1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/PseudoSourceValue.h" 29 #include "llvm/CodeGen/ScheduleDAG.h" 30 #include "llvm/CodeGen/SlotIndexes.h" 31 #include "llvm/CodeGen/StackMaps.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "ppc-instr-info" 43 44 #define GET_INSTRMAP_INFO 45 #define GET_INSTRINFO_CTOR_DTOR 46 #include "PPCGenInstrInfo.inc" 47 48 STATISTIC(NumStoreSPILLVSRRCAsVec, 49 "Number of spillvsrrc spilled to stack as vec"); 50 STATISTIC(NumStoreSPILLVSRRCAsGpr, 51 "Number of spillvsrrc spilled to stack as gpr"); 52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 53 STATISTIC(CmpIselsConverted, 54 "Number of ISELs that depend on comparison of constants converted"); 55 STATISTIC(MissedConvertibleImmediateInstrs, 56 "Number of compare-immediate instructions fed by constants"); 57 STATISTIC(NumRcRotatesConvertedToRcAnd, 58 "Number of record-form rotates converted to record-form andi"); 59 60 static cl:: 61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 62 cl::desc("Disable analysis for CTR loops")); 63 64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 65 cl::desc("Disable compare instruction optimization"), cl::Hidden); 66 67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 69 cl::Hidden); 70 71 static cl::opt<bool> 72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 73 cl::desc("Use the old (incorrect) instruction latency calculation")); 74 75 // Index into the OpcodesForSpill array. 76 enum SpillOpcodeKey { 77 SOK_Int4Spill, 78 SOK_Int8Spill, 79 SOK_Float8Spill, 80 SOK_Float4Spill, 81 SOK_CRSpill, 82 SOK_CRBitSpill, 83 SOK_VRVectorSpill, 84 SOK_VSXVectorSpill, 85 SOK_VectorFloat8Spill, 86 SOK_VectorFloat4Spill, 87 SOK_VRSaveSpill, 88 SOK_QuadFloat8Spill, 89 SOK_QuadFloat4Spill, 90 SOK_QuadBitSpill, 91 SOK_SpillToVSR, 92 SOK_SPESpill, 93 SOK_SPE4Spill, 94 SOK_LastOpcodeSpill // This must be last on the enum. 95 }; 96 97 // Pin the vtable to this file. 98 void PPCInstrInfo::anchor() {} 99 100 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 101 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 102 /* CatchRetOpcode */ -1, 103 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 104 Subtarget(STI), RI(STI.getTargetMachine()) {} 105 106 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 107 /// this target when scheduling the DAG. 108 ScheduleHazardRecognizer * 109 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 110 const ScheduleDAG *DAG) const { 111 unsigned Directive = 112 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); 113 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 114 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 115 const InstrItineraryData *II = 116 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 117 return new ScoreboardHazardRecognizer(II, DAG); 118 } 119 120 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 121 } 122 123 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 124 /// to use for this target when scheduling the DAG. 125 ScheduleHazardRecognizer * 126 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 127 const ScheduleDAG *DAG) const { 128 unsigned Directive = 129 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective(); 130 131 // FIXME: Leaving this as-is until we have POWER9 scheduling info 132 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 133 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 134 135 // Most subtargets use a PPC970 recognizer. 136 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 137 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 138 assert(DAG->TII && "No InstrInfo?"); 139 140 return new PPCHazardRecognizer970(*DAG); 141 } 142 143 return new ScoreboardHazardRecognizer(II, DAG); 144 } 145 146 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 147 const MachineInstr &MI, 148 unsigned *PredCost) const { 149 if (!ItinData || UseOldLatencyCalc) 150 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 151 152 // The default implementation of getInstrLatency calls getStageLatency, but 153 // getStageLatency does not do the right thing for us. While we have 154 // itinerary, most cores are fully pipelined, and so the itineraries only 155 // express the first part of the pipeline, not every stage. Instead, we need 156 // to use the listed output operand cycle number (using operand 0 here, which 157 // is an output). 158 159 unsigned Latency = 1; 160 unsigned DefClass = MI.getDesc().getSchedClass(); 161 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 162 const MachineOperand &MO = MI.getOperand(i); 163 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 164 continue; 165 166 int Cycle = ItinData->getOperandCycle(DefClass, i); 167 if (Cycle < 0) 168 continue; 169 170 Latency = std::max(Latency, (unsigned) Cycle); 171 } 172 173 return Latency; 174 } 175 176 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 177 const MachineInstr &DefMI, unsigned DefIdx, 178 const MachineInstr &UseMI, 179 unsigned UseIdx) const { 180 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 181 UseMI, UseIdx); 182 183 if (!DefMI.getParent()) 184 return Latency; 185 186 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 187 unsigned Reg = DefMO.getReg(); 188 189 bool IsRegCR; 190 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 191 const MachineRegisterInfo *MRI = 192 &DefMI.getParent()->getParent()->getRegInfo(); 193 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 194 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 195 } else { 196 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 197 PPC::CRBITRCRegClass.contains(Reg); 198 } 199 200 if (UseMI.isBranch() && IsRegCR) { 201 if (Latency < 0) 202 Latency = getInstrLatency(ItinData, DefMI); 203 204 // On some cores, there is an additional delay between writing to a condition 205 // register, and using it from a branch. 206 unsigned Directive = Subtarget.getDarwinDirective(); 207 switch (Directive) { 208 default: break; 209 case PPC::DIR_7400: 210 case PPC::DIR_750: 211 case PPC::DIR_970: 212 case PPC::DIR_E5500: 213 case PPC::DIR_PWR4: 214 case PPC::DIR_PWR5: 215 case PPC::DIR_PWR5X: 216 case PPC::DIR_PWR6: 217 case PPC::DIR_PWR6X: 218 case PPC::DIR_PWR7: 219 case PPC::DIR_PWR8: 220 // FIXME: Is this needed for POWER9? 221 Latency += 2; 222 break; 223 } 224 } 225 226 return Latency; 227 } 228 229 // This function does not list all associative and commutative operations, but 230 // only those worth feeding through the machine combiner in an attempt to 231 // reduce the critical path. Mostly, this means floating-point operations, 232 // because they have high latencies (compared to other operations, such and 233 // and/or, which are also associative and commutative, but have low latencies). 234 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 235 switch (Inst.getOpcode()) { 236 // FP Add: 237 case PPC::FADD: 238 case PPC::FADDS: 239 // FP Multiply: 240 case PPC::FMUL: 241 case PPC::FMULS: 242 // Altivec Add: 243 case PPC::VADDFP: 244 // VSX Add: 245 case PPC::XSADDDP: 246 case PPC::XVADDDP: 247 case PPC::XVADDSP: 248 case PPC::XSADDSP: 249 // VSX Multiply: 250 case PPC::XSMULDP: 251 case PPC::XVMULDP: 252 case PPC::XVMULSP: 253 case PPC::XSMULSP: 254 // QPX Add: 255 case PPC::QVFADD: 256 case PPC::QVFADDS: 257 case PPC::QVFADDSs: 258 // QPX Multiply: 259 case PPC::QVFMUL: 260 case PPC::QVFMULS: 261 case PPC::QVFMULSs: 262 return true; 263 default: 264 return false; 265 } 266 } 267 268 bool PPCInstrInfo::getMachineCombinerPatterns( 269 MachineInstr &Root, 270 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 271 // Using the machine combiner in this way is potentially expensive, so 272 // restrict to when aggressive optimizations are desired. 273 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 274 return false; 275 276 // FP reassociation is only legal when we don't need strict IEEE semantics. 277 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) 278 return false; 279 280 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 281 } 282 283 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 284 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 285 unsigned &SrcReg, unsigned &DstReg, 286 unsigned &SubIdx) const { 287 switch (MI.getOpcode()) { 288 default: return false; 289 case PPC::EXTSW: 290 case PPC::EXTSW_32: 291 case PPC::EXTSW_32_64: 292 SrcReg = MI.getOperand(1).getReg(); 293 DstReg = MI.getOperand(0).getReg(); 294 SubIdx = PPC::sub_32; 295 return true; 296 } 297 } 298 299 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 300 int &FrameIndex) const { 301 unsigned Opcode = MI.getOpcode(); 302 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 303 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 304 305 if (End != std::find(OpcodesForSpill, End, Opcode)) { 306 // Check for the operands added by addFrameReference (the immediate is the 307 // offset which defaults to 0). 308 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 309 MI.getOperand(2).isFI()) { 310 FrameIndex = MI.getOperand(2).getIndex(); 311 return MI.getOperand(0).getReg(); 312 } 313 } 314 return 0; 315 } 316 317 // For opcodes with the ReMaterializable flag set, this function is called to 318 // verify the instruction is really rematable. 319 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 320 AliasAnalysis *AA) const { 321 switch (MI.getOpcode()) { 322 default: 323 // This function should only be called for opcodes with the ReMaterializable 324 // flag set. 325 llvm_unreachable("Unknown rematerializable operation!"); 326 break; 327 case PPC::LI: 328 case PPC::LI8: 329 case PPC::LIS: 330 case PPC::LIS8: 331 case PPC::QVGPCI: 332 case PPC::ADDIStocHA: 333 case PPC::ADDItocL: 334 case PPC::LOAD_STACK_GUARD: 335 case PPC::XXLXORz: 336 case PPC::XXLXORspz: 337 case PPC::XXLXORdpz: 338 case PPC::V_SET0B: 339 case PPC::V_SET0H: 340 case PPC::V_SET0: 341 case PPC::V_SETALLONESB: 342 case PPC::V_SETALLONESH: 343 case PPC::V_SETALLONES: 344 case PPC::CRSET: 345 case PPC::CRUNSET: 346 return true; 347 } 348 return false; 349 } 350 351 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 352 int &FrameIndex) const { 353 unsigned Opcode = MI.getOpcode(); 354 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 355 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 356 357 if (End != std::find(OpcodesForSpill, End, Opcode)) { 358 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 359 MI.getOperand(2).isFI()) { 360 FrameIndex = MI.getOperand(2).getIndex(); 361 return MI.getOperand(0).getReg(); 362 } 363 } 364 return 0; 365 } 366 367 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 368 unsigned OpIdx1, 369 unsigned OpIdx2) const { 370 MachineFunction &MF = *MI.getParent()->getParent(); 371 372 // Normal instructions can be commuted the obvious way. 373 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo) 374 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 375 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 376 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 377 // changing the relative order of the mask operands might change what happens 378 // to the high-bits of the mask (and, thus, the result). 379 380 // Cannot commute if it has a non-zero rotate count. 381 if (MI.getOperand(3).getImm() != 0) 382 return nullptr; 383 384 // If we have a zero rotate count, we have: 385 // M = mask(MB,ME) 386 // Op0 = (Op1 & ~M) | (Op2 & M) 387 // Change this to: 388 // M = mask((ME+1)&31, (MB-1)&31) 389 // Op0 = (Op2 & ~M) | (Op1 & M) 390 391 // Swap op1/op2 392 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 393 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo."); 394 unsigned Reg0 = MI.getOperand(0).getReg(); 395 unsigned Reg1 = MI.getOperand(1).getReg(); 396 unsigned Reg2 = MI.getOperand(2).getReg(); 397 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 398 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 399 bool Reg1IsKill = MI.getOperand(1).isKill(); 400 bool Reg2IsKill = MI.getOperand(2).isKill(); 401 bool ChangeReg0 = false; 402 // If machine instrs are no longer in two-address forms, update 403 // destination register as well. 404 if (Reg0 == Reg1) { 405 // Must be two address instruction! 406 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 407 "Expecting a two-address instruction!"); 408 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 409 Reg2IsKill = false; 410 ChangeReg0 = true; 411 } 412 413 // Masks. 414 unsigned MB = MI.getOperand(4).getImm(); 415 unsigned ME = MI.getOperand(5).getImm(); 416 417 // We can't commute a trivial mask (there is no way to represent an all-zero 418 // mask). 419 if (MB == 0 && ME == 31) 420 return nullptr; 421 422 if (NewMI) { 423 // Create a new instruction. 424 unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 425 bool Reg0IsDead = MI.getOperand(0).isDead(); 426 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 427 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 428 .addReg(Reg2, getKillRegState(Reg2IsKill)) 429 .addReg(Reg1, getKillRegState(Reg1IsKill)) 430 .addImm((ME + 1) & 31) 431 .addImm((MB - 1) & 31); 432 } 433 434 if (ChangeReg0) { 435 MI.getOperand(0).setReg(Reg2); 436 MI.getOperand(0).setSubReg(SubReg2); 437 } 438 MI.getOperand(2).setReg(Reg1); 439 MI.getOperand(1).setReg(Reg2); 440 MI.getOperand(2).setSubReg(SubReg1); 441 MI.getOperand(1).setSubReg(SubReg2); 442 MI.getOperand(2).setIsKill(Reg1IsKill); 443 MI.getOperand(1).setIsKill(Reg2IsKill); 444 445 // Swap the mask around. 446 MI.getOperand(4).setImm((ME + 1) & 31); 447 MI.getOperand(5).setImm((MB - 1) & 31); 448 return &MI; 449 } 450 451 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, 452 unsigned &SrcOpIdx2) const { 453 // For VSX A-Type FMA instructions, it is the first two operands that can be 454 // commuted, however, because the non-encoded tied input operand is listed 455 // first, the operands to swap are actually the second and third. 456 457 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 458 if (AltOpc == -1) 459 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 460 461 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 462 // and SrcOpIdx2. 463 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 464 } 465 466 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 467 MachineBasicBlock::iterator MI) const { 468 // This function is used for scheduling, and the nop wanted here is the type 469 // that terminates dispatch groups on the POWER cores. 470 unsigned Directive = Subtarget.getDarwinDirective(); 471 unsigned Opcode; 472 switch (Directive) { 473 default: Opcode = PPC::NOP; break; 474 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 475 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 476 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 477 // FIXME: Update when POWER9 scheduling model is ready. 478 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 479 } 480 481 DebugLoc DL; 482 BuildMI(MBB, MI, DL, get(Opcode)); 483 } 484 485 /// Return the noop instruction to use for a noop. 486 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 487 NopInst.setOpcode(PPC::NOP); 488 } 489 490 // Branch analysis. 491 // Note: If the condition register is set to CTR or CTR8 then this is a 492 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 493 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 494 MachineBasicBlock *&TBB, 495 MachineBasicBlock *&FBB, 496 SmallVectorImpl<MachineOperand> &Cond, 497 bool AllowModify) const { 498 bool isPPC64 = Subtarget.isPPC64(); 499 500 // If the block has no terminators, it just falls into the block after it. 501 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 502 if (I == MBB.end()) 503 return false; 504 505 if (!isUnpredicatedTerminator(*I)) 506 return false; 507 508 if (AllowModify) { 509 // If the BB ends with an unconditional branch to the fallthrough BB, 510 // we eliminate the branch instruction. 511 if (I->getOpcode() == PPC::B && 512 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 513 I->eraseFromParent(); 514 515 // We update iterator after deleting the last branch. 516 I = MBB.getLastNonDebugInstr(); 517 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 518 return false; 519 } 520 } 521 522 // Get the last instruction in the block. 523 MachineInstr &LastInst = *I; 524 525 // If there is only one terminator instruction, process it. 526 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 527 if (LastInst.getOpcode() == PPC::B) { 528 if (!LastInst.getOperand(0).isMBB()) 529 return true; 530 TBB = LastInst.getOperand(0).getMBB(); 531 return false; 532 } else if (LastInst.getOpcode() == PPC::BCC) { 533 if (!LastInst.getOperand(2).isMBB()) 534 return true; 535 // Block ends with fall-through condbranch. 536 TBB = LastInst.getOperand(2).getMBB(); 537 Cond.push_back(LastInst.getOperand(0)); 538 Cond.push_back(LastInst.getOperand(1)); 539 return false; 540 } else if (LastInst.getOpcode() == PPC::BC) { 541 if (!LastInst.getOperand(1).isMBB()) 542 return true; 543 // Block ends with fall-through condbranch. 544 TBB = LastInst.getOperand(1).getMBB(); 545 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 546 Cond.push_back(LastInst.getOperand(0)); 547 return false; 548 } else if (LastInst.getOpcode() == PPC::BCn) { 549 if (!LastInst.getOperand(1).isMBB()) 550 return true; 551 // Block ends with fall-through condbranch. 