1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/PseudoSourceValue.h"
29 #include "llvm/CodeGen/ScheduleDAG.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/raw_ostream.h"
39 
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "ppc-instr-info"
43 
44 #define GET_INSTRMAP_INFO
45 #define GET_INSTRINFO_CTOR_DTOR
46 #include "PPCGenInstrInfo.inc"
47 
48 STATISTIC(NumStoreSPILLVSRRCAsVec,
49           "Number of spillvsrrc spilled to stack as vec");
50 STATISTIC(NumStoreSPILLVSRRCAsGpr,
51           "Number of spillvsrrc spilled to stack as gpr");
52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
53 STATISTIC(CmpIselsConverted,
54           "Number of ISELs that depend on comparison of constants converted");
55 STATISTIC(MissedConvertibleImmediateInstrs,
56           "Number of compare-immediate instructions fed by constants");
57 STATISTIC(NumRcRotatesConvertedToRcAnd,
58           "Number of record-form rotates converted to record-form andi");
59 
60 static cl::
61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
62             cl::desc("Disable analysis for CTR loops"));
63 
64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
65 cl::desc("Disable compare instruction optimization"), cl::Hidden);
66 
67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
69 cl::Hidden);
70 
71 static cl::opt<bool>
72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
73   cl::desc("Use the old (incorrect) instruction latency calculation"));
74 
75 // Pin the vtable to this file.
76 void PPCInstrInfo::anchor() {}
77 
78 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
79     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
80                       /* CatchRetOpcode */ -1,
81                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
82       Subtarget(STI), RI(STI.getTargetMachine()) {}
83 
84 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
85 /// this target when scheduling the DAG.
86 ScheduleHazardRecognizer *
87 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
88                                            const ScheduleDAG *DAG) const {
89   unsigned Directive =
90       static_cast<const PPCSubtarget *>(STI)->getCPUDirective();
91   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
92       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
93     const InstrItineraryData *II =
94         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
95     return new ScoreboardHazardRecognizer(II, DAG);
96   }
97 
98   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
99 }
100 
101 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
102 /// to use for this target when scheduling the DAG.
103 ScheduleHazardRecognizer *
104 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
105                                                  const ScheduleDAG *DAG) const {
106   unsigned Directive =
107       DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective();
108 
109   // FIXME: Leaving this as-is until we have POWER9 scheduling info
110   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
111     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
112 
113   // Most subtargets use a PPC970 recognizer.
114   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
115       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
116     assert(DAG->TII && "No InstrInfo?");
117 
118     return new PPCHazardRecognizer970(*DAG);
119   }
120 
121   return new ScoreboardHazardRecognizer(II, DAG);
122 }
123 
124 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
125                                        const MachineInstr &MI,
126                                        unsigned *PredCost) const {
127   if (!ItinData || UseOldLatencyCalc)
128     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
129 
130   // The default implementation of getInstrLatency calls getStageLatency, but
131   // getStageLatency does not do the right thing for us. While we have
132   // itinerary, most cores are fully pipelined, and so the itineraries only
133   // express the first part of the pipeline, not every stage. Instead, we need
134   // to use the listed output operand cycle number (using operand 0 here, which
135   // is an output).
136 
137   unsigned Latency = 1;
138   unsigned DefClass = MI.getDesc().getSchedClass();
139   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
140     const MachineOperand &MO = MI.getOperand(i);
141     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
142       continue;
143 
144     int Cycle = ItinData->getOperandCycle(DefClass, i);
145     if (Cycle < 0)
146       continue;
147 
148     Latency = std::max(Latency, (unsigned) Cycle);
149   }
150 
151   return Latency;
152 }
153 
154 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
155                                     const MachineInstr &DefMI, unsigned DefIdx,
156                                     const MachineInstr &UseMI,
157                                     unsigned UseIdx) const {
158   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
159                                                    UseMI, UseIdx);
160 
161   if (!DefMI.getParent())
162     return Latency;
163 
164   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
165   Register Reg = DefMO.getReg();
166 
167   bool IsRegCR;
168   if (Register::isVirtualRegister(Reg)) {
169     const MachineRegisterInfo *MRI =
170         &DefMI.getParent()->getParent()->getRegInfo();
171     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
172               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
173   } else {
174     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
175               PPC::CRBITRCRegClass.contains(Reg);
176   }
177 
178   if (UseMI.isBranch() && IsRegCR) {
179     if (Latency < 0)
180       Latency = getInstrLatency(ItinData, DefMI);
181 
182     // On some cores, there is an additional delay between writing to a condition
183     // register, and using it from a branch.
184     unsigned Directive = Subtarget.getCPUDirective();
185     switch (Directive) {
186     default: break;
187     case PPC::DIR_7400:
188     case PPC::DIR_750:
189     case PPC::DIR_970:
190     case PPC::DIR_E5500:
191     case PPC::DIR_PWR4:
192     case PPC::DIR_PWR5:
193     case PPC::DIR_PWR5X:
194     case PPC::DIR_PWR6:
195     case PPC::DIR_PWR6X:
196     case PPC::DIR_PWR7:
197     case PPC::DIR_PWR8:
198     // FIXME: Is this needed for POWER9?
199       Latency += 2;
200       break;
201     }
202   }
203 
204   return Latency;
205 }
206 
207 /// This is an architecture-specific helper function of reassociateOps.
208 /// Set special operand attributes for new instructions after reassociation.
209 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
210                                          MachineInstr &OldMI2,
211                                          MachineInstr &NewMI1,
212                                          MachineInstr &NewMI2) const {
213   // Propagate FP flags from the original instructions.
214   // But clear poison-generating flags because those may not be valid now.
215   uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
216   NewMI1.setFlags(IntersectedFlags);
217   NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
218   NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
219   NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
220 
221   NewMI2.setFlags(IntersectedFlags);
222   NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
223   NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
224   NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
225 }
226 
227 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI,
228                                          uint16_t Flags) const {
229   MI.setFlags(Flags);
230   MI.clearFlag(MachineInstr::MIFlag::NoSWrap);
231   MI.clearFlag(MachineInstr::MIFlag::NoUWrap);
232   MI.clearFlag(MachineInstr::MIFlag::IsExact);
233 }
234 
235 // This function does not list all associative and commutative operations, but
236 // only those worth feeding through the machine combiner in an attempt to
237 // reduce the critical path. Mostly, this means floating-point operations,
238 // because they have high latencies(>=5) (compared to other operations, such as
239 // and/or, which are also associative and commutative, but have low latencies).
240 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
241   switch (Inst.getOpcode()) {
242   // Floating point:
243   // FP Add:
244   case PPC::FADD:
245   case PPC::FADDS:
246   // FP Multiply:
247   case PPC::FMUL:
248   case PPC::FMULS:
249   // Altivec Add:
250   case PPC::VADDFP:
251   // VSX Add:
252   case PPC::XSADDDP:
253   case PPC::XVADDDP:
254   case PPC::XVADDSP:
255   case PPC::XSADDSP:
256   // VSX Multiply:
257   case PPC::XSMULDP:
258   case PPC::XVMULDP:
259   case PPC::XVMULSP:
260   case PPC::XSMULSP:
261   // QPX Add:
262   case PPC::QVFADD:
263   case PPC::QVFADDS:
264   case PPC::QVFADDSs:
265   // QPX Multiply:
266   case PPC::QVFMUL:
267   case PPC::QVFMULS:
268   case PPC::QVFMULSs:
269     return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
270            Inst.getFlag(MachineInstr::MIFlag::FmNsz);
271   // Fixed point:
272   // Multiply:
273   case PPC::MULHD:
274   case PPC::MULLD:
275   case PPC::MULHW:
276   case PPC::MULLW:
277     return true;
278   default:
279     return false;
280   }
281 }
282 
283 #define InfoArrayIdxFMAInst 0
284 #define InfoArrayIdxFAddInst 1
285 #define InfoArrayIdxFMULInst 2
286 #define InfoArrayIdxAddOpIdx 3
287 #define InfoArrayIdxMULOpIdx 4
288 // Array keeps info for FMA instructions:
289 // Index 0(InfoArrayIdxFMAInst): FMA instruction;
290 // Index 1(InfoArrayIdxFAddInst): ADD instruction assoaicted with FMA;
291 // Index 2(InfoArrayIdxFMULInst): MUL instruction assoaicted with FMA;
292 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in the FMA operand list;
293 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in the FMA operand
294 //                                list;
295 //                                second MUL operand index is plus 1.
296 static const uint16_t FMAOpIdxInfo[][5] = {
297     // FIXME: add more FMA instructions like XSNMADDADP and so on.
298     {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2},
299     {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2},
300     {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2},
301     {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2},
302     {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1},
303     {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1},
304     {PPC::QVFMADDSs, PPC::QVFADDSs, PPC::QVFMULSs, 3, 1},
305     {PPC::QVFMADD, PPC::QVFADD, PPC::QVFMUL, 3, 1}};
306 
307 // Check if an opcode is a FMA instruction. If it is, return the index in array
308 // FMAOpIdxInfo. Otherwise, return -1.
309 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const {
310   for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++)
311     if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode)
312       return I;
313   return -1;
314 }
315 
316 // Try to reassociate FMA chains like below:
317 //
318 // Pattern 1:
319 //   A =  FADD X,  Y          (Leaf)
320 //   B =  FMA  A,  M21,  M22  (Prev)
321 //   C =  FMA  B,  M31,  M32  (Root)
322 // -->
323 //   A =  FMA  X,  M21,  M22
324 //   B =  FMA  Y,  M31,  M32
325 //   C =  FADD A,  B
326 //
327 // Pattern 2:
328 //   A =  FMA  X,  M11,  M12  (Leaf)
329 //   B =  FMA  A,  M21,  M22  (Prev)
330 //   C =  FMA  B,  M31,  M32  (Root)
331 // -->
332 //   A =  FMUL M11,  M12
333 //   B =  FMA  X,  M21,  M22
334 //   D =  FMA  A,  M31,  M32
335 //   C =  FADD B,  D
336 //
337 // breaking the dependency between A and B, allowing FMA to be executed in
338 // parallel (or back-to-back in a pipeline) instead of depending on each other.
339 bool PPCInstrInfo::getFMAPatterns(
340     MachineInstr &Root,
341     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
342   MachineBasicBlock *MBB = Root.getParent();
343   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
344 
345   auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) {
346     for (const auto &MO : Instr.explicit_operands())
347       if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
348         return false;
349     return true;
350   };
351 
352   auto IsReassociable = [&](const MachineInstr &Instr, int16_t &AddOpIdx,
353                             bool IsLeaf, bool IsAdd) {
354     int16_t Idx = -1;
355     if (!IsAdd) {
356       Idx = getFMAOpIdxInfo(Instr.getOpcode());
357       if (Idx < 0)
358         return false;
359     } else if (Instr.getOpcode() !=
360                FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())]
361                            [InfoArrayIdxFAddInst])
362       return false;
363 
364     // Instruction can be reassociated.
365     // fast match flags may prohibit reassociation.
366     if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
367           Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
368       return false;
369 
370     // Instruction operands are virtual registers for reassociating.
371     if (!IsAllOpsVirtualReg(Instr))
372       return false;
373 
374     if (IsAdd && IsLeaf)
375       return true;
376 
377     AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
378 
379     const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx);
380     MachineInstr *MIAdd = MRI.getUniqueVRegDef(OpAdd.getReg());
381     // If 'add' operand's def is not in current block, don't do ILP related opt.
382     if (!MIAdd || MIAdd->getParent() != MBB)
383       return false;
384 
385     // If this is not Leaf FMA Instr, its 'add' operand should only have one use
386     // as this fma will be changed later.
387     return IsLeaf ? true : MRI.hasOneNonDBGUse(OpAdd.getReg());
388   };
389 
390   int16_t AddOpIdx = -1;
391   // Root must be a valid FMA like instruction.
392   if (!IsReassociable(Root, AddOpIdx, false, false))
393     return false;
394 
395   assert((AddOpIdx >= 0) && "add operand index not right!");
396 
397   Register RegB = Root.getOperand(AddOpIdx).getReg();
398   MachineInstr *Prev = MRI.getUniqueVRegDef(RegB);
399 
400   // Prev must be a valid FMA like instruction.
401   AddOpIdx = -1;
402   if (!IsReassociable(*Prev, AddOpIdx, false, false))
403     return false;
404 
405   assert((AddOpIdx >= 0) && "add operand index not right!");
406 
407   Register RegA = Prev->getOperand(AddOpIdx).getReg();
408   MachineInstr *Leaf = MRI.getUniqueVRegDef(RegA);
409   AddOpIdx = -1;
410   if (IsReassociable(*Leaf, AddOpIdx, true, false)) {
411     Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM);
412     return true;
413   }
414   if (IsReassociable(*Leaf, AddOpIdx, true, true)) {
415     Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM);
416     return true;
417   }
418   return false;
419 }
420 
421 bool PPCInstrInfo::getMachineCombinerPatterns(
422     MachineInstr &Root,
423     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
424   // Using the machine combiner in this way is potentially expensive, so
425   // restrict to when aggressive optimizations are desired.
426   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
427     return false;
428 
429   if (getFMAPatterns(Root, Patterns))
430     return true;
431 
432   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
433 }
434 
435 void PPCInstrInfo::genAlternativeCodeSequence(
436     MachineInstr &Root, MachineCombinerPattern Pattern,
437     SmallVectorImpl<MachineInstr *> &InsInstrs,
438     SmallVectorImpl<MachineInstr *> &DelInstrs,
439     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
440   switch (Pattern) {
441   case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
442   case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
443     reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg);
444     break;
445   default:
446     // Reassociate default patterns.
447     TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
448                                                 DelInstrs, InstrIdxForVirtReg);
449     break;
450   }
451 }
452 
453 // Currently, only handle two patterns REASSOC_XY_AMM_BMM and
454 // REASSOC_XMM_AMM_BMM. See comments for getFMAPatterns.
455 void PPCInstrInfo::reassociateFMA(
456     MachineInstr &Root, MachineCombinerPattern Pattern,
457     SmallVectorImpl<MachineInstr *> &InsInstrs,
458     SmallVectorImpl<MachineInstr *> &DelInstrs,
459     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
460   MachineFunction *MF = Root.getMF();
461   MachineRegisterInfo &MRI = MF->getRegInfo();
462   MachineOperand &OpC = Root.getOperand(0);
463   Register RegC = OpC.getReg();
464   const TargetRegisterClass *RC = MRI.getRegClass(RegC);
465   MRI.constrainRegClass(RegC, RC);
466 
467   unsigned FmaOp = Root.getOpcode();
468   int16_t Idx = getFMAOpIdxInfo(FmaOp);
469   assert(Idx >= 0 && "Root must be a FMA instruction");
470 
471   uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
472   uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
473   MachineInstr *Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg());
474   MachineInstr *Leaf =
475       MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg());
476   uint16_t IntersectedFlags =
477       Root.getFlags() & Prev->getFlags() & Leaf->getFlags();
478 
479   auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg,
480                             bool &KillFlag) {
481     Reg = Operand.getReg();
482     MRI.constrainRegClass(Reg, RC);
483     KillFlag = Operand.isKill();
484   };
485 
486   auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1,
487                              Register &MulOp2, bool &MulOp1KillFlag,
488                              bool &MulOp2KillFlag) {
489     GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag);
490     GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag);
491   };
492 
493   Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32;
494   bool KillX = false, KillY = false, KillM11 = false, KillM12 = false,
495        KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false;
496 
497   GetFMAInstrInfo(Root, RegM31, RegM32, KillM31, KillM32);
498   GetFMAInstrInfo(*Prev, RegM21, RegM22, KillM21, KillM22);
499 
500   if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
501     GetFMAInstrInfo(*Leaf, RegM11, RegM12, KillM11, KillM12);
502     GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX);
503   } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) {
504     GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
505     GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
506   }
507 
508   // Create new virtual registers for the new results instead of
509   // recycling legacy ones because the MachineCombiner's computation of the
510   // critical path requires a new register definition rather than an existing
511   // one.
512   Register NewVRA = MRI.createVirtualRegister(RC);
513   InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0));
514 
515   Register NewVRB = MRI.createVirtualRegister(RC);
516   InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1));
517 
518   Register NewVRD = 0;
519   if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
520     NewVRD = MRI.createVirtualRegister(RC);
521     InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2));
522   }
523 
524   auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd,
525                                 Register RegMul1, bool KillRegMul1,
526                                 Register RegMul2, bool KillRegMul2) {
527     MI->getOperand(AddOpIdx).setReg(RegAdd);
528     MI->getOperand(AddOpIdx).setIsKill(KillAdd);
529     MI->getOperand(FirstMulOpIdx).setReg(RegMul1);
530     MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1);
531     MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2);
532     MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2);
533   };
534 
535   if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) {
536     // Create new instructions for insertion.
537     MachineInstrBuilder MINewB =
538         BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
539             .addReg(RegX, getKillRegState(KillX))
540             .addReg(RegM21, getKillRegState(KillM21))
541             .addReg(RegM22, getKillRegState(KillM22));
542     MachineInstrBuilder MINewA =
543         BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
544             .addReg(RegY, getKillRegState(KillY))
545             .addReg(RegM31, getKillRegState(KillM31))
546             .addReg(RegM32, getKillRegState(KillM32));
547     // if AddOpIdx is not 1, adjust the order.
548     if (AddOpIdx != 1) {
549       AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
550       AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32);
551     }
552 
553     MachineInstrBuilder MINewC =
554         BuildMI(*MF, Root.getDebugLoc(),
555                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
556             .addReg(NewVRB, getKillRegState(true))
557             .addReg(NewVRA, getKillRegState(true));
558 
559     // update flags for new created instructions.
560     setSpecialOperandAttr(*MINewA, IntersectedFlags);
561     setSpecialOperandAttr(*MINewB, IntersectedFlags);
562     setSpecialOperandAttr(*MINewC, IntersectedFlags);
563 
564     // Record new instructions for insertion.
565     InsInstrs.push_back(MINewA);
566     InsInstrs.push_back(MINewB);
567     InsInstrs.push_back(MINewC);
568   } else if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
569     assert(NewVRD && "new FMA register not created!");
570     // Create new instructions for insertion.
571     MachineInstrBuilder MINewA =
572         BuildMI(*MF, Leaf->getDebugLoc(),
573                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA)
574             .addReg(RegM11, getKillRegState(KillM11))
575             .addReg(RegM12, getKillRegState(KillM12));
576     MachineInstrBuilder MINewB =
577         BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
578             .addReg(RegX, getKillRegState(KillX))
579             .addReg(RegM21, getKillRegState(KillM21))
580             .addReg(RegM22, getKillRegState(KillM22));
581     MachineInstrBuilder MINewD =
582         BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD)
583             .addReg(NewVRA, getKillRegState(true))
584             .addReg(RegM31, getKillRegState(KillM31))
585             .addReg(RegM32, getKillRegState(KillM32));
586     // If AddOpIdx is not 1, adjust the order.
587     if (AddOpIdx != 1) {
588       AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
589       AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32,
590                          KillM32);
591     }
592 
593     MachineInstrBuilder MINewC =
594         BuildMI(*MF, Root.getDebugLoc(),
595                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
596             .addReg(NewVRB, getKillRegState(true))
597             .addReg(NewVRD, getKillRegState(true));
598 
599     // update flags for new created instructions.
600     setSpecialOperandAttr(*MINewA, IntersectedFlags);
601     setSpecialOperandAttr(*MINewB, IntersectedFlags);
602     setSpecialOperandAttr(*MINewD, IntersectedFlags);
603     setSpecialOperandAttr(*MINewC, IntersectedFlags);
604 
605     // Record new instructions for insertion.
