1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/PseudoSourceValue.h"
29 #include "llvm/CodeGen/ScheduleDAG.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/raw_ostream.h"
39 
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "ppc-instr-info"
43 
44 #define GET_INSTRMAP_INFO
45 #define GET_INSTRINFO_CTOR_DTOR
46 #include "PPCGenInstrInfo.inc"
47 
48 STATISTIC(NumStoreSPILLVSRRCAsVec,
49           "Number of spillvsrrc spilled to stack as vec");
50 STATISTIC(NumStoreSPILLVSRRCAsGpr,
51           "Number of spillvsrrc spilled to stack as gpr");
52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
53 STATISTIC(CmpIselsConverted,
54           "Number of ISELs that depend on comparison of constants converted");
55 STATISTIC(MissedConvertibleImmediateInstrs,
56           "Number of compare-immediate instructions fed by constants");
57 STATISTIC(NumRcRotatesConvertedToRcAnd,
58           "Number of record-form rotates converted to record-form andi");
59 
60 static cl::
61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
62             cl::desc("Disable analysis for CTR loops"));
63 
64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
65 cl::desc("Disable compare instruction optimization"), cl::Hidden);
66 
67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
69 cl::Hidden);
70 
71 static cl::opt<bool>
72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
73   cl::desc("Use the old (incorrect) instruction latency calculation"));
74 
75 // Index into the OpcodesForSpill array.
76 enum SpillOpcodeKey {
77   SOK_Int4Spill,
78   SOK_Int8Spill,
79   SOK_Float8Spill,
80   SOK_Float4Spill,
81   SOK_CRSpill,
82   SOK_CRBitSpill,
83   SOK_VRVectorSpill,
84   SOK_VSXVectorSpill,
85   SOK_VectorFloat8Spill,
86   SOK_VectorFloat4Spill,
87   SOK_VRSaveSpill,
88   SOK_QuadFloat8Spill,
89   SOK_QuadFloat4Spill,
90   SOK_QuadBitSpill,
91   SOK_SpillToVSR,
92   SOK_SPESpill,
93   SOK_SPE4Spill,
94   SOK_LastOpcodeSpill  // This must be last on the enum.
95 };
96 
97 // Pin the vtable to this file.
98 void PPCInstrInfo::anchor() {}
99 
100 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
101     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
102                       /* CatchRetOpcode */ -1,
103                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
104       Subtarget(STI), RI(STI.getTargetMachine()) {}
105 
106 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
107 /// this target when scheduling the DAG.
108 ScheduleHazardRecognizer *
109 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
110                                            const ScheduleDAG *DAG) const {
111   unsigned Directive =
112       static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
113   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
114       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
115     const InstrItineraryData *II =
116         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
117     return new ScoreboardHazardRecognizer(II, DAG);
118   }
119 
120   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
121 }
122 
123 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
124 /// to use for this target when scheduling the DAG.
125 ScheduleHazardRecognizer *
126 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
127                                                  const ScheduleDAG *DAG) const {
128   unsigned Directive =
129       DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
130 
131   // FIXME: Leaving this as-is until we have POWER9 scheduling info
132   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
133     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
134 
135   // Most subtargets use a PPC970 recognizer.
136   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
137       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
138     assert(DAG->TII && "No InstrInfo?");
139 
140     return new PPCHazardRecognizer970(*DAG);
141   }
142 
143   return new ScoreboardHazardRecognizer(II, DAG);
144 }
145 
146 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
147                                        const MachineInstr &MI,
148                                        unsigned *PredCost) const {
149   if (!ItinData || UseOldLatencyCalc)
150     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
151 
152   // The default implementation of getInstrLatency calls getStageLatency, but
153   // getStageLatency does not do the right thing for us. While we have
154   // itinerary, most cores are fully pipelined, and so the itineraries only
155   // express the first part of the pipeline, not every stage. Instead, we need
156   // to use the listed output operand cycle number (using operand 0 here, which
157   // is an output).
158 
159   unsigned Latency = 1;
160   unsigned DefClass = MI.getDesc().getSchedClass();
161   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
162     const MachineOperand &MO = MI.getOperand(i);
163     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
164       continue;
165 
166     int Cycle = ItinData->getOperandCycle(DefClass, i);
167     if (Cycle < 0)
168       continue;
169 
170     Latency = std::max(Latency, (unsigned) Cycle);
171   }
172 
173   return Latency;
174 }
175 
176 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
177                                     const MachineInstr &DefMI, unsigned DefIdx,
178                                     const MachineInstr &UseMI,
179                                     unsigned UseIdx) const {
180   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
181                                                    UseMI, UseIdx);
182 
183   if (!DefMI.getParent())
184     return Latency;
185 
186   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
187   unsigned Reg = DefMO.getReg();
188 
189   bool IsRegCR;
190   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
191     const MachineRegisterInfo *MRI =
192         &DefMI.getParent()->getParent()->getRegInfo();
193     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
194               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
195   } else {
196     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
197               PPC::CRBITRCRegClass.contains(Reg);
198   }
199 
200   if (UseMI.isBranch() && IsRegCR) {
201     if (Latency < 0)
202       Latency = getInstrLatency(ItinData, DefMI);
203 
204     // On some cores, there is an additional delay between writing to a condition
205     // register, and using it from a branch.
206     unsigned Directive = Subtarget.getDarwinDirective();
207     switch (Directive) {
208     default: break;
209     case PPC::DIR_7400:
210     case PPC::DIR_750:
211     case PPC::DIR_970:
212     case PPC::DIR_E5500:
213     case PPC::DIR_PWR4:
214     case PPC::DIR_PWR5:
215     case PPC::DIR_PWR5X:
216     case PPC::DIR_PWR6:
217     case PPC::DIR_PWR6X:
218     case PPC::DIR_PWR7:
219     case PPC::DIR_PWR8:
220     // FIXME: Is this needed for POWER9?
221       Latency += 2;
222       break;
223     }
224   }
225 
226   return Latency;
227 }
228 
229 // This function does not list all associative and commutative operations, but
230 // only those worth feeding through the machine combiner in an attempt to
231 // reduce the critical path. Mostly, this means floating-point operations,
232 // because they have high latencies (compared to other operations, such and
233 // and/or, which are also associative and commutative, but have low latencies).
234 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
235   switch (Inst.getOpcode()) {
236   // FP Add:
237   case PPC::FADD:
238   case PPC::FADDS:
239   // FP Multiply:
240   case PPC::FMUL:
241   case PPC::FMULS:
242   // Altivec Add:
243   case PPC::VADDFP:
244   // VSX Add:
245   case PPC::XSADDDP:
246   case PPC::XVADDDP:
247   case PPC::XVADDSP:
248   case PPC::XSADDSP:
249   // VSX Multiply:
250   case PPC::XSMULDP:
251   case PPC::XVMULDP:
252   case PPC::XVMULSP:
253   case PPC::XSMULSP:
254   // QPX Add:
255   case PPC::QVFADD:
256   case PPC::QVFADDS:
257   case PPC::QVFADDSs:
258   // QPX Multiply:
259   case PPC::QVFMUL:
260   case PPC::QVFMULS:
261   case PPC::QVFMULSs:
262     return true;
263   default:
264     return false;
265   }
266 }
267 
268 bool PPCInstrInfo::getMachineCombinerPatterns(
269     MachineInstr &Root,
270     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
271   // Using the machine combiner in this way is potentially expensive, so
272   // restrict to when aggressive optimizations are desired.
273   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
274     return false;
275 
276   // FP reassociation is only legal when we don't need strict IEEE semantics.
277   if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
278     return false;
279 
280   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
281 }
282 
283 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
284 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
285                                          unsigned &SrcReg, unsigned &DstReg,
286                                          unsigned &SubIdx) const {
287   switch (MI.getOpcode()) {
288   default: return false;
289   case PPC::EXTSW:
290   case PPC::EXTSW_32:
291   case PPC::EXTSW_32_64:
292     SrcReg = MI.getOperand(1).getReg();
293     DstReg = MI.getOperand(0).getReg();
294     SubIdx = PPC::sub_32;
295     return true;
296   }
297 }
298 
299 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
300                                            int &FrameIndex) const {
301   unsigned Opcode = MI.getOpcode();
302   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
303   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
304 
305   if (End != std::find(OpcodesForSpill, End, Opcode)) {
306     // Check for the operands added by addFrameReference (the immediate is the
307     // offset which defaults to 0).
308     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
309         MI.getOperand(2).isFI()) {
310       FrameIndex = MI.getOperand(2).getIndex();
311       return MI.getOperand(0).getReg();
312     }
313   }
314   return 0;
315 }
316 
317 // For opcodes with the ReMaterializable flag set, this function is called to
318 // verify the instruction is really rematable.
319 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
320                                                      AliasAnalysis *AA) const {
321   switch (MI.getOpcode()) {
322   default:
323     // This function should only be called for opcodes with the ReMaterializable
324     // flag set.
325     llvm_unreachable("Unknown rematerializable operation!");
326     break;
327   case PPC::LI:
328   case PPC::LI8:
329   case PPC::LIS:
330   case PPC::LIS8:
331   case PPC::QVGPCI:
332   case PPC::ADDIStocHA:
333   case PPC::ADDItocL:
334   case PPC::LOAD_STACK_GUARD:
335   case PPC::XXLXORz:
336   case PPC::XXLXORspz:
337   case PPC::XXLXORdpz:
338   case PPC::V_SET0B:
339   case PPC::V_SET0H:
340   case PPC::V_SET0:
341   case PPC::V_SETALLONESB:
342   case PPC::V_SETALLONESH:
343   case PPC::V_SETALLONES:
344   case PPC::CRSET:
345   case PPC::CRUNSET:
346     return true;
347   }
348   return false;
349 }
350 
351 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
352                                           int &FrameIndex) const {
353   unsigned Opcode = MI.getOpcode();
354   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
355   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
356 
357   if (End != std::find(OpcodesForSpill, End, Opcode)) {
358     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
359         MI.getOperand(2).isFI()) {
360       FrameIndex = MI.getOperand(2).getIndex();
361       return MI.getOperand(0).getReg();
362     }
363   }
364   return 0;
365 }
366 
367 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
368                                                    unsigned OpIdx1,
369                                                    unsigned OpIdx2) const {
370   MachineFunction &MF = *MI.getParent()->getParent();
371 
372   // Normal instructions can be commuted the obvious way.
373   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
374     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
375   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
376   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
377   // changing the relative order of the mask operands might change what happens
378   // to the high-bits of the mask (and, thus, the result).
379 
380   // Cannot commute if it has a non-zero rotate count.
381   if (MI.getOperand(3).getImm() != 0)
382     return nullptr;
383 
384   // If we have a zero rotate count, we have:
385   //   M = mask(MB,ME)
386   //   Op0 = (Op1 & ~M) | (Op2 & M)
387   // Change this to:
388   //   M = mask((ME+1)&31, (MB-1)&31)
389   //   Op0 = (Op2 & ~M) | (Op1 & M)
390 
391   // Swap op1/op2
392   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
393          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
394   unsigned Reg0 = MI.getOperand(0).getReg();
395   unsigned Reg1 = MI.getOperand(1).getReg();
396   unsigned Reg2 = MI.getOperand(2).getReg();
397   unsigned SubReg1 = MI.getOperand(1).getSubReg();
398   unsigned SubReg2 = MI.getOperand(2).getSubReg();
399   bool Reg1IsKill = MI.getOperand(1).isKill();
400   bool Reg2IsKill = MI.getOperand(2).isKill();
401   bool ChangeReg0 = false;
402   // If machine instrs are no longer in two-address forms, update
403   // destination register as well.
404   if (Reg0 == Reg1) {
405     // Must be two address instruction!
406     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
407            "Expecting a two-address instruction!");
408     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
409     Reg2IsKill = false;
410     ChangeReg0 = true;
411   }
412 
413   // Masks.
414   unsigned MB = MI.getOperand(4).getImm();
415   unsigned ME = MI.getOperand(5).getImm();
416 
417   // We can't commute a trivial mask (there is no way to represent an all-zero
418   // mask).
419   if (MB == 0 && ME == 31)
420     return nullptr;
421 
422   if (NewMI) {
423     // Create a new instruction.
424     unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
425     bool Reg0IsDead = MI.getOperand(0).isDead();
426     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
427         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
428         .addReg(Reg2, getKillRegState(Reg2IsKill))
429         .addReg(Reg1, getKillRegState(Reg1IsKill))
430         .addImm((ME + 1) & 31)
431         .addImm((MB - 1) & 31);
432   }
433 
434   if (ChangeReg0) {
435     MI.getOperand(0).setReg(Reg2);
436     MI.getOperand(0).setSubReg(SubReg2);
437   }
438   MI.getOperand(2).setReg(Reg1);
439   MI.getOperand(1).setReg(Reg2);
440   MI.getOperand(2).setSubReg(SubReg1);
441   MI.getOperand(1).setSubReg(SubReg2);
442   MI.getOperand(2).setIsKill(Reg1IsKill);
443   MI.getOperand(1).setIsKill(Reg2IsKill);
444 
445   // Swap the mask around.
446   MI.getOperand(4).setImm((ME + 1) & 31);
447   MI.getOperand(5).setImm((MB - 1) & 31);
448   return &MI;
449 }
450 
451 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
452                                          unsigned &SrcOpIdx2) const {
453   // For VSX A-Type FMA instructions, it is the first two operands that can be
454   // commuted, however, because the non-encoded tied input operand is listed
455   // first, the operands to swap are actually the second and third.
456 
457   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
458   if (AltOpc == -1)
459     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
460 
461   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
462   // and SrcOpIdx2.
463   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
464 }
465 
466 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
467                               MachineBasicBlock::iterator MI) const {
468   // This function is used for scheduling, and the nop wanted here is the type
469   // that terminates dispatch groups on the POWER cores.
470   unsigned Directive = Subtarget.getDarwinDirective();
471   unsigned Opcode;
472   switch (Directive) {
473   default:            Opcode = PPC::NOP; break;
474   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
475   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
476   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
477   // FIXME: Update when POWER9 scheduling model is ready.
478   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
479   }
480 
481   DebugLoc DL;
482   BuildMI(MBB, MI, DL, get(Opcode));
483 }
484 
485 /// Return the noop instruction to use for a noop.
486 void PPCInstrInfo::getNoop(MCInst &NopInst) const {
487   NopInst.setOpcode(PPC::NOP);
488 }
489 
490 // Branch analysis.
491 // Note: If the condition register is set to CTR or CTR8 then this is a
492 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
493 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
494                                  MachineBasicBlock *&TBB,
495                                  MachineBasicBlock *&FBB,
496                                  SmallVectorImpl<MachineOperand> &Cond,
497                                  bool AllowModify) const {
498   bool isPPC64 = Subtarget.isPPC64();
499 
500   // If the block has no terminators, it just falls into the block after it.
501   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
502   if (I == MBB.end())
503     return false;
504 
505   if (!isUnpredicatedTerminator(*I))
506     return false;
507 
508   if (AllowModify) {
509     // If the BB ends with an unconditional branch to the fallthrough BB,
510     // we eliminate the branch instruction.
511     if (I->getOpcode() == PPC::B &&
512         MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
513       I->eraseFromParent();
514 
515       // We update iterator after deleting the last branch.
516       I = MBB.getLastNonDebugInstr();
517       if (I == MBB.end() || !isUnpredicatedTerminator(*I))
518         return false;
519     }
520   }
521 
522   // Get the last instruction in the block.
523   MachineInstr &LastInst = *I;
524 
525   // If there is only one terminator instruction, process it.
526   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
527     if (LastInst.getOpcode() == PPC::B) {
528       if (!LastInst.getOperand(0).isMBB())
529         return true;
530       TBB = LastInst.getOperand(0).getMBB();
531       return false;
532     } else if (LastInst.getOpcode() == PPC::BCC) {
533       if (!LastInst.getOperand(2).isMBB())
534         return true;
535       // Block ends with fall-through condbranch.
536       TBB = LastInst.getOperand(2).getMBB();
537       Cond.push_back(LastInst.getOperand(0));
538       Cond.push_back(LastInst.getOperand(1));
539       return false;
540     } else if (LastInst.getOpcode() == PPC::BC) {
541       if (!LastInst.getOperand(1).isMBB())
542         return true;
543       // Block ends with fall-through condbranch.
544       TBB = LastInst.getOperand(1).getMBB();
545       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
546       Cond.push_back(LastInst.getOperand(0));
547       return false;
548     } else if (LastInst.getOpcode() == PPC::BCn) {
549       if (!LastInst.getOperand(1).isMBB())
550         return true;
551       // Block ends with fall-through condbranch.
552       TBB = LastInst.getOperand(1).getMBB();
553       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
554       Cond.push_back(LastInst.getOperand(0));
555       return false;
556     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
557                LastInst.getOpcode() == PPC::BDNZ) {
558       if (!LastInst.getOperand(0).isMBB())
559         return true;
560       if (DisableCTRLoopAnal)
561         return true;
562       TBB = LastInst.getOperand(0).getMBB();
563       Cond.push_back(MachineOperand::CreateImm(1));
564       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
565                                                true));
566       return false;
567     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
568                LastInst.getOpcode() == PPC::BDZ) {
569       if (!LastInst.getOperand(0).isMBB())
570         return true;
571       if (DisableCTRLoopAnal)
572         return true;
573       TBB = LastInst.getOperand(0).getMBB();
574       Cond.push_back(MachineOperand::CreateImm(0));
575       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
576                                                true));
577       return false;
578     }
579 
580     // Otherwise, don't know what this is.
