1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/ScheduleDAG.h" 31 #include "llvm/CodeGen/SlotIndexes.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCInst.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "ppc-instr-info" 44 45 #define GET_INSTRMAP_INFO 46 #define GET_INSTRINFO_CTOR_DTOR 47 #include "PPCGenInstrInfo.inc" 48 49 STATISTIC(NumStoreSPILLVSRRCAsVec, 50 "Number of spillvsrrc spilled to stack as vec"); 51 STATISTIC(NumStoreSPILLVSRRCAsGpr, 52 "Number of spillvsrrc spilled to stack as gpr"); 53 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 54 STATISTIC(CmpIselsConverted, 55 "Number of ISELs that depend on comparison of constants converted"); 56 STATISTIC(MissedConvertibleImmediateInstrs, 57 "Number of compare-immediate instructions fed by constants"); 58 STATISTIC(NumRcRotatesConvertedToRcAnd, 59 "Number of record-form rotates converted to record-form andi"); 60 61 static cl:: 62 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 63 cl::desc("Disable analysis for CTR loops")); 64 65 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 66 cl::desc("Disable compare instruction optimization"), cl::Hidden); 67 68 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 69 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 70 cl::Hidden); 71 72 static cl::opt<bool> 73 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 74 cl::desc("Use the old (incorrect) instruction latency calculation")); 75 76 // Pin the vtable to this file. 77 void PPCInstrInfo::anchor() {} 78 79 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 80 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 81 /* CatchRetOpcode */ -1, 82 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 83 Subtarget(STI), RI(STI.getTargetMachine()) {} 84 85 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 86 /// this target when scheduling the DAG. 87 ScheduleHazardRecognizer * 88 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 89 const ScheduleDAG *DAG) const { 90 unsigned Directive = 91 static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); 92 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 93 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 94 const InstrItineraryData *II = 95 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 96 return new ScoreboardHazardRecognizer(II, DAG); 97 } 98 99 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 100 } 101 102 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 103 /// to use for this target when scheduling the DAG. 104 ScheduleHazardRecognizer * 105 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 106 const ScheduleDAG *DAG) const { 107 unsigned Directive = 108 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); 109 110 // FIXME: Leaving this as-is until we have POWER9 scheduling info 111 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 112 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 113 114 // Most subtargets use a PPC970 recognizer. 115 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 116 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 117 assert(DAG->TII && "No InstrInfo?"); 118 119 return new PPCHazardRecognizer970(*DAG); 120 } 121 122 return new ScoreboardHazardRecognizer(II, DAG); 123 } 124 125 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 126 const MachineInstr &MI, 127 unsigned *PredCost) const { 128 if (!ItinData || UseOldLatencyCalc) 129 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 130 131 // The default implementation of getInstrLatency calls getStageLatency, but 132 // getStageLatency does not do the right thing for us. While we have 133 // itinerary, most cores are fully pipelined, and so the itineraries only 134 // express the first part of the pipeline, not every stage. Instead, we need 135 // to use the listed output operand cycle number (using operand 0 here, which 136 // is an output). 137 138 unsigned Latency = 1; 139 unsigned DefClass = MI.getDesc().getSchedClass(); 140 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 141 const MachineOperand &MO = MI.getOperand(i); 142 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 143 continue; 144 145 int Cycle = ItinData->getOperandCycle(DefClass, i); 146 if (Cycle < 0) 147 continue; 148 149 Latency = std::max(Latency, (unsigned) Cycle); 150 } 151 152 return Latency; 153 } 154 155 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 156 const MachineInstr &DefMI, unsigned DefIdx, 157 const MachineInstr &UseMI, 158 unsigned UseIdx) const { 159 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 160 UseMI, UseIdx); 161 162 if (!DefMI.getParent()) 163 return Latency; 164 165 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 166 Register Reg = DefMO.getReg(); 167 168 bool IsRegCR; 169 if (Register::isVirtualRegister(Reg)) { 170 const MachineRegisterInfo *MRI = 171 &DefMI.getParent()->getParent()->getRegInfo(); 172 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 173 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 174 } else { 175 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 176 PPC::CRBITRCRegClass.contains(Reg); 177 } 178 179 if (UseMI.isBranch() && IsRegCR) { 180 if (Latency < 0) 181 Latency = getInstrLatency(ItinData, DefMI); 182 183 // On some cores, there is an additional delay between writing to a condition 184 // register, and using it from a branch. 185 unsigned Directive = Subtarget.getCPUDirective(); 186 switch (Directive) { 187 default: break; 188 case PPC::DIR_7400: 189 case PPC::DIR_750: 190 case PPC::DIR_970: 191 case PPC::DIR_E5500: 192 case PPC::DIR_PWR4: 193 case PPC::DIR_PWR5: 194 case PPC::DIR_PWR5X: 195 case PPC::DIR_PWR6: 196 case PPC::DIR_PWR6X: 197 case PPC::DIR_PWR7: 198 case PPC::DIR_PWR8: 199 // FIXME: Is this needed for POWER9? 200 Latency += 2; 201 break; 202 } 203 } 204 205 return Latency; 206 } 207 208 /// This is an architecture-specific helper function of reassociateOps. 209 /// Set special operand attributes for new instructions after reassociation. 210 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, 211 MachineInstr &OldMI2, 212 MachineInstr &NewMI1, 213 MachineInstr &NewMI2) const { 214 // Propagate FP flags from the original instructions. 215 // But clear poison-generating flags because those may not be valid now. 216 uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags(); 217 NewMI1.setFlags(IntersectedFlags); 218 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap); 219 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap); 220 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact); 221 222 NewMI2.setFlags(IntersectedFlags); 223 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap); 224 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap); 225 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact); 226 } 227 228 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI, 229 uint16_t Flags) const { 230 MI.setFlags(Flags); 231 MI.clearFlag(MachineInstr::MIFlag::NoSWrap); 232 MI.clearFlag(MachineInstr::MIFlag::NoUWrap); 233 MI.clearFlag(MachineInstr::MIFlag::IsExact); 234 } 235 236 // This function does not list all associative and commutative operations, but 237 // only those worth feeding through the machine combiner in an attempt to 238 // reduce the critical path. Mostly, this means floating-point operations, 239 // because they have high latencies(>=5) (compared to other operations, such as 240 // and/or, which are also associative and commutative, but have low latencies). 241 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 242 switch (Inst.getOpcode()) { 243 // Floating point: 244 // FP Add: 245 case PPC::FADD: 246 case PPC::FADDS: 247 // FP Multiply: 248 case PPC::FMUL: 249 case PPC::FMULS: 250 // Altivec Add: 251 case PPC::VADDFP: 252 // VSX Add: 253 case PPC::XSADDDP: 254 case PPC::XVADDDP: 255 case PPC::XVADDSP: 256 case PPC::XSADDSP: 257 // VSX Multiply: 258 case PPC::XSMULDP: 259 case PPC::XVMULDP: 260 case PPC::XVMULSP: 261 case PPC::XSMULSP: 262 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && 263 Inst.getFlag(MachineInstr::MIFlag::FmNsz); 264 // Fixed point: 265 // Multiply: 266 case PPC::MULHD: 267 case PPC::MULLD: 268 case PPC::MULHW: 269 case PPC::MULLW: 270 return true; 271 default: 272 return false; 273 } 274 } 275 276 #define InfoArrayIdxFMAInst 0 277 #define InfoArrayIdxFAddInst 1 278 #define InfoArrayIdxFMULInst 2 279 #define InfoArrayIdxAddOpIdx 3 280 #define InfoArrayIdxMULOpIdx 4 281 // Array keeps info for FMA instructions: 282 // Index 0(InfoArrayIdxFMAInst): FMA instruction; 283 // Index 1(InfoArrayIdxFAddInst): ADD instruction assoaicted with FMA; 284 // Index 2(InfoArrayIdxFMULInst): MUL instruction assoaicted with FMA; 285 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands; 286 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands; 287 // second MUL operand index is plus 1. 288 static const uint16_t FMAOpIdxInfo[][5] = { 289 // FIXME: Add more FMA instructions like XSNMADDADP and so on. 290 {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2}, 291 {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2}, 292 {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2}, 293 {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2}, 294 {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1}, 295 {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1}}; 296 297 // Check if an opcode is a FMA instruction. If it is, return the index in array 298 // FMAOpIdxInfo. Otherwise, return -1. 299 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const { 300 for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++) 301 if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode) 302 return I; 303 return -1; 304 } 305 306 // Try to reassociate FMA chains like below: 307 // 308 // Pattern 1: 309 // A = FADD X, Y (Leaf) 310 // B = FMA A, M21, M22 (Prev) 311 // C = FMA B, M31, M32 (Root) 312 // --> 313 // A = FMA X, M21, M22 314 // B = FMA Y, M31, M32 315 // C = FADD A, B 316 // 317 // Pattern 2: 318 // A = FMA X, M11, M12 (Leaf) 319 // B = FMA A, M21, M22 (Prev) 320 // C = FMA B, M31, M32 (Root) 321 // --> 322 // A = FMUL M11, M12 323 // B = FMA X, M21, M22 324 // D = FMA A, M31, M32 325 // C = FADD B, D 326 // 327 // breaking the dependency between A and B, allowing FMA to be executed in 328 // parallel (or back-to-back in a pipeline) instead of depending on each other. 329 bool PPCInstrInfo::getFMAPatterns( 330 MachineInstr &Root, 331 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 332 MachineBasicBlock *MBB = Root.getParent(); 333 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 334 335 auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) { 336 for (const auto &MO : Instr.explicit_operands()) 337 if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg()))) 338 return false; 339 return true; 340 }; 341 342 auto IsReassociable = [&](const MachineInstr &Instr, int16_t &AddOpIdx, 343 bool IsLeaf, bool IsAdd) { 344 int16_t Idx = -1; 345 if (!IsAdd) { 346 Idx = getFMAOpIdxInfo(Instr.getOpcode()); 347 if (Idx < 0) 348 return false; 349 } else if (Instr.getOpcode() != 350 FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())] 351 [InfoArrayIdxFAddInst]) 352 return false; 353 354 // Instruction can be reassociated. 355 // fast math flags may prohibit reassociation. 356 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 357 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 358 return false; 359 360 // Instruction operands are virtual registers for reassociation. 361 if (!IsAllOpsVirtualReg(Instr)) 362 return false; 363 364 if (IsAdd && IsLeaf) 365 return true; 366 367 AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 368 369 const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx); 370 MachineInstr *MIAdd = MRI.getUniqueVRegDef(OpAdd.getReg()); 371 // If 'add' operand's def is not in current block, don't do ILP related opt. 372 if (!MIAdd || MIAdd->getParent() != MBB) 373 return false; 374 375 // If this is not Leaf FMA Instr, its 'add' operand should only have one use 376 // as this fma will be changed later. 377 return IsLeaf ? true : MRI.hasOneNonDBGUse(OpAdd.getReg()); 378 }; 379 380 int16_t AddOpIdx = -1; 381 // Root must be a valid FMA like instruction. 382 if (!IsReassociable(Root, AddOpIdx, false, false)) 383 return false; 384 385 assert((AddOpIdx >= 0) && "add operand index not right!"); 386 387 Register RegB = Root.getOperand(AddOpIdx).getReg(); 388 MachineInstr *Prev = MRI.getUniqueVRegDef(RegB); 389 390 // Prev must be a valid FMA like instruction. 391 AddOpIdx = -1; 392 if (!IsReassociable(*Prev, AddOpIdx, false, false)) 393 return false; 394 395 assert((AddOpIdx >= 0) && "add operand index not right!"); 396 397 Register RegA = Prev->getOperand(AddOpIdx).getReg(); 398 MachineInstr *Leaf = MRI.getUniqueVRegDef(RegA); 399 AddOpIdx = -1; 400 if (IsReassociable(*Leaf, AddOpIdx, true, false)) { 401 Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 402 return true; 403 } 404 if (IsReassociable(*Leaf, AddOpIdx, true, true)) { 405 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM); 406 return true; 407 } 408 return false; 409 } 410 411 bool PPCInstrInfo::getMachineCombinerPatterns( 412 MachineInstr &Root, 413 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 414 // Using the machine combiner in this way is potentially expensive, so 415 // restrict to when aggressive optimizations are desired. 416 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 417 return false; 418 419 if (getFMAPatterns(Root, Patterns)) 420 return true; 421 422 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 423 } 424 425 void PPCInstrInfo::genAlternativeCodeSequence( 426 MachineInstr &Root, MachineCombinerPattern Pattern, 427 SmallVectorImpl<MachineInstr *> &InsInstrs, 428 SmallVectorImpl<MachineInstr *> &DelInstrs, 429 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 430 switch (Pattern) { 431 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 432 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 433 reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg); 434 break; 435 default: 436 // Reassociate default patterns. 437 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, 438 DelInstrs, InstrIdxForVirtReg); 439 break; 440 } 441 } 442 443 // Currently, only handle two patterns REASSOC_XY_AMM_BMM and 444 // REASSOC_XMM_AMM_BMM. See comments for getFMAPatterns. 445 void PPCInstrInfo::reassociateFMA( 446 MachineInstr &Root, MachineCombinerPattern Pattern, 447 SmallVectorImpl<MachineInstr *> &InsInstrs, 448 SmallVectorImpl<MachineInstr *> &DelInstrs, 449 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 450 MachineFunction *MF = Root.getMF(); 451 MachineRegisterInfo &MRI = MF->getRegInfo(); 452 MachineOperand &OpC = Root.getOperand(0); 453 Register RegC = OpC.getReg(); 454 const TargetRegisterClass *RC = MRI.getRegClass(RegC); 455 MRI.constrainRegClass(RegC, RC); 456 457 unsigned FmaOp = Root.getOpcode(); 458 int16_t Idx = getFMAOpIdxInfo(FmaOp); 459 assert(Idx >= 0 && "Root must be a FMA instruction"); 460 461 uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 462 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 463 MachineInstr *Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg()); 464 MachineInstr *Leaf = 465 MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg()); 466 uint16_t IntersectedFlags = 467 Root.getFlags() & Prev->getFlags() & Leaf->getFlags(); 468 469 auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg, 470 bool &KillFlag) { 471 Reg = Operand.getReg(); 472 MRI.constrainRegClass(Reg, RC); 473 KillFlag = Operand.isKill(); 474 }; 475 476 auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1, 477 Register &MulOp2, bool &MulOp1KillFlag, 478 bool &MulOp2KillFlag) { 479 GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag); 480 GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag); 481 }; 482 483 Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32; 484 bool KillX = false, KillY = false, KillM11 = false, KillM12 = false, 485 KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false; 486 487 GetFMAInstrInfo(Root, RegM31, RegM32, KillM31, KillM32); 488 GetFMAInstrInfo(*Prev, RegM21, RegM22, KillM21, KillM22); 489 490 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 491 GetFMAInstrInfo(*Leaf, RegM11, RegM12, KillM11, KillM12); 492 GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX); 493 } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) { 494 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 495 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 496 } 497 498 // Create new virtual registers for the new results instead of 499 // recycling legacy ones because the MachineCombiner's computation of the 500 // critical path requires a new register definition rather than an existing 501 // one. 502 Register NewVRA = MRI.createVirtualRegister(RC); 503 InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0)); 504 505 Register NewVRB = MRI.createVirtualRegister(RC); 506 InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1)); 507 508 Register NewVRD = 0; 509 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 510 NewVRD = MRI.createVirtualRegister(RC); 511 InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2)); 512 } 513 514 auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd, 515 Register RegMul1, bool KillRegMul1, 516 Register RegMul2, bool KillRegMul2) { 517 MI->getOperand(AddOpIdx).setReg(RegAdd); 518 MI->getOperand(AddOpIdx).setIsKill(KillAdd); 519 MI->getOperand(FirstMulOpIdx).setReg(RegMul1); 520 MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1); 521 MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2); 522 MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2); 523 }; 524 525 if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) { 526 // Create new instructions for insertion. 527 MachineInstrBuilder MINewB = 528 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 529 .addReg(RegX, getKillRegState(KillX)) 530 .addReg(RegM21, getKillRegState(KillM21)) 531 .addReg(RegM22, getKillRegState(KillM22)); 532 MachineInstrBuilder MINewA = 533 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 534 .addReg(RegY, getKillRegState(KillY)) 535 .addReg(RegM31, getKillRegState(KillM31)) 536 .addReg(RegM32, getKillRegState(KillM32)); 537 // If AddOpIdx is not 1, adjust the order. 538 if (AddOpIdx != 1) { 539 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 540 AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32); 541 } 542 543 MachineInstrBuilder MINewC = 544 BuildMI(*MF, Root.getDebugLoc(), 545 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 546 .addReg(NewVRB, getKillRegState(true)) 547 .addReg(NewVRA, getKillRegState(true)); 548 549 // Update flags for newly created instructions. 550 setSpecialOperandAttr(*MINewA, IntersectedFlags); 551 setSpecialOperandAttr(*MINewB, IntersectedFlags); 552 setSpecialOperandAttr(*MINewC, IntersectedFlags); 553 554 // Record new instructions for insertion. 555 InsInstrs.push_back(MINewA); 556 InsInstrs.push_back(MINewB); 557 InsInstrs.push_back(MINewC); 558 } else if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 559 assert(NewVRD && "new FMA register not created!"); 560 // Create new instructions for insertion. 561 MachineInstrBuilder MINewA = 562 BuildMI(*MF, Leaf->getDebugLoc(), 563 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA) 564 .addReg(RegM11, getKillRegState(KillM11)) 565 .addReg(RegM12, getKillRegState(KillM12)); 566 MachineInstrBuilder MINewB = 567 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 568 .addReg(RegX, getKillRegState(KillX)) 569 .addReg(RegM21, getKillRegState(KillM21)) 570 .addReg(RegM22, getKillRegState(KillM22)); 571 MachineInstrBuilder MINewD = 572 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD) 573 .addReg(NewVRA, getKillRegState(true)) 574 .addReg(RegM31, getKillRegState(KillM31)) 575 .addReg(RegM32, getKillRegState(KillM32)); 576 // If AddOpIdx is not 1, adjust the order. 577 if (AddOpIdx != 1) { 578 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 579 AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32, 580 KillM32); 581 } 582 583 MachineInstrBuilder MINewC = 584 BuildMI(*MF, Root.getDebugLoc(), 585 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 586 .addReg(NewVRB, getKillRegState(true)) 587 .addReg(NewVRD, getKillRegState(true)); 588 589 // Update flags for newly created instructions. 590 setSpecialOperandAttr(*MINewA, IntersectedFlags); 591 setSpecialOperandAttr(*MINewB, IntersectedFlags); 592 setSpecialOperandAttr(*MINewD, IntersectedFlags); 593 setSpecialOperandAttr(*MINewC, IntersectedFlags); 594 595 // Record new instructions for insertion. 596 InsInstrs.push_back(MINewA); 597 InsInstrs.push_back(MINewB); 598 InsInstrs.push_back(MINewD); 599 InsInstrs.push_back(MINewC); 600 } 601 602 assert(!InsInstrs.empty() && 603 "Insertion instructions set should not be empty!"); 604 605 // Record old instructions for deletion. 606 DelInstrs.push_back(Leaf); 607 DelInstrs.push_back(Prev); 608 DelInstrs.push_back(&Root); 609 } 610 611 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 612 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 613 Register &SrcReg, Register &DstReg, 614 unsigned &SubIdx) const { 615 switch (MI.getOpcode()) { 616 default: return false; 617 case PPC::EXTSW: 618 case PPC::EXTSW_32: 619 case PPC::EXTSW_32_64: 620 SrcReg = MI.getOperand(1).getReg(); 621 DstReg = MI.getOperand(0).getReg(); 622 SubIdx = PPC::sub_32; 623 return true; 624 } 625 } 626 627 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 628 int &FrameIndex) const { 629 unsigned Opcode = MI.getOpcode(); 630 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 631 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 632 633 if (End != std::find(OpcodesForSpill, End, Opcode)) { 634 // Check for the operands added by addFrameReference (the immediate is the 635 // offset which defaults to 0). 636 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 637 MI.getOperand(2).isFI()) { 638 FrameIndex = MI.getOperand(2).getIndex(); 639 return MI.getOperand(0).getReg(); 640 } 641 } 642 return 0; 643 } 644 645 // For opcodes with the ReMaterializable flag set, this function is called to 646 // verify the instruction is really rematable. 