606     InsInstrs.push_back(MINewA);
607     InsInstrs.push_back(MINewB);
608     InsInstrs.push_back(MINewD);
609     InsInstrs.push_back(MINewC);
610   }
611 
612   assert(!InsInstrs.empty() &&
613          "Insertion instructions set should not be empty!");
614 
615   // Record old instructions for deletion.
616   DelInstrs.push_back(Leaf);
617   DelInstrs.push_back(Prev);
618   DelInstrs.push_back(&Root);
619 }
620 
621 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
622 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
623                                          Register &SrcReg, Register &DstReg,
624                                          unsigned &SubIdx) const {
625   switch (MI.getOpcode()) {
626   default: return false;
627   case PPC::EXTSW:
628   case PPC::EXTSW_32:
629   case PPC::EXTSW_32_64:
630     SrcReg = MI.getOperand(1).getReg();
631     DstReg = MI.getOperand(0).getReg();
632     SubIdx = PPC::sub_32;
633     return true;
634   }
635 }
636 
637 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
638                                            int &FrameIndex) const {
639   unsigned Opcode = MI.getOpcode();
640   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
641   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
642 
643   if (End != std::find(OpcodesForSpill, End, Opcode)) {
644     // Check for the operands added by addFrameReference (the immediate is the
645     // offset which defaults to 0).
646     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
647         MI.getOperand(2).isFI()) {
648       FrameIndex = MI.getOperand(2).getIndex();
649       return MI.getOperand(0).getReg();
650     }
651   }
652   return 0;
653 }
654 
655 // For opcodes with the ReMaterializable flag set, this function is called to
656 // verify the instruction is really rematable.
657 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
658                                                      AliasAnalysis *AA) const {
659   switch (MI.getOpcode()) {
660   default:
661     // This function should only be called for opcodes with the ReMaterializable
662     // flag set.
663     llvm_unreachable("Unknown rematerializable operation!");
664     break;
665   case PPC::LI:
666   case PPC::LI8:
667   case PPC::LIS:
668   case PPC::LIS8:
669   case PPC::QVGPCI:
670   case PPC::ADDIStocHA:
671   case PPC::ADDIStocHA8:
672   case PPC::ADDItocL:
673   case PPC::LOAD_STACK_GUARD:
674   case PPC::XXLXORz:
675   case PPC::XXLXORspz:
676   case PPC::XXLXORdpz:
677   case PPC::XXLEQVOnes:
678   case PPC::V_SET0B:
679   case PPC::V_SET0H:
680   case PPC::V_SET0:
681   case PPC::V_SETALLONESB:
682   case PPC::V_SETALLONESH:
683   case PPC::V_SETALLONES:
684   case PPC::CRSET:
685   case PPC::CRUNSET:
686     return true;
687   }
688   return false;
689 }
690 
691 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
692                                           int &FrameIndex) const {
693   unsigned Opcode = MI.getOpcode();
694   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
695   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
696 
697   if (End != std::find(OpcodesForSpill, End, Opcode)) {
698     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
699         MI.getOperand(2).isFI()) {
700       FrameIndex = MI.getOperand(2).getIndex();
701       return MI.getOperand(0).getReg();
702     }
703   }
704   return 0;
705 }
706 
707 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
708                                                    unsigned OpIdx1,
709                                                    unsigned OpIdx2) const {
710   MachineFunction &MF = *MI.getParent()->getParent();
711 
712   // Normal instructions can be commuted the obvious way.
713   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec)
714     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
715   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
716   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
717   // changing the relative order of the mask operands might change what happens
718   // to the high-bits of the mask (and, thus, the result).
719 
720   // Cannot commute if it has a non-zero rotate count.
721   if (MI.getOperand(3).getImm() != 0)
722     return nullptr;
723 
724   // If we have a zero rotate count, we have:
725   //   M = mask(MB,ME)
726   //   Op0 = (Op1 & ~M) | (Op2 & M)
727   // Change this to:
728   //   M = mask((ME+1)&31, (MB-1)&31)
729   //   Op0 = (Op2 & ~M) | (Op1 & M)
730 
731   // Swap op1/op2
732   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
733          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec.");
734   Register Reg0 = MI.getOperand(0).getReg();
735   Register Reg1 = MI.getOperand(1).getReg();
736   Register Reg2 = MI.getOperand(2).getReg();
737   unsigned SubReg1 = MI.getOperand(1).getSubReg();
738   unsigned SubReg2 = MI.getOperand(2).getSubReg();
739   bool Reg1IsKill = MI.getOperand(1).isKill();
740   bool Reg2IsKill = MI.getOperand(2).isKill();
741   bool ChangeReg0 = false;
742   // If machine instrs are no longer in two-address forms, update
743   // destination register as well.
744   if (Reg0 == Reg1) {
745     // Must be two address instruction!
746     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
747            "Expecting a two-address instruction!");
748     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
749     Reg2IsKill = false;
750     ChangeReg0 = true;
751   }
752 
753   // Masks.
754   unsigned MB = MI.getOperand(4).getImm();
755   unsigned ME = MI.getOperand(5).getImm();
756 
757   // We can't commute a trivial mask (there is no way to represent an all-zero
758   // mask).
759   if (MB == 0 && ME == 31)
760     return nullptr;
761 
762   if (NewMI) {
763     // Create a new instruction.
764     Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
765     bool Reg0IsDead = MI.getOperand(0).isDead();
766     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
767         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
768         .addReg(Reg2, getKillRegState(Reg2IsKill))
769         .addReg(Reg1, getKillRegState(Reg1IsKill))
770         .addImm((ME + 1) & 31)
771         .addImm((MB - 1) & 31);
772   }
773 
774   if (ChangeReg0) {
775     MI.getOperand(0).setReg(Reg2);
776     MI.getOperand(0).setSubReg(SubReg2);
777   }
778   MI.getOperand(2).setReg(Reg1);
779   MI.getOperand(1).setReg(Reg2);
780   MI.getOperand(2).setSubReg(SubReg1);
781   MI.getOperand(1).setSubReg(SubReg2);
782   MI.getOperand(2).setIsKill(Reg1IsKill);
783   MI.getOperand(1).setIsKill(Reg2IsKill);
784 
785   // Swap the mask around.
786   MI.getOperand(4).setImm((ME + 1) & 31);
787   MI.getOperand(5).setImm((MB - 1) & 31);
788   return &MI;
789 }
790 
791 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
792                                          unsigned &SrcOpIdx1,
793                                          unsigned &SrcOpIdx2) const {
794   // For VSX A-Type FMA instructions, it is the first two operands that can be
795   // commuted, however, because the non-encoded tied input operand is listed
796   // first, the operands to swap are actually the second and third.
797 
798   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
799   if (AltOpc == -1)
800     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
801 
802   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
803   // and SrcOpIdx2.
804   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
805 }
806 
807 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
808                               MachineBasicBlock::iterator MI) const {
809   // This function is used for scheduling, and the nop wanted here is the type
810   // that terminates dispatch groups on the POWER cores.
811   unsigned Directive = Subtarget.getCPUDirective();
812   unsigned Opcode;
813   switch (Directive) {
814   default:            Opcode = PPC::NOP; break;
815   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
816   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
817   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
818   // FIXME: Update when POWER9 scheduling model is ready.
819   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
820   }
821 
822   DebugLoc DL;
823   BuildMI(MBB, MI, DL, get(Opcode));
824 }
825 
826 /// Return the noop instruction to use for a noop.
827 void PPCInstrInfo::getNoop(MCInst &NopInst) const {
828   NopInst.setOpcode(PPC::NOP);
829 }
830 
831 // Branch analysis.
832 // Note: If the condition register is set to CTR or CTR8 then this is a
833 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
834 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
835                                  MachineBasicBlock *&TBB,
836                                  MachineBasicBlock *&FBB,
837                                  SmallVectorImpl<MachineOperand> &Cond,
838                                  bool AllowModify) const {
839   bool isPPC64 = Subtarget.isPPC64();
840 
841   // If the block has no terminators, it just falls into the block after it.
842   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
843   if (I == MBB.end())
844     return false;
845 
846   if (!isUnpredicatedTerminator(*I))
847     return false;
848 
849   if (AllowModify) {
850     // If the BB ends with an unconditional branch to the fallthrough BB,
851     // we eliminate the branch instruction.
852     if (I->getOpcode() == PPC::B &&
853         MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
854       I->eraseFromParent();
855 
856       // We update iterator after deleting the last branch.
857       I = MBB.getLastNonDebugInstr();
858       if (I == MBB.end() || !isUnpredicatedTerminator(*I))
859         return false;
860     }
861   }
862 
863   // Get the last instruction in the block.
864   MachineInstr &LastInst = *I;
865 
866   // If there is only one terminator instruction, process it.
867   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
868     if (LastInst.getOpcode() == PPC::B) {
869       if (!LastInst.getOperand(0).isMBB())
870         return true;
871       TBB = LastInst.getOperand(0).getMBB();
872       return false;
873     } else if (LastInst.getOpcode() == PPC::BCC) {
874       if (!LastInst.getOperand(2).isMBB())
875         return true;
876       // Block ends with fall-through condbranch.
877       TBB = LastInst.getOperand(2).getMBB();
878       Cond.push_back(LastInst.getOperand(0));
879       Cond.push_back(LastInst.getOperand(1));
880       return false;
881     } else if (LastInst.getOpcode() == PPC::BC) {
882       if (!LastInst.getOperand(1).isMBB())
883         return true;
884       // Block ends with fall-through condbranch.
885       TBB = LastInst.getOperand(1).getMBB();
886       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
887       Cond.push_back(LastInst.getOperand(0));
888       return false;
889     } else if (LastInst.getOpcode() == PPC::BCn) {
890       if (!LastInst.getOperand(1).isMBB())
891         return true;
892       // Block ends with fall-through condbranch.
893       TBB = LastInst.getOperand(1).getMBB();
894       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
895       Cond.push_back(LastInst.getOperand(0));
896       return false;
897     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
898                LastInst.getOpcode() == PPC::BDNZ) {
899       if (!LastInst.getOperand(0).isMBB())
900         return true;
901       if (DisableCTRLoopAnal)
902         return true;
903       TBB = LastInst.getOperand(0).getMBB();
904       Cond.push_back(MachineOperand::CreateImm(1));
905       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
906                                                true));
907       return false;
908     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
909                LastInst.getOpcode() == PPC::BDZ) {
910       if (!LastInst.getOperand(0).isMBB())
911         return true;
912       if (DisableCTRLoopAnal)
913         return true;
914       TBB = LastInst.getOperand(0).getMBB();
915       Cond.push_back(MachineOperand::CreateImm(0));
916       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
917                                                true));
918       return false;
919     }
920 
921     // Otherwise, don't know what this is.
922     return true;
923   }
924 
925   // Get the instruction before it if it's a terminator.
926   MachineInstr &SecondLastInst = *I;
927 
928   // If there are three terminators, we don't know what sort of block this is.
929   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
930     return true;
931 
932   // If the block ends with PPC::B and PPC:BCC, handle it.
933   if (SecondLastInst.getOpcode() == PPC::BCC &&
934       LastInst.getOpcode() == PPC::B) {
935     if (!SecondLastInst.getOperand(2).isMBB() ||
936         !LastInst.getOperand(0).isMBB())
937       return true;
938     TBB = SecondLastInst.getOperand(2).getMBB();
939     Cond.push_back(SecondLastInst.getOperand(0));
940     Cond.push_back(SecondLastInst.getOperand(1));
941     FBB = LastInst.getOperand(0).getMBB();
942     return false;
943   } else if (SecondLastInst.getOpcode() == PPC::BC &&
944              LastInst.getOpcode() == PPC::B) {
945     if (!SecondLastInst.getOperand(1).isMBB() ||
946         !LastInst.getOperand(0).isMBB())
947       return true;
948     TBB = SecondLastInst.getOperand(1).getMBB();
949     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
950     Cond.push_back(SecondLastInst.getOperand(0));
951     FBB = LastInst.getOperand(0).getMBB();
952     return false;
953   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
954              LastInst.getOpcode() == PPC::B) {
955     if (!SecondLastInst.getOperand(1).isMBB() ||
956         !LastInst.getOperand(0).isMBB())
957       return true;
958     TBB = SecondLastInst.getOperand(1).getMBB();
959     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
960     Cond.push_back(SecondLastInst.getOperand(0));
961     FBB = LastInst.getOperand(0).getMBB();
962     return false;
963   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
964               SecondLastInst.getOpcode() == PPC::BDNZ) &&
965              LastInst.getOpcode() == PPC::B) {
966     if (!SecondLastInst.getOperand(0).isMBB() ||
967         !LastInst.getOperand(0).isMBB())
968       return true;
969     if (DisableCTRLoopAnal)
970       return true;
971     TBB = SecondLastInst.getOperand(0).getMBB();
972     Cond.push_back(MachineOperand::CreateImm(1));
973     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
974                                              true));
975     FBB = LastInst.getOperand(0).getMBB();
976     return false;
977   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
978               SecondLastInst.getOpcode() == PPC::BDZ) &&
979              LastInst.getOpcode() == PPC::B) {
980     if (!SecondLastInst.getOperand(0).isMBB() ||
981         !LastInst.getOperand(0).isMBB())
982       return true;
983     if (DisableCTRLoopAnal)
984       return true;
985     TBB = SecondLastInst.getOperand(0).getMBB();
986     Cond.push_back(MachineOperand::CreateImm(0));
987     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
988                                              true));
989     FBB = LastInst.getOperand(0).getMBB();
990     return false;
991   }
992 
993   // If the block ends with two PPC:Bs, handle it.  The second one is not
994   // executed, so remove it.
995   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
996     if (!SecondLastInst.getOperand(0).isMBB())
997       return true;
998     TBB = SecondLastInst.getOperand(0).getMBB();
999     I = LastInst;
1000     if (AllowModify)
1001       I->eraseFromParent();
1002     return false;
1003   }
1004 
1005   // Otherwise, can't handle this.
1006   return true;
1007 }
1008 
1009 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
1010                                     int *BytesRemoved) const {
1011   assert(!BytesRemoved && "code size not handled");
1012 
1013   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1014   if (I == MBB.end())
1015     return 0;
1016 
1017   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
1018       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1019       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1020       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
1021     return 0;
1022 
1023   // Remove the branch.
1024   I->eraseFromParent();
1025 
1026   I = MBB.end();
1027 
1028   if (I == MBB.begin()) return 1;
1029   --I;
1030   if (I->getOpcode() != PPC::BCC &&
1031       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1032       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1033       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
1034     return 1;
1035 
1036   // Remove the branch.
1037   I->eraseFromParent();
1038   return 2;
1039 }
1040 
1041 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
1042                                     MachineBasicBlock *TBB,
1043                                     MachineBasicBlock *FBB,
1044                                     ArrayRef<MachineOperand> Cond,
1045                                     const DebugLoc &DL,
1046                                     int *BytesAdded) const {
1047   // Shouldn't be a fall through.
1048   assert(TBB && "insertBranch must not be told to insert a fallthrough");
1049   assert((Cond.size() == 2 || Cond.size() == 0) &&
1050          "PPC branch conditions have two components!");
1051   assert(!BytesAdded && "code size not handled");
1052 
1053   bool isPPC64 = Subtarget.isPPC64();
1054 
1055   // One-way branch.
1056   if (!FBB) {
1057     if (Cond.empty())   // Unconditional branch
1058       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
1059     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1060       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1061                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1062                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
1063     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1064       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1065     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1066       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1067     else                // Conditional branch
1068       BuildMI(&MBB, DL, get(PPC::BCC))
1069           .addImm(Cond[0].getImm())
1070           .add(Cond[1])
1071           .addMBB(TBB);
1072     return 1;
1073   }
1074 
1075   // Two-way Conditional Branch.
1076   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1077     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1078                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1079                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
1080   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1081     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1082   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1083     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1084   else
1085     BuildMI(&MBB, DL, get(PPC::BCC))
1086         .addImm(Cond[0].getImm())
1087         .add(Cond[1])
1088         .addMBB(TBB);
1089   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
1090   return 2;
1091 }
1092 
1093 // Select analysis.
1094 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
1095                                    ArrayRef<MachineOperand> Cond,
1096                                    Register DstReg, Register TrueReg,
1097                                    Register FalseReg, int &CondCycles,
1098                                    int &TrueCycles, int &FalseCycles) const {
1099   if (Cond.size() != 2)
1100     return false;
1101 
1102   // If this is really a bdnz-like condition, then it cannot be turned into a
1103   // select.
1104   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1105     return false;
1106 
1107   // Check register classes.
1108   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1109   const TargetRegisterClass *RC =
1110     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1111   if (!RC)
1112     return false;
1113 
1114   // isel is for regular integer GPRs only.
1115   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
1116       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
1117       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
1118       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
1119     return false;
1120 
1121   // FIXME: These numbers are for the A2, how well they work for other cores is
1122   // an open question. On the A2, the isel instruction has a 2-cycle latency
1123   // but single-cycle throughput. These numbers are used in combination with
1124   // the MispredictPenalty setting from the active SchedMachineModel.
1125   CondCycles = 1;
1126   TrueCycles = 1;
1127   FalseCycles = 1;
1128 
1129   return true;
1130 }
1131 
1132 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
1133                                 MachineBasicBlock::iterator MI,
1134                                 const DebugLoc &dl, Register DestReg,
1135                                 ArrayRef<MachineOperand> Cond, Register TrueReg,
1136                                 Register FalseReg) const {
1137   assert(Cond.size() == 2 &&
1138          "PPC branch conditions have two components!");
1139 
1140   // Get the register classes.
1141   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1142   const TargetRegisterClass *RC =
1143     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1144   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
1145 
1146   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
1147                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
1148   assert((Is64Bit ||
1149           PPC::GPRCRegClass.hasSubClassEq(RC) ||
1150           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
1151          "isel is for regular integer GPRs only");
1152 
1153   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
1154   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
1155 
1156   unsigned SubIdx = 0;
1157   bool SwapOps = false;
1158   switch (SelectPred) {
1159   case PPC::PRED_EQ:
1160   case PPC::PRED_EQ_MINUS:
1161   case PPC::PRED_EQ_PLUS:
1162       SubIdx = PPC::sub_eq; SwapOps = false; break;
1163   case PPC::PRED_NE:
1164   case PPC::PRED_NE_MINUS:
1165   case PPC::PRED_NE_PLUS:
1166       SubIdx = PPC::sub_eq; SwapOps = true; break;
1167   case PPC::PRED_LT:
1168   case PPC::PRED_LT_MINUS:
1169   case PPC::PRED_LT_PLUS:
1170       SubIdx = PPC::sub_lt; SwapOps = false; break;
1171   case PPC::PRED_GE:
1172   case PPC::PRED_GE_MINUS:
1173   case PPC::PRED_GE_PLUS:
1174       SubIdx = PPC::sub_lt; SwapOps = true; break;
1175   case PPC::PRED_GT:
1176   case PPC::PRED_GT_MINUS:
1177   case PPC::PRED_GT_PLUS:
1178       SubIdx = PPC::sub_gt; SwapOps = false; break;
1179   case PPC::PRED_LE:
1180   case PPC::PRED_LE_MINUS:
1181   case PPC::PRED_LE_PLUS:
1182       SubIdx = PPC::sub_gt; SwapOps = true; break;
1183   case PPC::PRED_UN:
1184   case PPC::PRED_UN_MINUS:
1185   case PPC::PRED_UN_PLUS:
1186       SubIdx = PPC::sub_un; SwapOps = false; break;
1187   case PPC::PRED_NU:
1188   case PPC::PRED_NU_MINUS:
1189   case PPC::PRED_NU_PLUS:
1190       SubIdx = PPC::sub_un; SwapOps = true; break;
1191   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
1192   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
1193   }
1194 
1195   Register FirstReg =  SwapOps ? FalseReg : TrueReg,
1196            SecondReg = SwapOps ? TrueReg  : FalseReg;
1197 
1198   // The first input register of isel cannot be r0. If it is a member
1199   // of a register class that can be r0, then copy it first (the
1200   // register allocator should eliminate the copy).