581     return true;
582   }
583 
584   // Get the instruction before it if it's a terminator.
585   MachineInstr &SecondLastInst = *I;
586 
587   // If there are three terminators, we don't know what sort of block this is.
588   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
589     return true;
590 
591   // If the block ends with PPC::B and PPC:BCC, handle it.
592   if (SecondLastInst.getOpcode() == PPC::BCC &&
593       LastInst.getOpcode() == PPC::B) {
594     if (!SecondLastInst.getOperand(2).isMBB() ||
595         !LastInst.getOperand(0).isMBB())
596       return true;
597     TBB = SecondLastInst.getOperand(2).getMBB();
598     Cond.push_back(SecondLastInst.getOperand(0));
599     Cond.push_back(SecondLastInst.getOperand(1));
600     FBB = LastInst.getOperand(0).getMBB();
601     return false;
602   } else if (SecondLastInst.getOpcode() == PPC::BC &&
603              LastInst.getOpcode() == PPC::B) {
604     if (!SecondLastInst.getOperand(1).isMBB() ||
605         !LastInst.getOperand(0).isMBB())
606       return true;
607     TBB = SecondLastInst.getOperand(1).getMBB();
608     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
609     Cond.push_back(SecondLastInst.getOperand(0));
610     FBB = LastInst.getOperand(0).getMBB();
611     return false;
612   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
613              LastInst.getOpcode() == PPC::B) {
614     if (!SecondLastInst.getOperand(1).isMBB() ||
615         !LastInst.getOperand(0).isMBB())
616       return true;
617     TBB = SecondLastInst.getOperand(1).getMBB();
618     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
619     Cond.push_back(SecondLastInst.getOperand(0));
620     FBB = LastInst.getOperand(0).getMBB();
621     return false;
622   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
623               SecondLastInst.getOpcode() == PPC::BDNZ) &&
624              LastInst.getOpcode() == PPC::B) {
625     if (!SecondLastInst.getOperand(0).isMBB() ||
626         !LastInst.getOperand(0).isMBB())
627       return true;
628     if (DisableCTRLoopAnal)
629       return true;
630     TBB = SecondLastInst.getOperand(0).getMBB();
631     Cond.push_back(MachineOperand::CreateImm(1));
632     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
633                                              true));
634     FBB = LastInst.getOperand(0).getMBB();
635     return false;
636   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
637               SecondLastInst.getOpcode() == PPC::BDZ) &&
638              LastInst.getOpcode() == PPC::B) {
639     if (!SecondLastInst.getOperand(0).isMBB() ||
640         !LastInst.getOperand(0).isMBB())
641       return true;
642     if (DisableCTRLoopAnal)
643       return true;
644     TBB = SecondLastInst.getOperand(0).getMBB();
645     Cond.push_back(MachineOperand::CreateImm(0));
646     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
647                                              true));
648     FBB = LastInst.getOperand(0).getMBB();
649     return false;
650   }
651 
652   // If the block ends with two PPC:Bs, handle it.  The second one is not
653   // executed, so remove it.
654   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
655     if (!SecondLastInst.getOperand(0).isMBB())
656       return true;
657     TBB = SecondLastInst.getOperand(0).getMBB();
658     I = LastInst;
659     if (AllowModify)
660       I->eraseFromParent();
661     return false;
662   }
663 
664   // Otherwise, can't handle this.
665   return true;
666 }
667 
668 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
669                                     int *BytesRemoved) const {
670   assert(!BytesRemoved && "code size not handled");
671 
672   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
673   if (I == MBB.end())
674     return 0;
675 
676   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
677       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
678       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
679       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
680     return 0;
681 
682   // Remove the branch.
683   I->eraseFromParent();
684 
685   I = MBB.end();
686 
687   if (I == MBB.begin()) return 1;
688   --I;
689   if (I->getOpcode() != PPC::BCC &&
690       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
691       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
692       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
693     return 1;
694 
695   // Remove the branch.
696   I->eraseFromParent();
697   return 2;
698 }
699 
700 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
701                                     MachineBasicBlock *TBB,
702                                     MachineBasicBlock *FBB,
703                                     ArrayRef<MachineOperand> Cond,
704                                     const DebugLoc &DL,
705                                     int *BytesAdded) const {
706   // Shouldn't be a fall through.
707   assert(TBB && "insertBranch must not be told to insert a fallthrough");
708   assert((Cond.size() == 2 || Cond.size() == 0) &&
709          "PPC branch conditions have two components!");
710   assert(!BytesAdded && "code size not handled");
711 
712   bool isPPC64 = Subtarget.isPPC64();
713 
714   // One-way branch.
715   if (!FBB) {
716     if (Cond.empty())   // Unconditional branch
717       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
718     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
719       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
720                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
721                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
722     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
723       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
724     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
725       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
726     else                // Conditional branch
727       BuildMI(&MBB, DL, get(PPC::BCC))
728           .addImm(Cond[0].getImm())
729           .add(Cond[1])
730           .addMBB(TBB);
731     return 1;
732   }
733 
734   // Two-way Conditional Branch.
735   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
736     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
737                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
738                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
739   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
740     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
741   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
742     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
743   else
744     BuildMI(&MBB, DL, get(PPC::BCC))
745         .addImm(Cond[0].getImm())
746         .add(Cond[1])
747         .addMBB(TBB);
748   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
749   return 2;
750 }
751 
752 // Select analysis.
753 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
754                 ArrayRef<MachineOperand> Cond,
755                 unsigned TrueReg, unsigned FalseReg,
756                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
757   if (Cond.size() != 2)
758     return false;
759 
760   // If this is really a bdnz-like condition, then it cannot be turned into a
761   // select.
762   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
763     return false;
764 
765   // Check register classes.
766   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
767   const TargetRegisterClass *RC =
768     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
769   if (!RC)
770     return false;
771 
772   // isel is for regular integer GPRs only.
773   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
774       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
775       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
776       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
777     return false;
778 
779   // FIXME: These numbers are for the A2, how well they work for other cores is
780   // an open question. On the A2, the isel instruction has a 2-cycle latency
781   // but single-cycle throughput. These numbers are used in combination with
782   // the MispredictPenalty setting from the active SchedMachineModel.
783   CondCycles = 1;
784   TrueCycles = 1;
785   FalseCycles = 1;
786 
787   return true;
788 }
789 
790 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
791                                 MachineBasicBlock::iterator MI,
792                                 const DebugLoc &dl, unsigned DestReg,
793                                 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
794                                 unsigned FalseReg) const {
795   assert(Cond.size() == 2 &&
796          "PPC branch conditions have two components!");
797 
798   // Get the register classes.
799   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
800   const TargetRegisterClass *RC =
801     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
802   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
803 
804   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
805                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
806   assert((Is64Bit ||
807           PPC::GPRCRegClass.hasSubClassEq(RC) ||
808           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
809          "isel is for regular integer GPRs only");
810 
811   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
812   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
813 
814   unsigned SubIdx = 0;
815   bool SwapOps = false;
816   switch (SelectPred) {
817   case PPC::PRED_EQ:
818   case PPC::PRED_EQ_MINUS:
819   case PPC::PRED_EQ_PLUS:
820       SubIdx = PPC::sub_eq; SwapOps = false; break;
821   case PPC::PRED_NE:
822   case PPC::PRED_NE_MINUS:
823   case PPC::PRED_NE_PLUS:
824       SubIdx = PPC::sub_eq; SwapOps = true; break;
825   case PPC::PRED_LT:
826   case PPC::PRED_LT_MINUS:
827   case PPC::PRED_LT_PLUS:
828       SubIdx = PPC::sub_lt; SwapOps = false; break;
829   case PPC::PRED_GE:
830   case PPC::PRED_GE_MINUS:
831   case PPC::PRED_GE_PLUS:
832       SubIdx = PPC::sub_lt; SwapOps = true; break;
833   case PPC::PRED_GT:
834   case PPC::PRED_GT_MINUS:
835   case PPC::PRED_GT_PLUS:
836       SubIdx = PPC::sub_gt; SwapOps = false; break;
837   case PPC::PRED_LE:
838   case PPC::PRED_LE_MINUS:
839   case PPC::PRED_LE_PLUS:
840       SubIdx = PPC::sub_gt; SwapOps = true; break;
841   case PPC::PRED_UN:
842   case PPC::PRED_UN_MINUS:
843   case PPC::PRED_UN_PLUS:
844       SubIdx = PPC::sub_un; SwapOps = false; break;
845   case PPC::PRED_NU:
846   case PPC::PRED_NU_MINUS:
847   case PPC::PRED_NU_PLUS:
848       SubIdx = PPC::sub_un; SwapOps = true; break;
849   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
850   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
851   }
852 
853   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
854            SecondReg = SwapOps ? TrueReg  : FalseReg;
855 
856   // The first input register of isel cannot be r0. If it is a member
857   // of a register class that can be r0, then copy it first (the
858   // register allocator should eliminate the copy).
859   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
860       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
861     const TargetRegisterClass *FirstRC =
862       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
863         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
864     unsigned OldFirstReg = FirstReg;
865     FirstReg = MRI.createVirtualRegister(FirstRC);
866     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
867       .addReg(OldFirstReg);
868   }
869 
870   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
871     .addReg(FirstReg).addReg(SecondReg)
872     .addReg(Cond[1].getReg(), 0, SubIdx);
873 }
874 
875 static unsigned getCRBitValue(unsigned CRBit) {
876   unsigned Ret = 4;
877   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
878       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
879       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
880       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
881     Ret = 3;
882   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
883       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
884       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
885       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
886     Ret = 2;
887   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
888       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
889       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
890       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
891     Ret = 1;
892   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
893       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
894       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
895       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
896     Ret = 0;
897 
898   assert(Ret != 4 && "Invalid CR bit register");
899   return Ret;
900 }
901 
902 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
903                                MachineBasicBlock::iterator I,
904                                const DebugLoc &DL, unsigned DestReg,
905                                unsigned SrcReg, bool KillSrc) const {
906   // We can end up with self copies and similar things as a result of VSX copy
907   // legalization. Promote them here.
908   const TargetRegisterInfo *TRI = &getRegisterInfo();
909   if (PPC::F8RCRegClass.contains(DestReg) &&
910       PPC::VSRCRegClass.contains(SrcReg)) {
911     unsigned SuperReg =
912       TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
913 
914     if (VSXSelfCopyCrash && SrcReg == SuperReg)
915       llvm_unreachable("nop VSX copy");
916 
917     DestReg = SuperReg;
918   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
919              PPC::VSRCRegClass.contains(DestReg)) {
920     unsigned SuperReg =
921       TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
922 
923     if (VSXSelfCopyCrash && DestReg == SuperReg)
924       llvm_unreachable("nop VSX copy");
925 
926     SrcReg = SuperReg;
927   }
928 
929   // Different class register copy
930   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
931       PPC::GPRCRegClass.contains(DestReg)) {
932     unsigned CRReg = getCRFromCRBit(SrcReg);
933     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
934     getKillRegState(KillSrc);
935     // Rotate the CR bit in the CR fields to be the least significant bit and
936     // then mask with 0x1 (MB = ME = 31).
937     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
938        .addReg(DestReg, RegState::Kill)
939        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
940        .addImm(31)
941        .addImm(31);
942     return;
943   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
944       PPC::G8RCRegClass.contains(DestReg)) {
945     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
946     getKillRegState(KillSrc);
947     return;
948   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
949       PPC::GPRCRegClass.contains(DestReg)) {
950     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
951     getKillRegState(KillSrc);
952     return;
953   } else if (PPC::G8RCRegClass.contains(SrcReg) &&
954              PPC::VSFRCRegClass.contains(DestReg)) {
955     assert(Subtarget.hasDirectMove() &&
956            "Subtarget doesn't support directmove, don't know how to copy.");
957     BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
958     NumGPRtoVSRSpill++;
959     getKillRegState(KillSrc);
960     return;
961   } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
962              PPC::G8RCRegClass.contains(DestReg)) {
963     assert(Subtarget.hasDirectMove() &&
964            "Subtarget doesn't support directmove, don't know how to copy.");
965     BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
966     getKillRegState(KillSrc);
967     return;
968   } else if (PPC::SPERCRegClass.contains(SrcReg) &&
969              PPC::SPE4RCRegClass.contains(DestReg)) {
970     BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
971     getKillRegState(KillSrc);
972     return;
973   } else if (PPC::SPE4RCRegClass.contains(SrcReg) &&
974              PPC::SPERCRegClass.contains(DestReg)) {
975     BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
976     getKillRegState(KillSrc);
977     return;
978   }
979 
980   unsigned Opc;
981   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
982     Opc = PPC::OR;
983   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
984     Opc = PPC::OR8;
985   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
986     Opc = PPC::FMR;
987   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
988     Opc = PPC::MCRF;
989   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
990     Opc = PPC::VOR;
991   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
992     // There are two different ways this can be done:
993     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
994     //      issue in VSU pipeline 0.
995     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
996     //      can go to either pipeline.
997     // We'll always use xxlor here, because in practically all cases where
998     // copies are generated, they are close enough to some use that the
999     // lower-latency form is preferable.