552 TBB = LastInst.getOperand(1).getMBB(); 553 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 554 Cond.push_back(LastInst.getOperand(0)); 555 return false; 556 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 557 LastInst.getOpcode() == PPC::BDNZ) { 558 if (!LastInst.getOperand(0).isMBB()) 559 return true; 560 if (DisableCTRLoopAnal) 561 return true; 562 TBB = LastInst.getOperand(0).getMBB(); 563 Cond.push_back(MachineOperand::CreateImm(1)); 564 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 565 true)); 566 return false; 567 } else if (LastInst.getOpcode() == PPC::BDZ8 || 568 LastInst.getOpcode() == PPC::BDZ) { 569 if (!LastInst.getOperand(0).isMBB()) 570 return true; 571 if (DisableCTRLoopAnal) 572 return true; 573 TBB = LastInst.getOperand(0).getMBB(); 574 Cond.push_back(MachineOperand::CreateImm(0)); 575 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 576 true)); 577 return false; 578 } 579 580 // Otherwise, don't know what this is. 581 return true; 582 } 583 584 // Get the instruction before it if it's a terminator. 585 MachineInstr &SecondLastInst = *I; 586 587 // If there are three terminators, we don't know what sort of block this is. 588 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 589 return true; 590 591 // If the block ends with PPC::B and PPC:BCC, handle it. 592 if (SecondLastInst.getOpcode() == PPC::BCC && 593 LastInst.getOpcode() == PPC::B) { 594 if (!SecondLastInst.getOperand(2).isMBB() || 595 !LastInst.getOperand(0).isMBB()) 596 return true; 597 TBB = SecondLastInst.getOperand(2).getMBB(); 598 Cond.push_back(SecondLastInst.getOperand(0)); 599 Cond.push_back(SecondLastInst.getOperand(1)); 600 FBB = LastInst.getOperand(0).getMBB(); 601 return false; 602 } else if (SecondLastInst.getOpcode() == PPC::BC && 603 LastInst.getOpcode() == PPC::B) { 604 if (!SecondLastInst.getOperand(1).isMBB() || 605 !LastInst.getOperand(0).isMBB()) 606 return true; 607 TBB = SecondLastInst.getOperand(1).getMBB(); 608 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 609 Cond.push_back(SecondLastInst.getOperand(0)); 610 FBB = LastInst.getOperand(0).getMBB(); 611 return false; 612 } else if (SecondLastInst.getOpcode() == PPC::BCn && 613 LastInst.getOpcode() == PPC::B) { 614 if (!SecondLastInst.getOperand(1).isMBB() || 615 !LastInst.getOperand(0).isMBB()) 616 return true; 617 TBB = SecondLastInst.getOperand(1).getMBB(); 618 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 619 Cond.push_back(SecondLastInst.getOperand(0)); 620 FBB = LastInst.getOperand(0).getMBB(); 621 return false; 622 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 623 SecondLastInst.getOpcode() == PPC::BDNZ) && 624 LastInst.getOpcode() == PPC::B) { 625 if (!SecondLastInst.getOperand(0).isMBB() || 626 !LastInst.getOperand(0).isMBB()) 627 return true; 628 if (DisableCTRLoopAnal) 629 return true; 630 TBB = SecondLastInst.getOperand(0).getMBB(); 631 Cond.push_back(MachineOperand::CreateImm(1)); 632 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 633 true)); 634 FBB = LastInst.getOperand(0).getMBB(); 635 return false; 636 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 637 SecondLastInst.getOpcode() == PPC::BDZ) && 638 LastInst.getOpcode() == PPC::B) { 639 if (!SecondLastInst.getOperand(0).isMBB() || 640 !LastInst.getOperand(0).isMBB()) 641 return true; 642 if (DisableCTRLoopAnal) 643 return true; 644 TBB = SecondLastInst.getOperand(0).getMBB(); 645 Cond.push_back(MachineOperand::CreateImm(0)); 646 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 647 true)); 648 FBB = LastInst.getOperand(0).getMBB(); 649 return false; 650 } 651 652 // If the block ends with two PPC:Bs, handle it. The second one is not 653 // executed, so remove it. 654 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 655 if (!SecondLastInst.getOperand(0).isMBB()) 656 return true; 657 TBB = SecondLastInst.getOperand(0).getMBB(); 658 I = LastInst; 659 if (AllowModify) 660 I->eraseFromParent(); 661 return false; 662 } 663 664 // Otherwise, can't handle this. 665 return true; 666 } 667 668 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 669 int *BytesRemoved) const { 670 assert(!BytesRemoved && "code size not handled"); 671 672 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 673 if (I == MBB.end()) 674 return 0; 675 676 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 677 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 678 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 679 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 680 return 0; 681 682 // Remove the branch. 683 I->eraseFromParent(); 684 685 I = MBB.end(); 686 687 if (I == MBB.begin()) return 1; 688 --I; 689 if (I->getOpcode() != PPC::BCC && 690 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 691 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 692 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 693 return 1; 694 695 // Remove the branch. 696 I->eraseFromParent(); 697 return 2; 698 } 699 700 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 701 MachineBasicBlock *TBB, 702 MachineBasicBlock *FBB, 703 ArrayRef<MachineOperand> Cond, 704 const DebugLoc &DL, 705 int *BytesAdded) const { 706 // Shouldn't be a fall through. 707 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 708 assert((Cond.size() == 2 || Cond.size() == 0) && 709 "PPC branch conditions have two components!"); 710 assert(!BytesAdded && "code size not handled"); 711 712 bool isPPC64 = Subtarget.isPPC64(); 713 714 // One-way branch. 715 if (!FBB) { 716 if (Cond.empty()) // Unconditional branch 717 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 718 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 719 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 720 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 721 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 722 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 723 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 724 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 725 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 726 else // Conditional branch 727 BuildMI(&MBB, DL, get(PPC::BCC)) 728 .addImm(Cond[0].getImm()) 729 .add(Cond[1]) 730 .addMBB(TBB); 731 return 1; 732 } 733 734 // Two-way Conditional Branch. 735 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 736 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 737 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 738 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 739 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 740 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 741 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 742 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 743 else 744 BuildMI(&MBB, DL, get(PPC::BCC)) 745 .addImm(Cond[0].getImm()) 746 .add(Cond[1]) 747 .addMBB(TBB); 748 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 749 return 2; 750 } 751 752 // Select analysis. 753 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 754 ArrayRef<MachineOperand> Cond, 755 unsigned TrueReg, unsigned FalseReg, 756 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 757 if (Cond.size() != 2) 758 return false; 759 760 // If this is really a bdnz-like condition, then it cannot be turned into a 761 // select. 762 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 763 return false; 764 765 // Check register classes. 766 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 767 const TargetRegisterClass *RC = 768 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 769 if (!RC) 770 return false; 771 772 // isel is for regular integer GPRs only. 773 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 774 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 775 !PPC::G8RCRegClass.hasSubClassEq(RC) && 776 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 777 return false; 778 779 // FIXME: These numbers are for the A2, how well they work for other cores is 780 // an open question. On the A2, the isel instruction has a 2-cycle latency 781 // but single-cycle throughput. These numbers are used in combination with 782 // the MispredictPenalty setting from the active SchedMachineModel. 783 CondCycles = 1; 784 TrueCycles = 1; 785 FalseCycles = 1; 786 787 return true; 788 } 789 790 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 791 MachineBasicBlock::iterator MI, 792 const DebugLoc &dl, unsigned DestReg, 793 ArrayRef<MachineOperand> Cond, unsigned TrueReg, 794 unsigned FalseReg) const { 795 assert(Cond.size() == 2 && 796 "PPC branch conditions have two components!"); 797 798 // Get the register classes. 799 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 800 const TargetRegisterClass *RC = 801 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 802 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 803 804 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 805 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 806 assert((Is64Bit || 807 PPC::GPRCRegClass.hasSubClassEq(RC) || 808 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 809 "isel is for regular integer GPRs only"); 810 811 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 812 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 813 814 unsigned SubIdx = 0; 815 bool SwapOps = false; 816 switch (SelectPred) { 817 case PPC::PRED_EQ: 818 case PPC::PRED_EQ_MINUS: 819 case PPC::PRED_EQ_PLUS: 820 SubIdx = PPC::sub_eq; SwapOps = false; break; 821 case PPC::PRED_NE: 822 case PPC::PRED_NE_MINUS: 823 case PPC::PRED_NE_PLUS: 824 SubIdx = PPC::sub_eq; SwapOps = true; break; 825 case PPC::PRED_LT: 826 case PPC::PRED_LT_MINUS: 827 case PPC::PRED_LT_PLUS: 828 SubIdx = PPC::sub_lt; SwapOps = false; break; 829 case PPC::PRED_GE: 830 case PPC::PRED_GE_MINUS: 831 case PPC::PRED_GE_PLUS: 832 SubIdx = PPC::sub_lt; SwapOps = true; break; 833 case PPC::PRED_GT: 834 case PPC::PRED_GT_MINUS: 835 case PPC::PRED_GT_PLUS: 836 SubIdx = PPC::sub_gt; SwapOps = false; break; 837 case PPC::PRED_LE: 838 case PPC::PRED_LE_MINUS: 839 case PPC::PRED_LE_PLUS: 840 SubIdx = PPC::sub_gt; SwapOps = true; break; 841 case PPC::PRED_UN: 842 case PPC::PRED_UN_MINUS: 843 case PPC::PRED_UN_PLUS: 844 SubIdx = PPC::sub_un; SwapOps = false; break; 845 case PPC::PRED_NU: 846 case PPC::PRED_NU_MINUS: 847 case PPC::PRED_NU_PLUS: 848 SubIdx = PPC::sub_un; SwapOps = true; break; 849 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 850 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 851 } 852 853 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 854 SecondReg = SwapOps ? TrueReg : FalseReg; 855 856 // The first input register of isel cannot be r0. If it is a member 857 // of a register class that can be r0, then copy it first (the 858 // register allocator should eliminate the copy). 859 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 860 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 861 const TargetRegisterClass *FirstRC = 862 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 863 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 864 unsigned OldFirstReg = FirstReg; 865 FirstReg = MRI.createVirtualRegister(FirstRC); 866 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 867 .addReg(OldFirstReg); 868 } 869 870 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 871 .addReg(FirstReg).addReg(SecondReg) 872 .addReg(Cond[1].getReg(), 0, SubIdx); 873 } 874 875 static unsigned getCRBitValue(unsigned CRBit) { 876 unsigned Ret = 4; 877 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 878 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 879 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 880 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 881 Ret = 3; 882 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 883 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 884 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 885 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 886 Ret = 2; 887 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 888 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 889 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 890 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 891 Ret = 1; 892 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 893 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 894 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 895 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 896 Ret = 0; 897 898 assert(Ret != 4 && "Invalid CR bit register"); 899 return Ret; 900 } 901 902 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 903 MachineBasicBlock::iterator I, 904 const DebugLoc &DL, unsigned DestReg, 905 unsigned SrcReg, bool KillSrc) const { 906 // We can end up with self copies and similar things as a result of VSX copy 907 // legalization. Promote them here. 908 const TargetRegisterInfo *TRI = &getRegisterInfo(); 909 if (PPC::F8RCRegClass.contains(DestReg) && 910 PPC::VSRCRegClass.contains(SrcReg)) { 911 unsigned SuperReg = 912 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 913 914 if (VSXSelfCopyCrash && SrcReg == SuperReg) 915 llvm_unreachable("nop VSX copy"); 916 917 DestReg = SuperReg; 918 } else if (PPC::F8RCRegClass.contains(SrcReg) && 919 PPC::VSRCRegClass.contains(DestReg)) { 920 unsigned SuperReg = 921 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 922 923 if (VSXSelfCopyCrash && DestReg == SuperReg) 924 llvm_unreachable("nop VSX copy"); 925 926 SrcReg = SuperReg; 927 } 928 929 // Different class register copy 930 if (PPC::CRBITRCRegClass.contains(SrcReg) && 931 PPC::GPRCRegClass.contains(DestReg)) { 932 unsigned CRReg = getCRFromCRBit(SrcReg); 933 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 934 getKillRegState(KillSrc); 935 // Rotate the CR bit in the CR fields to be the least significant bit and 936 // then mask with 0x1 (MB = ME = 31). 937 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 938 .addReg(DestReg, RegState::Kill) 939 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 940 .addImm(31) 941 .addImm(31); 942 return; 943 } else if (PPC::CRRCRegClass.contains(SrcReg) && 944 PPC::G8RCRegClass.contains(DestReg)) { 945 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 946 getKillRegState(KillSrc); 947 return; 948 } else if (PPC::CRRCRegClass.contains(SrcReg) && 949 PPC::GPRCRegClass.contains(DestReg)) { 950 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 951 getKillRegState(KillSrc); 952 return; 953 } else if (PPC::G8RCRegClass.contains(SrcReg) && 954 PPC::VSFRCRegClass.contains(DestReg)) { 955 assert(Subtarget.hasDirectMove() && 956 "Subtarget doesn't support directmove, don't know how to copy."); 957 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 958 NumGPRtoVSRSpill++; 959 getKillRegState(KillSrc); 960 return; 961 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 962 PPC::G8RCRegClass.contains(DestReg)) { 963 assert(Subtarget.hasDirectMove() && 964 "Subtarget doesn't support directmove, don't know how to copy."); 965 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 966 getKillRegState(KillSrc); 967 return; 968 } else if (PPC::SPERCRegClass.contains(SrcReg) && 969 PPC::SPE4RCRegClass.contains(DestReg)) { 970 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 971 getKillRegState(KillSrc); 972 return; 973 } else if (PPC::SPE4RCRegClass.contains(SrcReg) && 974 PPC::SPERCRegClass.contains(DestReg)) { 975 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 976 getKillRegState(KillSrc); 977 return; 978 } 979 980 unsigned Opc; 981 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 982 Opc = PPC::OR; 983 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 984 Opc = PPC::OR8; 985 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 986 Opc = PPC::FMR; 987 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 988 Opc = PPC::MCRF; 989 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 990 Opc = PPC::VOR; 991 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 992 // There are two different ways this can be done: 993 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 994 // issue in VSU pipeline 0. 995 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 996 // can go to either pipeline. 997 // We'll always use xxlor here, because in practically all cases where 998 // copies are generated, they are close enough to some use that the 999 // lower-latency form is preferable. 