1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/PseudoSourceValue.h" 29 #include "llvm/CodeGen/ScheduleDAG.h" 30 #include "llvm/CodeGen/SlotIndexes.h" 31 #include "llvm/CodeGen/StackMaps.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "ppc-instr-info" 43 44 #define GET_INSTRMAP_INFO 45 #define GET_INSTRINFO_CTOR_DTOR 46 #include "PPCGenInstrInfo.inc" 47 48 STATISTIC(NumStoreSPILLVSRRCAsVec, 49 "Number of spillvsrrc spilled to stack as vec"); 50 STATISTIC(NumStoreSPILLVSRRCAsGpr, 51 "Number of spillvsrrc spilled to stack as gpr"); 52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 53 STATISTIC(CmpIselsConverted, 54 "Number of ISELs that depend on comparison of constants converted"); 55 STATISTIC(MissedConvertibleImmediateInstrs, 56 "Number of compare-immediate instructions fed by constants"); 57 STATISTIC(NumRcRotatesConvertedToRcAnd, 58 "Number of record-form rotates converted to record-form andi"); 59 60 static cl:: 61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 62 cl::desc("Disable analysis for CTR loops")); 63 64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 65 cl::desc("Disable compare instruction optimization"), cl::Hidden); 66 67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 69 cl::Hidden); 70 71 static cl::opt<bool> 72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 73 cl::desc("Use the old (incorrect) instruction latency calculation")); 74 75 // Index into the OpcodesForSpill array. 76 enum SpillOpcodeKey { 77 SOK_Int4Spill, 78 SOK_Int8Spill, 79 SOK_Float8Spill, 80 SOK_Float4Spill, 81 SOK_CRSpill, 82 SOK_CRBitSpill, 83 SOK_VRVectorSpill, 84 SOK_VSXVectorSpill, 85 SOK_VectorFloat8Spill, 86 SOK_VectorFloat4Spill, 87 SOK_VRSaveSpill, 88 SOK_QuadFloat8Spill, 89 SOK_QuadFloat4Spill, 90 SOK_QuadBitSpill, 91 SOK_SpillToVSR, 92 SOK_SPESpill, 93 SOK_LastOpcodeSpill // This must be last on the enum. 94 }; 95 96 // Pin the vtable to this file. 97 void PPCInstrInfo::anchor() {} 98 99 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 100 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 101 /* CatchRetOpcode */ -1, 102 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 103 Subtarget(STI), RI(STI.getTargetMachine()) {} 104 105 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 106 /// this target when scheduling the DAG. 107 ScheduleHazardRecognizer * 108 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 109 const ScheduleDAG *DAG) const { 110 unsigned Directive = 111 static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); 112 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 113 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 114 const InstrItineraryData *II = 115 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 116 return new ScoreboardHazardRecognizer(II, DAG); 117 } 118 119 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 120 } 121 122 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 123 /// to use for this target when scheduling the DAG. 124 ScheduleHazardRecognizer * 125 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 126 const ScheduleDAG *DAG) const { 127 unsigned Directive = 128 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); 129 130 // FIXME: Leaving this as-is until we have POWER9 scheduling info 131 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 132 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 133 134 // Most subtargets use a PPC970 recognizer. 135 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 136 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 137 assert(DAG->TII && "No InstrInfo?"); 138 139 return new PPCHazardRecognizer970(*DAG); 140 } 141 142 return new ScoreboardHazardRecognizer(II, DAG); 143 } 144 145 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 146 const MachineInstr &MI, 147 unsigned *PredCost) const { 148 if (!ItinData || UseOldLatencyCalc) 149 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 150 151 // The default implementation of getInstrLatency calls getStageLatency, but 152 // getStageLatency does not do the right thing for us. While we have 153 // itinerary, most cores are fully pipelined, and so the itineraries only 154 // express the first part of the pipeline, not every stage. Instead, we need 155 // to use the listed output operand cycle number (using operand 0 here, which 156 // is an output). 157 158 unsigned Latency = 1; 159 unsigned DefClass = MI.getDesc().getSchedClass(); 160 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 161 const MachineOperand &MO = MI.getOperand(i); 162 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 163 continue; 164 165 int Cycle = ItinData->getOperandCycle(DefClass, i); 166 if (Cycle < 0) 167 continue; 168 169 Latency = std::max(Latency, (unsigned) Cycle); 170 } 171 172 return Latency; 173 } 174 175 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 176 const MachineInstr &DefMI, unsigned DefIdx, 177 const MachineInstr &UseMI, 178 unsigned UseIdx) const { 179 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 180 UseMI, UseIdx); 181 182 if (!DefMI.getParent()) 183 return Latency; 184 185 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 186 Register Reg = DefMO.getReg(); 187 188 bool IsRegCR; 189 if (Register::isVirtualRegister(Reg)) { 190 const MachineRegisterInfo *MRI = 191 &DefMI.getParent()->getParent()->getRegInfo(); 192 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 193 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 194 } else { 195 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 196 PPC::CRBITRCRegClass.contains(Reg); 197 } 198 199 if (UseMI.isBranch() && IsRegCR) { 200 if (Latency < 0) 201 Latency = getInstrLatency(ItinData, DefMI); 202 203 // On some cores, there is an additional delay between writing to a condition 204 // register, and using it from a branch. 205 unsigned Directive = Subtarget.getCPUDirective(); 206 switch (Directive) { 207 default: break; 208 case PPC::DIR_7400: 209 case PPC::DIR_750: 210 case PPC::DIR_970: 211 case PPC::DIR_E5500: 212 case PPC::DIR_PWR4: 213 case PPC::DIR_PWR5: 214 case PPC::DIR_PWR5X: 215 case PPC::DIR_PWR6: 216 case PPC::DIR_PWR6X: 217 case PPC::DIR_PWR7: 218 case PPC::DIR_PWR8: 219 // FIXME: Is this needed for POWER9? 220 Latency += 2; 221 break; 222 } 223 } 224 225 return Latency; 226 } 227 228 // This function does not list all associative and commutative operations, but 229 // only those worth feeding through the machine combiner in an attempt to 230 // reduce the critical path. Mostly, this means floating-point operations, 231 // because they have high latencies (compared to other operations, such and 232 // and/or, which are also associative and commutative, but have low latencies). 233 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 234 switch (Inst.getOpcode()) { 235 // FP Add: 236 case PPC::FADD: 237 case PPC::FADDS: 238 // FP Multiply: 239 case PPC::FMUL: 240 case PPC::FMULS: 241 // Altivec Add: 242 case PPC::VADDFP: 243 // VSX Add: 244 case PPC::XSADDDP: 245 case PPC::XVADDDP: 246 case PPC::XVADDSP: 247 case PPC::XSADDSP: 248 // VSX Multiply: 249 case PPC::XSMULDP: 250 case PPC::XVMULDP: 251 case PPC::XVMULSP: 252 case PPC::XSMULSP: 253 // QPX Add: 254 case PPC::QVFADD: 255 case PPC::QVFADDS: 256 case PPC::QVFADDSs: 257 // QPX Multiply: 258 case PPC::QVFMUL: 259 case PPC::QVFMULS: 260 case PPC::QVFMULSs: 261 return true; 262 default: 263 return false; 264 } 265 } 266 267 bool PPCInstrInfo::getMachineCombinerPatterns( 268 MachineInstr &Root, 269 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 270 // Using the machine combiner in this way is potentially expensive, so 271 // restrict to when aggressive optimizations are desired. 272 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 273 return false; 274 275 // FP reassociation is only legal when we don't need strict IEEE semantics. 276 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) 277 return false; 278 279 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 280 } 281 282 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 283 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 284 unsigned &SrcReg, unsigned &DstReg, 285 unsigned &SubIdx) const { 286 switch (MI.getOpcode()) { 287 default: return false; 288 case PPC::EXTSW: 289 case PPC::EXTSW_32: 290 case PPC::EXTSW_32_64: 291 SrcReg = MI.getOperand(1).getReg(); 292 DstReg = MI.getOperand(0).getReg(); 293 SubIdx = PPC::sub_32; 294 return true; 295 } 296 } 297 298 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 299 int &FrameIndex) const { 300 unsigned Opcode = MI.getOpcode(); 301 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 302 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 303 304 if (End != std::find(OpcodesForSpill, End, Opcode)) { 305 // Check for the operands added by addFrameReference (the immediate is the 306 // offset which defaults to 0). 307 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 308 MI.getOperand(2).isFI()) { 309 FrameIndex = MI.getOperand(2).getIndex(); 310 return MI.getOperand(0).getReg(); 311 } 312 } 313 return 0; 314 } 315 316 // For opcodes with the ReMaterializable flag set, this function is called to 317 // verify the instruction is really rematable. 318 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 319 AliasAnalysis *AA) const { 320 switch (MI.getOpcode()) { 321 default: 322 // This function should only be called for opcodes with the ReMaterializable 323 // flag set. 324 llvm_unreachable("Unknown rematerializable operation!"); 325 break; 326 case PPC::LI: 327 case PPC::LI8: 328 case PPC::LIS: 329 case PPC::LIS8: 330 case PPC::QVGPCI: 331 case PPC::ADDIStocHA: 332 case PPC::ADDIStocHA8: 333 case PPC::ADDItocL: 334 case PPC::LOAD_STACK_GUARD: 335 case PPC::XXLXORz: 336 case PPC::XXLXORspz: 337 case PPC::XXLXORdpz: 338 case PPC::XXLEQVOnes: 339 case PPC::V_SET0B: 340 case PPC::V_SET0H: 341 case PPC::V_SET0: 342 case PPC::V_SETALLONESB: 343 case PPC::V_SETALLONESH: 344 case PPC::V_SETALLONES: 345 case PPC::CRSET: 346 case PPC::CRUNSET: 347 return true; 348 } 349 return false; 350 } 351 352 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 353 int &FrameIndex) const { 354 unsigned Opcode = MI.getOpcode(); 355 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 356 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 357 358 if (End != std::find(OpcodesForSpill, End, Opcode)) { 359 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 360 MI.getOperand(2).isFI()) { 361 FrameIndex = MI.getOperand(2).getIndex(); 362 return MI.getOperand(0).getReg(); 363 } 364 } 365 return 0; 366 } 367 368 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 369 unsigned OpIdx1, 370 unsigned OpIdx2) const { 371 MachineFunction &MF = *MI.getParent()->getParent(); 372 373 // Normal instructions can be commuted the obvious way. 374 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) 375 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 376 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 377 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 378 // changing the relative order of the mask operands might change what happens 379 // to the high-bits of the mask (and, thus, the result). 380 381 // Cannot commute if it has a non-zero rotate count. 382 if (MI.getOperand(3).getImm() != 0) 383 return nullptr; 384 385 // If we have a zero rotate count, we have: 386 // M = mask(MB,ME) 387 // Op0 = (Op1 & ~M) | (Op2 & M) 388 // Change this to: 389 // M = mask((ME+1)&31, (MB-1)&31) 390 // Op0 = (Op2 & ~M) | (Op1 & M) 391 392 // Swap op1/op2 393 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 394 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); 395 Register Reg0 = MI.getOperand(0).getReg(); 396 Register Reg1 = MI.getOperand(1).getReg(); 397 Register Reg2 = MI.getOperand(2).getReg(); 398 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 399 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 400 bool Reg1IsKill = MI.getOperand(1).isKill(); 401 bool Reg2IsKill = MI.getOperand(2).isKill(); 402 bool ChangeReg0 = false; 403 // If machine instrs are no longer in two-address forms, update 404 // destination register as well. 405 if (Reg0 == Reg1) { 406 // Must be two address instruction! 