1000     Opc = PPC::XXLOR;
1001   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1002            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1003     Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1004   else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
1005     Opc = PPC::QVFMR;
1006   else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
1007     Opc = PPC::QVFMRs;
1008   else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
1009     Opc = PPC::QVFMRb;
1010   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1011     Opc = PPC::CROR;
1012   else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1013     Opc = PPC::EVOR;
1014   else
1015     llvm_unreachable("Impossible reg-to-reg copy");
1016 
1017   const MCInstrDesc &MCID = get(Opc);
1018   if (MCID.getNumOperands() == 3)
1019     BuildMI(MBB, I, DL, MCID, DestReg)
1020       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1021   else
1022     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1023 }
1024 
1025 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg,
1026                                               const TargetRegisterClass *RC)
1027                                               const {
1028   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1029   int OpcodeIndex = 0;
1030 
1031   if (RC != nullptr) {
1032     if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1033         PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1034       OpcodeIndex = SOK_Int4Spill;
1035     } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1036                PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1037       OpcodeIndex = SOK_Int8Spill;
1038     } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1039       OpcodeIndex = SOK_Float8Spill;
1040     } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1041       OpcodeIndex = SOK_Float4Spill;
1042     } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1043       OpcodeIndex = SOK_SPESpill;
1044     } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) {
1045       OpcodeIndex = SOK_SPE4Spill;
1046     } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1047       OpcodeIndex = SOK_CRSpill;
1048     } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1049       OpcodeIndex = SOK_CRBitSpill;
1050     } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1051       OpcodeIndex = SOK_VRVectorSpill;
1052     } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1053       OpcodeIndex = SOK_VSXVectorSpill;
1054     } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1055       OpcodeIndex = SOK_VectorFloat8Spill;
1056     } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1057       OpcodeIndex = SOK_VectorFloat4Spill;
1058     } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1059       OpcodeIndex = SOK_VRSaveSpill;
1060     } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1061       OpcodeIndex = SOK_QuadFloat8Spill;
1062     } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1063       OpcodeIndex = SOK_QuadFloat4Spill;
1064     } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1065       OpcodeIndex = SOK_QuadBitSpill;
1066     } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1067       OpcodeIndex = SOK_SpillToVSR;
1068     } else {
1069       llvm_unreachable("Unknown regclass!");
1070     }
1071   } else {
1072     if (PPC::GPRCRegClass.contains(Reg) ||
1073         PPC::GPRC_NOR0RegClass.contains(Reg)) {
1074       OpcodeIndex = SOK_Int4Spill;
1075     } else if (PPC::G8RCRegClass.contains(Reg) ||
1076                PPC::G8RC_NOX0RegClass.contains(Reg)) {
1077       OpcodeIndex = SOK_Int8Spill;
1078     } else if (PPC::F8RCRegClass.contains(Reg)) {
1079       OpcodeIndex = SOK_Float8Spill;
1080     } else if (PPC::F4RCRegClass.contains(Reg)) {
1081       OpcodeIndex = SOK_Float4Spill;
1082     } else if (PPC::SPERCRegClass.contains(Reg)) {
1083       OpcodeIndex = SOK_SPESpill;
1084     } else if (PPC::SPE4RCRegClass.contains(Reg)) {
1085       OpcodeIndex = SOK_SPE4Spill;
1086     } else if (PPC::CRRCRegClass.contains(Reg)) {
1087       OpcodeIndex = SOK_CRSpill;
1088     } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1089       OpcodeIndex = SOK_CRBitSpill;
1090     } else if (PPC::VRRCRegClass.contains(Reg)) {
1091       OpcodeIndex = SOK_VRVectorSpill;
1092     } else if (PPC::VSRCRegClass.contains(Reg)) {
1093       OpcodeIndex = SOK_VSXVectorSpill;
1094     } else if (PPC::VSFRCRegClass.contains(Reg)) {
1095       OpcodeIndex = SOK_VectorFloat8Spill;
1096     } else if (PPC::VSSRCRegClass.contains(Reg)) {
1097       OpcodeIndex = SOK_VectorFloat4Spill;
1098     } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1099       OpcodeIndex = SOK_VRSaveSpill;
1100     } else if (PPC::QFRCRegClass.contains(Reg)) {
1101       OpcodeIndex = SOK_QuadFloat8Spill;
1102     } else if (PPC::QSRCRegClass.contains(Reg)) {
1103       OpcodeIndex = SOK_QuadFloat4Spill;
1104     } else if (PPC::QBRCRegClass.contains(Reg)) {
1105       OpcodeIndex = SOK_QuadBitSpill;
1106     } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1107       OpcodeIndex = SOK_SpillToVSR;
1108     } else {
1109       llvm_unreachable("Unknown regclass!");
1110     }
1111   }
1112   return OpcodesForSpill[OpcodeIndex];
1113 }
1114 
1115 unsigned
1116 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg,
1117                                     const TargetRegisterClass *RC) const {
1118   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1119   int OpcodeIndex = 0;
1120 
1121   if (RC != nullptr) {
1122     if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1123         PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1124       OpcodeIndex = SOK_Int4Spill;
1125     } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1126                PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1127       OpcodeIndex = SOK_Int8Spill;
1128     } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1129       OpcodeIndex = SOK_Float8Spill;
1130     } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1131       OpcodeIndex = SOK_Float4Spill;
1132     } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1133       OpcodeIndex = SOK_SPESpill;
1134     } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) {
1135       OpcodeIndex = SOK_SPE4Spill;
1136     } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1137       OpcodeIndex = SOK_CRSpill;
1138     } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1139       OpcodeIndex = SOK_CRBitSpill;
1140     } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1141       OpcodeIndex = SOK_VRVectorSpill;
1142     } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1143       OpcodeIndex = SOK_VSXVectorSpill;
1144     } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1145       OpcodeIndex = SOK_VectorFloat8Spill;
1146     } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1147       OpcodeIndex = SOK_VectorFloat4Spill;
1148     } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1149       OpcodeIndex = SOK_VRSaveSpill;
1150     } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1151       OpcodeIndex = SOK_QuadFloat8Spill;
1152     } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1153       OpcodeIndex = SOK_QuadFloat4Spill;
1154     } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1155       OpcodeIndex = SOK_QuadBitSpill;
1156     } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1157       OpcodeIndex = SOK_SpillToVSR;
1158     } else {
1159       llvm_unreachable("Unknown regclass!");
1160     }
1161   } else {
1162     if (PPC::GPRCRegClass.contains(Reg) ||
1163         PPC::GPRC_NOR0RegClass.contains(Reg)) {
1164       OpcodeIndex = SOK_Int4Spill;
1165     } else if (PPC::G8RCRegClass.contains(Reg) ||
1166                PPC::G8RC_NOX0RegClass.contains(Reg)) {
1167       OpcodeIndex = SOK_Int8Spill;
1168     } else if (PPC::F8RCRegClass.contains(Reg)) {
1169       OpcodeIndex = SOK_Float8Spill;
1170     } else if (PPC::F4RCRegClass.contains(Reg)) {
1171       OpcodeIndex = SOK_Float4Spill;
1172     } else if (PPC::SPERCRegClass.contains(Reg)) {
1173       OpcodeIndex = SOK_SPESpill;
1174     } else if (PPC::SPE4RCRegClass.contains(Reg)) {
1175       OpcodeIndex = SOK_SPE4Spill;
1176     } else if (PPC::CRRCRegClass.contains(Reg)) {
1177       OpcodeIndex = SOK_CRSpill;
1178     } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1179       OpcodeIndex = SOK_CRBitSpill;
1180     } else if (PPC::VRRCRegClass.contains(Reg)) {
1181       OpcodeIndex = SOK_VRVectorSpill;
1182     } else if (PPC::VSRCRegClass.contains(Reg)) {
1183       OpcodeIndex = SOK_VSXVectorSpill;
1184     } else if (PPC::VSFRCRegClass.contains(Reg)) {
1185       OpcodeIndex = SOK_VectorFloat8Spill;
1186     } else if (PPC::VSSRCRegClass.contains(Reg)) {
1187       OpcodeIndex = SOK_VectorFloat4Spill;
1188     } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1189       OpcodeIndex = SOK_VRSaveSpill;
1190     } else if (PPC::QFRCRegClass.contains(Reg)) {
1191       OpcodeIndex = SOK_QuadFloat8Spill;
1192     } else if (PPC::QSRCRegClass.contains(Reg)) {
1193       OpcodeIndex = SOK_QuadFloat4Spill;
1194     } else if (PPC::QBRCRegClass.contains(Reg)) {
1195       OpcodeIndex = SOK_QuadBitSpill;
1196     } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1197       OpcodeIndex = SOK_SpillToVSR;
1198     } else {
1199       llvm_unreachable("Unknown regclass!");
1200     }
1201   }
1202   return OpcodesForSpill[OpcodeIndex];
1203 }
1204 
1205 void PPCInstrInfo::StoreRegToStackSlot(
1206     MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1207     const TargetRegisterClass *RC,
1208     SmallVectorImpl<MachineInstr *> &NewMIs) const {
1209   unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC);
1210   DebugLoc DL;
1211 
1212   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1213   FuncInfo->setHasSpills();
1214 
1215   NewMIs.push_back(addFrameReference(
1216       BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1217       FrameIdx));
1218 
1219   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1220       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1221     FuncInfo->setSpillsCR();
1222 
1223   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1224     FuncInfo->setSpillsVRSAVE();
1225 
1226   if (isXFormMemOp(Opcode))
1227     FuncInfo->setHasNonRISpills();
1228 }
1229 
1230 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1231                                        MachineBasicBlock::iterator MI,
1232                                        unsigned SrcReg, bool isKill,
1233                                        int FrameIdx,
1234                                        const TargetRegisterClass *RC,
1235                                        const TargetRegisterInfo *TRI) const {
1236   MachineFunction &MF = *MBB.getParent();
1237   SmallVector<MachineInstr *, 4> NewMIs;
1238 
1239   // We need to avoid a situation in which the value from a VRRC register is
1240   // spilled using an Altivec instruction and reloaded into a VSRC register
1241   // using a VSX instruction. The issue with this is that the VSX
1242   // load/store instructions swap the doublewords in the vector and the Altivec
1243   // ones don't. The register classes on the spill/reload may be different if
1244   // the register is defined using an Altivec instruction and is then used by a
1245   // VSX instruction.
1246   RC = updatedRC(RC);
1247 
1248   StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1249 
1250   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1251     MBB.insert(MI, NewMIs[i]);
1252 
1253   const MachineFrameInfo &MFI = MF.getFrameInfo();
1254   MachineMemOperand *MMO = MF.getMachineMemOperand(
1255       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1256       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1257       MFI.getObjectAlignment(FrameIdx));
1258   NewMIs.back()->addMemOperand(MF, MMO);
1259 }
1260 
1261 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1262                                         unsigned DestReg, int FrameIdx,
1263                                         const TargetRegisterClass *RC,
1264                                         SmallVectorImpl<MachineInstr *> &NewMIs)
1265                                         const {
1266   unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC);
1267   NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1268                                      FrameIdx));
1269   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1270 
1271   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1272       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1273     FuncInfo->setSpillsCR();
1274 
1275   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1276     FuncInfo->setSpillsVRSAVE();
1277 
1278   if (isXFormMemOp(Opcode))
1279     FuncInfo->setHasNonRISpills();
1280 }
1281 
1282 void
1283 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1284                                    MachineBasicBlock::iterator MI,
1285                                    unsigned DestReg, int FrameIdx,
1286                                    const TargetRegisterClass *RC,
1287                                    const TargetRegisterInfo *TRI) const {
1288   MachineFunction &MF = *MBB.getParent();
1289   SmallVector<MachineInstr*, 4> NewMIs;
1290   DebugLoc DL;
1291   if (MI != MBB.end()) DL = MI->getDebugLoc();
1292 
1293   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1294   FuncInfo->setHasSpills();
1295 
1296   // We need to avoid a situation in which the value from a VRRC register is
1297   // spilled using an Altivec instruction and reloaded into a VSRC register
1298   // using a VSX instruction. The issue with this is that the VSX
1299   // load/store instructions swap the doublewords in the vector and the Altivec
1300   // ones don't. The register classes on the spill/reload may be different if
1301   // the register is defined using an Altivec instruction and is then used by a
1302   // VSX instruction.
1303   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
1304     RC = &PPC::VSRCRegClass;
1305 
1306   LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
1307 
1308   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1309     MBB.insert(MI, NewMIs[i]);
1310 
1311   const MachineFrameInfo &MFI = MF.getFrameInfo();
1312   MachineMemOperand *MMO = MF.getMachineMemOperand(
1313       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1314       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1315       MFI.getObjectAlignment(FrameIdx));
1316   NewMIs.back()->addMemOperand(MF, MMO);
1317 }
1318 
1319 bool PPCInstrInfo::
1320 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1321   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1322   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1323     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1324   else
1325     // Leave the CR# the same, but invert the condition.
1326     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1327   return false;
1328 }
1329 
1330 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1331                                  unsigned Reg, MachineRegisterInfo *MRI) const {
1332   // For some instructions, it is legal to fold ZERO into the RA register field.
1333   // A zero immediate should always be loaded with a single li.
1334   unsigned DefOpc = DefMI.getOpcode();
1335   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1336     return false;
1337   if (!DefMI.getOperand(1).isImm())
1338     return false;
1339   if (DefMI.getOperand(1).getImm() != 0)
1340     return false;
1341 
1342   // Note that we cannot here invert the arguments of an isel in order to fold
1343   // a ZERO into what is presented as the second argument. All we have here
1344   // is the condition bit, and that might come from a CR-logical bit operation.
1345 
1346   const MCInstrDesc &UseMCID = UseMI.getDesc();
1347 
1348   // Only fold into real machine instructions.
1349   if (UseMCID.isPseudo())
1350     return false;
1351 
1352   unsigned UseIdx;
1353   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1354     if (UseMI.getOperand(UseIdx).isReg() &&
1355         UseMI.getOperand(UseIdx).getReg() == Reg)
1356       break;
1357 
1358   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1359   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1360 
1361   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1362 
1363   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1364   // register (which might also be specified as a pointer class kind).
1365   if (UseInfo->isLookupPtrRegClass()) {
1366     if (UseInfo->RegClass /* Kind */ != 1)
1367       return false;
1368   } else {
1369     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1370         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1371       return false;
1372   }
1373 
1374   // Make sure this is not tied to an output register (or otherwise
1375   // constrained). This is true for ST?UX registers, for example, which
1376   // are tied to their output registers.
1377   if (UseInfo->Constraints != 0)
1378     return false;
1379 
1380   unsigned ZeroReg;
1381   if (UseInfo->isLookupPtrRegClass()) {
1382     bool isPPC64 = Subtarget.isPPC64();
1383     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1384   } else {
1385     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1386               PPC::ZERO8 : PPC::ZERO;
1387   }
1388 
1389   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1390   UseMI.getOperand(UseIdx).setReg(ZeroReg);
1391 
1392   if (DeleteDef)
1393     DefMI.eraseFromParent();
1394 
1395   return true;
1396 }
1397 
1398 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1399   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1400        I != IE; ++I)
1401     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1402       return true;
1403   return false;
1404 }
1405 
1406 // We should make sure that, if we're going to predicate both sides of a
1407 // condition (a diamond), that both sides don't define the counter register. We
1408 // can predicate counter-decrement-based branches, but while that predicates
1409 // the branching, it does not predicate the counter decrement. If we tried to
1410 // merge the triangle into one predicated block, we'd decrement the counter
1411 // twice.
1412 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1413                      unsigned NumT, unsigned ExtraT,
1414                      MachineBasicBlock &FMBB,
1415                      unsigned NumF, unsigned ExtraF,
1416                      BranchProbability Probability) const {
1417   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1418 }
1419 
1420 
1421 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1422   // The predicated branches are identified by their type, not really by the
1423   // explicit presence of a predicate. Furthermore, some of them can be
1424   // predicated more than once. Because if conversion won't try to predicate
1425   // any instruction which already claims to be predicated (by returning true
1426   // here), always return false. In doing so, we let isPredicable() be the
1427   // final word on whether not the instruction can be (further) predicated.
1428 
1429   return false;
1430 }
1431 
1432 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1433   if (!MI.isTerminator())
1434     return false;
1435 
1436   // Conditional branch is a special case.
1437   if (MI.isBranch() && !MI.isBarrier())
1438     return true;
1439 
1440   return !isPredicated(MI);
1441 }
1442 
1443 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1444                                         ArrayRef<MachineOperand> Pred) const {
1445   unsigned OpC = MI.getOpcode();
1446   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1447     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1448       bool isPPC64 = Subtarget.isPPC64();
1449       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1450                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1451     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1452       MI.setDesc(get(PPC::BCLR));
1453       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1454     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1455       MI.setDesc(get(PPC::BCLRn));
1456       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1457     } else {
1458       MI.setDesc(get(PPC::BCCLR));
1459       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1460           .addImm(Pred[0].getImm())
1461           .add(Pred[1]);
1462     }
1463 
1464     return true;
1465   } else if (OpC == PPC::B) {
1466     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1467       bool isPPC64 = Subtarget.isPPC64();
1468       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1469                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1470     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1471       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1472       MI.RemoveOperand(0);
1473 
1474       MI.setDesc(get(PPC::BC));
1475       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1476           .add(Pred[1])
1477           .addMBB(MBB);
1478     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1479       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1480       MI.RemoveOperand(0);
1481 
1482       MI.setDesc(get(PPC::BCn));
1483       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1484           .add(Pred[1])
1485           .addMBB(MBB);
1486     } else {
1487       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1488       MI.RemoveOperand(0);
1489 
1490       MI.setDesc(get(PPC::BCC));
1491       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1492           .addImm(Pred[0].getImm())
1493           .add(Pred[1])
1494           .addMBB(MBB);
1495     }
1496 
1497     return true;
1498   } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
1499              OpC == PPC::BCTRL8) {
1500     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1501       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1502 
1503     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1504     bool isPPC64 = Subtarget.isPPC64();
1505 
1506     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1507       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1508                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1509       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1510       return true;
1511     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1512       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1513                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1514       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1515       return true;
1516     }
1517 
1518     MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1519                            : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1520     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1521         .addImm(Pred[0].getImm())
1522         .add(Pred[1]);
1523     return true;
1524   }
1525 
1526   return false;
1527 }
1528 
1529 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1530                                      ArrayRef<MachineOperand> Pred2) const {
1531   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1532   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1533 
1534   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1535     return false;
1536   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1537     return false;
1538 
1539   // P1 can only subsume P2 if they test the same condition register.
1540   if (Pred1[1].getReg() != Pred2[1].getReg())
1541     return false;
1542 
1543   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1544   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1545 
1546   if (P1 == P2)
1547     return true;
1548 
1549   // Does P1 subsume P2, e.g. GE subsumes GT.
1550   if (P1 == PPC::PRED_LE &&
1551       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1552     return true;
1553   if (P1 == PPC::PRED_GE &&
1554       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1555     return true;
1556 
1557   return false;
1558 }
1559 
1560 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1561                                     std::vector<MachineOperand> &Pred) const {
1562   // Note: At the present time, the contents of Pred from this function is
1563   // unused by IfConversion. This implementation follows ARM by pushing the
1564   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1565   // predicate, instructions defining CTR or CTR8 are also included as
1566   // predicate-defining instructions.
1567 
1568   const TargetRegisterClass *RCs[] =
1569     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1570       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1571 
1572   bool Found = false;
1573   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1574     const MachineOperand &MO = MI.getOperand(i);
1575     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1576       const TargetRegisterClass *RC = RCs[c];
1577       if (MO.isReg()) {
1578         if (MO.isDef() && RC->contains(MO.getReg())) {
1579           Pred.push_back(MO);
1580           Found = true;
1581         }
1582       } else if (MO.isRegMask()) {
1583         for (TargetRegisterClass::iterator I = RC->begin(),
1584              IE = RC->end(); I != IE; ++I)
1585           if (MO.clobbersPhysReg(*I)) {
1586             Pred.push_back(MO);
1587             Found = true;
1588           }
1589       }
1590     }
1591   }
1592 
1593   return Found;
1594 }
1595 
1596 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const {
1597   unsigned OpC = MI.getOpcode();
1598   switch (OpC) {
1599   default:
1600     return false;
1601   case PPC::B:
1602   case PPC::BLR:
1603   case PPC::BLR8:
1604   case PPC::BCTR:
1605   case PPC::BCTR8:
1606   case PPC::BCTRL:
1607   case PPC::BCTRL8:
1608     return true;
1609   }
1610 }
1611 
1612 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1613                                   unsigned &SrcReg2, int &Mask,
1614                                   int &Value) const {
1615   unsigned Opc = MI.getOpcode();
1616 
1617   switch (Opc) {
1618   default: return false;
1619   case PPC::CMPWI:
1620   case PPC::CMPLWI:
1621   case PPC::CMPDI:
1622   case PPC::CMPLDI:
1623     SrcReg = MI.getOperand(1).getReg();
1624     SrcReg2 = 0;
1625     Value = MI.getOperand(2).getImm();
1626     Mask = 0xFFFF;
1627     return true;
1628   case PPC::CMPW:
1629   case PPC::CMPLW:
1630   case PPC::CMPD:
1631   case PPC::CMPLD:
1632   case PPC::FCMPUS:
1633   case PPC::FCMPUD:
1634     SrcReg = MI.getOperand(1).getReg();
1635     SrcReg2 = MI.getOperand(2).getReg();
1636     Value = 0;
1637     Mask = 0;
1638     return true;
1639   }
1640 }
1641 
1642 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1643                                         unsigned SrcReg2, int Mask, int Value,
1644                                         const MachineRegisterInfo *MRI) const {
1645   if (DisableCmpOpt)
1646     return false;
1647 
1648   int OpC = CmpInstr.getOpcode();
1649   unsigned CRReg = CmpInstr.getOperand(0).getReg();
1650 
1651   // FP record forms set CR1 based on the exception status bits, not a
1652   // comparison with zero.