1000 Opc = PPC::XXLOR; 1001 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1002 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1003 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1004 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 1005 Opc = PPC::QVFMR; 1006 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 1007 Opc = PPC::QVFMRs; 1008 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 1009 Opc = PPC::QVFMRb; 1010 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1011 Opc = PPC::CROR; 1012 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1013 Opc = PPC::EVOR; 1014 else 1015 llvm_unreachable("Impossible reg-to-reg copy"); 1016 1017 const MCInstrDesc &MCID = get(Opc); 1018 if (MCID.getNumOperands() == 3) 1019 BuildMI(MBB, I, DL, MCID, DestReg) 1020 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1021 else 1022 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1023 } 1024 1025 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg, 1026 const TargetRegisterClass *RC) 1027 const { 1028 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1029 int OpcodeIndex = 0; 1030 1031 if (RC != nullptr) { 1032 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1033 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1034 OpcodeIndex = SOK_Int4Spill; 1035 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1036 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1037 OpcodeIndex = SOK_Int8Spill; 1038 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1039 OpcodeIndex = SOK_Float8Spill; 1040 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1041 OpcodeIndex = SOK_Float4Spill; 1042 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1043 OpcodeIndex = SOK_SPESpill; 1044 } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) { 1045 OpcodeIndex = SOK_SPE4Spill; 1046 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1047 OpcodeIndex = SOK_CRSpill; 1048 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1049 OpcodeIndex = SOK_CRBitSpill; 1050 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1051 OpcodeIndex = SOK_VRVectorSpill; 1052 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1053 OpcodeIndex = SOK_VSXVectorSpill; 1054 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1055 OpcodeIndex = SOK_VectorFloat8Spill; 1056 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1057 OpcodeIndex = SOK_VectorFloat4Spill; 1058 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1059 OpcodeIndex = SOK_VRSaveSpill; 1060 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1061 OpcodeIndex = SOK_QuadFloat8Spill; 1062 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1063 OpcodeIndex = SOK_QuadFloat4Spill; 1064 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1065 OpcodeIndex = SOK_QuadBitSpill; 1066 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1067 OpcodeIndex = SOK_SpillToVSR; 1068 } else { 1069 llvm_unreachable("Unknown regclass!"); 1070 } 1071 } else { 1072 if (PPC::GPRCRegClass.contains(Reg) || 1073 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1074 OpcodeIndex = SOK_Int4Spill; 1075 } else if (PPC::G8RCRegClass.contains(Reg) || 1076 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1077 OpcodeIndex = SOK_Int8Spill; 1078 } else if (PPC::F8RCRegClass.contains(Reg)) { 1079 OpcodeIndex = SOK_Float8Spill; 1080 } else if (PPC::F4RCRegClass.contains(Reg)) { 1081 OpcodeIndex = SOK_Float4Spill; 1082 } else if (PPC::SPERCRegClass.contains(Reg)) { 1083 OpcodeIndex = SOK_SPESpill; 1084 } else if (PPC::SPE4RCRegClass.contains(Reg)) { 1085 OpcodeIndex = SOK_SPE4Spill; 1086 } else if (PPC::CRRCRegClass.contains(Reg)) { 1087 OpcodeIndex = SOK_CRSpill; 1088 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1089 OpcodeIndex = SOK_CRBitSpill; 1090 } else if (PPC::VRRCRegClass.contains(Reg)) { 1091 OpcodeIndex = SOK_VRVectorSpill; 1092 } else if (PPC::VSRCRegClass.contains(Reg)) { 1093 OpcodeIndex = SOK_VSXVectorSpill; 1094 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1095 OpcodeIndex = SOK_VectorFloat8Spill; 1096 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1097 OpcodeIndex = SOK_VectorFloat4Spill; 1098 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1099 OpcodeIndex = SOK_VRSaveSpill; 1100 } else if (PPC::QFRCRegClass.contains(Reg)) { 1101 OpcodeIndex = SOK_QuadFloat8Spill; 1102 } else if (PPC::QSRCRegClass.contains(Reg)) { 1103 OpcodeIndex = SOK_QuadFloat4Spill; 1104 } else if (PPC::QBRCRegClass.contains(Reg)) { 1105 OpcodeIndex = SOK_QuadBitSpill; 1106 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1107 OpcodeIndex = SOK_SpillToVSR; 1108 } else { 1109 llvm_unreachable("Unknown regclass!"); 1110 } 1111 } 1112 return OpcodesForSpill[OpcodeIndex]; 1113 } 1114 1115 unsigned 1116 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg, 1117 const TargetRegisterClass *RC) const { 1118 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1119 int OpcodeIndex = 0; 1120 1121 if (RC != nullptr) { 1122 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1123 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1124 OpcodeIndex = SOK_Int4Spill; 1125 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1126 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1127 OpcodeIndex = SOK_Int8Spill; 1128 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1129 OpcodeIndex = SOK_Float8Spill; 1130 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1131 OpcodeIndex = SOK_Float4Spill; 1132 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1133 OpcodeIndex = SOK_SPESpill; 1134 } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) { 1135 OpcodeIndex = SOK_SPE4Spill; 1136 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1137 OpcodeIndex = SOK_CRSpill; 1138 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1139 OpcodeIndex = SOK_CRBitSpill; 1140 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1141 OpcodeIndex = SOK_VRVectorSpill; 1142 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1143 OpcodeIndex = SOK_VSXVectorSpill; 1144 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1145 OpcodeIndex = SOK_VectorFloat8Spill; 1146 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1147 OpcodeIndex = SOK_VectorFloat4Spill; 1148 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1149 OpcodeIndex = SOK_VRSaveSpill; 1150 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1151 OpcodeIndex = SOK_QuadFloat8Spill; 1152 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1153 OpcodeIndex = SOK_QuadFloat4Spill; 1154 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1155 OpcodeIndex = SOK_QuadBitSpill; 1156 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1157 OpcodeIndex = SOK_SpillToVSR; 1158 } else { 1159 llvm_unreachable("Unknown regclass!"); 1160 } 1161 } else { 1162 if (PPC::GPRCRegClass.contains(Reg) || 1163 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1164 OpcodeIndex = SOK_Int4Spill; 1165 } else if (PPC::G8RCRegClass.contains(Reg) || 1166 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1167 OpcodeIndex = SOK_Int8Spill; 1168 } else if (PPC::F8RCRegClass.contains(Reg)) { 1169 OpcodeIndex = SOK_Float8Spill; 1170 } else if (PPC::F4RCRegClass.contains(Reg)) { 1171 OpcodeIndex = SOK_Float4Spill; 1172 } else if (PPC::SPERCRegClass.contains(Reg)) { 1173 OpcodeIndex = SOK_SPESpill; 1174 } else if (PPC::SPE4RCRegClass.contains(Reg)) { 1175 OpcodeIndex = SOK_SPE4Spill; 1176 } else if (PPC::CRRCRegClass.contains(Reg)) { 1177 OpcodeIndex = SOK_CRSpill; 1178 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1179 OpcodeIndex = SOK_CRBitSpill; 1180 } else if (PPC::VRRCRegClass.contains(Reg)) { 1181 OpcodeIndex = SOK_VRVectorSpill; 1182 } else if (PPC::VSRCRegClass.contains(Reg)) { 1183 OpcodeIndex = SOK_VSXVectorSpill; 1184 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1185 OpcodeIndex = SOK_VectorFloat8Spill; 1186 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1187 OpcodeIndex = SOK_VectorFloat4Spill; 1188 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1189 OpcodeIndex = SOK_VRSaveSpill; 1190 } else if (PPC::QFRCRegClass.contains(Reg)) { 1191 OpcodeIndex = SOK_QuadFloat8Spill; 1192 } else if (PPC::QSRCRegClass.contains(Reg)) { 1193 OpcodeIndex = SOK_QuadFloat4Spill; 1194 } else if (PPC::QBRCRegClass.contains(Reg)) { 1195 OpcodeIndex = SOK_QuadBitSpill; 1196 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1197 OpcodeIndex = SOK_SpillToVSR; 1198 } else { 1199 llvm_unreachable("Unknown regclass!"); 1200 } 1201 } 1202 return OpcodesForSpill[OpcodeIndex]; 1203 } 1204 1205 void PPCInstrInfo::StoreRegToStackSlot( 1206 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1207 const TargetRegisterClass *RC, 1208 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1209 unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC); 1210 DebugLoc DL; 1211 1212 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1213 FuncInfo->setHasSpills(); 1214 1215 NewMIs.push_back(addFrameReference( 1216 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1217 FrameIdx)); 1218 1219 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1220 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1221 FuncInfo->setSpillsCR(); 1222 1223 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1224 FuncInfo->setSpillsVRSAVE(); 1225 1226 if (isXFormMemOp(Opcode)) 1227 FuncInfo->setHasNonRISpills(); 1228 } 1229 1230 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1231 MachineBasicBlock::iterator MI, 1232 unsigned SrcReg, bool isKill, 1233 int FrameIdx, 1234 const TargetRegisterClass *RC, 1235 const TargetRegisterInfo *TRI) const { 1236 MachineFunction &MF = *MBB.getParent(); 1237 SmallVector<MachineInstr *, 4> NewMIs; 1238 1239 // We need to avoid a situation in which the value from a VRRC register is 1240 // spilled using an Altivec instruction and reloaded into a VSRC register 1241 // using a VSX instruction. The issue with this is that the VSX 1242 // load/store instructions swap the doublewords in the vector and the Altivec 1243 // ones don't. The register classes on the spill/reload may be different if 1244 // the register is defined using an Altivec instruction and is then used by a 1245 // VSX instruction. 1246 RC = updatedRC(RC); 1247 1248 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1249 1250 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1251 MBB.insert(MI, NewMIs[i]); 1252 1253 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1254 MachineMemOperand *MMO = MF.getMachineMemOperand( 1255 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1256 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1257 MFI.getObjectAlignment(FrameIdx)); 1258 NewMIs.back()->addMemOperand(MF, MMO); 1259 } 1260 1261 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1262 unsigned DestReg, int FrameIdx, 1263 const TargetRegisterClass *RC, 1264 SmallVectorImpl<MachineInstr *> &NewMIs) 1265 const { 1266 unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC); 1267 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1268 FrameIdx)); 1269 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1270 1271 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1272 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1273 FuncInfo->setSpillsCR(); 1274 1275 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1276 FuncInfo->setSpillsVRSAVE(); 1277 1278 if (isXFormMemOp(Opcode)) 1279 FuncInfo->setHasNonRISpills(); 1280 } 1281 1282 void 1283 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1284 MachineBasicBlock::iterator MI, 1285 unsigned DestReg, int FrameIdx, 1286 const TargetRegisterClass *RC, 1287 const TargetRegisterInfo *TRI) const { 1288 MachineFunction &MF = *MBB.getParent(); 1289 SmallVector<MachineInstr*, 4> NewMIs; 1290 DebugLoc DL; 1291 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1292 1293 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1294 FuncInfo->setHasSpills(); 1295 1296 // We need to avoid a situation in which the value from a VRRC register is 1297 // spilled using an Altivec instruction and reloaded into a VSRC register 1298 // using a VSX instruction. The issue with this is that the VSX 1299 // load/store instructions swap the doublewords in the vector and the Altivec 1300 // ones don't. The register classes on the spill/reload may be different if 1301 // the register is defined using an Altivec instruction and is then used by a 1302 // VSX instruction. 1303 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 1304 RC = &PPC::VSRCRegClass; 1305 1306 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1307 1308 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1309 MBB.insert(MI, NewMIs[i]); 1310 1311 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1312 MachineMemOperand *MMO = MF.getMachineMemOperand( 1313 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1314 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1315 MFI.getObjectAlignment(FrameIdx)); 1316 NewMIs.back()->addMemOperand(MF, MMO); 1317 } 1318 1319 bool PPCInstrInfo:: 1320 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1321 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1322 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1323 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1324 else 1325 // Leave the CR# the same, but invert the condition. 1326 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1327 return false; 1328 } 1329 1330 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1331 unsigned Reg, MachineRegisterInfo *MRI) const { 1332 // For some instructions, it is legal to fold ZERO into the RA register field. 1333 // A zero immediate should always be loaded with a single li. 1334 unsigned DefOpc = DefMI.getOpcode(); 1335 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1336 return false; 1337 if (!DefMI.getOperand(1).isImm()) 1338 return false; 1339 if (DefMI.getOperand(1).getImm() != 0) 1340 return false; 1341 1342 // Note that we cannot here invert the arguments of an isel in order to fold 1343 // a ZERO into what is presented as the second argument. All we have here 1344 // is the condition bit, and that might come from a CR-logical bit operation. 1345 1346 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1347 1348 // Only fold into real machine instructions. 1349 if (UseMCID.isPseudo()) 1350 return false; 1351 1352 unsigned UseIdx; 1353 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1354 if (UseMI.getOperand(UseIdx).isReg() && 1355 UseMI.getOperand(UseIdx).getReg() == Reg) 1356 break; 1357 1358 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1359 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1360 1361 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1362 1363 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1364 // register (which might also be specified as a pointer class kind). 1365 if (UseInfo->isLookupPtrRegClass()) { 1366 if (UseInfo->RegClass /* Kind */ != 1) 1367 return false; 1368 } else { 1369 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1370 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1371 return false; 1372 } 1373 1374 // Make sure this is not tied to an output register (or otherwise 1375 // constrained). This is true for ST?UX registers, for example, which 1376 // are tied to their output registers. 1377 if (UseInfo->Constraints != 0) 1378 return false; 1379 1380 unsigned ZeroReg; 1381 if (UseInfo->isLookupPtrRegClass()) { 1382 bool isPPC64 = Subtarget.isPPC64(); 1383 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1384 } else { 1385 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1386 PPC::ZERO8 : PPC::ZERO; 1387 } 1388 1389 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1390 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1391 1392 if (DeleteDef) 1393 DefMI.eraseFromParent(); 1394 1395 return true; 1396 } 1397 1398 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1399 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1400 I != IE; ++I) 1401 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1402 return true; 1403 return false; 1404 } 1405 1406 // We should make sure that, if we're going to predicate both sides of a 1407 // condition (a diamond), that both sides don't define the counter register. We 1408 // can predicate counter-decrement-based branches, but while that predicates 1409 // the branching, it does not predicate the counter decrement. If we tried to 1410 // merge the triangle into one predicated block, we'd decrement the counter 1411 // twice. 1412 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1413 unsigned NumT, unsigned ExtraT, 1414 MachineBasicBlock &FMBB, 1415 unsigned NumF, unsigned ExtraF, 1416 BranchProbability Probability) const { 1417 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1418 } 1419 1420 1421 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1422 // The predicated branches are identified by their type, not really by the 1423 // explicit presence of a predicate. Furthermore, some of them can be 1424 // predicated more than once. Because if conversion won't try to predicate 1425 // any instruction which already claims to be predicated (by returning true 1426 // here), always return false. In doing so, we let isPredicable() be the 1427 // final word on whether not the instruction can be (further) predicated. 1428 1429 return false; 1430 } 1431 1432 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 1433 if (!MI.isTerminator()) 1434 return false; 1435 1436 // Conditional branch is a special case. 1437 if (MI.isBranch() && !MI.isBarrier()) 1438 return true; 1439 1440 return !isPredicated(MI); 1441 } 1442 1443 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1444 ArrayRef<MachineOperand> Pred) const { 1445 unsigned OpC = MI.getOpcode(); 1446 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1447 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1448 bool isPPC64 = Subtarget.isPPC64(); 1449 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1450 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1451 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1452 MI.setDesc(get(PPC::BCLR)); 1453 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1454 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1455 MI.setDesc(get(PPC::BCLRn)); 1456 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1457 } else { 1458 MI.setDesc(get(PPC::BCCLR)); 1459 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1460 .addImm(Pred[0].getImm()) 1461 .add(Pred[1]); 1462 } 1463 1464 return true; 1465 } else if (OpC == PPC::B) { 1466 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1467 bool isPPC64 = Subtarget.isPPC64(); 1468 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1469 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1470 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1471 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1472 MI.RemoveOperand(0); 1473 1474 MI.setDesc(get(PPC::BC)); 1475 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1476 .add(Pred[1]) 1477 .addMBB(MBB); 1478 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1479 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1480 MI.RemoveOperand(0); 1481 1482 MI.setDesc(get(PPC::BCn)); 1483 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1484 .add(Pred[1]) 1485 .addMBB(MBB); 1486 } else { 1487 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1488 MI.RemoveOperand(0); 1489 1490 MI.setDesc(get(PPC::BCC)); 1491 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1492 .addImm(Pred[0].getImm()) 1493 .add(Pred[1]) 1494 .addMBB(MBB); 1495 } 1496 1497 return true; 1498 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 1499 OpC == PPC::BCTRL8) { 1500 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1501 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1502 1503 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1504 bool isPPC64 = Subtarget.isPPC64(); 1505 1506 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1507 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1508 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1509 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1510 return true; 1511 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1512 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1513 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1514 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1515 return true; 1516 } 1517 1518 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1519 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1520 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1521 .addImm(Pred[0].getImm()) 1522 .add(Pred[1]); 1523 return true; 1524 } 1525 1526 return false; 1527 } 1528 1529 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1530 ArrayRef<MachineOperand> Pred2) const { 1531 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1532 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1533 1534 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1535 return false; 1536 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1537 return false; 1538 1539 // P1 can only subsume P2 if they test the same condition register. 