407 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 408 "Expecting a two-address instruction!"); 409 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 410 Reg2IsKill = false; 411 ChangeReg0 = true; 412 } 413 414 // Masks. 415 unsigned MB = MI.getOperand(4).getImm(); 416 unsigned ME = MI.getOperand(5).getImm(); 417 418 // We can't commute a trivial mask (there is no way to represent an all-zero 419 // mask). 420 if (MB == 0 && ME == 31) 421 return nullptr; 422 423 if (NewMI) { 424 // Create a new instruction. 425 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 426 bool Reg0IsDead = MI.getOperand(0).isDead(); 427 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 428 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 429 .addReg(Reg2, getKillRegState(Reg2IsKill)) 430 .addReg(Reg1, getKillRegState(Reg1IsKill)) 431 .addImm((ME + 1) & 31) 432 .addImm((MB - 1) & 31); 433 } 434 435 if (ChangeReg0) { 436 MI.getOperand(0).setReg(Reg2); 437 MI.getOperand(0).setSubReg(SubReg2); 438 } 439 MI.getOperand(2).setReg(Reg1); 440 MI.getOperand(1).setReg(Reg2); 441 MI.getOperand(2).setSubReg(SubReg1); 442 MI.getOperand(1).setSubReg(SubReg2); 443 MI.getOperand(2).setIsKill(Reg1IsKill); 444 MI.getOperand(1).setIsKill(Reg2IsKill); 445 446 // Swap the mask around. 447 MI.getOperand(4).setImm((ME + 1) & 31); 448 MI.getOperand(5).setImm((MB - 1) & 31); 449 return &MI; 450 } 451 452 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 453 unsigned &SrcOpIdx1, 454 unsigned &SrcOpIdx2) const { 455 // For VSX A-Type FMA instructions, it is the first two operands that can be 456 // commuted, however, because the non-encoded tied input operand is listed 457 // first, the operands to swap are actually the second and third. 458 459 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 460 if (AltOpc == -1) 461 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 462 463 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 464 // and SrcOpIdx2. 465 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 466 } 467 468 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 469 MachineBasicBlock::iterator MI) const { 470 // This function is used for scheduling, and the nop wanted here is the type 471 // that terminates dispatch groups on the POWER cores. 472 unsigned Directive = Subtarget.getCPUDirective(); 473 unsigned Opcode; 474 switch (Directive) { 475 default: Opcode = PPC::NOP; break; 476 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 477 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 478 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 479 // FIXME: Update when POWER9 scheduling model is ready. 480 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 481 } 482 483 DebugLoc DL; 484 BuildMI(MBB, MI, DL, get(Opcode)); 485 } 486 487 /// Return the noop instruction to use for a noop. 488 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 489 NopInst.setOpcode(PPC::NOP); 490 } 491 492 // Branch analysis. 493 // Note: If the condition register is set to CTR or CTR8 then this is a 494 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 495 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 496 MachineBasicBlock *&TBB, 497 MachineBasicBlock *&FBB, 498 SmallVectorImpl<MachineOperand> &Cond, 499 bool AllowModify) const { 500 bool isPPC64 = Subtarget.isPPC64(); 501 502 // If the block has no terminators, it just falls into the block after it. 503 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 504 if (I == MBB.end()) 505 return false; 506 507 if (!isUnpredicatedTerminator(*I)) 508 return false; 509 510 if (AllowModify) { 511 // If the BB ends with an unconditional branch to the fallthrough BB, 512 // we eliminate the branch instruction. 513 if (I->getOpcode() == PPC::B && 514 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 515 I->eraseFromParent(); 516 517 // We update iterator after deleting the last branch. 518 I = MBB.getLastNonDebugInstr(); 519 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 520 return false; 521 } 522 } 523 524 // Get the last instruction in the block. 525 MachineInstr &LastInst = *I; 526 527 // If there is only one terminator instruction, process it. 528 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 529 if (LastInst.getOpcode() == PPC::B) { 530 if (!LastInst.getOperand(0).isMBB()) 531 return true; 532 TBB = LastInst.getOperand(0).getMBB(); 533 return false; 534 } else if (LastInst.getOpcode() == PPC::BCC) { 535 if (!LastInst.getOperand(2).isMBB()) 536 return true; 537 // Block ends with fall-through condbranch. 538 TBB = LastInst.getOperand(2).getMBB(); 539 Cond.push_back(LastInst.getOperand(0)); 540 Cond.push_back(LastInst.getOperand(1)); 541 return false; 542 } else if (LastInst.getOpcode() == PPC::BC) { 543 if (!LastInst.getOperand(1).isMBB()) 544 return true; 545 // Block ends with fall-through condbranch. 546 TBB = LastInst.getOperand(1).getMBB(); 547 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 548 Cond.push_back(LastInst.getOperand(0)); 549 return false; 550 } else if (LastInst.getOpcode() == PPC::BCn) { 551 if (!LastInst.getOperand(1).isMBB()) 552 return true; 553 // Block ends with fall-through condbranch. 554 TBB = LastInst.getOperand(1).getMBB(); 555 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 556 Cond.push_back(LastInst.getOperand(0)); 557 return false; 558 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 559 LastInst.getOpcode() == PPC::BDNZ) { 560 if (!LastInst.getOperand(0).isMBB()) 561 return true; 562 if (DisableCTRLoopAnal) 563 return true; 564 TBB = LastInst.getOperand(0).getMBB(); 565 Cond.push_back(MachineOperand::CreateImm(1)); 566 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 567 true)); 568 return false; 569 } else if (LastInst.getOpcode() == PPC::BDZ8 || 570 LastInst.getOpcode() == PPC::BDZ) { 571 if (!LastInst.getOperand(0).isMBB()) 572 return true; 573 if (DisableCTRLoopAnal) 574 return true; 575 TBB = LastInst.getOperand(0).getMBB(); 576 Cond.push_back(MachineOperand::CreateImm(0)); 577 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 578 true)); 579 return false; 580 } 581 582 // Otherwise, don't know what this is. 583 return true; 584 } 585 586 // Get the instruction before it if it's a terminator. 587 MachineInstr &SecondLastInst = *I; 588 589 // If there are three terminators, we don't know what sort of block this is. 590 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 591 return true; 592 593 // If the block ends with PPC::B and PPC:BCC, handle it. 594 if (SecondLastInst.getOpcode() == PPC::BCC && 595 LastInst.getOpcode() == PPC::B) { 596 if (!SecondLastInst.getOperand(2).isMBB() || 597 !LastInst.getOperand(0).isMBB()) 598 return true; 599 TBB = SecondLastInst.getOperand(2).getMBB(); 600 Cond.push_back(SecondLastInst.getOperand(0)); 601 Cond.push_back(SecondLastInst.getOperand(1)); 602 FBB = LastInst.getOperand(0).getMBB(); 603 return false; 604 } else if (SecondLastInst.getOpcode() == PPC::BC && 605 LastInst.getOpcode() == PPC::B) { 606 if (!SecondLastInst.getOperand(1).isMBB() || 607 !LastInst.getOperand(0).isMBB()) 608 return true; 609 TBB = SecondLastInst.getOperand(1).getMBB(); 610 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 611 Cond.push_back(SecondLastInst.getOperand(0)); 612 FBB = LastInst.getOperand(0).getMBB(); 613 return false; 614 } else if (SecondLastInst.getOpcode() == PPC::BCn && 615 LastInst.getOpcode() == PPC::B) { 616 if (!SecondLastInst.getOperand(1).isMBB() || 617 !LastInst.getOperand(0).isMBB()) 618 return true; 619 TBB = SecondLastInst.getOperand(1).getMBB(); 620 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 621 Cond.push_back(SecondLastInst.getOperand(0)); 622 FBB = LastInst.getOperand(0).getMBB(); 623 return false; 624 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 625 SecondLastInst.getOpcode() == PPC::BDNZ) && 626 LastInst.getOpcode() == PPC::B) { 627 if (!SecondLastInst.getOperand(0).isMBB() || 628 !LastInst.getOperand(0).isMBB()) 629 return true; 630 if (DisableCTRLoopAnal) 631 return true; 632 TBB = SecondLastInst.getOperand(0).getMBB(); 633 Cond.push_back(MachineOperand::CreateImm(1)); 634 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 635 true)); 636 FBB = LastInst.getOperand(0).getMBB(); 637 return false; 638 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 639 SecondLastInst.getOpcode() == PPC::BDZ) && 640 LastInst.getOpcode() == PPC::B) { 641 if (!SecondLastInst.getOperand(0).isMBB() || 642 !LastInst.getOperand(0).isMBB()) 643 return true; 644 if (DisableCTRLoopAnal) 645 return true; 646 TBB = SecondLastInst.getOperand(0).getMBB(); 647 Cond.push_back(MachineOperand::CreateImm(0)); 648 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 649 true)); 650 FBB = LastInst.getOperand(0).getMBB(); 651 return false; 652 } 653 654 // If the block ends with two PPC:Bs, handle it. The second one is not 655 // executed, so remove it. 656 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 657 if (!SecondLastInst.getOperand(0).isMBB()) 658 return true; 659 TBB = SecondLastInst.getOperand(0).getMBB(); 660 I = LastInst; 661 if (AllowModify) 662 I->eraseFromParent(); 663 return false; 664 } 665 666 // Otherwise, can't handle this. 667 return true; 668 } 669 670 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 671 int *BytesRemoved) const { 672 assert(!BytesRemoved && "code size not handled"); 673 674 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 675 if (I == MBB.end()) 676 return 0; 677 678 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 679 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 680 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 681 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 682 return 0; 683 684 // Remove the branch. 685 I->eraseFromParent(); 686 687 I = MBB.end(); 688 689 if (I == MBB.begin()) return 1; 690 --I; 691 if (I->getOpcode() != PPC::BCC && 692 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 693 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 694 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 695 return 1; 696 697 // Remove the branch. 698 I->eraseFromParent(); 699 return 2; 700 } 701 702 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 703 MachineBasicBlock *TBB, 704 MachineBasicBlock *FBB, 705 ArrayRef<MachineOperand> Cond, 706 const DebugLoc &DL, 707 int *BytesAdded) const { 708 // Shouldn't be a fall through. 709 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 710 assert((Cond.size() == 2 || Cond.size() == 0) && 711 "PPC branch conditions have two components!"); 712 assert(!BytesAdded && "code size not handled"); 713 714 bool isPPC64 = Subtarget.isPPC64(); 715 716 // One-way branch. 717 if (!FBB) { 718 if (Cond.empty()) // Unconditional branch 719 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 720 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 721 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 722 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 723 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 724 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 725 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 726 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 727 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 728 else // Conditional branch 729 BuildMI(&MBB, DL, get(PPC::BCC)) 730 .addImm(Cond[0].getImm()) 731 .add(Cond[1]) 732 .addMBB(TBB); 733 return 1; 734 } 735 736 // Two-way Conditional Branch. 737 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 738 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 739 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 740 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 741 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 742 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 743 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 744 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 745 else 746 BuildMI(&MBB, DL, get(PPC::BCC)) 747 .addImm(Cond[0].getImm()) 748 .add(Cond[1]) 749 .addMBB(TBB); 750 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 751 return 2; 752 } 753 754 // Select analysis. 