extend to 64-bits.
4504   int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm());
4505 
4506   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4507   bool PostRA = !MRI.isSSA();
4508   // Exit early if we can't convert this.
4509   if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
4510     return false;
4511   if (Imm % III.ImmMustBeMultipleOf)
4512     return false;
4513   if (III.TruncateImmTo)
4514     Imm &= ((1 << III.TruncateImmTo) - 1);
4515   if (III.SignedImm) {
4516     APInt ActualValue(64, Imm, true);
4517     if (!ActualValue.isSignedIntN(III.ImmWidth))
4518       return false;
4519   } else {
4520     uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
4521     if ((uint64_t)Imm > UnsignedMax)
4522       return false;
4523   }
4524 
4525   // If we're post-RA, the instructions don't agree on whether register zero is
4526   // special, we can transform this as long as the register operand that will
4527   // end up in the location where zero is special isn't R0.
4528   if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
4529     unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
4530       III.ZeroIsSpecialNew + 1;
4531     Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
4532     Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
4533     // If R0 is in the operand where zero is special for the new instruction,
4534     // it is unsafe to transform if the constant operand isn't that operand.
4535     if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
4536         ConstantOpNo != III.ZeroIsSpecialNew)
4537       return false;
4538     if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
4539         ConstantOpNo != PosForOrigZero)
4540       return false;
4541   }
4542 
4543   // Get killed info in case fixup needed after transformation.
4544   unsigned ForwardKilledOperandReg = ~0U;
4545   if (PostRA && MI.getOperand(ConstantOpNo).isKill())
4546     ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
4547 
4548   unsigned Opc = MI.getOpcode();
4549   bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec ||
4550                         Opc == PPC::SRW || Opc == PPC::SRW_rec ||
4551                         Opc == PPC::SLW8 || Opc == PPC::SLW8_rec ||
4552                         Opc == PPC::SRW8 || Opc == PPC::SRW8_rec;
4553   bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec ||
4554                         Opc == PPC::SRD || Opc == PPC::SRD_rec;
4555   bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec ||
4556                Opc == PPC::SLD_rec || Opc == PPC::SRD_rec;
4557   bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD ||
4558                     Opc == PPC::SRD_rec;
4559 
4560   MI.setDesc(get(III.ImmOpcode));
4561   if (ConstantOpNo == III.OpNoForForwarding) {
4562     // Converting shifts to immediate form is a bit tricky since they may do
4563     // one of three things:
4564     // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
4565     // 2. If the shift amount is zero, the result is unchanged (save for maybe
4566     //    setting CR0)
4567     // 3. If the shift amount is in [1, OpSize), it's just a shift
4568     if (SpecialShift32 || SpecialShift64) {
4569       LoadImmediateInfo LII;
4570       LII.Imm = 0;
4571       LII.SetCR = SetCR;
4572       LII.Is64Bit = SpecialShift64;
4573       uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
4574       if (Imm & (SpecialShift32 ? 0x20 : 0x40))
4575         replaceInstrWithLI(MI, LII);
4576       // Shifts by zero don't change the value. If we don't need to set CR0,
4577       // just convert this to a COPY. Can't do this post-RA since we've already
4578       // cleaned up the copies.
4579       else if (!SetCR && ShAmt == 0 && !PostRA) {
4580         MI.RemoveOperand(2);
4581         MI.setDesc(get(PPC::COPY));
4582       } else {
4583         // The 32 bit and 64 bit instructions are quite different.
4584         if (SpecialShift32) {
4585           // Left shifts use (N, 0, 31-N).
4586           // Right shifts use (32-N, N, 31) if 0 < N < 32.
4587           //              use (0, 0, 31)    if N == 0.
4588           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt;
4589           uint64_t MB = RightShift ? ShAmt : 0;
4590           uint64_t ME = RightShift ? 31 : 31 - ShAmt;
4591           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
4592           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
4593             .addImm(ME);
4594         } else {
4595           // Left shifts use (N, 63-N).