1201   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
1202       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
1203     const TargetRegisterClass *FirstRC =
1204       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
1205         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
1206     Register OldFirstReg = FirstReg;
1207     FirstReg = MRI.createVirtualRegister(FirstRC);
1208     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
1209       .addReg(OldFirstReg);
1210   }
1211 
1212   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
1213     .addReg(FirstReg).addReg(SecondReg)
1214     .addReg(Cond[1].getReg(), 0, SubIdx);
1215 }
1216 
1217 static unsigned getCRBitValue(unsigned CRBit) {
1218   unsigned Ret = 4;
1219   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
1220       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
1221       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
1222       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
1223     Ret = 3;
1224   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
1225       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
1226       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
1227       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
1228     Ret = 2;
1229   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
1230       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
1231       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
1232       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
1233     Ret = 1;
1234   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
1235       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
1236       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
1237       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
1238     Ret = 0;
1239 
1240   assert(Ret != 4 && "Invalid CR bit register");
1241   return Ret;
1242 }
1243 
1244 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1245                                MachineBasicBlock::iterator I,
1246                                const DebugLoc &DL, MCRegister DestReg,
1247                                MCRegister SrcReg, bool KillSrc) const {
1248   // We can end up with self copies and similar things as a result of VSX copy
1249   // legalization. Promote them here.
1250   const TargetRegisterInfo *TRI = &getRegisterInfo();
1251   if (PPC::F8RCRegClass.contains(DestReg) &&
1252       PPC::VSRCRegClass.contains(SrcReg)) {
1253     MCRegister SuperReg =
1254         TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
1255 
1256     if (VSXSelfCopyCrash && SrcReg == SuperReg)
1257       llvm_unreachable("nop VSX copy");
1258 
1259     DestReg = SuperReg;
1260   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
1261              PPC::VSRCRegClass.contains(DestReg)) {
1262     MCRegister SuperReg =
1263         TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
1264 
1265     if (VSXSelfCopyCrash && DestReg == SuperReg)
1266       llvm_unreachable("nop VSX copy");
1267 
1268     SrcReg = SuperReg;
1269   }
1270 
1271   // Different class register copy
1272   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
1273       PPC::GPRCRegClass.contains(DestReg)) {
1274     MCRegister CRReg = getCRFromCRBit(SrcReg);
1275     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
1276     getKillRegState(KillSrc);
1277     // Rotate the CR bit in the CR fields to be the least significant bit and
1278     // then mask with 0x1 (MB = ME = 31).
1279     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
1280        .addReg(DestReg, RegState::Kill)
1281        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
1282        .addImm(31)
1283        .addImm(31);
1284     return;
1285   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
1286       PPC::G8RCRegClass.contains(DestReg)) {
1287     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
1288     getKillRegState(KillSrc);
1289     return;
1290   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
1291       PPC::GPRCRegClass.contains(DestReg)) {
1292     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
1293     getKillRegState(KillSrc);
1294     return;
1295   } else if (PPC::G8RCRegClass.contains(SrcReg) &&
1296              PPC::VSFRCRegClass.contains(DestReg)) {
1297     assert(Subtarget.hasDirectMove() &&
1298            "Subtarget doesn't support directmove, don't know how to copy.");
1299     BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
1300     NumGPRtoVSRSpill++;
1301     getKillRegState(KillSrc);
1302     return;
1303   } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
1304              PPC::G8RCRegClass.contains(DestReg)) {
1305     assert(Subtarget.hasDirectMove() &&
1306            "Subtarget doesn't support directmove, don't know how to copy.");
1307     BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
1308     getKillRegState(KillSrc);
1309     return;
1310   } else if (PPC::SPERCRegClass.contains(SrcReg) &&
1311              PPC::GPRCRegClass.contains(DestReg)) {
1312     BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
1313     getKillRegState(KillSrc);
1314     return;
1315   } else if (PPC::GPRCRegClass.contains(SrcReg) &&
1316              PPC::SPERCRegClass.contains(DestReg)) {
1317     BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
1318     getKillRegState(KillSrc);
1319     return;
1320   }
1321 
1322   unsigned Opc;
1323   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
1324     Opc = PPC::OR;
1325   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
1326     Opc = PPC::OR8;
1327   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
1328     Opc = PPC::FMR;
1329   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
1330     Opc = PPC::MCRF;
1331   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
1332     Opc = PPC::VOR;
1333   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
1334     // There are two different ways this can be done:
1335     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
1336     //      issue in VSU pipeline 0.
1337     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
1338     //      can go to either pipeline.
1339     // We'll always use xxlor here, because in practically all cases where
1340     // copies are generated, they are close enough to some use that the
1341     // lower-latency form is preferable.
1342     Opc = PPC::XXLOR;
1343   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1344            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1345     Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1346   else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
1347     Opc = PPC::QVFMR;
1348   else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
1349     Opc = PPC::QVFMRs;
1350   else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
1351     Opc = PPC::QVFMRb;
1352   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1353     Opc = PPC::CROR;
1354   else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1355     Opc = PPC::EVOR;
1356   else
1357     llvm_unreachable("Impossible reg-to-reg copy");
1358 
1359   const MCInstrDesc &MCID = get(Opc);
1360   if (MCID.getNumOperands() == 3)
1361     BuildMI(MBB, I, DL, MCID, DestReg)
1362       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1363   else
1364     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1365 }
1366 
1367 static unsigned getSpillIndex(const TargetRegisterClass *RC) {
1368   int OpcodeIndex = 0;
1369 
1370   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1371       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1372     OpcodeIndex = SOK_Int4Spill;
1373   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1374              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1375     OpcodeIndex = SOK_Int8Spill;
1376   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1377     OpcodeIndex = SOK_Float8Spill;
1378   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1379     OpcodeIndex = SOK_Float4Spill;
1380   } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1381     OpcodeIndex = SOK_SPESpill;
1382   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1383     OpcodeIndex = SOK_CRSpill;
1384   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1385     OpcodeIndex = SOK_CRBitSpill;
1386   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1387     OpcodeIndex = SOK_VRVectorSpill;
1388   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1389     OpcodeIndex = SOK_VSXVectorSpill;
1390   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1391     OpcodeIndex = SOK_VectorFloat8Spill;
1392   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1393     OpcodeIndex = SOK_VectorFloat4Spill;
1394   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1395     OpcodeIndex = SOK_VRSaveSpill;
1396   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1397     OpcodeIndex = SOK_QuadFloat8Spill;
1398   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1399     OpcodeIndex = SOK_QuadFloat4Spill;
1400   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1401     OpcodeIndex = SOK_QuadBitSpill;
1402   } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1403     OpcodeIndex = SOK_SpillToVSR;
1404   } else {
1405     llvm_unreachable("Unknown regclass!");
1406   }
1407   return OpcodeIndex;
1408 }
1409 
1410 unsigned
1411 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const {
1412   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1413   return OpcodesForSpill[getSpillIndex(RC)];
1414 }
1415 
1416 unsigned
1417 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const {
1418   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1419   return OpcodesForSpill[getSpillIndex(RC)];
1420 }
1421 
1422 void PPCInstrInfo::StoreRegToStackSlot(
1423     MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1424     const TargetRegisterClass *RC,
1425     SmallVectorImpl<MachineInstr *> &NewMIs) const {
1426   unsigned Opcode = getStoreOpcodeForSpill(RC);
1427   DebugLoc DL;
1428 
1429   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1430   FuncInfo->setHasSpills();
1431 
1432   NewMIs.push_back(addFrameReference(
1433       BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1434       FrameIdx));
1435 
1436   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1437       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1438     FuncInfo->setSpillsCR();
1439 
1440   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1441     FuncInfo->setSpillsVRSAVE();
1442 
1443   if (isXFormMemOp(Opcode))
1444     FuncInfo->setHasNonRISpills();
1445 }
1446 
1447 void PPCInstrInfo::storeRegToStackSlotNoUpd(
1448     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg,
1449     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
1450     const TargetRegisterInfo *TRI) const {
1451   MachineFunction &MF = *MBB.getParent();
1452   SmallVector<MachineInstr *, 4> NewMIs;
1453 
1454   StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1455 
1456   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1457     MBB.insert(MI, NewMIs[i]);
1458 
1459   const MachineFrameInfo &MFI = MF.getFrameInfo();
1460   MachineMemOperand *MMO = MF.getMachineMemOperand(
1461       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1462       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1463       MFI.getObjectAlign(FrameIdx));
1464   NewMIs.back()->addMemOperand(MF, MMO);
1465 }
1466 
1467 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1468                                        MachineBasicBlock::iterator MI,
1469                                        Register SrcReg, bool isKill,
1470                                        int FrameIdx,
1471                                        const TargetRegisterClass *RC,
1472                                        const TargetRegisterInfo *TRI) const {
1473   // We need to avoid a situation in which the value from a VRRC register is
1474   // spilled using an Altivec instruction and reloaded into a VSRC register
1475   // using a VSX instruction. The issue with this is that the VSX
1476   // load/store instructions swap the doublewords in the vector and the Altivec
1477   // ones don't. The register classes on the spill/reload may be different if
1478   // the register is defined using an Altivec instruction and is then used by a
1479   // VSX instruction.
1480   RC = updatedRC(RC);
1481   storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI);
1482 }
1483 
1484 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1485                                         unsigned DestReg, int FrameIdx,
1486                                         const TargetRegisterClass *RC,
1487                                         SmallVectorImpl<MachineInstr *> &NewMIs)
1488                                         const {
1489   unsigned Opcode = getLoadOpcodeForSpill(RC);
1490   NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1491                                      FrameIdx));
1492   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1493 
1494   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1495       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1496     FuncInfo->setSpillsCR();
1497 
1498   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1499     FuncInfo->setSpillsVRSAVE();
1500 
1501   if (isXFormMemOp(Opcode))
1502     FuncInfo->setHasNonRISpills();
1503 }
1504 
1505 void PPCInstrInfo::loadRegFromStackSlotNoUpd(
1506     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg,
1507     int FrameIdx, const TargetRegisterClass *RC,
1508     const TargetRegisterInfo *TRI) const {
1509   MachineFunction &MF = *MBB.getParent();
1510   SmallVector<MachineInstr*, 4> NewMIs;
1511   DebugLoc DL;
1512   if (MI != MBB.end()) DL = MI->getDebugLoc();
1513 
1514   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1515   FuncInfo->setHasSpills();
1516 
1517   LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
1518 
1519   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1520     MBB.insert(MI, NewMIs[i]);
1521 
1522   const MachineFrameInfo &MFI = MF.getFrameInfo();
1523   MachineMemOperand *MMO = MF.getMachineMemOperand(
1524       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1525       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1526       MFI.getObjectAlign(FrameIdx));
1527   NewMIs.back()->addMemOperand(MF, MMO);
1528 }
1529 
1530 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1531                                         MachineBasicBlock::iterator MI,
1532                                         Register DestReg, int FrameIdx,
1533                                         const TargetRegisterClass *RC,
1534                                         const TargetRegisterInfo *TRI) const {
1535   // We need to avoid a situation in which the value from a VRRC register is
1536   // spilled using an Altivec instruction and reloaded into a VSRC register
1537   // using a VSX instruction. The issue with this is that the VSX
1538   // load/store instructions swap the doublewords in the vector and the Altivec
1539   // ones don't. The register classes on the spill/reload may be different if
1540   // the register is defined using an Altivec instruction and is then used by a
1541   // VSX instruction.
1542   RC = updatedRC(RC);
1543 
1544   loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI);
1545 }
1546 
1547 bool PPCInstrInfo::
1548 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1549   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1550   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1551     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1552   else
1553     // Leave the CR# the same, but invert the condition.
1554     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1555   return false;
1556 }
1557 
1558 // For some instructions, it is legal to fold ZERO into the RA register field.
1559 // This function performs that fold by replacing the operand with PPC::ZERO,
1560 // it does not consider whether the load immediate zero is no longer in use.
1561 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1562                                      Register Reg) const {
1563   // A zero immediate should always be loaded with a single li.
1564   unsigned DefOpc = DefMI.getOpcode();
1565   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1566     return false;
1567   if (!DefMI.getOperand(1).isImm())
1568     return false;
1569   if (DefMI.getOperand(1).getImm() != 0)
1570     return false;
1571 
1572   // Note that we cannot here invert the arguments of an isel in order to fold
1573   // a ZERO into what is presented as the second argument. All we have here
1574   // is the condition bit, and that might come from a CR-logical bit operation.
1575 
1576   const MCInstrDesc &UseMCID = UseMI.getDesc();
1577 
1578   // Only fold into real machine instructions.
1579   if (UseMCID.isPseudo())
1580     return false;
1581 
1582   // We need to find which of the User's operands is to be folded, that will be
1583   // the operand that matches the given register ID.
1584   unsigned UseIdx;
1585   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1586     if (UseMI.getOperand(UseIdx).isReg() &&
1587         UseMI.getOperand(UseIdx).getReg() == Reg)
1588       break;
1589 
1590   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1591   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1592 
1593   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1594 
1595   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1596   // register (which might also be specified as a pointer class kind).
1597   if (UseInfo->isLookupPtrRegClass()) {
1598     if (UseInfo->RegClass /* Kind */ != 1)
1599       return false;
1600   } else {
1601     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1602         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1603       return false;
1604   }
1605 
1606   // Make sure this is not tied to an output register (or otherwise
1607   // constrained). This is true for ST?UX registers, for example, which
1608   // are tied to their output registers.
1609   if (UseInfo->Constraints != 0)
1610     return false;
1611 
1612   MCRegister ZeroReg;
1613   if (UseInfo->isLookupPtrRegClass()) {
1614     bool isPPC64 = Subtarget.isPPC64();
1615     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1616   } else {
1617     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1618               PPC::ZERO8 : PPC::ZERO;
1619   }
1620 
1621   UseMI.getOperand(UseIdx).setReg(ZeroReg);
1622   return true;
1623 }
1624 
1625 // Folds zero into instructions which have a load immediate zero as an operand
1626 // but also recognize zero as immediate zero. If the definition of the load
1627 // has no more users it is deleted.
1628 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1629                                  Register Reg, MachineRegisterInfo *MRI) const {
1630   bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg);
1631   if (MRI->use_nodbg_empty(Reg))
1632     DefMI.eraseFromParent();
1633   return Changed;
1634 }
1635 
1636 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1637   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1638        I != IE; ++I)
1639     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1640       return true;
1641   return false;
1642 }
1643 
1644 // We should make sure that, if we're going to predicate both sides of a
1645 // condition (a diamond), that both sides don't define the counter register. We
1646 // can predicate counter-decrement-based branches, but while that predicates
1647 // the branching, it does not predicate the counter decrement. If we tried to
1648 // merge the triangle into one predicated block, we'd decrement the counter
1649 // twice.
1650 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1651                      unsigned NumT, unsigned ExtraT,
1652                      MachineBasicBlock &FMBB,
1653                      unsigned NumF, unsigned ExtraF,
1654                      BranchProbability Probability) const {
1655   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1656 }
1657 
1658 
1659 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1660   // The predicated branches are identified by their type, not really by the
1661   // explicit presence of a predicate. Furthermore, some of them can be
1662   // predicated more than once. Because if conversion won't try to predicate
1663   // any instruction which already claims to be predicated (by returning true
1664   // here), always return false. In doing so, we let isPredicable() be the
1665   // final word on whether not the instruction can be (further) predicated.
1666 
1667   return false;
1668 }
1669 
1670 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1671                                         ArrayRef<MachineOperand> Pred) const {
1672   unsigned OpC = MI.getOpcode();
1673   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1674     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1675       bool isPPC64 = Subtarget.isPPC64();
1676       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1677                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1678     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1679       MI.setDesc(get(PPC::BCLR));
1680       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1681     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1682       MI.setDesc(get(PPC::BCLRn));
1683       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1684     } else {
1685       MI.setDesc(get(PPC::BCCLR));
1686       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1687           .addImm(Pred[0].getImm())
1688           .add(Pred[1]);
1689     }
1690 
1691     return true;
1692   } else if (OpC == PPC::B) {
1693     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1694       bool isPPC64 = Subtarget.isPPC64();
1695       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1696                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1697     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1698       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1699       MI.RemoveOperand(0);
1700 
1701       MI.setDesc(get(PPC::BC));
1702       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1703           .add(Pred[1])
1704           .addMBB(MBB);
1705     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1706       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1707       MI.RemoveOperand(0);
1708 
1709       MI.setDesc(get(PPC::BCn));
1710       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1711           .add(Pred[1])
1712           .addMBB(MBB);
1713     } else {
1714       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1715       MI.RemoveOperand(0);
1716 
1717       MI.setDesc(get(PPC::BCC));
1718       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1719           .addImm(Pred[0].getImm())
1720           .add(Pred[1])
1721           .addMBB(MBB);
1722     }
1723 
1724     return true;
1725   } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
1726              OpC == PPC::BCTRL8) {
1727     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1728       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1729 
1730     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1731     bool isPPC64 = Subtarget.isPPC64();
1732 
1733     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1734       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1735                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1736       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1737       return true;
1738     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1739       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1740                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1741       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1742       return true;
1743     }
1744 
1745     MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1746                            : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1747     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1748         .addImm(Pred[0].getImm())
1749         .add(Pred[1]);
1750     return true;
1751   }
1752 
1753   return false;
1754 }
1755 
1756 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1757                                      ArrayRef<MachineOperand> Pred2) const {
1758   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1759   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1760 
1761   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1762     return false;
1763   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1764     return false;
1765 
1766   // P1 can only subsume P2 if they test the same condition register.
1767   if (Pred1[1].getReg() != Pred2[1].getReg())
1768     return false;
1769 
1770   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1771   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1772 
1773   if (P1 == P2)
1774     return true;
1775 
1776   // Does P1 subsume P2, e.g. GE subsumes GT.
1777   if (P1 == PPC::PRED_LE &&
1778       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1779     return true;
1780   if (P1 == PPC::PRED_GE &&
1781       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1782     return true;
1783 
1784   return false;
1785 }
1786 
1787 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1788                                     std::vector<MachineOperand> &Pred) const {
1789   // Note: At the present time, the contents of Pred from this function is
1790   // unused by IfConversion. This implementation follows ARM by pushing the
1791   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1792   // predicate, instructions defining CTR or CTR8 are also included as
1793   // predicate-defining instructions.