1653   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1654     return false;
1655 
1656   // The record forms set the condition register based on a signed comparison
1657   // with zero (so says the ISA manual). This is not as straightforward as it
1658   // seems, however, because this is always a 64-bit comparison on PPC64, even
1659   // for instructions that are 32-bit in nature (like slw for example).
1660   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1661   // for equality checks (as those don't depend on the sign). On PPC64,
1662   // we are restricted to equality for unsigned 64-bit comparisons and for
1663   // signed 32-bit comparisons the applicability is more restricted.
1664   bool isPPC64 = Subtarget.isPPC64();
1665   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1666   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1667   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1668 
1669   // Get the unique definition of SrcReg.
1670   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1671   if (!MI) return false;
1672 
1673   bool equalityOnly = false;
1674   bool noSub = false;
1675   if (isPPC64) {
1676     if (is32BitSignedCompare) {
1677       // We can perform this optimization only if MI is sign-extending.
1678       if (isSignExtended(*MI))
1679         noSub = true;
1680       else
1681         return false;
1682     } else if (is32BitUnsignedCompare) {
1683       // We can perform this optimization, equality only, if MI is
1684       // zero-extending.
1685       if (isZeroExtended(*MI)) {
1686         noSub = true;
1687         equalityOnly = true;
1688       } else
1689         return false;
1690     } else
1691       equalityOnly = is64BitUnsignedCompare;
1692   } else
1693     equalityOnly = is32BitUnsignedCompare;
1694 
1695   if (equalityOnly) {
1696     // We need to check the uses of the condition register in order to reject
1697     // non-equality comparisons.
1698     for (MachineRegisterInfo::use_instr_iterator
1699          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1700          I != IE; ++I) {
1701       MachineInstr *UseMI = &*I;
1702       if (UseMI->getOpcode() == PPC::BCC) {
1703         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1704         unsigned PredCond = PPC::getPredicateCondition(Pred);
1705         // We ignore hint bits when checking for non-equality comparisons.
1706         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
1707           return false;
1708       } else if (UseMI->getOpcode() == PPC::ISEL ||
1709                  UseMI->getOpcode() == PPC::ISEL8) {
1710         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1711         if (SubIdx != PPC::sub_eq)
1712           return false;
1713       } else
1714         return false;
1715     }
1716   }
1717 
1718   MachineBasicBlock::iterator I = CmpInstr;
1719 
1720   // Scan forward to find the first use of the compare.
1721   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1722        ++I) {
1723     bool FoundUse = false;
1724     for (MachineRegisterInfo::use_instr_iterator
1725          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
1726          J != JE; ++J)
1727       if (&*J == &*I) {
1728         FoundUse = true;
1729         break;
1730       }
1731 
1732     if (FoundUse)
1733       break;
1734   }
1735 
1736   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1737   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1738 
1739   // There are two possible candidates which can be changed to set CR[01].
1740   // One is MI, the other is a SUB instruction.
1741   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1742   MachineInstr *Sub = nullptr;
1743   if (SrcReg2 != 0)
1744     // MI is not a candidate for CMPrr.
1745     MI = nullptr;
1746   // FIXME: Conservatively refuse to convert an instruction which isn't in the
1747   // same BB as the comparison. This is to allow the check below to avoid calls
1748   // (and other explicit clobbers); instead we should really check for these
1749   // more explicitly (in at least a few predecessors).
1750   else if (MI->getParent() != CmpInstr.getParent())
1751     return false;
1752   else if (Value != 0) {
1753     // The record-form instructions set CR bit based on signed comparison
1754     // against 0. We try to convert a compare against 1 or -1 into a compare
1755     // against 0 to exploit record-form instructions. For example, we change
1756     // the condition "greater than -1" into "greater than or equal to 0"
1757     // and "less than 1" into "less than or equal to 0".
1758 
1759     // Since we optimize comparison based on a specific branch condition,
1760     // we don't optimize if condition code is used by more than once.
1761     if (equalityOnly || !MRI->hasOneUse(CRReg))
1762       return false;
1763 
1764     MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
1765     if (UseMI->getOpcode() != PPC::BCC)
1766       return false;
1767 
1768     PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1769     PPC::Predicate NewPred = Pred;
1770     unsigned PredCond = PPC::getPredicateCondition(Pred);
1771     unsigned PredHint = PPC::getPredicateHint(Pred);
1772     int16_t Immed = (int16_t)Value;
1773 
1774     // When modifying the condition in the predicate, we propagate hint bits
1775     // from the original predicate to the new one.
1776     if (Immed == -1 && PredCond == PPC::PRED_GT)
1777       // We convert "greater than -1" into "greater than or equal to 0",
1778       // since we are assuming signed comparison by !equalityOnly
1779       NewPred = PPC::getPredicate(PPC::PRED_GE, PredHint);
1780     else if (Immed == -1 && PredCond == PPC::PRED_LE)
1781       // We convert "less than or equal to -1" into "less than 0".
1782       NewPred = PPC::getPredicate(PPC::PRED_LT, PredHint);
1783     else if (Immed == 1 && PredCond == PPC::PRED_LT)
1784       // We convert "less than 1" into "less than or equal to 0".
1785       NewPred = PPC::getPredicate(PPC::PRED_LE, PredHint);
1786     else if (Immed == 1 && PredCond == PPC::PRED_GE)
1787       // We convert "greater than or equal to 1" into "greater than 0".
1788       NewPred = PPC::getPredicate(PPC::PRED_GT, PredHint);
1789     else
1790       return false;
1791 
1792     PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1793                                             NewPred));
1794   }
1795 
1796   // Search for Sub.
1797   const TargetRegisterInfo *TRI = &getRegisterInfo();
1798   --I;
1799 
1800   // Get ready to iterate backward from CmpInstr.
1801   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
1802 
1803   for (; I != E && !noSub; --I) {
1804     const MachineInstr &Instr = *I;
1805     unsigned IOpC = Instr.getOpcode();
1806 
1807     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
1808                              Instr.readsRegister(PPC::CR0, TRI)))
1809       // This instruction modifies or uses the record condition register after
1810       // the one we want to change. While we could do this transformation, it
1811       // would likely not be profitable. This transformation removes one
1812       // instruction, and so even forcing RA to generate one move probably
1813       // makes it unprofitable.
1814       return false;
1815 
1816     // Check whether CmpInstr can be made redundant by the current instruction.
1817     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1818          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1819         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1820         ((Instr.getOperand(1).getReg() == SrcReg &&
1821           Instr.getOperand(2).getReg() == SrcReg2) ||
1822         (Instr.getOperand(1).getReg() == SrcReg2 &&
1823          Instr.getOperand(2).getReg() == SrcReg))) {
1824       Sub = &*I;
1825       break;
1826     }
1827 
1828     if (I == B)
1829       // The 'and' is below the comparison instruction.
1830       return false;
1831   }
1832 
1833   // Return false if no candidates exist.
1834   if (!MI && !Sub)
1835     return false;
1836 
1837   // The single candidate is called MI.
1838   if (!MI) MI = Sub;
1839 
1840   int NewOpC = -1;
1841   int MIOpC = MI->getOpcode();
1842   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 ||
1843       MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8)
1844     NewOpC = MIOpC;
1845   else {
1846     NewOpC = PPC::getRecordFormOpcode(MIOpC);
1847     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1848       NewOpC = MIOpC;
1849   }
1850 
1851   // FIXME: On the non-embedded POWER architectures, only some of the record
1852   // forms are fast, and we should use only the fast ones.
1853 
1854   // The defining instruction has a record form (or is already a record
1855   // form). It is possible, however, that we'll need to reverse the condition
1856   // code of the users.
1857   if (NewOpC == -1)
1858     return false;
1859 
1860   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1861   // needs to be updated to be based on SUB.  Push the condition code
1862   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1863   // condition code of these operands will be modified.
1864   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
1865   // comparison against 0, which may modify predicate.
1866   bool ShouldSwap = false;
1867   if (Sub && Value == 0) {
1868     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1869       Sub->getOperand(2).getReg() == SrcReg;
1870 
1871     // The operands to subf are the opposite of sub, so only in the fixed-point
1872     // case, invert the order.
1873     ShouldSwap = !ShouldSwap;
1874   }
1875 
1876   if (ShouldSwap)
1877     for (MachineRegisterInfo::use_instr_iterator
1878          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1879          I != IE; ++I) {
1880       MachineInstr *UseMI = &*I;
1881       if (UseMI->getOpcode() == PPC::BCC) {
1882         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1883         unsigned PredCond = PPC::getPredicateCondition(Pred);
1884         assert((!equalityOnly ||
1885                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
1886                "Invalid predicate for equality-only optimization");
1887         (void)PredCond; // To suppress warning in release build.
1888         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1889                                 PPC::getSwappedPredicate(Pred)));
1890       } else if (UseMI->getOpcode() == PPC::ISEL ||
1891                  UseMI->getOpcode() == PPC::ISEL8) {
1892         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1893         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1894                "Invalid CR bit for equality-only optimization");
1895 
1896         if (NewSubReg == PPC::sub_lt)
1897           NewSubReg = PPC::sub_gt;
1898         else if (NewSubReg == PPC::sub_gt)
1899           NewSubReg = PPC::sub_lt;
1900 
1901         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1902                                                  NewSubReg));
1903       } else // We need to abort on a user we don't understand.
1904         return false;
1905     }
1906   assert(!(Value != 0 && ShouldSwap) &&
1907          "Non-zero immediate support and ShouldSwap"
1908          "may conflict in updating predicate");
1909 
1910   // Create a new virtual register to hold the value of the CR set by the
1911   // record-form instruction. If the instruction was not previously in
1912   // record form, then set the kill flag on the CR.
1913   CmpInstr.eraseFromParent();
1914 
1915   MachineBasicBlock::iterator MII = MI;
1916   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1917           get(TargetOpcode::COPY), CRReg)
1918     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1919 
1920   // Even if CR0 register were dead before, it is alive now since the
1921   // instruction we just built uses it.
1922   MI->clearRegisterDeads(PPC::CR0);
1923 
1924   if (MIOpC != NewOpC) {
1925     // We need to be careful here: we're replacing one instruction with
1926     // another, and we need to make sure that we get all of the right
1927     // implicit uses and defs. On the other hand, the caller may be holding
1928     // an iterator to this instruction, and so we can't delete it (this is
1929     // specifically the case if this is the instruction directly after the
1930     // compare).
1931 
1932     // Rotates are expensive instructions. If we're emitting a record-form
1933     // rotate that can just be an andi/andis, we should just emit that.
1934     if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
1935       unsigned GPRRes = MI->getOperand(0).getReg();
1936       int64_t SH = MI->getOperand(2).getImm();
1937       int64_t MB = MI->getOperand(3).getImm();
1938       int64_t ME = MI->getOperand(4).getImm();
1939       // We can only do this if both the start and end of the mask are in the
1940       // same halfword.
1941       bool MBInLoHWord = MB >= 16;
1942       bool MEInLoHWord = ME >= 16;
1943       uint64_t Mask = ~0LLU;
1944 
1945       if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
1946         Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
1947         // The mask value needs to shift right 16 if we're emitting andis.
1948         Mask >>= MBInLoHWord ? 0 : 16;
1949         NewOpC = MIOpC == PPC::RLWINM ?
1950           (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) :
1951           (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8);
1952       } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
1953                  (ME - MB + 1 == SH) && (MB >= 16)) {
1954         // If we are rotating by the exact number of bits as are in the mask
1955         // and the mask is in the least significant bits of the register,
1956         // that's just an andis. (as long as the GPR result has no uses).
1957         Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
1958         Mask >>= 16;
1959         NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8;
1960       }
1961       // If we've set the mask, we can transform.
1962       if (Mask != ~0LLU) {
1963         MI->RemoveOperand(4);
1964         MI->RemoveOperand(3);
1965         MI->getOperand(2).setImm(Mask);
1966         NumRcRotatesConvertedToRcAnd++;
1967       }
1968     } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
1969       int64_t MB = MI->getOperand(3).getImm();
1970       if (MB >= 48) {
1971         uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
1972         NewOpC = PPC::ANDIo8;
1973         MI->RemoveOperand(3);
1974         MI->getOperand(2).setImm(Mask);
1975         NumRcRotatesConvertedToRcAnd++;
1976       }
1977     }
1978 
1979     const MCInstrDesc &NewDesc = get(NewOpC);
1980     MI->setDesc(NewDesc);
1981 
1982     if (NewDesc.ImplicitDefs)
1983       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1984            *ImpDefs; ++ImpDefs)
1985         if (!MI->definesRegister(*ImpDefs))
1986           MI->addOperand(*MI->getParent()->getParent(),
1987                          MachineOperand::CreateReg(*ImpDefs, true, true));
1988     if (NewDesc.ImplicitUses)
1989       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1990            *ImpUses; ++ImpUses)
1991         if (!MI->readsRegister(*ImpUses))
1992           MI->addOperand(*MI->getParent()->getParent(),
1993                          MachineOperand::CreateReg(*ImpUses, false, true));
1994   }
1995   assert(MI->definesRegister(PPC::CR0) &&
1996          "Record-form instruction does not define cr0?");
1997 
1998   // Modify the condition code of operands in OperandsToUpdate.
1999   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2000   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2001   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
2002     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
2003 
2004   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2005     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2006 
2007   return true;
2008 }
2009 
2010 /// GetInstSize - Return the number of bytes of code the specified
2011 /// instruction may be.  This returns the maximum number of bytes.
2012 ///
2013 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2014   unsigned Opcode = MI.getOpcode();
2015 
2016   if (Opcode == PPC::INLINEASM) {
2017     const MachineFunction *MF = MI.getParent()->getParent();
2018     const char *AsmStr = MI.getOperand(0).getSymbolName();
2019     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2020   } else if (Opcode == TargetOpcode::STACKMAP) {
2021     StackMapOpers Opers(&MI);
2022     return Opers.getNumPatchBytes();
2023   } else if (Opcode == TargetOpcode::PATCHPOINT) {
2024     PatchPointOpers Opers(&MI);
2025     return Opers.getNumPatchBytes();
2026   } else {
2027     return get(Opcode).getSize();
2028   }
2029 }
2030 
2031 std::pair<unsigned, unsigned>
2032 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2033   const unsigned Mask = PPCII::MO_ACCESS_MASK;
2034   return std::make_pair(TF & Mask, TF & ~Mask);
2035 }
2036 
2037 ArrayRef<std::pair<unsigned, const char *>>
2038 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2039   using namespace PPCII;
2040   static const std::pair<unsigned, const char *> TargetFlags[] = {
2041       {MO_LO, "ppc-lo"},
2042       {MO_HA, "ppc-ha"},
2043       {MO_TPREL_LO, "ppc-tprel-lo"},
2044       {MO_TPREL_HA, "ppc-tprel-ha"},
2045       {MO_DTPREL_LO, "ppc-dtprel-lo"},
2046       {MO_TLSLD_LO, "ppc-tlsld-lo"},
2047       {MO_TOC_LO, "ppc-toc-lo"},
2048       {MO_TLS, "ppc-tls"}};
2049   return makeArrayRef(TargetFlags);
2050 }
2051 
2052 ArrayRef<std::pair<unsigned, const char *>>
2053 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2054   using namespace PPCII;
2055   static const std::pair<unsigned, const char *> TargetFlags[] = {
2056       {MO_PLT, "ppc-plt"},
2057       {MO_PIC_FLAG, "ppc-pic"},
2058       {MO_NLP_FLAG, "ppc-nlp"},
2059       {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
2060   return makeArrayRef(TargetFlags);
2061 }
2062 
2063 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2064 // The VSX versions have the advantage of a full 64-register target whereas
2065 // the FP ones have the advantage of lower latency and higher throughput. So
2066 // what we are after is using the faster instructions in low register pressure
2067 // situations and using the larger register file in high register pressure
2068 // situations.