755 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 756 ArrayRef<MachineOperand> Cond, 757 unsigned TrueReg, unsigned FalseReg, 758 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 759 if (Cond.size() != 2) 760 return false; 761 762 // If this is really a bdnz-like condition, then it cannot be turned into a 763 // select. 764 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 765 return false; 766 767 // Check register classes. 768 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 769 const TargetRegisterClass *RC = 770 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 771 if (!RC) 772 return false; 773 774 // isel is for regular integer GPRs only. 775 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 776 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 777 !PPC::G8RCRegClass.hasSubClassEq(RC) && 778 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 779 return false; 780 781 // FIXME: These numbers are for the A2, how well they work for other cores is 782 // an open question. On the A2, the isel instruction has a 2-cycle latency 783 // but single-cycle throughput. These numbers are used in combination with 784 // the MispredictPenalty setting from the active SchedMachineModel. 785 CondCycles = 1; 786 TrueCycles = 1; 787 FalseCycles = 1; 788 789 return true; 790 } 791 792 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 793 MachineBasicBlock::iterator MI, 794 const DebugLoc &dl, unsigned DestReg, 795 ArrayRef<MachineOperand> Cond, unsigned TrueReg, 796 unsigned FalseReg) const { 797 assert(Cond.size() == 2 && 798 "PPC branch conditions have two components!"); 799 800 // Get the register classes. 801 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 802 const TargetRegisterClass *RC = 803 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 804 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 805 806 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 807 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 808 assert((Is64Bit || 809 PPC::GPRCRegClass.hasSubClassEq(RC) || 810 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 811 "isel is for regular integer GPRs only"); 812 813 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 814 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 815 816 unsigned SubIdx = 0; 817 bool SwapOps = false; 818 switch (SelectPred) { 819 case PPC::PRED_EQ: 820 case PPC::PRED_EQ_MINUS: 821 case PPC::PRED_EQ_PLUS: 822 SubIdx = PPC::sub_eq; SwapOps = false; break; 823 case PPC::PRED_NE: 824 case PPC::PRED_NE_MINUS: 825 case PPC::PRED_NE_PLUS: 826 SubIdx = PPC::sub_eq; SwapOps = true; break; 827 case PPC::PRED_LT: 828 case PPC::PRED_LT_MINUS: 829 case PPC::PRED_LT_PLUS: 830 SubIdx = PPC::sub_lt; SwapOps = false; break; 831 case PPC::PRED_GE: 832 case PPC::PRED_GE_MINUS: 833 case PPC::PRED_GE_PLUS: 834 SubIdx = PPC::sub_lt; SwapOps = true; break; 835 case PPC::PRED_GT: 836 case PPC::PRED_GT_MINUS: 837 case PPC::PRED_GT_PLUS: 838 SubIdx = PPC::sub_gt; SwapOps = false; break; 839 case PPC::PRED_LE: 840 case PPC::PRED_LE_MINUS: 841 case PPC::PRED_LE_PLUS: 842 SubIdx = PPC::sub_gt; SwapOps = true; break; 843 case PPC::PRED_UN: 844 case PPC::PRED_UN_MINUS: 845 case PPC::PRED_UN_PLUS: 846 SubIdx = PPC::sub_un; SwapOps = false; break; 847 case PPC::PRED_NU: 848 case PPC::PRED_NU_MINUS: 849 case PPC::PRED_NU_PLUS: 850 SubIdx = PPC::sub_un; SwapOps = true; break; 851 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 852 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 853 } 854 855 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 856 SecondReg = SwapOps ? TrueReg : FalseReg; 857 858 // The first input register of isel cannot be r0. If it is a member 859 // of a register class that can be r0, then copy it first (the 860 // register allocator should eliminate the copy). 861 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 862 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 863 const TargetRegisterClass *FirstRC = 864 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 865 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 866 unsigned OldFirstReg = FirstReg; 867 FirstReg = MRI.createVirtualRegister(FirstRC); 868 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 869 .addReg(OldFirstReg); 870 } 871 872 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 873 .addReg(FirstReg).addReg(SecondReg) 874 .addReg(Cond[1].getReg(), 0, SubIdx); 875 } 876 877 static unsigned getCRBitValue(unsigned CRBit) { 878 unsigned Ret = 4; 879 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 880 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 881 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 882 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 883 Ret = 3; 884 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 885 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 886 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 887 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 888 Ret = 2; 889 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 890 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 891 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 892 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 893 Ret = 1; 894 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 895 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 896 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 897 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 898 Ret = 0; 899 900 assert(Ret != 4 && "Invalid CR bit register"); 901 return Ret; 902 } 903 904 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 905 MachineBasicBlock::iterator I, 906 const DebugLoc &DL, MCRegister DestReg, 907 MCRegister SrcReg, bool KillSrc) const { 908 // We can end up with self copies and similar things as a result of VSX copy 909 // legalization. Promote them here. 910 const TargetRegisterInfo *TRI = &getRegisterInfo(); 911 if (PPC::F8RCRegClass.contains(DestReg) && 912 PPC::VSRCRegClass.contains(SrcReg)) { 913 MCRegister SuperReg = 914 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 915 916 if (VSXSelfCopyCrash && SrcReg == SuperReg) 917 llvm_unreachable("nop VSX copy"); 918 919 DestReg = SuperReg; 920 } else if (PPC::F8RCRegClass.contains(SrcReg) && 921 PPC::VSRCRegClass.contains(DestReg)) { 922 MCRegister SuperReg = 923 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 924 925 if (VSXSelfCopyCrash && DestReg == SuperReg) 926 llvm_unreachable("nop VSX copy"); 927 928 SrcReg = SuperReg; 929 } 930 931 // Different class register copy 932 if (PPC::CRBITRCRegClass.contains(SrcReg) && 933 PPC::GPRCRegClass.contains(DestReg)) { 934 MCRegister CRReg = getCRFromCRBit(SrcReg); 935 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 936 getKillRegState(KillSrc); 937 // Rotate the CR bit in the CR fields to be the least significant bit and 938 // then mask with 0x1 (MB = ME = 31). 939 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 940 .addReg(DestReg, RegState::Kill) 941 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 942 .addImm(31) 943 .addImm(31); 944 return; 945 } else if (PPC::CRRCRegClass.contains(SrcReg) && 946 PPC::G8RCRegClass.contains(DestReg)) { 947 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 948 getKillRegState(KillSrc); 949 return; 950 } else if (PPC::CRRCRegClass.contains(SrcReg) && 951 PPC::GPRCRegClass.contains(DestReg)) { 952 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 953 getKillRegState(KillSrc); 954 return; 955 } else if (PPC::G8RCRegClass.contains(SrcReg) && 956 PPC::VSFRCRegClass.contains(DestReg)) { 957 assert(Subtarget.hasDirectMove() && 958 "Subtarget doesn't support directmove, don't know how to copy."); 959 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 960 NumGPRtoVSRSpill++; 961 getKillRegState(KillSrc); 962 return; 963 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 964 PPC::G8RCRegClass.contains(DestReg)) { 965 assert(Subtarget.hasDirectMove() && 966 "Subtarget doesn't support directmove, don't know how to copy."); 967 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 968 getKillRegState(KillSrc); 969 return; 970 } else if (PPC::SPERCRegClass.contains(SrcReg) && 971 PPC::GPRCRegClass.contains(DestReg)) { 972 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 973 getKillRegState(KillSrc); 974 return; 975 } else if (PPC::GPRCRegClass.contains(SrcReg) && 976 PPC::SPERCRegClass.contains(DestReg)) { 977 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 978 getKillRegState(KillSrc); 979 return; 980 } 981 982 unsigned Opc; 983 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 984 Opc = PPC::OR; 985 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 986 Opc = PPC::OR8; 987 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 988 Opc = PPC::FMR; 989 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 990 Opc = PPC::MCRF; 991 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 992 Opc = PPC::VOR; 993 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 994 // There are two different ways this can be done: 995 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 996 // issue in VSU pipeline 0. 997 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 998 // can go to either pipeline. 999 // We'll always use xxlor here, because in practically all cases where 1000 // copies are generated, they are close enough to some use that the 1001 // lower-latency form is preferable. 1002 Opc = PPC::XXLOR; 1003 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1004 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1005 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1006 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 1007 Opc = PPC::QVFMR; 1008 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 1009 Opc = PPC::QVFMRs; 1010 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 1011 Opc = PPC::QVFMRb; 1012 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1013 Opc = PPC::CROR; 1014 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1015 Opc = PPC::EVOR; 1016 else 1017 llvm_unreachable("Impossible reg-to-reg copy"); 1018 1019 const MCInstrDesc &MCID = get(Opc); 1020 if (MCID.getNumOperands() == 3) 1021 BuildMI(MBB, I, DL, MCID, DestReg) 1022 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1023 else 1024 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1025 } 1026 1027 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg, 1028 const TargetRegisterClass *RC) 1029 const { 1030 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1031 int OpcodeIndex = 0; 1032 1033 if (RC != nullptr) { 1034 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1035 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1036 OpcodeIndex = SOK_Int4Spill; 1037 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1038 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1039 OpcodeIndex = SOK_Int8Spill; 1040 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1041 OpcodeIndex = SOK_Float8Spill; 1042 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1043 OpcodeIndex = SOK_Float4Spill; 1044 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1045 OpcodeIndex = SOK_SPESpill; 1046 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1047 OpcodeIndex = SOK_CRSpill; 1048 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1049 OpcodeIndex = SOK_CRBitSpill; 1050 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1051 OpcodeIndex = SOK_VRVectorSpill; 1052 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1053 OpcodeIndex = SOK_VSXVectorSpill; 1054 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1055 OpcodeIndex = SOK_VectorFloat8Spill; 1056 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1057 OpcodeIndex = SOK_VectorFloat4Spill; 1058 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1059 OpcodeIndex = SOK_VRSaveSpill; 1060 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1061 OpcodeIndex = SOK_QuadFloat8Spill; 1062 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1063 OpcodeIndex = SOK_QuadFloat4Spill; 1064 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1065 OpcodeIndex = SOK_QuadBitSpill; 1066 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1067 OpcodeIndex = SOK_SpillToVSR; 1068 } else { 1069 llvm_unreachable("Unknown regclass!"); 1070 } 1071 } else { 1072 if (PPC::GPRCRegClass.contains(Reg) || 1073 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1074 