1540 if (Pred1[1].getReg() != Pred2[1].getReg()) 1541 return false; 1542 1543 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1544 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1545 1546 if (P1 == P2) 1547 return true; 1548 1549 // Does P1 subsume P2, e.g. GE subsumes GT. 1550 if (P1 == PPC::PRED_LE && 1551 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1552 return true; 1553 if (P1 == PPC::PRED_GE && 1554 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1555 return true; 1556 1557 return false; 1558 } 1559 1560 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1561 std::vector<MachineOperand> &Pred) const { 1562 // Note: At the present time, the contents of Pred from this function is 1563 // unused by IfConversion. This implementation follows ARM by pushing the 1564 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1565 // predicate, instructions defining CTR or CTR8 are also included as 1566 // predicate-defining instructions. 1567 1568 const TargetRegisterClass *RCs[] = 1569 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1570 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1571 1572 bool Found = false; 1573 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1574 const MachineOperand &MO = MI.getOperand(i); 1575 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1576 const TargetRegisterClass *RC = RCs[c]; 1577 if (MO.isReg()) { 1578 if (MO.isDef() && RC->contains(MO.getReg())) { 1579 Pred.push_back(MO); 1580 Found = true; 1581 } 1582 } else if (MO.isRegMask()) { 1583 for (TargetRegisterClass::iterator I = RC->begin(), 1584 IE = RC->end(); I != IE; ++I) 1585 if (MO.clobbersPhysReg(*I)) { 1586 Pred.push_back(MO); 1587 Found = true; 1588 } 1589 } 1590 } 1591 } 1592 1593 return Found; 1594 } 1595 1596 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const { 1597 unsigned OpC = MI.getOpcode(); 1598 switch (OpC) { 1599 default: 1600 return false; 1601 case PPC::B: 1602 case PPC::BLR: 1603 case PPC::BLR8: 1604 case PPC::BCTR: 1605 case PPC::BCTR8: 1606 case PPC::BCTRL: 1607 case PPC::BCTRL8: 1608 return true; 1609 } 1610 } 1611 1612 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 1613 unsigned &SrcReg2, int &Mask, 1614 int &Value) const { 1615 unsigned Opc = MI.getOpcode(); 1616 1617 switch (Opc) { 1618 default: return false; 1619 case PPC::CMPWI: 1620 case PPC::CMPLWI: 1621 case PPC::CMPDI: 1622 case PPC::CMPLDI: 1623 SrcReg = MI.getOperand(1).getReg(); 1624 SrcReg2 = 0; 1625 Value = MI.getOperand(2).getImm(); 1626 Mask = 0xFFFF; 1627 return true; 1628 case PPC::CMPW: 1629 case PPC::CMPLW: 1630 case PPC::CMPD: 1631 case PPC::CMPLD: 1632 case PPC::FCMPUS: 1633 case PPC::FCMPUD: 1634 SrcReg = MI.getOperand(1).getReg(); 1635 SrcReg2 = MI.getOperand(2).getReg(); 1636 Value = 0; 1637 Mask = 0; 1638 return true; 1639 } 1640 } 1641 1642 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, 1643 unsigned SrcReg2, int Mask, int Value, 1644 const MachineRegisterInfo *MRI) const { 1645 if (DisableCmpOpt) 1646 return false; 1647 1648 int OpC = CmpInstr.getOpcode(); 1649 unsigned CRReg = CmpInstr.getOperand(0).getReg(); 1650 1651 // FP record forms set CR1 based on the exception status bits, not a 1652 // comparison with zero. 1653 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1654 return false; 1655 1656 // The record forms set the condition register based on a signed comparison 1657 // with zero (so says the ISA manual). This is not as straightforward as it 1658 // seems, however, because this is always a 64-bit comparison on PPC64, even 1659 // for instructions that are 32-bit in nature (like slw for example). 1660 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1661 // for equality checks (as those don't depend on the sign). On PPC64, 1662 // we are restricted to equality for unsigned 64-bit comparisons and for 1663 // signed 32-bit comparisons the applicability is more restricted. 1664 bool isPPC64 = Subtarget.isPPC64(); 1665 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1666 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1667 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1668 1669 // Get the unique definition of SrcReg. 1670 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1671 if (!MI) return false; 1672 1673 bool equalityOnly = false; 1674 bool noSub = false; 1675 if (isPPC64) { 1676 if (is32BitSignedCompare) { 1677 // We can perform this optimization only if MI is sign-extending. 1678 if (isSignExtended(*MI)) 1679 noSub = true; 1680 else 1681 return false; 1682 } else if (is32BitUnsignedCompare) { 1683 // We can perform this optimization, equality only, if MI is 1684 // zero-extending. 1685 if (isZeroExtended(*MI)) { 1686 noSub = true; 1687 equalityOnly = true; 1688 } else 1689 return false; 1690 } else 1691 equalityOnly = is64BitUnsignedCompare; 1692 } else 1693 equalityOnly = is32BitUnsignedCompare; 1694 1695 if (equalityOnly) { 1696 // We need to check the uses of the condition register in order to reject 1697 // non-equality comparisons. 1698 for (MachineRegisterInfo::use_instr_iterator 1699 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1700 I != IE; ++I) { 1701 MachineInstr *UseMI = &*I; 1702 if (UseMI->getOpcode() == PPC::BCC) { 1703 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1704 unsigned PredCond = PPC::getPredicateCondition(Pred); 1705 // We ignore hint bits when checking for non-equality comparisons. 1706 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1707 return false; 1708 } else if (UseMI->getOpcode() == PPC::ISEL || 1709 UseMI->getOpcode() == PPC::ISEL8) { 1710 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1711 if (SubIdx != PPC::sub_eq) 1712 return false; 1713 } else 1714 return false; 1715 } 1716 } 1717 1718 MachineBasicBlock::iterator I = CmpInstr; 1719 1720 // Scan forward to find the first use of the compare. 1721 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1722 ++I) { 1723 bool FoundUse = false; 1724 for (MachineRegisterInfo::use_instr_iterator 1725 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 1726 J != JE; ++J) 1727 if (&*J == &*I) { 1728 FoundUse = true; 1729 break; 1730 } 1731 1732 if (FoundUse) 1733 break; 1734 } 1735 1736 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1737 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1738 1739 // There are two possible candidates which can be changed to set CR[01]. 1740 // One is MI, the other is a SUB instruction. 1741 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1742 MachineInstr *Sub = nullptr; 1743 if (SrcReg2 != 0) 1744 // MI is not a candidate for CMPrr. 1745 MI = nullptr; 1746 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1747 // same BB as the comparison. This is to allow the check below to avoid calls 1748 // (and other explicit clobbers); instead we should really check for these 1749 // more explicitly (in at least a few predecessors). 1750 else if (MI->getParent() != CmpInstr.getParent()) 1751 return false; 1752 else if (Value != 0) { 1753 // The record-form instructions set CR bit based on signed comparison 1754 // against 0. We try to convert a compare against 1 or -1 into a compare 1755 // against 0 to exploit record-form instructions. For example, we change 1756 // the condition "greater than -1" into "greater than or equal to 0" 1757 // and "less than 1" into "less than or equal to 0". 1758 1759 // Since we optimize comparison based on a specific branch condition, 1760 // we don't optimize if condition code is used by more than once. 1761 if (equalityOnly || !MRI->hasOneUse(CRReg)) 1762 return false; 1763 1764 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 1765 if (UseMI->getOpcode() != PPC::BCC) 1766 return false; 1767 1768 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1769 PPC::Predicate NewPred = Pred; 1770 unsigned PredCond = PPC::getPredicateCondition(Pred); 1771 unsigned PredHint = PPC::getPredicateHint(Pred); 1772 int16_t Immed = (int16_t)Value; 1773 1774 // When modifying the condition in the predicate, we propagate hint bits 1775 // from the original predicate to the new one. 1776 if (Immed == -1 && PredCond == PPC::PRED_GT) 1777 // We convert "greater than -1" into "greater than or equal to 0", 1778 // since we are assuming signed comparison by !equalityOnly 1779 NewPred = PPC::getPredicate(PPC::PRED_GE, PredHint); 1780 else if (Immed == -1 && PredCond == PPC::PRED_LE) 1781 // We convert "less than or equal to -1" into "less than 0". 1782 NewPred = PPC::getPredicate(PPC::PRED_LT, PredHint); 1783 else if (Immed == 1 && PredCond == PPC::PRED_LT) 1784 // We convert "less than 1" into "less than or equal to 0". 1785 NewPred = PPC::getPredicate(PPC::PRED_LE, PredHint); 1786 else if (Immed == 1 && PredCond == PPC::PRED_GE) 1787 // We convert "greater than or equal to 1" into "greater than 0". 1788 NewPred = PPC::getPredicate(PPC::PRED_GT, PredHint); 1789 else 1790 return false; 1791 1792 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1793 NewPred)); 1794 } 1795 1796 // Search for Sub. 1797 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1798 --I; 1799 1800 // Get ready to iterate backward from CmpInstr. 1801 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 1802 1803 for (; I != E && !noSub; --I) { 1804 const MachineInstr &Instr = *I; 1805 unsigned IOpC = Instr.getOpcode(); 1806 1807 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 1808 Instr.readsRegister(PPC::CR0, TRI))) 1809 // This instruction modifies or uses the record condition register after 1810 // the one we want to change. While we could do this transformation, it 1811 // would likely not be profitable. This transformation removes one 1812 // instruction, and so even forcing RA to generate one move probably 1813 // makes it unprofitable. 1814 return false; 1815 1816 // Check whether CmpInstr can be made redundant by the current instruction. 1817 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1818 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1819 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1820 ((Instr.getOperand(1).getReg() == SrcReg && 1821 Instr.getOperand(2).getReg() == SrcReg2) || 1822 (Instr.getOperand(1).getReg() == SrcReg2 && 1823 Instr.getOperand(2).getReg() == SrcReg))) { 1824 Sub = &*I; 1825 break; 1826 } 1827 1828 if (I == B) 1829 // The 'and' is below the comparison instruction. 1830 return false; 1831 } 1832 1833 // Return false if no candidates exist. 1834 if (!MI && !Sub) 1835 return false; 1836 1837 // The single candidate is called MI. 1838 if (!MI) MI = Sub; 1839 1840 int NewOpC = -1; 1841 int MIOpC = MI->getOpcode(); 1842 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 || 1843 MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8) 1844 NewOpC = MIOpC; 1845 else { 1846 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1847 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1848 NewOpC = MIOpC; 1849 } 1850 1851 // FIXME: On the non-embedded POWER architectures, only some of the record 1852 // forms are fast, and we should use only the fast ones. 1853 1854 // The defining instruction has a record form (or is already a record 1855 // form). It is possible, however, that we'll need to reverse the condition 1856 // code of the users. 1857 if (NewOpC == -1) 1858 return false; 1859 1860 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1861 // needs to be updated to be based on SUB. Push the condition code 1862 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1863 // condition code of these operands will be modified. 1864 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 1865 // comparison against 0, which may modify predicate. 1866 bool ShouldSwap = false; 1867 if (Sub && Value == 0) { 1868 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1869 Sub->getOperand(2).getReg() == SrcReg; 1870 1871 // The operands to subf are the opposite of sub, so only in the fixed-point 1872 // case, invert the order. 1873 ShouldSwap = !ShouldSwap; 1874 } 1875 1876 if (ShouldSwap) 1877 for (MachineRegisterInfo::use_instr_iterator 1878 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1879 I != IE; ++I) { 1880 MachineInstr *UseMI = &*I; 1881 if (UseMI->getOpcode() == PPC::BCC) { 1882 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1883 unsigned PredCond = PPC::getPredicateCondition(Pred); 1884 assert((!equalityOnly || 1885 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 1886 "Invalid predicate for equality-only optimization"); 1887 (void)PredCond; // To suppress warning in release build. 1888 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1889 PPC::getSwappedPredicate(Pred))); 1890 } else if (UseMI->getOpcode() == PPC::ISEL || 1891 UseMI->getOpcode() == PPC::ISEL8) { 1892 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1893 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1894 "Invalid CR bit for equality-only optimization"); 1895 1896 if (NewSubReg == PPC::sub_lt) 1897 NewSubReg = PPC::sub_gt; 1898 else if (NewSubReg == PPC::sub_gt) 1899 NewSubReg = PPC::sub_lt; 1900 1901 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1902 NewSubReg)); 1903 } else // We need to abort on a user we don't understand. 1904 return false; 1905 } 1906 assert(!(Value != 0 && ShouldSwap) && 1907 "Non-zero immediate support and ShouldSwap" 1908 "may conflict in updating predicate"); 1909 1910 // Create a new virtual register to hold the value of the CR set by the 1911 // record-form instruction. If the instruction was not previously in 1912 // record form, then set the kill flag on the CR. 1913 CmpInstr.eraseFromParent(); 1914 1915 MachineBasicBlock::iterator MII = MI; 1916 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1917 get(TargetOpcode::COPY), CRReg) 1918 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1919 1920 // Even if CR0 register were dead before, it is alive now since the 1921 // instruction we just built uses it. 1922 MI->clearRegisterDeads(PPC::CR0); 1923 1924 if (MIOpC != NewOpC) { 1925 // We need to be careful here: we're replacing one instruction with 1926 // another, and we need to make sure that we get all of the right 1927 // implicit uses and defs. On the other hand, the caller may be holding 1928 // an iterator to this instruction, and so we can't delete it (this is 1929 // specifically the case if this is the instruction directly after the 1930 // compare). 1931 1932 // Rotates are expensive instructions. If we're emitting a record-form 1933 // rotate that can just be an andi/andis, we should just emit that. 1934 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 1935 unsigned GPRRes = MI->getOperand(0).getReg(); 1936 int64_t SH = MI->getOperand(2).getImm(); 1937 int64_t MB = MI->getOperand(3).getImm(); 1938 int64_t ME = MI->getOperand(4).getImm(); 1939 // We can only do this if both the start and end of the mask are in the 1940 // same halfword. 1941 bool MBInLoHWord = MB >= 16; 1942 bool MEInLoHWord = ME >= 16; 1943 uint64_t Mask = ~0LLU; 1944 1945 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 1946 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 1947 // The mask value needs to shift right 16 if we're emitting andis. 1948 Mask >>= MBInLoHWord ? 0 : 16; 1949 NewOpC = MIOpC == PPC::RLWINM ? 1950 (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) : 1951 (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8); 1952 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 1953 (ME - MB + 1 == SH) && (MB >= 16)) { 1954 // If we are rotating by the exact number of bits as are in the mask 1955 // and the mask is in the least significant bits of the register, 1956 // that's just an andis. (as long as the GPR result has no uses). 1957 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 1958 Mask >>= 16; 1959 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8; 1960 } 1961 // If we've set the mask, we can transform. 