647 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 648 AliasAnalysis *AA) const { 649 switch (MI.getOpcode()) { 650 default: 651 // This function should only be called for opcodes with the ReMaterializable 652 // flag set. 653 llvm_unreachable("Unknown rematerializable operation!"); 654 break; 655 case PPC::LI: 656 case PPC::LI8: 657 case PPC::LIS: 658 case PPC::LIS8: 659 case PPC::ADDIStocHA: 660 case PPC::ADDIStocHA8: 661 case PPC::ADDItocL: 662 case PPC::LOAD_STACK_GUARD: 663 case PPC::XXLXORz: 664 case PPC::XXLXORspz: 665 case PPC::XXLXORdpz: 666 case PPC::XXLEQVOnes: 667 case PPC::V_SET0B: 668 case PPC::V_SET0H: 669 case PPC::V_SET0: 670 case PPC::V_SETALLONESB: 671 case PPC::V_SETALLONESH: 672 case PPC::V_SETALLONES: 673 case PPC::CRSET: 674 case PPC::CRUNSET: 675 case PPC::XXSETACCZ: 676 return true; 677 } 678 return false; 679 } 680 681 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 682 int &FrameIndex) const { 683 unsigned Opcode = MI.getOpcode(); 684 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 685 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 686 687 if (End != std::find(OpcodesForSpill, End, Opcode)) { 688 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 689 MI.getOperand(2).isFI()) { 690 FrameIndex = MI.getOperand(2).getIndex(); 691 return MI.getOperand(0).getReg(); 692 } 693 } 694 return 0; 695 } 696 697 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 698 unsigned OpIdx1, 699 unsigned OpIdx2) const { 700 MachineFunction &MF = *MI.getParent()->getParent(); 701 702 // Normal instructions can be commuted the obvious way. 703 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) 704 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 705 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 706 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 707 // changing the relative order of the mask operands might change what happens 708 // to the high-bits of the mask (and, thus, the result). 709 710 // Cannot commute if it has a non-zero rotate count. 711 if (MI.getOperand(3).getImm() != 0) 712 return nullptr; 713 714 // If we have a zero rotate count, we have: 715 // M = mask(MB,ME) 716 // Op0 = (Op1 & ~M) | (Op2 & M) 717 // Change this to: 718 // M = mask((ME+1)&31, (MB-1)&31) 719 // Op0 = (Op2 & ~M) | (Op1 & M) 720 721 // Swap op1/op2 722 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 723 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); 724 Register Reg0 = MI.getOperand(0).getReg(); 725 Register Reg1 = MI.getOperand(1).getReg(); 726 Register Reg2 = MI.getOperand(2).getReg(); 727 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 728 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 729 bool Reg1IsKill = MI.getOperand(1).isKill(); 730 bool Reg2IsKill = MI.getOperand(2).isKill(); 731 bool ChangeReg0 = false; 732 // If machine instrs are no longer in two-address forms, update 733 // destination register as well. 734 if (Reg0 == Reg1) { 735 // Must be two address instruction! 736 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 737 "Expecting a two-address instruction!"); 738 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 739 Reg2IsKill = false; 740 ChangeReg0 = true; 741 } 742 743 // Masks. 744 unsigned MB = MI.getOperand(4).getImm(); 745 unsigned ME = MI.getOperand(5).getImm(); 746 747 // We can't commute a trivial mask (there is no way to represent an all-zero 748 // mask). 749 if (MB == 0 && ME == 31) 750 return nullptr; 751 752 if (NewMI) { 753 // Create a new instruction. 754 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 755 bool Reg0IsDead = MI.getOperand(0).isDead(); 756 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 757 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 758 .addReg(Reg2, getKillRegState(Reg2IsKill)) 759 .addReg(Reg1, getKillRegState(Reg1IsKill)) 760 .addImm((ME + 1) & 31) 761 .addImm((MB - 1) & 31); 762 } 763 764 if (ChangeReg0) { 765 MI.getOperand(0).setReg(Reg2); 766 MI.getOperand(0).setSubReg(SubReg2); 767 } 768 MI.getOperand(2).setReg(Reg1); 769 MI.getOperand(1).setReg(Reg2); 770 MI.getOperand(2).setSubReg(SubReg1); 771 MI.getOperand(1).setSubReg(SubReg2); 772 MI.getOperand(2).setIsKill(Reg1IsKill); 773 MI.getOperand(1).setIsKill(Reg2IsKill); 774 775 // Swap the mask around. 776 MI.getOperand(4).setImm((ME + 1) & 31); 777 MI.getOperand(5).setImm((MB - 1) & 31); 778 return &MI; 779 } 780 781 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 782 unsigned &SrcOpIdx1, 783 unsigned &SrcOpIdx2) const { 784 // For VSX A-Type FMA instructions, it is the first two operands that can be 785 // commuted, however, because the non-encoded tied input operand is listed 786 // first, the operands to swap are actually the second and third. 787 788 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 789 if (AltOpc == -1) 790 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 791 792 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 793 // and SrcOpIdx2. 794 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 795 } 796 797 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 798 MachineBasicBlock::iterator MI) const { 799 // This function is used for scheduling, and the nop wanted here is the type 800 // that terminates dispatch groups on the POWER cores. 801 unsigned Directive = Subtarget.getCPUDirective(); 802 unsigned Opcode; 803 switch (Directive) { 804 default: Opcode = PPC::NOP; break; 805 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 806 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 807 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 808 // FIXME: Update when POWER9 scheduling model is ready. 809 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 810 } 811 812 DebugLoc DL; 813 BuildMI(MBB, MI, DL, get(Opcode)); 814 } 815 816 /// Return the noop instruction to use for a noop. 817 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 818 NopInst.setOpcode(PPC::NOP); 819 } 820 821 // Branch analysis. 822 // Note: If the condition register is set to CTR or CTR8 then this is a 823 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 824 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 825 MachineBasicBlock *&TBB, 826 MachineBasicBlock *&FBB, 827 SmallVectorImpl<MachineOperand> &Cond, 828 bool AllowModify) const { 829 bool isPPC64 = Subtarget.isPPC64(); 830 831 // If the block has no terminators, it just falls into the block after it. 832 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 833 if (I == MBB.end()) 834 return false; 835 836 if (!isUnpredicatedTerminator(*I)) 837 return false; 838 839 if (AllowModify) { 840 // If the BB ends with an unconditional branch to the fallthrough BB, 841 // we eliminate the branch instruction. 842 if (I->getOpcode() == PPC::B && 843 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 844 I->eraseFromParent(); 845 846 // We update iterator after deleting the last branch. 847 I = MBB.getLastNonDebugInstr(); 848 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 849 return false; 850 } 851 } 852 853 // Get the last instruction in the block. 854 MachineInstr &LastInst = *I; 855 856 // If there is only one terminator instruction, process it. 857 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 858 if (LastInst.getOpcode() == PPC::B) { 859 if (!LastInst.getOperand(0).isMBB()) 860 return true; 861 TBB = LastInst.getOperand(0).getMBB(); 862 return false; 863 } else if (LastInst.getOpcode() == PPC::BCC) { 864 if (!LastInst.getOperand(2).isMBB()) 865 return true; 866 // Block ends with fall-through condbranch. 867 TBB = LastInst.getOperand(2).getMBB(); 868 Cond.push_back(LastInst.getOperand(0)); 869 Cond.push_back(LastInst.getOperand(1)); 870 return false; 871 } else if (LastInst.getOpcode() == PPC::BC) { 872 if (!LastInst.getOperand(1).isMBB()) 873 return true; 874 // Block ends with fall-through condbranch. 875 TBB = LastInst.getOperand(1).getMBB(); 876 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 877 Cond.push_back(LastInst.getOperand(0)); 878 return false; 879 } else if (LastInst.getOpcode() == PPC::BCn) { 880 if (!LastInst.getOperand(1).isMBB()) 881 return true; 882 // Block ends with fall-through condbranch. 883 TBB = LastInst.getOperand(1).getMBB(); 884 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 885 Cond.push_back(LastInst.getOperand(0)); 886 return false; 887 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 888 LastInst.getOpcode() == PPC::BDNZ) { 889 if (!LastInst.getOperand(0).isMBB()) 890 return true; 891 if (DisableCTRLoopAnal) 892 return true; 893 TBB = LastInst.getOperand(0).getMBB(); 894 Cond.push_back(MachineOperand::CreateImm(1)); 895 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 896 true)); 897 return false; 898 } else if (LastInst.getOpcode() == PPC::BDZ8 || 899 LastInst.getOpcode() == PPC::BDZ) { 900 if (!LastInst.getOperand(0).isMBB()) 901 return true; 902 if (DisableCTRLoopAnal) 903 return true; 904 TBB = LastInst.getOperand(0).getMBB(); 905 Cond.push_back(MachineOperand::CreateImm(0)); 906 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 907 true)); 908 return false; 909 } 910 911 // Otherwise, don't know what this is. 912 return true; 913 } 914 915 // Get the instruction before it if it's a terminator. 916 MachineInstr &SecondLastInst = *I; 917 918 // If there are three terminators, we don't know what sort of block this is. 919 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 920 return true; 921 922 // If the block ends with PPC::B and PPC:BCC, handle it. 923 if (SecondLastInst.getOpcode() == PPC::BCC && 924 LastInst.getOpcode() == PPC::B) { 925 if (!SecondLastInst.getOperand(2).isMBB() || 926 !LastInst.getOperand(0).isMBB()) 927 return true; 928 TBB = SecondLastInst.getOperand(2).getMBB(); 929 Cond.push_back(SecondLastInst.getOperand(0)); 930 Cond.push_back(SecondLastInst.getOperand(1)); 931 FBB = LastInst.getOperand(0).getMBB(); 932 return false; 933 } else if (SecondLastInst.getOpcode() == PPC::BC && 934 LastInst.getOpcode() == PPC::B) { 935 if (!SecondLastInst.getOperand(1).isMBB() || 936 !LastInst.getOperand(0).isMBB()) 937 return true; 938 TBB = SecondLastInst.getOperand(1).getMBB(); 939 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 940 Cond.push_back(SecondLastInst.getOperand(0)); 941 FBB = LastInst.getOperand(0).getMBB(); 942 return false; 943 } else if (SecondLastInst.getOpcode() == PPC::BCn && 944 LastInst.getOpcode() == PPC::B) { 945 if (!SecondLastInst.getOperand(1).isMBB() || 946 !LastInst.getOperand(0).isMBB()) 947 return true; 948 TBB = SecondLastInst.getOperand(1).getMBB(); 949 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 950 Cond.push_back(SecondLastInst.getOperand(0)); 951 FBB = LastInst.getOperand(0).getMBB(); 952 return false; 953 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 954 SecondLastInst.getOpcode() == PPC::BDNZ) && 955 LastInst.getOpcode() == PPC::B) { 956 if (!SecondLastInst.getOperand(0).isMBB() || 957 !LastInst.getOperand(0).isMBB()) 958 return true; 959 if (DisableCTRLoopAnal) 960 return true; 961 TBB = SecondLastInst.getOperand(0).getMBB(); 962 Cond.push_back(MachineOperand::CreateImm(1)); 963 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 964 true)); 965 FBB = LastInst.getOperand(0).getMBB(); 966 return false; 967 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 968 SecondLastInst.getOpcode() == PPC::BDZ) && 969 LastInst.getOpcode() == PPC::B) { 970 if (!SecondLastInst.getOperand(0).isMBB() || 971 !LastInst.getOperand(0).isMBB()) 972 return true; 973 if (DisableCTRLoopAnal) 974 return true; 975 TBB = SecondLastInst.getOperand(0).getMBB(); 976 Cond.push_back(MachineOperand::CreateImm(0)); 977 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 978 true)); 979 FBB = LastInst.getOperand(0).getMBB(); 980 return false; 981 } 982 983 // If the block ends with two PPC:Bs, handle it. The second one is not 984 // executed, so remove it. 985 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 986 if (!SecondLastInst.getOperand(0).isMBB()) 987 return true; 988 TBB = SecondLastInst.getOperand(0).getMBB(); 989 I = LastInst; 990 if (AllowModify) 991 I->eraseFromParent(); 992 return false; 993 } 994 995 // Otherwise, can't handle this. 996 return true; 997 } 998 999 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 1000 int *BytesRemoved) const { 1001 assert(!BytesRemoved && "code size not handled"); 1002 1003 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1004 if (I == MBB.end()) 1005 return 0; 1006 1007 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 1008 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1009 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1010 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1011 return 0; 1012 1013 // Remove the branch. 1014 I->eraseFromParent(); 1015 1016 I = MBB.end(); 1017 1018 if (I == MBB.begin()) return 1; 1019 --I; 1020 if (I->getOpcode() != PPC::BCC && 1021 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1022 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1023 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1024 return 1; 1025 1026 // Remove the branch. 1027 I->eraseFromParent(); 1028 return 2; 1029 } 1030 1031 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 1032 MachineBasicBlock *TBB, 1033 MachineBasicBlock *FBB, 1034 ArrayRef<MachineOperand> Cond, 1035 const DebugLoc &DL, 1036 int *BytesAdded) const { 1037 // Shouldn't be a fall through. 1038 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 1039 assert((Cond.size() == 2 || Cond.size() == 0) && 1040 "PPC branch conditions have two components!"); 1041 assert(!BytesAdded && "code size not handled"); 1042 1043 bool isPPC64 = Subtarget.isPPC64(); 1044 1045 // One-way branch. 1046 if (!FBB) { 1047 if (Cond.empty()) // Unconditional branch 1048 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 1049 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1050 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1051 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1052 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1053 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1054 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1055 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1056 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1057 else // Conditional branch 1058 BuildMI(&MBB, DL, get(PPC::BCC)) 1059 .addImm(Cond[0].getImm()) 1060 .add(Cond[1]) 1061 .addMBB(TBB); 1062 return 1; 1063 } 1064 1065 // Two-way Conditional Branch. 1066 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1067 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1068 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1069 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1070 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1071 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1072 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1073 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1074 else 1075 BuildMI(&MBB, DL, get(PPC::BCC)) 1076 .addImm(Cond[0].getImm()) 1077 .add(Cond[1]) 1078 .addMBB(TBB); 1079 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 1080 return 2; 1081 } 1082 1083 // Select analysis. 1084 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 1085 ArrayRef<MachineOperand> Cond, 1086 Register DstReg, Register TrueReg, 1087 Register FalseReg, int &CondCycles, 1088 int &TrueCycles, int &FalseCycles) const { 1089 if (Cond.size() != 2) 1090 return false; 1091 1092 // If this is really a bdnz-like condition, then it cannot be turned into a 1093 // select. 1094 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1095 return false; 1096 1097 // Check register classes. 1098 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1099 const TargetRegisterClass *RC = 1100 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1101 if (!RC) 1102 return false; 1103 1104 // isel is for regular integer GPRs only. 1105 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 1106 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 1107 !PPC::G8RCRegClass.hasSubClassEq(RC) && 1108 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 1109 return false; 1110 1111 // FIXME: These numbers are for the A2, how well they work for other cores is 1112 // an open question. On the A2, the isel instruction has a 2-cycle latency 1113 // but single-cycle throughput. These numbers are used in combination with 1114 // the MispredictPenalty setting from the active SchedMachineModel. 1115 CondCycles = 1; 1116 TrueCycles = 1; 1117 FalseCycles = 1; 1118 1119 return true; 1120 } 1121 1122 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 1123 MachineBasicBlock::iterator MI, 1124 const DebugLoc &dl, Register DestReg, 1125 ArrayRef<MachineOperand> Cond, Register TrueReg, 1126 Register FalseReg) const { 1127 assert(Cond.size() == 2 && 1128 "PPC branch conditions have two components!"); 1129 1130 // Get the register classes. 1131 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1132 const TargetRegisterClass *RC = 1133 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1134 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 1135 1136 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 1137 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 1138 assert((Is64Bit || 1139 PPC::GPRCRegClass.hasSubClassEq(RC) || 1140 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 1141 "isel is for regular integer GPRs only"); 1142 1143 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 1144 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 1145 1146 unsigned SubIdx = 0; 1147 bool SwapOps = false; 1148 switch (SelectPred) { 1149 case PPC::PRED_EQ: 1150 case PPC::PRED_EQ_MINUS: 1151 case PPC::PRED_EQ_PLUS: 1152 SubIdx = PPC::sub_eq; SwapOps = false; break; 1153 case PPC::PRED_NE: 1154 case PPC::PRED_NE_MINUS: 1155 case PPC::PRED_NE_PLUS: 1156 SubIdx = PPC::sub_eq; SwapOps = true; break; 1157 case PPC::PRED_LT: 1158 case PPC::PRED_LT_MINUS: 1159 case PPC::PRED_LT_PLUS: 1160 SubIdx = PPC::sub_lt; SwapOps = false; break; 1161 case PPC::PRED_GE: 1162 case PPC::PRED_GE_MINUS: 1163 case PPC::PRED_GE_PLUS: 1164 SubIdx = PPC::sub_lt; SwapOps = true; break; 1165 case PPC::PRED_GT: 1166 case PPC::PRED_GT_MINUS: 1167 case PPC::PRED_GT_PLUS: 1168 SubIdx = PPC::sub_gt; SwapOps = false; break; 1169 case PPC::PRED_LE: 1170 case PPC::PRED_LE_MINUS: 1171 case PPC::PRED_LE_PLUS: 1172 SubIdx = PPC::sub_gt; SwapOps = true; break; 1173 case PPC::PRED_UN: 1174 case PPC::PRED_UN_MINUS: 1175 case PPC::PRED_UN_PLUS: 1176 SubIdx = PPC::sub_un; SwapOps = false; break; 1177 case PPC::PRED_NU: 1178 case PPC::PRED_NU_MINUS: 1179 case PPC::PRED_NU_PLUS: 1180 SubIdx = PPC::sub_un; SwapOps = true; break; 1181 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 1182 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 1183 } 1184 1185 Register FirstReg = SwapOps ? FalseReg : TrueReg, 1186 SecondReg = SwapOps ? TrueReg : FalseReg; 1187 1188 // The first input register of isel cannot be r0. If it is a member 1189 // of a register class that can be r0, then copy it first (the 1190 // register allocator should eliminate the copy). 1191 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 1192 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 1193 const TargetRegisterClass *FirstRC = 1194 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 1195 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 1196 Register OldFirstReg = FirstReg; 1197 FirstReg = MRI.createVirtualRegister(FirstRC); 1198 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 1199 .addReg(OldFirstReg); 1200 } 1201 1202 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 1203 .addReg(FirstReg).addReg(SecondReg) 1204 .addReg(Cond[1].getReg(), 0, SubIdx); 1205 } 1206 1207 static unsigned getCRBitValue(unsigned CRBit) { 1208 unsigned Ret = 4; 1209 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 1210 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 1211 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 1212 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 1213 Ret = 3; 1214 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 1215 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 1216 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 1217 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 1218 Ret = 2; 1219 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 1220 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 1221 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 1222 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 1223 Ret = 1; 1224 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 1225 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 1226 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 1227 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 1228 Ret = 0; 1229 1230 assert(Ret != 4 && "Invalid CR bit register"); 1231 return Ret; 1232 } 1233 1234 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 1235 MachineBasicBlock::iterator I, 1236 const DebugLoc &DL, MCRegister DestReg, 1237 MCRegister SrcReg, bool KillSrc) const { 1238 // We can end up with self copies and similar things as a result of VSX copy 1239 // legalization. Promote them here. 1240 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1241 if (PPC::F8RCRegClass.contains(DestReg) && 1242 PPC::VSRCRegClass.contains(SrcReg)) { 1243 MCRegister SuperReg = 1244 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 1245 1246 if (VSXSelfCopyCrash && SrcReg == SuperReg) 1247 llvm_unreachable("nop VSX copy"); 1248 1249 DestReg = SuperReg; 1250 } else if (PPC::F8RCRegClass.contains(SrcReg) && 1251 PPC::VSRCRegClass.contains(DestReg)) { 1252 MCRegister SuperReg = 1253 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 1254 1255 if (VSXSelfCopyCrash && DestReg == SuperReg) 1256 llvm_unreachable("nop VSX copy"); 1257 1258 SrcReg = SuperReg; 1259 } 1260 1261 // Different class register copy 1262 if (PPC::CRBITRCRegClass.contains(SrcReg) && 1263 PPC::GPRCRegClass.contains(DestReg)) { 1264 MCRegister CRReg = getCRFromCRBit(SrcReg); 1265 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 1266 getKillRegState(KillSrc); 1267 // Rotate the CR bit in the CR fields to be the least significant bit and 1268 // then mask with 0x1 (MB = ME = 31). 1269 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 1270 .addReg(DestReg, RegState::Kill) 1271 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 1272 .addImm(31) 1273 .addImm(31); 1274 return; 1275 } else if (PPC::CRRCRegClass.contains(SrcReg) && 1276 (PPC::G8RCRegClass.contains(DestReg) || 1277 PPC::GPRCRegClass.contains(DestReg))) { 1278 bool Is64Bit = PPC::G8RCRegClass.contains(DestReg); 1279 unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF; 1280 unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM; 1281 unsigned CRNum = TRI->getEncodingValue(SrcReg); 1282 BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg); 1283 getKillRegState(KillSrc); 1284 if (CRNum == 7) 1285 return; 1286 // Shift the CR bits to make the CR field in the lowest 4 bits of GRC. 1287 BuildMI(MBB, I, DL, get(ShCode), DestReg) 1288 .addReg(DestReg, RegState::Kill) 1289 .addImm(CRNum * 4 + 4) 1290 .addImm(28) 1291 .addImm(31); 1292 return; 1293 } else if (PPC::G8RCRegClass.contains(SrcReg) && 1294 PPC::VSFRCRegClass.contains(DestReg)) { 1295 assert(Subtarget.hasDirectMove() && 1296 "Subtarget doesn't support directmove, don't know how to copy."); 1297 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 1298 NumGPRtoVSRSpill++; 1299 getKillRegState(KillSrc); 1300 return; 1301 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 1302 PPC::G8RCRegClass.contains(DestReg)) { 1303 assert(Subtarget.hasDirectMove() && 1304 "Subtarget doesn't support directmove, don't know how to copy."); 1305 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 1306 getKillRegState(KillSrc); 1307 return; 1308 } else if (PPC::SPERCRegClass.contains(SrcReg) && 1309 PPC::GPRCRegClass.contains(DestReg)) { 1310 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 1311 getKillRegState(KillSrc); 1312 return; 1313 } else if (PPC::GPRCRegClass.contains(SrcReg) && 1314 PPC::SPERCRegClass.contains(DestReg)) { 1315 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 1316 getKillRegState(KillSrc); 1317 return; 1318 } 1319 1320 unsigned Opc; 1321 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 1322 Opc = PPC::OR; 1323 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 1324 Opc = PPC::OR8; 1325 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 1326 Opc = PPC::FMR; 1327 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 1328 Opc = PPC::MCRF; 1329 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 1330 Opc = PPC::VOR; 1331 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 1332 // There are two different ways this can be done: 1333 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 1334 // issue in VSU pipeline 0. 