1794 
1795   const TargetRegisterClass *RCs[] =
1796     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1797       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1798 
1799   bool Found = false;
1800   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1801     const MachineOperand &MO = MI.getOperand(i);
1802     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1803       const TargetRegisterClass *RC = RCs[c];
1804       if (MO.isReg()) {
1805         if (MO.isDef() && RC->contains(MO.getReg())) {
1806           Pred.push_back(MO);
1807           Found = true;
1808         }
1809       } else if (MO.isRegMask()) {
1810         for (TargetRegisterClass::iterator I = RC->begin(),
1811              IE = RC->end(); I != IE; ++I)
1812           if (MO.clobbersPhysReg(*I)) {
1813             Pred.push_back(MO);
1814             Found = true;
1815           }
1816       }
1817     }
1818   }
1819 
1820   return Found;
1821 }
1822 
1823 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1824                                   Register &SrcReg2, int &Mask,
1825                                   int &Value) const {
1826   unsigned Opc = MI.getOpcode();
1827 
1828   switch (Opc) {
1829   default: return false;
1830   case PPC::CMPWI:
1831   case PPC::CMPLWI:
1832   case PPC::CMPDI:
1833   case PPC::CMPLDI:
1834     SrcReg = MI.getOperand(1).getReg();
1835     SrcReg2 = 0;
1836     Value = MI.getOperand(2).getImm();
1837     Mask = 0xFFFF;
1838     return true;
1839   case PPC::CMPW:
1840   case PPC::CMPLW:
1841   case PPC::CMPD:
1842   case PPC::CMPLD:
1843   case PPC::FCMPUS:
1844   case PPC::FCMPUD:
1845     SrcReg = MI.getOperand(1).getReg();
1846     SrcReg2 = MI.getOperand(2).getReg();
1847     Value = 0;
1848     Mask = 0;
1849     return true;
1850   }
1851 }
1852 
1853 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
1854                                         Register SrcReg2, int Mask, int Value,
1855                                         const MachineRegisterInfo *MRI) const {
1856   if (DisableCmpOpt)
1857     return false;
1858 
1859   int OpC = CmpInstr.getOpcode();
1860   Register CRReg = CmpInstr.getOperand(0).getReg();
1861 
1862   // FP record forms set CR1 based on the exception status bits, not a
1863   // comparison with zero.
1864   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1865     return false;
1866 
1867   const TargetRegisterInfo *TRI = &getRegisterInfo();
1868   // The record forms set the condition register based on a signed comparison
1869   // with zero (so says the ISA manual). This is not as straightforward as it
1870   // seems, however, because this is always a 64-bit comparison on PPC64, even
1871   // for instructions that are 32-bit in nature (like slw for example).
1872   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1873   // for equality checks (as those don't depend on the sign). On PPC64,
1874   // we are restricted to equality for unsigned 64-bit comparisons and for
1875   // signed 32-bit comparisons the applicability is more restricted.
1876   bool isPPC64 = Subtarget.isPPC64();
1877   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1878   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1879   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1880 
1881   // Look through copies unless that gets us to a physical register.
1882   Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
1883   if (ActualSrc.isVirtual())
1884     SrcReg = ActualSrc;
1885 
1886   // Get the unique definition of SrcReg.
1887   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1888   if (!MI) return false;
1889 
1890   bool equalityOnly = false;
1891   bool noSub = false;
1892   if (isPPC64) {
1893     if (is32BitSignedCompare) {
1894       // We can perform this optimization only if MI is sign-extending.
1895       if (isSignExtended(*MI))
1896         noSub = true;
1897       else
1898         return false;
1899     } else if (is32BitUnsignedCompare) {
1900       // We can perform this optimization, equality only, if MI is
1901       // zero-extending.
1902       if (isZeroExtended(*MI)) {
1903         noSub = true;
1904         equalityOnly = true;
1905       } else
1906         return false;
1907     } else
1908       equalityOnly = is64BitUnsignedCompare;
1909   } else
1910     equalityOnly = is32BitUnsignedCompare;
1911 
1912   if (equalityOnly) {
1913     // We need to check the uses of the condition register in order to reject
1914     // non-equality comparisons.
1915     for (MachineRegisterInfo::use_instr_iterator
1916          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1917          I != IE; ++I) {
1918       MachineInstr *UseMI = &*I;
1919       if (UseMI->getOpcode() == PPC::BCC) {
1920         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1921         unsigned PredCond = PPC::getPredicateCondition(Pred);
1922         // We ignore hint bits when checking for non-equality comparisons.
1923         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
1924           return false;
1925       } else if (UseMI->getOpcode() == PPC::ISEL ||
1926                  UseMI->getOpcode() == PPC::ISEL8) {
1927         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1928         if (SubIdx != PPC::sub_eq)
1929           return false;
1930       } else
1931         return false;
1932     }
1933   }
1934 
1935   MachineBasicBlock::iterator I = CmpInstr;
1936 
1937   // Scan forward to find the first use of the compare.
1938   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1939        ++I) {
1940     bool FoundUse = false;
1941     for (MachineRegisterInfo::use_instr_iterator
1942          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
1943          J != JE; ++J)
1944       if (&*J == &*I) {
1945         FoundUse = true;
1946         break;
1947       }
1948 
1949     if (FoundUse)
1950       break;
1951   }
1952 
1953   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1954   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1955 
1956   // There are two possible candidates which can be changed to set CR[01].
1957   // One is MI, the other is a SUB instruction.
1958   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1959   MachineInstr *Sub = nullptr;
1960   if (SrcReg2 != 0)
1961     // MI is not a candidate for CMPrr.
1962     MI = nullptr;
1963   // FIXME: Conservatively refuse to convert an instruction which isn't in the
1964   // same BB as the comparison. This is to allow the check below to avoid calls
1965   // (and other explicit clobbers); instead we should really check for these
1966   // more explicitly (in at least a few predecessors).
1967   else if (MI->getParent() != CmpInstr.getParent())
1968     return false;
1969   else if (Value != 0) {
1970     // The record-form instructions set CR bit based on signed comparison
1971     // against 0. We try to convert a compare against 1 or -1 into a compare
1972     // against 0 to exploit record-form instructions. For example, we change
1973     // the condition "greater than -1" into "greater than or equal to 0"
1974     // and "less than 1" into "less than or equal to 0".
1975 
1976     // Since we optimize comparison based on a specific branch condition,
1977     // we don't optimize if condition code is used by more than once.
1978     if (equalityOnly || !MRI->hasOneUse(CRReg))
1979       return false;
1980 
1981     MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
1982     if (UseMI->getOpcode() != PPC::BCC)
1983       return false;
1984 
1985     PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1986     unsigned PredCond = PPC::getPredicateCondition(Pred);
1987     unsigned PredHint = PPC::getPredicateHint(Pred);
1988     int16_t Immed = (int16_t)Value;
1989 
1990     // When modifying the condition in the predicate, we propagate hint bits
1991     // from the original predicate to the new one.
1992     if (Immed == -1 && PredCond == PPC::PRED_GT)
1993       // We convert "greater than -1" into "greater than or equal to 0",
1994       // since we are assuming signed comparison by !equalityOnly
1995       Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
1996     else if (Immed == -1 && PredCond == PPC::PRED_LE)
1997       // We convert "less than or equal to -1" into "less than 0".
1998       Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
1999     else if (Immed == 1 && PredCond == PPC::PRED_LT)
2000       // We convert "less than 1" into "less than or equal to 0".
2001       Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
2002     else if (Immed == 1 && PredCond == PPC::PRED_GE)
2003       // We convert "greater than or equal to 1" into "greater than 0".
2004       Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
2005     else
2006       return false;
2007 
2008     PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
2009   }
2010 
2011   // Search for Sub.
2012   --I;
2013 
2014   // Get ready to iterate backward from CmpInstr.
2015   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
2016 
2017   for (; I != E && !noSub; --I) {
2018     const MachineInstr &Instr = *I;
2019     unsigned IOpC = Instr.getOpcode();
2020 
2021     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
2022                              Instr.readsRegister(PPC::CR0, TRI)))
2023       // This instruction modifies or uses the record condition register after
2024       // the one we want to change. While we could do this transformation, it
2025       // would likely not be profitable. This transformation removes one
2026       // instruction, and so even forcing RA to generate one move probably
2027       // makes it unprofitable.
2028       return false;
2029 
2030     // Check whether CmpInstr can be made redundant by the current instruction.
2031     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
2032          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
2033         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
2034         ((Instr.getOperand(1).getReg() == SrcReg &&
2035           Instr.getOperand(2).getReg() == SrcReg2) ||
2036         (Instr.getOperand(1).getReg() == SrcReg2 &&
2037          Instr.getOperand(2).getReg() == SrcReg))) {
2038       Sub = &*I;
2039       break;
2040     }
2041 
2042     if (I == B)
2043       // The 'and' is below the comparison instruction.
2044       return false;
2045   }
2046 
2047   // Return false if no candidates exist.
2048   if (!MI && !Sub)
2049     return false;
2050 
2051   // The single candidate is called MI.
2052   if (!MI) MI = Sub;
2053 
2054   int NewOpC = -1;
2055   int MIOpC = MI->getOpcode();
2056   if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec ||
2057       MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec)
2058     NewOpC = MIOpC;
2059   else {
2060     NewOpC = PPC::getRecordFormOpcode(MIOpC);
2061     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
2062       NewOpC = MIOpC;
2063   }
2064 
2065   // FIXME: On the non-embedded POWER architectures, only some of the record
2066   // forms are fast, and we should use only the fast ones.
2067 
2068   // The defining instruction has a record form (or is already a record
2069   // form). It is possible, however, that we'll need to reverse the condition
2070   // code of the users.
2071   if (NewOpC == -1)
2072     return false;
2073 
2074   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
2075   // needs to be updated to be based on SUB.  Push the condition code
2076   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
2077   // condition code of these operands will be modified.
2078   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
2079   // comparison against 0, which may modify predicate.
2080   bool ShouldSwap = false;
2081   if (Sub && Value == 0) {
2082     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2083       Sub->getOperand(2).getReg() == SrcReg;
2084 
2085     // The operands to subf are the opposite of sub, so only in the fixed-point
2086     // case, invert the order.
2087     ShouldSwap = !ShouldSwap;
2088   }
2089 
2090   if (ShouldSwap)
2091     for (MachineRegisterInfo::use_instr_iterator
2092          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
2093          I != IE; ++I) {
2094       MachineInstr *UseMI = &*I;
2095       if (UseMI->getOpcode() == PPC::BCC) {
2096         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
2097         unsigned PredCond = PPC::getPredicateCondition(Pred);
2098         assert((!equalityOnly ||
2099                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
2100                "Invalid predicate for equality-only optimization");
2101         (void)PredCond; // To suppress warning in release build.
2102         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
2103                                 PPC::getSwappedPredicate(Pred)));
2104       } else if (UseMI->getOpcode() == PPC::ISEL ||
2105                  UseMI->getOpcode() == PPC::ISEL8) {
2106         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
2107         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
2108                "Invalid CR bit for equality-only optimization");
2109 
2110         if (NewSubReg == PPC::sub_lt)
2111           NewSubReg = PPC::sub_gt;
2112         else if (NewSubReg == PPC::sub_gt)
2113           NewSubReg = PPC::sub_lt;
2114 
2115         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
2116                                                  NewSubReg));
2117       } else // We need to abort on a user we don't understand.
2118         return false;
2119     }
2120   assert(!(Value != 0 && ShouldSwap) &&
2121          "Non-zero immediate support and ShouldSwap"
2122          "may conflict in updating predicate");
2123 
2124   // Create a new virtual register to hold the value of the CR set by the
2125   // record-form instruction. If the instruction was not previously in
2126   // record form, then set the kill flag on the CR.
2127   CmpInstr.eraseFromParent();
2128 
2129   MachineBasicBlock::iterator MII = MI;
2130   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
2131           get(TargetOpcode::COPY), CRReg)
2132     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
2133 
2134   // Even if CR0 register were dead before, it is alive now since the
2135   // instruction we just built uses it.
2136   MI->clearRegisterDeads(PPC::CR0);
2137 
2138   if (MIOpC != NewOpC) {
2139     // We need to be careful here: we're replacing one instruction with
2140     // another, and we need to make sure that we get all of the right
2141     // implicit uses and defs. On the other hand, the caller may be holding
2142     // an iterator to this instruction, and so we can't delete it (this is
2143     // specifically the case if this is the instruction directly after the
2144     // compare).
2145 
2146     // Rotates are expensive instructions. If we're emitting a record-form
2147     // rotate that can just be an andi/andis, we should just emit that.
2148     if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
2149       Register GPRRes = MI->getOperand(0).getReg();
2150       int64_t SH = MI->getOperand(2).getImm();
2151       int64_t MB = MI->getOperand(3).getImm();
2152       int64_t ME = MI->getOperand(4).getImm();
2153       // We can only do this if both the start and end of the mask are in the
2154       // same halfword.
2155       bool MBInLoHWord = MB >= 16;
2156       bool MEInLoHWord = ME >= 16;
2157       uint64_t Mask = ~0LLU;
2158 
2159       if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
2160         Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2161         // The mask value needs to shift right 16 if we're emitting andis.
2162         Mask >>= MBInLoHWord ? 0 : 16;
2163         NewOpC = MIOpC == PPC::RLWINM
2164                      ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec)
2165                      : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec);
2166       } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
2167                  (ME - MB + 1 == SH) && (MB >= 16)) {
2168         // If we are rotating by the exact number of bits as are in the mask
2169         // and the mask is in the least significant bits of the register,
2170         // that's just an andis. (as long as the GPR result has no uses).
2171         Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
2172         Mask >>= 16;
2173         NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec;
2174       }
2175       // If we've set the mask, we can transform.
2176       if (Mask != ~0LLU) {
2177         MI->RemoveOperand(4);
2178         MI->RemoveOperand(3);
2179         MI->getOperand(2).setImm(Mask);
2180         NumRcRotatesConvertedToRcAnd++;
2181       }
2182     } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
2183       int64_t MB = MI->getOperand(3).getImm();
2184       if (MB >= 48) {
2185         uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2186         NewOpC = PPC::ANDI8_rec;
2187         MI->RemoveOperand(3);
2188         MI->getOperand(2).setImm(Mask);
2189         NumRcRotatesConvertedToRcAnd++;
2190       }
2191     }
2192 
2193     const MCInstrDesc &NewDesc = get(NewOpC);
2194     MI->setDesc(NewDesc);
2195 
2196     if (NewDesc.ImplicitDefs)
2197       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
2198            *ImpDefs; ++ImpDefs)
2199         if (!MI->definesRegister(*ImpDefs))
2200           MI->addOperand(*MI->getParent()->getParent(),
2201                          MachineOperand::CreateReg(*ImpDefs, true, true));
2202     if (NewDesc.ImplicitUses)
2203       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
2204            *ImpUses; ++ImpUses)
2205         if (!MI->readsRegister(*ImpUses))
2206           MI->addOperand(*MI->getParent()->getParent(),
2207                          MachineOperand::CreateReg(*ImpUses, false, true));
2208   }
2209   assert(MI->definesRegister(PPC::CR0) &&
2210          "Record-form instruction does not define cr0?");
2211 
2212   // Modify the condition code of operands in OperandsToUpdate.
2213   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2214   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2215   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
2216     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
2217 
2218   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2219     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2220 
2221   return true;
2222 }
2223 
2224 /// GetInstSize - Return the number of bytes of code the specified
2225 /// instruction may be.  This returns the maximum number of bytes.
2226 ///
2227 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2228   unsigned Opcode = MI.getOpcode();
2229 
2230   if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
2231     const MachineFunction *MF = MI.getParent()->getParent();
2232     const char *AsmStr = MI.getOperand(0).getSymbolName();
2233     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2234   } else if (Opcode == TargetOpcode::STACKMAP) {
2235     StackMapOpers Opers(&MI);
2236     return Opers.getNumPatchBytes();
2237   } else if (Opcode == TargetOpcode::PATCHPOINT) {
2238     PatchPointOpers Opers(&MI);
2239     return Opers.getNumPatchBytes();
2240   } else {
2241     return get(Opcode).getSize();
2242   }
2243 }
2244 
2245 std::pair<unsigned, unsigned>
2246 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2247   const unsigned Mask = PPCII::MO_ACCESS_MASK;
2248   return std::make_pair(TF & Mask, TF & ~Mask);
2249 }
2250 
2251 ArrayRef<std::pair<unsigned, const char *>>
2252 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2253   using namespace PPCII;
2254   static const std::pair<unsigned, const char *> TargetFlags[] = {
2255       {MO_LO, "ppc-lo"},
2256       {MO_HA, "ppc-ha"},
2257       {MO_TPREL_LO, "ppc-tprel-lo"},
2258       {MO_TPREL_HA, "ppc-tprel-ha"},
2259       {MO_DTPREL_LO, "ppc-dtprel-lo"},
2260       {MO_TLSLD_LO, "ppc-tlsld-lo"},
2261       {MO_TOC_LO, "ppc-toc-lo"},
2262       {MO_TLS, "ppc-tls"}};
2263   return makeArrayRef(TargetFlags);
2264 }
2265 
2266 ArrayRef<std::pair<unsigned, const char *>>
2267 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2268   using namespace PPCII;
2269   static const std::pair<unsigned, const char *> TargetFlags[] = {
2270       {MO_PLT, "ppc-plt"},
2271       {MO_PIC_FLAG, "ppc-pic"},
2272       {MO_PCREL_FLAG, "ppc-pcrel"},
2273       {MO_GOT_FLAG, "ppc-got"}};
2274   return makeArrayRef(TargetFlags);
2275 }
2276 
2277 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2278 // The VSX versions have the advantage of a full 64-register target whereas
2279 // the FP ones have the advantage of lower latency and higher throughput. So
2280 // what we are after is using the faster instructions in low register pressure
2281 // situations and using the larger register file in high register pressure
2282 // situations.