2069 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2070     unsigned UpperOpcode, LowerOpcode;
2071     switch (MI.getOpcode()) {
2072     case PPC::DFLOADf32:
2073       UpperOpcode = PPC::LXSSP;
2074       LowerOpcode = PPC::LFS;
2075       break;
2076     case PPC::DFLOADf64:
2077       UpperOpcode = PPC::LXSD;
2078       LowerOpcode = PPC::LFD;
2079       break;
2080     case PPC::DFSTOREf32:
2081       UpperOpcode = PPC::STXSSP;
2082       LowerOpcode = PPC::STFS;
2083       break;
2084     case PPC::DFSTOREf64:
2085       UpperOpcode = PPC::STXSD;
2086       LowerOpcode = PPC::STFD;
2087       break;
2088     case PPC::XFLOADf32:
2089       UpperOpcode = PPC::LXSSPX;
2090       LowerOpcode = PPC::LFSX;
2091       break;
2092     case PPC::XFLOADf64:
2093       UpperOpcode = PPC::LXSDX;
2094       LowerOpcode = PPC::LFDX;
2095       break;
2096     case PPC::XFSTOREf32:
2097       UpperOpcode = PPC::STXSSPX;
2098       LowerOpcode = PPC::STFSX;
2099       break;
2100     case PPC::XFSTOREf64:
2101       UpperOpcode = PPC::STXSDX;
2102       LowerOpcode = PPC::STFDX;
2103       break;
2104     case PPC::LIWAX:
2105       UpperOpcode = PPC::LXSIWAX;
2106       LowerOpcode = PPC::LFIWAX;
2107       break;
2108     case PPC::LIWZX:
2109       UpperOpcode = PPC::LXSIWZX;
2110       LowerOpcode = PPC::LFIWZX;
2111       break;
2112     case PPC::STIWX:
2113       UpperOpcode = PPC::STXSIWX;
2114       LowerOpcode = PPC::STFIWX;
2115       break;
2116     default:
2117       llvm_unreachable("Unknown Operation!");
2118     }
2119 
2120     unsigned TargetReg = MI.getOperand(0).getReg();
2121     unsigned Opcode;
2122     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2123         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2124       Opcode = LowerOpcode;
2125     else
2126       Opcode = UpperOpcode;
2127     MI.setDesc(get(Opcode));
2128     return true;
2129 }
2130 
2131 static bool isAnImmediateOperand(const MachineOperand &MO) {
2132   return MO.isCPI() || MO.isGlobal() || MO.isImm();
2133 }
2134 
2135 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2136   auto &MBB = *MI.getParent();
2137   auto DL = MI.getDebugLoc();
2138 
2139   switch (MI.getOpcode()) {
2140   case TargetOpcode::LOAD_STACK_GUARD: {
2141     assert(Subtarget.isTargetLinux() &&
2142            "Only Linux target is expected to contain LOAD_STACK_GUARD");
2143     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
2144     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
2145     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
2146     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2147         .addImm(Offset)
2148         .addReg(Reg);
2149     return true;
2150   }
2151   case PPC::DFLOADf32:
2152   case PPC::DFLOADf64:
2153   case PPC::DFSTOREf32:
2154   case PPC::DFSTOREf64: {
2155     assert(Subtarget.hasP9Vector() &&
2156            "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2157     assert(MI.getOperand(2).isReg() &&
2158            isAnImmediateOperand(MI.getOperand(1)) &&
2159            "D-form op must have register and immediate operands");
2160     return expandVSXMemPseudo(MI);
2161   }
2162   case PPC::XFLOADf32:
2163   case PPC::XFSTOREf32:
2164   case PPC::LIWAX:
2165   case PPC::LIWZX:
2166   case PPC::STIWX: {
2167     assert(Subtarget.hasP8Vector() &&
2168            "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2169     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2170            "X-form op must have register and register operands");
2171     return expandVSXMemPseudo(MI);
2172   }
2173   case PPC::XFLOADf64:
2174   case PPC::XFSTOREf64: {
2175     assert(Subtarget.hasVSX() &&
2176            "Invalid X-Form Pseudo-ops on target that has no VSX.");
2177     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2178            "X-form op must have register and register operands");
2179     return expandVSXMemPseudo(MI);
2180   }
2181   case PPC::SPILLTOVSR_LD: {
2182     unsigned TargetReg = MI.getOperand(0).getReg();
2183     if (PPC::VSFRCRegClass.contains(TargetReg)) {
2184       MI.setDesc(get(PPC::DFLOADf64));
2185       return expandPostRAPseudo(MI);
2186     }
2187     else
2188       MI.setDesc(get(PPC::LD));
2189     return true;
2190   }
2191   case PPC::SPILLTOVSR_ST: {
2192     unsigned SrcReg = MI.getOperand(0).getReg();
2193     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2194       NumStoreSPILLVSRRCAsVec++;
2195       MI.setDesc(get(PPC::DFSTOREf64));
2196       return expandPostRAPseudo(MI);
2197     } else {
2198       NumStoreSPILLVSRRCAsGpr++;
2199       MI.setDesc(get(PPC::STD));
2200     }
2201     return true;
2202   }
2203   case PPC::SPILLTOVSR_LDX: {
2204     unsigned TargetReg = MI.getOperand(0).getReg();
2205     if (PPC::VSFRCRegClass.contains(TargetReg))
2206       MI.setDesc(get(PPC::LXSDX));
2207     else
2208       MI.setDesc(get(PPC::LDX));
2209     return true;
2210   }
2211   case PPC::SPILLTOVSR_STX: {
2212     unsigned SrcReg = MI.getOperand(0).getReg();
2213     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2214       NumStoreSPILLVSRRCAsVec++;
2215       MI.setDesc(get(PPC::STXSDX));
2216     } else {
2217       NumStoreSPILLVSRRCAsGpr++;
2218       MI.setDesc(get(PPC::STDX));
2219     }
2220     return true;
2221   }
2222 
2223   case PPC::CFENCE8: {
2224     auto Val = MI.getOperand(0).getReg();
2225     BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
2226     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
2227         .addImm(PPC::PRED_NE_MINUS)
2228         .addReg(PPC::CR7)
2229         .addImm(1);
2230     MI.setDesc(get(PPC::ISYNC));
2231     MI.RemoveOperand(0);
2232     return true;
2233   }
2234   }
2235   return false;
2236 }
2237 
2238 // Essentially a compile-time implementation of a compare->isel sequence.
2239 // It takes two constants to compare, along with the true/false registers
2240 // and the comparison type (as a subreg to a CR field) and returns one
2241 // of the true/false registers, depending on the comparison results.
2242 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
2243                           unsigned TrueReg, unsigned FalseReg,
2244                           unsigned CRSubReg) {
2245   // Signed comparisons. The immediates are assumed to be sign-extended.
2246   if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
2247     switch (CRSubReg) {
2248     default: llvm_unreachable("Unknown integer comparison type.");
2249     case PPC::sub_lt:
2250       return Imm1 < Imm2 ? TrueReg : FalseReg;
2251     case PPC::sub_gt:
2252       return Imm1 > Imm2 ? TrueReg : FalseReg;
2253     case PPC::sub_eq:
2254       return Imm1 == Imm2 ? TrueReg : FalseReg;
2255     }
2256   }
2257   // Unsigned comparisons.
2258   else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
2259     switch (CRSubReg) {
2260     default: llvm_unreachable("Unknown integer comparison type.");
2261     case PPC::sub_lt:
2262       return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
2263     case PPC::sub_gt:
2264       return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
2265     case PPC::sub_eq:
2266       return Imm1 == Imm2 ? TrueReg : FalseReg;
2267     }
2268   }
2269   return PPC::NoRegister;
2270 }
2271 
2272 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
2273                                               unsigned OpNo,
2274                                               int64_t Imm) const {
2275   assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
2276   // Replace the REG with the Immediate.
2277   unsigned InUseReg = MI.getOperand(OpNo).getReg();
2278   MI.getOperand(OpNo).ChangeToImmediate(Imm);
2279 
2280   if (empty(MI.implicit_operands()))
2281     return;
2282 
2283   // We need to make sure that the MI didn't have any implicit use
2284   // of this REG any more.
2285   const TargetRegisterInfo *TRI = &getRegisterInfo();
2286   int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
2287   if (UseOpIdx >= 0) {
2288     MachineOperand &MO = MI.getOperand(UseOpIdx);
2289     if (MO.isImplicit())
2290       // The operands must always be in the following order:
2291       // - explicit reg defs,
2292       // - other explicit operands (reg uses, immediates, etc.),
2293       // - implicit reg defs
2294       // - implicit reg uses
2295       // Therefore, removing the implicit operand won't change the explicit
2296       // operands layout.
2297       MI.RemoveOperand(UseOpIdx);
2298   }
2299 }
2300 
2301 // Replace an instruction with one that materializes a constant (and sets
2302 // CR0 if the original instruction was a record-form instruction).
2303 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
2304                                       const LoadImmediateInfo &LII) const {
2305   // Remove existing operands.
2306   int OperandToKeep = LII.SetCR ? 1 : 0;
2307   for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
2308     MI.RemoveOperand(i);
2309 
2310   // Replace the instruction.
2311   if (LII.SetCR) {
2312     MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo));
2313     // Set the immediate.
2314     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2315         .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
2316     return;
2317   }
2318   else
2319     MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
2320 
2321   // Set the immediate.
2322   MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2323       .addImm(LII.Imm);
2324 }
2325 
2326 MachineInstr *PPCInstrInfo::getForwardingDefMI(
2327   MachineInstr &MI,
2328   unsigned &OpNoForForwarding,
2329   bool &SeenIntermediateUse) const {
2330   OpNoForForwarding = ~0U;
2331   MachineInstr *DefMI = nullptr;
2332   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
2333   const TargetRegisterInfo *TRI = &getRegisterInfo();
2334   // If we're in SSA, get the defs through the MRI. Otherwise, only look
2335   // within the basic block to see if the register is defined using an LI/LI8.
2336   if (MRI->isSSA()) {
2337     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2338       if (!MI.getOperand(i).isReg())
2339         continue;
2340       unsigned Reg = MI.getOperand(i).getReg();
2341       if (!TargetRegisterInfo::isVirtualRegister(Reg))
2342         continue;
2343       unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
2344       if (TargetRegisterInfo::isVirtualRegister(TrueReg)) {
2345         DefMI = MRI->getVRegDef(TrueReg);
2346         if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) {
2347           OpNoForForwarding = i;
2348           break;
2349         }
2350       }
2351     }
2352   } else {
2353     // Looking back through the definition for each operand could be expensive,
2354     // so exit early if this isn't an instruction that either has an immediate
2355     // form or is already an immediate form that we can handle.
2356     ImmInstrInfo III;
2357     unsigned Opc = MI.getOpcode();
2358     bool ConvertibleImmForm =
2359       Opc == PPC::CMPWI || Opc == PPC::CMPLWI ||
2360       Opc == PPC::CMPDI || Opc == PPC::CMPLDI ||
2361       Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
2362       Opc == PPC::ORI || Opc == PPC::ORI8 ||
2363       Opc == PPC::XORI || Opc == PPC::XORI8 ||
2364       Opc == PPC::RLDICL || Opc == PPC::RLDICLo ||
2365       Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
2366       Opc == PPC::RLWINM || Opc == PPC::RLWINMo ||
2367       Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2368     if (!instrHasImmForm(MI, III, true) && !ConvertibleImmForm)
2369       return nullptr;
2370 
2371     // Don't convert or %X, %Y, %Y since that's just a register move.
2372     if ((Opc == PPC::OR || Opc == PPC::OR8) &&
2373         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
2374       return nullptr;
2375     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2376       MachineOperand &MO = MI.getOperand(i);
2377       SeenIntermediateUse = false;
2378       if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
2379         MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
2380         It++;
2381         unsigned Reg = MI.getOperand(i).getReg();
2382 
2383         // Is this register defined by some form of add-immediate (including
2384         // load-immediate) within this basic block?
2385         for ( ; It != E; ++It) {
2386           if (It->modifiesRegister(Reg, &getRegisterInfo())) {
2387             switch (It->getOpcode()) {
2388             default: break;
2389             case PPC::LI:
2390             case PPC::LI8:
2391             case PPC::ADDItocL:
2392             case PPC::ADDI:
2393             case PPC::ADDI8:
2394               OpNoForForwarding = i;
2395               return &*It;
2396             }
2397             break;
2398           } else if (It->readsRegister(Reg, &getRegisterInfo()))
2399             // If we see another use of this reg between the def and the MI,
2400             // we want to flat it so the def isn't deleted.
2401             SeenIntermediateUse = true;
2402         }
2403       }
2404     }
2405   }
2406   return OpNoForForwarding == ~0U ? nullptr : DefMI;
2407 }
2408 
2409 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2410   static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2411       // Power 8
2412       {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2413        PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX,
2414        PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2415        PPC::SPILLTOVSR_ST, PPC::EVSTDD, PPC::SPESTW},
2416       // Power 9
2417       {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2418        PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32,
2419        PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2420        PPC::SPILLTOVSR_ST}};
2421 
2422   return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2423 }
2424 
2425 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2426   static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2427       // Power 8
2428       {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2429        PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX,
2430        PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2431        PPC::SPILLTOVSR_LD, PPC::EVLDD, PPC::SPELWZ},
2432       // Power 9
2433       {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2434        PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32,
2435        PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2436        PPC::SPILLTOVSR_LD}};
2437 
2438   return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2439 }
2440 
2441 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI,
2442                                      unsigned RegNo) const {
2443   const MachineRegisterInfo &MRI =
2444       StartMI.getParent()->getParent()->getRegInfo();
2445   if (MRI.isSSA())
2446     return;
2447 
2448   // Instructions between [StartMI, EndMI] should be in same basic block.
2449   assert((StartMI.getParent() == EndMI.getParent()) &&
2450          "Instructions are not in same basic block");
2451 
2452   bool IsKillSet = false;
2453 
2454   auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
2455     MachineOperand &MO = MI.getOperand(Index);
2456     if (MO.isReg() && MO.isUse() && MO.isKill() &&
2457         getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
2458       MO.setIsKill(false);
2459   };
2460 
2461   // Set killed flag for EndMI.
2462   // No need to do anything if EndMI defines RegNo.
2463   int UseIndex =
2464       EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
2465   if (UseIndex != -1) {
2466     EndMI.getOperand(UseIndex).setIsKill(true);
2467     IsKillSet = true;
2468     // Clear killed flag for other EndMI operands related to RegNo. In some
2469     // upexpected cases, killed may be set multiple times for same register
2470     // operand in same MI.
2471     for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i)
2472       if (i != UseIndex)
2473         clearOperandKillInfo(EndMI, i);
2474   }
2475 
2476   // Walking the inst in reverse order (EndMI -> StartMI].
2477   MachineBasicBlock::reverse_iterator It = EndMI;
2478   MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend();
2479   // EndMI has been handled above, skip it here.
2480   It++;
2481   MachineOperand *MO = nullptr;
2482   for (; It != E; ++It) {
2483     // Skip insturctions which could not be a def/use of RegNo.
2484     if (It->isDebugInstr() || It->isPosition())
2485       continue;
2486 
2487     // Clear killed flag for all It operands related to RegNo. In some
2488     // upexpected cases, killed may be set multiple times for same register
2489     // operand in same MI.
2490     for (int i = 0, e = It->getNumOperands(); i != e; ++i)
2491         clearOperandKillInfo(*It, i);
2492 
2493     // If killed is not set, set killed for its last use or set dead for its def
2494     // if no use found.
2495     if (!IsKillSet) {
2496       if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
2497         // Use found, set it killed.
2498         IsKillSet = true;
2499         MO->setIsKill(true);
2500         continue;
2501       } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
2502                                                   &getRegisterInfo()))) {
2503         // No use found, set dead for its def.
2504         assert(&*It == &StartMI && "No new def between StartMI and EndMI.");
2505         MO->setIsDead(true);
2506         break;
2507       }
2508     }
2509 
2510     if ((&*It) == &StartMI)
2511       break;
2512   }
2513   // Ensure RegMo liveness is killed after EndMI.
2514   assert((IsKillSet || (MO && MO->isDead())) &&
2515          "RegNo should be killed or dead");
2516 }
2517 
2518 // If this instruction has an immediate form and one of its operands is a
2519 // result of a load-immediate or an add-immediate, convert it to
2520 // the immediate form if the constant is in range.
2521 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
2522                                           MachineInstr **KilledDef) const {
2523   MachineFunction *MF = MI.getParent()->getParent();
2524   MachineRegisterInfo *MRI = &MF->getRegInfo();
2525   bool PostRA = !MRI->isSSA();
2526   bool SeenIntermediateUse = true;
2527   unsigned ForwardingOperand = ~0U;
2528   MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
2529                                            SeenIntermediateUse);
2530   if (!DefMI)
2531     return false;
2532   assert(ForwardingOperand < MI.getNumOperands() &&
2533          "The forwarding operand needs to be valid at this point");
2534   bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
2535   bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
2536   unsigned ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg();
2537   if (KilledDef && KillFwdDefMI)
2538     *KilledDef = DefMI;
2539 
2540   ImmInstrInfo III;
2541   bool HasImmForm = instrHasImmForm(MI, III, PostRA);
2542   // If this is a reg+reg instruction that has a reg+imm form,
2543   // and one of the operands is produced by an add-immediate,
2544   // try to convert it.