1335 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 1336 // can go to either pipeline. 1337 // We'll always use xxlor here, because in practically all cases where 1338 // copies are generated, they are close enough to some use that the 1339 // lower-latency form is preferable. 1340 Opc = PPC::XXLOR; 1341 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1342 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1343 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1344 else if (Subtarget.pairedVectorMemops() && 1345 PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) { 1346 if (SrcReg > PPC::VSRp15) 1347 SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2; 1348 else 1349 SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2; 1350 if (DestReg > PPC::VSRp15) 1351 DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2; 1352 else 1353 DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2; 1354 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg). 1355 addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1356 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1). 1357 addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc)); 1358 return; 1359 } 1360 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1361 Opc = PPC::CROR; 1362 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1363 Opc = PPC::EVOR; 1364 else if ((PPC::ACCRCRegClass.contains(DestReg) || 1365 PPC::UACCRCRegClass.contains(DestReg)) && 1366 (PPC::ACCRCRegClass.contains(SrcReg) || 1367 PPC::UACCRCRegClass.contains(SrcReg))) { 1368 // If primed, de-prime the source register, copy the individual registers 1369 // and prime the destination if needed. The vector subregisters are 1370 // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the 1371 // source is primed, we need to re-prime it after the copy as well. 1372 PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg); 1373 bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg); 1374 bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg); 1375 MCRegister VSLSrcReg = 1376 PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; 1377 MCRegister VSLDestReg = 1378 PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; 1379 if (SrcPrimed) 1380 BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg); 1381 for (unsigned Idx = 0; Idx < 4; Idx++) 1382 BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx) 1383 .addReg(VSLSrcReg + Idx) 1384 .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc)); 1385 if (DestPrimed) 1386 BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg); 1387 if (SrcPrimed && !KillSrc) 1388 BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg); 1389 return; 1390 } else 1391 llvm_unreachable("Impossible reg-to-reg copy"); 1392 1393 const MCInstrDesc &MCID = get(Opc); 1394 if (MCID.getNumOperands() == 3) 1395 BuildMI(MBB, I, DL, MCID, DestReg) 1396 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1397 else 1398 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1399 } 1400 1401 unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const { 1402 int OpcodeIndex = 0; 1403 1404 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1405 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1406 OpcodeIndex = SOK_Int4Spill; 1407 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1408 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1409 OpcodeIndex = SOK_Int8Spill; 1410 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1411 OpcodeIndex = SOK_Float8Spill; 1412 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1413 OpcodeIndex = SOK_Float4Spill; 1414 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1415 OpcodeIndex = SOK_SPESpill; 1416 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1417 OpcodeIndex = SOK_CRSpill; 1418 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1419 OpcodeIndex = SOK_CRBitSpill; 1420 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1421 OpcodeIndex = SOK_VRVectorSpill; 1422 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1423 OpcodeIndex = SOK_VSXVectorSpill; 1424 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1425 OpcodeIndex = SOK_VectorFloat8Spill; 1426 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1427 OpcodeIndex = SOK_VectorFloat4Spill; 1428 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1429 OpcodeIndex = SOK_SpillToVSR; 1430 } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) { 1431 assert(Subtarget.pairedVectorMemops() && 1432 "Register unexpected when paired memops are disabled."); 1433 OpcodeIndex = SOK_AccumulatorSpill; 1434 } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) { 1435 assert(Subtarget.pairedVectorMemops() && 1436 "Register unexpected when paired memops are disabled."); 1437 OpcodeIndex = SOK_UAccumulatorSpill; 1438 } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) { 1439 assert(Subtarget.pairedVectorMemops() && 1440 "Register unexpected when paired memops are disabled."); 1441 OpcodeIndex = SOK_PairedVecSpill; 1442 } else { 1443 llvm_unreachable("Unknown regclass!"); 1444 } 1445 return OpcodeIndex; 1446 } 1447 1448 unsigned 1449 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const { 1450 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1451 return OpcodesForSpill[getSpillIndex(RC)]; 1452 } 1453 1454 unsigned 1455 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const { 1456 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1457 return OpcodesForSpill[getSpillIndex(RC)]; 1458 } 1459 1460 void PPCInstrInfo::StoreRegToStackSlot( 1461 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1462 const TargetRegisterClass *RC, 1463 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1464 unsigned Opcode = getStoreOpcodeForSpill(RC); 1465 DebugLoc DL; 1466 1467 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1468 FuncInfo->setHasSpills(); 1469 1470 NewMIs.push_back(addFrameReference( 1471 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1472 FrameIdx)); 1473 1474 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1475 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1476 FuncInfo->setSpillsCR(); 1477 1478 if (isXFormMemOp(Opcode)) 1479 FuncInfo->setHasNonRISpills(); 1480 } 1481 1482 void PPCInstrInfo::storeRegToStackSlotNoUpd( 1483 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, 1484 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 1485 const TargetRegisterInfo *TRI) const { 1486 MachineFunction &MF = *MBB.getParent(); 1487 SmallVector<MachineInstr *, 4> NewMIs; 1488 1489 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1490 1491 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1492 MBB.insert(MI, NewMIs[i]); 1493 1494 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1495 MachineMemOperand *MMO = MF.getMachineMemOperand( 1496 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1497 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1498 MFI.getObjectAlign(FrameIdx)); 1499 NewMIs.back()->addMemOperand(MF, MMO); 1500 } 1501 1502 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1503 MachineBasicBlock::iterator MI, 1504 Register SrcReg, bool isKill, 1505 int FrameIdx, 1506 const TargetRegisterClass *RC, 1507 const TargetRegisterInfo *TRI) const { 1508 // We need to avoid a situation in which the value from a VRRC register is 1509 // spilled using an Altivec instruction and reloaded into a VSRC register 1510 // using a VSX instruction. The issue with this is that the VSX 1511 // load/store instructions swap the doublewords in the vector and the Altivec 1512 // ones don't. The register classes on the spill/reload may be different if 1513 // the register is defined using an Altivec instruction and is then used by a 1514 // VSX instruction. 1515 RC = updatedRC(RC); 1516 storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI); 1517 } 1518 1519 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1520 unsigned DestReg, int FrameIdx, 1521 const TargetRegisterClass *RC, 1522 SmallVectorImpl<MachineInstr *> &NewMIs) 1523 const { 1524 unsigned Opcode = getLoadOpcodeForSpill(RC); 1525 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1526 FrameIdx)); 1527 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1528 1529 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1530 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1531 FuncInfo->setSpillsCR(); 1532 1533 if (isXFormMemOp(Opcode)) 1534 FuncInfo->setHasNonRISpills(); 1535 } 1536 1537 void PPCInstrInfo::loadRegFromStackSlotNoUpd( 1538 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, 1539 int FrameIdx, const TargetRegisterClass *RC, 1540 const TargetRegisterInfo *TRI) const { 1541 MachineFunction &MF = *MBB.getParent(); 1542 SmallVector<MachineInstr*, 4> NewMIs; 1543 DebugLoc DL; 1544 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1545 1546 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1547 FuncInfo->setHasSpills(); 1548 1549 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1550 1551 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1552 MBB.insert(MI, NewMIs[i]); 1553 1554 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1555 MachineMemOperand *MMO = MF.getMachineMemOperand( 1556 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1557 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1558 MFI.getObjectAlign(FrameIdx)); 1559 NewMIs.back()->addMemOperand(MF, MMO); 1560 } 1561 1562 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1563 MachineBasicBlock::iterator MI, 1564 Register DestReg, int FrameIdx, 1565 const TargetRegisterClass *RC, 1566 const TargetRegisterInfo *TRI) const { 1567 // We need to avoid a situation in which the value from a VRRC register is 1568 // spilled using an Altivec instruction and reloaded into a VSRC register 1569 // using a VSX instruction. The issue with this is that the VSX 1570 // load/store instructions swap the doublewords in the vector and the Altivec 1571 // ones don't. The register classes on the spill/reload may be different if 1572 // the register is defined using an Altivec instruction and is then used by a 1573 // VSX instruction. 1574 RC = updatedRC(RC); 1575 1576 loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI); 1577 } 1578 1579 bool PPCInstrInfo:: 1580 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1581 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1582 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1583 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1584 else 1585 // Leave the CR# the same, but invert the condition. 1586 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1587 return false; 1588 } 1589 1590 // For some instructions, it is legal to fold ZERO into the RA register field. 1591 // This function performs that fold by replacing the operand with PPC::ZERO, 1592 // it does not consider whether the load immediate zero is no longer in use. 1593 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1594 Register Reg) const { 1595 // A zero immediate should always be loaded with a single li. 1596 unsigned DefOpc = DefMI.getOpcode(); 1597 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1598 return false; 1599 if (!DefMI.getOperand(1).isImm()) 1600 return false; 1601 if (DefMI.getOperand(1).getImm() != 0) 1602 return false; 1603 1604 // Note that we cannot here invert the arguments of an isel in order to fold 1605 // a ZERO into what is presented as the second argument. All we have here 1606 // is the condition bit, and that might come from a CR-logical bit operation. 1607 1608 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1609 1610 // Only fold into real machine instructions. 1611 if (UseMCID.isPseudo()) 1612 return false; 1613 1614 // We need to find which of the User's operands is to be folded, that will be 1615 // the operand that matches the given register ID. 1616 unsigned UseIdx; 1617 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1618 if (UseMI.getOperand(UseIdx).isReg() && 1619 UseMI.getOperand(UseIdx).getReg() == Reg) 1620 break; 1621 1622 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1623 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1624 1625 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1626 1627 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1628 // register (which might also be specified as a pointer class kind). 1629 if (UseInfo->isLookupPtrRegClass()) { 1630 if (UseInfo->RegClass /* Kind */ != 1) 1631 return false; 1632 } else { 1633 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1634 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1635 return false; 1636 } 1637 1638 // Make sure this is not tied to an output register (or otherwise 1639 // constrained). This is true for ST?UX registers, for example, which 1640 // are tied to their output registers. 1641 if (UseInfo->Constraints != 0) 1642 return false; 1643 1644 MCRegister ZeroReg; 1645 if (UseInfo->isLookupPtrRegClass()) { 1646 bool isPPC64 = Subtarget.isPPC64(); 1647 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1648 } else { 1649 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1650 PPC::ZERO8 : PPC::ZERO; 1651 } 1652 1653 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1654 return true; 1655 } 1656 1657 // Folds zero into instructions which have a load immediate zero as an operand 1658 // but also recognize zero as immediate zero. If the definition of the load 1659 // has no more users it is deleted. 1660 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1661 Register Reg, MachineRegisterInfo *MRI) const { 1662 bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg); 1663 if (MRI->use_nodbg_empty(Reg)) 1664 DefMI.eraseFromParent(); 1665 return Changed; 1666 } 1667 1668 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1669 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1670 I != IE; ++I) 1671 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1672 return true; 1673 return false; 1674 } 1675 1676 // We should make sure that, if we're going to predicate both sides of a 1677 // condition (a diamond), that both sides don't define the counter register. We 1678 // can predicate counter-decrement-based branches, but while that predicates 1679 // the branching, it does not predicate the counter decrement. If we tried to 1680 // merge the triangle into one predicated block, we'd decrement the counter 1681 // twice. 1682 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1683 unsigned NumT, unsigned ExtraT, 1684 MachineBasicBlock &FMBB, 1685 unsigned NumF, unsigned ExtraF, 1686 BranchProbability Probability) const { 1687 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1688 } 1689 1690 1691 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1692 // The predicated branches are identified by their type, not really by the 1693 // explicit presence of a predicate. Furthermore, some of them can be 1694 // predicated more than once. Because if conversion won't try to predicate 1695 // any instruction which already claims to be predicated (by returning true 1696 // here), always return false. In doing so, we let isPredicable() be the 1697 // final word on whether not the instruction can be (further) predicated. 1698 1699 return false; 1700 } 1701 1702 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 1703 const MachineBasicBlock *MBB, 1704 const MachineFunction &MF) const { 1705 // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion 1706 // across them, since some FP operations may change content of FPSCR. 1707 // TODO: Model FPSCR in PPC instruction definitions and remove the workaround 1708 if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF) 1709 return true; 1710 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); 1711 } 1712 1713 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1714 ArrayRef<MachineOperand> Pred) const { 1715 unsigned OpC = MI.getOpcode(); 1716 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1717 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1718 bool isPPC64 = Subtarget.isPPC64(); 1719 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1720 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1721 // Need add Def and Use for CTR implicit operand. 1722 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1723 .addReg(Pred[1].getReg(), RegState::Implicit) 1724 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 1725 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1726 MI.setDesc(get(PPC::BCLR)); 1727 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1728 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1729 MI.setDesc(get(PPC::BCLRn)); 1730 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1731 } else { 1732 MI.setDesc(get(PPC::BCCLR)); 1733 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1734 .addImm(Pred[0].getImm()) 1735 .add(Pred[1]); 1736 } 1737 1738 return true; 1739 } else if (OpC == PPC::B) { 1740 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1741 bool isPPC64 = Subtarget.isPPC64(); 1742 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1743 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1744 // Need add Def and Use for CTR implicit operand. 1745 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1746 .addReg(Pred[1].getReg(), RegState::Implicit) 1747 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 1748 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1749 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1750 MI.RemoveOperand(0); 1751 1752 MI.setDesc(get(PPC::BC)); 1753 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1754 .add(Pred[1]) 1755 .addMBB(MBB); 1756 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1757 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1758 MI.RemoveOperand(0); 1759 1760 MI.setDesc(get(PPC::BCn)); 1761 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1762 .add(Pred[1]) 1763 .addMBB(MBB); 1764 } else { 1765 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1766 MI.RemoveOperand(0); 1767 1768 MI.setDesc(get(PPC::BCC)); 1769 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1770 .addImm(Pred[0].getImm()) 1771 .add(Pred[1]) 1772 .addMBB(MBB); 1773 } 1774 1775 return true; 1776 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 1777 OpC == PPC::BCTRL8) { 1778 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1779 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1780 1781 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1782 bool isPPC64 = Subtarget.isPPC64(); 1783 1784 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1785 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1786 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1787 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1788 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1789 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1790 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1791 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1792 } else { 1793 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1794 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1795 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1796 .addImm(Pred[0].getImm()) 1797 .add(Pred[1]); 1798 } 1799 1800 // Need add Def and Use for LR implicit operand. 1801 if (setLR) 1802 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1803 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit) 1804 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine); 1805 1806 return true; 1807 } 1808 1809 return false; 1810 } 1811 1812 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1813 ArrayRef<MachineOperand> Pred2) const { 1814 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1815 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1816 1817 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1818 return false; 1819 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1820 return false; 1821 1822 // P1 can only subsume P2 if they test the same condition register. 1823 if (Pred1[1].getReg() != Pred2[1].getReg()) 1824 return false; 1825 1826 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1827 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1828 1829 if (P1 == P2) 1830 return true; 1831 1832 // Does P1 subsume P2, e.g. GE subsumes GT. 1833 if (P1 == PPC::PRED_LE && 1834 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1835 return true; 1836 if (P1 == PPC::PRED_GE && 1837 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1838 return true; 1839 1840 return false; 1841 } 1842 1843 bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI, 1844 std::vector<MachineOperand> &Pred, 1845 bool SkipDead) const { 1846 // Note: At the present time, the contents of Pred from this function is 1847 // unused by IfConversion. This implementation follows ARM by pushing the 1848 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1849 // predicate, instructions defining CTR or CTR8 are also included as 1850 // predicate-defining instructions. 