2283 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2284     unsigned UpperOpcode, LowerOpcode;
2285     switch (MI.getOpcode()) {
2286     case PPC::DFLOADf32:
2287       UpperOpcode = PPC::LXSSP;
2288       LowerOpcode = PPC::LFS;
2289       break;
2290     case PPC::DFLOADf64:
2291       UpperOpcode = PPC::LXSD;
2292       LowerOpcode = PPC::LFD;
2293       break;
2294     case PPC::DFSTOREf32:
2295       UpperOpcode = PPC::STXSSP;
2296       LowerOpcode = PPC::STFS;
2297       break;
2298     case PPC::DFSTOREf64:
2299       UpperOpcode = PPC::STXSD;
2300       LowerOpcode = PPC::STFD;
2301       break;
2302     case PPC::XFLOADf32:
2303       UpperOpcode = PPC::LXSSPX;
2304       LowerOpcode = PPC::LFSX;
2305       break;
2306     case PPC::XFLOADf64:
2307       UpperOpcode = PPC::LXSDX;
2308       LowerOpcode = PPC::LFDX;
2309       break;
2310     case PPC::XFSTOREf32:
2311       UpperOpcode = PPC::STXSSPX;
2312       LowerOpcode = PPC::STFSX;
2313       break;
2314     case PPC::XFSTOREf64:
2315       UpperOpcode = PPC::STXSDX;
2316       LowerOpcode = PPC::STFDX;
2317       break;
2318     case PPC::LIWAX:
2319       UpperOpcode = PPC::LXSIWAX;
2320       LowerOpcode = PPC::LFIWAX;
2321       break;
2322     case PPC::LIWZX:
2323       UpperOpcode = PPC::LXSIWZX;
2324       LowerOpcode = PPC::LFIWZX;
2325       break;
2326     case PPC::STIWX:
2327       UpperOpcode = PPC::STXSIWX;
2328       LowerOpcode = PPC::STFIWX;
2329       break;
2330     default:
2331       llvm_unreachable("Unknown Operation!");
2332     }
2333 
2334     Register TargetReg = MI.getOperand(0).getReg();
2335     unsigned Opcode;
2336     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2337         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2338       Opcode = LowerOpcode;
2339     else
2340       Opcode = UpperOpcode;
2341     MI.setDesc(get(Opcode));
2342     return true;
2343 }
2344 
2345 static bool isAnImmediateOperand(const MachineOperand &MO) {
2346   return MO.isCPI() || MO.isGlobal() || MO.isImm();
2347 }
2348 
2349 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2350   auto &MBB = *MI.getParent();
2351   auto DL = MI.getDebugLoc();
2352 
2353   switch (MI.getOpcode()) {
2354   case TargetOpcode::LOAD_STACK_GUARD: {
2355     assert(Subtarget.isTargetLinux() &&
2356            "Only Linux target is expected to contain LOAD_STACK_GUARD");
2357     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
2358     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
2359     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
2360     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2361         .addImm(Offset)
2362         .addReg(Reg);
2363     return true;
2364   }
2365   case PPC::DFLOADf32:
2366   case PPC::DFLOADf64:
2367   case PPC::DFSTOREf32:
2368   case PPC::DFSTOREf64: {
2369     assert(Subtarget.hasP9Vector() &&
2370            "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2371     assert(MI.getOperand(2).isReg() &&
2372            isAnImmediateOperand(MI.getOperand(1)) &&
2373            "D-form op must have register and immediate operands");
2374     return expandVSXMemPseudo(MI);
2375   }
2376   case PPC::XFLOADf32:
2377   case PPC::XFSTOREf32:
2378   case PPC::LIWAX:
2379   case PPC::LIWZX:
2380   case PPC::STIWX: {
2381     assert(Subtarget.hasP8Vector() &&
2382            "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2383     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2384            "X-form op must have register and register operands");
2385     return expandVSXMemPseudo(MI);
2386   }
2387   case PPC::XFLOADf64:
2388   case PPC::XFSTOREf64: {
2389     assert(Subtarget.hasVSX() &&
2390            "Invalid X-Form Pseudo-ops on target that has no VSX.");
2391     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2392            "X-form op must have register and register operands");
2393     return expandVSXMemPseudo(MI);
2394   }
2395   case PPC::SPILLTOVSR_LD: {
2396     Register TargetReg = MI.getOperand(0).getReg();
2397     if (PPC::VSFRCRegClass.contains(TargetReg)) {
2398       MI.setDesc(get(PPC::DFLOADf64));
2399       return expandPostRAPseudo(MI);
2400     }
2401     else
2402       MI.setDesc(get(PPC::LD));
2403     return true;
2404   }
2405   case PPC::SPILLTOVSR_ST: {
2406     Register SrcReg = MI.getOperand(0).getReg();
2407     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2408       NumStoreSPILLVSRRCAsVec++;
2409       MI.setDesc(get(PPC::DFSTOREf64));
2410       return expandPostRAPseudo(MI);
2411     } else {
2412       NumStoreSPILLVSRRCAsGpr++;
2413       MI.setDesc(get(PPC::STD));
2414     }
2415     return true;
2416   }
2417   case PPC::SPILLTOVSR_LDX: {
2418     Register TargetReg = MI.getOperand(0).getReg();
2419     if (PPC::VSFRCRegClass.contains(TargetReg))
2420       MI.setDesc(get(PPC::LXSDX));
2421     else
2422       MI.setDesc(get(PPC::LDX));
2423     return true;
2424   }
2425   case PPC::SPILLTOVSR_STX: {
2426     Register SrcReg = MI.getOperand(0).getReg();
2427     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2428       NumStoreSPILLVSRRCAsVec++;
2429       MI.setDesc(get(PPC::STXSDX));
2430     } else {
2431       NumStoreSPILLVSRRCAsGpr++;
2432       MI.setDesc(get(PPC::STDX));
2433     }
2434     return true;
2435   }
2436 
2437   case PPC::CFENCE8: {
2438     auto Val = MI.getOperand(0).getReg();
2439     BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
2440     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
2441         .addImm(PPC::PRED_NE_MINUS)
2442         .addReg(PPC::CR7)
2443         .addImm(1);
2444     MI.setDesc(get(PPC::ISYNC));
2445     MI.RemoveOperand(0);
2446     return true;
2447   }
2448   }
2449   return false;
2450 }
2451 
2452 // Essentially a compile-time implementation of a compare->isel sequence.
2453 // It takes two constants to compare, along with the true/false registers
2454 // and the comparison type (as a subreg to a CR field) and returns one
2455 // of the true/false registers, depending on the comparison results.
2456 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
2457                           unsigned TrueReg, unsigned FalseReg,
2458                           unsigned CRSubReg) {
2459   // Signed comparisons. The immediates are assumed to be sign-extended.
2460   if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
2461     switch (CRSubReg) {
2462     default: llvm_unreachable("Unknown integer comparison type.");
2463     case PPC::sub_lt:
2464       return Imm1 < Imm2 ? TrueReg : FalseReg;
2465     case PPC::sub_gt:
2466       return Imm1 > Imm2 ? TrueReg : FalseReg;
2467     case PPC::sub_eq:
2468       return Imm1 == Imm2 ? TrueReg : FalseReg;
2469     }
2470   }
2471   // Unsigned comparisons.
2472   else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
2473     switch (CRSubReg) {
2474     default: llvm_unreachable("Unknown integer comparison type.");
2475     case PPC::sub_lt:
2476       return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
2477     case PPC::sub_gt:
2478       return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
2479     case PPC::sub_eq:
2480       return Imm1 == Imm2 ? TrueReg : FalseReg;
2481     }
2482   }
2483   return PPC::NoRegister;
2484 }
2485 
2486 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
2487                                               unsigned OpNo,
2488                                               int64_t Imm) const {
2489   assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
2490   // Replace the REG with the Immediate.
2491   Register InUseReg = MI.getOperand(OpNo).getReg();
2492   MI.getOperand(OpNo).ChangeToImmediate(Imm);
2493 
2494   if (MI.implicit_operands().empty())
2495     return;
2496 
2497   // We need to make sure that the MI didn't have any implicit use
2498   // of this REG any more.
2499   const TargetRegisterInfo *TRI = &getRegisterInfo();
2500   int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
2501   if (UseOpIdx >= 0) {
2502     MachineOperand &MO = MI.getOperand(UseOpIdx);
2503     if (MO.isImplicit())
2504       // The operands must always be in the following order:
2505       // - explicit reg defs,
2506       // - other explicit operands (reg uses, immediates, etc.),
2507       // - implicit reg defs
2508       // - implicit reg uses
2509       // Therefore, removing the implicit operand won't change the explicit
2510       // operands layout.
2511       MI.RemoveOperand(UseOpIdx);
2512   }
2513 }
2514 
2515 // Replace an instruction with one that materializes a constant (and sets
2516 // CR0 if the original instruction was a record-form instruction).
2517 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
2518                                       const LoadImmediateInfo &LII) const {
2519   // Remove existing operands.
2520   int OperandToKeep = LII.SetCR ? 1 : 0;
2521   for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
2522     MI.RemoveOperand(i);
2523 
2524   // Replace the instruction.
2525   if (LII.SetCR) {
2526     MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
2527     // Set the immediate.
2528     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2529         .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
2530     return;
2531   }
2532   else
2533     MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
2534 
2535   // Set the immediate.
2536   MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2537       .addImm(LII.Imm);
2538 }
2539 
2540 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
2541                                            bool &SeenIntermediateUse) const {
2542   assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
2543          "Should be called after register allocation.");
2544   const TargetRegisterInfo *TRI = &getRegisterInfo();
2545   MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
2546   It++;
2547   SeenIntermediateUse = false;
2548   for (; It != E; ++It) {
2549     if (It->modifiesRegister(Reg, TRI))
2550       return &*It;
2551     if (It->readsRegister(Reg, TRI))
2552       SeenIntermediateUse = true;
2553   }
2554   return nullptr;
2555 }
2556 
2557 MachineInstr *PPCInstrInfo::getForwardingDefMI(
2558   MachineInstr &MI,
2559   unsigned &OpNoForForwarding,
2560   bool &SeenIntermediateUse) const {
2561   OpNoForForwarding = ~0U;
2562   MachineInstr *DefMI = nullptr;
2563   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
2564   const TargetRegisterInfo *TRI = &getRegisterInfo();
2565   // If we're in SSA, get the defs through the MRI. Otherwise, only look
2566   // within the basic block to see if the register is defined using an LI/LI8.
2567   if (MRI->isSSA()) {
2568     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2569       if (!MI.getOperand(i).isReg())
2570         continue;
2571       Register Reg = MI.getOperand(i).getReg();
2572       if (!Register::isVirtualRegister(Reg))
2573         continue;
2574       unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
2575       if (Register::isVirtualRegister(TrueReg)) {
2576         DefMI = MRI->getVRegDef(TrueReg);
2577         if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) {
2578           OpNoForForwarding = i;
2579           break;
2580         }
2581       }
2582     }
2583   } else {
2584     // Looking back through the definition for each operand could be expensive,
2585     // so exit early if this isn't an instruction that either has an immediate
2586     // form or is already an immediate form that we can handle.
2587     ImmInstrInfo III;
2588     unsigned Opc = MI.getOpcode();
2589     bool ConvertibleImmForm =
2590         Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI ||
2591         Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
2592         Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI ||
2593         Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec ||
2594         Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
2595         Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 ||
2596         Opc == PPC::RLWINM8_rec;
2597     bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
2598                        ? isVFRegister(MI.getOperand(0).getReg())
2599                        : false;
2600     if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
2601       return nullptr;
2602 
2603     // Don't convert or %X, %Y, %Y since that's just a register move.
2604     if ((Opc == PPC::OR || Opc == PPC::OR8) &&
2605         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
2606       return nullptr;
2607     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2608       MachineOperand &MO = MI.getOperand(i);
2609       SeenIntermediateUse = false;
2610       if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
2611         Register Reg = MI.getOperand(i).getReg();
2612         // If we see another use of this reg between the def and the MI,
2613         // we want to flat it so the def isn't deleted.
2614         MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
2615         if (DefMI) {
2616           // Is this register defined by some form of add-immediate (including
2617           // load-immediate) within this basic block?
2618           switch (DefMI->getOpcode()) {
2619           default:
2620             break;
2621           case PPC::LI:
2622           case PPC::LI8:
2623           case PPC::ADDItocL:
2624           case PPC::ADDI:
2625           case PPC::ADDI8:
2626             OpNoForForwarding = i;
2627             return DefMI;
2628           }
2629         }
2630       }
2631     }
2632   }
2633   return OpNoForForwarding == ~0U ? nullptr : DefMI;
2634 }
2635 
2636 unsigned PPCInstrInfo::getSpillTarget() const {
2637   return Subtarget.hasP9Vector() ? 1 : 0;
2638 }
2639 
2640 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2641   return StoreSpillOpcodesArray[getSpillTarget()];
2642 }
2643 
2644 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2645   return LoadSpillOpcodesArray[getSpillTarget()];
2646 }
2647 
2648 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI,
2649                                      unsigned RegNo) const {
2650   const MachineRegisterInfo &MRI =
2651       StartMI.getParent()->getParent()->getRegInfo();
2652   if (MRI.isSSA())
2653     return;
2654 
2655   // Instructions between [StartMI, EndMI] should be in same basic block.
2656   assert((StartMI.getParent() == EndMI.getParent()) &&
2657          "Instructions are not in same basic block");
2658 
2659   bool IsKillSet = false;
2660 
2661   auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
2662     MachineOperand &MO = MI.getOperand(Index);
2663     if (MO.isReg() && MO.isUse() && MO.isKill() &&
2664         getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
2665       MO.setIsKill(false);
2666   };
2667 
2668   // Set killed flag for EndMI.
2669   // No need to do anything if EndMI defines RegNo.
2670   int UseIndex =
2671       EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
2672   if (UseIndex != -1) {
2673     EndMI.getOperand(UseIndex).setIsKill(true);
2674     IsKillSet = true;
2675     // Clear killed flag for other EndMI operands related to RegNo. In some
2676     // upexpected cases, killed may be set multiple times for same register
2677     // operand in same MI.
2678     for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i)
2679       if (i != UseIndex)
2680         clearOperandKillInfo(EndMI, i);
2681   }
2682 
2683   // Walking the inst in reverse order (EndMI -> StartMI].
2684   MachineBasicBlock::reverse_iterator It = EndMI;
2685   MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend();
2686   // EndMI has been handled above, skip it here.
2687   It++;
2688   MachineOperand *MO = nullptr;
2689   for (; It != E; ++It) {
2690     // Skip insturctions which could not be a def/use of RegNo.
2691     if (It->isDebugInstr() || It->isPosition())
2692       continue;
2693 
2694     // Clear killed flag for all It operands related to RegNo. In some
2695     // upexpected cases, killed may be set multiple times for same register
2696     // operand in same MI.
2697     for (int i = 0, e = It->getNumOperands(); i != e; ++i)
2698         clearOperandKillInfo(*It, i);
2699 
2700     // If killed is not set, set killed for its last use or set dead for its def
2701     // if no use found.
2702     if (!IsKillSet) {
2703       if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
2704         // Use found, set it killed.
2705         IsKillSet = true;
2706         MO->setIsKill(true);
2707         continue;
2708       } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
2709                                                   &getRegisterInfo()))) {
2710         // No use found, set dead for its def.
2711         assert(&*It == &StartMI && "No new def between StartMI and EndMI.");
2712         MO->setIsDead(true);
2713         break;
2714       }
2715     }
2716 
2717     if ((&*It) == &StartMI)
2718       break;
2719   }
2720   // Ensure RegMo liveness is killed after EndMI.
2721   assert((IsKillSet || (MO && MO->isDead())) &&
2722          "RegNo should be killed or dead");
2723 }
2724 
2725 // This opt tries to convert the following imm form to an index form to save an
2726 // add for stack variables.
2727 // Return false if no such pattern found.
2728 //
2729 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
2730 // ADD instr:  ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg
2731 // Imm instr:  Reg            = op OffsetImm, ToBeDeletedReg(killed)
2732 //
2733 // can be converted to:
2734 //
2735 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm)
2736 // Index instr:    Reg            = opx ScaleReg, ToBeChangedReg(killed)
2737 //
2738 // In order to eliminate ADD instr, make sure that:
2739 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in
2740 //    new ADDI instr and ADDI can only take int16 Imm.
2741 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use
2742 //    between ADDI and ADD instr since its original def in ADDI will be changed
2743 //    in new ADDI instr. And also there should be no new def for it between
2744 //    ADD and Imm instr as ToBeChangedReg will be used in Index instr.
2745 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use
2746 //    between ADD and Imm instr since ADD instr will be eliminated.
2747 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be
2748 //    moved to Index instr.
2749 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const {
2750   MachineFunction *MF = MI.getParent()->getParent();
2751   MachineRegisterInfo *MRI = &MF->getRegInfo();
2752   bool PostRA = !MRI->isSSA();
2753   // Do this opt after PEI which is after RA. The reason is stack slot expansion
2754   // in PEI may expose such opportunities since in PEI, stack slot offsets to
2755   // frame base(OffsetAddi) are determined.
2756   if (!PostRA)
2757     return false;
2758   unsigned ToBeDeletedReg = 0;
2759   int64_t OffsetImm = 0;
2760   unsigned XFormOpcode = 0;
2761   ImmInstrInfo III;
2762 
2763   // Check if Imm instr meets requirement.
2764   if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm,
2765                                     III))
2766     return false;
2767 
2768   bool OtherIntermediateUse = false;
2769   MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse);
2770 
2771   // Exit if there is other use between ADD and Imm instr or no def found.
2772   if (OtherIntermediateUse || !ADDMI)
2773     return false;
2774 
2775   // Check if ADD instr meets requirement.
2776   if (!isADDInstrEligibleForFolding(*ADDMI))
2777     return false;
2778 
2779   unsigned ScaleRegIdx = 0;
2780   int64_t OffsetAddi = 0;
2781   MachineInstr *ADDIMI = nullptr;
2782 
2783   // Check if there is a valid ToBeChangedReg in ADDMI.
2784   // 1: It must be killed.
2785   // 2: Its definition must be a valid ADDIMI.
2786   // 3: It must satify int16 offset requirement.
2787   if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm))
2788     ScaleRegIdx = 2;
2789   else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm))
2790     ScaleRegIdx = 1;
2791   else
2792     return false;
2793 
2794   assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg.");
2795   unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg();
2796   unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg();
2797   auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start,
2798                        MachineBasicBlock::iterator End) {
2799     for (auto It = ++Start; It != End; It++)
2800       if (It->modifiesRegister(Reg, &getRegisterInfo()))
2801         return true;
2802     return false;
2803   };
2804 
2805   // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is
2806   // treated as special zero when ScaleReg is R0/X0 register.
2807   if (III.ZeroIsSpecialOrig == III.ImmOpNo &&
2808       (ScaleReg == PPC::R0 || ScaleReg == PPC::X0))
2809     return false;
2810 
2811   // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr
2812   // and Imm Instr.
2813   if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI))
2814     return false;
2815 
2816   // Now start to do the transformation.
2817   LLVM_DEBUG(dbgs() << "Replace instruction: "
2818                     << "\n");
2819   LLVM_DEBUG(ADDIMI->dump());
2820   LLVM_DEBUG(ADDMI->dump());
2821   LLVM_DEBUG(MI.dump());
2822   LLVM_DEBUG(dbgs() << "with: "
2823                     << "\n");
2824 
2825   // Update ADDI instr.
2826   ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm);
2827 
2828   // Update Imm instr.
2829   MI.setDesc(get(XFormOpcode));
2830   MI.getOperand(III.ImmOpNo)
2831       .ChangeToRegister(ScaleReg, false, false,
2832                         ADDMI->getOperand(ScaleRegIdx).isKill());
2833 
2834   MI.getOperand(III.OpNoForForwarding)
2835       .ChangeToRegister(ToBeChangedReg, false, false, true);
2836 
2837   // Eliminate ADD instr.
2838   ADDMI->eraseFromParent();
2839 
2840   LLVM_DEBUG(ADDIMI->dump());
2841   LLVM_DEBUG(MI.dump());
2842 
2843   return true;
2844 }
2845 
2846 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI,
2847                                                  int64_t &Imm) const {
2848   unsigned Opc = ADDIMI.getOpcode();
2849 
2850   // Exit if the instruction is not ADDI.
2851   if (Opc != PPC::ADDI && Opc != PPC::ADDI8)
2852     return false;
2853 
2854   // The operand may not necessarily be an immediate - it could be a relocation.
2855   if (!ADDIMI.getOperand(2).isImm())
2856     return false;
2857 
2858   Imm = ADDIMI.getOperand(2).getImm();
2859 
2860   return true;
2861 }
2862 
2863 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const {
2864   unsigned Opc = ADDMI.getOpcode();
2865 
2866   // Exit if the instruction is not ADD.
2867   return Opc == PPC::ADD4 || Opc == PPC::ADD8;
2868 }
2869 
2870 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI,
2871                                                 unsigned &ToBeDeletedReg,
2872                                                 unsigned &XFormOpcode,
2873                                                 int64_t &OffsetImm,
2874                                                 ImmInstrInfo &III) const {
2875   // Only handle load/store.
2876   if (!MI.mayLoadOrStore())
2877     return false;
2878 
2879   unsigned Opc = MI.getOpcode();
2880 
2881   XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc);
2882 
2883   // Exit if instruction has no index form.
2884   if (XFormOpcode == PPC::INSTRUCTION_LIST_END)
2885     return false;
2886 
2887   // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap.