4596           // Right shifts use (64-N, N) if 0 < N < 64.
4597           //              use (0, 0)    if N == 0.
4598           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt;
4599           uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
4600           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
4601           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
4602         }
4603       }
4604     } else
4605       replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
4606   }
4607   // Convert commutative instructions (switch the operands and convert the
4608   // desired one to an immediate.
4609   else if (III.IsCommutative) {
4610     replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
4611     swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
4612   } else
4613     llvm_unreachable("Should have exited early!");
4614 
4615   // For instructions for which the constant register replaces a different
4616   // operand than where the immediate goes, we need to swap them.
4617   if (III.OpNoForForwarding != III.ImmOpNo)
4618     swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
4619 
4620   // If the special R0/X0 register index are different for original instruction
4621   // and new instruction, we need to fix up the register class in new
4622   // instruction.
4623   if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
4624     if (III.ZeroIsSpecialNew) {
4625       // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
4626       // need to fix up register class.
4627       Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
4628       if (Register::isVirtualRegister(RegToModify)) {
4629         const TargetRegisterClass *NewRC =
4630           MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
4631           &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
4632         MRI.setRegClass(RegToModify, NewRC);
4633       }
4634     }
4635   }
4636 
4637   // Fix up killed/dead flag after transformation.
4638   // Pattern:
4639   // ForwardKilledOperandReg = LI imm
4640   // y = XOP reg, ForwardKilledOperandReg(killed)
4641   if (ForwardKilledOperandReg != ~0U)
4642     fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
4643   return true;
4644 }
4645 
4646 const TargetRegisterClass *
4647 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
4648   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
4649     return &PPC::VSRCRegClass;
4650   return RC;
4651 }
4652 
4653 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
4654   return PPC::getRecordFormOpcode(Opcode);
4655 }
4656 
4657 // This function returns true if the machine instruction
4658 // always outputs a value by sign-extending a 32 bit value,
4659 // i.e. 0 to 31-th bits are same as 32-th bit.
4660 static bool isSignExtendingOp(const MachineInstr &MI) {
4661   int Opcode = MI.getOpcode();
4662   if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS ||
4663       Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec ||
4664       Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA ||
4665       Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
4666       Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 ||
4667       Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
4668       Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU ||
4669       Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
4670       Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 ||
4671       Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
4672       Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB ||
4673       Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH ||
4674       Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 ||
4675       Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW ||
4676       Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 ||
4677       Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
4678       Opcode == PPC::EXTSB8_32_64)
4679     return true;
4680 
4681   if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
4682     return true;
4683 
4684   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
4685        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) &&
4686       MI.getOperand(3).getImm() > 0 &&
4687       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
4688     return true;
4689 
4690   return false;
4691 }
4692 
4693 // This function returns true if the machine instruction
4694 // always outputs zeros in higher 32 bits.
4695 static bool isZeroExtendingOp(const MachineInstr &MI) {
4696   int Opcode = MI.getOpcode();
4697   // The 16-bit immediate is sign-extended in li/lis.
4698   // If the most significant bit is zero, all higher bits are zero.
4699   if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
4700       Opcode == PPC::LIS || Opcode == PPC::LIS8) {
4701     int64_t Imm = MI.getOperand(1).getImm();
4702     if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
4703       return true;
4704   }
4705 
4706   // We have some variations of rotate-and-mask instructions
4707   // that clear higher 32-bits.
4708   if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
4709        Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec ||
4710        Opcode == PPC::RLDICL_32_64) &&
4711       MI.getOperand(3).getImm() >= 32)
4712     return true;
4713 
4714   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
4715       MI.getOperand(3).getImm() >= 32 &&
4716       MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
4717     return true;
4718 
4719   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
4720        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
4721        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
4722       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
4723     return true;
4724 
4725   // There are other instructions that clear higher 32-bits.