1851 1852 const TargetRegisterClass *RCs[] = 1853 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1854 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1855 1856 bool Found = false; 1857 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1858 const MachineOperand &MO = MI.getOperand(i); 1859 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1860 const TargetRegisterClass *RC = RCs[c]; 1861 if (MO.isReg()) { 1862 if (MO.isDef() && RC->contains(MO.getReg())) { 1863 Pred.push_back(MO); 1864 Found = true; 1865 } 1866 } else if (MO.isRegMask()) { 1867 for (TargetRegisterClass::iterator I = RC->begin(), 1868 IE = RC->end(); I != IE; ++I) 1869 if (MO.clobbersPhysReg(*I)) { 1870 Pred.push_back(MO); 1871 Found = true; 1872 } 1873 } 1874 } 1875 } 1876 1877 return Found; 1878 } 1879 1880 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 1881 Register &SrcReg2, int &Mask, 1882 int &Value) const { 1883 unsigned Opc = MI.getOpcode(); 1884 1885 switch (Opc) { 1886 default: return false; 1887 case PPC::CMPWI: 1888 case PPC::CMPLWI: 1889 case PPC::CMPDI: 1890 case PPC::CMPLDI: 1891 SrcReg = MI.getOperand(1).getReg(); 1892 SrcReg2 = 0; 1893 Value = MI.getOperand(2).getImm(); 1894 Mask = 0xFFFF; 1895 return true; 1896 case PPC::CMPW: 1897 case PPC::CMPLW: 1898 case PPC::CMPD: 1899 case PPC::CMPLD: 1900 case PPC::FCMPUS: 1901 case PPC::FCMPUD: 1902 SrcReg = MI.getOperand(1).getReg(); 1903 SrcReg2 = MI.getOperand(2).getReg(); 1904 Value = 0; 1905 Mask = 0; 1906 return true; 1907 } 1908 } 1909 1910 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 1911 Register SrcReg2, int Mask, int Value, 1912 const MachineRegisterInfo *MRI) const { 1913 if (DisableCmpOpt) 1914 return false; 1915 1916 int OpC = CmpInstr.getOpcode(); 1917 Register CRReg = CmpInstr.getOperand(0).getReg(); 1918 1919 // FP record forms set CR1 based on the exception status bits, not a 1920 // comparison with zero. 1921 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1922 return false; 1923 1924 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1925 // The record forms set the condition register based on a signed comparison 1926 // with zero (so says the ISA manual). This is not as straightforward as it 1927 // seems, however, because this is always a 64-bit comparison on PPC64, even 1928 // for instructions that are 32-bit in nature (like slw for example). 1929 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1930 // for equality checks (as those don't depend on the sign). On PPC64, 1931 // we are restricted to equality for unsigned 64-bit comparisons and for 1932 // signed 32-bit comparisons the applicability is more restricted. 1933 bool isPPC64 = Subtarget.isPPC64(); 1934 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1935 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1936 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1937 1938 // Look through copies unless that gets us to a physical register. 1939 Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 1940 if (ActualSrc.isVirtual()) 1941 SrcReg = ActualSrc; 1942 1943 // Get the unique definition of SrcReg. 1944 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1945 if (!MI) return false; 1946 1947 bool equalityOnly = false; 1948 bool noSub = false; 1949 if (isPPC64) { 1950 if (is32BitSignedCompare) { 1951 // We can perform this optimization only if MI is sign-extending. 1952 if (isSignExtended(*MI)) 1953 noSub = true; 1954 else 1955 return false; 1956 } else if (is32BitUnsignedCompare) { 1957 // We can perform this optimization, equality only, if MI is 1958 // zero-extending. 1959 if (isZeroExtended(*MI)) { 1960 noSub = true; 1961 equalityOnly = true; 1962 } else 1963 return false; 1964 } else 1965 equalityOnly = is64BitUnsignedCompare; 1966 } else 1967 equalityOnly = is32BitUnsignedCompare; 1968 1969 if (equalityOnly) { 1970 // We need to check the uses of the condition register in order to reject 1971 // non-equality comparisons. 1972 for (MachineRegisterInfo::use_instr_iterator 1973 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1974 I != IE; ++I) { 1975 MachineInstr *UseMI = &*I; 1976 if (UseMI->getOpcode() == PPC::BCC) { 1977 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1978 unsigned PredCond = PPC::getPredicateCondition(Pred); 1979 // We ignore hint bits when checking for non-equality comparisons. 1980 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1981 return false; 1982 } else if (UseMI->getOpcode() == PPC::ISEL || 1983 UseMI->getOpcode() == PPC::ISEL8) { 1984 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1985 if (SubIdx != PPC::sub_eq) 1986 return false; 1987 } else 1988 return false; 1989 } 1990 } 1991 1992 MachineBasicBlock::iterator I = CmpInstr; 1993 1994 // Scan forward to find the first use of the compare. 1995 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1996 ++I) { 1997 bool FoundUse = false; 1998 for (MachineRegisterInfo::use_instr_iterator 1999 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 2000 J != JE; ++J) 2001 if (&*J == &*I) { 2002 FoundUse = true; 2003 break; 2004 } 2005 2006 if (FoundUse) 2007 break; 2008 } 2009 2010 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 2011 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 2012 2013 // There are two possible candidates which can be changed to set CR[01]. 2014 // One is MI, the other is a SUB instruction. 2015 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 2016 MachineInstr *Sub = nullptr; 2017 if (SrcReg2 != 0) 2018 // MI is not a candidate for CMPrr. 2019 MI = nullptr; 2020 // FIXME: Conservatively refuse to convert an instruction which isn't in the 2021 // same BB as the comparison. This is to allow the check below to avoid calls 2022 // (and other explicit clobbers); instead we should really check for these 2023 // more explicitly (in at least a few predecessors). 2024 else if (MI->getParent() != CmpInstr.getParent()) 2025 return false; 2026 else if (Value != 0) { 2027 // The record-form instructions set CR bit based on signed comparison 2028 // against 0. We try to convert a compare against 1 or -1 into a compare 2029 // against 0 to exploit record-form instructions. For example, we change 2030 // the condition "greater than -1" into "greater than or equal to 0" 2031 // and "less than 1" into "less than or equal to 0". 2032 2033 // Since we optimize comparison based on a specific branch condition, 2034 // we don't optimize if condition code is used by more than once. 2035 if (equalityOnly || !MRI->hasOneUse(CRReg)) 2036 return false; 2037 2038 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 2039 if (UseMI->getOpcode() != PPC::BCC) 2040 return false; 2041 2042 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 2043 unsigned PredCond = PPC::getPredicateCondition(Pred); 2044 unsigned PredHint = PPC::getPredicateHint(Pred); 2045 int16_t Immed = (int16_t)Value; 2046 2047 // When modifying the condition in the predicate, we propagate hint bits 2048 // from the original predicate to the new one. 2049 if (Immed == -1 && PredCond == PPC::PRED_GT) 2050 // We convert "greater than -1" into "greater than or equal to 0", 2051 // since we are assuming signed comparison by !equalityOnly 2052 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 2053 else if (Immed == -1 && PredCond == PPC::PRED_LE) 2054 // We convert "less than or equal to -1" into "less than 0". 2055 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 2056 else if (Immed == 1 && PredCond == PPC::PRED_LT) 2057 // We convert "less than 1" into "less than or equal to 0". 2058 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 2059 else if (Immed == 1 && PredCond == PPC::PRED_GE) 2060 // We convert "greater than or equal to 1" into "greater than 0". 2061 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 2062 else 2063 return false; 2064 2065 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred)); 2066 } 2067 2068 // Search for Sub. 2069 --I; 2070 2071 // Get ready to iterate backward from CmpInstr. 2072 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 2073 2074 for (; I != E && !noSub; --I) { 2075 const MachineInstr &Instr = *I; 2076 unsigned IOpC = Instr.getOpcode(); 2077 2078 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 2079 Instr.readsRegister(PPC::CR0, TRI))) 2080 // This instruction modifies or uses the record condition register after 2081 // the one we want to change. While we could do this transformation, it 2082 // would likely not be profitable. This transformation removes one 2083 // instruction, and so even forcing RA to generate one move probably 2084 // makes it unprofitable. 2085 return false; 2086 2087 // Check whether CmpInstr can be made redundant by the current instruction. 2088 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 2089 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 2090 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 2091 ((Instr.getOperand(1).getReg() == SrcReg && 2092 Instr.getOperand(2).getReg() == SrcReg2) || 2093 (Instr.getOperand(1).getReg() == SrcReg2 && 2094 Instr.getOperand(2).getReg() == SrcReg))) { 2095 Sub = &*I; 2096 break; 2097 } 2098 2099 if (I == B) 2100 // The 'and' is below the comparison instruction. 2101 return false; 2102 } 2103 2104 // Return false if no candidates exist. 2105 if (!MI && !Sub) 2106 return false; 2107 2108 // The single candidate is called MI. 2109 if (!MI) MI = Sub; 2110 2111 int NewOpC = -1; 2112 int MIOpC = MI->getOpcode(); 2113 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || 2114 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) 2115 NewOpC = MIOpC; 2116 else { 2117 NewOpC = PPC::getRecordFormOpcode(MIOpC); 2118 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 2119 NewOpC = MIOpC; 2120 } 2121 2122 // FIXME: On the non-embedded POWER architectures, only some of the record 2123 // forms are fast, and we should use only the fast ones. 2124 2125 // The defining instruction has a record form (or is already a record 2126 // form). It is possible, however, that we'll need to reverse the condition 2127 // code of the users. 2128 if (NewOpC == -1) 2129 return false; 2130 2131 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 2132 // needs to be updated to be based on SUB. Push the condition code 2133 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 2134 // condition code of these operands will be modified. 2135 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 2136 // comparison against 0, which may modify predicate. 2137 bool ShouldSwap = false; 2138 if (Sub && Value == 0) { 2139 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 2140 Sub->getOperand(2).getReg() == SrcReg; 2141 2142 // The operands to subf are the opposite of sub, so only in the fixed-point 2143 // case, invert the order. 2144 ShouldSwap = !ShouldSwap; 2145 } 2146 2147 if (ShouldSwap) 2148 for (MachineRegisterInfo::use_instr_iterator 2149 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2150 I != IE; ++I) { 2151 MachineInstr *UseMI = &*I; 2152 if (UseMI->getOpcode() == PPC::BCC) { 2153 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 2154 unsigned PredCond = PPC::getPredicateCondition(Pred); 2155 assert((!equalityOnly || 2156 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 2157 "Invalid predicate for equality-only optimization"); 2158 (void)PredCond; // To suppress warning in release build. 2159 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 2160 PPC::getSwappedPredicate(Pred))); 2161 } else if (UseMI->getOpcode() == PPC::ISEL || 2162 UseMI->getOpcode() == PPC::ISEL8) { 2163 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 2164 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 2165 "Invalid CR bit for equality-only optimization"); 2166 2167 if (NewSubReg == PPC::sub_lt) 2168 NewSubReg = PPC::sub_gt; 2169 else if (NewSubReg == PPC::sub_gt) 2170 NewSubReg = PPC::sub_lt; 2171 2172 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 2173 NewSubReg)); 2174 } else // We need to abort on a user we don't understand. 2175 return false; 2176 } 2177 assert(!(Value != 0 && ShouldSwap) && 2178 "Non-zero immediate support and ShouldSwap" 2179 "may conflict in updating predicate"); 2180 2181 // Create a new virtual register to hold the value of the CR set by the 2182 // record-form instruction. If the instruction was not previously in 2183 // record form, then set the kill flag on the CR. 2184 CmpInstr.eraseFromParent(); 2185 2186 MachineBasicBlock::iterator MII = MI; 2187 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 2188 get(TargetOpcode::COPY), CRReg) 2189 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 2190 2191 // Even if CR0 register were dead before, it is alive now since the 2192 // instruction we just built uses it. 2193 MI->clearRegisterDeads(PPC::CR0); 2194 2195 if (MIOpC != NewOpC) { 2196 // We need to be careful here: we're replacing one instruction with 2197 // another, and we need to make sure that we get all of the right 2198 // implicit uses and defs. On the other hand, the caller may be holding 2199 // an iterator to this instruction, and so we can't delete it (this is 2200 // specifically the case if this is the instruction directly after the 2201 // compare). 2202 2203 // Rotates are expensive instructions. If we're emitting a record-form 2204 // rotate that can just be an andi/andis, we should just emit that. 2205 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 2206 Register GPRRes = MI->getOperand(0).getReg(); 2207 int64_t SH = MI->getOperand(2).getImm(); 2208 int64_t MB = MI->getOperand(3).getImm(); 2209 int64_t ME = MI->getOperand(4).getImm(); 2210 // We can only do this if both the start and end of the mask are in the 2211 // same halfword. 2212 bool MBInLoHWord = MB >= 16; 2213 bool MEInLoHWord = ME >= 16; 2214 uint64_t Mask = ~0LLU; 2215 2216 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 2217 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2218 // The mask value needs to shift right 16 if we're emitting andis. 2219 Mask >>= MBInLoHWord ? 0 : 16; 2220 NewOpC = MIOpC == PPC::RLWINM 2221 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) 2222 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); 2223 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 2224 (ME - MB + 1 == SH) && (MB >= 16)) { 2225 // If we are rotating by the exact number of bits as are in the mask 2226 // and the mask is in the least significant bits of the register, 2227 // that's just an andis. (as long as the GPR result has no uses). 2228 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 2229 Mask >>= 16; 2230 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; 2231 } 2232 // If we've set the mask, we can transform. 2233 if (Mask != ~0LLU) { 2234 MI->RemoveOperand(4); 2235 MI->RemoveOperand(3); 2236 MI->getOperand(2).setImm(Mask); 2237 NumRcRotatesConvertedToRcAnd++; 2238 } 2239 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 2240 int64_t MB = MI->getOperand(3).getImm(); 2241 if (MB >= 48) { 2242 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2243 NewOpC = PPC::ANDI8_rec; 2244 MI->RemoveOperand(3); 2245 MI->getOperand(2).setImm(Mask); 2246 NumRcRotatesConvertedToRcAnd++; 2247 } 2248 } 2249 2250 const MCInstrDesc &NewDesc = get(NewOpC); 2251 MI->setDesc(NewDesc); 2252 2253 if (NewDesc.ImplicitDefs) 2254 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 2255 *ImpDefs; ++ImpDefs) 2256 if (!MI->definesRegister(*ImpDefs)) 2257 MI->addOperand(*MI->getParent()->getParent(), 2258 MachineOperand::CreateReg(*ImpDefs, true, true)); 2259 if (NewDesc.ImplicitUses) 2260 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 2261 *ImpUses; ++ImpUses) 2262 if (!MI->readsRegister(*ImpUses)) 2263 MI->addOperand(*MI->getParent()->getParent(), 2264 MachineOperand::CreateReg(*ImpUses, false, true)); 2265 } 2266 assert(MI->definesRegister(PPC::CR0) && 2267 "Record-form instruction does not define cr0?"); 2268 2269 // Modify the condition code of operands in OperandsToUpdate. 2270 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 2271 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 2272 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 2273 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 2274 2275 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 2276 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 2277 2278 return true; 2279 } 2280 2281 bool PPCInstrInfo::getMemOperandsWithOffsetWidth( 2282 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, 2283 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, 2284 const TargetRegisterInfo *TRI) const { 2285 const MachineOperand *BaseOp; 2286 OffsetIsScalable = false; 2287 if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI)) 2288 return false; 2289 BaseOps.push_back(BaseOp); 2290 return true; 2291 } 2292 2293 static bool isLdStSafeToCluster(const MachineInstr &LdSt, 2294 const TargetRegisterInfo *TRI) { 2295 // If this is a volatile load/store, don't mess with it. 2296 if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3) 2297 return false; 2298 2299 if (LdSt.getOperand(2).isFI()) 2300 return true; 2301 2302 assert(LdSt.getOperand(2).isReg() && "Expected a reg operand."); 2303 // Can't cluster if the instruction modifies the base register 2304 // or it is update form. e.g. ld r2,3(r2) 2305 if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI)) 2306 return false; 2307 2308 return true; 2309 } 2310 2311 // Only cluster instruction pair that have the same opcode, and they are 2312 // clusterable according to PowerPC specification. 2313 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc, 2314 const PPCSubtarget &Subtarget) { 2315 switch (FirstOpc) { 2316 default: 2317 return false; 2318 case PPC::STD: 2319 case PPC::STFD: 2320 case PPC::STXSD: 2321 case PPC::DFSTOREf64: 2322 return FirstOpc == SecondOpc; 2323 // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with 2324 // 32bit and 64bit instruction selection. They are clusterable pair though 2325 // they are different opcode. 2326 case PPC::STW: 2327 case PPC::STW8: 2328 return SecondOpc == PPC::STW || SecondOpc == PPC::STW8; 2329 } 2330 } 2331 2332 bool PPCInstrInfo::shouldClusterMemOps( 2333 ArrayRef<const MachineOperand *> BaseOps1, 2334 ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads, 2335 unsigned NumBytes) const { 2336 2337 assert(BaseOps1.size() == 1 && BaseOps2.size() == 1); 2338 const MachineOperand &BaseOp1 = *BaseOps1.front(); 2339 const MachineOperand &BaseOp2 = *BaseOps2.front(); 2340 assert((BaseOp1.isReg() || BaseOp1.isFI()) && 2341 "Only base registers and frame indices are supported."); 2342 2343 // The NumLoads means the number of loads that has been clustered. 2344 // Don't cluster memory op if there are already two ops clustered at least. 2345 if (NumLoads > 2) 2346 return false; 2347 2348 // Cluster the load/store only when they have the same base 2349 // register or FI. 2350 if ((BaseOp1.isReg() != BaseOp2.isReg()) || 2351 (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) || 2352 (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex())) 2353 return false; 2354 2355 // Check if the load/store are clusterable according to the PowerPC 2356 // specification. 2357 const MachineInstr &FirstLdSt = *BaseOp1.getParent(); 2358 const MachineInstr &SecondLdSt = *BaseOp2.getParent(); 2359 unsigned FirstOpc = FirstLdSt.getOpcode(); 2360 unsigned SecondOpc = SecondLdSt.getOpcode(); 2361 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2362 // Cluster the load/store only when they have the same opcode, and they are 2363 // clusterable opcode according to PowerPC specification. 2364 if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget)) 2365 return false; 2366 2367 // Can't cluster load/store that have ordered or volatile memory reference. 2368 if (!isLdStSafeToCluster(FirstLdSt, TRI) || 2369 !isLdStSafeToCluster(SecondLdSt, TRI)) 2370 return false; 2371 2372 int64_t Offset1 = 0, Offset2 = 0; 2373 unsigned Width1 = 0, Width2 = 0; 2374 const MachineOperand *Base1 = nullptr, *Base2 = nullptr; 2375 if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) || 2376 !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) || 2377 Width1 != Width2) 2378 return false; 2379 2380 assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 && 2381 "getMemOperandWithOffsetWidth return incorrect base op"); 2382 // The caller should already have ordered FirstMemOp/SecondMemOp by offset. 2383 assert(Offset1 <= Offset2 && "Caller should have ordered offsets."); 2384 return Offset1 + Width1 == Offset2; 2385 } 2386 2387 /// GetInstSize - Return the number of bytes of code the specified 2388 /// instruction may be. This returns the maximum number of bytes. 2389 /// 2390 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2391 unsigned Opcode = MI.getOpcode(); 2392 2393 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 2394 const MachineFunction *MF = MI.getParent()->getParent(); 2395 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2396 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2397 } else if (Opcode == TargetOpcode::STACKMAP) { 2398 StackMapOpers Opers(&MI); 2399 return Opers.getNumPatchBytes(); 2400 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2401 PatchPointOpers Opers(&MI); 2402 return Opers.getNumPatchBytes(); 2403 } else { 2404 return get(Opcode).getSize(); 2405 } 2406 } 2407 2408 std::pair<unsigned, unsigned> 2409 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2410 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2411 return std::make_pair(TF & Mask, TF & ~Mask); 2412 } 2413 2414 ArrayRef<std::pair<unsigned, const char *>> 2415 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2416 using namespace PPCII; 2417 static const std::pair<unsigned, const char *> TargetFlags[] = { 2418 {MO_LO, "ppc-lo"}, 2419 {MO_HA, "ppc-ha"}, 2420 {MO_TPREL_LO, "ppc-tprel-lo"}, 2421 {MO_TPREL_HA, "ppc-tprel-ha"}, 2422 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2423 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2424 {MO_TOC_LO, "ppc-toc-lo"}, 2425 {MO_TLS, "ppc-tls"}}; 2426 return makeArrayRef(TargetFlags); 2427 } 2428 2429 ArrayRef<std::pair<unsigned, const char *>> 2430 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2431 using namespace PPCII; 2432 static const std::pair<unsigned, const char *> TargetFlags[] = { 2433 {MO_PLT, "ppc-plt"}, 2434 {MO_PIC_FLAG, "ppc-pic"}, 2435 {MO_PCREL_FLAG, "ppc-pcrel"}, 2436 {MO_GOT_FLAG, "ppc-got"}, 2437 {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"}, 2438 {MO_TLSGD_FLAG, "ppc-tlsgd"}, 2439 {MO_TLSLD_FLAG, "ppc-tlsld"}, 2440 {MO_TPREL_FLAG, "ppc-tprel"}, 2441 {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"}, 2442 {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"}, 2443 {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}}; 2444 return makeArrayRef(TargetFlags); 2445 } 2446 2447 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2448 // The VSX versions have the advantage of a full 64-register target whereas 2449 // the FP ones have the advantage of lower latency and higher throughput. So 2450 // what we are after is using the faster instructions in low register pressure 2451 // situations and using the larger register file in high register pressure 2452 // situations. 