2888   if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()),
2889                        III, true))
2890     return false;
2891 
2892   if (!III.IsSummingOperands)
2893     return false;
2894 
2895   MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo);
2896   MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding);
2897   // Only support imm operands, not relocation slots or others.
2898   if (!ImmOperand.isImm())
2899     return false;
2900 
2901   assert(RegOperand.isReg() && "Instruction format is not right");
2902 
2903   // There are other use for ToBeDeletedReg after Imm instr, can not delete it.
2904   if (!RegOperand.isKill())
2905     return false;
2906 
2907   ToBeDeletedReg = RegOperand.getReg();
2908   OffsetImm = ImmOperand.getImm();
2909 
2910   return true;
2911 }
2912 
2913 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
2914                                          MachineInstr *&ADDIMI,
2915                                          int64_t &OffsetAddi,
2916                                          int64_t OffsetImm) const {
2917   assert((Index == 1 || Index == 2) && "Invalid operand index for add.");
2918   MachineOperand &MO = ADDMI->getOperand(Index);
2919 
2920   if (!MO.isKill())
2921     return false;
2922 
2923   bool OtherIntermediateUse = false;
2924 
2925   ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse);
2926   // Currently handle only one "add + Imminstr" pair case, exit if other
2927   // intermediate use for ToBeChangedReg found.
2928   // TODO: handle the cases where there are other "add + Imminstr" pairs
2929   // with same offset in Imminstr which is like:
2930   //
2931   // ADDI instr: ToBeChangedReg  = ADDI FrameBaseReg, OffsetAddi
2932   // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1
2933   // Imm instr1: Reg1            = op1 OffsetImm, ToBeDeletedReg1(killed)
2934   // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2
2935   // Imm instr2: Reg2            = op2 OffsetImm, ToBeDeletedReg2(killed)
2936   //
2937   // can be converted to:
2938   //
2939   // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg,
2940   //                                       (OffsetAddi + OffsetImm)
2941   // Index instr1:   Reg1           = opx1 ScaleReg1, ToBeChangedReg
2942   // Index instr2:   Reg2           = opx2 ScaleReg2, ToBeChangedReg(killed)
2943 
2944   if (OtherIntermediateUse || !ADDIMI)
2945     return false;
2946   // Check if ADDI instr meets requirement.
2947   if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi))
2948     return false;
2949 
2950   if (isInt<16>(OffsetAddi + OffsetImm))
2951     return true;
2952   return false;
2953 }
2954 
2955 // If this instruction has an immediate form and one of its operands is a
2956 // result of a load-immediate or an add-immediate, convert it to
2957 // the immediate form if the constant is in range.
2958 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
2959                                           MachineInstr **KilledDef) const {
2960   MachineFunction *MF = MI.getParent()->getParent();
2961   MachineRegisterInfo *MRI = &MF->getRegInfo();
2962   bool PostRA = !MRI->isSSA();
2963   bool SeenIntermediateUse = true;
2964   unsigned ForwardingOperand = ~0U;
2965   MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
2966                                            SeenIntermediateUse);
2967   if (!DefMI)
2968     return false;
2969   assert(ForwardingOperand < MI.getNumOperands() &&
2970          "The forwarding operand needs to be valid at this point");
2971   bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
2972   bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
2973   if (KilledDef && KillFwdDefMI)
2974     *KilledDef = DefMI;
2975 
2976   ImmInstrInfo III;
2977   bool IsVFReg = MI.getOperand(0).isReg()
2978                      ? isVFRegister(MI.getOperand(0).getReg())
2979                      : false;
2980   bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
2981   // If this is a reg+reg instruction that has a reg+imm form,
2982   // and one of the operands is produced by an add-immediate,
2983   // try to convert it.
2984   if (HasImmForm &&
2985       transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
2986                                  KillFwdDefMI))
2987     return true;
2988 
2989   // If this is a reg+reg instruction that has a reg+imm form,
2990   // and one of the operands is produced by LI, convert it now.
2991   if (HasImmForm &&
2992       transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI))
2993     return true;
2994 
2995   // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI
2996   // can be simpified to LI.
2997   if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef))
2998     return true;
2999 
3000   return false;
3001 }
3002 
3003 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
3004                                    ImmInstrInfo &III, bool PostRA) const {
3005   // The vast majority of the instructions would need their operand 2 replaced
3006   // with an immediate when switching to the reg+imm form. A marked exception
3007   // are the update form loads/stores for which a constant operand 2 would need
3008   // to turn into a displacement and move operand 1 to the operand 2 position.
3009   III.ImmOpNo = 2;
3010   III.OpNoForForwarding = 2;
3011   III.ImmWidth = 16;
3012   III.ImmMustBeMultipleOf = 1;
3013   III.TruncateImmTo = 0;
3014   III.IsSummingOperands = false;
3015   switch (Opc) {
3016   default: return false;
3017   case PPC::ADD4:
3018   case PPC::ADD8:
3019     III.SignedImm = true;
3020     III.ZeroIsSpecialOrig = 0;
3021     III.ZeroIsSpecialNew = 1;
3022     III.IsCommutative = true;
3023     III.IsSummingOperands = true;
3024     III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
3025     break;
3026   case PPC::ADDC:
3027   case PPC::ADDC8:
3028     III.SignedImm = true;
3029     III.ZeroIsSpecialOrig = 0;
3030     III.ZeroIsSpecialNew = 0;
3031     III.IsCommutative = true;
3032     III.IsSummingOperands = true;
3033     III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
3034     break;
3035   case PPC::ADDC_rec:
3036     III.SignedImm = true;
3037     III.ZeroIsSpecialOrig = 0;
3038     III.ZeroIsSpecialNew = 0;
3039     III.IsCommutative = true;
3040     III.IsSummingOperands = true;
3041     III.ImmOpcode = PPC::ADDIC_rec;
3042     break;
3043   case PPC::SUBFC:
3044   case PPC::SUBFC8:
3045     III.SignedImm = true;
3046     III.ZeroIsSpecialOrig = 0;
3047     III.ZeroIsSpecialNew = 0;
3048     III.IsCommutative = false;
3049     III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
3050     break;
3051   case PPC::CMPW:
3052   case PPC::CMPD:
3053     III.SignedImm = true;
3054     III.ZeroIsSpecialOrig = 0;
3055     III.ZeroIsSpecialNew = 0;
3056     III.IsCommutative = false;
3057     III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
3058     break;
3059   case PPC::CMPLW:
3060   case PPC::CMPLD:
3061     III.SignedImm = false;
3062     III.ZeroIsSpecialOrig = 0;
3063     III.ZeroIsSpecialNew = 0;
3064     III.IsCommutative = false;
3065     III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
3066     break;
3067   case PPC::AND_rec:
3068   case PPC::AND8_rec:
3069   case PPC::OR:
3070   case PPC::OR8:
3071   case PPC::XOR:
3072   case PPC::XOR8:
3073     III.SignedImm = false;
3074     III.ZeroIsSpecialOrig = 0;
3075     III.ZeroIsSpecialNew = 0;
3076     III.IsCommutative = true;
3077     switch(Opc) {
3078     default: llvm_unreachable("Unknown opcode");
3079     case PPC::AND_rec:
3080       III.ImmOpcode = PPC::ANDI_rec;
3081       break;
3082     case PPC::AND8_rec:
3083       III.ImmOpcode = PPC::ANDI8_rec;
3084       break;
3085     case PPC::OR: III.ImmOpcode = PPC::ORI; break;
3086     case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
3087     case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
3088     case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
3089     }
3090     break;
3091   case PPC::RLWNM:
3092   case PPC::RLWNM8:
3093   case PPC::RLWNM_rec:
3094   case PPC::RLWNM8_rec:
3095   case PPC::SLW:
3096   case PPC::SLW8:
3097   case PPC::SLW_rec:
3098   case PPC::SLW8_rec:
3099   case PPC::SRW:
3100   case PPC::SRW8:
3101   case PPC::SRW_rec:
3102   case PPC::SRW8_rec:
3103   case PPC::SRAW:
3104   case PPC::SRAW_rec:
3105     III.SignedImm = false;
3106     III.ZeroIsSpecialOrig = 0;
3107     III.ZeroIsSpecialNew = 0;
3108     III.IsCommutative = false;
3109     // This isn't actually true, but the instructions ignore any of the
3110     // upper bits, so any immediate loaded with an LI is acceptable.
3111     // This does not apply to shift right algebraic because a value
3112     // out of range will produce a -1/0.
3113     III.ImmWidth = 16;
3114     if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec ||
3115         Opc == PPC::RLWNM8_rec)
3116       III.TruncateImmTo = 5;
3117     else
3118       III.TruncateImmTo = 6;
3119     switch(Opc) {
3120     default: llvm_unreachable("Unknown opcode");
3121     case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
3122     case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
3123     case PPC::RLWNM_rec:
3124       III.ImmOpcode = PPC::RLWINM_rec;
3125       break;
3126     case PPC::RLWNM8_rec:
3127       III.ImmOpcode = PPC::RLWINM8_rec;
3128       break;
3129     case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
3130     case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
3131     case PPC::SLW_rec:
3132       III.ImmOpcode = PPC::RLWINM_rec;
3133       break;
3134     case PPC::SLW8_rec:
3135       III.ImmOpcode = PPC::RLWINM8_rec;
3136       break;
3137     case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
3138     case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
3139     case PPC::SRW_rec:
3140       III.ImmOpcode = PPC::RLWINM_rec;
3141       break;
3142     case PPC::SRW8_rec:
3143       III.ImmOpcode = PPC::RLWINM8_rec;
3144       break;
3145     case PPC::SRAW:
3146       III.ImmWidth = 5;
3147       III.TruncateImmTo = 0;
3148       III.ImmOpcode = PPC::SRAWI;
3149       break;
3150     case PPC::SRAW_rec:
3151       III.ImmWidth = 5;
3152       III.TruncateImmTo = 0;
3153       III.ImmOpcode = PPC::SRAWI_rec;
3154       break;
3155     }
3156     break;
3157   case PPC::RLDCL:
3158   case PPC::RLDCL_rec:
3159   case PPC::RLDCR:
3160   case PPC::RLDCR_rec:
3161   case PPC::SLD:
3162   case PPC::SLD_rec:
3163   case PPC::SRD:
3164   case PPC::SRD_rec:
3165   case PPC::SRAD:
3166   case PPC::SRAD_rec:
3167     III.SignedImm = false;
3168     III.ZeroIsSpecialOrig = 0;
3169     III.ZeroIsSpecialNew = 0;
3170     III.IsCommutative = false;
3171     // This isn't actually true, but the instructions ignore any of the
3172     // upper bits, so any immediate loaded with an LI is acceptable.
3173     // This does not apply to shift right algebraic because a value
3174     // out of range will produce a -1/0.
3175     III.ImmWidth = 16;
3176     if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR ||
3177         Opc == PPC::RLDCR_rec)
3178       III.TruncateImmTo = 6;
3179     else
3180       III.TruncateImmTo = 7;
3181     switch(Opc) {
3182     default: llvm_unreachable("Unknown opcode");
3183     case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
3184     case PPC::RLDCL_rec:
3185       III.ImmOpcode = PPC::RLDICL_rec;
3186       break;
3187     case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
3188     case PPC::RLDCR_rec:
3189       III.ImmOpcode = PPC::RLDICR_rec;
3190       break;
3191     case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
3192     case PPC::SLD_rec:
3193       III.ImmOpcode = PPC::RLDICR_rec;
3194       break;
3195     case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
3196     case PPC::SRD_rec:
3197       III.ImmOpcode = PPC::RLDICL_rec;
3198       break;
3199     case PPC::SRAD:
3200       III.ImmWidth = 6;
3201       III.TruncateImmTo = 0;
3202       III.ImmOpcode = PPC::SRADI;
3203        break;
3204     case PPC::SRAD_rec:
3205       III.ImmWidth = 6;
3206       III.TruncateImmTo = 0;
3207       III.ImmOpcode = PPC::SRADI_rec;
3208       break;
3209     }
3210     break;
3211   // Loads and stores:
3212   case PPC::LBZX:
3213   case PPC::LBZX8:
3214   case PPC::LHZX:
3215   case PPC::LHZX8:
3216   case PPC::LHAX:
3217   case PPC::LHAX8:
3218   case PPC::LWZX:
3219   case PPC::LWZX8:
3220   case PPC::LWAX:
3221   case PPC::LDX:
3222   case PPC::LFSX:
3223   case PPC::LFDX:
3224   case PPC::STBX:
3225   case PPC::STBX8:
3226   case PPC::STHX:
3227   case PPC::STHX8:
3228   case PPC::STWX:
3229   case PPC::STWX8:
3230   case PPC::STDX:
3231   case PPC::STFSX:
3232   case PPC::STFDX:
3233     III.SignedImm = true;
3234     III.ZeroIsSpecialOrig = 1;
3235     III.ZeroIsSpecialNew = 2;
3236     III.IsCommutative = true;
3237     III.IsSummingOperands = true;
3238     III.ImmOpNo = 1;
3239     III.OpNoForForwarding = 2;
3240     switch(Opc) {
3241     default: llvm_unreachable("Unknown opcode");
3242     case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
3243     case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
3244     case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
3245     case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
3246     case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
3247     case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
3248     case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
3249     case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
3250     case PPC::LWAX:
3251       III.ImmOpcode = PPC::LWA;
3252       III.ImmMustBeMultipleOf = 4;
3253       break;
3254     case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
3255     case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
3256     case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
3257     case PPC::STBX: III.ImmOpcode = PPC::STB; break;
3258     case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
3259     case PPC::STHX: III.ImmOpcode = PPC::STH; break;
3260     case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
3261     case PPC::STWX: III.ImmOpcode = PPC::STW; break;
3262     case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
3263     case PPC::STDX:
3264       III.ImmOpcode = PPC::STD;
3265       III.ImmMustBeMultipleOf = 4;
3266       break;
3267     case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
3268     case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
3269     }
3270     break;
3271   case PPC::LBZUX:
3272   case PPC::LBZUX8:
3273   case PPC::LHZUX:
3274   case PPC::LHZUX8:
3275   case PPC::LHAUX:
3276   case PPC::LHAUX8:
3277   case PPC::LWZUX:
3278   case PPC::LWZUX8:
3279   case PPC::LDUX:
3280   case PPC::LFSUX:
3281   case PPC::LFDUX:
3282   case PPC::STBUX:
3283   case PPC::STBUX8:
3284   case PPC::STHUX:
3285   case PPC::STHUX8:
3286   case PPC::STWUX:
3287   case PPC::STWUX8:
3288   case PPC::STDUX:
3289   case PPC::STFSUX:
3290   case PPC::STFDUX:
3291     III.SignedImm = true;
3292     III.ZeroIsSpecialOrig = 2;
3293     III.ZeroIsSpecialNew = 3;
3294     III.IsCommutative = false;
3295     III.IsSummingOperands = true;
3296     III.ImmOpNo = 2;
3297     III.OpNoForForwarding = 3;
3298     switch(Opc) {
3299     default: llvm_unreachable("Unknown opcode");
3300     case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
3301     case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
3302     case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
3303     case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
3304     case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
3305     case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
3306     case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
3307     case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
3308     case PPC::LDUX:
3309       III.ImmOpcode = PPC::LDU;
3310       III.ImmMustBeMultipleOf = 4;
3311       break;
3312     case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
3313     case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
3314     case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
3315     case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
3316     case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
3317     case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
3318     case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
3319     case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
3320     case PPC::STDUX:
3321       III.ImmOpcode = PPC::STDU;
3322       III.ImmMustBeMultipleOf = 4;
3323       break;
3324     case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
3325     case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
3326     }
3327     break;
3328   // Power9 and up only. For some of these, the X-Form version has access to all
3329   // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
3330   // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
3331   // into or stored from is one of the VR registers.
3332   case PPC::LXVX:
3333   case PPC::LXSSPX:
3334   case PPC::LXSDX:
3335   case PPC::STXVX:
3336   case PPC::STXSSPX:
3337   case PPC::STXSDX:
3338   case PPC::XFLOADf32:
3339   case PPC::XFLOADf64:
3340   case PPC::XFSTOREf32:
3341   case PPC::XFSTOREf64:
3342     if (!Subtarget.hasP9Vector())
3343       return false;
3344     III.SignedImm = true;
3345     III.ZeroIsSpecialOrig = 1;
3346     III.ZeroIsSpecialNew = 2;
3347     III.IsCommutative = true;
3348     III.IsSummingOperands = true;
3349     III.ImmOpNo = 1;
3350     III.OpNoForForwarding = 2;
3351     III.ImmMustBeMultipleOf = 4;
3352     switch(Opc) {
3353     default: llvm_unreachable("Unknown opcode");
3354     case PPC::LXVX:
3355       III.ImmOpcode = PPC::LXV;
3356       III.ImmMustBeMultipleOf = 16;
3357       break;
3358     case PPC::LXSSPX:
3359       if (PostRA) {
3360         if (IsVFReg)
3361           III.ImmOpcode = PPC::LXSSP;
3362         else {
3363           III.ImmOpcode = PPC::LFS;
3364           III.ImmMustBeMultipleOf = 1;
3365         }
3366         break;
3367       }
3368       LLVM_FALLTHROUGH;
3369     case PPC::XFLOADf32:
3370       III.ImmOpcode = PPC::DFLOADf32;
3371       break;
3372     case PPC::LXSDX:
3373       if (PostRA) {
3374         if (IsVFReg)
3375           III.ImmOpcode = PPC::LXSD;
3376         else {
3377           III.ImmOpcode = PPC::LFD;
3378           III.ImmMustBeMultipleOf = 1;
3379         }
3380         break;
3381       }
3382       LLVM_FALLTHROUGH;
3383     case PPC::XFLOADf64:
3384       III.ImmOpcode = PPC::DFLOADf64;
3385       break;
3386     case PPC::STXVX:
3387       III.ImmOpcode = PPC::STXV;
3388       III.ImmMustBeMultipleOf = 16;
3389       break;
3390     case PPC::STXSSPX:
3391       if (PostRA) {
3392         if (IsVFReg)
3393           III.ImmOpcode = PPC::STXSSP;
3394         else {
3395           III.ImmOpcode = PPC::STFS;
3396           III.ImmMustBeMultipleOf = 1;
3397         }
3398         break;
3399       }
3400       LLVM_FALLTHROUGH;
3401     case PPC::XFSTOREf32:
3402       III.ImmOpcode = PPC::DFSTOREf32;
3403       break;
3404     case PPC::STXSDX:
3405       if (PostRA) {
3406         if (IsVFReg)
3407           III.ImmOpcode = PPC::STXSD;
3408         else {
3409           III.ImmOpcode = PPC::STFD;
3410           III.ImmMustBeMultipleOf = 1;
3411         }
3412         break;
3413       }
3414       LLVM_FALLTHROUGH;
3415     case PPC::XFSTOREf64:
3416       III.ImmOpcode = PPC::DFSTOREf64;
3417       break;
3418     }
3419     break;
3420   }
3421   return true;
3422 }
3423 
3424 // Utility function for swaping two arbitrary operands of an instruction.
3425 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
3426   assert(Op1 != Op2 && "Cannot swap operand with itself.");
3427 
3428   unsigned MaxOp = std::max(Op1, Op2);
3429   unsigned MinOp = std::min(Op1, Op2);
3430   MachineOperand MOp1 = MI.getOperand(MinOp);
3431   MachineOperand MOp2 = MI.getOperand(MaxOp);
3432   MI.RemoveOperand(std::max(Op1, Op2));
3433   MI.RemoveOperand(std::min(Op1, Op2));
3434 
3435   // If the operands we are swapping are the two at the end (the common case)
3436   // we can just remove both and add them in the opposite order.