1962 if (Mask != ~0LLU) { 1963 MI->RemoveOperand(4); 1964 MI->RemoveOperand(3); 1965 MI->getOperand(2).setImm(Mask); 1966 NumRcRotatesConvertedToRcAnd++; 1967 } 1968 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 1969 int64_t MB = MI->getOperand(3).getImm(); 1970 if (MB >= 48) { 1971 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 1972 NewOpC = PPC::ANDIo8; 1973 MI->RemoveOperand(3); 1974 MI->getOperand(2).setImm(Mask); 1975 NumRcRotatesConvertedToRcAnd++; 1976 } 1977 } 1978 1979 const MCInstrDesc &NewDesc = get(NewOpC); 1980 MI->setDesc(NewDesc); 1981 1982 if (NewDesc.ImplicitDefs) 1983 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 1984 *ImpDefs; ++ImpDefs) 1985 if (!MI->definesRegister(*ImpDefs)) 1986 MI->addOperand(*MI->getParent()->getParent(), 1987 MachineOperand::CreateReg(*ImpDefs, true, true)); 1988 if (NewDesc.ImplicitUses) 1989 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 1990 *ImpUses; ++ImpUses) 1991 if (!MI->readsRegister(*ImpUses)) 1992 MI->addOperand(*MI->getParent()->getParent(), 1993 MachineOperand::CreateReg(*ImpUses, false, true)); 1994 } 1995 assert(MI->definesRegister(PPC::CR0) && 1996 "Record-form instruction does not define cr0?"); 1997 1998 // Modify the condition code of operands in OperandsToUpdate. 1999 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 2000 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 2001 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 2002 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 2003 2004 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 2005 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 2006 2007 return true; 2008 } 2009 2010 /// GetInstSize - Return the number of bytes of code the specified 2011 /// instruction may be. This returns the maximum number of bytes. 2012 /// 2013 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2014 unsigned Opcode = MI.getOpcode(); 2015 2016 if (Opcode == PPC::INLINEASM) { 2017 const MachineFunction *MF = MI.getParent()->getParent(); 2018 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2019 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2020 } else if (Opcode == TargetOpcode::STACKMAP) { 2021 StackMapOpers Opers(&MI); 2022 return Opers.getNumPatchBytes(); 2023 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2024 PatchPointOpers Opers(&MI); 2025 return Opers.getNumPatchBytes(); 2026 } else { 2027 return get(Opcode).getSize(); 2028 } 2029 } 2030 2031 std::pair<unsigned, unsigned> 2032 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2033 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2034 return std::make_pair(TF & Mask, TF & ~Mask); 2035 } 2036 2037 ArrayRef<std::pair<unsigned, const char *>> 2038 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2039 using namespace PPCII; 2040 static const std::pair<unsigned, const char *> TargetFlags[] = { 2041 {MO_LO, "ppc-lo"}, 2042 {MO_HA, "ppc-ha"}, 2043 {MO_TPREL_LO, "ppc-tprel-lo"}, 2044 {MO_TPREL_HA, "ppc-tprel-ha"}, 2045 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2046 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2047 {MO_TOC_LO, "ppc-toc-lo"}, 2048 {MO_TLS, "ppc-tls"}}; 2049 return makeArrayRef(TargetFlags); 2050 } 2051 2052 ArrayRef<std::pair<unsigned, const char *>> 2053 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2054 using namespace PPCII; 2055 static const std::pair<unsigned, const char *> TargetFlags[] = { 2056 {MO_PLT, "ppc-plt"}, 2057 {MO_PIC_FLAG, "ppc-pic"}, 2058 {MO_NLP_FLAG, "ppc-nlp"}, 2059 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}}; 2060 return makeArrayRef(TargetFlags); 2061 } 2062 2063 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2064 // The VSX versions have the advantage of a full 64-register target whereas 2065 // the FP ones have the advantage of lower latency and higher throughput. So 2066 // what we are after is using the faster instructions in low register pressure 2067 // situations and using the larger register file in high register pressure 2068 // situations. 2069 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2070 unsigned UpperOpcode, LowerOpcode; 2071 switch (MI.getOpcode()) { 2072 case PPC::DFLOADf32: 2073 UpperOpcode = PPC::LXSSP; 2074 LowerOpcode = PPC::LFS; 2075 break; 2076 case PPC::DFLOADf64: 2077 UpperOpcode = PPC::LXSD; 2078 LowerOpcode = PPC::LFD; 2079 break; 2080 case PPC::DFSTOREf32: 2081 UpperOpcode = PPC::STXSSP; 2082 LowerOpcode = PPC::STFS; 2083 break; 2084 case PPC::DFSTOREf64: 2085 UpperOpcode = PPC::STXSD; 2086 LowerOpcode = PPC::STFD; 2087 break; 2088 case PPC::XFLOADf32: 2089 UpperOpcode = PPC::LXSSPX; 2090 LowerOpcode = PPC::LFSX; 2091 break; 2092 case PPC::XFLOADf64: 2093 UpperOpcode = PPC::LXSDX; 2094 LowerOpcode = PPC::LFDX; 2095 break; 2096 case PPC::XFSTOREf32: 2097 UpperOpcode = PPC::STXSSPX; 2098 LowerOpcode = PPC::STFSX; 2099 break; 2100 case PPC::XFSTOREf64: 2101 UpperOpcode = PPC::STXSDX; 2102 LowerOpcode = PPC::STFDX; 2103 break; 2104 case PPC::LIWAX: 2105 UpperOpcode = PPC::LXSIWAX; 2106 LowerOpcode = PPC::LFIWAX; 2107 break; 2108 case PPC::LIWZX: 2109 UpperOpcode = PPC::LXSIWZX; 2110 LowerOpcode = PPC::LFIWZX; 2111 break; 2112 case PPC::STIWX: 2113 UpperOpcode = PPC::STXSIWX; 2114 LowerOpcode = PPC::STFIWX; 2115 break; 2116 default: 2117 llvm_unreachable("Unknown Operation!"); 2118 } 2119 2120 unsigned TargetReg = MI.getOperand(0).getReg(); 2121 unsigned Opcode; 2122 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2123 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2124 Opcode = LowerOpcode; 2125 else 2126 Opcode = UpperOpcode; 2127 MI.setDesc(get(Opcode)); 2128 return true; 2129 } 2130 2131 static bool isAnImmediateOperand(const MachineOperand &MO) { 2132 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2133 } 2134 2135 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2136 auto &MBB = *MI.getParent(); 2137 auto DL = MI.getDebugLoc(); 2138 2139 switch (MI.getOpcode()) { 2140 case TargetOpcode::LOAD_STACK_GUARD: { 2141 assert(Subtarget.isTargetLinux() && 2142 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 2143 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 2144 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 2145 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 2146 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2147 .addImm(Offset) 2148 .addReg(Reg); 2149 return true; 2150 } 2151 case PPC::DFLOADf32: 2152 case PPC::DFLOADf64: 2153 case PPC::DFSTOREf32: 2154 case PPC::DFSTOREf64: { 2155 assert(Subtarget.hasP9Vector() && 2156 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 2157 assert(MI.getOperand(2).isReg() && 2158 isAnImmediateOperand(MI.getOperand(1)) && 2159 "D-form op must have register and immediate operands"); 2160 return expandVSXMemPseudo(MI); 2161 } 2162 case PPC::XFLOADf32: 2163 case PPC::XFSTOREf32: 2164 case PPC::LIWAX: 2165 case PPC::LIWZX: 2166 case PPC::STIWX: { 2167 assert(Subtarget.hasP8Vector() && 2168 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 2169 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2170 "X-form op must have register and register operands"); 2171 return expandVSXMemPseudo(MI); 2172 } 2173 case PPC::XFLOADf64: 2174 case PPC::XFSTOREf64: { 2175 assert(Subtarget.hasVSX() && 2176 "Invalid X-Form Pseudo-ops on target that has no VSX."); 2177 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2178 "X-form op must have register and register operands"); 2179 return expandVSXMemPseudo(MI); 2180 } 2181 case PPC::SPILLTOVSR_LD: { 2182 unsigned TargetReg = MI.getOperand(0).getReg(); 2183 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2184 MI.setDesc(get(PPC::DFLOADf64)); 2185 return expandPostRAPseudo(MI); 2186 } 2187 else 2188 MI.setDesc(get(PPC::LD)); 2189 return true; 2190 } 2191 case PPC::SPILLTOVSR_ST: { 2192 unsigned SrcReg = MI.getOperand(0).getReg(); 2193 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2194 NumStoreSPILLVSRRCAsVec++; 2195 MI.setDesc(get(PPC::DFSTOREf64)); 2196 return expandPostRAPseudo(MI); 2197 } else { 2198 NumStoreSPILLVSRRCAsGpr++; 2199 MI.setDesc(get(PPC::STD)); 2200 } 2201 return true; 2202 } 2203 case PPC::SPILLTOVSR_LDX: { 2204 unsigned TargetReg = MI.getOperand(0).getReg(); 2205 if (PPC::VSFRCRegClass.contains(TargetReg)) 2206 MI.setDesc(get(PPC::LXSDX)); 2207 else 2208 MI.setDesc(get(PPC::LDX)); 2209 return true; 2210 } 2211 case PPC::SPILLTOVSR_STX: { 2212 unsigned SrcReg = MI.getOperand(0).getReg(); 2213 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2214 NumStoreSPILLVSRRCAsVec++; 2215 MI.setDesc(get(PPC::STXSDX)); 2216 } else { 2217 NumStoreSPILLVSRRCAsGpr++; 2218 MI.setDesc(get(PPC::STDX)); 2219 } 2220 return true; 2221 } 2222 2223 case PPC::CFENCE8: { 2224 auto Val = MI.getOperand(0).getReg(); 2225 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2226 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2227 .addImm(PPC::PRED_NE_MINUS) 2228 .addReg(PPC::CR7) 2229 .addImm(1); 2230 MI.setDesc(get(PPC::ISYNC)); 2231 MI.RemoveOperand(0); 2232 return true; 2233 } 2234 } 2235 return false; 2236 } 2237 2238 // Essentially a compile-time implementation of a compare->isel sequence. 2239 // It takes two constants to compare, along with the true/false registers 2240 // and the comparison type (as a subreg to a CR field) and returns one 2241 // of the true/false registers, depending on the comparison results. 2242 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 2243 unsigned TrueReg, unsigned FalseReg, 2244 unsigned CRSubReg) { 2245 // Signed comparisons. The immediates are assumed to be sign-extended. 2246 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 2247 switch (CRSubReg) { 2248 default: llvm_unreachable("Unknown integer comparison type."); 2249 case PPC::sub_lt: 2250 return Imm1 < Imm2 ? TrueReg : FalseReg; 2251 case PPC::sub_gt: 2252 return Imm1 > Imm2 ? TrueReg : FalseReg; 2253 case PPC::sub_eq: 2254 return Imm1 == Imm2 ? TrueReg : FalseReg; 2255 } 2256 } 2257 // Unsigned comparisons. 2258 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 2259 switch (CRSubReg) { 2260 default: llvm_unreachable("Unknown integer comparison type."); 2261 case PPC::sub_lt: 2262 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 2263 case PPC::sub_gt: 2264 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 2265 case PPC::sub_eq: 2266 return Imm1 == Imm2 ? TrueReg : FalseReg; 2267 } 2268 } 2269 return PPC::NoRegister; 2270 } 2271 2272 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 2273 unsigned OpNo, 2274 int64_t Imm) const { 2275 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 2276 // Replace the REG with the Immediate. 2277 unsigned InUseReg = MI.getOperand(OpNo).getReg(); 2278 MI.getOperand(OpNo).ChangeToImmediate(Imm); 2279 2280 if (empty(MI.implicit_operands())) 2281 return; 2282 2283 // We need to make sure that the MI didn't have any implicit use 2284 // of this REG any more. 2285 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2286 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 2287 if (UseOpIdx >= 0) { 2288 MachineOperand &MO = MI.getOperand(UseOpIdx); 2289 if (MO.isImplicit()) 2290 // The operands must always be in the following order: 2291 // - explicit reg defs, 2292 // - other explicit operands (reg uses, immediates, etc.), 2293 // - implicit reg defs 2294 // - implicit reg uses 2295 // Therefore, removing the implicit operand won't change the explicit 2296 // operands layout. 2297 MI.RemoveOperand(UseOpIdx); 2298 } 2299 } 2300 2301 // Replace an instruction with one that materializes a constant (and sets 2302 // CR0 if the original instruction was a record-form instruction). 2303 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 2304 const LoadImmediateInfo &LII) const { 2305 // Remove existing operands. 2306 int OperandToKeep = LII.SetCR ? 1 : 0; 2307 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 2308 MI.RemoveOperand(i); 2309 2310 // Replace the instruction. 2311 if (LII.SetCR) { 2312 MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo)); 2313 // Set the immediate. 2314 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2315 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 2316 return; 2317 } 2318 else 2319 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 2320 2321 // Set the immediate. 2322 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2323 .addImm(LII.Imm); 2324 } 2325 2326 MachineInstr *PPCInstrInfo::getForwardingDefMI( 2327 MachineInstr &MI, 2328 unsigned &OpNoForForwarding, 2329 bool &SeenIntermediateUse) const { 2330 OpNoForForwarding = ~0U; 2331 MachineInstr *DefMI = nullptr; 2332 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 2333 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2334 // If we're in SSA, get the defs through the MRI. Otherwise, only look 2335 // within the basic block to see if the register is defined using an LI/LI8. 2336 if (MRI->isSSA()) { 2337 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2338 if (!MI.getOperand(i).isReg()) 2339 continue; 2340 unsigned Reg = MI.getOperand(i).getReg(); 2341 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 2342 continue; 2343 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 2344 if (TargetRegisterInfo::isVirtualRegister(TrueReg)) { 2345 DefMI = MRI->getVRegDef(TrueReg); 2346 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) { 2347 OpNoForForwarding = i; 2348 break; 2349 } 2350 } 2351 } 2352 } else { 2353 // Looking back through the definition for each operand could be expensive, 2354 // so exit early if this isn't an instruction that either has an immediate 2355 // form or is already an immediate form that we can handle. 2356 ImmInstrInfo III; 2357 unsigned Opc = MI.getOpcode(); 2358 bool ConvertibleImmForm = 2359 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || 2360 Opc == PPC::CMPDI || Opc == PPC::CMPLDI || 2361 Opc == PPC::ADDI || Opc == PPC::ADDI8 || 2362 Opc == PPC::ORI || Opc == PPC::ORI8 || 2363 Opc == PPC::XORI || Opc == PPC::XORI8 || 2364 Opc == PPC::RLDICL || Opc == PPC::RLDICLo || 2365 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 2366 Opc == PPC::RLWINM || Opc == PPC::RLWINMo || 2367 Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o; 2368 if (!instrHasImmForm(MI, III, true) && !ConvertibleImmForm) 2369 return nullptr; 2370 2371 // Don't convert or %X, %Y, %Y since that's just a register move. 2372 if ((Opc == PPC::OR || Opc == PPC::OR8) && 2373 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 2374 return nullptr; 2375 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2376 MachineOperand &MO = MI.getOperand(i); 2377 SeenIntermediateUse = false; 2378 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 2379 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 2380 It++; 2381 unsigned Reg = MI.getOperand(i).getReg(); 2382 2383 // Is this register defined by some form of add-immediate (including 2384 // load-immediate) within this basic block? 2385 for ( ; It != E; ++It) { 2386 if (It->modifiesRegister(Reg, &getRegisterInfo())) { 2387 switch (It->getOpcode()) { 2388 default: break; 2389 case PPC::LI: 2390 case PPC::LI8: 2391 case PPC::ADDItocL: 2392 case PPC::ADDI: 2393 case PPC::ADDI8: 2394 OpNoForForwarding = i; 2395 return &*It; 2396 } 2397 break; 2398 } else if (It->readsRegister(Reg, &getRegisterInfo())) 2399 // If we see another use of this reg between the def and the MI, 2400 // we want to flat it so the def isn't deleted. 2401 SeenIntermediateUse = true; 2402 } 2403 } 2404 } 2405 } 2406 return OpNoForForwarding == ~0U ? nullptr : DefMI; 2407 } 2408 2409 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 2410 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2411 // Power 8 2412 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2413 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, 2414 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2415 PPC::SPILLTOVSR_ST, PPC::EVSTDD, PPC::SPESTW}, 2416 // Power 9 2417 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2418 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, 2419 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2420 PPC::SPILLTOVSR_ST}}; 2421 2422 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2423 } 2424 2425 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 2426 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2427 // Power 8 2428 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2429 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX, 2430 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2431 PPC::SPILLTOVSR_LD, PPC::EVLDD, PPC::SPELWZ}, 2432 // Power 9 2433 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2434 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32, 2435 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2436 PPC::SPILLTOVSR_LD}}; 2437 2438 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2439 } 2440 2441 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI, 2442 unsigned RegNo) const { 2443 const MachineRegisterInfo &MRI = 2444 StartMI.getParent()->getParent()->getRegInfo(); 2445 if (MRI.isSSA()) 2446 return; 2447 2448 // Instructions between [StartMI, EndMI] should be in same basic block. 2449 assert((StartMI.getParent() == EndMI.getParent()) && 2450 "Instructions are not in same basic block"); 2451 2452 bool IsKillSet = false; 2453 2454 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 2455 MachineOperand &MO = MI.getOperand(Index); 2456 if (MO.isReg() && MO.isUse() && MO.isKill() && 2457 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 2458 MO.setIsKill(false); 2459 }; 2460 2461 // Set killed flag for EndMI. 2462 // No need to do anything if EndMI defines RegNo. 