2453 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2454 unsigned UpperOpcode, LowerOpcode; 2455 switch (MI.getOpcode()) { 2456 case PPC::DFLOADf32: 2457 UpperOpcode = PPC::LXSSP; 2458 LowerOpcode = PPC::LFS; 2459 break; 2460 case PPC::DFLOADf64: 2461 UpperOpcode = PPC::LXSD; 2462 LowerOpcode = PPC::LFD; 2463 break; 2464 case PPC::DFSTOREf32: 2465 UpperOpcode = PPC::STXSSP; 2466 LowerOpcode = PPC::STFS; 2467 break; 2468 case PPC::DFSTOREf64: 2469 UpperOpcode = PPC::STXSD; 2470 LowerOpcode = PPC::STFD; 2471 break; 2472 case PPC::XFLOADf32: 2473 UpperOpcode = PPC::LXSSPX; 2474 LowerOpcode = PPC::LFSX; 2475 break; 2476 case PPC::XFLOADf64: 2477 UpperOpcode = PPC::LXSDX; 2478 LowerOpcode = PPC::LFDX; 2479 break; 2480 case PPC::XFSTOREf32: 2481 UpperOpcode = PPC::STXSSPX; 2482 LowerOpcode = PPC::STFSX; 2483 break; 2484 case PPC::XFSTOREf64: 2485 UpperOpcode = PPC::STXSDX; 2486 LowerOpcode = PPC::STFDX; 2487 break; 2488 case PPC::LIWAX: 2489 UpperOpcode = PPC::LXSIWAX; 2490 LowerOpcode = PPC::LFIWAX; 2491 break; 2492 case PPC::LIWZX: 2493 UpperOpcode = PPC::LXSIWZX; 2494 LowerOpcode = PPC::LFIWZX; 2495 break; 2496 case PPC::STIWX: 2497 UpperOpcode = PPC::STXSIWX; 2498 LowerOpcode = PPC::STFIWX; 2499 break; 2500 default: 2501 llvm_unreachable("Unknown Operation!"); 2502 } 2503 2504 Register TargetReg = MI.getOperand(0).getReg(); 2505 unsigned Opcode; 2506 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2507 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2508 Opcode = LowerOpcode; 2509 else 2510 Opcode = UpperOpcode; 2511 MI.setDesc(get(Opcode)); 2512 return true; 2513 } 2514 2515 static bool isAnImmediateOperand(const MachineOperand &MO) { 2516 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2517 } 2518 2519 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2520 auto &MBB = *MI.getParent(); 2521 auto DL = MI.getDebugLoc(); 2522 2523 switch (MI.getOpcode()) { 2524 case PPC::BUILD_UACC: { 2525 MCRegister ACC = MI.getOperand(0).getReg(); 2526 MCRegister UACC = MI.getOperand(1).getReg(); 2527 if (ACC - PPC::ACC0 != UACC - PPC::UACC0) { 2528 MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4; 2529 MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4; 2530 // FIXME: This can easily be improved to look up to the top of the MBB 2531 // to see if the inputs are XXLOR's. If they are and SrcReg is killed, 2532 // we can just re-target any such XXLOR's to DstVSR + offset. 2533 for (int VecNo = 0; VecNo < 4; VecNo++) 2534 BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo) 2535 .addReg(SrcVSR + VecNo) 2536 .addReg(SrcVSR + VecNo); 2537 } 2538 // BUILD_UACC is expanded to 4 copies of the underlying vsx regisers. 2539 // So after building the 4 copies, we can replace the BUILD_UACC instruction 2540 // with a NOP. 2541 LLVM_FALLTHROUGH; 2542 } 2543 case PPC::KILL_PAIR: { 2544 MI.setDesc(get(PPC::UNENCODED_NOP)); 2545 MI.RemoveOperand(1); 2546 MI.RemoveOperand(0); 2547 return true; 2548 } 2549 case TargetOpcode::LOAD_STACK_GUARD: { 2550 assert(Subtarget.isTargetLinux() && 2551 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 2552 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 2553 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 2554 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 2555 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2556 .addImm(Offset) 2557 .addReg(Reg); 2558 return true; 2559 } 2560 case PPC::DFLOADf32: 2561 case PPC::DFLOADf64: 2562 case PPC::DFSTOREf32: 2563 case PPC::DFSTOREf64: { 2564 assert(Subtarget.hasP9Vector() && 2565 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 2566 assert(MI.getOperand(2).isReg() && 2567 isAnImmediateOperand(MI.getOperand(1)) && 2568 "D-form op must have register and immediate operands"); 2569 return expandVSXMemPseudo(MI); 2570 } 2571 case PPC::XFLOADf32: 2572 case PPC::XFSTOREf32: 2573 case PPC::LIWAX: 2574 case PPC::LIWZX: 2575 case PPC::STIWX: { 2576 assert(Subtarget.hasP8Vector() && 2577 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 2578 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2579 "X-form op must have register and register operands"); 2580 return expandVSXMemPseudo(MI); 2581 } 2582 case PPC::XFLOADf64: 2583 case PPC::XFSTOREf64: { 2584 assert(Subtarget.hasVSX() && 2585 "Invalid X-Form Pseudo-ops on target that has no VSX."); 2586 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2587 "X-form op must have register and register operands"); 2588 return expandVSXMemPseudo(MI); 2589 } 2590 case PPC::SPILLTOVSR_LD: { 2591 Register TargetReg = MI.getOperand(0).getReg(); 2592 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2593 MI.setDesc(get(PPC::DFLOADf64)); 2594 return expandPostRAPseudo(MI); 2595 } 2596 else 2597 MI.setDesc(get(PPC::LD)); 2598 return true; 2599 } 2600 case PPC::SPILLTOVSR_ST: { 2601 Register SrcReg = MI.getOperand(0).getReg(); 2602 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2603 NumStoreSPILLVSRRCAsVec++; 2604 MI.setDesc(get(PPC::DFSTOREf64)); 2605 return expandPostRAPseudo(MI); 2606 } else { 2607 NumStoreSPILLVSRRCAsGpr++; 2608 MI.setDesc(get(PPC::STD)); 2609 } 2610 return true; 2611 } 2612 case PPC::SPILLTOVSR_LDX: { 2613 Register TargetReg = MI.getOperand(0).getReg(); 2614 if (PPC::VSFRCRegClass.contains(TargetReg)) 2615 MI.setDesc(get(PPC::LXSDX)); 2616 else 2617 MI.setDesc(get(PPC::LDX)); 2618 return true; 2619 } 2620 case PPC::SPILLTOVSR_STX: { 2621 Register SrcReg = MI.getOperand(0).getReg(); 2622 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2623 NumStoreSPILLVSRRCAsVec++; 2624 MI.setDesc(get(PPC::STXSDX)); 2625 } else { 2626 NumStoreSPILLVSRRCAsGpr++; 2627 MI.setDesc(get(PPC::STDX)); 2628 } 2629 return true; 2630 } 2631 2632 case PPC::CFENCE8: { 2633 auto Val = MI.getOperand(0).getReg(); 2634 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2635 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2636 .addImm(PPC::PRED_NE_MINUS) 2637 .addReg(PPC::CR7) 2638 .addImm(1); 2639 MI.setDesc(get(PPC::ISYNC)); 2640 MI.RemoveOperand(0); 2641 return true; 2642 } 2643 } 2644 return false; 2645 } 2646 2647 // Essentially a compile-time implementation of a compare->isel sequence. 2648 // It takes two constants to compare, along with the true/false registers 2649 // and the comparison type (as a subreg to a CR field) and returns one 2650 // of the true/false registers, depending on the comparison results. 2651 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 2652 unsigned TrueReg, unsigned FalseReg, 2653 unsigned CRSubReg) { 2654 // Signed comparisons. The immediates are assumed to be sign-extended. 2655 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 2656 switch (CRSubReg) { 2657 default: llvm_unreachable("Unknown integer comparison type."); 2658 case PPC::sub_lt: 2659 return Imm1 < Imm2 ? TrueReg : FalseReg; 2660 case PPC::sub_gt: 2661 return Imm1 > Imm2 ? TrueReg : FalseReg; 2662 case PPC::sub_eq: 2663 return Imm1 == Imm2 ? TrueReg : FalseReg; 2664 } 2665 } 2666 // Unsigned comparisons. 2667 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 2668 switch (CRSubReg) { 2669 default: llvm_unreachable("Unknown integer comparison type."); 2670 case PPC::sub_lt: 2671 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 2672 case PPC::sub_gt: 2673 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 2674 case PPC::sub_eq: 2675 return Imm1 == Imm2 ? TrueReg : FalseReg; 2676 } 2677 } 2678 return PPC::NoRegister; 2679 } 2680 2681 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 2682 unsigned OpNo, 2683 int64_t Imm) const { 2684 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 2685 // Replace the REG with the Immediate. 2686 Register InUseReg = MI.getOperand(OpNo).getReg(); 2687 MI.getOperand(OpNo).ChangeToImmediate(Imm); 2688 2689 if (MI.implicit_operands().empty()) 2690 return; 2691 2692 // We need to make sure that the MI didn't have any implicit use 2693 // of this REG any more. 2694 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2695 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 2696 if (UseOpIdx >= 0) { 2697 MachineOperand &MO = MI.getOperand(UseOpIdx); 2698 if (MO.isImplicit()) 2699 // The operands must always be in the following order: 2700 // - explicit reg defs, 2701 // - other explicit operands (reg uses, immediates, etc.), 2702 // - implicit reg defs 2703 // - implicit reg uses 2704 // Therefore, removing the implicit operand won't change the explicit 2705 // operands layout. 2706 MI.RemoveOperand(UseOpIdx); 2707 } 2708 } 2709 2710 // Replace an instruction with one that materializes a constant (and sets 2711 // CR0 if the original instruction was a record-form instruction). 2712 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 2713 const LoadImmediateInfo &LII) const { 2714 // Remove existing operands. 2715 int OperandToKeep = LII.SetCR ? 1 : 0; 2716 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 2717 MI.RemoveOperand(i); 2718 2719 // Replace the instruction. 2720 if (LII.SetCR) { 2721 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 2722 // Set the immediate. 2723 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2724 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 2725 return; 2726 } 2727 else 2728 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 2729 2730 // Set the immediate. 2731 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2732 .addImm(LII.Imm); 2733 } 2734 2735 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 2736 bool &SeenIntermediateUse) const { 2737 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 2738 "Should be called after register allocation."); 2739 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2740 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 2741 It++; 2742 SeenIntermediateUse = false; 2743 for (; It != E; ++It) { 2744 if (It->modifiesRegister(Reg, TRI)) 2745 return &*It; 2746 if (It->readsRegister(Reg, TRI)) 2747 SeenIntermediateUse = true; 2748 } 2749 return nullptr; 2750 } 2751 2752 MachineInstr *PPCInstrInfo::getForwardingDefMI( 2753 MachineInstr &MI, 2754 unsigned &OpNoForForwarding, 2755 bool &SeenIntermediateUse) const { 2756 OpNoForForwarding = ~0U; 2757 MachineInstr *DefMI = nullptr; 2758 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 2759 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2760 // If we're in SSA, get the defs through the MRI. Otherwise, only look 2761 // within the basic block to see if the register is defined using an 2762 // LI/LI8/ADDI/ADDI8. 2763 if (MRI->isSSA()) { 2764 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2765 if (!MI.getOperand(i).isReg()) 2766 continue; 2767 Register Reg = MI.getOperand(i).getReg(); 2768 if (!Register::isVirtualRegister(Reg)) 2769 continue; 2770 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 2771 if (Register::isVirtualRegister(TrueReg)) { 2772 DefMI = MRI->getVRegDef(TrueReg); 2773 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 || 2774 DefMI->getOpcode() == PPC::ADDI || 2775 DefMI->getOpcode() == PPC::ADDI8) { 2776 OpNoForForwarding = i; 2777 // The ADDI and LI operand maybe exist in one instruction at same 2778 // time. we prefer to fold LI operand as LI only has one Imm operand 2779 // and is more possible to be converted. So if current DefMI is 2780 // ADDI/ADDI8, we continue to find possible LI/LI8. 2781 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) 2782 break; 2783 } 2784 } 2785 } 2786 } else { 2787 // Looking back through the definition for each operand could be expensive, 2788 // so exit early if this isn't an instruction that either has an immediate 2789 // form or is already an immediate form that we can handle. 2790 ImmInstrInfo III; 2791 unsigned Opc = MI.getOpcode(); 2792 bool ConvertibleImmForm = 2793 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || 2794 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || 2795 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || 2796 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || 2797 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 2798 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || 2799 Opc == PPC::RLWINM8_rec; 2800 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 2801 ? isVFRegister(MI.getOperand(0).getReg()) 2802 : false; 2803 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 2804 return nullptr; 2805 2806 // Don't convert or %X, %Y, %Y since that's just a register move. 2807 if ((Opc == PPC::OR || Opc == PPC::OR8) && 2808 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 2809 return nullptr; 2810 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2811 MachineOperand &MO = MI.getOperand(i); 2812 SeenIntermediateUse = false; 2813 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 2814 Register Reg = MI.getOperand(i).getReg(); 2815 // If we see another use of this reg between the def and the MI, 2816 // we want to flat it so the def isn't deleted. 2817 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 2818 if (DefMI) { 2819 // Is this register defined by some form of add-immediate (including 2820 // load-immediate) within this basic block? 2821 switch (DefMI->getOpcode()) { 2822 default: 2823 break; 2824 case PPC::LI: 2825 case PPC::LI8: 2826 case PPC::ADDItocL: 2827 case PPC::ADDI: 2828 case PPC::ADDI8: 2829 OpNoForForwarding = i; 2830 return DefMI; 2831 } 2832 } 2833 } 2834 } 2835 } 2836 return OpNoForForwarding == ~0U ? nullptr : DefMI; 2837 } 2838 2839 unsigned PPCInstrInfo::getSpillTarget() const { 2840 // With P10, we may need to spill paired vector registers or accumulator 2841 // registers. MMA implies paired vectors, so we can just check that. 2842 bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops(); 2843 return IsP10Variant ? 2 : Subtarget.hasP9Vector() ? 1 : 0; 2844 } 2845 2846 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 2847 return StoreSpillOpcodesArray[getSpillTarget()]; 2848 } 2849 2850 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 2851 return LoadSpillOpcodesArray[getSpillTarget()]; 2852 } 2853 2854 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI, 2855 unsigned RegNo) const { 2856 // Conservatively clear kill flag for the register if the instructions are in 2857 // different basic blocks and in SSA form, because the kill flag may no longer 2858 // be right. There is no need to bother with dead flags since defs with no 2859 // uses will be handled by DCE. 2860 MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo(); 2861 if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) { 2862 MRI.clearKillFlags(RegNo); 2863 return; 2864 } 2865 2866 // Instructions between [StartMI, EndMI] should be in same basic block. 2867 assert((StartMI->getParent() == EndMI->getParent()) && 2868 "Instructions are not in same basic block"); 2869 2870 // If before RA, StartMI may be def through COPY, we need to adjust it to the 2871 // real def. See function getForwardingDefMI. 2872 if (MRI.isSSA()) { 2873 bool Reads, Writes; 2874 std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo); 2875 if (!Reads && !Writes) { 2876 assert(Register::isVirtualRegister(RegNo) && 2877 "Must be a virtual register"); 2878 // Get real def and ignore copies. 2879 StartMI = MRI.getVRegDef(RegNo); 2880 } 2881 } 2882 2883 bool IsKillSet = false; 2884 2885 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 2886 MachineOperand &MO = MI.getOperand(Index); 2887 if (MO.isReg() && MO.isUse() && MO.isKill() && 2888 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 2889 MO.setIsKill(false); 2890 }; 2891 2892 // Set killed flag for EndMI. 2893 // No need to do anything if EndMI defines RegNo. 2894 int UseIndex = 2895 EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 2896 if (UseIndex != -1) { 2897 EndMI->getOperand(UseIndex).setIsKill(true); 2898 IsKillSet = true; 2899 // Clear killed flag for other EndMI operands related to RegNo. In some 2900 // upexpected cases, killed may be set multiple times for same register 2901 // operand in same MI. 2902 for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i) 2903 if (i != UseIndex) 2904 clearOperandKillInfo(*EndMI, i); 2905 } 2906 2907 // Walking the inst in reverse order (EndMI -> StartMI]. 2908 MachineBasicBlock::reverse_iterator It = *EndMI; 2909 MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend(); 2910 // EndMI has been handled above, skip it here. 2911 It++; 2912 MachineOperand *MO = nullptr; 2913 for (; It != E; ++It) { 2914 // Skip insturctions which could not be a def/use of RegNo. 2915 if (It->isDebugInstr() || It->isPosition()) 2916 continue; 2917 2918 // Clear killed flag for all It operands related to RegNo. In some 2919 // upexpected cases, killed may be set multiple times for same register 2920 // operand in same MI. 2921 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 2922 clearOperandKillInfo(*It, i); 2923 2924 // If killed is not set, set killed for its last use or set dead for its def 2925 // if no use found. 2926 if (!IsKillSet) { 2927 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 2928 // Use found, set it killed. 2929 IsKillSet = true; 2930 MO->setIsKill(true); 2931 continue; 2932 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 2933 &getRegisterInfo()))) { 2934 // No use found, set dead for its def. 2935 assert(&*It == StartMI && "No new def between StartMI and EndMI."); 2936 MO->setIsDead(true); 2937 break; 2938 } 2939 } 2940 2941 if ((&*It) == StartMI) 2942 break; 2943 } 2944 // Ensure RegMo liveness is killed after EndMI. 2945 assert((IsKillSet || (MO && MO->isDead())) && 2946 "RegNo should be killed or dead"); 2947 } 2948 2949 // This opt tries to convert the following imm form to an index form to save an 2950 // add for stack variables. 2951 // Return false if no such pattern found. 2952 // 2953 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 2954 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg 2955 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) 2956 // 2957 // can be converted to: 2958 // 2959 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) 2960 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) 2961 // 2962 // In order to eliminate ADD instr, make sure that: 2963 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in 2964 // new ADDI instr and ADDI can only take int16 Imm. 2965 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use 2966 // between ADDI and ADD instr since its original def in ADDI will be changed 2967 // in new ADDI instr. And also there should be no new def for it between 2968 // ADD and Imm instr as ToBeChangedReg will be used in Index instr. 2969 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use 2970 // between ADD and Imm instr since ADD instr will be eliminated. 2971 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be 2972 // moved to Index instr. 2973 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { 2974 MachineFunction *MF = MI.getParent()->getParent(); 2975 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2976 bool PostRA = !MRI->isSSA(); 2977 // Do this opt after PEI which is after RA. The reason is stack slot expansion 2978 // in PEI may expose such opportunities since in PEI, stack slot offsets to 2979 // frame base(OffsetAddi) are determined. 2980 if (!PostRA) 2981 return false; 2982 unsigned ToBeDeletedReg = 0; 2983 int64_t OffsetImm = 0; 2984 unsigned XFormOpcode = 0; 2985 ImmInstrInfo III; 2986 2987 // Check if Imm instr meets requirement. 2988 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, 2989 III)) 2990 return false; 2991 2992 bool OtherIntermediateUse = false; 2993 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); 2994 2995 // Exit if there is other use between ADD and Imm instr or no def found. 2996 if (OtherIntermediateUse || !ADDMI) 2997 return false; 2998 2999 // Check if ADD instr meets requirement. 3000 if (!isADDInstrEligibleForFolding(*ADDMI)) 3001 return false; 3002 3003 unsigned ScaleRegIdx = 0; 3004 int64_t OffsetAddi = 0; 3005 MachineInstr *ADDIMI = nullptr; 3006 3007 // Check if there is a valid ToBeChangedReg in ADDMI. 3008 // 1: It must be killed. 3009 // 2: Its definition must be a valid ADDIMI. 3010 // 3: It must satify int16 offset requirement. 3011 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) 3012 ScaleRegIdx = 2; 3013 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) 3014 ScaleRegIdx = 1; 3015 else 3016 return false; 3017 3018 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); 3019 unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg(); 3020 unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); 3021 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, 3022 MachineBasicBlock::iterator End) { 3023 for (auto It = ++Start; It != End; It++) 3024 if (It->modifiesRegister(Reg, &getRegisterInfo())) 3025 return true; 3026 return false; 3027 }; 3028 3029 // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is 3030 // treated as special zero when ScaleReg is R0/X0 register. 3031 if (III.ZeroIsSpecialOrig == III.ImmOpNo && 3032 (ScaleReg == PPC::R0 || ScaleReg == PPC::X0)) 3033 return false; 3034 3035 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr 3036 // and Imm Instr. 3037 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) 3038 return false; 3039 3040 // Now start to do the transformation. 3041 LLVM_DEBUG(dbgs() << "Replace instruction: " 3042 << "\n"); 3043 LLVM_DEBUG(ADDIMI->dump()); 3044 LLVM_DEBUG(ADDMI->dump()); 3045 LLVM_DEBUG(MI.dump()); 3046 LLVM_DEBUG(dbgs() << "with: " 3047 << "\n"); 3048 3049 // Update ADDI instr. 3050 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); 3051 3052 // Update Imm instr. 3053 MI.setDesc(get(XFormOpcode)); 3054 MI.getOperand(III.ImmOpNo) 3055 .ChangeToRegister(ScaleReg, false, false, 3056 ADDMI->getOperand(ScaleRegIdx).isKill()); 3057 3058 MI.getOperand(III.OpNoForForwarding) 3059 .ChangeToRegister(ToBeChangedReg, false, false, true); 3060 3061 // Eliminate ADD instr. 3062 ADDMI->eraseFromParent(); 3063 3064 LLVM_DEBUG(ADDIMI->dump()); 3065 LLVM_DEBUG(MI.dump()); 3066 3067 return true; 3068 } 3069 3070 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, 3071 int64_t &Imm) const { 3072 unsigned Opc = ADDIMI.getOpcode(); 3073 3074 // Exit if the instruction is not ADDI. 3075 if (Opc != PPC::ADDI && Opc != PPC::ADDI8) 3076 return false; 3077 3078 // The operand may not necessarily be an immediate - it could be a relocation. 3079 if (!ADDIMI.getOperand(2).isImm()) 3080 return false; 3081 3082 Imm = ADDIMI.getOperand(2).getImm(); 3083 3084 return true; 3085 } 3086 3087 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { 3088 unsigned Opc = ADDMI.getOpcode(); 3089 3090 // Exit if the instruction is not ADD. 3091 return Opc == PPC::ADD4 || Opc == PPC::ADD8; 3092 } 3093 3094 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, 3095 unsigned &ToBeDeletedReg, 3096 unsigned &XFormOpcode, 3097 int64_t &OffsetImm, 3098 ImmInstrInfo &III) const { 3099 // Only handle load/store. 3100 if (!MI.mayLoadOrStore()) 3101 return false; 3102 3103 unsigned Opc = MI.getOpcode(); 3104 3105 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); 3106 3107 // Exit if instruction has no index form. 3108 if (XFormOpcode == PPC::INSTRUCTION_LIST_END) 3109 return false; 3110 3111 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. 3112 if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()), 3113 III, true)) 3114 return false; 3115 3116 if (!III.IsSummingOperands) 3117 return false; 3118 3119 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); 3120 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); 3121 // Only support imm operands, not relocation slots or others. 3122 if (!ImmOperand.isImm()) 3123 return false; 3124 3125 assert(RegOperand.isReg() && "Instruction format is not right"); 3126 3127 // There are other use for ToBeDeletedReg after Imm instr, can not delete it. 3128 if (!RegOperand.isKill()) 3129 return false; 3130 3131 ToBeDeletedReg = RegOperand.getReg(); 3132 OffsetImm = ImmOperand.getImm(); 3133 3134 return true; 3135 } 3136 3137 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, 3138 MachineInstr *&ADDIMI, 3139 int64_t &OffsetAddi, 3140 int64_t OffsetImm) const { 3141 assert((Index == 1 || Index == 2) && "Invalid operand index for add."); 3142 MachineOperand &MO = ADDMI->getOperand(Index); 3143 3144 if (!MO.isKill()) 3145 return false; 3146 3147 bool OtherIntermediateUse = false; 3148 3149 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); 3150 // Currently handle only one "add + Imminstr" pair case, exit if other 3151 // intermediate use for ToBeChangedReg found. 