2545   if (HasImmForm &&
2546       transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
2547                                  KillFwdDefMI))
2548     return true;
2549 
2550   if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) ||
2551       !DefMI->getOperand(1).isImm())
2552     return false;
2553 
2554   int64_t Immediate = DefMI->getOperand(1).getImm();
2555   // Sign-extend to 64-bits.
2556   int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
2557     (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
2558 
2559   // If this is a reg+reg instruction that has a reg+imm form,
2560   // and one of the operands is produced by LI, convert it now.
2561   if (HasImmForm)
2562     return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm);
2563 
2564   bool ReplaceWithLI = false;
2565   bool Is64BitLI = false;
2566   int64_t NewImm = 0;
2567   bool SetCR = false;
2568   unsigned Opc = MI.getOpcode();
2569   switch (Opc) {
2570   default: return false;
2571 
2572   // FIXME: Any branches conditional on such a comparison can be made
2573   // unconditional. At this time, this happens too infrequently to be worth
2574   // the implementation effort, but if that ever changes, we could convert
2575   // such a pattern here.
2576   case PPC::CMPWI:
2577   case PPC::CMPLWI:
2578   case PPC::CMPDI:
2579   case PPC::CMPLDI: {
2580     // Doing this post-RA would require dataflow analysis to reliably find uses
2581     // of the CR register set by the compare.
2582     // No need to fixup killed/dead flag since this transformation is only valid
2583     // before RA.
2584     if (PostRA)
2585       return false;
2586     // If a compare-immediate is fed by an immediate and is itself an input of
2587     // an ISEL (the most common case) into a COPY of the correct register.
2588     bool Changed = false;
2589     unsigned DefReg = MI.getOperand(0).getReg();
2590     int64_t Comparand = MI.getOperand(2).getImm();
2591     int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ?
2592       (Comparand | 0xFFFFFFFFFFFF0000) : Comparand;
2593 
2594     for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
2595       unsigned UseOpc = CompareUseMI.getOpcode();
2596       if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
2597         continue;
2598       unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
2599       unsigned TrueReg = CompareUseMI.getOperand(1).getReg();
2600       unsigned FalseReg = CompareUseMI.getOperand(2).getReg();
2601       unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg,
2602                                      FalseReg, CRSubReg);
2603       if (RegToCopy == PPC::NoRegister)
2604         continue;
2605       // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
2606       if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
2607         CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
2608         replaceInstrOperandWithImm(CompareUseMI, 1, 0);
2609         CompareUseMI.RemoveOperand(3);
2610         CompareUseMI.RemoveOperand(2);
2611         continue;
2612       }
2613       LLVM_DEBUG(
2614           dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
2615       LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump());
2616       LLVM_DEBUG(dbgs() << "Is converted to:\n");
2617       // Convert to copy and remove unneeded operands.
2618       CompareUseMI.setDesc(get(PPC::COPY));
2619       CompareUseMI.RemoveOperand(3);
2620       CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
2621       CmpIselsConverted++;
2622       Changed = true;
2623       LLVM_DEBUG(CompareUseMI.dump());
2624     }
2625     if (Changed)
2626       return true;
2627     // This may end up incremented multiple times since this function is called
2628     // during a fixed-point transformation, but it is only meant to indicate the
2629     // presence of this opportunity.
2630     MissedConvertibleImmediateInstrs++;
2631     return false;
2632   }
2633 
2634   // Immediate forms - may simply be convertable to an LI.
2635   case PPC::ADDI:
2636   case PPC::ADDI8: {
2637     // Does the sum fit in a 16-bit signed field?
2638     int64_t Addend = MI.getOperand(2).getImm();
2639     if (isInt<16>(Addend + SExtImm)) {
2640       ReplaceWithLI = true;
2641       Is64BitLI = Opc == PPC::ADDI8;
2642       NewImm = Addend + SExtImm;
2643       break;
2644     }
2645     return false;
2646   }
2647   case PPC::RLDICL:
2648   case PPC::RLDICLo:
2649   case PPC::RLDICL_32:
2650   case PPC::RLDICL_32_64: {
2651     // Use APInt's rotate function.
2652     int64_t SH = MI.getOperand(2).getImm();
2653     int64_t MB = MI.getOperand(3).getImm();
2654     APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ?
2655                 64 : 32, SExtImm, true);
2656     InVal = InVal.rotl(SH);
2657     uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2658     InVal &= Mask;
2659     // Can't replace negative values with an LI as that will sign-extend
2660     // and not clear the left bits. If we're setting the CR bit, we will use
2661     // ANDIo which won't sign extend, so that's safe.
2662     if (isUInt<15>(InVal.getSExtValue()) ||
2663         (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) {
2664       ReplaceWithLI = true;
2665       Is64BitLI = Opc != PPC::RLDICL_32;
2666       NewImm = InVal.getSExtValue();
2667       SetCR = Opc == PPC::RLDICLo;
2668       break;
2669     }
2670     return false;
2671   }
2672   case PPC::RLWINM:
2673   case PPC::RLWINM8:
2674   case PPC::RLWINMo:
2675   case PPC::RLWINM8o: {
2676     int64_t SH = MI.getOperand(2).getImm();
2677     int64_t MB = MI.getOperand(3).getImm();
2678     int64_t ME = MI.getOperand(4).getImm();
2679     APInt InVal(32, SExtImm, true);
2680     InVal = InVal.rotl(SH);
2681     // Set the bits (        MB + 32        ) to (        ME + 32        ).
2682     uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2683     InVal &= Mask;
2684     // Can't replace negative values with an LI as that will sign-extend
2685     // and not clear the left bits. If we're setting the CR bit, we will use
2686     // ANDIo which won't sign extend, so that's safe.
2687     bool ValueFits = isUInt<15>(InVal.getSExtValue());
2688     ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) &&
2689                   isUInt<16>(InVal.getSExtValue()));
2690     if (ValueFits) {
2691       ReplaceWithLI = true;
2692       Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2693       NewImm = InVal.getSExtValue();
2694       SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o;
2695       break;
2696     }
2697     return false;
2698   }
2699   case PPC::ORI:
2700   case PPC::ORI8:
2701   case PPC::XORI:
2702   case PPC::XORI8: {
2703     int64_t LogicalImm = MI.getOperand(2).getImm();
2704     int64_t Result = 0;
2705     if (Opc == PPC::ORI || Opc == PPC::ORI8)
2706       Result = LogicalImm | SExtImm;
2707     else
2708       Result = LogicalImm ^ SExtImm;
2709     if (isInt<16>(Result)) {
2710       ReplaceWithLI = true;
2711       Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
2712       NewImm = Result;
2713       break;
2714     }
2715     return false;
2716   }
2717   }
2718 
2719   if (ReplaceWithLI) {
2720     // We need to be careful with CR-setting instructions we're replacing.
2721     if (SetCR) {
2722       // We don't know anything about uses when we're out of SSA, so only
2723       // replace if the new immediate will be reproduced.
2724       bool ImmChanged = (SExtImm & NewImm) != NewImm;
2725       if (PostRA && ImmChanged)
2726         return false;
2727 
2728       if (!PostRA) {
2729         // If the defining load-immediate has no other uses, we can just replace
2730         // the immediate with the new immediate.
2731         if (MRI->hasOneUse(DefMI->getOperand(0).getReg()))
2732           DefMI->getOperand(1).setImm(NewImm);
2733 
2734         // If we're not using the GPR result of the CR-setting instruction, we
2735         // just need to and with zero/non-zero depending on the new immediate.
2736         else if (MRI->use_empty(MI.getOperand(0).getReg())) {
2737           if (NewImm) {
2738             assert(Immediate && "Transformation converted zero to non-zero?");
2739             NewImm = Immediate;
2740           }
2741         }
2742         else if (ImmChanged)
2743           return false;
2744       }
2745     }
2746 
2747     LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
2748     LLVM_DEBUG(MI.dump());
2749     LLVM_DEBUG(dbgs() << "Fed by:\n");
2750     LLVM_DEBUG(DefMI->dump());
2751     LoadImmediateInfo LII;
2752     LII.Imm = NewImm;
2753     LII.Is64Bit = Is64BitLI;
2754     LII.SetCR = SetCR;
2755     // If we're setting the CR, the original load-immediate must be kept (as an
2756     // operand to ANDIo/ANDI8o).
2757     if (KilledDef && SetCR)
2758       *KilledDef = nullptr;
2759     replaceInstrWithLI(MI, LII);
2760 
2761     // Fixup killed/dead flag after transformation.
2762     // Pattern:
2763     // ForwardingOperandReg = LI imm1
2764     // y = op2 imm2, ForwardingOperandReg(killed)
2765     if (IsForwardingOperandKilled)
2766       fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg);
2767 
2768     LLVM_DEBUG(dbgs() << "With:\n");
2769     LLVM_DEBUG(MI.dump());
2770     return true;
2771   }
2772   return false;
2773 }
2774 
2775 static bool isVFReg(unsigned Reg) {
2776   return PPC::VFRCRegClass.contains(Reg);
2777 }
2778 
2779 bool PPCInstrInfo::instrHasImmForm(const MachineInstr &MI,
2780                                    ImmInstrInfo &III, bool PostRA) const {
2781   unsigned Opc = MI.getOpcode();
2782   // The vast majority of the instructions would need their operand 2 replaced
2783   // with an immediate when switching to the reg+imm form. A marked exception
2784   // are the update form loads/stores for which a constant operand 2 would need
2785   // to turn into a displacement and move operand 1 to the operand 2 position.
2786   III.ImmOpNo = 2;
2787   III.OpNoForForwarding = 2;
2788   III.ImmWidth = 16;
2789   III.ImmMustBeMultipleOf = 1;
2790   III.TruncateImmTo = 0;
2791   III.IsSummingOperands = false;
2792   switch (Opc) {
2793   default: return false;
2794   case PPC::ADD4:
2795   case PPC::ADD8:
2796     III.SignedImm = true;
2797     III.ZeroIsSpecialOrig = 0;
2798     III.ZeroIsSpecialNew = 1;
2799     III.IsCommutative = true;
2800     III.IsSummingOperands = true;
2801     III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
2802     break;
2803   case PPC::ADDC:
2804   case PPC::ADDC8:
2805     III.SignedImm = true;
2806     III.ZeroIsSpecialOrig = 0;
2807     III.ZeroIsSpecialNew = 0;
2808     III.IsCommutative = true;
2809     III.IsSummingOperands = true;
2810     III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
2811     break;
2812   case PPC::ADDCo:
2813     III.SignedImm = true;
2814     III.ZeroIsSpecialOrig = 0;
2815     III.ZeroIsSpecialNew = 0;
2816     III.IsCommutative = true;
2817     III.IsSummingOperands = true;
2818     III.ImmOpcode = PPC::ADDICo;
2819     break;
2820   case PPC::SUBFC:
2821   case PPC::SUBFC8:
2822     III.SignedImm = true;
2823     III.ZeroIsSpecialOrig = 0;
2824     III.ZeroIsSpecialNew = 0;
2825     III.IsCommutative = false;
2826     III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
2827     break;
2828   case PPC::CMPW:
2829   case PPC::CMPD:
2830     III.SignedImm = true;
2831     III.ZeroIsSpecialOrig = 0;
2832     III.ZeroIsSpecialNew = 0;
2833     III.IsCommutative = false;
2834     III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
2835     break;
2836   case PPC::CMPLW:
2837   case PPC::CMPLD:
2838     III.SignedImm = false;
2839     III.ZeroIsSpecialOrig = 0;
2840     III.ZeroIsSpecialNew = 0;
2841     III.IsCommutative = false;
2842     III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
2843     break;
2844   case PPC::ANDo:
2845   case PPC::AND8o:
2846   case PPC::OR:
2847   case PPC::OR8:
2848   case PPC::XOR:
2849   case PPC::XOR8:
2850     III.SignedImm = false;
2851     III.ZeroIsSpecialOrig = 0;
2852     III.ZeroIsSpecialNew = 0;
2853     III.IsCommutative = true;
2854     switch(Opc) {
2855     default: llvm_unreachable("Unknown opcode");
2856     case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break;
2857     case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break;
2858     case PPC::OR: III.ImmOpcode = PPC::ORI; break;
2859     case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
2860     case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
2861     case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
2862     }
2863     break;
2864   case PPC::RLWNM:
2865   case PPC::RLWNM8:
2866   case PPC::RLWNMo:
2867   case PPC::RLWNM8o:
2868   case PPC::SLW:
2869   case PPC::SLW8:
2870   case PPC::SLWo:
2871   case PPC::SLW8o:
2872   case PPC::SRW:
2873   case PPC::SRW8:
2874   case PPC::SRWo:
2875   case PPC::SRW8o:
2876   case PPC::SRAW:
2877   case PPC::SRAWo:
2878     III.SignedImm = false;
2879     III.ZeroIsSpecialOrig = 0;
2880     III.ZeroIsSpecialNew = 0;
2881     III.IsCommutative = false;
2882     // This isn't actually true, but the instructions ignore any of the
2883     // upper bits, so any immediate loaded with an LI is acceptable.
2884     // This does not apply to shift right algebraic because a value
2885     // out of range will produce a -1/0.
2886     III.ImmWidth = 16;
2887     if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 ||
2888         Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o)
2889       III.TruncateImmTo = 5;
2890     else
2891       III.TruncateImmTo = 6;
2892     switch(Opc) {
2893     default: llvm_unreachable("Unknown opcode");
2894     case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
2895     case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
2896     case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break;
2897     case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break;
2898     case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
2899     case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
2900     case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break;
2901     case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2902     case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
2903     case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
2904     case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break;
2905     case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2906     case PPC::SRAW:
2907       III.ImmWidth = 5;
2908       III.TruncateImmTo = 0;
2909       III.ImmOpcode = PPC::SRAWI;
2910       break;
2911     case PPC::SRAWo:
2912       III.ImmWidth = 5;
2913       III.TruncateImmTo = 0;
2914       III.ImmOpcode = PPC::SRAWIo;
2915       break;
2916     }
2917     break;
2918   case PPC::RLDCL:
2919   case PPC::RLDCLo:
2920   case PPC::RLDCR:
2921   case PPC::RLDCRo:
2922   case PPC::SLD:
2923   case PPC::SLDo:
2924   case PPC::SRD:
2925   case PPC::SRDo:
2926   case PPC::SRAD:
2927   case PPC::SRADo:
2928     III.SignedImm = false;
2929     III.ZeroIsSpecialOrig = 0;
2930     III.ZeroIsSpecialNew = 0;
2931     III.IsCommutative = false;
2932     // This isn't actually true, but the instructions ignore any of the
2933     // upper bits, so any immediate loaded with an LI is acceptable.
2934     // This does not apply to shift right algebraic because a value
2935     // out of range will produce a -1/0.