4726   if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
4727       Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
4728       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
4729       Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
4730       Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec ||
4731       Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW ||
4732       Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec ||
4733       Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI ||
4734       Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI ||
4735       Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX ||
4736       Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX ||
4737       Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
4738       Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ ||
4739       Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
4740       Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 ||
4741       Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 ||
4742       Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 ||
4743       Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
4744       Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
4745       Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec ||
4746       Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec ||
4747       Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec ||
4748       Opcode == PPC::MFVSRWZ)
4749     return true;
4750 
4751   return false;
4752 }
4753 
4754 // This function returns true if the input MachineInstr is a TOC save
4755 // instruction.
4756 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
4757   if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
4758     return false;
4759   unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
4760   unsigned StackOffset = MI.getOperand(1).getImm();
4761   Register StackReg = MI.getOperand(2).getReg();
4762   if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
4763     return true;
4764 
4765   return false;
4766 }
4767 
4768 // We limit the max depth to track incoming values of PHIs or binary ops
4769 // (e.g. AND) to avoid excessive cost.
4770 const unsigned MAX_DEPTH = 1;
4771 
4772 bool
4773 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
4774                                    const unsigned Depth) const {
4775   const MachineFunction *MF = MI.getParent()->getParent();
4776   const MachineRegisterInfo *MRI = &MF->getRegInfo();
4777 
4778   // If we know this instruction returns sign- or zero-extended result,
4779   // return true.
4780   if (SignExt ? isSignExtendingOp(MI):
4781                 isZeroExtendingOp(MI))
4782     return true;
4783 
4784   switch (MI.getOpcode()) {
4785   case PPC::COPY: {
4786     Register SrcReg = MI.getOperand(1).getReg();
4787 
4788     // In both ELFv1 and v2 ABI, method parameters and the return value
4789     // are sign- or zero-extended.
4790     if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
4791       const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
4792       // We check the ZExt/SExt flags for a method parameter.
4793       if (MI.getParent()->getBasicBlock() ==
4794           &MF->getFunction().getEntryBlock()) {
4795         Register VReg = MI.getOperand(0).getReg();
4796         if (MF->getRegInfo().isLiveIn(VReg))
4797           return SignExt ? FuncInfo->isLiveInSExt(VReg) :
4798                            FuncInfo->isLiveInZExt(VReg);
4799       }
4800 
4801       // For a method return value, we check the ZExt/SExt flags in attribute.
4802       // We assume the following code sequence for method call.
4803       //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
4804       //   BL8_NOP @func,...
4805       //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
4806       //   %5 = COPY %x3; G8RC:%5
4807       if (SrcReg == PPC::X3) {
4808         const MachineBasicBlock *MBB = MI.getParent();
4809         MachineBasicBlock::const_instr_iterator II =
4810           MachineBasicBlock::const_instr_iterator(&MI);
4811         if (II != MBB->instr_begin() &&
4812             (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
4813           const MachineInstr &CallMI = *(--II);
4814           if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
4815             const Function *CalleeFn =
4816               dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
4817             if (!CalleeFn)
4818               return false;
4819             const IntegerType *IntTy =
4820               dyn_cast<IntegerType>(CalleeFn->getReturnType());
4821             const AttributeSet &Attrs =
4822               CalleeFn->getAttributes().getRetAttributes();
4823             if (IntTy && IntTy->getBitWidth() <= 32)
4824               return Attrs.hasAttribute(SignExt ? Attribute::SExt :
4825                                                   Attribute::ZExt);
4826           }
4827         }
4828       }
4829     }
4830 
4831     // If this is a copy from another register, we recursively check source.
4832     if (!Register::isVirtualRegister(SrcReg))
4833       return false;
4834     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
4835     if (SrcMI != NULL)
4836       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
4837 
4838     return false;
4839   }
4840 
4841   case PPC::ANDI_rec:
4842   case PPC::ANDIS_rec:
4843   case PPC::ORI:
4844   case PPC::ORIS:
4845   case PPC::XORI:
4846   case PPC::XORIS:
4847   case PPC::ANDI8_rec:
4848   case PPC::ANDIS8_rec:
4849   case PPC::ORI8:
4850   case PPC::ORIS8:
4851   case PPC::XORI8:
4852   case PPC::XORIS8: {
4853     // logical operation with 16-bit immediate does not change the upper bits.