3152 // TODO: handle the cases where there are other "add + Imminstr" pairs 3153 // with same offset in Imminstr which is like: 3154 // 3155 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 3156 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 3157 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) 3158 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 3159 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) 3160 // 3161 // can be converted to: 3162 // 3163 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, 3164 // (OffsetAddi + OffsetImm) 3165 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg 3166 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) 3167 3168 if (OtherIntermediateUse || !ADDIMI) 3169 return false; 3170 // Check if ADDI instr meets requirement. 3171 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) 3172 return false; 3173 3174 if (isInt<16>(OffsetAddi + OffsetImm)) 3175 return true; 3176 return false; 3177 } 3178 3179 // If this instruction has an immediate form and one of its operands is a 3180 // result of a load-immediate or an add-immediate, convert it to 3181 // the immediate form if the constant is in range. 3182 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 3183 MachineInstr **KilledDef) const { 3184 MachineFunction *MF = MI.getParent()->getParent(); 3185 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3186 bool PostRA = !MRI->isSSA(); 3187 bool SeenIntermediateUse = true; 3188 unsigned ForwardingOperand = ~0U; 3189 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 3190 SeenIntermediateUse); 3191 if (!DefMI) 3192 return false; 3193 assert(ForwardingOperand < MI.getNumOperands() && 3194 "The forwarding operand needs to be valid at this point"); 3195 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 3196 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 3197 if (KilledDef && KillFwdDefMI) 3198 *KilledDef = DefMI; 3199 3200 // If this is a imm instruction and its register operands is produced by ADDI, 3201 // put the imm into imm inst directly. 3202 if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) != 3203 PPC::INSTRUCTION_LIST_END && 3204 transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand)) 3205 return true; 3206 3207 ImmInstrInfo III; 3208 bool IsVFReg = MI.getOperand(0).isReg() 3209 ? isVFRegister(MI.getOperand(0).getReg()) 3210 : false; 3211 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 3212 // If this is a reg+reg instruction that has a reg+imm form, 3213 // and one of the operands is produced by an add-immediate, 3214 // try to convert it. 3215 if (HasImmForm && 3216 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 3217 KillFwdDefMI)) 3218 return true; 3219 3220 // If this is a reg+reg instruction that has a reg+imm form, 3221 // and one of the operands is produced by LI, convert it now. 3222 if (HasImmForm && 3223 transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI)) 3224 return true; 3225 3226 // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI 3227 // can be simpified to LI. 3228 if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef)) 3229 return true; 3230 3231 return false; 3232 } 3233 3234 // This function tries to combine two RLWINMs. We not only perform such 3235 // optimization in SSA, but also after RA, since some RLWINM is generated after 3236 // RA. 3237 bool PPCInstrInfo::simplifyRotateAndMaskInstr(MachineInstr &MI, 3238 MachineInstr *&ToErase) const { 3239 bool Is64Bit = false; 3240 switch (MI.getOpcode()) { 3241 case PPC::RLWINM: 3242 case PPC::RLWINM_rec: 3243 break; 3244 case PPC::RLWINM8: 3245 case PPC::RLWINM8_rec: 3246 Is64Bit = true; 3247 break; 3248 default: 3249 return false; 3250 } 3251 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 3252 Register FoldingReg = MI.getOperand(1).getReg(); 3253 MachineInstr *SrcMI = nullptr; 3254 bool CanErase = false; 3255 bool OtherIntermediateUse = true; 3256 if (MRI->isSSA()) { 3257 if (!Register::isVirtualRegister(FoldingReg)) 3258 return false; 3259 SrcMI = MRI->getVRegDef(FoldingReg); 3260 } else { 3261 SrcMI = getDefMIPostRA(FoldingReg, MI, OtherIntermediateUse); 3262 } 3263 if (!SrcMI) 3264 return false; 3265 // TODO: The pairs of RLWINM8(RLWINM) or RLWINM(RLWINM8) never occur before 3266 // RA, but after RA. And We can fold RLWINM8(RLWINM) -> RLWINM8, or 3267 // RLWINM(RLWINM8) -> RLWINM. 3268 switch (SrcMI->getOpcode()) { 3269 case PPC::RLWINM: 3270 case PPC::RLWINM_rec: 3271 if (Is64Bit) 3272 return false; 3273 break; 3274 case PPC::RLWINM8: 3275 case PPC::RLWINM8_rec: 3276 if (!Is64Bit) 3277 return false; 3278 break; 3279 default: 3280 return false; 3281 } 3282 if (MRI->isSSA()) { 3283 CanErase = !SrcMI->hasImplicitDef() && MRI->hasOneNonDBGUse(FoldingReg); 3284 } else { 3285 CanErase = !OtherIntermediateUse && MI.getOperand(1).isKill() && 3286 !SrcMI->hasImplicitDef(); 3287 // In post-RA, if SrcMI also defines the register to be forwarded, we can 3288 // only do the folding if SrcMI is going to be erased. 3289 if (!CanErase && SrcMI->definesRegister(SrcMI->getOperand(1).getReg())) 3290 return false; 3291 } 3292 assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() && 3293 MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() && 3294 SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) && 3295 "Invalid PPC::RLWINM Instruction!"); 3296 uint64_t SHSrc = SrcMI->getOperand(2).getImm(); 3297 uint64_t SHMI = MI.getOperand(2).getImm(); 3298 uint64_t MBSrc = SrcMI->getOperand(3).getImm(); 3299 uint64_t MBMI = MI.getOperand(3).getImm(); 3300 uint64_t MESrc = SrcMI->getOperand(4).getImm(); 3301 uint64_t MEMI = MI.getOperand(4).getImm(); 3302 assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) && 3303 "Invalid PPC::RLWINM Instruction!"); 3304 // If MBMI is bigger than MEMI, we always can not get run of ones. 3305 // RotatedSrcMask non-wrap: 3306 // 0........31|32........63 3307 // RotatedSrcMask: B---E B---E 3308 // MaskMI: -----------|--E B------ 3309 // Result: ----- --- (Bad candidate) 3310 // 3311 // RotatedSrcMask wrap: 3312 // 0........31|32........63 3313 // RotatedSrcMask: --E B----|--E B---- 3314 // MaskMI: -----------|--E B------ 3315 // Result: --- -----|--- ----- (Bad candidate) 3316 // 3317 // One special case is RotatedSrcMask is a full set mask. 3318 // RotatedSrcMask full: 3319 // 0........31|32........63 3320 // RotatedSrcMask: ------EB---|-------EB--- 3321 // MaskMI: -----------|--E B------ 3322 // Result: -----------|--- ------- (Good candidate) 3323 3324 // Mark special case. 3325 bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31); 3326 3327 // For other MBMI > MEMI cases, just return. 3328 if ((MBMI > MEMI) && !SrcMaskFull) 3329 return false; 3330 3331 // Handle MBMI <= MEMI cases. 3332 APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI); 3333 // In MI, we only need low 32 bits of SrcMI, just consider about low 32 3334 // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0, 3335 // while in PowerPC ISA, lowerest bit is at index 63. 3336 APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc); 3337 3338 APInt RotatedSrcMask = MaskSrc.rotl(SHMI); 3339 APInt FinalMask = RotatedSrcMask & MaskMI; 3340 uint32_t NewMB, NewME; 3341 bool Simplified = false; 3342 3343 // If final mask is 0, MI result should be 0 too. 3344 if (FinalMask.isNullValue()) { 3345 Simplified = true; 3346 LLVM_DEBUG(dbgs() << "Replace Instr: "); 3347 LLVM_DEBUG(MI.dump()); 3348 3349 if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) { 3350 // Replace MI with "LI 0" 3351 MI.RemoveOperand(4); 3352 MI.RemoveOperand(3); 3353 MI.RemoveOperand(2); 3354 MI.getOperand(1).ChangeToImmediate(0); 3355 MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI)); 3356 } else { 3357 // Replace MI with "ANDI_rec reg, 0" 3358 MI.RemoveOperand(4); 3359 MI.RemoveOperand(3); 3360 MI.getOperand(2).setImm(0); 3361 MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 3362 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 3363 if (SrcMI->getOperand(1).isKill()) { 3364 MI.getOperand(1).setIsKill(true); 3365 SrcMI->getOperand(1).setIsKill(false); 3366 } else 3367 // About to replace MI.getOperand(1), clear its kill flag. 3368 MI.getOperand(1).setIsKill(false); 3369 } 3370 3371 LLVM_DEBUG(dbgs() << "With: "); 3372 LLVM_DEBUG(MI.dump()); 3373 3374 } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) && 3375 NewMB <= NewME) || 3376 SrcMaskFull) { 3377 // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger 3378 // than NewME. Otherwise we get a 64 bit value after folding, but MI 3379 // return a 32 bit value. 3380 Simplified = true; 3381 LLVM_DEBUG(dbgs() << "Converting Instr: "); 3382 LLVM_DEBUG(MI.dump()); 3383 3384 uint16_t NewSH = (SHSrc + SHMI) % 32; 3385 MI.getOperand(2).setImm(NewSH); 3386 // If SrcMI mask is full, no need to update MBMI and MEMI. 3387 if (!SrcMaskFull) { 3388 MI.getOperand(3).setImm(NewMB); 3389 MI.getOperand(4).setImm(NewME); 3390 } 3391 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 3392 if (SrcMI->getOperand(1).isKill()) { 3393 MI.getOperand(1).setIsKill(true); 3394 SrcMI->getOperand(1).setIsKill(false); 3395 } else 3396 // About to replace MI.getOperand(1), clear its kill flag. 3397 MI.getOperand(1).setIsKill(false); 3398 3399 LLVM_DEBUG(dbgs() << "To: "); 3400 LLVM_DEBUG(MI.dump()); 3401 } 3402 if (Simplified && CanErase) { 3403 // If SrcMI has no implicit def, and FoldingReg has no non-debug use or 3404 // its flag is "killed", it's safe to delete SrcMI. Otherwise keep it. 3405 ToErase = SrcMI; 3406 LLVM_DEBUG(dbgs() << "Delete dead instruction: "); 3407 LLVM_DEBUG(SrcMI->dump()); 3408 } 3409 return Simplified; 3410 } 3411 3412 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 3413 ImmInstrInfo &III, bool PostRA) const { 3414 // The vast majority of the instructions would need their operand 2 replaced 3415 // with an immediate when switching to the reg+imm form. A marked exception 3416 // are the update form loads/stores for which a constant operand 2 would need 3417 // to turn into a displacement and move operand 1 to the operand 2 position. 3418 III.ImmOpNo = 2; 3419 III.OpNoForForwarding = 2; 3420 III.ImmWidth = 16; 3421 III.ImmMustBeMultipleOf = 1; 3422 III.TruncateImmTo = 0; 3423 III.IsSummingOperands = false; 3424 switch (Opc) { 3425 default: return false; 3426 case PPC::ADD4: 3427 case PPC::ADD8: 3428 III.SignedImm = true; 3429 III.ZeroIsSpecialOrig = 0; 3430 III.ZeroIsSpecialNew = 1; 3431 III.IsCommutative = true; 3432 III.IsSummingOperands = true; 3433 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 3434 break; 3435 case PPC::ADDC: 3436 case PPC::ADDC8: 3437 III.SignedImm = true; 3438 III.ZeroIsSpecialOrig = 0; 3439 III.ZeroIsSpecialNew = 0; 3440 III.IsCommutative = true; 3441 III.IsSummingOperands = true; 3442 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 3443 break; 3444 case PPC::ADDC_rec: 3445 III.SignedImm = true; 3446 III.ZeroIsSpecialOrig = 0; 3447 III.ZeroIsSpecialNew = 0; 3448 III.IsCommutative = true; 3449 III.IsSummingOperands = true; 3450 III.ImmOpcode = PPC::ADDIC_rec; 3451 break; 3452 case PPC::SUBFC: 3453 case PPC::SUBFC8: 3454 III.SignedImm = true; 3455 III.ZeroIsSpecialOrig = 0; 3456 III.ZeroIsSpecialNew = 0; 3457 III.IsCommutative = false; 3458 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 3459 break; 3460 case PPC::CMPW: 3461 case PPC::CMPD: 3462 III.SignedImm = true; 3463 III.ZeroIsSpecialOrig = 0; 3464 III.ZeroIsSpecialNew = 0; 3465 III.IsCommutative = false; 3466 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 3467 break; 3468 case PPC::CMPLW: 3469 case PPC::CMPLD: 3470 III.SignedImm = false; 3471 III.ZeroIsSpecialOrig = 0; 3472 III.ZeroIsSpecialNew = 0; 3473 III.IsCommutative = false; 3474 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 3475 break; 3476 case PPC::AND_rec: 3477 case PPC::AND8_rec: 3478 case PPC::OR: 3479 case PPC::OR8: 3480 case PPC::XOR: 3481 case PPC::XOR8: 3482 III.SignedImm = false; 3483 III.ZeroIsSpecialOrig = 0; 3484 III.ZeroIsSpecialNew = 0; 3485 III.IsCommutative = true; 3486 switch(Opc) { 3487 default: llvm_unreachable("Unknown opcode"); 3488 case PPC::AND_rec: 3489 III.ImmOpcode = PPC::ANDI_rec; 3490 break; 3491 case PPC::AND8_rec: 3492 III.ImmOpcode = PPC::ANDI8_rec; 3493 break; 3494 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 3495 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 3496 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 3497 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 3498 } 3499 break; 3500 case PPC::RLWNM: 3501 case PPC::RLWNM8: 3502 case PPC::RLWNM_rec: 3503 case PPC::RLWNM8_rec: 3504 case PPC::SLW: 3505 case PPC::SLW8: 3506 case PPC::SLW_rec: 3507 case PPC::SLW8_rec: 3508 case PPC::SRW: 3509 case PPC::SRW8: 3510 case PPC::SRW_rec: 3511 case PPC::SRW8_rec: 3512 case PPC::SRAW: 3513 case PPC::SRAW_rec: 3514 III.SignedImm = false; 3515 III.ZeroIsSpecialOrig = 0; 3516 III.ZeroIsSpecialNew = 0; 3517 III.IsCommutative = false; 3518 // This isn't actually true, but the instructions ignore any of the 3519 // upper bits, so any immediate loaded with an LI is acceptable. 3520 // This does not apply to shift right algebraic because a value 3521 // out of range will produce a -1/0. 3522 III.ImmWidth = 16; 3523 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || 3524 Opc == PPC::RLWNM8_rec) 3525 III.TruncateImmTo = 5; 3526 else 3527 III.TruncateImmTo = 6; 3528 switch(Opc) { 3529 default: llvm_unreachable("Unknown opcode"); 3530 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 3531 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 3532 case PPC::RLWNM_rec: 3533 III.ImmOpcode = PPC::RLWINM_rec; 3534 break; 3535 case PPC::RLWNM8_rec: 3536 III.ImmOpcode = PPC::RLWINM8_rec; 3537 break; 3538 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 3539 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 3540 case PPC::SLW_rec: 3541 III.ImmOpcode = PPC::RLWINM_rec; 3542 break; 3543 case PPC::SLW8_rec: 3544 III.ImmOpcode = PPC::RLWINM8_rec; 3545 break; 3546 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 3547 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 3548 case PPC::SRW_rec: 3549 III.ImmOpcode = PPC::RLWINM_rec; 3550 break; 3551 case PPC::SRW8_rec: 3552 III.ImmOpcode = PPC::RLWINM8_rec; 3553 break; 3554 case PPC::SRAW: 3555 III.ImmWidth = 5; 3556 III.TruncateImmTo = 0; 3557 III.ImmOpcode = PPC::SRAWI; 3558 break; 3559 case PPC::SRAW_rec: 3560 III.ImmWidth = 5; 3561 III.TruncateImmTo = 0; 3562 III.ImmOpcode = PPC::SRAWI_rec; 3563 break; 3564 } 3565 break; 3566 case PPC::RLDCL: 3567 case PPC::RLDCL_rec: 3568 case PPC::RLDCR: 3569 case PPC::RLDCR_rec: 3570 case PPC::SLD: 3571 case PPC::SLD_rec: 3572 case PPC::SRD: 3573 case PPC::SRD_rec: 3574 case PPC::SRAD: 3575 case PPC::SRAD_rec: 3576 III.SignedImm = false; 3577 III.ZeroIsSpecialOrig = 0; 3578 III.ZeroIsSpecialNew = 0; 3579 III.IsCommutative = false; 3580 // This isn't actually true, but the instructions ignore any of the 3581 // upper bits, so any immediate loaded with an LI is acceptable. 3582 // This does not apply to shift right algebraic because a value 3583 // out of range will produce a -1/0. 3584 III.ImmWidth = 16; 3585 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || 3586 Opc == PPC::RLDCR_rec) 3587 III.TruncateImmTo = 6; 3588 else 3589 III.TruncateImmTo = 7; 3590 switch(Opc) { 3591 default: llvm_unreachable("Unknown opcode"); 3592 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 3593 case PPC::RLDCL_rec: 3594 III.ImmOpcode = PPC::RLDICL_rec; 3595 break; 3596 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 3597 case PPC::RLDCR_rec: 3598 III.ImmOpcode = PPC::RLDICR_rec; 3599 break; 3600 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 3601 case PPC::SLD_rec: 3602 III.ImmOpcode = PPC::RLDICR_rec; 3603 break; 3604 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 3605 case PPC::SRD_rec: 3606 III.ImmOpcode = PPC::RLDICL_rec; 3607 break; 3608 case PPC::SRAD: 3609 III.ImmWidth = 6; 3610 III.TruncateImmTo = 0; 3611 III.ImmOpcode = PPC::SRADI; 3612 break; 3613 case PPC::SRAD_rec: 3614 III.ImmWidth = 6; 3615 III.TruncateImmTo = 0; 3616 III.ImmOpcode = PPC::SRADI_rec; 3617 break; 3618 } 3619 break; 3620 // Loads and stores: 3621 case PPC::LBZX: 3622 case PPC::LBZX8: 3623 case PPC::LHZX: 3624 case PPC::LHZX8: 3625 case PPC::LHAX: 3626 case PPC::LHAX8: 3627 case PPC::LWZX: 3628 case PPC::LWZX8: 3629 case PPC::LWAX: 3630 case PPC::LDX: 3631 case PPC::LFSX: 3632 case PPC::LFDX: 3633 case PPC::STBX: 3634 case PPC::STBX8: 3635 case PPC::STHX: 3636 case PPC::STHX8: 3637 case PPC::STWX: 3638 case PPC::STWX8: 3639 case PPC::STDX: 3640 case PPC::STFSX: 3641 case PPC::STFDX: 3642 III.SignedImm = true; 3643 III.ZeroIsSpecialOrig = 1; 3644 III.ZeroIsSpecialNew = 2; 3645 III.IsCommutative = true; 3646 III.IsSummingOperands = true; 3647 III.ImmOpNo = 1; 3648 III.OpNoForForwarding = 2; 3649 switch(Opc) { 3650 default: llvm_unreachable("Unknown opcode"); 3651 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 3652 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 3653 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 3654 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 3655 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 3656 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 3657 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 3658 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 3659 case PPC::LWAX: 3660 III.ImmOpcode = PPC::LWA; 3661 III.ImmMustBeMultipleOf = 4; 3662 break; 3663 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 3664 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 3665 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 3666 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 3667 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 3668 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 3669 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 3670 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 3671 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 3672 case PPC::STDX: 3673 III.ImmOpcode = PPC::STD; 3674 III.ImmMustBeMultipleOf = 4; 3675 break; 3676 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 3677 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 3678 } 3679 break; 3680 case PPC::LBZUX: 3681 case PPC::LBZUX8: 3682 case PPC::LHZUX: 3683 case PPC::LHZUX8: 3684 case PPC::LHAUX: 3685 case PPC::LHAUX8: 3686 case PPC::LWZUX: 3687 case PPC::LWZUX8: 3688 case PPC::LDUX: 3689 case PPC::LFSUX: 3690 case PPC::LFDUX: 3691 case PPC::STBUX: 3692 case PPC::STBUX8: 3693 case PPC::STHUX: 3694 case PPC::STHUX8: 3695 case PPC::STWUX: 3696 case PPC::STWUX8: 3697 case PPC::STDUX: 3698 case PPC::STFSUX: 3699 case PPC::STFDUX: 3700 III.SignedImm = true; 3701 III.ZeroIsSpecialOrig = 2; 3702 III.ZeroIsSpecialNew = 3; 3703 III.IsCommutative = false; 3704 III.IsSummingOperands = true; 3705 III.ImmOpNo = 2; 3706 III.OpNoForForwarding = 3; 3707 switch(Opc) { 3708 default: llvm_unreachable("Unknown opcode"); 3709 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 3710 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 3711 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 3712 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 3713 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 3714 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 3715 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 3716 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 3717 case PPC::LDUX: 3718 III.ImmOpcode = PPC::LDU; 3719 III.ImmMustBeMultipleOf = 4; 3720 break; 3721 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 3722 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 3723 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 3724 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 3725 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 3726 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 3727 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 3728 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 3729 case PPC::STDUX: 3730 III.ImmOpcode = PPC::STDU; 3731 III.ImmMustBeMultipleOf = 4; 3732 break; 3733 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 3734 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 3735 } 3736 break; 3737 // Power9 and up only. For some of these, the X-Form version has access to all 3738 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 3739 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 3740 // into or stored from is one of the VR registers. 3741 case PPC::LXVX: 3742 case PPC::LXSSPX: 3743 case PPC::LXSDX: 3744 case PPC::STXVX: 3745 case PPC::STXSSPX: 3746 case PPC::STXSDX: 3747 case PPC::XFLOADf32: 3748 case PPC::XFLOADf64: 3749 case PPC::XFSTOREf32: 3750 case PPC::XFSTOREf64: 3751 if (!Subtarget.hasP9Vector()) 3752 return false; 3753 III.SignedImm = true; 3754 III.ZeroIsSpecialOrig = 1; 3755 III.ZeroIsSpecialNew = 2; 3756 III.IsCommutative = true; 3757 III.IsSummingOperands = true; 3758 III.ImmOpNo = 1; 3759 III.OpNoForForwarding = 2; 3760 III.ImmMustBeMultipleOf = 4; 3761 switch(Opc) { 3762 default: llvm_unreachable("Unknown opcode"); 3763 case PPC::LXVX: 3764 III.ImmOpcode = PPC::LXV; 3765 III.ImmMustBeMultipleOf = 16; 3766 break; 3767 case PPC::LXSSPX: 3768 if (PostRA) { 3769 if (IsVFReg) 3770 III.ImmOpcode = PPC::LXSSP; 3771 else { 3772 III.ImmOpcode = PPC::LFS; 3773 III.ImmMustBeMultipleOf = 1; 3774 } 3775 break; 3776 } 3777 LLVM_FALLTHROUGH; 3778 case PPC::XFLOADf32: 3779 III.ImmOpcode = PPC::DFLOADf32; 3780 break; 3781 case PPC::LXSDX: 3782 if (PostRA) { 3783 if (IsVFReg) 3784 III.ImmOpcode = PPC::LXSD; 3785 else { 3786 III.ImmOpcode = PPC::LFD; 3787 III.ImmMustBeMultipleOf = 1; 3788 } 3789 break; 3790 } 3791 LLVM_FALLTHROUGH; 3792 case PPC::XFLOADf64: 3793 III.ImmOpcode = PPC::DFLOADf64; 3794 break; 3795 case PPC::STXVX: 3796 III.ImmOpcode = PPC::STXV; 3797 III.ImmMustBeMultipleOf = 16; 3798 break; 3799 case PPC::STXSSPX: 3800 if (PostRA) { 3801 if (IsVFReg) 3802 III.ImmOpcode = PPC::STXSSP; 3803 else { 3804 III.ImmOpcode = PPC::STFS; 3805 III.ImmMustBeMultipleOf = 1; 3806 } 3807 break; 3808 } 3809 LLVM_FALLTHROUGH; 3810 case PPC::XFSTOREf32: 3811 III.ImmOpcode = PPC::DFSTOREf32; 3812 break; 3813 case PPC::STXSDX: 3814 if (PostRA) { 3815 if (IsVFReg) 3816 III.ImmOpcode = PPC::STXSD; 3817 else { 3818 III.ImmOpcode = PPC::STFD; 3819 III.ImmMustBeMultipleOf = 1; 3820 } 3821 break; 3822 } 3823 LLVM_FALLTHROUGH; 3824 case PPC::XFSTOREf64: 3825 III.ImmOpcode = PPC::DFSTOREf64; 3826 break; 3827 } 3828 break; 3829 } 3830 return true; 3831 } 3832 3833 // Utility function for swaping two arbitrary operands of an instruction. 