2936     III.ImmWidth = 16;
2937     if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo ||
2938         Opc == PPC::RLDCR || Opc == PPC::RLDCRo)
2939       III.TruncateImmTo = 6;
2940     else
2941       III.TruncateImmTo = 7;
2942     switch(Opc) {
2943     default: llvm_unreachable("Unknown opcode");
2944     case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
2945     case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break;
2946     case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
2947     case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break;
2948     case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
2949     case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break;
2950     case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
2951     case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break;
2952     case PPC::SRAD:
2953       III.ImmWidth = 6;
2954       III.TruncateImmTo = 0;
2955       III.ImmOpcode = PPC::SRADI;
2956        break;
2957     case PPC::SRADo:
2958       III.ImmWidth = 6;
2959       III.TruncateImmTo = 0;
2960       III.ImmOpcode = PPC::SRADIo;
2961       break;
2962     }
2963     break;
2964   // Loads and stores:
2965   case PPC::LBZX:
2966   case PPC::LBZX8:
2967   case PPC::LHZX:
2968   case PPC::LHZX8:
2969   case PPC::LHAX:
2970   case PPC::LHAX8:
2971   case PPC::LWZX:
2972   case PPC::LWZX8:
2973   case PPC::LWAX:
2974   case PPC::LDX:
2975   case PPC::LFSX:
2976   case PPC::LFDX:
2977   case PPC::STBX:
2978   case PPC::STBX8:
2979   case PPC::STHX:
2980   case PPC::STHX8:
2981   case PPC::STWX:
2982   case PPC::STWX8:
2983   case PPC::STDX:
2984   case PPC::STFSX:
2985   case PPC::STFDX:
2986     III.SignedImm = true;
2987     III.ZeroIsSpecialOrig = 1;
2988     III.ZeroIsSpecialNew = 2;
2989     III.IsCommutative = true;
2990     III.IsSummingOperands = true;
2991     III.ImmOpNo = 1;
2992     III.OpNoForForwarding = 2;
2993     switch(Opc) {
2994     default: llvm_unreachable("Unknown opcode");
2995     case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
2996     case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
2997     case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
2998     case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
2999     case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
3000     case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
3001     case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
3002     case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
3003     case PPC::LWAX:
3004       III.ImmOpcode = PPC::LWA;
3005       III.ImmMustBeMultipleOf = 4;
3006       break;
3007     case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
3008     case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
3009     case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
3010     case PPC::STBX: III.ImmOpcode = PPC::STB; break;
3011     case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
3012     case PPC::STHX: III.ImmOpcode = PPC::STH; break;
3013     case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
3014     case PPC::STWX: III.ImmOpcode = PPC::STW; break;
3015     case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
3016     case PPC::STDX:
3017       III.ImmOpcode = PPC::STD;
3018       III.ImmMustBeMultipleOf = 4;
3019       break;
3020     case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
3021     case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
3022     }
3023     break;
3024   case PPC::LBZUX:
3025   case PPC::LBZUX8:
3026   case PPC::LHZUX:
3027   case PPC::LHZUX8:
3028   case PPC::LHAUX:
3029   case PPC::LHAUX8:
3030   case PPC::LWZUX:
3031   case PPC::LWZUX8:
3032   case PPC::LDUX:
3033   case PPC::LFSUX:
3034   case PPC::LFDUX:
3035   case PPC::STBUX:
3036   case PPC::STBUX8:
3037   case PPC::STHUX:
3038   case PPC::STHUX8:
3039   case PPC::STWUX:
3040   case PPC::STWUX8:
3041   case PPC::STDUX:
3042   case PPC::STFSUX:
3043   case PPC::STFDUX:
3044     III.SignedImm = true;
3045     III.ZeroIsSpecialOrig = 2;
3046     III.ZeroIsSpecialNew = 3;
3047     III.IsCommutative = false;
3048     III.IsSummingOperands = true;
3049     III.ImmOpNo = 2;
3050     III.OpNoForForwarding = 3;
3051     switch(Opc) {
3052     default: llvm_unreachable("Unknown opcode");
3053     case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
3054     case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
3055     case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
3056     case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
3057     case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
3058     case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
3059     case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
3060     case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
3061     case PPC::LDUX:
3062       III.ImmOpcode = PPC::LDU;
3063       III.ImmMustBeMultipleOf = 4;
3064       break;
3065     case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
3066     case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
3067     case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
3068     case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
3069     case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
3070     case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
3071     case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
3072     case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
3073     case PPC::STDUX:
3074       III.ImmOpcode = PPC::STDU;
3075       III.ImmMustBeMultipleOf = 4;
3076       break;
3077     case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
3078     case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
3079     }
3080     break;
3081   // Power9 and up only. For some of these, the X-Form version has access to all
3082   // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
3083   // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
3084   // into or stored from is one of the VR registers.
3085   case PPC::LXVX:
3086   case PPC::LXSSPX:
3087   case PPC::LXSDX:
3088   case PPC::STXVX:
3089   case PPC::STXSSPX:
3090   case PPC::STXSDX:
3091   case PPC::XFLOADf32:
3092   case PPC::XFLOADf64:
3093   case PPC::XFSTOREf32:
3094   case PPC::XFSTOREf64:
3095     if (!Subtarget.hasP9Vector())
3096       return false;
3097     III.SignedImm = true;
3098     III.ZeroIsSpecialOrig = 1;
3099     III.ZeroIsSpecialNew = 2;
3100     III.IsCommutative = true;
3101     III.IsSummingOperands = true;
3102     III.ImmOpNo = 1;
3103     III.OpNoForForwarding = 2;
3104     III.ImmMustBeMultipleOf = 4;
3105     switch(Opc) {
3106     default: llvm_unreachable("Unknown opcode");
3107     case PPC::LXVX:
3108       III.ImmOpcode = PPC::LXV;
3109       III.ImmMustBeMultipleOf = 16;
3110       break;
3111     case PPC::LXSSPX:
3112       if (PostRA) {
3113         if (isVFReg(MI.getOperand(0).getReg()))
3114           III.ImmOpcode = PPC::LXSSP;
3115         else {
3116           III.ImmOpcode = PPC::LFS;
3117           III.ImmMustBeMultipleOf = 1;
3118         }
3119         break;
3120       }
3121       LLVM_FALLTHROUGH;
3122     case PPC::XFLOADf32:
3123       III.ImmOpcode = PPC::DFLOADf32;
3124       break;
3125     case PPC::LXSDX:
3126       if (PostRA) {
3127         if (isVFReg(MI.getOperand(0).getReg()))
3128           III.ImmOpcode = PPC::LXSD;
3129         else {
3130           III.ImmOpcode = PPC::LFD;
3131           III.ImmMustBeMultipleOf = 1;
3132         }
3133         break;
3134       }
3135       LLVM_FALLTHROUGH;
3136     case PPC::XFLOADf64:
3137       III.ImmOpcode = PPC::DFLOADf64;
3138       break;
3139     case PPC::STXVX:
3140       III.ImmOpcode = PPC::STXV;
3141       III.ImmMustBeMultipleOf = 16;
3142       break;
3143     case PPC::STXSSPX:
3144       if (PostRA) {
3145         if (isVFReg(MI.getOperand(0).getReg()))
3146           III.ImmOpcode = PPC::STXSSP;
3147         else {
3148           III.ImmOpcode = PPC::STFS;
3149           III.ImmMustBeMultipleOf = 1;
3150         }
3151         break;
3152       }
3153       LLVM_FALLTHROUGH;
3154     case PPC::XFSTOREf32:
3155       III.ImmOpcode = PPC::DFSTOREf32;
3156       break;
3157     case PPC::STXSDX:
3158       if (PostRA) {
3159         if (isVFReg(MI.getOperand(0).getReg()))
3160           III.ImmOpcode = PPC::STXSD;
3161         else {
3162           III.ImmOpcode = PPC::STFD;
3163           III.ImmMustBeMultipleOf = 1;
3164         }
3165         break;
3166       }
3167       LLVM_FALLTHROUGH;
3168     case PPC::XFSTOREf64:
3169       III.ImmOpcode = PPC::DFSTOREf64;
3170       break;
3171     }
3172     break;
3173   }
3174   return true;
3175 }
3176 
3177 // Utility function for swaping two arbitrary operands of an instruction.
3178 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
3179   assert(Op1 != Op2 && "Cannot swap operand with itself.");
3180 
3181   unsigned MaxOp = std::max(Op1, Op2);
3182   unsigned MinOp = std::min(Op1, Op2);
3183   MachineOperand MOp1 = MI.getOperand(MinOp);
3184   MachineOperand MOp2 = MI.getOperand(MaxOp);
3185   MI.RemoveOperand(std::max(Op1, Op2));
3186   MI.RemoveOperand(std::min(Op1, Op2));
3187 
3188   // If the operands we are swapping are the two at the end (the common case)
3189   // we can just remove both and add them in the opposite order.
3190   if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
3191     MI.addOperand(MOp2);
3192     MI.addOperand(MOp1);
3193   } else {
3194     // Store all operands in a temporary vector, remove them and re-add in the
3195     // right order.
3196     SmallVector<MachineOperand, 2> MOps;
3197     unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
3198     for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
3199       MOps.push_back(MI.getOperand(i));
3200       MI.RemoveOperand(i);
3201     }
3202     // MOp2 needs to be added next.
3203     MI.addOperand(MOp2);
3204     // Now add the rest.
3205     for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
3206       if (i == MaxOp)
3207         MI.addOperand(MOp1);
3208       else {
3209         MI.addOperand(MOps.back());
3210         MOps.pop_back();
3211       }
3212     }
3213   }
3214 }
3215 
3216 // Check if the 'MI' that has the index OpNoForForwarding
3217 // meets the requirement described in the ImmInstrInfo.
3218 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
3219                                                const ImmInstrInfo &III,
3220                                                unsigned OpNoForForwarding
3221                                                ) const {
3222   // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
3223   // would not work pre-RA, we can only do the check post RA.
3224   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3225   if (MRI.isSSA())
3226     return false;
3227 
3228   // Cannot do the transform if MI isn't summing the operands.
3229   if (!III.IsSummingOperands)
3230     return false;
3231 
3232   // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
3233   if (!III.ZeroIsSpecialOrig)
3234     return false;
3235 
3236   // We cannot do the transform if the operand we are trying to replace
3237   // isn't the same as the operand the instruction allows.
3238   if (OpNoForForwarding != III.OpNoForForwarding)
3239     return false;
3240 
3241   // Check if the instruction we are trying to transform really has
3242   // the special zero register as its operand.
3243   if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
3244       MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
3245     return false;
3246 
3247   // This machine instruction is convertible if it is,
3248   // 1. summing the operands.
3249   // 2. one of the operands is special zero register.
3250   // 3. the operand we are trying to replace is allowed by the MI.
3251   return true;
3252 }
3253 
3254 // Check if the DefMI is the add inst and set the ImmMO and RegMO
3255 // accordingly.
3256 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
3257                                                const ImmInstrInfo &III,
3258                                                MachineOperand *&ImmMO,
3259                                                MachineOperand *&RegMO) const {
3260   unsigned Opc = DefMI.getOpcode();
3261   if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
3262     return false;
3263 
3264   assert(DefMI.getNumOperands() >= 3 &&
3265          "Add inst must have at least three operands");
3266   RegMO = &DefMI.getOperand(1);
3267   ImmMO = &DefMI.getOperand(2);
3268 
3269   // This DefMI is elgible for forwarding if it is:
3270   // 1. add inst
3271   // 2. one of the operands is Imm/CPI/Global.
3272   return isAnImmediateOperand(*ImmMO);
3273 }
3274 
3275 bool PPCInstrInfo::isRegElgibleForForwarding(
3276     const MachineOperand &RegMO, const MachineInstr &DefMI,
3277     const MachineInstr &MI, bool KillDefMI,
3278     bool &IsFwdFeederRegKilled) const {
3279   // x = addi y, imm
3280   // ...
3281   // z = lfdx 0, x   -> z = lfd imm(y)
3282   // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
3283   // of "y" between the DEF of "x" and "z".
3284   // The query is only valid post RA.
3285   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3286   if (MRI.isSSA())
3287     return false;
3288 
3289   unsigned Reg = RegMO.getReg();
3290 
3291   // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
3292   MachineBasicBlock::const_reverse_iterator It = MI;
3293   MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
3294   It++;
3295   for (; It != E; ++It) {
3296     if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3297       return false;
3298     else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3299       IsFwdFeederRegKilled = true;
3300     // Made it to DefMI without encountering a clobber.
3301     if ((&*It) == &DefMI)
3302       break;
3303   }
3304   assert((&*It) == &DefMI && "DefMI is missing");
3305 
3306   // If DefMI also defines the register to be forwarded, we can only forward it
3307   // if DefMI is being erased.
3308   if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
3309     return KillDefMI;
3310 
3311   return true;
3312 }
3313 
3314 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
3315                                              const MachineInstr &DefMI,
3316                                              const ImmInstrInfo &III,
3317                                              int64_t &Imm) const {
3318   assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
3319   if (DefMI.getOpcode() == PPC::ADDItocL) {
3320     // The operand for ADDItocL is CPI, which isn't imm at compiling time,
3321     // However, we know that, it is 16-bit width, and has the alignment of 4.
3322     // Check if the instruction met the requirement.
3323     if (III.ImmMustBeMultipleOf > 4 ||
3324        III.TruncateImmTo || III.ImmWidth != 16)
3325       return false;
3326 
3327     // Going from XForm to DForm loads means that the displacement needs to be
3328     // not just an immediate but also a multiple of 4, or 16 depending on the
3329     // load. A DForm load cannot be represented if it is a multiple of say 2.
3330     // XForm loads do not have this restriction.
3331     if (ImmMO.isGlobal() &&
3332         ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf)
3333       return false;
3334 
3335     return true;
3336   }
3337 
3338   if (ImmMO.isImm()) {
3339     // It is Imm, we need to check if the Imm fit the range.
3340     int64_t Immediate = ImmMO.getImm();
3341     // Sign-extend to 64-bits.
3342     Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
3343       (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
3344 
3345     if (Imm % III.ImmMustBeMultipleOf)
3346       return false;
3347     if (III.TruncateImmTo)
3348       Imm &= ((1 << III.TruncateImmTo) - 1);
3349     if (III.SignedImm) {
3350       APInt ActualValue(64, Imm, true);
3351       if (!ActualValue.isSignedIntN(III.ImmWidth))
3352         return false;
3353     } else {
3354       uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3355       if ((uint64_t)Imm > UnsignedMax)
3356         return false;
3357     }
3358   }
3359   else
3360     return false;
3361 
3362   // This ImmMO is forwarded if it meets the requriement describle
3363   // in ImmInstrInfo
3364   return true;
3365 }
3366 
3367 // If an X-Form instruction is fed by an add-immediate and one of its operands
3368 // is the literal zero, attempt to forward the source of the add-immediate to
3369 // the corresponding D-Form instruction with the displacement coming from
3370 // the immediate being added.
3371 bool PPCInstrInfo::transformToImmFormFedByAdd(
3372     MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
3373     MachineInstr &DefMI, bool KillDefMI) const {
3374   //         RegMO ImmMO
3375   //           |    |
3376   // x = addi reg, imm  <----- DefMI
3377   // y = op    0 ,  x   <----- MI
3378   //                |
3379   //         OpNoForForwarding
3380   // Check if the MI meet the requirement described in the III.
3381   if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
3382     return false;
3383 
3384   // Check if the DefMI meet the requirement
3385   // described in the III. If yes, set the ImmMO and RegMO accordingly.
3386   MachineOperand *ImmMO = nullptr;
3387   MachineOperand *RegMO = nullptr;
3388   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
3389     return false;
3390   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
3391 
3392   // As we get the Imm operand now, we need to check if the ImmMO meet
3393   // the requirement described in the III. If yes set the Imm.
3394   int64_t Imm = 0;
3395   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
3396     return false;
3397 
3398   bool IsFwdFeederRegKilled = false;
3399   // Check if the RegMO can be forwarded to MI.
3400   if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
3401                                  IsFwdFeederRegKilled))
3402     return false;
3403 
3404   // Get killed info in case fixup needed after transformation.
3405   unsigned ForwardKilledOperandReg = ~0U;
3406   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3407   bool PostRA = !MRI.isSSA();
3408   if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
3409     ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
3410 
3411   // We know that, the MI and DefMI both meet the pattern, and
3412   // the Imm also meet the requirement with the new Imm-form.
3413   // It is safe to do the transformation now.
3414   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
3415   LLVM_DEBUG(MI.dump());
3416   LLVM_DEBUG(dbgs() << "Fed by:\n");
3417   LLVM_DEBUG(DefMI.dump());
3418 
3419   // Update the base reg first.
3420   MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
3421                                                         false, false,
3422                                                         RegMO->isKill());
3423 
3424   // Then, update the imm.
3425   if (ImmMO->isImm()) {
3426     // If the ImmMO is Imm, change the operand that has ZERO to that Imm
3427     // directly.
3428     replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
3429   }
3430   else {
3431     // Otherwise, it is Constant Pool Index(CPI) or Global,
3432     // which is relocation in fact. We need to replace the special zero
3433     // register with ImmMO.
3434     // Before that, we need to fixup the target flags for imm.
3435     // For some reason, we miss to set the flag for the ImmMO if it is CPI.
3436     if (DefMI.getOpcode() == PPC::ADDItocL)
3437       ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
3438 
3439     // MI didn't have the interface such as MI.setOperand(i) though
3440     // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
3441     // ImmMO, we need to remove ZERO operand and all the operands behind it,
3442     // and, add the ImmMO, then, move back all the operands behind ZERO.
3443     SmallVector<MachineOperand, 2> MOps;
3444     for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
3445       MOps.push_back(MI.getOperand(i));
3446       MI.RemoveOperand(i);
3447     }
3448 
3449     // Remove the last MO in the list, which is ZERO operand in fact.
3450     MOps.pop_back();
3451     // Add the imm operand.
3452     MI.addOperand(*ImmMO);
3453     // Now add the rest back.
3454     for (auto &MO : MOps)
3455       MI.addOperand(MO);
3456   }
3457 
3458   // Update the opcode.
3459   MI.setDesc(get(III.ImmOpcode));
3460 
3461   // Fix up killed/dead flag after transformation.
3462   // Pattern 1:
3463   // x = ADD KilledFwdFeederReg, imm
3464   // n = opn KilledFwdFeederReg(killed), regn
3465   // y = XOP 0, x
3466   // Pattern 2:
3467   // x = ADD reg(killed), imm
3468   // y = XOP 0, x
3469   if (IsFwdFeederRegKilled || RegMO->isKill())
3470     fixupIsDeadOrKill(DefMI, MI, RegMO->getReg());
3471   // Pattern 3:
3472   // ForwardKilledOperandReg = ADD reg, imm
3473   // y = XOP 0, ForwardKilledOperandReg(killed)
3474   if (ForwardKilledOperandReg != ~0U)
3475     fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3476 
3477   LLVM_DEBUG(dbgs() << "With:\n");
3478   LLVM_DEBUG(MI.dump());
3479 
3480   return true;
3481 }
3482 
3483 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
3484                                              const ImmInstrInfo &III,
3485                                              unsigned ConstantOpNo,
3486                                              MachineInstr &DefMI,
3487                                              int64_t Imm) const {
3488   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3489   bool PostRA = !MRI.isSSA();
3490   // Exit early if we can't convert this.