OpcodeIndex = SOK_Int4Spill; 1075 } else if (PPC::G8RCRegClass.contains(Reg) || 1076 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1077 OpcodeIndex = SOK_Int8Spill; 1078 } else if (PPC::F8RCRegClass.contains(Reg)) { 1079 OpcodeIndex = SOK_Float8Spill; 1080 } else if (PPC::F4RCRegClass.contains(Reg)) { 1081 OpcodeIndex = SOK_Float4Spill; 1082 } else if (PPC::SPERCRegClass.contains(Reg)) { 1083 OpcodeIndex = SOK_SPESpill; 1084 } else if (PPC::CRRCRegClass.contains(Reg)) { 1085 OpcodeIndex = SOK_CRSpill; 1086 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1087 OpcodeIndex = SOK_CRBitSpill; 1088 } else if (PPC::VRRCRegClass.contains(Reg)) { 1089 OpcodeIndex = SOK_VRVectorSpill; 1090 } else if (PPC::VSRCRegClass.contains(Reg)) { 1091 OpcodeIndex = SOK_VSXVectorSpill; 1092 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1093 OpcodeIndex = SOK_VectorFloat8Spill; 1094 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1095 OpcodeIndex = SOK_VectorFloat4Spill; 1096 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1097 OpcodeIndex = SOK_VRSaveSpill; 1098 } else if (PPC::QFRCRegClass.contains(Reg)) { 1099 OpcodeIndex = SOK_QuadFloat8Spill; 1100 } else if (PPC::QSRCRegClass.contains(Reg)) { 1101 OpcodeIndex = SOK_QuadFloat4Spill; 1102 } else if (PPC::QBRCRegClass.contains(Reg)) { 1103 OpcodeIndex = SOK_QuadBitSpill; 1104 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1105 OpcodeIndex = SOK_SpillToVSR; 1106 } else { 1107 llvm_unreachable("Unknown regclass!"); 1108 } 1109 } 1110 return OpcodesForSpill[OpcodeIndex]; 1111 } 1112 1113 unsigned 1114 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg, 1115 const TargetRegisterClass *RC) const { 1116 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1117 int OpcodeIndex = 0; 1118 1119 if (RC != nullptr) { 1120 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1121 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1122 OpcodeIndex = SOK_Int4Spill; 1123 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1124 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1125 OpcodeIndex = SOK_Int8Spill; 1126 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1127 OpcodeIndex = SOK_Float8Spill; 1128 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1129 OpcodeIndex = SOK_Float4Spill; 1130 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1131 OpcodeIndex = SOK_SPESpill; 1132 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1133 OpcodeIndex = SOK_CRSpill; 1134 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1135 OpcodeIndex = SOK_CRBitSpill; 1136 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1137 OpcodeIndex = SOK_VRVectorSpill; 1138 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1139 OpcodeIndex = SOK_VSXVectorSpill; 1140 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1141 OpcodeIndex = SOK_VectorFloat8Spill; 1142 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1143 OpcodeIndex = SOK_VectorFloat4Spill; 1144 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1145 OpcodeIndex = SOK_VRSaveSpill; 1146 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1147 OpcodeIndex = SOK_QuadFloat8Spill; 1148 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1149 OpcodeIndex = SOK_QuadFloat4Spill; 1150 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1151 OpcodeIndex = SOK_QuadBitSpill; 1152 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1153 OpcodeIndex = SOK_SpillToVSR; 1154 } else { 1155 llvm_unreachable("Unknown regclass!"); 1156 } 1157 } else { 1158 if (PPC::GPRCRegClass.contains(Reg) || 1159 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1160 OpcodeIndex = SOK_Int4Spill; 1161 } else if (PPC::G8RCRegClass.contains(Reg) || 1162 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1163 OpcodeIndex = SOK_Int8Spill; 1164 } else if (PPC::F8RCRegClass.contains(Reg)) { 1165 OpcodeIndex = SOK_Float8Spill; 1166 } else if (PPC::F4RCRegClass.contains(Reg)) { 1167 OpcodeIndex = SOK_Float4Spill; 1168 } else if (PPC::SPERCRegClass.contains(Reg)) { 1169 OpcodeIndex = SOK_SPESpill; 1170 } else if (PPC::CRRCRegClass.contains(Reg)) { 1171 OpcodeIndex = SOK_CRSpill; 1172 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1173 OpcodeIndex = SOK_CRBitSpill; 1174 } else if (PPC::VRRCRegClass.contains(Reg)) { 1175 OpcodeIndex = SOK_VRVectorSpill; 1176 } else if (PPC::VSRCRegClass.contains(Reg)) { 1177 OpcodeIndex = SOK_VSXVectorSpill; 1178 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1179 OpcodeIndex = SOK_VectorFloat8Spill; 1180 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1181 OpcodeIndex = SOK_VectorFloat4Spill; 1182 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1183 OpcodeIndex = SOK_VRSaveSpill; 1184 } else if (PPC::QFRCRegClass.contains(Reg)) { 1185 OpcodeIndex = SOK_QuadFloat8Spill; 1186 } else if (PPC::QSRCRegClass.contains(Reg)) { 1187 OpcodeIndex = SOK_QuadFloat4Spill; 1188 } else if (PPC::QBRCRegClass.contains(Reg)) { 1189 OpcodeIndex = SOK_QuadBitSpill; 1190 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1191 OpcodeIndex = SOK_SpillToVSR; 1192 } else { 1193 llvm_unreachable("Unknown regclass!"); 1194 } 1195 } 1196 return OpcodesForSpill[OpcodeIndex]; 1197 } 1198 1199 void PPCInstrInfo::StoreRegToStackSlot( 1200 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1201 const TargetRegisterClass *RC, 1202 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1203 unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC); 1204 DebugLoc DL; 1205 1206 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1207 FuncInfo->setHasSpills(); 1208 1209 NewMIs.push_back(addFrameReference( 1210 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1211 FrameIdx)); 1212 1213 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1214 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1215 FuncInfo->setSpillsCR(); 1216 1217 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1218 FuncInfo->setSpillsVRSAVE(); 1219 1220 if (isXFormMemOp(Opcode)) 1221 FuncInfo->setHasNonRISpills(); 1222 } 1223 1224 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1225 MachineBasicBlock::iterator MI, 1226 unsigned SrcReg, bool isKill, 1227 int FrameIdx, 1228 const TargetRegisterClass *RC, 1229 const TargetRegisterInfo *TRI) const { 1230 MachineFunction &MF = *MBB.getParent(); 1231 SmallVector<MachineInstr *, 4> NewMIs; 1232 1233 // We need to avoid a situation in which the value from a VRRC register is 1234 // spilled using an Altivec instruction and reloaded into a VSRC register 1235 // using a VSX instruction. The issue with this is that the VSX 1236 // load/store instructions swap the doublewords in the vector and the Altivec 1237 // ones don't. The register classes on the spill/reload may be different if 1238 // the register is defined using an Altivec instruction and is then used by a 1239 // VSX instruction. 1240 RC = updatedRC(RC); 1241 1242 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1243 1244 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1245 MBB.insert(MI, NewMIs[i]); 1246 1247 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1248 MachineMemOperand *MMO = MF.getMachineMemOperand( 1249 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1250 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1251 MFI.getObjectAlignment(FrameIdx)); 1252 NewMIs.back()->addMemOperand(MF, MMO); 1253 } 1254 1255 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1256 unsigned DestReg, int FrameIdx, 1257 const TargetRegisterClass *RC, 1258 SmallVectorImpl<MachineInstr *> &NewMIs) 1259 const { 1260 unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC); 1261 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1262 FrameIdx)); 1263 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1264 1265 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1266 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1267 FuncInfo->setSpillsCR(); 1268 1269 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1270 FuncInfo->setSpillsVRSAVE(); 1271 1272 if (isXFormMemOp(Opcode)) 1273 FuncInfo->setHasNonRISpills(); 1274 } 1275 1276 void 1277 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1278 MachineBasicBlock::iterator MI, 1279 unsigned DestReg, int FrameIdx, 1280 const TargetRegisterClass *RC, 1281 const TargetRegisterInfo *TRI) const { 1282 MachineFunction &MF = *MBB.getParent(); 1283 SmallVector<MachineInstr*, 4> NewMIs; 1284 DebugLoc DL; 1285 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1286 1287 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1288 FuncInfo->setHasSpills(); 1289 1290 // We need to avoid a situation in which the value from a VRRC register is 1291 // spilled using an Altivec instruction and reloaded into a VSRC register 1292 // using a VSX instruction. The issue with this is that the VSX 1293 // load/store instructions swap the doublewords in the vector and the Altivec 1294 // ones don't. The register classes on the spill/reload may be different if 1295 // the register is defined using an Altivec instruction and is then used by a 1296 // VSX instruction. 1297 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 1298 RC = &PPC::VSRCRegClass; 1299 1300 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1301 1302 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1303 MBB.insert(MI, NewMIs[i]); 1304 1305 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1306 MachineMemOperand *MMO = MF.getMachineMemOperand( 1307 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1308 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1309 MFI.getObjectAlignment(FrameIdx)); 1310 NewMIs.back()->addMemOperand(MF, MMO); 1311 } 1312 1313 bool PPCInstrInfo:: 1314 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1315 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1316 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1317 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1318 else 1319 // Leave the CR# the same, but invert the condition. 1320 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1321 return false; 1322 } 1323 1324 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1325 unsigned Reg, MachineRegisterInfo *MRI) const { 1326 // For some instructions, it is legal to fold ZERO into the RA register field. 1327 // A zero immediate should always be loaded with a single li. 1328 unsigned DefOpc = DefMI.getOpcode(); 1329 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1330 return false; 1331 if (!DefMI.getOperand(1).isImm()) 1332 return false; 1333 if (DefMI.getOperand(1).getImm() != 0) 1334 return false; 1335 1336 // Note that we cannot here invert the arguments of an isel in order to fold 1337 // a ZERO into what is presented as the second argument. All we have here 1338 // is the condition bit, and that might come from a CR-logical bit operation. 1339 1340 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1341 1342 // Only fold into real machine instructions. 1343 if (UseMCID.isPseudo()) 1344 return false; 1345 1346 unsigned UseIdx; 1347 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1348 if (UseMI.getOperand(UseIdx).isReg() && 1349 UseMI.getOperand(UseIdx).getReg() == Reg) 1350 break; 1351 1352 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1353 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1354 1355 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1356 1357 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1358 // register (which might also be specified as a pointer class kind). 1359 if (UseInfo->isLookupPtrRegClass()) { 1360 if (UseInfo->RegClass /* Kind */ != 1) 1361 return false; 1362 } else { 1363 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1364 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1365 return false; 1366 } 1367 1368 // Make sure this is not tied to an output register (or otherwise 1369 // constrained). This is true for ST?UX registers, for example, which 1370 // are tied to their output registers. 