2463 int UseIndex = 2464 EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 2465 if (UseIndex != -1) { 2466 EndMI.getOperand(UseIndex).setIsKill(true); 2467 IsKillSet = true; 2468 // Clear killed flag for other EndMI operands related to RegNo. In some 2469 // upexpected cases, killed may be set multiple times for same register 2470 // operand in same MI. 2471 for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i) 2472 if (i != UseIndex) 2473 clearOperandKillInfo(EndMI, i); 2474 } 2475 2476 // Walking the inst in reverse order (EndMI -> StartMI]. 2477 MachineBasicBlock::reverse_iterator It = EndMI; 2478 MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend(); 2479 // EndMI has been handled above, skip it here. 2480 It++; 2481 MachineOperand *MO = nullptr; 2482 for (; It != E; ++It) { 2483 // Skip insturctions which could not be a def/use of RegNo. 2484 if (It->isDebugInstr() || It->isPosition()) 2485 continue; 2486 2487 // Clear killed flag for all It operands related to RegNo. In some 2488 // upexpected cases, killed may be set multiple times for same register 2489 // operand in same MI. 2490 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 2491 clearOperandKillInfo(*It, i); 2492 2493 // If killed is not set, set killed for its last use or set dead for its def 2494 // if no use found. 2495 if (!IsKillSet) { 2496 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 2497 // Use found, set it killed. 2498 IsKillSet = true; 2499 MO->setIsKill(true); 2500 continue; 2501 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 2502 &getRegisterInfo()))) { 2503 // No use found, set dead for its def. 2504 assert(&*It == &StartMI && "No new def between StartMI and EndMI."); 2505 MO->setIsDead(true); 2506 break; 2507 } 2508 } 2509 2510 if ((&*It) == &StartMI) 2511 break; 2512 } 2513 // Ensure RegMo liveness is killed after EndMI. 2514 assert((IsKillSet || (MO && MO->isDead())) && 2515 "RegNo should be killed or dead"); 2516 } 2517 2518 // If this instruction has an immediate form and one of its operands is a 2519 // result of a load-immediate or an add-immediate, convert it to 2520 // the immediate form if the constant is in range. 2521 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 2522 MachineInstr **KilledDef) const { 2523 MachineFunction *MF = MI.getParent()->getParent(); 2524 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2525 bool PostRA = !MRI->isSSA(); 2526 bool SeenIntermediateUse = true; 2527 unsigned ForwardingOperand = ~0U; 2528 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 2529 SeenIntermediateUse); 2530 if (!DefMI) 2531 return false; 2532 assert(ForwardingOperand < MI.getNumOperands() && 2533 "The forwarding operand needs to be valid at this point"); 2534 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 2535 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 2536 unsigned ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg(); 2537 if (KilledDef && KillFwdDefMI) 2538 *KilledDef = DefMI; 2539 2540 ImmInstrInfo III; 2541 bool HasImmForm = instrHasImmForm(MI, III, PostRA); 2542 // If this is a reg+reg instruction that has a reg+imm form, 2543 // and one of the operands is produced by an add-immediate, 2544 // try to convert it. 2545 if (HasImmForm && 2546 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 2547 KillFwdDefMI)) 2548 return true; 2549 2550 if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) || 2551 !DefMI->getOperand(1).isImm()) 2552 return false; 2553 2554 int64_t Immediate = DefMI->getOperand(1).getImm(); 2555 // Sign-extend to 64-bits. 2556 int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 2557 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 2558 2559 // If this is a reg+reg instruction that has a reg+imm form, 2560 // and one of the operands is produced by LI, convert it now. 2561 if (HasImmForm) 2562 return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm); 2563 2564 bool ReplaceWithLI = false; 2565 bool Is64BitLI = false; 2566 int64_t NewImm = 0; 2567 bool SetCR = false; 2568 unsigned Opc = MI.getOpcode(); 2569 switch (Opc) { 2570 default: return false; 2571 2572 // FIXME: Any branches conditional on such a comparison can be made 2573 // unconditional. At this time, this happens too infrequently to be worth 2574 // the implementation effort, but if that ever changes, we could convert 2575 // such a pattern here. 2576 case PPC::CMPWI: 2577 case PPC::CMPLWI: 2578 case PPC::CMPDI: 2579 case PPC::CMPLDI: { 2580 // Doing this post-RA would require dataflow analysis to reliably find uses 2581 // of the CR register set by the compare. 2582 // No need to fixup killed/dead flag since this transformation is only valid 2583 // before RA. 2584 if (PostRA) 2585 return false; 2586 // If a compare-immediate is fed by an immediate and is itself an input of 2587 // an ISEL (the most common case) into a COPY of the correct register. 2588 bool Changed = false; 2589 unsigned DefReg = MI.getOperand(0).getReg(); 2590 int64_t Comparand = MI.getOperand(2).getImm(); 2591 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ? 2592 (Comparand | 0xFFFFFFFFFFFF0000) : Comparand; 2593 2594 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 2595 unsigned UseOpc = CompareUseMI.getOpcode(); 2596 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 2597 continue; 2598 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 2599 unsigned TrueReg = CompareUseMI.getOperand(1).getReg(); 2600 unsigned FalseReg = CompareUseMI.getOperand(2).getReg(); 2601 unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg, 2602 FalseReg, CRSubReg); 2603 if (RegToCopy == PPC::NoRegister) 2604 continue; 2605 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 2606 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 2607 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 2608 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 2609 CompareUseMI.RemoveOperand(3); 2610 CompareUseMI.RemoveOperand(2); 2611 continue; 2612 } 2613 LLVM_DEBUG( 2614 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 2615 LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump()); 2616 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 2617 // Convert to copy and remove unneeded operands. 2618 CompareUseMI.setDesc(get(PPC::COPY)); 2619 CompareUseMI.RemoveOperand(3); 2620 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 2621 CmpIselsConverted++; 2622 Changed = true; 2623 LLVM_DEBUG(CompareUseMI.dump()); 2624 } 2625 if (Changed) 2626 return true; 2627 // This may end up incremented multiple times since this function is called 2628 // during a fixed-point transformation, but it is only meant to indicate the 2629 // presence of this opportunity. 2630 MissedConvertibleImmediateInstrs++; 2631 return false; 2632 } 2633 2634 // Immediate forms - may simply be convertable to an LI. 2635 case PPC::ADDI: 2636 case PPC::ADDI8: { 2637 // Does the sum fit in a 16-bit signed field? 2638 int64_t Addend = MI.getOperand(2).getImm(); 2639 if (isInt<16>(Addend + SExtImm)) { 2640 ReplaceWithLI = true; 2641 Is64BitLI = Opc == PPC::ADDI8; 2642 NewImm = Addend + SExtImm; 2643 break; 2644 } 2645 return false; 2646 } 2647 case PPC::RLDICL: 2648 case PPC::RLDICLo: 2649 case PPC::RLDICL_32: 2650 case PPC::RLDICL_32_64: { 2651 // Use APInt's rotate function. 2652 int64_t SH = MI.getOperand(2).getImm(); 2653 int64_t MB = MI.getOperand(3).getImm(); 2654 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ? 2655 64 : 32, SExtImm, true); 2656 InVal = InVal.rotl(SH); 2657 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2658 InVal &= Mask; 2659 // Can't replace negative values with an LI as that will sign-extend 2660 // and not clear the left bits. If we're setting the CR bit, we will use 2661 // ANDIo which won't sign extend, so that's safe. 2662 if (isUInt<15>(InVal.getSExtValue()) || 2663 (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) { 2664 ReplaceWithLI = true; 2665 Is64BitLI = Opc != PPC::RLDICL_32; 2666 NewImm = InVal.getSExtValue(); 2667 SetCR = Opc == PPC::RLDICLo; 2668 break; 2669 } 2670 return false; 2671 } 2672 case PPC::RLWINM: 2673 case PPC::RLWINM8: 2674 case PPC::RLWINMo: 2675 case PPC::RLWINM8o: { 2676 int64_t SH = MI.getOperand(2).getImm(); 2677 int64_t MB = MI.getOperand(3).getImm(); 2678 int64_t ME = MI.getOperand(4).getImm(); 2679 APInt InVal(32, SExtImm, true); 2680 InVal = InVal.rotl(SH); 2681 // Set the bits ( MB + 32 ) to ( ME + 32 ). 2682 uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2683 InVal &= Mask; 2684 // Can't replace negative values with an LI as that will sign-extend 2685 // and not clear the left bits. If we're setting the CR bit, we will use 2686 // ANDIo which won't sign extend, so that's safe. 2687 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 2688 ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) && 2689 isUInt<16>(InVal.getSExtValue())); 2690 if (ValueFits) { 2691 ReplaceWithLI = true; 2692 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o; 2693 NewImm = InVal.getSExtValue(); 2694 SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o; 2695 break; 2696 } 2697 return false; 2698 } 2699 case PPC::ORI: 2700 case PPC::ORI8: 2701 case PPC::XORI: 2702 case PPC::XORI8: { 2703 int64_t LogicalImm = MI.getOperand(2).getImm(); 2704 int64_t Result = 0; 2705 if (Opc == PPC::ORI || Opc == PPC::ORI8) 2706 Result = LogicalImm | SExtImm; 2707 else 2708 Result = LogicalImm ^ SExtImm; 2709 if (isInt<16>(Result)) { 2710 ReplaceWithLI = true; 2711 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 2712 NewImm = Result; 2713 break; 2714 } 2715 return false; 2716 } 2717 } 2718 2719 if (ReplaceWithLI) { 2720 // We need to be careful with CR-setting instructions we're replacing. 2721 if (SetCR) { 2722 // We don't know anything about uses when we're out of SSA, so only 2723 // replace if the new immediate will be reproduced. 2724 bool ImmChanged = (SExtImm & NewImm) != NewImm; 2725 if (PostRA && ImmChanged) 2726 return false; 2727 2728 if (!PostRA) { 2729 // If the defining load-immediate has no other uses, we can just replace 2730 // the immediate with the new immediate. 2731 if (MRI->hasOneUse(DefMI->getOperand(0).getReg())) 2732 DefMI->getOperand(1).setImm(NewImm); 2733 2734 // If we're not using the GPR result of the CR-setting instruction, we 2735 // just need to and with zero/non-zero depending on the new immediate. 2736 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 2737 if (NewImm) { 2738 assert(Immediate && "Transformation converted zero to non-zero?"); 2739 NewImm = Immediate; 2740 } 2741 } 2742 else if (ImmChanged) 2743 return false; 2744 } 2745 } 2746 2747 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 2748 LLVM_DEBUG(MI.dump()); 2749 LLVM_DEBUG(dbgs() << "Fed by:\n"); 2750 LLVM_DEBUG(DefMI->dump()); 2751 LoadImmediateInfo LII; 2752 LII.Imm = NewImm; 2753 LII.Is64Bit = Is64BitLI; 2754 LII.SetCR = SetCR; 2755 // If we're setting the CR, the original load-immediate must be kept (as an 2756 // operand to ANDIo/ANDI8o). 2757 if (KilledDef && SetCR) 2758 *KilledDef = nullptr; 2759 replaceInstrWithLI(MI, LII); 2760 2761 // Fixup killed/dead flag after transformation. 2762 // Pattern: 2763 // ForwardingOperandReg = LI imm1 2764 // y = op2 imm2, ForwardingOperandReg(killed) 2765 if (IsForwardingOperandKilled) 2766 fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg); 2767 2768 LLVM_DEBUG(dbgs() << "With:\n"); 2769 LLVM_DEBUG(MI.dump()); 2770 return true; 2771 } 2772 return false; 2773 } 2774 2775 static bool isVFReg(unsigned Reg) { 2776 return PPC::VFRCRegClass.contains(Reg); 2777 } 2778 2779 bool PPCInstrInfo::instrHasImmForm(const MachineInstr &MI, 2780 ImmInstrInfo &III, bool PostRA) const { 2781 unsigned Opc = MI.getOpcode(); 2782 // The vast majority of the instructions would need their operand 2 replaced 2783 // with an immediate when switching to the reg+imm form. A marked exception 2784 // are the update form loads/stores for which a constant operand 2 would need 2785 // to turn into a displacement and move operand 1 to the operand 2 position. 2786 III.ImmOpNo = 2; 2787 III.OpNoForForwarding = 2; 2788 III.ImmWidth = 16; 2789 III.ImmMustBeMultipleOf = 1; 2790 III.TruncateImmTo = 0; 2791 III.IsSummingOperands = false; 2792 switch (Opc) { 2793 default: return false; 2794 case PPC::ADD4: 2795 case PPC::ADD8: 2796 III.SignedImm = true; 2797 III.ZeroIsSpecialOrig = 0; 2798 III.ZeroIsSpecialNew = 1; 2799 III.IsCommutative = true; 2800 III.IsSummingOperands = true; 2801 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 2802 break; 2803 case PPC::ADDC: 2804 case PPC::ADDC8: 2805 III.SignedImm = true; 2806 III.ZeroIsSpecialOrig = 0; 2807 III.ZeroIsSpecialNew = 0; 2808 III.IsCommutative = true; 2809 III.IsSummingOperands = true; 2810 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 2811 break; 2812 case PPC::ADDCo: 2813 III.SignedImm = true; 2814 III.ZeroIsSpecialOrig = 0; 2815 III.ZeroIsSpecialNew = 0; 2816 III.IsCommutative = true; 2817 III.IsSummingOperands = true; 2818 III.ImmOpcode = PPC::ADDICo; 2819 break; 2820 case PPC::SUBFC: 2821 case PPC::SUBFC8: 2822 III.SignedImm = true; 2823 III.ZeroIsSpecialOrig = 0; 2824 III.ZeroIsSpecialNew = 0; 2825 III.IsCommutative = false; 2826 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 2827 break; 2828 case PPC::CMPW: 2829 case PPC::CMPD: 2830 III.SignedImm = true; 2831 III.ZeroIsSpecialOrig = 0; 2832 III.ZeroIsSpecialNew = 0; 2833 III.IsCommutative = false; 2834 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 2835 break; 2836 case PPC::CMPLW: 2837 case PPC::CMPLD: 2838 III.SignedImm = false; 2839 III.ZeroIsSpecialOrig = 0; 2840 III.ZeroIsSpecialNew = 0; 2841 III.IsCommutative = false; 2842 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 2843 break; 2844 case PPC::ANDo: 2845 case PPC::AND8o: 2846 case PPC::OR: 2847 case PPC::OR8: 2848 case PPC::XOR: 2849 case PPC::XOR8: 2850 III.SignedImm = false; 2851 III.ZeroIsSpecialOrig = 0; 2852 III.ZeroIsSpecialNew = 0; 2853 III.IsCommutative = true; 2854 switch(Opc) { 2855 default: llvm_unreachable("Unknown opcode"); 2856 case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break; 2857 case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break; 2858 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 2859 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 2860 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 2861 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 2862 } 2863 break; 2864 case PPC::RLWNM: 2865 case PPC::RLWNM8: 2866 case PPC::RLWNMo: 2867 case PPC::RLWNM8o: 2868 case PPC::SLW: 2869 case PPC::SLW8: 2870 case PPC::SLWo: 2871 case PPC::SLW8o: 2872 case PPC::SRW: 2873 case PPC::SRW8: 2874 case PPC::SRWo: 2875 case PPC::SRW8o: 2876 case PPC::SRAW: 2877 case PPC::SRAWo: 2878 III.SignedImm = false; 2879 III.ZeroIsSpecialOrig = 0; 2880 III.ZeroIsSpecialNew = 0; 2881 III.IsCommutative = false; 2882 // This isn't actually true, but the instructions ignore any of the 2883 // upper bits, so any immediate loaded with an LI is acceptable. 2884 // This does not apply to shift right algebraic because a value 2885 // out of range will produce a -1/0. 2886 III.ImmWidth = 16; 2887 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || 2888 Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o) 2889 III.TruncateImmTo = 5; 2890 else 2891 III.TruncateImmTo = 6; 2892 switch(Opc) { 2893 default: llvm_unreachable("Unknown opcode"); 2894 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 2895 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 2896 case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break; 2897 case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break; 2898 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 2899 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 2900 case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break; 2901 case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break; 2902 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 2903 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 2904 case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break; 2905 case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break; 2906 case PPC::SRAW: 2907 III.ImmWidth = 5; 2908 III.TruncateImmTo = 0; 2909 III.ImmOpcode = PPC::SRAWI; 2910 break; 2911 case PPC::SRAWo: 2912 III.ImmWidth = 5; 2913 III.TruncateImmTo = 0; 2914 III.ImmOpcode = PPC::SRAWIo; 2915 break; 2916 } 2917 break; 2918 case PPC::RLDCL: 2919 case PPC::RLDCLo: 2920 case PPC::RLDCR: 2921 case PPC::RLDCRo: 2922 case PPC::SLD: 2923 case PPC::SLDo: 2924 case PPC::SRD: 2925 case PPC::SRDo: 2926 case PPC::SRAD: 2927 case PPC::SRADo: 2928 III.SignedImm = false; 2929 III.ZeroIsSpecialOrig = 0; 2930 III.ZeroIsSpecialNew = 0; 2931 III.IsCommutative = false; 2932 // This isn't actually true, but the instructions ignore any of the 2933 // upper bits, so any immediate loaded with an LI is acceptable. 2934 // This does not apply to shift right algebraic because a value 2935 // out of range will produce a -1/0. 