3437   if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
3438     MI.addOperand(MOp2);
3439     MI.addOperand(MOp1);
3440   } else {
3441     // Store all operands in a temporary vector, remove them and re-add in the
3442     // right order.
3443     SmallVector<MachineOperand, 2> MOps;
3444     unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
3445     for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
3446       MOps.push_back(MI.getOperand(i));
3447       MI.RemoveOperand(i);
3448     }
3449     // MOp2 needs to be added next.
3450     MI.addOperand(MOp2);
3451     // Now add the rest.
3452     for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
3453       if (i == MaxOp)
3454         MI.addOperand(MOp1);
3455       else {
3456         MI.addOperand(MOps.back());
3457         MOps.pop_back();
3458       }
3459     }
3460   }
3461 }
3462 
3463 // Check if the 'MI' that has the index OpNoForForwarding
3464 // meets the requirement described in the ImmInstrInfo.
3465 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
3466                                                const ImmInstrInfo &III,
3467                                                unsigned OpNoForForwarding
3468                                                ) const {
3469   // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
3470   // would not work pre-RA, we can only do the check post RA.
3471   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3472   if (MRI.isSSA())
3473     return false;
3474 
3475   // Cannot do the transform if MI isn't summing the operands.
3476   if (!III.IsSummingOperands)
3477     return false;
3478 
3479   // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
3480   if (!III.ZeroIsSpecialOrig)
3481     return false;
3482 
3483   // We cannot do the transform if the operand we are trying to replace
3484   // isn't the same as the operand the instruction allows.
3485   if (OpNoForForwarding != III.OpNoForForwarding)
3486     return false;
3487 
3488   // Check if the instruction we are trying to transform really has
3489   // the special zero register as its operand.
3490   if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
3491       MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
3492     return false;
3493 
3494   // This machine instruction is convertible if it is,
3495   // 1. summing the operands.
3496   // 2. one of the operands is special zero register.
3497   // 3. the operand we are trying to replace is allowed by the MI.
3498   return true;
3499 }
3500 
3501 // Check if the DefMI is the add inst and set the ImmMO and RegMO
3502 // accordingly.
3503 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
3504                                                const ImmInstrInfo &III,
3505                                                MachineOperand *&ImmMO,
3506                                                MachineOperand *&RegMO) const {
3507   unsigned Opc = DefMI.getOpcode();
3508   if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
3509     return false;
3510 
3511   assert(DefMI.getNumOperands() >= 3 &&
3512          "Add inst must have at least three operands");
3513   RegMO = &DefMI.getOperand(1);
3514   ImmMO = &DefMI.getOperand(2);
3515 
3516   // This DefMI is elgible for forwarding if it is:
3517   // 1. add inst
3518   // 2. one of the operands is Imm/CPI/Global.
3519   return isAnImmediateOperand(*ImmMO);
3520 }
3521 
3522 bool PPCInstrInfo::isRegElgibleForForwarding(
3523     const MachineOperand &RegMO, const MachineInstr &DefMI,
3524     const MachineInstr &MI, bool KillDefMI,
3525     bool &IsFwdFeederRegKilled) const {
3526   // x = addi y, imm
3527   // ...
3528   // z = lfdx 0, x   -> z = lfd imm(y)
3529   // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
3530   // of "y" between the DEF of "x" and "z".
3531   // The query is only valid post RA.
3532   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3533   if (MRI.isSSA())
3534     return false;
3535 
3536   Register Reg = RegMO.getReg();
3537 
3538   // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
3539   MachineBasicBlock::const_reverse_iterator It = MI;
3540   MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
3541   It++;
3542   for (; It != E; ++It) {
3543     if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3544       return false;
3545     else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3546       IsFwdFeederRegKilled = true;
3547     // Made it to DefMI without encountering a clobber.
3548     if ((&*It) == &DefMI)
3549       break;
3550   }
3551   assert((&*It) == &DefMI && "DefMI is missing");
3552 
3553   // If DefMI also defines the register to be forwarded, we can only forward it
3554   // if DefMI is being erased.
3555   if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
3556     return KillDefMI;
3557 
3558   return true;
3559 }
3560 
3561 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
3562                                              const MachineInstr &DefMI,
3563                                              const ImmInstrInfo &III,
3564                                              int64_t &Imm) const {
3565   assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
3566   if (DefMI.getOpcode() == PPC::ADDItocL) {
3567     // The operand for ADDItocL is CPI, which isn't imm at compiling time,
3568     // However, we know that, it is 16-bit width, and has the alignment of 4.
3569     // Check if the instruction met the requirement.
3570     if (III.ImmMustBeMultipleOf > 4 ||
3571        III.TruncateImmTo || III.ImmWidth != 16)
3572       return false;
3573 
3574     // Going from XForm to DForm loads means that the displacement needs to be
3575     // not just an immediate but also a multiple of 4, or 16 depending on the
3576     // load. A DForm load cannot be represented if it is a multiple of say 2.
3577     // XForm loads do not have this restriction.
3578     if (ImmMO.isGlobal() &&
3579         ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf)
3580       return false;
3581 
3582     return true;
3583   }
3584 
3585   if (ImmMO.isImm()) {
3586     // It is Imm, we need to check if the Imm fit the range.
3587     int64_t Immediate = ImmMO.getImm();
3588     // Sign-extend to 64-bits.
3589     Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
3590       (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
3591 
3592     if (Imm % III.ImmMustBeMultipleOf)
3593       return false;
3594     if (III.TruncateImmTo)
3595       Imm &= ((1 << III.TruncateImmTo) - 1);
3596     if (III.SignedImm) {
3597       APInt ActualValue(64, Imm, true);
3598       if (!ActualValue.isSignedIntN(III.ImmWidth))
3599         return false;
3600     } else {
3601       uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3602       if ((uint64_t)Imm > UnsignedMax)
3603         return false;
3604     }
3605   }
3606   else
3607     return false;
3608 
3609   // This ImmMO is forwarded if it meets the requriement describle
3610   // in ImmInstrInfo
3611   return true;
3612 }
3613 
3614 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
3615                                 unsigned OpNoForForwarding,
3616                                 MachineInstr **KilledDef) const {
3617   if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
3618       !DefMI.getOperand(1).isImm())
3619     return false;
3620 
3621   MachineFunction *MF = MI.getParent()->getParent();
3622   MachineRegisterInfo *MRI = &MF->getRegInfo();
3623   bool PostRA = !MRI->isSSA();
3624 
3625   int64_t Immediate = DefMI.getOperand(1).getImm();
3626   // Sign-extend to 64-bits.
3627   int64_t SExtImm = SignExtend64<16>(Immediate);
3628 
3629   bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill();
3630   Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg();
3631 
3632   bool ReplaceWithLI = false;
3633   bool Is64BitLI = false;
3634   int64_t NewImm = 0;
3635   bool SetCR = false;
3636   unsigned Opc = MI.getOpcode();
3637   switch (Opc) {
3638   default:
3639     return false;
3640 
3641   // FIXME: Any branches conditional on such a comparison can be made
3642   // unconditional. At this time, this happens too infrequently to be worth
3643   // the implementation effort, but if that ever changes, we could convert
3644   // such a pattern here.
3645   case PPC::CMPWI:
3646   case PPC::CMPLWI:
3647   case PPC::CMPDI:
3648   case PPC::CMPLDI: {
3649     // Doing this post-RA would require dataflow analysis to reliably find uses
3650     // of the CR register set by the compare.
3651     // No need to fixup killed/dead flag since this transformation is only valid
3652     // before RA.
3653     if (PostRA)
3654       return false;
3655     // If a compare-immediate is fed by an immediate and is itself an input of
3656     // an ISEL (the most common case) into a COPY of the correct register.
3657     bool Changed = false;
3658     Register DefReg = MI.getOperand(0).getReg();
3659     int64_t Comparand = MI.getOperand(2).getImm();
3660     int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0
3661                                 ? (Comparand | 0xFFFFFFFFFFFF0000)
3662                                 : Comparand;
3663 
3664     for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
3665       unsigned UseOpc = CompareUseMI.getOpcode();
3666       if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
3667         continue;
3668       unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
3669       Register TrueReg = CompareUseMI.getOperand(1).getReg();
3670       Register FalseReg = CompareUseMI.getOperand(2).getReg();
3671       unsigned RegToCopy =
3672           selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg);
3673       if (RegToCopy == PPC::NoRegister)
3674         continue;
3675       // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
3676       if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
3677         CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
3678         replaceInstrOperandWithImm(CompareUseMI, 1, 0);
3679         CompareUseMI.RemoveOperand(3);
3680         CompareUseMI.RemoveOperand(2);
3681         continue;
3682       }
3683       LLVM_DEBUG(
3684           dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
3685       LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump());
3686       LLVM_DEBUG(dbgs() << "Is converted to:\n");
3687       // Convert to copy and remove unneeded operands.
3688       CompareUseMI.setDesc(get(PPC::COPY));
3689       CompareUseMI.RemoveOperand(3);
3690       CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
3691       CmpIselsConverted++;
3692       Changed = true;
3693       LLVM_DEBUG(CompareUseMI.dump());
3694     }
3695     if (Changed)
3696       return true;
3697     // This may end up incremented multiple times since this function is called
3698     // during a fixed-point transformation, but it is only meant to indicate the
3699     // presence of this opportunity.
3700     MissedConvertibleImmediateInstrs++;
3701     return false;
3702   }
3703 
3704   // Immediate forms - may simply be convertable to an LI.
3705   case PPC::ADDI:
3706   case PPC::ADDI8: {
3707     // Does the sum fit in a 16-bit signed field?
3708     int64_t Addend = MI.getOperand(2).getImm();
3709     if (isInt<16>(Addend + SExtImm)) {
3710       ReplaceWithLI = true;
3711       Is64BitLI = Opc == PPC::ADDI8;
3712       NewImm = Addend + SExtImm;
3713       break;
3714     }
3715     return false;
3716   }
3717   case PPC::RLDICL:
3718   case PPC::RLDICL_rec:
3719   case PPC::RLDICL_32:
3720   case PPC::RLDICL_32_64: {
3721     // Use APInt's rotate function.
3722     int64_t SH = MI.getOperand(2).getImm();
3723     int64_t MB = MI.getOperand(3).getImm();
3724     APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32,
3725                 SExtImm, true);
3726     InVal = InVal.rotl(SH);
3727     uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1;
3728     InVal &= Mask;
3729     // Can't replace negative values with an LI as that will sign-extend
3730     // and not clear the left bits. If we're setting the CR bit, we will use
3731     // ANDI_rec which won't sign extend, so that's safe.
3732     if (isUInt<15>(InVal.getSExtValue()) ||
3733         (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) {
3734       ReplaceWithLI = true;
3735       Is64BitLI = Opc != PPC::RLDICL_32;
3736       NewImm = InVal.getSExtValue();
3737       SetCR = Opc == PPC::RLDICL_rec;
3738       break;
3739     }
3740     return false;
3741   }
3742   case PPC::RLWINM:
3743   case PPC::RLWINM8:
3744   case PPC::RLWINM_rec:
3745   case PPC::RLWINM8_rec: {
3746     int64_t SH = MI.getOperand(2).getImm();
3747     int64_t MB = MI.getOperand(3).getImm();
3748     int64_t ME = MI.getOperand(4).getImm();
3749     APInt InVal(32, SExtImm, true);
3750     InVal = InVal.rotl(SH);
3751     APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB);
3752     InVal &= Mask;
3753     // Can't replace negative values with an LI as that will sign-extend
3754     // and not clear the left bits. If we're setting the CR bit, we will use
3755     // ANDI_rec which won't sign extend, so that's safe.
3756     bool ValueFits = isUInt<15>(InVal.getSExtValue());
3757     ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) &&
3758                   isUInt<16>(InVal.getSExtValue()));
3759     if (ValueFits) {
3760       ReplaceWithLI = true;
3761       Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec;
3762       NewImm = InVal.getSExtValue();
3763       SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec;
3764       break;
3765     }
3766     return false;
3767   }
3768   case PPC::ORI:
3769   case PPC::ORI8:
3770   case PPC::XORI:
3771   case PPC::XORI8: {
3772     int64_t LogicalImm = MI.getOperand(2).getImm();
3773     int64_t Result = 0;
3774     if (Opc == PPC::ORI || Opc == PPC::ORI8)
3775       Result = LogicalImm | SExtImm;
3776     else
3777       Result = LogicalImm ^ SExtImm;
3778     if (isInt<16>(Result)) {
3779       ReplaceWithLI = true;
3780       Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
3781       NewImm = Result;
3782       break;
3783     }
3784     return false;
3785   }
3786   }
3787 
3788   if (ReplaceWithLI) {
3789     // We need to be careful with CR-setting instructions we're replacing.
3790     if (SetCR) {
3791       // We don't know anything about uses when we're out of SSA, so only
3792       // replace if the new immediate will be reproduced.
3793       bool ImmChanged = (SExtImm & NewImm) != NewImm;
3794       if (PostRA && ImmChanged)
3795         return false;
3796 
3797       if (!PostRA) {
3798         // If the defining load-immediate has no other uses, we can just replace
3799         // the immediate with the new immediate.
3800         if (MRI->hasOneUse(DefMI.getOperand(0).getReg()))
3801           DefMI.getOperand(1).setImm(NewImm);
3802 
3803         // If we're not using the GPR result of the CR-setting instruction, we
3804         // just need to and with zero/non-zero depending on the new immediate.
3805         else if (MRI->use_empty(MI.getOperand(0).getReg())) {
3806           if (NewImm) {
3807             assert(Immediate && "Transformation converted zero to non-zero?");
3808             NewImm = Immediate;
3809           }
3810         } else if (ImmChanged)
3811           return false;
3812       }
3813     }
3814 
3815     LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
3816     LLVM_DEBUG(MI.dump());
3817     LLVM_DEBUG(dbgs() << "Fed by:\n");
3818     LLVM_DEBUG(DefMI.dump());
3819     LoadImmediateInfo LII;
3820     LII.Imm = NewImm;
3821     LII.Is64Bit = Is64BitLI;
3822     LII.SetCR = SetCR;
3823     // If we're setting the CR, the original load-immediate must be kept (as an
3824     // operand to ANDI_rec/ANDI8_rec).
3825     if (KilledDef && SetCR)
3826       *KilledDef = nullptr;
3827     replaceInstrWithLI(MI, LII);
3828 
3829     // Fixup killed/dead flag after transformation.
3830     // Pattern:
3831     // ForwardingOperandReg = LI imm1
3832     // y = op2 imm2, ForwardingOperandReg(killed)
3833     if (IsForwardingOperandKilled)
3834       fixupIsDeadOrKill(DefMI, MI, ForwardingOperandReg);
3835 
3836     LLVM_DEBUG(dbgs() << "With:\n");
3837     LLVM_DEBUG(MI.dump());
3838     return true;
3839   }
3840   return false;
3841 }
3842 
3843 // If an X-Form instruction is fed by an add-immediate and one of its operands
3844 // is the literal zero, attempt to forward the source of the add-immediate to
3845 // the corresponding D-Form instruction with the displacement coming from
3846 // the immediate being added.
3847 bool PPCInstrInfo::transformToImmFormFedByAdd(
3848     MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
3849     MachineInstr &DefMI, bool KillDefMI) const {
3850   //         RegMO ImmMO
3851   //           |    |
3852   // x = addi reg, imm  <----- DefMI
3853   // y = op    0 ,  x   <----- MI
3854   //                |
3855   //         OpNoForForwarding
3856   // Check if the MI meet the requirement described in the III.
3857   if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
3858     return false;
3859 
3860   // Check if the DefMI meet the requirement
3861   // described in the III. If yes, set the ImmMO and RegMO accordingly.
3862   MachineOperand *ImmMO = nullptr;
3863   MachineOperand *RegMO = nullptr;
3864   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
3865     return false;
3866   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
3867 
3868   // As we get the Imm operand now, we need to check if the ImmMO meet
3869   // the requirement described in the III. If yes set the Imm.
3870   int64_t Imm = 0;
3871   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
3872     return false;
3873 
3874   bool IsFwdFeederRegKilled = false;
3875   // Check if the RegMO can be forwarded to MI.
3876   if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
3877                                  IsFwdFeederRegKilled))
3878     return false;
3879 
3880   // Get killed info in case fixup needed after transformation.
3881   unsigned ForwardKilledOperandReg = ~0U;
3882   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3883   bool PostRA = !MRI.isSSA();
3884   if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
3885     ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
3886 
3887   // We know that, the MI and DefMI both meet the pattern, and
3888   // the Imm also meet the requirement with the new Imm-form.
3889   // It is safe to do the transformation now.
3890   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
3891   LLVM_DEBUG(MI.dump());
3892   LLVM_DEBUG(dbgs() << "Fed by:\n");
3893   LLVM_DEBUG(DefMI.dump());
3894 
3895   // Update the base reg first.
3896   MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
3897                                                         false, false,
3898                                                         RegMO->isKill());
3899 
3900   // Then, update the imm.
3901   if (ImmMO->isImm()) {
3902     // If the ImmMO is Imm, change the operand that has ZERO to that Imm
3903     // directly.
3904     replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
3905   }
3906   else {
3907     // Otherwise, it is Constant Pool Index(CPI) or Global,
3908     // which is relocation in fact. We need to replace the special zero
3909     // register with ImmMO.
3910     // Before that, we need to fixup the target flags for imm.
3911     // For some reason, we miss to set the flag for the ImmMO if it is CPI.
3912     if (DefMI.getOpcode() == PPC::ADDItocL)
3913       ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
3914 
3915     // MI didn't have the interface such as MI.setOperand(i) though
3916     // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
3917     // ImmMO, we need to remove ZERO operand and all the operands behind it,
3918     // and, add the ImmMO, then, move back all the operands behind ZERO.
3919     SmallVector<MachineOperand, 2> MOps;
3920     for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
3921       MOps.push_back(MI.getOperand(i));
3922       MI.RemoveOperand(i);
3923     }
3924 
3925     // Remove the last MO in the list, which is ZERO operand in fact.
3926     MOps.pop_back();
3927     // Add the imm operand.
3928     MI.addOperand(*ImmMO);
3929     // Now add the rest back.
3930     for (auto &MO : MOps)
3931       MI.addOperand(MO);
3932   }
3933 
3934   // Update the opcode.
3935   MI.setDesc(get(III.ImmOpcode));
3936 
3937   // Fix up killed/dead flag after transformation.
3938   // Pattern 1:
3939   // x = ADD KilledFwdFeederReg, imm
3940   // n = opn KilledFwdFeederReg(killed), regn
3941   // y = XOP 0, x
3942   // Pattern 2:
3943   // x = ADD reg(killed), imm
3944   // y = XOP 0, x
3945   if (IsFwdFeederRegKilled || RegMO->isKill())
3946     fixupIsDeadOrKill(DefMI, MI, RegMO->getReg());
3947   // Pattern 3:
3948   // ForwardKilledOperandReg = ADD reg, imm
3949   // y = XOP 0, ForwardKilledOperandReg(killed)
3950   if (ForwardKilledOperandReg != ~0U)
3951     fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3952 
3953   LLVM_DEBUG(dbgs() << "With:\n");
3954   LLVM_DEBUG(MI.dump());
3955 
3956   return true;
3957 }
3958 
3959 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
3960                                              const ImmInstrInfo &III,
3961                                              unsigned ConstantOpNo,
3962                                              MachineInstr &DefMI) const {
3963   // DefMI must be LI or LI8.