3491   if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
3492     return false;
3493   if (Imm % III.ImmMustBeMultipleOf)
3494     return false;
3495   if (III.TruncateImmTo)
3496     Imm &= ((1 << III.TruncateImmTo) - 1);
3497   if (III.SignedImm) {
3498     APInt ActualValue(64, Imm, true);
3499     if (!ActualValue.isSignedIntN(III.ImmWidth))
3500       return false;
3501   } else {
3502     uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3503     if ((uint64_t)Imm > UnsignedMax)
3504       return false;
3505   }
3506 
3507   // If we're post-RA, the instructions don't agree on whether register zero is
3508   // special, we can transform this as long as the register operand that will
3509   // end up in the location where zero is special isn't R0.
3510   if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3511     unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
3512       III.ZeroIsSpecialNew + 1;
3513     unsigned OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
3514     unsigned NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3515     // If R0 is in the operand where zero is special for the new instruction,
3516     // it is unsafe to transform if the constant operand isn't that operand.
3517     if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
3518         ConstantOpNo != III.ZeroIsSpecialNew)
3519       return false;
3520     if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
3521         ConstantOpNo != PosForOrigZero)
3522       return false;
3523   }
3524 
3525   // Get killed info in case fixup needed after transformation.
3526   unsigned ForwardKilledOperandReg = ~0U;
3527   if (PostRA && MI.getOperand(ConstantOpNo).isKill())
3528     ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
3529 
3530   unsigned Opc = MI.getOpcode();
3531   bool SpecialShift32 =
3532     Opc == PPC::SLW || Opc == PPC::SLWo || Opc == PPC::SRW || Opc == PPC::SRWo;
3533   bool SpecialShift64 =
3534     Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo;
3535   bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo ||
3536     Opc == PPC::SLDo || Opc == PPC::SRDo;
3537   bool RightShift =
3538     Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo;
3539 
3540   MI.setDesc(get(III.ImmOpcode));
3541   if (ConstantOpNo == III.OpNoForForwarding) {
3542     // Converting shifts to immediate form is a bit tricky since they may do
3543     // one of three things:
3544     // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
3545     // 2. If the shift amount is zero, the result is unchanged (save for maybe
3546     //    setting CR0)
3547     // 3. If the shift amount is in [1, OpSize), it's just a shift
3548     if (SpecialShift32 || SpecialShift64) {
3549       LoadImmediateInfo LII;
3550       LII.Imm = 0;
3551       LII.SetCR = SetCR;
3552       LII.Is64Bit = SpecialShift64;
3553       uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
3554       if (Imm & (SpecialShift32 ? 0x20 : 0x40))
3555         replaceInstrWithLI(MI, LII);
3556       // Shifts by zero don't change the value. If we don't need to set CR0,
3557       // just convert this to a COPY. Can't do this post-RA since we've already
3558       // cleaned up the copies.
3559       else if (!SetCR && ShAmt == 0 && !PostRA) {
3560         MI.RemoveOperand(2);
3561         MI.setDesc(get(PPC::COPY));
3562       } else {
3563         // The 32 bit and 64 bit instructions are quite different.
3564         if (SpecialShift32) {
3565           // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31).
3566           uint64_t SH = RightShift ? 32 - ShAmt : ShAmt;
3567           uint64_t MB = RightShift ? ShAmt : 0;
3568           uint64_t ME = RightShift ? 31 : 31 - ShAmt;
3569           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3570           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
3571             .addImm(ME);
3572         } else {
3573           // Left shifts use (N, 63-N), right shifts use (64-N, N).
3574           uint64_t SH = RightShift ? 64 - ShAmt : ShAmt;
3575           uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
3576           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3577           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
3578         }
3579       }
3580     } else
3581       replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3582   }
3583   // Convert commutative instructions (switch the operands and convert the
3584   // desired one to an immediate.
3585   else if (III.IsCommutative) {
3586     replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3587     swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
3588   } else
3589     llvm_unreachable("Should have exited early!");
3590 
3591   // For instructions for which the constant register replaces a different
3592   // operand than where the immediate goes, we need to swap them.
3593   if (III.OpNoForForwarding != III.ImmOpNo)
3594     swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
3595 
3596   // If the special R0/X0 register index are different for original instruction
3597   // and new instruction, we need to fix up the register class in new
3598   // instruction.
3599   if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3600     if (III.ZeroIsSpecialNew) {
3601       // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
3602       // need to fix up register class.
3603       unsigned RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3604       if (TargetRegisterInfo::isVirtualRegister(RegToModify)) {
3605         const TargetRegisterClass *NewRC =
3606           MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
3607           &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
3608         MRI.setRegClass(RegToModify, NewRC);
3609       }
3610     }
3611   }
3612 
3613   // Fix up killed/dead flag after transformation.
3614   // Pattern:
3615   // ForwardKilledOperandReg = LI imm
3616   // y = XOP reg, ForwardKilledOperandReg(killed)
3617   if (ForwardKilledOperandReg != ~0U)
3618     fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3619   return true;
3620 }
3621 
3622 const TargetRegisterClass *
3623 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
3624   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
3625     return &PPC::VSRCRegClass;
3626   return RC;
3627 }
3628 
3629 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
3630   return PPC::getRecordFormOpcode(Opcode);
3631 }
3632 
3633 // This function returns true if the machine instruction
3634 // always outputs a value by sign-extending a 32 bit value,
3635 // i.e. 0 to 31-th bits are same as 32-th bit.
3636 static bool isSignExtendingOp(const MachineInstr &MI) {
3637   int Opcode = MI.getOpcode();
3638   if (Opcode == PPC::LI     || Opcode == PPC::LI8     ||
3639       Opcode == PPC::LIS    || Opcode == PPC::LIS8    ||
3640       Opcode == PPC::SRAW   || Opcode == PPC::SRAWo   ||
3641       Opcode == PPC::SRAWI  || Opcode == PPC::SRAWIo  ||
3642       Opcode == PPC::LWA    || Opcode == PPC::LWAX    ||
3643       Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
3644       Opcode == PPC::LHA    || Opcode == PPC::LHAX    ||
3645       Opcode == PPC::LHA8   || Opcode == PPC::LHAX8   ||
3646       Opcode == PPC::LBZ    || Opcode == PPC::LBZX    ||
3647       Opcode == PPC::LBZ8   || Opcode == PPC::LBZX8   ||
3648       Opcode == PPC::LBZU   || Opcode == PPC::LBZUX   ||
3649       Opcode == PPC::LBZU8  || Opcode == PPC::LBZUX8  ||
3650       Opcode == PPC::LHZ    || Opcode == PPC::LHZX    ||
3651       Opcode == PPC::LHZ8   || Opcode == PPC::LHZX8   ||
3652       Opcode == PPC::LHZU   || Opcode == PPC::LHZUX   ||
3653       Opcode == PPC::LHZU8  || Opcode == PPC::LHZUX8  ||
3654       Opcode == PPC::EXTSB  || Opcode == PPC::EXTSBo  ||
3655       Opcode == PPC::EXTSH  || Opcode == PPC::EXTSHo  ||
3656       Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8  ||
3657       Opcode == PPC::EXTSW  || Opcode == PPC::EXTSWo  ||
3658       Opcode == PPC::SETB   || Opcode == PPC::SETB8   ||
3659       Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
3660       Opcode == PPC::EXTSB8_32_64)
3661     return true;
3662 
3663   if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
3664     return true;
3665 
3666   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
3667        Opcode == PPC::RLWNM  || Opcode == PPC::RLWNMo) &&
3668       MI.getOperand(3).getImm() > 0 &&
3669       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3670     return true;
3671 
3672   return false;
3673 }
3674 
3675 // This function returns true if the machine instruction
3676 // always outputs zeros in higher 32 bits.
3677 static bool isZeroExtendingOp(const MachineInstr &MI) {
3678   int Opcode = MI.getOpcode();
3679   // The 16-bit immediate is sign-extended in li/lis.
3680   // If the most significant bit is zero, all higher bits are zero.
3681   if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
3682       Opcode == PPC::LIS || Opcode == PPC::LIS8) {
3683     int64_t Imm = MI.getOperand(1).getImm();
3684     if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
3685       return true;
3686   }
3687 
3688   // We have some variations of rotate-and-mask instructions
3689   // that clear higher 32-bits.
3690   if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
3691        Opcode == PPC::RLDCL  || Opcode == PPC::RLDCLo  ||
3692        Opcode == PPC::RLDICL_32_64) &&
3693       MI.getOperand(3).getImm() >= 32)
3694     return true;
3695 
3696   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
3697       MI.getOperand(3).getImm() >= 32 &&
3698       MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
3699     return true;
3700 
3701   if ((Opcode == PPC::RLWINM  || Opcode == PPC::RLWINMo ||
3702        Opcode == PPC::RLWNM   || Opcode == PPC::RLWNMo  ||
3703        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
3704       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3705     return true;
3706 
3707   // There are other instructions that clear higher 32-bits.
3708   if (Opcode == PPC::CNTLZW  || Opcode == PPC::CNTLZWo ||
3709       Opcode == PPC::CNTTZW  || Opcode == PPC::CNTTZWo ||
3710       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
3711       Opcode == PPC::CNTLZD  || Opcode == PPC::CNTLZDo ||
3712       Opcode == PPC::CNTTZD  || Opcode == PPC::CNTTZDo ||
3713       Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW ||
3714       Opcode == PPC::SLW     || Opcode == PPC::SLWo    ||
3715       Opcode == PPC::SRW     || Opcode == PPC::SRWo    ||
3716       Opcode == PPC::SLW8    || Opcode == PPC::SRW8    ||
3717       Opcode == PPC::SLWI    || Opcode == PPC::SLWIo   ||
3718       Opcode == PPC::SRWI    || Opcode == PPC::SRWIo   ||
3719       Opcode == PPC::LWZ     || Opcode == PPC::LWZX    ||
3720       Opcode == PPC::LWZU    || Opcode == PPC::LWZUX   ||
3721       Opcode == PPC::LWBRX   || Opcode == PPC::LHBRX   ||
3722       Opcode == PPC::LHZ     || Opcode == PPC::LHZX    ||
3723       Opcode == PPC::LHZU    || Opcode == PPC::LHZUX   ||
3724       Opcode == PPC::LBZ     || Opcode == PPC::LBZX    ||
3725       Opcode == PPC::LBZU    || Opcode == PPC::LBZUX   ||
3726       Opcode == PPC::LWZ8    || Opcode == PPC::LWZX8   ||
3727       Opcode == PPC::LWZU8   || Opcode == PPC::LWZUX8  ||
3728       Opcode == PPC::LWBRX8  || Opcode == PPC::LHBRX8  ||
3729       Opcode == PPC::LHZ8    || Opcode == PPC::LHZX8   ||
3730       Opcode == PPC::LHZU8   || Opcode == PPC::LHZUX8  ||
3731       Opcode == PPC::LBZ8    || Opcode == PPC::LBZX8   ||
3732       Opcode == PPC::LBZU8   || Opcode == PPC::LBZUX8  ||
3733       Opcode == PPC::ANDIo   || Opcode == PPC::ANDISo  ||
3734       Opcode == PPC::ROTRWI  || Opcode == PPC::ROTRWIo ||
3735       Opcode == PPC::EXTLWI  || Opcode == PPC::EXTLWIo ||
3736       Opcode == PPC::MFVSRWZ)
3737     return true;
3738 
3739   return false;
3740 }
3741 
3742 // This function returns true if the input MachineInstr is a TOC save
3743 // instruction.
3744 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
3745   if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
3746     return false;
3747   unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
3748   unsigned StackOffset = MI.getOperand(1).getImm();
3749   unsigned StackReg = MI.getOperand(2).getReg();
3750   if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
3751     return true;
3752 
3753   return false;
3754 }
3755 
3756 // We limit the max depth to track incoming values of PHIs or binary ops
3757 // (e.g. AND) to avoid excessive cost.
3758 const unsigned MAX_DEPTH = 1;
3759 
3760 bool
3761 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
3762                                    const unsigned Depth) const {
3763   const MachineFunction *MF = MI.getParent()->getParent();
3764   const MachineRegisterInfo *MRI = &MF->getRegInfo();
3765 
3766   // If we know this instruction returns sign- or zero-extended result,
3767   // return true.
3768   if (SignExt ? isSignExtendingOp(MI):
3769                 isZeroExtendingOp(MI))
3770     return true;
3771 
3772   switch (MI.getOpcode()) {
3773   case PPC::COPY: {
3774     unsigned SrcReg = MI.getOperand(1).getReg();
3775 
3776     // In both ELFv1 and v2 ABI, method parameters and the return value
3777     // are sign- or zero-extended.
3778     if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
3779       const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
3780       // We check the ZExt/SExt flags for a method parameter.
3781       if (MI.getParent()->getBasicBlock() ==
3782           &MF->getFunction().getEntryBlock()) {
3783         unsigned VReg = MI.getOperand(0).getReg();
3784         if (MF->getRegInfo().isLiveIn(VReg))
3785           return SignExt ? FuncInfo->isLiveInSExt(VReg) :
3786                            FuncInfo->isLiveInZExt(VReg);
3787       }
3788 
3789       // For a method return value, we check the ZExt/SExt flags in attribute.
3790       // We assume the following code sequence for method call.
3791       //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
3792       //   BL8_NOP @func,...
3793       //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
3794       //   %5 = COPY %x3; G8RC:%5
3795       if (SrcReg == PPC::X3) {
3796         const MachineBasicBlock *MBB = MI.getParent();
3797         MachineBasicBlock::const_instr_iterator II =
3798           MachineBasicBlock::const_instr_iterator(&MI);
3799         if (II != MBB->instr_begin() &&
3800             (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
3801           const MachineInstr &CallMI = *(--II);
3802           if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
3803             const Function *CalleeFn =
3804               dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
3805             if (!CalleeFn)
3806               return false;
3807             const IntegerType *IntTy =
3808               dyn_cast<IntegerType>(CalleeFn->getReturnType());
3809             const AttributeSet &Attrs =
3810               CalleeFn->getAttributes().getRetAttributes();
3811             if (IntTy && IntTy->getBitWidth() <= 32)
3812               return Attrs.hasAttribute(SignExt ? Attribute::SExt :
3813                                                   Attribute::ZExt);
3814           }
3815         }
3816       }
3817     }
3818 
3819     // If this is a copy from another register, we recursively check source.
3820     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3821       return false;
3822     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3823     if (SrcMI != NULL)
3824       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3825 
3826     return false;
3827   }
3828 
3829   case PPC::ANDIo:
3830   case PPC::ANDISo:
3831   case PPC::ORI:
3832   case PPC::ORIS:
3833   case PPC::XORI:
3834   case PPC::XORIS:
3835   case PPC::ANDIo8:
3836   case PPC::ANDISo8:
3837   case PPC::ORI8:
3838   case PPC::ORIS8:
3839   case PPC::XORI8:
3840   case PPC::XORIS8: {
3841     // logical operation with 16-bit immediate does not change the upper bits.
3842     // So, we track the operand register as we do for register copy.
3843     unsigned SrcReg = MI.getOperand(1).getReg();
3844     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3845       return false;
3846     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3847     if (SrcMI != NULL)
3848       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3849 
3850     return false;
3851   }
3852 
3853   // If all incoming values are sign-/zero-extended,
3854   // the output of OR, ISEL or PHI is also sign-/zero-extended.
3855   case PPC::OR:
3856   case PPC::OR8:
3857   case PPC::ISEL:
3858   case PPC::PHI: {
3859     if (Depth >= MAX_DEPTH)
3860       return false;
3861 
3862     // The input registers for PHI are operand 1, 3, ...
3863     // The input registers for others are operand 1 and 2.
3864     unsigned E = 3, D = 1;
3865     if (MI.getOpcode() == PPC::PHI) {
3866       E = MI.getNumOperands();
3867       D = 2;
3868     }
3869 
3870     for (unsigned I = 1; I != E; I += D) {
3871       if (MI.getOperand(I).isReg()) {
3872         unsigned SrcReg = MI.getOperand(I).getReg();
3873         if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3874           return false;
3875         const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3876         if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
3877           return false;
3878       }
3879       else
3880         return false;
3881     }
3882     return true;
3883   }
3884 
3885   // If at least one of the incoming values of an AND is zero extended
3886   // then the output is also zero-extended. If both of the incoming values
3887   // are sign-extended then the output is also sign extended.
3888   case PPC::AND:
3889   case PPC::AND8: {
3890     if (Depth >= MAX_DEPTH)
3891        return false;
3892 
3893     assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
3894 
3895     unsigned SrcReg1 = MI.getOperand(1).getReg();
3896     unsigned SrcReg2 = MI.getOperand(2).getReg();
3897 
3898     if (!TargetRegisterInfo::isVirtualRegister(SrcReg1) ||
3899         !TargetRegisterInfo::isVirtualRegister(SrcReg2))
3900        return false;
3901 
3902     const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
3903     const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
3904     if (!MISrc1 || !MISrc2)
3905         return false;
3906 
3907     if(SignExt)
3908         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
3909                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3910     else
3911         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
3912                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3913   }
3914 
3915   default:
3916     break;
3917   }
3918   return false;
3919 }
3920