1371 if (UseInfo->Constraints != 0) 1372 return false; 1373 1374 unsigned ZeroReg; 1375 if (UseInfo->isLookupPtrRegClass()) { 1376 bool isPPC64 = Subtarget.isPPC64(); 1377 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1378 } else { 1379 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1380 PPC::ZERO8 : PPC::ZERO; 1381 } 1382 1383 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1384 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1385 1386 if (DeleteDef) 1387 DefMI.eraseFromParent(); 1388 1389 return true; 1390 } 1391 1392 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1393 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1394 I != IE; ++I) 1395 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1396 return true; 1397 return false; 1398 } 1399 1400 // We should make sure that, if we're going to predicate both sides of a 1401 // condition (a diamond), that both sides don't define the counter register. We 1402 // can predicate counter-decrement-based branches, but while that predicates 1403 // the branching, it does not predicate the counter decrement. If we tried to 1404 // merge the triangle into one predicated block, we'd decrement the counter 1405 // twice. 1406 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1407 unsigned NumT, unsigned ExtraT, 1408 MachineBasicBlock &FMBB, 1409 unsigned NumF, unsigned ExtraF, 1410 BranchProbability Probability) const { 1411 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1412 } 1413 1414 1415 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1416 // The predicated branches are identified by their type, not really by the 1417 // explicit presence of a predicate. Furthermore, some of them can be 1418 // predicated more than once. Because if conversion won't try to predicate 1419 // any instruction which already claims to be predicated (by returning true 1420 // here), always return false. In doing so, we let isPredicable() be the 1421 // final word on whether not the instruction can be (further) predicated. 1422 1423 return false; 1424 } 1425 1426 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 1427 if (!MI.isTerminator()) 1428 return false; 1429 1430 // Conditional branch is a special case. 1431 if (MI.isBranch() && !MI.isBarrier()) 1432 return true; 1433 1434 return !isPredicated(MI); 1435 } 1436 1437 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1438 ArrayRef<MachineOperand> Pred) const { 1439 unsigned OpC = MI.getOpcode(); 1440 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1441 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1442 bool isPPC64 = Subtarget.isPPC64(); 1443 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1444 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1445 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1446 MI.setDesc(get(PPC::BCLR)); 1447 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1448 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1449 MI.setDesc(get(PPC::BCLRn)); 1450 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1451 } else { 1452 MI.setDesc(get(PPC::BCCLR)); 1453 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1454 .addImm(Pred[0].getImm()) 1455 .add(Pred[1]); 1456 } 1457 1458 return true; 1459 } else if (OpC == PPC::B) { 1460 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1461 bool isPPC64 = Subtarget.isPPC64(); 1462 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1463 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1464 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1465 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1466 MI.RemoveOperand(0); 1467 1468 MI.setDesc(get(PPC::BC)); 1469 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1470 .add(Pred[1]) 1471 .addMBB(MBB); 1472 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1473 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1474 MI.RemoveOperand(0); 1475 1476 MI.setDesc(get(PPC::BCn)); 1477 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1478 .add(Pred[1]) 1479 .addMBB(MBB); 1480 } else { 1481 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1482 MI.RemoveOperand(0); 1483 1484 MI.setDesc(get(PPC::BCC)); 1485 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1486 .addImm(Pred[0].getImm()) 1487 .add(Pred[1]) 1488 .addMBB(MBB); 1489 } 1490 1491 return true; 1492 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 1493 OpC == PPC::BCTRL8) { 1494 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1495 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1496 1497 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1498 bool isPPC64 = Subtarget.isPPC64(); 1499 1500 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1501 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1502 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1503 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1504 return true; 1505 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1506 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1507 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1508 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1509 return true; 1510 } 1511 1512 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1513 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1514 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1515 .addImm(Pred[0].getImm()) 1516 .add(Pred[1]); 1517 return true; 1518 } 1519 1520 return false; 1521 } 1522 1523 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1524 ArrayRef<MachineOperand> Pred2) const { 1525 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1526 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1527 1528 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1529 return false; 1530 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1531 return false; 1532 1533 // P1 can only subsume P2 if they test the same condition register. 1534 if (Pred1[1].getReg() != Pred2[1].getReg()) 1535 return false; 1536 1537 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1538 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1539 1540 if (P1 == P2) 1541 return true; 1542 1543 // Does P1 subsume P2, e.g. GE subsumes GT. 1544 if (P1 == PPC::PRED_LE && 1545 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1546 return true; 1547 if (P1 == PPC::PRED_GE && 1548 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1549 return true; 1550 1551 return false; 1552 } 1553 1554 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1555 std::vector<MachineOperand> &Pred) const { 1556 // Note: At the present time, the contents of Pred from this function is 1557 // unused by IfConversion. This implementation follows ARM by pushing the 1558 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1559 // predicate, instructions defining CTR or CTR8 are also included as 1560 // predicate-defining instructions. 1561 1562 const TargetRegisterClass *RCs[] = 1563 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1564 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1565 1566 bool Found = false; 1567 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1568 const MachineOperand &MO = MI.getOperand(i); 1569 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1570 const TargetRegisterClass *RC = RCs[c]; 1571 if (MO.isReg()) { 1572 if (MO.isDef() && RC->contains(MO.getReg())) { 1573 Pred.push_back(MO); 1574 Found = true; 1575 } 1576 } else if (MO.isRegMask()) { 1577 for (TargetRegisterClass::iterator I = RC->begin(), 1578 IE = RC->end(); I != IE; ++I) 1579 if (MO.clobbersPhysReg(*I)) { 1580 Pred.push_back(MO); 1581 Found = true; 1582 } 1583 } 1584 } 1585 } 1586 1587 return Found; 1588 } 1589 1590 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 1591 unsigned &SrcReg2, int &Mask, 1592 int &Value) const { 1593 unsigned Opc = MI.getOpcode(); 1594 1595 switch (Opc) { 1596 default: return false; 1597 case PPC::CMPWI: 1598 case PPC::CMPLWI: 1599 case PPC::CMPDI: 1600 case PPC::CMPLDI: 1601 SrcReg = MI.getOperand(1).getReg(); 1602 SrcReg2 = 0; 1603 Value = MI.getOperand(2).getImm(); 1604 Mask = 0xFFFF; 1605 return true; 1606 case PPC::CMPW: 1607 case PPC::CMPLW: 1608 case PPC::CMPD: 1609 case PPC::CMPLD: 1610 case PPC::FCMPUS: 1611 case PPC::FCMPUD: 1612 SrcReg = MI.getOperand(1).getReg(); 1613 SrcReg2 = MI.getOperand(2).getReg(); 1614 Value = 0; 1615 Mask = 0; 1616 return true; 1617 } 1618 } 1619 1620 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, 1621 unsigned SrcReg2, int Mask, int Value, 1622 const MachineRegisterInfo *MRI) const { 1623 if (DisableCmpOpt) 1624 return false; 1625 1626 int OpC = CmpInstr.getOpcode(); 1627 Register CRReg = CmpInstr.getOperand(0).getReg(); 1628 1629 // FP record forms set CR1 based on the exception status bits, not a 1630 // comparison with zero. 1631 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1632 return false; 1633 1634 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1635 // The record forms set the condition register based on a signed comparison 1636 // with zero (so says the ISA manual). This is not as straightforward as it 1637 // seems, however, because this is always a 64-bit comparison on PPC64, even 1638 // for instructions that are 32-bit in nature (like slw for example). 1639 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1640 // for equality checks (as those don't depend on the sign). On PPC64, 1641 // we are restricted to equality for unsigned 64-bit comparisons and for 1642 // signed 32-bit comparisons the applicability is more restricted. 1643 bool isPPC64 = Subtarget.isPPC64(); 1644 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1645 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1646 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1647 1648 // Look through copies unless that gets us to a physical register. 1649 unsigned ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 1650 if (Register::isVirtualRegister(ActualSrc)) 1651 SrcReg = ActualSrc; 1652 1653 // Get the unique definition of SrcReg. 1654 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1655 if (!MI) return false; 1656 1657 bool equalityOnly = false; 1658 bool noSub = false; 1659 if (isPPC64) { 1660 if (is32BitSignedCompare) { 1661 // We can perform this optimization only if MI is sign-extending. 1662 if (isSignExtended(*MI)) 1663 noSub = true; 1664 else 1665 return false; 1666 } else if (is32BitUnsignedCompare) { 1667 // We can perform this optimization, equality only, if MI is 1668 // zero-extending. 1669 if (isZeroExtended(*MI)) { 1670 noSub = true; 1671 equalityOnly = true; 1672 } else 1673 return false; 1674 } else 1675 equalityOnly = is64BitUnsignedCompare; 1676 } else 1677 equalityOnly = is32BitUnsignedCompare; 1678 1679 if (equalityOnly) { 1680 // We need to check the uses of the condition register in order to reject 1681 // non-equality comparisons. 1682 for (MachineRegisterInfo::use_instr_iterator 1683 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1684 I != IE; ++I) { 1685 MachineInstr *UseMI = &*I; 1686 if (UseMI->getOpcode() == PPC::BCC) { 1687 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1688 unsigned PredCond = PPC::getPredicateCondition(Pred); 1689 // We ignore hint bits when checking for non-equality comparisons. 1690 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1691 return false; 1692 } else if (UseMI->getOpcode() == PPC::ISEL || 1693 UseMI->getOpcode() == PPC::ISEL8) { 1694 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1695 if (SubIdx != PPC::sub_eq) 1696 return false; 1697 } else 1698 return false; 1699 } 1700 } 1701 1702 MachineBasicBlock::iterator I = CmpInstr; 1703 1704 // Scan forward to find the first use of the compare. 1705 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1706 ++I) { 1707 bool FoundUse = false; 1708 for (MachineRegisterInfo::use_instr_iterator 1709 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 1710 J != JE; ++J) 1711 if (&*J == &*I) { 1712 FoundUse = true; 1713 break; 1714 } 1715 1716 if (FoundUse) 1717 break; 1718 } 1719 1720 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1721 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1722 1723 // There are two possible candidates which can be changed to set CR[01]. 1724 // One is MI, the other is a SUB instruction. 1725 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1726 MachineInstr *Sub = nullptr; 1727 if (SrcReg2 != 0) 1728 // MI is not a candidate for CMPrr. 