2936 III.ImmWidth = 16; 2937 if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo || 2938 Opc == PPC::RLDCR || Opc == PPC::RLDCRo) 2939 III.TruncateImmTo = 6; 2940 else 2941 III.TruncateImmTo = 7; 2942 switch(Opc) { 2943 default: llvm_unreachable("Unknown opcode"); 2944 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 2945 case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break; 2946 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 2947 case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break; 2948 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 2949 case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break; 2950 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 2951 case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break; 2952 case PPC::SRAD: 2953 III.ImmWidth = 6; 2954 III.TruncateImmTo = 0; 2955 III.ImmOpcode = PPC::SRADI; 2956 break; 2957 case PPC::SRADo: 2958 III.ImmWidth = 6; 2959 III.TruncateImmTo = 0; 2960 III.ImmOpcode = PPC::SRADIo; 2961 break; 2962 } 2963 break; 2964 // Loads and stores: 2965 case PPC::LBZX: 2966 case PPC::LBZX8: 2967 case PPC::LHZX: 2968 case PPC::LHZX8: 2969 case PPC::LHAX: 2970 case PPC::LHAX8: 2971 case PPC::LWZX: 2972 case PPC::LWZX8: 2973 case PPC::LWAX: 2974 case PPC::LDX: 2975 case PPC::LFSX: 2976 case PPC::LFDX: 2977 case PPC::STBX: 2978 case PPC::STBX8: 2979 case PPC::STHX: 2980 case PPC::STHX8: 2981 case PPC::STWX: 2982 case PPC::STWX8: 2983 case PPC::STDX: 2984 case PPC::STFSX: 2985 case PPC::STFDX: 2986 III.SignedImm = true; 2987 III.ZeroIsSpecialOrig = 1; 2988 III.ZeroIsSpecialNew = 2; 2989 III.IsCommutative = true; 2990 III.IsSummingOperands = true; 2991 III.ImmOpNo = 1; 2992 III.OpNoForForwarding = 2; 2993 switch(Opc) { 2994 default: llvm_unreachable("Unknown opcode"); 2995 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 2996 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 2997 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 2998 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 2999 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 3000 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 3001 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 3002 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 3003 case PPC::LWAX: 3004 III.ImmOpcode = PPC::LWA; 3005 III.ImmMustBeMultipleOf = 4; 3006 break; 3007 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 3008 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 3009 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 3010 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 3011 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 3012 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 3013 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 3014 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 3015 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 3016 case PPC::STDX: 3017 III.ImmOpcode = PPC::STD; 3018 III.ImmMustBeMultipleOf = 4; 3019 break; 3020 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 3021 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 3022 } 3023 break; 3024 case PPC::LBZUX: 3025 case PPC::LBZUX8: 3026 case PPC::LHZUX: 3027 case PPC::LHZUX8: 3028 case PPC::LHAUX: 3029 case PPC::LHAUX8: 3030 case PPC::LWZUX: 3031 case PPC::LWZUX8: 3032 case PPC::LDUX: 3033 case PPC::LFSUX: 3034 case PPC::LFDUX: 3035 case PPC::STBUX: 3036 case PPC::STBUX8: 3037 case PPC::STHUX: 3038 case PPC::STHUX8: 3039 case PPC::STWUX: 3040 case PPC::STWUX8: 3041 case PPC::STDUX: 3042 case PPC::STFSUX: 3043 case PPC::STFDUX: 3044 III.SignedImm = true; 3045 III.ZeroIsSpecialOrig = 2; 3046 III.ZeroIsSpecialNew = 3; 3047 III.IsCommutative = false; 3048 III.IsSummingOperands = true; 3049 III.ImmOpNo = 2; 3050 III.OpNoForForwarding = 3; 3051 switch(Opc) { 3052 default: llvm_unreachable("Unknown opcode"); 3053 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 3054 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 3055 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 3056 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 3057 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 3058 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 3059 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 3060 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 3061 case PPC::LDUX: 3062 III.ImmOpcode = PPC::LDU; 3063 III.ImmMustBeMultipleOf = 4; 3064 break; 3065 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 3066 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 3067 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 3068 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 3069 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 3070 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 3071 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 3072 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 3073 case PPC::STDUX: 3074 III.ImmOpcode = PPC::STDU; 3075 III.ImmMustBeMultipleOf = 4; 3076 break; 3077 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 3078 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 3079 } 3080 break; 3081 // Power9 and up only. For some of these, the X-Form version has access to all 3082 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 3083 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 3084 // into or stored from is one of the VR registers. 3085 case PPC::LXVX: 3086 case PPC::LXSSPX: 3087 case PPC::LXSDX: 3088 case PPC::STXVX: 3089 case PPC::STXSSPX: 3090 case PPC::STXSDX: 3091 case PPC::XFLOADf32: 3092 case PPC::XFLOADf64: 3093 case PPC::XFSTOREf32: 3094 case PPC::XFSTOREf64: 3095 if (!Subtarget.hasP9Vector()) 3096 return false; 3097 III.SignedImm = true; 3098 III.ZeroIsSpecialOrig = 1; 3099 III.ZeroIsSpecialNew = 2; 3100 III.IsCommutative = true; 3101 III.IsSummingOperands = true; 3102 III.ImmOpNo = 1; 3103 III.OpNoForForwarding = 2; 3104 III.ImmMustBeMultipleOf = 4; 3105 switch(Opc) { 3106 default: llvm_unreachable("Unknown opcode"); 3107 case PPC::LXVX: 3108 III.ImmOpcode = PPC::LXV; 3109 III.ImmMustBeMultipleOf = 16; 3110 break; 3111 case PPC::LXSSPX: 3112 if (PostRA) { 3113 if (isVFReg(MI.getOperand(0).getReg())) 3114 III.ImmOpcode = PPC::LXSSP; 3115 else { 3116 III.ImmOpcode = PPC::LFS; 3117 III.ImmMustBeMultipleOf = 1; 3118 } 3119 break; 3120 } 3121 LLVM_FALLTHROUGH; 3122 case PPC::XFLOADf32: 3123 III.ImmOpcode = PPC::DFLOADf32; 3124 break; 3125 case PPC::LXSDX: 3126 if (PostRA) { 3127 if (isVFReg(MI.getOperand(0).getReg())) 3128 III.ImmOpcode = PPC::LXSD; 3129 else { 3130 III.ImmOpcode = PPC::LFD; 3131 III.ImmMustBeMultipleOf = 1; 3132 } 3133 break; 3134 } 3135 LLVM_FALLTHROUGH; 3136 case PPC::XFLOADf64: 3137 III.ImmOpcode = PPC::DFLOADf64; 3138 break; 3139 case PPC::STXVX: 3140 III.ImmOpcode = PPC::STXV; 3141 III.ImmMustBeMultipleOf = 16; 3142 break; 3143 case PPC::STXSSPX: 3144 if (PostRA) { 3145 if (isVFReg(MI.getOperand(0).getReg())) 3146 III.ImmOpcode = PPC::STXSSP; 3147 else { 3148 III.ImmOpcode = PPC::STFS; 3149 III.ImmMustBeMultipleOf = 1; 3150 } 3151 break; 3152 } 3153 LLVM_FALLTHROUGH; 3154 case PPC::XFSTOREf32: 3155 III.ImmOpcode = PPC::DFSTOREf32; 3156 break; 3157 case PPC::STXSDX: 3158 if (PostRA) { 3159 if (isVFReg(MI.getOperand(0).getReg())) 3160 III.ImmOpcode = PPC::STXSD; 3161 else { 3162 III.ImmOpcode = PPC::STFD; 3163 III.ImmMustBeMultipleOf = 1; 3164 } 3165 break; 3166 } 3167 LLVM_FALLTHROUGH; 3168 case PPC::XFSTOREf64: 3169 III.ImmOpcode = PPC::DFSTOREf64; 3170 break; 3171 } 3172 break; 3173 } 3174 return true; 3175 } 3176 3177 // Utility function for swaping two arbitrary operands of an instruction. 3178 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 3179 assert(Op1 != Op2 && "Cannot swap operand with itself."); 3180 3181 unsigned MaxOp = std::max(Op1, Op2); 3182 unsigned MinOp = std::min(Op1, Op2); 3183 MachineOperand MOp1 = MI.getOperand(MinOp); 3184 MachineOperand MOp2 = MI.getOperand(MaxOp); 3185 MI.RemoveOperand(std::max(Op1, Op2)); 3186 MI.RemoveOperand(std::min(Op1, Op2)); 3187 3188 // If the operands we are swapping are the two at the end (the common case) 3189 // we can just remove both and add them in the opposite order. 3190 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 3191 MI.addOperand(MOp2); 3192 MI.addOperand(MOp1); 3193 } else { 3194 // Store all operands in a temporary vector, remove them and re-add in the 3195 // right order. 3196 SmallVector<MachineOperand, 2> MOps; 3197 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 3198 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 3199 MOps.push_back(MI.getOperand(i)); 3200 MI.RemoveOperand(i); 3201 } 3202 // MOp2 needs to be added next. 3203 MI.addOperand(MOp2); 3204 // Now add the rest. 3205 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 3206 if (i == MaxOp) 3207 MI.addOperand(MOp1); 3208 else { 3209 MI.addOperand(MOps.back()); 3210 MOps.pop_back(); 3211 } 3212 } 3213 } 3214 } 3215 3216 // Check if the 'MI' that has the index OpNoForForwarding 3217 // meets the requirement described in the ImmInstrInfo. 3218 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 3219 const ImmInstrInfo &III, 3220 unsigned OpNoForForwarding 3221 ) const { 3222 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 3223 // would not work pre-RA, we can only do the check post RA. 3224 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3225 if (MRI.isSSA()) 3226 return false; 3227 3228 // Cannot do the transform if MI isn't summing the operands. 3229 if (!III.IsSummingOperands) 3230 return false; 3231 3232 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 3233 if (!III.ZeroIsSpecialOrig) 3234 return false; 3235 3236 // We cannot do the transform if the operand we are trying to replace 3237 // isn't the same as the operand the instruction allows. 3238 if (OpNoForForwarding != III.OpNoForForwarding) 3239 return false; 3240 3241 // Check if the instruction we are trying to transform really has 3242 // the special zero register as its operand. 3243 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 3244 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 3245 return false; 3246 3247 // This machine instruction is convertible if it is, 3248 // 1. summing the operands. 3249 // 2. one of the operands is special zero register. 3250 // 3. the operand we are trying to replace is allowed by the MI. 3251 return true; 3252 } 3253 3254 // Check if the DefMI is the add inst and set the ImmMO and RegMO 3255 // accordingly. 3256 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 3257 const ImmInstrInfo &III, 3258 MachineOperand *&ImmMO, 3259 MachineOperand *&RegMO) const { 3260 unsigned Opc = DefMI.getOpcode(); 3261 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 3262 return false; 3263 3264 assert(DefMI.getNumOperands() >= 3 && 3265 "Add inst must have at least three operands"); 3266 RegMO = &DefMI.getOperand(1); 3267 ImmMO = &DefMI.getOperand(2); 3268 3269 // This DefMI is elgible for forwarding if it is: 3270 // 1. add inst 3271 // 2. one of the operands is Imm/CPI/Global. 3272 return isAnImmediateOperand(*ImmMO); 3273 } 3274 3275 bool PPCInstrInfo::isRegElgibleForForwarding( 3276 const MachineOperand &RegMO, const MachineInstr &DefMI, 3277 const MachineInstr &MI, bool KillDefMI, 3278 bool &IsFwdFeederRegKilled) const { 3279 // x = addi y, imm 3280 // ... 3281 // z = lfdx 0, x -> z = lfd imm(y) 3282 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 3283 // of "y" between the DEF of "x" and "z". 3284 // The query is only valid post RA. 3285 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3286 if (MRI.isSSA()) 3287 return false; 3288 3289 unsigned Reg = RegMO.getReg(); 3290 3291 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 3292 MachineBasicBlock::const_reverse_iterator It = MI; 3293 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 3294 It++; 3295 for (; It != E; ++It) { 3296 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3297 return false; 3298 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3299 IsFwdFeederRegKilled = true; 3300 // Made it to DefMI without encountering a clobber. 3301 if ((&*It) == &DefMI) 3302 break; 3303 } 3304 assert((&*It) == &DefMI && "DefMI is missing"); 3305 3306 // If DefMI also defines the register to be forwarded, we can only forward it 3307 // if DefMI is being erased. 3308 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 3309 return KillDefMI; 3310 3311 return true; 3312 } 3313 3314 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 3315 const MachineInstr &DefMI, 3316 const ImmInstrInfo &III, 3317 int64_t &Imm) const { 3318 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 3319 if (DefMI.getOpcode() == PPC::ADDItocL) { 3320 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 3321 // However, we know that, it is 16-bit width, and has the alignment of 4. 3322 // Check if the instruction met the requirement. 3323 if (III.ImmMustBeMultipleOf > 4 || 3324 III.TruncateImmTo || III.ImmWidth != 16) 3325 return false; 3326 3327 // Going from XForm to DForm loads means that the displacement needs to be 3328 // not just an immediate but also a multiple of 4, or 16 depending on the 3329 // load. A DForm load cannot be represented if it is a multiple of say 2. 3330 // XForm loads do not have this restriction. 3331 if (ImmMO.isGlobal() && 3332 ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf) 3333 return false; 3334 3335 return true; 3336 } 3337 3338 if (ImmMO.isImm()) { 3339 // It is Imm, we need to check if the Imm fit the range. 3340 int64_t Immediate = ImmMO.getImm(); 3341 // Sign-extend to 64-bits. 3342 Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 3343 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 3344 3345 if (Imm % III.ImmMustBeMultipleOf) 3346 return false; 3347 if (III.TruncateImmTo) 3348 Imm &= ((1 << III.TruncateImmTo) - 1); 3349 if (III.SignedImm) { 3350 APInt ActualValue(64, Imm, true); 3351 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3352 return false; 3353 } else { 3354 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3355 if ((uint64_t)Imm > UnsignedMax) 3356 return false; 3357 } 3358 } 3359 else 3360 return false; 3361 3362 // This ImmMO is forwarded if it meets the requriement describle 3363 // in ImmInstrInfo 3364 return true; 3365 } 3366 3367 // If an X-Form instruction is fed by an add-immediate and one of its operands 3368 // is the literal zero, attempt to forward the source of the add-immediate to 3369 // the corresponding D-Form instruction with the displacement coming from 3370 // the immediate being added. 3371 bool PPCInstrInfo::transformToImmFormFedByAdd( 3372 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 3373 MachineInstr &DefMI, bool KillDefMI) const { 3374 // RegMO ImmMO 3375 // | | 3376 // x = addi reg, imm <----- DefMI 3377 // y = op 0 , x <----- MI 3378 // | 3379 // OpNoForForwarding 3380 // Check if the MI meet the requirement described in the III. 3381 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 3382 return false; 3383 3384 // Check if the DefMI meet the requirement 3385 // described in the III. If yes, set the ImmMO and RegMO accordingly. 3386 MachineOperand *ImmMO = nullptr; 3387 MachineOperand *RegMO = nullptr; 3388 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 3389 return false; 3390 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 3391 3392 // As we get the Imm operand now, we need to check if the ImmMO meet 3393 // the requirement described in the III. If yes set the Imm. 3394 int64_t Imm = 0; 3395 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 3396 return false; 3397 3398 bool IsFwdFeederRegKilled = false; 3399 // Check if the RegMO can be forwarded to MI. 3400 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 3401 IsFwdFeederRegKilled)) 3402 return false; 3403 3404 // Get killed info in case fixup needed after transformation. 3405 unsigned ForwardKilledOperandReg = ~0U; 3406 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3407 bool PostRA = !MRI.isSSA(); 3408 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 3409 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 3410 3411 // We know that, the MI and DefMI both meet the pattern, and 3412 // the Imm also meet the requirement with the new Imm-form. 3413 // It is safe to do the transformation now. 3414 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 3415 LLVM_DEBUG(MI.dump()); 3416 LLVM_DEBUG(dbgs() << "Fed by:\n"); 3417 LLVM_DEBUG(DefMI.dump()); 3418 3419 // Update the base reg first. 3420 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 3421 false, false, 3422 RegMO->isKill()); 3423 3424 // Then, update the imm. 3425 if (ImmMO->isImm()) { 3426 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 3427 // directly. 3428 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 3429 } 3430 else { 3431 // Otherwise, it is Constant Pool Index(CPI) or Global, 3432 // which is relocation in fact. We need to replace the special zero 3433 // register with ImmMO. 3434 // Before that, we need to fixup the target flags for imm. 3435 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 3436 if (DefMI.getOpcode() == PPC::ADDItocL) 3437 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 3438 3439 // MI didn't have the interface such as MI.setOperand(i) though 3440 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 3441 // ImmMO, we need to remove ZERO operand and all the operands behind it, 3442 // and, add the ImmMO, then, move back all the operands behind ZERO. 3443 SmallVector<MachineOperand, 2> MOps; 3444 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 3445 MOps.push_back(MI.getOperand(i)); 3446 MI.RemoveOperand(i); 3447 } 3448 3449 // Remove the last MO in the list, which is ZERO operand in fact. 3450 MOps.pop_back(); 3451 // Add the imm operand. 3452 MI.addOperand(*ImmMO); 3453 // Now add the rest back. 3454 for (auto &MO : MOps) 3455 MI.addOperand(MO); 3456 } 3457 3458 // Update the opcode. 3459 MI.setDesc(get(III.ImmOpcode)); 3460 3461 // Fix up killed/dead flag after transformation. 