3834 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 3835 assert(Op1 != Op2 && "Cannot swap operand with itself."); 3836 3837 unsigned MaxOp = std::max(Op1, Op2); 3838 unsigned MinOp = std::min(Op1, Op2); 3839 MachineOperand MOp1 = MI.getOperand(MinOp); 3840 MachineOperand MOp2 = MI.getOperand(MaxOp); 3841 MI.RemoveOperand(std::max(Op1, Op2)); 3842 MI.RemoveOperand(std::min(Op1, Op2)); 3843 3844 // If the operands we are swapping are the two at the end (the common case) 3845 // we can just remove both and add them in the opposite order. 3846 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 3847 MI.addOperand(MOp2); 3848 MI.addOperand(MOp1); 3849 } else { 3850 // Store all operands in a temporary vector, remove them and re-add in the 3851 // right order. 3852 SmallVector<MachineOperand, 2> MOps; 3853 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 3854 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 3855 MOps.push_back(MI.getOperand(i)); 3856 MI.RemoveOperand(i); 3857 } 3858 // MOp2 needs to be added next. 3859 MI.addOperand(MOp2); 3860 // Now add the rest. 3861 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 3862 if (i == MaxOp) 3863 MI.addOperand(MOp1); 3864 else { 3865 MI.addOperand(MOps.back()); 3866 MOps.pop_back(); 3867 } 3868 } 3869 } 3870 } 3871 3872 // Check if the 'MI' that has the index OpNoForForwarding 3873 // meets the requirement described in the ImmInstrInfo. 3874 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 3875 const ImmInstrInfo &III, 3876 unsigned OpNoForForwarding 3877 ) const { 3878 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 3879 // would not work pre-RA, we can only do the check post RA. 3880 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3881 if (MRI.isSSA()) 3882 return false; 3883 3884 // Cannot do the transform if MI isn't summing the operands. 3885 if (!III.IsSummingOperands) 3886 return false; 3887 3888 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 3889 if (!III.ZeroIsSpecialOrig) 3890 return false; 3891 3892 // We cannot do the transform if the operand we are trying to replace 3893 // isn't the same as the operand the instruction allows. 3894 if (OpNoForForwarding != III.OpNoForForwarding) 3895 return false; 3896 3897 // Check if the instruction we are trying to transform really has 3898 // the special zero register as its operand. 3899 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 3900 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 3901 return false; 3902 3903 // This machine instruction is convertible if it is, 3904 // 1. summing the operands. 3905 // 2. one of the operands is special zero register. 3906 // 3. the operand we are trying to replace is allowed by the MI. 3907 return true; 3908 } 3909 3910 // Check if the DefMI is the add inst and set the ImmMO and RegMO 3911 // accordingly. 3912 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 3913 const ImmInstrInfo &III, 3914 MachineOperand *&ImmMO, 3915 MachineOperand *&RegMO) const { 3916 unsigned Opc = DefMI.getOpcode(); 3917 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 3918 return false; 3919 3920 assert(DefMI.getNumOperands() >= 3 && 3921 "Add inst must have at least three operands"); 3922 RegMO = &DefMI.getOperand(1); 3923 ImmMO = &DefMI.getOperand(2); 3924 3925 // Before RA, ADDI first operand could be a frame index. 3926 if (!RegMO->isReg()) 3927 return false; 3928 3929 // This DefMI is elgible for forwarding if it is: 3930 // 1. add inst 3931 // 2. one of the operands is Imm/CPI/Global. 3932 return isAnImmediateOperand(*ImmMO); 3933 } 3934 3935 bool PPCInstrInfo::isRegElgibleForForwarding( 3936 const MachineOperand &RegMO, const MachineInstr &DefMI, 3937 const MachineInstr &MI, bool KillDefMI, 3938 bool &IsFwdFeederRegKilled) const { 3939 // x = addi y, imm 3940 // ... 3941 // z = lfdx 0, x -> z = lfd imm(y) 3942 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 3943 // of "y" between the DEF of "x" and "z". 3944 // The query is only valid post RA. 3945 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3946 if (MRI.isSSA()) 3947 return false; 3948 3949 Register Reg = RegMO.getReg(); 3950 3951 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 3952 MachineBasicBlock::const_reverse_iterator It = MI; 3953 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 3954 It++; 3955 for (; It != E; ++It) { 3956 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3957 return false; 3958 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3959 IsFwdFeederRegKilled = true; 3960 // Made it to DefMI without encountering a clobber. 3961 if ((&*It) == &DefMI) 3962 break; 3963 } 3964 assert((&*It) == &DefMI && "DefMI is missing"); 3965 3966 // If DefMI also defines the register to be forwarded, we can only forward it 3967 // if DefMI is being erased. 3968 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 3969 return KillDefMI; 3970 3971 return true; 3972 } 3973 3974 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 3975 const MachineInstr &DefMI, 3976 const ImmInstrInfo &III, 3977 int64_t &Imm, 3978 int64_t BaseImm) const { 3979 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 3980 if (DefMI.getOpcode() == PPC::ADDItocL) { 3981 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 3982 // However, we know that, it is 16-bit width, and has the alignment of 4. 3983 // Check if the instruction met the requirement. 3984 if (III.ImmMustBeMultipleOf > 4 || 3985 III.TruncateImmTo || III.ImmWidth != 16) 3986 return false; 3987 3988 // Going from XForm to DForm loads means that the displacement needs to be 3989 // not just an immediate but also a multiple of 4, or 16 depending on the 3990 // load. A DForm load cannot be represented if it is a multiple of say 2. 3991 // XForm loads do not have this restriction. 3992 if (ImmMO.isGlobal()) { 3993 const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout(); 3994 if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf) 3995 return false; 3996 } 3997 3998 return true; 3999 } 4000 4001 if (ImmMO.isImm()) { 4002 // It is Imm, we need to check if the Imm fit the range. 4003 // Sign-extend to 64-bits. 4004 // DefMI may be folded with another imm form instruction, the result Imm is 4005 // the sum of Imm of DefMI and BaseImm which is from imm form instruction. 4006 Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm); 4007 4008 if (Imm % III.ImmMustBeMultipleOf) 4009 return false; 4010 if (III.TruncateImmTo) 4011 Imm &= ((1 << III.TruncateImmTo) - 1); 4012 if (III.SignedImm) { 4013 APInt ActualValue(64, Imm, true); 4014 if (!ActualValue.isSignedIntN(III.ImmWidth)) 4015 return false; 4016 } else { 4017 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 4018 if ((uint64_t)Imm > UnsignedMax) 4019 return false; 4020 } 4021 } 4022 else 4023 return false; 4024 4025 // This ImmMO is forwarded if it meets the requriement describle 4026 // in ImmInstrInfo 4027 return true; 4028 } 4029 4030 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI, 4031 unsigned OpNoForForwarding, 4032 MachineInstr **KilledDef) const { 4033 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4034 !DefMI.getOperand(1).isImm()) 4035 return false; 4036 4037 MachineFunction *MF = MI.getParent()->getParent(); 4038 MachineRegisterInfo *MRI = &MF->getRegInfo(); 4039 bool PostRA = !MRI->isSSA(); 4040 4041 int64_t Immediate = DefMI.getOperand(1).getImm(); 4042 // Sign-extend to 64-bits. 4043 int64_t SExtImm = SignExtend64<16>(Immediate); 4044 4045 bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill(); 4046 Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 4047 4048 bool ReplaceWithLI = false; 4049 bool Is64BitLI = false; 4050 int64_t NewImm = 0; 4051 bool SetCR = false; 4052 unsigned Opc = MI.getOpcode(); 4053 switch (Opc) { 4054 default: 4055 return false; 4056 4057 // FIXME: Any branches conditional on such a comparison can be made 4058 // unconditional. At this time, this happens too infrequently to be worth 4059 // the implementation effort, but if that ever changes, we could convert 4060 // such a pattern here. 4061 case PPC::CMPWI: 4062 case PPC::CMPLWI: 4063 case PPC::CMPDI: 4064 case PPC::CMPLDI: { 4065 // Doing this post-RA would require dataflow analysis to reliably find uses 4066 // of the CR register set by the compare. 4067 // No need to fixup killed/dead flag since this transformation is only valid 4068 // before RA. 4069 if (PostRA) 4070 return false; 4071 // If a compare-immediate is fed by an immediate and is itself an input of 4072 // an ISEL (the most common case) into a COPY of the correct register. 4073 bool Changed = false; 4074 Register DefReg = MI.getOperand(0).getReg(); 4075 int64_t Comparand = MI.getOperand(2).getImm(); 4076 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 4077 ? (Comparand | 0xFFFFFFFFFFFF0000) 4078 : Comparand; 4079 4080 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 4081 unsigned UseOpc = CompareUseMI.getOpcode(); 4082 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 4083 continue; 4084 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 4085 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 4086 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 4087 unsigned RegToCopy = 4088 selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg); 4089 if (RegToCopy == PPC::NoRegister) 4090 continue; 4091 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 4092 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 4093 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 4094 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 4095 CompareUseMI.RemoveOperand(3); 4096 CompareUseMI.RemoveOperand(2); 4097 continue; 4098 } 4099 LLVM_DEBUG( 4100 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 4101 LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump()); 4102 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 4103 // Convert to copy and remove unneeded operands. 4104 CompareUseMI.setDesc(get(PPC::COPY)); 4105 CompareUseMI.RemoveOperand(3); 4106 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 4107 CmpIselsConverted++; 4108 Changed = true; 4109 LLVM_DEBUG(CompareUseMI.dump()); 4110 } 4111 if (Changed) 4112 return true; 4113 // This may end up incremented multiple times since this function is called 4114 // during a fixed-point transformation, but it is only meant to indicate the 4115 // presence of this opportunity. 4116 MissedConvertibleImmediateInstrs++; 4117 return false; 4118 } 4119 4120 // Immediate forms - may simply be convertable to an LI. 4121 case PPC::ADDI: 4122 case PPC::ADDI8: { 4123 // Does the sum fit in a 16-bit signed field? 4124 int64_t Addend = MI.getOperand(2).getImm(); 4125 if (isInt<16>(Addend + SExtImm)) { 4126 ReplaceWithLI = true; 4127 Is64BitLI = Opc == PPC::ADDI8; 4128 NewImm = Addend + SExtImm; 4129 break; 4130 } 4131 return false; 4132 } 4133 case PPC::SUBFIC: 4134 case PPC::SUBFIC8: { 4135 // Only transform this if the CARRY implicit operand is dead. 4136 if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead()) 4137 return false; 4138 int64_t Minuend = MI.getOperand(2).getImm(); 4139 if (isInt<16>(Minuend - SExtImm)) { 4140 ReplaceWithLI = true; 4141 Is64BitLI = Opc == PPC::SUBFIC8; 4142 NewImm = Minuend - SExtImm; 4143 break; 4144 } 4145 return false; 4146 } 4147 case PPC::RLDICL: 4148 case PPC::RLDICL_rec: 4149 case PPC::RLDICL_32: 4150 case PPC::RLDICL_32_64: { 4151 // Use APInt's rotate function. 4152 int64_t SH = MI.getOperand(2).getImm(); 4153 int64_t MB = MI.getOperand(3).getImm(); 4154 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, 4155 SExtImm, true); 4156 InVal = InVal.rotl(SH); 4157 uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1; 4158 InVal &= Mask; 4159 // Can't replace negative values with an LI as that will sign-extend 4160 // and not clear the left bits. If we're setting the CR bit, we will use 4161 // ANDI_rec which won't sign extend, so that's safe. 4162 if (isUInt<15>(InVal.getSExtValue()) || 4163 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { 4164 ReplaceWithLI = true; 4165 Is64BitLI = Opc != PPC::RLDICL_32; 4166 NewImm = InVal.getSExtValue(); 4167 SetCR = Opc == PPC::RLDICL_rec; 4168 break; 4169 } 4170 return false; 4171 } 4172 case PPC::RLWINM: 4173 case PPC::RLWINM8: 4174 case PPC::RLWINM_rec: 4175 case PPC::RLWINM8_rec: { 4176 int64_t SH = MI.getOperand(2).getImm(); 4177 int64_t MB = MI.getOperand(3).getImm(); 4178 int64_t ME = MI.getOperand(4).getImm(); 4179 APInt InVal(32, SExtImm, true); 4180 InVal = InVal.rotl(SH); 4181 APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB); 4182 InVal &= Mask; 4183 // Can't replace negative values with an LI as that will sign-extend 4184 // and not clear the left bits. If we're setting the CR bit, we will use 4185 // ANDI_rec which won't sign extend, so that's safe. 4186 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 4187 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && 4188 isUInt<16>(InVal.getSExtValue())); 4189 if (ValueFits) { 4190 ReplaceWithLI = true; 4191 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; 4192 NewImm = InVal.getSExtValue(); 4193 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; 4194 break; 4195 } 4196 return false; 4197 } 4198 case PPC::ORI: 4199 case PPC::ORI8: 4200 case PPC::XORI: 4201 case PPC::XORI8: { 4202 int64_t LogicalImm = MI.getOperand(2).getImm(); 4203 int64_t Result = 0; 4204 if (Opc == PPC::ORI || Opc == PPC::ORI8) 4205 Result = LogicalImm | SExtImm; 4206 else 4207 Result = LogicalImm ^ SExtImm; 4208 if (isInt<16>(Result)) { 4209 ReplaceWithLI = true; 4210 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 4211 NewImm = Result; 4212 break; 4213 } 4214 return false; 4215 } 4216 } 4217 4218 if (ReplaceWithLI) { 4219 // We need to be careful with CR-setting instructions we're replacing. 4220 if (SetCR) { 4221 // We don't know anything about uses when we're out of SSA, so only 4222 // replace if the new immediate will be reproduced. 4223 bool ImmChanged = (SExtImm & NewImm) != NewImm; 4224 if (PostRA && ImmChanged) 4225 return false; 4226 4227 if (!PostRA) { 4228 // If the defining load-immediate has no other uses, we can just replace 4229 // the immediate with the new immediate. 4230 if (MRI->hasOneUse(DefMI.getOperand(0).getReg())) 4231 DefMI.getOperand(1).setImm(NewImm); 4232 4233 // If we're not using the GPR result of the CR-setting instruction, we 4234 // just need to and with zero/non-zero depending on the new immediate. 4235 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 4236 if (NewImm) { 4237 assert(Immediate && "Transformation converted zero to non-zero?"); 4238 NewImm = Immediate; 4239 } 4240 } else if (ImmChanged) 4241 return false; 4242 } 4243 } 4244 4245 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4246 LLVM_DEBUG(MI.dump()); 4247 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4248 LLVM_DEBUG(DefMI.dump()); 4249 LoadImmediateInfo LII; 4250 LII.Imm = NewImm; 4251 LII.Is64Bit = Is64BitLI; 4252 LII.SetCR = SetCR; 4253 // If we're setting the CR, the original load-immediate must be kept (as an 4254 // operand to ANDI_rec/ANDI8_rec). 4255 if (KilledDef && SetCR) 4256 *KilledDef = nullptr; 4257 replaceInstrWithLI(MI, LII); 4258 4259 // Fixup killed/dead flag after transformation. 4260 // Pattern: 4261 // ForwardingOperandReg = LI imm1 4262 // y = op2 imm2, ForwardingOperandReg(killed) 4263 if (IsForwardingOperandKilled) 4264 fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg); 4265 4266 LLVM_DEBUG(dbgs() << "With:\n"); 4267 LLVM_DEBUG(MI.dump()); 4268 return true; 4269 } 4270 return false; 4271 } 4272 4273 bool PPCInstrInfo::transformToNewImmFormFedByAdd( 4274 MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const { 4275 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 4276 bool PostRA = !MRI->isSSA(); 4277 // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI 4278 // for post-ra. 4279 if (PostRA) 4280 return false; 4281 4282 // Only handle load/store. 4283 if (!MI.mayLoadOrStore()) 4284 return false; 4285 4286 unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode()); 4287 4288 assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) && 4289 "MI must have x-form opcode"); 4290 4291 // get Imm Form info. 4292 ImmInstrInfo III; 4293 bool IsVFReg = MI.getOperand(0).isReg() 4294 ? isVFRegister(MI.getOperand(0).getReg()) 4295 : false; 4296 4297 if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA)) 4298 return false; 4299 4300 if (!III.IsSummingOperands) 4301 return false; 4302 4303 if (OpNoForForwarding != III.OpNoForForwarding) 4304 return false; 4305 4306 MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo); 4307 if (!ImmOperandMI.isImm()) 4308 return false; 4309 4310 // Check DefMI. 4311 MachineOperand *ImmMO = nullptr; 4312 MachineOperand *RegMO = nullptr; 4313 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4314 return false; 4315 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4316 4317 // Check Imm. 4318 // Set ImmBase from imm instruction as base and get new Imm inside 4319 // isImmElgibleForForwarding. 4320 int64_t ImmBase = ImmOperandMI.getImm(); 4321 int64_t Imm = 0; 4322 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase)) 4323 return false; 4324 4325 // Get killed info in case fixup needed after transformation. 4326 unsigned ForwardKilledOperandReg = ~0U; 4327 if (MI.getOperand(III.OpNoForForwarding).isKill()) 4328 ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg(); 4329 4330 // Do the transform 4331 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4332 LLVM_DEBUG(MI.dump()); 4333 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4334 LLVM_DEBUG(DefMI.dump()); 4335 4336 MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg()); 4337 MI.getOperand(III.OpNoForForwarding).setIsKill(RegMO->isKill()); 4338 MI.getOperand(III.ImmOpNo).setImm(Imm); 4339 4340 // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block. 4341 if (DefMI.getParent() == MI.getParent()) { 4342 // Check if reg is killed between MI and DefMI. 4343 auto IsKilledFor = [&](unsigned Reg) { 4344 MachineBasicBlock::const_reverse_iterator It = MI; 4345 MachineBasicBlock::const_reverse_iterator E = DefMI; 4346 It++; 4347 for (; It != E; ++It) { 4348 if (It->killsRegister(Reg)) 4349 return true; 4350 } 4351 return false; 4352 }; 4353 4354 // Update kill flag 4355 if (RegMO->isKill() || IsKilledFor(RegMO->getReg())) 4356 fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); 4357 if (ForwardKilledOperandReg != ~0U) 4358 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4359 } 4360 4361 LLVM_DEBUG(dbgs() << "With:\n"); 4362 LLVM_DEBUG(MI.dump()); 4363 return true; 4364 } 4365 4366 // If an X-Form instruction is fed by an add-immediate and one of its operands 4367 // is the literal zero, attempt to forward the source of the add-immediate to 4368 // the corresponding D-Form instruction with the displacement coming from 4369 // the immediate being added. 4370 bool PPCInstrInfo::transformToImmFormFedByAdd( 4371 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 4372 MachineInstr &DefMI, bool KillDefMI) const { 4373 // RegMO ImmMO 4374 // | | 4375 // x = addi reg, imm <----- DefMI 4376 // y = op 0 , x <----- MI 4377 // | 4378 // OpNoForForwarding 4379 // Check if the MI meet the requirement described in the III. 4380 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 4381 return false; 4382 4383 // Check if the DefMI meet the requirement 4384 // described in the III. If yes, set the ImmMO and RegMO accordingly. 4385 MachineOperand *ImmMO = nullptr; 4386 MachineOperand *RegMO = nullptr; 4387 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4388 return false; 4389 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4390 4391 // As we get the Imm operand now, we need to check if the ImmMO meet 4392 // the requirement described in the III. If yes set the Imm. 4393 int64_t Imm = 0; 4394 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 4395 return false; 4396 4397 bool IsFwdFeederRegKilled = false; 4398 // Check if the RegMO can be forwarded to MI. 4399 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 4400 IsFwdFeederRegKilled)) 4401 return false; 4402 4403 // Get killed info in case fixup needed after transformation. 4404 unsigned ForwardKilledOperandReg = ~0U; 4405 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4406 bool PostRA = !MRI.isSSA(); 4407 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 4408 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 4409 4410 // We know that, the MI and DefMI both meet the pattern, and 4411 // the Imm also meet the requirement with the new Imm-form. 4412 // It is safe to do the transformation now. 4413 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4414 LLVM_DEBUG(MI.dump()); 4415 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4416 LLVM_DEBUG(DefMI.dump()); 4417 4418 // Update the base reg first. 4419 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 4420 false, false, 4421 RegMO->isKill()); 4422 4423 // Then, update the imm. 4424 if (ImmMO->isImm()) { 4425 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 4426 // directly. 4427 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 4428 } 4429 else { 4430 // Otherwise, it is Constant Pool Index(CPI) or Global, 4431 // which is relocation in fact. We need to replace the special zero 4432 // register with ImmMO. 4433 // Before that, we need to fixup the target flags for imm. 4434 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 4435 if (DefMI.getOpcode() == PPC::ADDItocL) 4436 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 4437 4438 // MI didn't have the interface such as MI.setOperand(i) though 4439 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 4440 // ImmMO, we need to remove ZERO operand and all the operands behind it, 4441 // and, add the ImmMO, then, move back all the operands behind ZERO. 4442 SmallVector<MachineOperand, 2> MOps; 4443 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 4444 MOps.push_back(MI.getOperand(i)); 4445 MI.RemoveOperand(i); 4446 } 4447 4448 // Remove the last MO in the list, which is ZERO operand in fact. 4449 MOps.pop_back(); 4450 // Add the imm operand. 4451 MI.addOperand(*ImmMO); 4452 // Now add the rest back. 4453 for (auto &MO : MOps) 4454 MI.addOperand(MO); 4455 } 4456 4457 // Update the opcode. 4458 MI.setDesc(get(III.ImmOpcode)); 4459 4460 // Fix up killed/dead flag after transformation. 4461 // Pattern 1: 4462 // x = ADD KilledFwdFeederReg, imm 4463 // n = opn KilledFwdFeederReg(killed), regn 4464 // y = XOP 0, x 4465 // Pattern 2: 4466 // x = ADD reg(killed), imm 4467 // y = XOP 0, x 4468 if (IsFwdFeederRegKilled || RegMO->isKill()) 4469 fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); 4470 // Pattern 3: 4471 // ForwardKilledOperandReg = ADD reg, imm 4472 // y = XOP 0, ForwardKilledOperandReg(killed) 4473 if (ForwardKilledOperandReg != ~0U) 4474 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4475 4476 LLVM_DEBUG(dbgs() << "With:\n"); 4477 LLVM_DEBUG(MI.dump()); 4478 4479 return true; 4480 } 4481 4482 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 4483 const ImmInstrInfo &III, 4484 unsigned ConstantOpNo, 4485 MachineInstr &DefMI) const { 4486 // DefMI must be LI or LI8. 