1729 MI = nullptr; 1730 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1731 // same BB as the comparison. This is to allow the check below to avoid calls 1732 // (and other explicit clobbers); instead we should really check for these 1733 // more explicitly (in at least a few predecessors). 1734 else if (MI->getParent() != CmpInstr.getParent()) 1735 return false; 1736 else if (Value != 0) { 1737 // The record-form instructions set CR bit based on signed comparison 1738 // against 0. We try to convert a compare against 1 or -1 into a compare 1739 // against 0 to exploit record-form instructions. For example, we change 1740 // the condition "greater than -1" into "greater than or equal to 0" 1741 // and "less than 1" into "less than or equal to 0". 1742 1743 // Since we optimize comparison based on a specific branch condition, 1744 // we don't optimize if condition code is used by more than once. 1745 if (equalityOnly || !MRI->hasOneUse(CRReg)) 1746 return false; 1747 1748 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 1749 if (UseMI->getOpcode() != PPC::BCC) 1750 return false; 1751 1752 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1753 unsigned PredCond = PPC::getPredicateCondition(Pred); 1754 unsigned PredHint = PPC::getPredicateHint(Pred); 1755 int16_t Immed = (int16_t)Value; 1756 1757 // When modifying the condition in the predicate, we propagate hint bits 1758 // from the original predicate to the new one. 1759 if (Immed == -1 && PredCond == PPC::PRED_GT) 1760 // We convert "greater than -1" into "greater than or equal to 0", 1761 // since we are assuming signed comparison by !equalityOnly 1762 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 1763 else if (Immed == -1 && PredCond == PPC::PRED_LE) 1764 // We convert "less than or equal to -1" into "less than 0". 1765 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 1766 else if (Immed == 1 && PredCond == PPC::PRED_LT) 1767 // We convert "less than 1" into "less than or equal to 0". 1768 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 1769 else if (Immed == 1 && PredCond == PPC::PRED_GE) 1770 // We convert "greater than or equal to 1" into "greater than 0". 1771 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 1772 else 1773 return false; 1774 1775 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred)); 1776 } 1777 1778 // Search for Sub. 1779 --I; 1780 1781 // Get ready to iterate backward from CmpInstr. 1782 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 1783 1784 for (; I != E && !noSub; --I) { 1785 const MachineInstr &Instr = *I; 1786 unsigned IOpC = Instr.getOpcode(); 1787 1788 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 1789 Instr.readsRegister(PPC::CR0, TRI))) 1790 // This instruction modifies or uses the record condition register after 1791 // the one we want to change. While we could do this transformation, it 1792 // would likely not be profitable. This transformation removes one 1793 // instruction, and so even forcing RA to generate one move probably 1794 // makes it unprofitable. 1795 return false; 1796 1797 // Check whether CmpInstr can be made redundant by the current instruction. 1798 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1799 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1800 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1801 ((Instr.getOperand(1).getReg() == SrcReg && 1802 Instr.getOperand(2).getReg() == SrcReg2) || 1803 (Instr.getOperand(1).getReg() == SrcReg2 && 1804 Instr.getOperand(2).getReg() == SrcReg))) { 1805 Sub = &*I; 1806 break; 1807 } 1808 1809 if (I == B) 1810 // The 'and' is below the comparison instruction. 1811 return false; 1812 } 1813 1814 // Return false if no candidates exist. 1815 if (!MI && !Sub) 1816 return false; 1817 1818 // The single candidate is called MI. 1819 if (!MI) MI = Sub; 1820 1821 int NewOpC = -1; 1822 int MIOpC = MI->getOpcode(); 1823 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || 1824 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) 1825 NewOpC = MIOpC; 1826 else { 1827 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1828 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1829 NewOpC = MIOpC; 1830 } 1831 1832 // FIXME: On the non-embedded POWER architectures, only some of the record 1833 // forms are fast, and we should use only the fast ones. 1834 1835 // The defining instruction has a record form (or is already a record 1836 // form). It is possible, however, that we'll need to reverse the condition 1837 // code of the users. 1838 if (NewOpC == -1) 1839 return false; 1840 1841 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1842 // needs to be updated to be based on SUB. Push the condition code 1843 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1844 // condition code of these operands will be modified. 1845 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 1846 // comparison against 0, which may modify predicate. 1847 bool ShouldSwap = false; 1848 if (Sub && Value == 0) { 1849 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1850 Sub->getOperand(2).getReg() == SrcReg; 1851 1852 // The operands to subf are the opposite of sub, so only in the fixed-point 1853 // case, invert the order. 1854 ShouldSwap = !ShouldSwap; 1855 } 1856 1857 if (ShouldSwap) 1858 for (MachineRegisterInfo::use_instr_iterator 1859 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1860 I != IE; ++I) { 1861 MachineInstr *UseMI = &*I; 1862 if (UseMI->getOpcode() == PPC::BCC) { 1863 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1864 unsigned PredCond = PPC::getPredicateCondition(Pred); 1865 assert((!equalityOnly || 1866 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 1867 "Invalid predicate for equality-only optimization"); 1868 (void)PredCond; // To suppress warning in release build. 1869 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1870 PPC::getSwappedPredicate(Pred))); 1871 } else if (UseMI->getOpcode() == PPC::ISEL || 1872 UseMI->getOpcode() == PPC::ISEL8) { 1873 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1874 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1875 "Invalid CR bit for equality-only optimization"); 1876 1877 if (NewSubReg == PPC::sub_lt) 1878 NewSubReg = PPC::sub_gt; 1879 else if (NewSubReg == PPC::sub_gt) 1880 NewSubReg = PPC::sub_lt; 1881 1882 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1883 NewSubReg)); 1884 } else // We need to abort on a user we don't understand. 1885 return false; 1886 } 1887 assert(!(Value != 0 && ShouldSwap) && 1888 "Non-zero immediate support and ShouldSwap" 1889 "may conflict in updating predicate"); 1890 1891 // Create a new virtual register to hold the value of the CR set by the 1892 // record-form instruction. If the instruction was not previously in 1893 // record form, then set the kill flag on the CR. 1894 CmpInstr.eraseFromParent(); 1895 1896 MachineBasicBlock::iterator MII = MI; 1897 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1898 get(TargetOpcode::COPY), CRReg) 1899 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1900 1901 // Even if CR0 register were dead before, it is alive now since the 1902 // instruction we just built uses it. 1903 MI->clearRegisterDeads(PPC::CR0); 1904 1905 if (MIOpC != NewOpC) { 1906 // We need to be careful here: we're replacing one instruction with 1907 // another, and we need to make sure that we get all of the right 1908 // implicit uses and defs. On the other hand, the caller may be holding 1909 // an iterator to this instruction, and so we can't delete it (this is 1910 // specifically the case if this is the instruction directly after the 1911 // compare). 1912 1913 // Rotates are expensive instructions. If we're emitting a record-form 1914 // rotate that can just be an andi/andis, we should just emit that. 1915 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 1916 Register GPRRes = MI->getOperand(0).getReg(); 1917 int64_t SH = MI->getOperand(2).getImm(); 1918 int64_t MB = MI->getOperand(3).getImm(); 1919 int64_t ME = MI->getOperand(4).getImm(); 1920 // We can only do this if both the start and end of the mask are in the 1921 // same halfword. 1922 bool MBInLoHWord = MB >= 16; 1923 bool MEInLoHWord = ME >= 16; 1924 uint64_t Mask = ~0LLU; 1925 1926 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 1927 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 1928 // The mask value needs to shift right 16 if we're emitting andis. 1929 Mask >>= MBInLoHWord ? 0 : 16; 1930 NewOpC = MIOpC == PPC::RLWINM 1931 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) 1932 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); 1933 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 1934 (ME - MB + 1 == SH) && (MB >= 16)) { 1935 // If we are rotating by the exact number of bits as are in the mask 1936 // and the mask is in the least significant bits of the register, 1937 // that's just an andis. (as long as the GPR result has no uses). 1938 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 1939 Mask >>= 16; 1940 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; 1941 } 1942 // If we've set the mask, we can transform. 1943 if (Mask != ~0LLU) { 1944 MI->RemoveOperand(4); 1945 MI->RemoveOperand(3); 1946 MI->getOperand(2).setImm(Mask); 1947 NumRcRotatesConvertedToRcAnd++; 1948 } 1949 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 1950 int64_t MB = MI->getOperand(3).getImm(); 1951 if (MB >= 48) { 1952 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 1953 NewOpC = PPC::ANDI8_rec; 1954 MI->RemoveOperand(3); 1955 MI->getOperand(2).setImm(Mask); 1956 NumRcRotatesConvertedToRcAnd++; 1957 } 1958 } 1959 1960 const MCInstrDesc &NewDesc = get(NewOpC); 1961 MI->setDesc(NewDesc); 1962 1963 if (NewDesc.ImplicitDefs) 1964 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 1965 *ImpDefs; ++ImpDefs) 1966 if (!MI->definesRegister(*ImpDefs)) 1967 MI->addOperand(*MI->getParent()->getParent(), 1968 MachineOperand::CreateReg(*ImpDefs, true, true)); 1969 if (NewDesc.ImplicitUses) 1970 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 1971 *ImpUses; ++ImpUses) 1972 if (!MI->readsRegister(*ImpUses)) 1973 MI->addOperand(*MI->getParent()->getParent(), 1974 MachineOperand::CreateReg(*ImpUses, false, true)); 1975 } 1976 assert(MI->definesRegister(PPC::CR0) && 1977 "Record-form instruction does not define cr0?"); 1978 1979 // Modify the condition code of operands in OperandsToUpdate. 1980 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1981 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1982 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1983 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1984 1985 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1986 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1987 1988 return true; 1989 } 1990 1991 /// GetInstSize - Return the number of bytes of code the specified 1992 /// instruction may be. This returns the maximum number of bytes. 1993 /// 1994 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 1995 unsigned Opcode = MI.getOpcode(); 1996 1997 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 1998 const MachineFunction *MF = MI.getParent()->getParent(); 1999 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2000 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2001 } else if (Opcode == TargetOpcode::STACKMAP) { 2002 StackMapOpers Opers(&MI); 2003 return Opers.getNumPatchBytes(); 2004 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2005 PatchPointOpers Opers(&MI); 2006 return Opers.getNumPatchBytes(); 2007 } else { 2008 return get(Opcode).getSize(); 2009 } 2010 } 2011 2012 std::pair<unsigned, unsigned> 2013 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2014 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2015 return std::make_pair(TF & Mask, TF & ~Mask); 2016 } 2017 2018 ArrayRef<std::pair<unsigned, const char *>> 2019 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2020 using namespace PPCII; 2021 static const std::pair<unsigned, const char *> TargetFlags[] = { 2022 {MO_LO, "ppc-lo"}, 2023 {MO_HA, "ppc-ha"}, 2024 {MO_TPREL_LO, "ppc-tprel-lo"}, 2025 {MO_TPREL_HA, "ppc-tprel-ha"}, 2026 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2027 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2028 {MO_TOC_LO, "ppc-toc-lo"}, 2029 {MO_TLS, "ppc-tls"}}; 2030 return makeArrayRef(TargetFlags); 2031 } 2032 2033 ArrayRef<std::pair<unsigned, const char *>> 2034 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2035 using namespace PPCII; 2036 static const std::pair<unsigned, const char *> TargetFlags[] = { 2037 {MO_PLT, "ppc-plt"}, {MO_PIC_FLAG, "ppc-pic"}}; 2038 return makeArrayRef(TargetFlags); 2039 } 2040 2041 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2042 // The VSX versions have the advantage of a full 64-register target whereas 2043 // the FP ones have the advantage of lower latency and higher throughput. So 2044 // what we are after is using the faster instructions in low register pressure 2045 // situations and using the larger register file in high register pressure 2046 // situations. 