4854     // So, we track the operand register as we do for register copy.
4855     Register SrcReg = MI.getOperand(1).getReg();
4856     if (!Register::isVirtualRegister(SrcReg))
4857       return false;
4858     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
4859     if (SrcMI != NULL)
4860       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
4861 
4862     return false;
4863   }
4864 
4865   // If all incoming values are sign-/zero-extended,
4866   // the output of OR, ISEL or PHI is also sign-/zero-extended.
4867   case PPC::OR:
4868   case PPC::OR8:
4869   case PPC::ISEL:
4870   case PPC::PHI: {
4871     if (Depth >= MAX_DEPTH)
4872       return false;
4873 
4874     // The input registers for PHI are operand 1, 3, ...
4875     // The input registers for others are operand 1 and 2.
4876     unsigned E = 3, D = 1;
4877     if (MI.getOpcode() == PPC::PHI) {
4878       E = MI.getNumOperands();
4879       D = 2;
4880     }
4881 
4882     for (unsigned I = 1; I != E; I += D) {
4883       if (MI.getOperand(I).isReg()) {
4884         Register SrcReg = MI.getOperand(I).getReg();
4885         if (!Register::isVirtualRegister(SrcReg))
4886           return false;
4887         const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
4888         if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
4889           return false;
4890       }
4891       else
4892         return false;
4893     }
4894     return true;
4895   }
4896 
4897   // If at least one of the incoming values of an AND is zero extended
4898   // then the output is also zero-extended. If both of the incoming values
4899   // are sign-extended then the output is also sign extended.
4900   case PPC::AND:
4901   case PPC::AND8: {
4902     if (Depth >= MAX_DEPTH)
4903        return false;
4904 
4905     assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
4906 
4907     Register SrcReg1 = MI.getOperand(1).getReg();
4908     Register SrcReg2 = MI.getOperand(2).getReg();
4909 
4910     if (!Register::isVirtualRegister(SrcReg1) ||
4911         !Register::isVirtualRegister(SrcReg2))
4912       return false;
4913 
4914     const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
4915     const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
4916     if (!MISrc1 || !MISrc2)
4917         return false;
4918 
4919     if(SignExt)
4920         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
4921                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
4922     else
4923         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
4924                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
4925   }
4926 
4927   default:
4928     break;
4929   }
4930   return false;
4931 }
4932 
4933 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
4934   return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
4935 }
4936 
4937 namespace {
4938 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
4939   MachineInstr *Loop, *EndLoop, *LoopCount;
4940   MachineFunction *MF;
4941   const TargetInstrInfo *TII;
4942   int64_t TripCount;
4943 
4944 public:
4945   PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
4946                        MachineInstr *LoopCount)
4947       : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
4948         MF(Loop->getParent()->getParent()),
4949         TII(MF->getSubtarget().getInstrInfo()) {
4950     // Inspect the Loop instruction up-front, as it may be deleted when we call
4951     // createTripCountGreaterCondition.
4952     if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
4953       TripCount = LoopCount->getOperand(1).getImm();
4954     else
4955       TripCount = -1;
4956   }
4957 
4958   bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
4959     // Only ignore the terminator.
4960     return MI == EndLoop;
4961   }
4962 
4963   Optional<bool>
4964   createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
4965                                   SmallVectorImpl<MachineOperand> &Cond) override {
4966     if (TripCount == -1) {
4967       // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
4968       // so we don't need to generate any thing here.
4969       Cond.push_back(MachineOperand::CreateImm(0));
4970       Cond.push_back(MachineOperand::CreateReg(
4971           MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
4972           true));
4973       return {};
4974     }
4975 
4976     return TripCount > TC;
4977   }
4978 
4979   void setPreheader(MachineBasicBlock *NewPreheader) override {
4980     // Do nothing. We want the LOOP setup instruction to stay in the *old*
4981     // preheader, so we can use BDZ in the prologs to adapt the loop trip count.