3462 // Pattern 1: 3463 // x = ADD KilledFwdFeederReg, imm 3464 // n = opn KilledFwdFeederReg(killed), regn 3465 // y = XOP 0, x 3466 // Pattern 2: 3467 // x = ADD reg(killed), imm 3468 // y = XOP 0, x 3469 if (IsFwdFeederRegKilled || RegMO->isKill()) 3470 fixupIsDeadOrKill(DefMI, MI, RegMO->getReg()); 3471 // Pattern 3: 3472 // ForwardKilledOperandReg = ADD reg, imm 3473 // y = XOP 0, ForwardKilledOperandReg(killed) 3474 if (ForwardKilledOperandReg != ~0U) 3475 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3476 3477 LLVM_DEBUG(dbgs() << "With:\n"); 3478 LLVM_DEBUG(MI.dump()); 3479 3480 return true; 3481 } 3482 3483 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 3484 const ImmInstrInfo &III, 3485 unsigned ConstantOpNo, 3486 MachineInstr &DefMI, 3487 int64_t Imm) const { 3488 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3489 bool PostRA = !MRI.isSSA(); 3490 // Exit early if we can't convert this. 3491 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 3492 return false; 3493 if (Imm % III.ImmMustBeMultipleOf) 3494 return false; 3495 if (III.TruncateImmTo) 3496 Imm &= ((1 << III.TruncateImmTo) - 1); 3497 if (III.SignedImm) { 3498 APInt ActualValue(64, Imm, true); 3499 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3500 return false; 3501 } else { 3502 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3503 if ((uint64_t)Imm > UnsignedMax) 3504 return false; 3505 } 3506 3507 // If we're post-RA, the instructions don't agree on whether register zero is 3508 // special, we can transform this as long as the register operand that will 3509 // end up in the location where zero is special isn't R0. 3510 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3511 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 3512 III.ZeroIsSpecialNew + 1; 3513 unsigned OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 3514 unsigned NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3515 // If R0 is in the operand where zero is special for the new instruction, 3516 // it is unsafe to transform if the constant operand isn't that operand. 3517 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 3518 ConstantOpNo != III.ZeroIsSpecialNew) 3519 return false; 3520 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 3521 ConstantOpNo != PosForOrigZero) 3522 return false; 3523 } 3524 3525 // Get killed info in case fixup needed after transformation. 3526 unsigned ForwardKilledOperandReg = ~0U; 3527 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 3528 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 3529 3530 unsigned Opc = MI.getOpcode(); 3531 bool SpecialShift32 = 3532 Opc == PPC::SLW || Opc == PPC::SLWo || Opc == PPC::SRW || Opc == PPC::SRWo; 3533 bool SpecialShift64 = 3534 Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo; 3535 bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo || 3536 Opc == PPC::SLDo || Opc == PPC::SRDo; 3537 bool RightShift = 3538 Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo; 3539 3540 MI.setDesc(get(III.ImmOpcode)); 3541 if (ConstantOpNo == III.OpNoForForwarding) { 3542 // Converting shifts to immediate form is a bit tricky since they may do 3543 // one of three things: 3544 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 3545 // 2. If the shift amount is zero, the result is unchanged (save for maybe 3546 // setting CR0) 3547 // 3. If the shift amount is in [1, OpSize), it's just a shift 3548 if (SpecialShift32 || SpecialShift64) { 3549 LoadImmediateInfo LII; 3550 LII.Imm = 0; 3551 LII.SetCR = SetCR; 3552 LII.Is64Bit = SpecialShift64; 3553 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 3554 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 3555 replaceInstrWithLI(MI, LII); 3556 // Shifts by zero don't change the value. If we don't need to set CR0, 3557 // just convert this to a COPY. Can't do this post-RA since we've already 3558 // cleaned up the copies. 3559 else if (!SetCR && ShAmt == 0 && !PostRA) { 3560 MI.RemoveOperand(2); 3561 MI.setDesc(get(PPC::COPY)); 3562 } else { 3563 // The 32 bit and 64 bit instructions are quite different. 3564 if (SpecialShift32) { 3565 // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31). 3566 uint64_t SH = RightShift ? 32 - ShAmt : ShAmt; 3567 uint64_t MB = RightShift ? ShAmt : 0; 3568 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 3569 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3570 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 3571 .addImm(ME); 3572 } else { 3573 // Left shifts use (N, 63-N), right shifts use (64-N, N). 3574 uint64_t SH = RightShift ? 64 - ShAmt : ShAmt; 3575 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 3576 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3577 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 3578 } 3579 } 3580 } else 3581 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3582 } 3583 // Convert commutative instructions (switch the operands and convert the 3584 // desired one to an immediate. 3585 else if (III.IsCommutative) { 3586 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3587 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 3588 } else 3589 llvm_unreachable("Should have exited early!"); 3590 3591 // For instructions for which the constant register replaces a different 3592 // operand than where the immediate goes, we need to swap them. 3593 if (III.OpNoForForwarding != III.ImmOpNo) 3594 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 3595 3596 // If the special R0/X0 register index are different for original instruction 3597 // and new instruction, we need to fix up the register class in new 3598 // instruction. 3599 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3600 if (III.ZeroIsSpecialNew) { 3601 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 3602 // need to fix up register class. 3603 unsigned RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3604 if (TargetRegisterInfo::isVirtualRegister(RegToModify)) { 3605 const TargetRegisterClass *NewRC = 3606 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 3607 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 3608 MRI.setRegClass(RegToModify, NewRC); 3609 } 3610 } 3611 } 3612 3613 // Fix up killed/dead flag after transformation. 3614 // Pattern: 3615 // ForwardKilledOperandReg = LI imm 3616 // y = XOP reg, ForwardKilledOperandReg(killed) 3617 if (ForwardKilledOperandReg != ~0U) 3618 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3619 return true; 3620 } 3621 3622 const TargetRegisterClass * 3623 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 3624 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 3625 return &PPC::VSRCRegClass; 3626 return RC; 3627 } 3628 3629 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 3630 return PPC::getRecordFormOpcode(Opcode); 3631 } 3632 3633 // This function returns true if the machine instruction 3634 // always outputs a value by sign-extending a 32 bit value, 3635 // i.e. 0 to 31-th bits are same as 32-th bit. 3636 static bool isSignExtendingOp(const MachineInstr &MI) { 3637 int Opcode = MI.getOpcode(); 3638 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3639 Opcode == PPC::LIS || Opcode == PPC::LIS8 || 3640 Opcode == PPC::SRAW || Opcode == PPC::SRAWo || 3641 Opcode == PPC::SRAWI || Opcode == PPC::SRAWIo || 3642 Opcode == PPC::LWA || Opcode == PPC::LWAX || 3643 Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 3644 Opcode == PPC::LHA || Opcode == PPC::LHAX || 3645 Opcode == PPC::LHA8 || Opcode == PPC::LHAX8 || 3646 Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3647 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 3648 Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 3649 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3650 Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3651 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || 3652 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3653 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || 3654 Opcode == PPC::EXTSB || Opcode == PPC::EXTSBo || 3655 Opcode == PPC::EXTSH || Opcode == PPC::EXTSHo || 3656 Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8 || 3657 Opcode == PPC::EXTSW || Opcode == PPC::EXTSWo || 3658 Opcode == PPC::SETB || Opcode == PPC::SETB8 || 3659 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 3660 Opcode == PPC::EXTSB8_32_64) 3661 return true; 3662 3663 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 3664 return true; 3665 3666 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo || 3667 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo) && 3668 MI.getOperand(3).getImm() > 0 && 3669 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3670 return true; 3671 3672 return false; 3673 } 3674 3675 // This function returns true if the machine instruction 3676 // always outputs zeros in higher 32 bits. 3677 static bool isZeroExtendingOp(const MachineInstr &MI) { 3678 int Opcode = MI.getOpcode(); 3679 // The 16-bit immediate is sign-extended in li/lis. 3680 // If the most significant bit is zero, all higher bits are zero. 3681 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3682 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 3683 int64_t Imm = MI.getOperand(1).getImm(); 3684 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 3685 return true; 3686 } 3687 3688 // We have some variations of rotate-and-mask instructions 3689 // that clear higher 32-bits. 3690 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo || 3691 Opcode == PPC::RLDCL || Opcode == PPC::RLDCLo || 3692 Opcode == PPC::RLDICL_32_64) && 3693 MI.getOperand(3).getImm() >= 32) 3694 return true; 3695 3696 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) && 3697 MI.getOperand(3).getImm() >= 32 && 3698 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 3699 return true; 3700 3701 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo || 3702 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo || 3703 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 3704 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3705 return true; 3706 3707 // There are other instructions that clear higher 32-bits. 3708 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZWo || 3709 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZWo || 3710 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 3711 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZDo || 3712 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZDo || 3713 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || 3714 Opcode == PPC::SLW || Opcode == PPC::SLWo || 3715 Opcode == PPC::SRW || Opcode == PPC::SRWo || 3716 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || 3717 Opcode == PPC::SLWI || Opcode == PPC::SLWIo || 3718 Opcode == PPC::SRWI || Opcode == PPC::SRWIo || 3719 Opcode == PPC::LWZ || Opcode == PPC::LWZX || 3720 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || 3721 Opcode == PPC::LWBRX || Opcode == PPC::LHBRX || 3722 Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3723 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3724 Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3725 Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 3726 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || 3727 Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8 || 3728 Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 3729 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || 3730 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || 3731 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 3732 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3733 Opcode == PPC::ANDIo || Opcode == PPC::ANDISo || 3734 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWIo || 3735 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWIo || 3736 Opcode == PPC::MFVSRWZ) 3737 return true; 3738 3739 return false; 3740 } 3741 3742 // This function returns true if the input MachineInstr is a TOC save 3743 // instruction. 3744 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 3745 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 3746 return false; 3747 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 3748 unsigned StackOffset = MI.getOperand(1).getImm(); 3749 unsigned StackReg = MI.getOperand(2).getReg(); 3750 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) 3751 return true; 3752 3753 return false; 3754 } 3755 3756 // We limit the max depth to track incoming values of PHIs or binary ops 3757 // (e.g. AND) to avoid excessive cost. 3758 const unsigned MAX_DEPTH = 1; 3759 3760 bool 3761 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 3762 const unsigned Depth) const { 3763 const MachineFunction *MF = MI.getParent()->getParent(); 3764 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 3765 3766 // If we know this instruction returns sign- or zero-extended result, 3767 // return true. 3768 if (SignExt ? isSignExtendingOp(MI): 3769 isZeroExtendingOp(MI)) 3770 return true; 3771 3772 switch (MI.getOpcode()) { 3773 case PPC::COPY: { 3774 unsigned SrcReg = MI.getOperand(1).getReg(); 3775 3776 // In both ELFv1 and v2 ABI, method parameters and the return value 3777 // are sign- or zero-extended. 3778 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 3779 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 3780 // We check the ZExt/SExt flags for a method parameter. 3781 if (MI.getParent()->getBasicBlock() == 3782 &MF->getFunction().getEntryBlock()) { 3783 unsigned VReg = MI.getOperand(0).getReg(); 3784 if (MF->getRegInfo().isLiveIn(VReg)) 3785 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 3786 FuncInfo->isLiveInZExt(VReg); 3787 } 3788 3789 // For a method return value, we check the ZExt/SExt flags in attribute. 3790 // We assume the following code sequence for method call. 3791 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 3792 // BL8_NOP @func,... 3793 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 3794 // %5 = COPY %x3; G8RC:%5 3795 if (SrcReg == PPC::X3) { 3796 const MachineBasicBlock *MBB = MI.getParent(); 3797 MachineBasicBlock::const_instr_iterator II = 3798 MachineBasicBlock::const_instr_iterator(&MI); 3799 if (II != MBB->instr_begin() && 3800 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 3801 const MachineInstr &CallMI = *(--II); 3802 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 3803 const Function *CalleeFn = 3804 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 3805 if (!CalleeFn) 3806 return false; 3807 const IntegerType *IntTy = 3808 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 3809 const AttributeSet &Attrs = 3810 CalleeFn->getAttributes().getRetAttributes(); 3811 if (IntTy && IntTy->getBitWidth() <= 32) 3812 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 3813 Attribute::ZExt); 3814 } 3815 } 3816 } 3817 } 3818 3819 // If this is a copy from another register, we recursively check source. 3820 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 3821 return false; 3822 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3823 if (SrcMI != NULL) 3824 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 3825 3826 return false; 3827 } 3828 3829 case PPC::ANDIo: 3830 case PPC::ANDISo: 3831 case PPC::ORI: 3832 case PPC::ORIS: 3833 case PPC::XORI: 3834 case PPC::XORIS: 3835 case PPC::ANDIo8: 3836 case PPC::ANDISo8: 3837 case PPC::ORI8: 3838 case PPC::ORIS8: 3839 case PPC::XORI8: 3840 case PPC::XORIS8: { 3841 // logical operation with 16-bit immediate does not change the upper bits. 3842 // So, we track the operand register as we do for register copy. 3843 unsigned SrcReg = MI.getOperand(1).getReg(); 3844 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 3845 return false; 3846 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3847 if (SrcMI != NULL) 3848 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 3849 3850 return false; 3851 } 3852 3853 // If all incoming values are sign-/zero-extended, 3854 // the output of OR, ISEL or PHI is also sign-/zero-extended. 3855 case PPC::OR: 3856 case PPC::OR8: 3857 case PPC::ISEL: 3858 case PPC::PHI: { 3859 if (Depth >= MAX_DEPTH) 3860 return false; 3861 3862 // The input registers for PHI are operand 1, 3, ... 3863 // The input registers for others are operand 1 and 2. 3864 unsigned E = 3, D = 1; 3865 if (MI.getOpcode() == PPC::PHI) { 3866 E = MI.getNumOperands(); 3867 D = 2; 3868 } 3869 3870 for (unsigned I = 1; I != E; I += D) { 3871 if (MI.getOperand(I).isReg()) { 3872 unsigned SrcReg = MI.getOperand(I).getReg(); 3873 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 3874 return false; 3875 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3876 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 3877 return false; 3878 } 3879 else 3880 return false; 3881 } 3882 return true; 3883 } 3884 3885 // If at least one of the incoming values of an AND is zero extended 3886 // then the output is also zero-extended. If both of the incoming values 3887 // are sign-extended then the output is also sign extended. 3888 case PPC::AND: 3889 case PPC::AND8: { 3890 if (Depth >= MAX_DEPTH) 3891 return false; 3892 3893 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 3894 3895 unsigned SrcReg1 = MI.getOperand(1).getReg(); 3896 unsigned SrcReg2 = MI.getOperand(2).getReg(); 3897 3898 if (!TargetRegisterInfo::isVirtualRegister(SrcReg1) || 3899 !TargetRegisterInfo::isVirtualRegister(SrcReg2)) 3900 return false; 3901 3902 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 3903 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 3904 if (!MISrc1 || !MISrc2) 3905 return false; 3906 3907 if(SignExt) 3908 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 3909 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 3910 else 3911 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 3912 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 3913 } 3914 3915 default: 3916 break; 3917 } 3918 return false; 3919 } 3920