2047 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2048 unsigned UpperOpcode, LowerOpcode; 2049 switch (MI.getOpcode()) { 2050 case PPC::DFLOADf32: 2051 UpperOpcode = PPC::LXSSP; 2052 LowerOpcode = PPC::LFS; 2053 break; 2054 case PPC::DFLOADf64: 2055 UpperOpcode = PPC::LXSD; 2056 LowerOpcode = PPC::LFD; 2057 break; 2058 case PPC::DFSTOREf32: 2059 UpperOpcode = PPC::STXSSP; 2060 LowerOpcode = PPC::STFS; 2061 break; 2062 case PPC::DFSTOREf64: 2063 UpperOpcode = PPC::STXSD; 2064 LowerOpcode = PPC::STFD; 2065 break; 2066 case PPC::XFLOADf32: 2067 UpperOpcode = PPC::LXSSPX; 2068 LowerOpcode = PPC::LFSX; 2069 break; 2070 case PPC::XFLOADf64: 2071 UpperOpcode = PPC::LXSDX; 2072 LowerOpcode = PPC::LFDX; 2073 break; 2074 case PPC::XFSTOREf32: 2075 UpperOpcode = PPC::STXSSPX; 2076 LowerOpcode = PPC::STFSX; 2077 break; 2078 case PPC::XFSTOREf64: 2079 UpperOpcode = PPC::STXSDX; 2080 LowerOpcode = PPC::STFDX; 2081 break; 2082 case PPC::LIWAX: 2083 UpperOpcode = PPC::LXSIWAX; 2084 LowerOpcode = PPC::LFIWAX; 2085 break; 2086 case PPC::LIWZX: 2087 UpperOpcode = PPC::LXSIWZX; 2088 LowerOpcode = PPC::LFIWZX; 2089 break; 2090 case PPC::STIWX: 2091 UpperOpcode = PPC::STXSIWX; 2092 LowerOpcode = PPC::STFIWX; 2093 break; 2094 default: 2095 llvm_unreachable("Unknown Operation!"); 2096 } 2097 2098 Register TargetReg = MI.getOperand(0).getReg(); 2099 unsigned Opcode; 2100 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2101 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2102 Opcode = LowerOpcode; 2103 else 2104 Opcode = UpperOpcode; 2105 MI.setDesc(get(Opcode)); 2106 return true; 2107 } 2108 2109 static bool isAnImmediateOperand(const MachineOperand &MO) { 2110 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2111 } 2112 2113 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2114 auto &MBB = *MI.getParent(); 2115 auto DL = MI.getDebugLoc(); 2116 2117 switch (MI.getOpcode()) { 2118 case TargetOpcode::LOAD_STACK_GUARD: { 2119 assert(Subtarget.isTargetLinux() && 2120 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 2121 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 2122 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 2123 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 2124 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2125 .addImm(Offset) 2126 .addReg(Reg); 2127 return true; 2128 } 2129 case PPC::DFLOADf32: 2130 case PPC::DFLOADf64: 2131 case PPC::DFSTOREf32: 2132 case PPC::DFSTOREf64: { 2133 assert(Subtarget.hasP9Vector() && 2134 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 2135 assert(MI.getOperand(2).isReg() && 2136 isAnImmediateOperand(MI.getOperand(1)) && 2137 "D-form op must have register and immediate operands"); 2138 return expandVSXMemPseudo(MI); 2139 } 2140 case PPC::XFLOADf32: 2141 case PPC::XFSTOREf32: 2142 case PPC::LIWAX: 2143 case PPC::LIWZX: 2144 case PPC::STIWX: { 2145 assert(Subtarget.hasP8Vector() && 2146 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 2147 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2148 "X-form op must have register and register operands"); 2149 return expandVSXMemPseudo(MI); 2150 } 2151 case PPC::XFLOADf64: 2152 case PPC::XFSTOREf64: { 2153 assert(Subtarget.hasVSX() && 2154 "Invalid X-Form Pseudo-ops on target that has no VSX."); 2155 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2156 "X-form op must have register and register operands"); 2157 return expandVSXMemPseudo(MI); 2158 } 2159 case PPC::SPILLTOVSR_LD: { 2160 Register TargetReg = MI.getOperand(0).getReg(); 2161 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2162 MI.setDesc(get(PPC::DFLOADf64)); 2163 return expandPostRAPseudo(MI); 2164 } 2165 else 2166 MI.setDesc(get(PPC::LD)); 2167 return true; 2168 } 2169 case PPC::SPILLTOVSR_ST: { 2170 Register SrcReg = MI.getOperand(0).getReg(); 2171 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2172 NumStoreSPILLVSRRCAsVec++; 2173 MI.setDesc(get(PPC::DFSTOREf64)); 2174 return expandPostRAPseudo(MI); 2175 } else { 2176 NumStoreSPILLVSRRCAsGpr++; 2177 MI.setDesc(get(PPC::STD)); 2178 } 2179 return true; 2180 } 2181 case PPC::SPILLTOVSR_LDX: { 2182 Register TargetReg = MI.getOperand(0).getReg(); 2183 if (PPC::VSFRCRegClass.contains(TargetReg)) 2184 MI.setDesc(get(PPC::LXSDX)); 2185 else 2186 MI.setDesc(get(PPC::LDX)); 2187 return true; 2188 } 2189 case PPC::SPILLTOVSR_STX: { 2190 Register SrcReg = MI.getOperand(0).getReg(); 2191 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2192 NumStoreSPILLVSRRCAsVec++; 2193 MI.setDesc(get(PPC::STXSDX)); 2194 } else { 2195 NumStoreSPILLVSRRCAsGpr++; 2196 MI.setDesc(get(PPC::STDX)); 2197 } 2198 return true; 2199 } 2200 2201 case PPC::CFENCE8: { 2202 auto Val = MI.getOperand(0).getReg(); 2203 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2204 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2205 .addImm(PPC::PRED_NE_MINUS) 2206 .addReg(PPC::CR7) 2207 .addImm(1); 2208 MI.setDesc(get(PPC::ISYNC)); 2209 MI.RemoveOperand(0); 2210 return true; 2211 } 2212 } 2213 return false; 2214 } 2215 2216 // Essentially a compile-time implementation of a compare->isel sequence. 2217 // It takes two constants to compare, along with the true/false registers 2218 // and the comparison type (as a subreg to a CR field) and returns one 2219 // of the true/false registers, depending on the comparison results. 2220 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 2221 unsigned TrueReg, unsigned FalseReg, 2222 unsigned CRSubReg) { 2223 // Signed comparisons. The immediates are assumed to be sign-extended. 2224 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 2225 switch (CRSubReg) { 2226 default: llvm_unreachable("Unknown integer comparison type."); 2227 case PPC::sub_lt: 2228 return Imm1 < Imm2 ? TrueReg : FalseReg; 2229 case PPC::sub_gt: 2230 return Imm1 > Imm2 ? TrueReg : FalseReg; 2231 case PPC::sub_eq: 2232 return Imm1 == Imm2 ? TrueReg : FalseReg; 2233 } 2234 } 2235 // Unsigned comparisons. 2236 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 2237 switch (CRSubReg) { 2238 default: llvm_unreachable("Unknown integer comparison type."); 2239 case PPC::sub_lt: 2240 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 2241 case PPC::sub_gt: 2242 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 2243 case PPC::sub_eq: 2244 return Imm1 == Imm2 ? TrueReg : FalseReg; 2245 } 2246 } 2247 return PPC::NoRegister; 2248 } 2249 2250 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 2251 unsigned OpNo, 2252 int64_t Imm) const { 2253 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 2254 // Replace the REG with the Immediate. 2255 Register InUseReg = MI.getOperand(OpNo).getReg(); 2256 MI.getOperand(OpNo).ChangeToImmediate(Imm); 2257 2258 if (MI.implicit_operands().empty()) 2259 return; 2260 2261 // We need to make sure that the MI didn't have any implicit use 2262 // of this REG any more. 2263 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2264 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 2265 if (UseOpIdx >= 0) { 2266 MachineOperand &MO = MI.getOperand(UseOpIdx); 2267 if (MO.isImplicit()) 2268 // The operands must always be in the following order: 2269 // - explicit reg defs, 2270 // - other explicit operands (reg uses, immediates, etc.), 2271 // - implicit reg defs 2272 // - implicit reg uses 2273 // Therefore, removing the implicit operand won't change the explicit 2274 // operands layout. 2275 MI.RemoveOperand(UseOpIdx); 2276 } 2277 } 2278 2279 // Replace an instruction with one that materializes a constant (and sets 2280 // CR0 if the original instruction was a record-form instruction). 2281 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 2282 const LoadImmediateInfo &LII) const { 2283 // Remove existing operands. 2284 int OperandToKeep = LII.SetCR ? 1 : 0; 2285 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 2286 MI.RemoveOperand(i); 2287 2288 // Replace the instruction. 2289 if (LII.SetCR) { 2290 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 2291 // Set the immediate. 2292 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2293 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 2294 return; 2295 } 2296 else 2297 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 2298 2299 // Set the immediate. 2300 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2301 .addImm(LII.Imm); 2302 } 2303 2304 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 2305 bool &SeenIntermediateUse) const { 2306 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 2307 "Should be called after register allocation."); 2308 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2309 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 2310 It++; 2311 SeenIntermediateUse = false; 2312 for (; It != E; ++It) { 2313 if (It->modifiesRegister(Reg, TRI)) 2314 return &*It; 2315 if (It->readsRegister(Reg, TRI)) 2316 SeenIntermediateUse = true; 2317 } 2318 return nullptr; 2319 } 2320 2321 MachineInstr *PPCInstrInfo::getForwardingDefMI( 2322 MachineInstr &MI, 2323 unsigned &OpNoForForwarding, 2324 bool &SeenIntermediateUse) const { 2325 OpNoForForwarding = ~0U; 2326 MachineInstr *DefMI = nullptr; 2327 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 2328 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2329 // If we're in SSA, get the defs through the MRI. Otherwise, only look 2330 // within the basic block to see if the register is defined using an LI/LI8. 2331 if (MRI->isSSA()) { 2332 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2333 if (!MI.getOperand(i).isReg()) 2334 continue; 2335 Register Reg = MI.getOperand(i).getReg(); 2336 if (!Register::isVirtualRegister(Reg)) 2337 continue; 2338 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 2339 if (Register::isVirtualRegister(TrueReg)) { 2340 DefMI = MRI->getVRegDef(TrueReg); 2341 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) { 2342 OpNoForForwarding = i; 2343 break; 2344 } 2345 } 2346 } 2347 } else { 2348 // Looking back through the definition for each operand could be expensive, 2349 // so exit early if this isn't an instruction that either has an immediate 2350 // form or is already an immediate form that we can handle. 2351 ImmInstrInfo III; 2352 unsigned Opc = MI.getOpcode(); 2353 bool ConvertibleImmForm = 2354 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || 2355 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || 2356 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || 2357 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || 2358 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 2359 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || 2360 Opc == PPC::RLWINM8_rec; 2361 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 2362 ? isVFRegister(MI.getOperand(0).getReg()) 2363 : false; 2364 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 2365 return nullptr; 2366 2367 // Don't convert or %X, %Y, %Y since that's just a register move. 2368 if ((Opc == PPC::OR || Opc == PPC::OR8) && 2369 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 2370 return nullptr; 2371 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2372 MachineOperand &MO = MI.getOperand(i); 2373 SeenIntermediateUse = false; 2374 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 2375 Register Reg = MI.getOperand(i).getReg(); 2376 // If we see another use of this reg between the def and the MI, 2377 // we want to flat it so the def isn't deleted. 2378 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 2379 if (DefMI) { 2380 // Is this register defined by some form of add-immediate (including 2381 // load-immediate) within this basic block? 