4982   }
4983 
4984   void adjustTripCount(int TripCountAdjust) override {
4985     // If the loop trip count is a compile-time value, then just change the
4986     // value.
4987     if (LoopCount->getOpcode() == PPC::LI8 ||
4988         LoopCount->getOpcode() == PPC::LI) {
4989       int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
4990       LoopCount->getOperand(1).setImm(TripCount);
4991       return;
4992     }
4993 
4994     // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
4995     // so we don't need to generate any thing here.
4996   }
4997 
4998   void disposed() override {
4999     Loop->eraseFromParent();
5000     // Ensure the loop setup instruction is deleted too.
5001     LoopCount->eraseFromParent();
5002   }
5003 };
5004 } // namespace
5005 
5006 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
5007 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
5008   // We really "analyze" only hardware loops right now.
5009   MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
5010   MachineBasicBlock *Preheader = *LoopBB->pred_begin();
5011   if (Preheader == LoopBB)
5012     Preheader = *std::next(LoopBB->pred_begin());
5013   MachineFunction *MF = Preheader->getParent();
5014 
5015   if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
5016     SmallPtrSet<MachineBasicBlock *, 8> Visited;
5017     if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
5018       Register LoopCountReg = LoopInst->getOperand(0).getReg();
5019       MachineRegisterInfo &MRI = MF->getRegInfo();
5020       MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
5021       return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
5022     }
5023   }
5024   return nullptr;
5025 }
5026 
5027 MachineInstr *PPCInstrInfo::findLoopInstr(
5028     MachineBasicBlock &PreHeader,
5029     SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
5030 
5031   unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
5032 
5033   // The loop set-up instruction should be in preheader
5034   for (auto &I : PreHeader.instrs())
5035     if (I.getOpcode() == LOOPi)
5036       return &I;
5037   return nullptr;
5038 }
5039 
5040 // Return true if get the base operand, byte offset of an instruction and the
5041 // memory width. Width is the size of memory that is being loaded/stored.
5042 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
5043     const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
5044     unsigned &Width, const TargetRegisterInfo *TRI) const {
5045   if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3)
5046     return false;
5047 
5048   // Handle only loads/stores with base register followed by immediate offset.
5049   if (!LdSt.getOperand(1).isImm() ||
5050       (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
5051     return false;
5052   if (!LdSt.getOperand(1).isImm() ||
5053       (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
5054     return false;
5055 
5056   if (!LdSt.hasOneMemOperand())
5057     return false;
5058 
5059   Width = (*LdSt.memoperands_begin())->getSize();
5060   Offset = LdSt.getOperand(1).getImm();
5061   BaseReg = &LdSt.getOperand(2);
5062   return true;
5063 }
5064 
5065 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
5066     const MachineInstr &MIa, const MachineInstr &MIb) const {
5067   assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
5068   assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
5069 
5070   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
5071       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
5072     return false;
5073 
5074   // Retrieve the base register, offset from the base register and width. Width
5075   // is the size of memory that is being loaded/stored (e.g. 1, 2, 4).  If
5076   // base registers are identical, and the offset of a lower memory access +
5077   // the width doesn't overlap the offset of a higher memory access,
5078   // then the memory accesses are different.
5079   const TargetRegisterInfo *TRI = &getRegisterInfo();
5080   const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
5081   int64_t OffsetA = 0, OffsetB = 0;
5082   unsigned int WidthA = 0, WidthB = 0;
5083   if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
5084       getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
5085     if (BaseOpA->isIdenticalTo(*BaseOpB)) {
5086       int LowOffset = std::min(OffsetA, OffsetB);
5087       int HighOffset = std::max(OffsetA, OffsetB);
5088       int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
5089       if (LowOffset + LowWidth <= HighOffset)
5090         return true;
5091     }
5092   }
5093   return false;
5094 }
5095