3964   if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
3965       !DefMI.getOperand(1).isImm())
3966     return false;
3967 
3968   // Get Imm operand and Sign-extend to 64-bits.
3969   int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm());
3970 
3971   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3972   bool PostRA = !MRI.isSSA();
3973   // Exit early if we can't convert this.
3974   if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
3975     return false;
3976   if (Imm % III.ImmMustBeMultipleOf)
3977     return false;
3978   if (III.TruncateImmTo)
3979     Imm &= ((1 << III.TruncateImmTo) - 1);
3980   if (III.SignedImm) {
3981     APInt ActualValue(64, Imm, true);
3982     if (!ActualValue.isSignedIntN(III.ImmWidth))
3983       return false;
3984   } else {
3985     uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3986     if ((uint64_t)Imm > UnsignedMax)
3987       return false;
3988   }
3989 
3990   // If we're post-RA, the instructions don't agree on whether register zero is
3991   // special, we can transform this as long as the register operand that will
3992   // end up in the location where zero is special isn't R0.
3993   if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3994     unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
3995       III.ZeroIsSpecialNew + 1;
3996     Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
3997     Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3998     // If R0 is in the operand where zero is special for the new instruction,
3999     // it is unsafe to transform if the constant operand isn't that operand.
4000     if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
4001         ConstantOpNo != III.ZeroIsSpecialNew)
4002       return false;
4003     if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
4004         ConstantOpNo != PosForOrigZero)
4005       return false;
4006   }
4007 
4008   // Get killed info in case fixup needed after transformation.
4009   unsigned ForwardKilledOperandReg = ~0U;
4010   if (PostRA && MI.getOperand(ConstantOpNo).isKill())
4011     ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
4012 
4013   unsigned Opc = MI.getOpcode();
4014   bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec ||
4015                         Opc == PPC::SRW || Opc == PPC::SRW_rec ||
4016                         Opc == PPC::SLW8 || Opc == PPC::SLW8_rec ||
4017                         Opc == PPC::SRW8 || Opc == PPC::SRW8_rec;
4018   bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec ||
4019                         Opc == PPC::SRD || Opc == PPC::SRD_rec;
4020   bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec ||
4021                Opc == PPC::SLD_rec || Opc == PPC::SRD_rec;
4022   bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD ||
4023                     Opc == PPC::SRD_rec;
4024 
4025   MI.setDesc(get(III.ImmOpcode));
4026   if (ConstantOpNo == III.OpNoForForwarding) {
4027     // Converting shifts to immediate form is a bit tricky since they may do
4028     // one of three things:
4029     // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
4030     // 2. If the shift amount is zero, the result is unchanged (save for maybe
4031     //    setting CR0)
4032     // 3. If the shift amount is in [1, OpSize), it's just a shift
4033     if (SpecialShift32 || SpecialShift64) {
4034       LoadImmediateInfo LII;
4035       LII.Imm = 0;
4036       LII.SetCR = SetCR;
4037       LII.Is64Bit = SpecialShift64;
4038       uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
4039       if (Imm & (SpecialShift32 ? 0x20 : 0x40))
4040         replaceInstrWithLI(MI, LII);
4041       // Shifts by zero don't change the value. If we don't need to set CR0,
4042       // just convert this to a COPY. Can't do this post-RA since we've already
4043       // cleaned up the copies.
4044       else if (!SetCR && ShAmt == 0 && !PostRA) {
4045         MI.RemoveOperand(2);
4046         MI.setDesc(get(PPC::COPY));
4047       } else {
4048         // The 32 bit and 64 bit instructions are quite different.
4049         if (SpecialShift32) {
4050           // Left shifts use (N, 0, 31-N).
4051           // Right shifts use (32-N, N, 31) if 0 < N < 32.
4052           //              use (0, 0, 31)    if N == 0.
4053           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt;
4054           uint64_t MB = RightShift ? ShAmt : 0;
4055           uint64_t ME = RightShift ? 31 : 31 - ShAmt;
4056           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
4057           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
4058             .addImm(ME);
4059         } else {
4060           // Left shifts use (N, 63-N).
4061           // Right shifts use (64-N, N) if 0 < N < 64.
4062           //              use (0, 0)    if N == 0.
4063           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt;
4064           uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
4065           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
4066           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
4067         }
4068       }
4069     } else
4070       replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
4071   }
4072   // Convert commutative instructions (switch the operands and convert the
4073   // desired one to an immediate.
4074   else if (III.IsCommutative) {
4075     replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
4076     swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
4077   } else
4078     llvm_unreachable("Should have exited early!");
4079 
4080   // For instructions for which the constant register replaces a different
4081   // operand than where the immediate goes, we need to swap them.
4082   if (III.OpNoForForwarding != III.ImmOpNo)
4083     swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
4084 
4085   // If the special R0/X0 register index are different for original instruction
4086   // and new instruction, we need to fix up the register class in new
4087   // instruction.
4088   if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
4089     if (III.ZeroIsSpecialNew) {
4090       // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
4091       // need to fix up register class.
4092       Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
4093       if (Register::isVirtualRegister(RegToModify)) {
4094         const TargetRegisterClass *NewRC =
4095           MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
4096           &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
4097         MRI.setRegClass(RegToModify, NewRC);
4098       }
4099     }
4100   }
4101 
4102   // Fix up killed/dead flag after transformation.
4103   // Pattern:
4104   // ForwardKilledOperandReg = LI imm
4105   // y = XOP reg, ForwardKilledOperandReg(killed)
4106   if (ForwardKilledOperandReg != ~0U)
4107     fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
4108   return true;
4109 }
4110 
4111 const TargetRegisterClass *
4112 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
4113   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
4114     return &PPC::VSRCRegClass;
4115   return RC;
4116 }
4117 
4118 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
4119   return PPC::getRecordFormOpcode(Opcode);
4120 }
4121 
4122 // This function returns true if the machine instruction
4123 // always outputs a value by sign-extending a 32 bit value,
4124 // i.e. 0 to 31-th bits are same as 32-th bit.
4125 static bool isSignExtendingOp(const MachineInstr &MI) {
4126   int Opcode = MI.getOpcode();
4127   if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS ||
4128       Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec ||
4129       Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA ||
4130       Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
4131       Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 ||
4132       Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
4133       Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU ||
4134       Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
4135       Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 ||
4136       Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
4137       Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB ||
4138       Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH ||
4139       Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 ||
4140       Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW ||
4141       Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 ||
4142       Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
4143       Opcode == PPC::EXTSB8_32_64)
4144     return true;
4145 
4146   if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
4147     return true;
4148 
4149   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
4150        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) &&
4151       MI.getOperand(3).getImm() > 0 &&
4152       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
4153     return true;
4154 
4155   return false;
4156 }
4157 
4158 // This function returns true if the machine instruction
4159 // always outputs zeros in higher 32 bits.
4160 static bool isZeroExtendingOp(const MachineInstr &MI) {
4161   int Opcode = MI.getOpcode();
4162   // The 16-bit immediate is sign-extended in li/lis.
4163   // If the most significant bit is zero, all higher bits are zero.
4164   if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
4165       Opcode == PPC::LIS || Opcode == PPC::LIS8) {
4166     int64_t Imm = MI.getOperand(1).getImm();
4167     if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
4168       return true;
4169   }
4170 
4171   // We have some variations of rotate-and-mask instructions
4172   // that clear higher 32-bits.
4173   if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
4174        Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec ||
4175        Opcode == PPC::RLDICL_32_64) &&
4176       MI.getOperand(3).getImm() >= 32)
4177     return true;
4178 
4179   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
4180       MI.getOperand(3).getImm() >= 32 &&
4181       MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
4182     return true;
4183 
4184   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
4185        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
4186        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
4187       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
4188     return true;
4189 
4190   // There are other instructions that clear higher 32-bits.
4191   if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
4192       Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
4193       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
4194       Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
4195       Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec ||
4196       Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW ||
4197       Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec ||
4198       Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI ||
4199       Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI ||
4200       Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX ||
4201       Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX ||
4202       Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
4203       Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ ||
4204       Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
4205       Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 ||
4206       Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 ||
4207       Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 ||
4208       Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
4209       Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
4210       Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec ||
4211       Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec ||
4212       Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec ||
4213       Opcode == PPC::MFVSRWZ)
4214     return true;
4215 
4216   return false;
4217 }
4218 
4219 // This function returns true if the input MachineInstr is a TOC save
4220 // instruction.
4221 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
4222   if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
4223     return false;
4224   unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
4225   unsigned StackOffset = MI.getOperand(1).getImm();
4226   Register StackReg = MI.getOperand(2).getReg();
4227   if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
4228     return true;
4229 
4230   return false;
4231 }
4232 
4233 // We limit the max depth to track incoming values of PHIs or binary ops
4234 // (e.g. AND) to avoid excessive cost.
4235 const unsigned MAX_DEPTH = 1;
4236 
4237 bool
4238 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
4239                                    const unsigned Depth) const {
4240   const MachineFunction *MF = MI.getParent()->getParent();
4241   const MachineRegisterInfo *MRI = &MF->getRegInfo();
4242 
4243   // If we know this instruction returns sign- or zero-extended result,
4244   // return true.
4245   if (SignExt ? isSignExtendingOp(MI):
4246                 isZeroExtendingOp(MI))
4247     return true;
4248 
4249   switch (MI.getOpcode()) {
4250   case PPC::COPY: {
4251     Register SrcReg = MI.getOperand(1).getReg();
4252 
4253     // In both ELFv1 and v2 ABI, method parameters and the return value
4254     // are sign- or zero-extended.
4255     if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
4256       const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
4257       // We check the ZExt/SExt flags for a method parameter.
4258       if (MI.getParent()->getBasicBlock() ==
4259           &MF->getFunction().getEntryBlock()) {
4260         Register VReg = MI.getOperand(0).getReg();
4261         if (MF->getRegInfo().isLiveIn(VReg))
4262           return SignExt ? FuncInfo->isLiveInSExt(VReg) :
4263                            FuncInfo->isLiveInZExt(VReg);
4264       }
4265 
4266       // For a method return value, we check the ZExt/SExt flags in attribute.
4267       // We assume the following code sequence for method call.
4268       //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
4269       //   BL8_NOP @func,...
4270       //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
4271       //   %5 = COPY %x3; G8RC:%5
4272       if (SrcReg == PPC::X3) {
4273         const MachineBasicBlock *MBB = MI.getParent();
4274         MachineBasicBlock::const_instr_iterator II =
4275           MachineBasicBlock::const_instr_iterator(&MI);
4276         if (II != MBB->instr_begin() &&
4277             (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
4278           const MachineInstr &CallMI = *(--II);
4279           if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
4280             const Function *CalleeFn =
4281               dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
4282             if (!CalleeFn)
4283               return false;
4284             const IntegerType *IntTy =
4285               dyn_cast<IntegerType>(CalleeFn->getReturnType());
4286             const AttributeSet &Attrs =
4287               CalleeFn->getAttributes().getRetAttributes();
4288             if (IntTy && IntTy->getBitWidth() <= 32)
4289               return Attrs.hasAttribute(SignExt ? Attribute::SExt :
4290                                                   Attribute::ZExt);
4291           }
4292         }
4293       }
4294     }
4295 
4296     // If this is a copy from another register, we recursively check source.
4297     if (!Register::isVirtualRegister(SrcReg))
4298       return false;
4299     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
4300     if (SrcMI != NULL)
4301       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
4302 
4303     return false;
4304   }
4305 
4306   case PPC::ANDI_rec:
4307   case PPC::ANDIS_rec:
4308   case PPC::ORI:
4309   case PPC::ORIS:
4310   case PPC::XORI:
4311   case PPC::XORIS:
4312   case PPC::ANDI8_rec:
4313   case PPC::ANDIS8_rec:
4314   case PPC::ORI8:
4315   case PPC::ORIS8:
4316   case PPC::XORI8:
4317   case PPC::XORIS8: {
4318     // logical operation with 16-bit immediate does not change the upper bits.
4319     // So, we track the operand register as we do for register copy.
4320     Register SrcReg = MI.getOperand(1).getReg();
4321     if (!Register::isVirtualRegister(SrcReg))
4322       return false;
4323     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
4324     if (SrcMI != NULL)
4325       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
4326 
4327     return false;
4328   }
4329 
4330   // If all incoming values are sign-/zero-extended,
4331   // the output of OR, ISEL or PHI is also sign-/zero-extended.
4332   case PPC::OR:
4333   case PPC::OR8:
4334   case PPC::ISEL:
4335   case PPC::PHI: {
4336     if (Depth >= MAX_DEPTH)
4337       return false;
4338 
4339     // The input registers for PHI are operand 1, 3, ...
4340     // The input registers for others are operand 1 and 2.
4341     unsigned E = 3, D = 1;
4342     if (MI.getOpcode() == PPC::PHI) {
4343       E = MI.getNumOperands();
4344       D = 2;
4345     }
4346 
4347     for (unsigned I = 1; I != E; I += D) {
4348       if (MI.getOperand(I).isReg()) {
4349         Register SrcReg = MI.getOperand(I).getReg();
4350         if (!Register::isVirtualRegister(SrcReg))
4351           return false;
4352         const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
4353         if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
4354           return false;
4355       }
4356       else
4357         return false;
4358     }
4359     return true;
4360   }
4361 
4362   // If at least one of the incoming values of an AND is zero extended
4363   // then the output is also zero-extended. If both of the incoming values
4364   // are sign-extended then the output is also sign extended.
4365   case PPC::AND:
4366   case PPC::AND8: {
4367     if (Depth >= MAX_DEPTH)
4368        return false;
4369 
4370     assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
4371 
4372     Register SrcReg1 = MI.getOperand(1).getReg();
4373     Register SrcReg2 = MI.getOperand(2).getReg();
4374 
4375     if (!Register::isVirtualRegister(SrcReg1) ||
4376         !Register::isVirtualRegister(SrcReg2))
4377       return false;
4378 
4379     const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
4380     const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
4381     if (!MISrc1 || !MISrc2)
4382         return false;
4383 
4384     if(SignExt)
4385         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
4386                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
4387     else
4388         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
4389                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
4390   }
4391 
4392   default:
4393     break;
4394   }
4395   return false;
4396 }
4397 
4398 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
4399   return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
4400 }
4401 
4402 namespace {
4403 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
4404   MachineInstr *Loop, *EndLoop, *LoopCount;
4405   MachineFunction *MF;
4406   const TargetInstrInfo *TII;
4407   int64_t TripCount;
4408 
4409 public:
4410   PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
4411                        MachineInstr *LoopCount)
4412       : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
4413         MF(Loop->getParent()->getParent()),
4414         TII(MF->getSubtarget().getInstrInfo()) {
4415     // Inspect the Loop instruction up-front, as it may be deleted when we call
4416     // createTripCountGreaterCondition.
4417     if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
4418       TripCount = LoopCount->getOperand(1).getImm();
4419     else
4420       TripCount = -1;
4421   }
4422 
4423   bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
4424     // Only ignore the terminator.
4425     return MI == EndLoop;
4426   }
4427 
4428   Optional<bool>
4429   createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
4430                                   SmallVectorImpl<MachineOperand> &Cond) override {
4431     if (TripCount == -1) {
4432       // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
4433       // so we don't need to generate any thing here.
4434       Cond.push_back(MachineOperand::CreateImm(0));
4435       Cond.push_back(MachineOperand::CreateReg(
4436           MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
4437           true));
4438       return {};
4439     }
4440 
4441     return TripCount > TC;
4442   }
4443 
4444   void setPreheader(MachineBasicBlock *NewPreheader) override {
4445     // Do nothing. We want the LOOP setup instruction to stay in the *old*
4446     // preheader, so we can use BDZ in the prologs to adapt the loop trip count.
4447   }
4448 
4449   void adjustTripCount(int TripCountAdjust) override {
4450     // If the loop trip count is a compile-time value, then just change the
4451     // value.
4452     if (LoopCount->getOpcode() == PPC::LI8 ||
4453         LoopCount->getOpcode() == PPC::LI) {
4454       int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
4455       LoopCount->getOperand(1).setImm(TripCount);
4456       return;
4457     }
4458 
4459     // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
4460     // so we don't need to generate any thing here.
4461   }
4462 
4463   void disposed() override {
4464     Loop->eraseFromParent();
4465     // Ensure the loop setup instruction is deleted too.
4466     LoopCount->eraseFromParent();
4467   }
4468 };
4469 } // namespace
4470 
4471 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
4472 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
4473   // We really "analyze" only hardware loops right now.
4474   MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
4475   MachineBasicBlock *Preheader = *LoopBB->pred_begin();
4476   if (Preheader == LoopBB)
4477     Preheader = *std::next(LoopBB->pred_begin());
4478   MachineFunction *MF = Preheader->getParent();
4479 
4480   if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
4481     SmallPtrSet<MachineBasicBlock *, 8> Visited;
4482     if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
4483       Register LoopCountReg = LoopInst->getOperand(0).getReg();
4484       MachineRegisterInfo &MRI = MF->getRegInfo();
4485       MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
4486       return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
4487     }
4488   }
4489   return nullptr;
4490 }
4491 
4492 MachineInstr *PPCInstrInfo::findLoopInstr(
4493     MachineBasicBlock &PreHeader,
4494     SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
4495 
4496   unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
4497 
4498   // The loop set-up instruction should be in preheader
4499   for (auto &I : PreHeader.instrs())
4500     if (I.getOpcode() == LOOPi)
4501       return &I;
4502   return nullptr;
4503 }
4504 
4505 // Return true if get the base operand, byte offset of an instruction and the
4506 // memory width. Width is the size of memory that is being loaded/stored.
4507 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
4508     const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
4509     unsigned &Width, const TargetRegisterInfo *TRI) const {
4510   if (!LdSt.mayLoadOrStore())
4511     return false;
4512 
4513   // Handle only loads/stores with base register followed by immediate offset.
4514   if (LdSt.getNumExplicitOperands() != 3)
4515     return false;
4516   if (!LdSt.getOperand(1).isImm() || !LdSt.getOperand(2).isReg())
4517     return false;
4518 
4519   if (!LdSt.hasOneMemOperand())
4520     return false;
4521 
4522   Width = (*LdSt.memoperands_begin())->getSize();
4523   Offset = LdSt.getOperand(1).getImm();
4524   BaseReg = &LdSt.getOperand(2);
4525   return true;
4526 }
4527 
4528 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
4529     const MachineInstr &MIa, const MachineInstr &MIb) const {
4530   assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
4531   assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
4532 
4533   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
4534       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
4535     return false;
4536 
4537   // Retrieve the base register, offset from the base register and width. Width
4538   // is the size of memory that is being loaded/stored (e.g. 1, 2, 4).  If
4539   // base registers are identical, and the offset of a lower memory access +
4540   // the width doesn't overlap the offset of a higher memory access,
4541   // then the memory accesses are different.
4542   const TargetRegisterInfo *TRI = &getRegisterInfo();
4543   const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
4544   int64_t OffsetA = 0, OffsetB = 0;
4545   unsigned int WidthA = 0, WidthB = 0;
4546   if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
4547       getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
4548     if (BaseOpA->isIdenticalTo(*BaseOpB)) {
4549       int LowOffset = std::min(OffsetA, OffsetB);
4550       int HighOffset = std::max(OffsetA, OffsetB);
4551       int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
4552       if (LowOffset + LowWidth <= HighOffset)
4553         return true;
4554     }
4555   }
4556   return false;
4557 }
4558