4487 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4488 !DefMI.getOperand(1).isImm()) 4489 return false; 4490 4491 // Get Imm operand and Sign-extend to 64-bits. 4492 int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm()); 4493 4494 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4495 bool PostRA = !MRI.isSSA(); 4496 // Exit early if we can't convert this. 4497 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 4498 return false; 4499 if (Imm % III.ImmMustBeMultipleOf) 4500 return false; 4501 if (III.TruncateImmTo) 4502 Imm &= ((1 << III.TruncateImmTo) - 1); 4503 if (III.SignedImm) { 4504 APInt ActualValue(64, Imm, true); 4505 if (!ActualValue.isSignedIntN(III.ImmWidth)) 4506 return false; 4507 } else { 4508 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 4509 if ((uint64_t)Imm > UnsignedMax) 4510 return false; 4511 } 4512 4513 // If we're post-RA, the instructions don't agree on whether register zero is 4514 // special, we can transform this as long as the register operand that will 4515 // end up in the location where zero is special isn't R0. 4516 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 4517 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 4518 III.ZeroIsSpecialNew + 1; 4519 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 4520 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 4521 // If R0 is in the operand where zero is special for the new instruction, 4522 // it is unsafe to transform if the constant operand isn't that operand. 4523 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 4524 ConstantOpNo != III.ZeroIsSpecialNew) 4525 return false; 4526 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 4527 ConstantOpNo != PosForOrigZero) 4528 return false; 4529 } 4530 4531 // Get killed info in case fixup needed after transformation. 4532 unsigned ForwardKilledOperandReg = ~0U; 4533 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 4534 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 4535 4536 unsigned Opc = MI.getOpcode(); 4537 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || 4538 Opc == PPC::SRW || Opc == PPC::SRW_rec || 4539 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || 4540 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; 4541 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || 4542 Opc == PPC::SRD || Opc == PPC::SRD_rec; 4543 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || 4544 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; 4545 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || 4546 Opc == PPC::SRD_rec; 4547 4548 MI.setDesc(get(III.ImmOpcode)); 4549 if (ConstantOpNo == III.OpNoForForwarding) { 4550 // Converting shifts to immediate form is a bit tricky since they may do 4551 // one of three things: 4552 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 4553 // 2. If the shift amount is zero, the result is unchanged (save for maybe 4554 // setting CR0) 4555 // 3. If the shift amount is in [1, OpSize), it's just a shift 4556 if (SpecialShift32 || SpecialShift64) { 4557 LoadImmediateInfo LII; 4558 LII.Imm = 0; 4559 LII.SetCR = SetCR; 4560 LII.Is64Bit = SpecialShift64; 4561 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 4562 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 4563 replaceInstrWithLI(MI, LII); 4564 // Shifts by zero don't change the value. If we don't need to set CR0, 4565 // just convert this to a COPY. Can't do this post-RA since we've already 4566 // cleaned up the copies. 4567 else if (!SetCR && ShAmt == 0 && !PostRA) { 4568 MI.RemoveOperand(2); 4569 MI.setDesc(get(PPC::COPY)); 4570 } else { 4571 // The 32 bit and 64 bit instructions are quite different. 4572 if (SpecialShift32) { 4573 // Left shifts use (N, 0, 31-N). 4574 // Right shifts use (32-N, N, 31) if 0 < N < 32. 4575 // use (0, 0, 31) if N == 0. 4576 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; 4577 uint64_t MB = RightShift ? ShAmt : 0; 4578 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 4579 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 4580 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 4581 .addImm(ME); 4582 } else { 4583 // Left shifts use (N, 63-N). 4584 // Right shifts use (64-N, N) if 0 < N < 64. 4585 // use (0, 0) if N == 0. 4586 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; 4587 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 4588 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 4589 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 4590 } 4591 } 4592 } else 4593 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 4594 } 4595 // Convert commutative instructions (switch the operands and convert the 4596 // desired one to an immediate. 4597 else if (III.IsCommutative) { 4598 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 4599 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 4600 } else 4601 llvm_unreachable("Should have exited early!"); 4602 4603 // For instructions for which the constant register replaces a different 4604 // operand than where the immediate goes, we need to swap them. 4605 if (III.OpNoForForwarding != III.ImmOpNo) 4606 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 4607 4608 // If the special R0/X0 register index are different for original instruction 4609 // and new instruction, we need to fix up the register class in new 4610 // instruction. 4611 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 4612 if (III.ZeroIsSpecialNew) { 4613 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 4614 // need to fix up register class. 4615 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 4616 if (Register::isVirtualRegister(RegToModify)) { 4617 const TargetRegisterClass *NewRC = 4618 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 4619 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 4620 MRI.setRegClass(RegToModify, NewRC); 4621 } 4622 } 4623 } 4624 4625 // Fix up killed/dead flag after transformation. 4626 // Pattern: 4627 // ForwardKilledOperandReg = LI imm 4628 // y = XOP reg, ForwardKilledOperandReg(killed) 4629 if (ForwardKilledOperandReg != ~0U) 4630 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4631 return true; 4632 } 4633 4634 const TargetRegisterClass * 4635 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 4636 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 4637 return &PPC::VSRCRegClass; 4638 return RC; 4639 } 4640 4641 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 4642 return PPC::getRecordFormOpcode(Opcode); 4643 } 4644 4645 // This function returns true if the machine instruction 4646 // always outputs a value by sign-extending a 32 bit value, 4647 // i.e. 0 to 31-th bits are same as 32-th bit. 4648 static bool isSignExtendingOp(const MachineInstr &MI) { 4649 int Opcode = MI.getOpcode(); 4650 if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS || 4651 Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec || 4652 Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA || 4653 Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 4654 Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 || 4655 Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX || 4656 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU || 4657 Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 4658 Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 || 4659 Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 4660 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB || 4661 Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH || 4662 Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 || 4663 Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW || 4664 Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 || 4665 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 4666 Opcode == PPC::EXTSB8_32_64) 4667 return true; 4668 4669 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 4670 return true; 4671 4672 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 4673 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && 4674 MI.getOperand(3).getImm() > 0 && 4675 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 4676 return true; 4677 4678 return false; 4679 } 4680 4681 // This function returns true if the machine instruction 4682 // always outputs zeros in higher 32 bits. 4683 static bool isZeroExtendingOp(const MachineInstr &MI) { 4684 int Opcode = MI.getOpcode(); 4685 // The 16-bit immediate is sign-extended in li/lis. 4686 // If the most significant bit is zero, all higher bits are zero. 4687 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 4688 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 4689 int64_t Imm = MI.getOperand(1).getImm(); 4690 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 4691 return true; 4692 } 4693 4694 // We have some variations of rotate-and-mask instructions 4695 // that clear higher 32-bits. 4696 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 4697 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || 4698 Opcode == PPC::RLDICL_32_64) && 4699 MI.getOperand(3).getImm() >= 32) 4700 return true; 4701 4702 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 4703 MI.getOperand(3).getImm() >= 32 && 4704 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 4705 return true; 4706 4707 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 4708 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 4709 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 4710 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 4711 return true; 4712 4713 // There are other instructions that clear higher 32-bits. 4714 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec || 4715 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec || 4716 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 4717 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec || 4718 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec || 4719 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW || 4720 Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec || 4721 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI || 4722 Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI || 4723 Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX || 4724 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX || 4725 Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX || 4726 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ || 4727 Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 4728 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 || 4729 Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 4730 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 || 4731 Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 4732 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 4733 Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec || 4734 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec || 4735 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec || 4736 Opcode == PPC::MFVSRWZ) 4737 return true; 4738 4739 return false; 4740 } 4741 4742 // This function returns true if the input MachineInstr is a TOC save 4743 // instruction. 4744 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 4745 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 4746 return false; 4747 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4748 unsigned StackOffset = MI.getOperand(1).getImm(); 4749 Register StackReg = MI.getOperand(2).getReg(); 4750 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) 4751 return true; 4752 4753 return false; 4754 } 4755 4756 // We limit the max depth to track incoming values of PHIs or binary ops 4757 // (e.g. AND) to avoid excessive cost. 4758 const unsigned MAX_DEPTH = 1; 4759 4760 bool 4761 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 4762 const unsigned Depth) const { 4763 const MachineFunction *MF = MI.getParent()->getParent(); 4764 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 4765 4766 // If we know this instruction returns sign- or zero-extended result, 4767 // return true. 4768 if (SignExt ? isSignExtendingOp(MI): 4769 isZeroExtendingOp(MI)) 4770 return true; 4771 4772 switch (MI.getOpcode()) { 4773 case PPC::COPY: { 4774 Register SrcReg = MI.getOperand(1).getReg(); 4775 4776 // In both ELFv1 and v2 ABI, method parameters and the return value 4777 // are sign- or zero-extended. 4778 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 4779 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 4780 // We check the ZExt/SExt flags for a method parameter. 4781 if (MI.getParent()->getBasicBlock() == 4782 &MF->getFunction().getEntryBlock()) { 4783 Register VReg = MI.getOperand(0).getReg(); 4784 if (MF->getRegInfo().isLiveIn(VReg)) 4785 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 4786 FuncInfo->isLiveInZExt(VReg); 4787 } 4788 4789 // For a method return value, we check the ZExt/SExt flags in attribute. 4790 // We assume the following code sequence for method call. 4791 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 4792 // BL8_NOP @func,... 4793 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 4794 // %5 = COPY %x3; G8RC:%5 4795 if (SrcReg == PPC::X3) { 4796 const MachineBasicBlock *MBB = MI.getParent(); 4797 MachineBasicBlock::const_instr_iterator II = 4798 MachineBasicBlock::const_instr_iterator(&MI); 4799 if (II != MBB->instr_begin() && 4800 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 4801 const MachineInstr &CallMI = *(--II); 4802 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 4803 const Function *CalleeFn = 4804 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 4805 if (!CalleeFn) 4806 return false; 4807 const IntegerType *IntTy = 4808 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 4809 const AttributeSet &Attrs = 4810 CalleeFn->getAttributes().getRetAttributes(); 4811 if (IntTy && IntTy->getBitWidth() <= 32) 4812 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 4813 Attribute::ZExt); 4814 } 4815 } 4816 } 4817 } 4818 4819 // If this is a copy from another register, we recursively check source. 4820 if (!Register::isVirtualRegister(SrcReg)) 4821 return false; 4822 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4823 if (SrcMI != NULL) 4824 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 4825 4826 return false; 4827 } 4828 4829 case PPC::ANDI_rec: 4830 case PPC::ANDIS_rec: 4831 case PPC::ORI: 4832 case PPC::ORIS: 4833 case PPC::XORI: 4834 case PPC::XORIS: 4835 case PPC::ANDI8_rec: 4836 case PPC::ANDIS8_rec: 4837 case PPC::ORI8: 4838 case PPC::ORIS8: 4839 case PPC::XORI8: 4840 case PPC::XORIS8: { 4841 // logical operation with 16-bit immediate does not change the upper bits. 4842 // So, we track the operand register as we do for register copy. 4843 Register SrcReg = MI.getOperand(1).getReg(); 4844 if (!Register::isVirtualRegister(SrcReg)) 4845 return false; 4846 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4847 if (SrcMI != NULL) 4848 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 4849 4850 return false; 4851 } 4852 4853 // If all incoming values are sign-/zero-extended, 4854 // the output of OR, ISEL or PHI is also sign-/zero-extended. 4855 case PPC::OR: 4856 case PPC::OR8: 4857 case PPC::ISEL: 4858 case PPC::PHI: { 4859 if (Depth >= MAX_DEPTH) 4860 return false; 4861 4862 // The input registers for PHI are operand 1, 3, ... 4863 // The input registers for others are operand 1 and 2. 4864 unsigned E = 3, D = 1; 4865 if (MI.getOpcode() == PPC::PHI) { 4866 E = MI.getNumOperands(); 4867 D = 2; 4868 } 4869 4870 for (unsigned I = 1; I != E; I += D) { 4871 if (MI.getOperand(I).isReg()) { 4872 Register SrcReg = MI.getOperand(I).getReg(); 4873 if (!Register::isVirtualRegister(SrcReg)) 4874 return false; 4875 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4876 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 4877 return false; 4878 } 4879 else 4880 return false; 4881 } 4882 return true; 4883 } 4884 4885 // If at least one of the incoming values of an AND is zero extended 4886 // then the output is also zero-extended. If both of the incoming values 4887 // are sign-extended then the output is also sign extended. 4888 case PPC::AND: 4889 case PPC::AND8: { 4890 if (Depth >= MAX_DEPTH) 4891 return false; 4892 4893 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 4894 4895 Register SrcReg1 = MI.getOperand(1).getReg(); 4896 Register SrcReg2 = MI.getOperand(2).getReg(); 4897 4898 if (!Register::isVirtualRegister(SrcReg1) || 4899 !Register::isVirtualRegister(SrcReg2)) 4900 return false; 4901 4902 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 4903 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 4904 if (!MISrc1 || !MISrc2) 4905 return false; 4906 4907 if(SignExt) 4908 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 4909 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4910 else 4911 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 4912 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4913 } 4914 4915 default: 4916 break; 4917 } 4918 return false; 4919 } 4920 4921 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 4922 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 4923 } 4924 4925 namespace { 4926 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 4927 MachineInstr *Loop, *EndLoop, *LoopCount; 4928 MachineFunction *MF; 4929 const TargetInstrInfo *TII; 4930 int64_t TripCount; 4931 4932 public: 4933 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 4934 MachineInstr *LoopCount) 4935 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 4936 MF(Loop->getParent()->getParent()), 4937 TII(MF->getSubtarget().getInstrInfo()) { 4938 // Inspect the Loop instruction up-front, as it may be deleted when we call 4939 // createTripCountGreaterCondition. 4940 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 4941 TripCount = LoopCount->getOperand(1).getImm(); 4942 else 4943 TripCount = -1; 4944 } 4945 4946 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 4947 // Only ignore the terminator. 4948 return MI == EndLoop; 4949 } 4950 4951 Optional<bool> 4952 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 4953 SmallVectorImpl<MachineOperand> &Cond) override { 4954 if (TripCount == -1) { 4955 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4956 // so we don't need to generate any thing here. 4957 Cond.push_back(MachineOperand::CreateImm(0)); 4958 Cond.push_back(MachineOperand::CreateReg( 4959 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 4960 true)); 4961 return {}; 4962 } 4963 4964 return TripCount > TC; 4965 } 4966 4967 void setPreheader(MachineBasicBlock *NewPreheader) override { 4968 // Do nothing. We want the LOOP setup instruction to stay in the *old* 4969 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 4970 } 4971 4972 void adjustTripCount(int TripCountAdjust) override { 4973 // If the loop trip count is a compile-time value, then just change the 4974 // value. 4975 if (LoopCount->getOpcode() == PPC::LI8 || 4976 LoopCount->getOpcode() == PPC::LI) { 4977 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 4978 LoopCount->getOperand(1).setImm(TripCount); 4979 return; 4980 } 4981 4982 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4983 // so we don't need to generate any thing here. 4984 } 4985 4986 void disposed() override { 4987 Loop->eraseFromParent(); 4988 // Ensure the loop setup instruction is deleted too. 4989 LoopCount->eraseFromParent(); 4990 } 4991 }; 4992 } // namespace 4993 4994 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 4995 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 4996 // We really "analyze" only hardware loops right now. 4997 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 4998 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 4999 if (Preheader == LoopBB) 5000 Preheader = *std::next(LoopBB->pred_begin()); 5001 MachineFunction *MF = Preheader->getParent(); 5002 5003 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 5004 SmallPtrSet<MachineBasicBlock *, 8> Visited; 5005 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 5006 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 5007 MachineRegisterInfo &MRI = MF->getRegInfo(); 5008 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 5009 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 5010 } 5011 } 5012 return nullptr; 5013 } 5014 5015 MachineInstr *PPCInstrInfo::findLoopInstr( 5016 MachineBasicBlock &PreHeader, 5017 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 5018 5019 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 5020 5021 // The loop set-up instruction should be in preheader 5022 for (auto &I : PreHeader.instrs()) 5023 if (I.getOpcode() == LOOPi) 5024 return &I; 5025 return nullptr; 5026 } 5027 5028 // Return true if get the base operand, byte offset of an instruction and the 5029 // memory width. Width is the size of memory that is being loaded/stored. 5030 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 5031 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, 5032 unsigned &Width, const TargetRegisterInfo *TRI) const { 5033 if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3) 5034 return false; 5035 5036 // Handle only loads/stores with base register followed by immediate offset. 5037 if (!LdSt.getOperand(1).isImm() || 5038 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 5039 return false; 5040 if (!LdSt.getOperand(1).isImm() || 5041 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 5042 return false; 5043 5044 if (!LdSt.hasOneMemOperand()) 5045 return false; 5046 5047 Width = (*LdSt.memoperands_begin())->getSize(); 5048 Offset = LdSt.getOperand(1).getImm(); 5049 BaseReg = &LdSt.getOperand(2); 5050 return true; 5051 } 5052 5053 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 5054 const MachineInstr &MIa, const MachineInstr &MIb) const { 5055 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 5056 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 5057 5058 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 5059 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 5060 return false; 5061 5062 // Retrieve the base register, offset from the base register and width. Width 5063 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 5064 // base registers are identical, and the offset of a lower memory access + 5065 // the width doesn't overlap the offset of a higher memory access, 5066 // then the memory accesses are different. 5067 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5068 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 5069 int64_t OffsetA = 0, OffsetB = 0; 5070 unsigned int WidthA = 0, WidthB = 0; 5071 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 5072 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 5073 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 5074 int LowOffset = std::min(OffsetA, OffsetB); 5075 int HighOffset = std::max(OffsetA, OffsetB); 5076 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 5077 if (LowOffset + LowWidth <= HighOffset) 5078 return true; 5079 } 5080 } 5081 return false; 5082 } 5083