2382 switch (DefMI->getOpcode()) { 2383 default: 2384 break; 2385 case PPC::LI: 2386 case PPC::LI8: 2387 case PPC::ADDItocL: 2388 case PPC::ADDI: 2389 case PPC::ADDI8: 2390 OpNoForForwarding = i; 2391 return DefMI; 2392 } 2393 } 2394 } 2395 } 2396 } 2397 return OpNoForForwarding == ~0U ? nullptr : DefMI; 2398 } 2399 2400 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 2401 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2402 // Power 8 2403 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2404 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, 2405 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2406 PPC::SPILLTOVSR_ST, PPC::EVSTDD}, 2407 // Power 9 2408 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2409 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, 2410 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2411 PPC::SPILLTOVSR_ST}}; 2412 2413 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2414 } 2415 2416 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 2417 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2418 // Power 8 2419 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2420 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX, 2421 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2422 PPC::SPILLTOVSR_LD, PPC::EVLDD}, 2423 // Power 9 2424 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2425 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32, 2426 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2427 PPC::SPILLTOVSR_LD}}; 2428 2429 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2430 } 2431 2432 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI, 2433 unsigned RegNo) const { 2434 const MachineRegisterInfo &MRI = 2435 StartMI.getParent()->getParent()->getRegInfo(); 2436 if (MRI.isSSA()) 2437 return; 2438 2439 // Instructions between [StartMI, EndMI] should be in same basic block. 2440 assert((StartMI.getParent() == EndMI.getParent()) && 2441 "Instructions are not in same basic block"); 2442 2443 bool IsKillSet = false; 2444 2445 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 2446 MachineOperand &MO = MI.getOperand(Index); 2447 if (MO.isReg() && MO.isUse() && MO.isKill() && 2448 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 2449 MO.setIsKill(false); 2450 }; 2451 2452 // Set killed flag for EndMI. 2453 // No need to do anything if EndMI defines RegNo. 2454 int UseIndex = 2455 EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 2456 if (UseIndex != -1) { 2457 EndMI.getOperand(UseIndex).setIsKill(true); 2458 IsKillSet = true; 2459 // Clear killed flag for other EndMI operands related to RegNo. In some 2460 // upexpected cases, killed may be set multiple times for same register 2461 // operand in same MI. 2462 for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i) 2463 if (i != UseIndex) 2464 clearOperandKillInfo(EndMI, i); 2465 } 2466 2467 // Walking the inst in reverse order (EndMI -> StartMI]. 2468 MachineBasicBlock::reverse_iterator It = EndMI; 2469 MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend(); 2470 // EndMI has been handled above, skip it here. 2471 It++; 2472 MachineOperand *MO = nullptr; 2473 for (; It != E; ++It) { 2474 // Skip insturctions which could not be a def/use of RegNo. 2475 if (It->isDebugInstr() || It->isPosition()) 2476 continue; 2477 2478 // Clear killed flag for all It operands related to RegNo. In some 2479 // upexpected cases, killed may be set multiple times for same register 2480 // operand in same MI. 2481 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 2482 clearOperandKillInfo(*It, i); 2483 2484 // If killed is not set, set killed for its last use or set dead for its def 2485 // if no use found. 2486 if (!IsKillSet) { 2487 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 2488 // Use found, set it killed. 2489 IsKillSet = true; 2490 MO->setIsKill(true); 2491 continue; 2492 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 2493 &getRegisterInfo()))) { 2494 // No use found, set dead for its def. 2495 assert(&*It == &StartMI && "No new def between StartMI and EndMI."); 2496 MO->setIsDead(true); 2497 break; 2498 } 2499 } 2500 2501 if ((&*It) == &StartMI) 2502 break; 2503 } 2504 // Ensure RegMo liveness is killed after EndMI. 2505 assert((IsKillSet || (MO && MO->isDead())) && 2506 "RegNo should be killed or dead"); 2507 } 2508 2509 // This opt tries to convert the following imm form to an index form to save an 2510 // add for stack variables. 2511 // Return false if no such pattern found. 2512 // 2513 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 2514 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg 2515 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) 2516 // 2517 // can be converted to: 2518 // 2519 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) 2520 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) 2521 // 2522 // In order to eliminate ADD instr, make sure that: 2523 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in 2524 // new ADDI instr and ADDI can only take int16 Imm. 2525 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use 2526 // between ADDI and ADD instr since its original def in ADDI will be changed 2527 // in new ADDI instr. And also there should be no new def for it between 2528 // ADD and Imm instr as ToBeChangedReg will be used in Index instr. 2529 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use 2530 // between ADD and Imm instr since ADD instr will be eliminated. 2531 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be 2532 // moved to Index instr. 2533 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { 2534 MachineFunction *MF = MI.getParent()->getParent(); 2535 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2536 bool PostRA = !MRI->isSSA(); 2537 // Do this opt after PEI which is after RA. The reason is stack slot expansion 2538 // in PEI may expose such opportunities since in PEI, stack slot offsets to 2539 // frame base(OffsetAddi) are determined. 2540 if (!PostRA) 2541 return false; 2542 unsigned ToBeDeletedReg = 0; 2543 int64_t OffsetImm = 0; 2544 unsigned XFormOpcode = 0; 2545 ImmInstrInfo III; 2546 2547 // Check if Imm instr meets requirement. 2548 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, 2549 III)) 2550 return false; 2551 2552 bool OtherIntermediateUse = false; 2553 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); 2554 2555 // Exit if there is other use between ADD and Imm instr or no def found. 2556 if (OtherIntermediateUse || !ADDMI) 2557 return false; 2558 2559 // Check if ADD instr meets requirement. 2560 if (!isADDInstrEligibleForFolding(*ADDMI)) 2561 return false; 2562 2563 unsigned ScaleRegIdx = 0; 2564 int64_t OffsetAddi = 0; 2565 MachineInstr *ADDIMI = nullptr; 2566 2567 // Check if there is a valid ToBeChangedReg in ADDMI. 2568 // 1: It must be killed. 2569 // 2: Its definition must be a valid ADDIMI. 2570 // 3: It must satify int16 offset requirement. 2571 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) 2572 ScaleRegIdx = 2; 2573 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) 2574 ScaleRegIdx = 1; 2575 else 2576 return false; 2577 2578 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); 2579 unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg(); 2580 unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); 2581 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, 2582 MachineBasicBlock::iterator End) { 2583 for (auto It = ++Start; It != End; It++) 2584 if (It->modifiesRegister(Reg, &getRegisterInfo())) 2585 return true; 2586 return false; 2587 }; 2588 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr 2589 // and Imm Instr. 2590 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) 2591 return false; 2592 2593 // Now start to do the transformation. 2594 LLVM_DEBUG(dbgs() << "Replace instruction: " 2595 << "\n"); 2596 LLVM_DEBUG(ADDIMI->dump()); 2597 LLVM_DEBUG(ADDMI->dump()); 2598 LLVM_DEBUG(MI.dump()); 2599 LLVM_DEBUG(dbgs() << "with: " 2600 << "\n"); 2601 2602 // Update ADDI instr. 2603 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); 2604 2605 // Update Imm instr. 2606 MI.setDesc(get(XFormOpcode)); 2607 MI.getOperand(III.ImmOpNo) 2608 .ChangeToRegister(ScaleReg, false, false, 2609 ADDMI->getOperand(ScaleRegIdx).isKill()); 2610 2611 MI.getOperand(III.OpNoForForwarding) 2612 .ChangeToRegister(ToBeChangedReg, false, false, true); 2613 2614 // Eliminate ADD instr. 2615 ADDMI->eraseFromParent(); 2616 2617 LLVM_DEBUG(ADDIMI->dump()); 2618 LLVM_DEBUG(MI.dump()); 2619 2620 return true; 2621 } 2622 2623 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, 2624 int64_t &Imm) const { 2625 unsigned Opc = ADDIMI.getOpcode(); 2626 2627 // Exit if the instruction is not ADDI. 2628 if (Opc != PPC::ADDI && Opc != PPC::ADDI8) 2629 return false; 2630 2631 Imm = ADDIMI.getOperand(2).getImm(); 2632 2633 return true; 2634 } 2635 2636 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { 2637 unsigned Opc = ADDMI.getOpcode(); 2638 2639 // Exit if the instruction is not ADD. 2640 return Opc == PPC::ADD4 || Opc == PPC::ADD8; 2641 } 2642 2643 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, 2644 unsigned &ToBeDeletedReg, 2645 unsigned &XFormOpcode, 2646 int64_t &OffsetImm, 2647 ImmInstrInfo &III) const { 2648 // Only handle load/store. 2649 if (!MI.mayLoadOrStore()) 2650 return false; 2651 2652 unsigned Opc = MI.getOpcode(); 2653 2654 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); 2655 2656 // Exit if instruction has no index form. 2657 if (XFormOpcode == PPC::INSTRUCTION_LIST_END) 2658 return false; 2659 2660 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. 2661 if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()), 2662 III, true)) 2663 return false; 2664 2665 if (!III.IsSummingOperands) 2666 return false; 2667 2668 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); 2669 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); 2670 // Only support imm operands, not relocation slots or others. 2671 if (!ImmOperand.isImm()) 2672 return false; 2673 2674 assert(RegOperand.isReg() && "Instruction format is not right"); 2675 2676 // There are other use for ToBeDeletedReg after Imm instr, can not delete it. 2677 if (!RegOperand.isKill()) 2678 return false; 2679 2680 ToBeDeletedReg = RegOperand.getReg(); 2681 OffsetImm = ImmOperand.getImm(); 2682 2683 return true; 2684 } 2685 2686 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, 2687 MachineInstr *&ADDIMI, 2688 int64_t &OffsetAddi, 2689 int64_t OffsetImm) const { 2690 assert((Index == 1 || Index == 2) && "Invalid operand index for add."); 2691 MachineOperand &MO = ADDMI->getOperand(Index); 2692 2693 if (!MO.isKill()) 2694 return false; 2695 2696 bool OtherIntermediateUse = false; 2697 2698 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); 2699 // Currently handle only one "add + Imminstr" pair case, exit if other 2700 // intermediate use for ToBeChangedReg found. 2701 // TODO: handle the cases where there are other "add + Imminstr" pairs 2702 // with same offset in Imminstr which is like: 2703 // 2704 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 2705 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 2706 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) 2707 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 2708 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) 2709 // 2710 // can be converted to: 2711 // 2712 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, 2713 // (OffsetAddi + OffsetImm) 2714 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg 2715 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) 2716 2717 if (OtherIntermediateUse || !ADDIMI) 2718 return false; 2719 // Check if ADDI instr meets requirement. 2720 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) 2721 return false; 2722 2723 if (isInt<16>(OffsetAddi + OffsetImm)) 2724 return true; 2725 return false; 2726 } 2727 2728 // If this instruction has an immediate form and one of its operands is a 2729 // result of a load-immediate or an add-immediate, convert it to 2730 // the immediate form if the constant is in range. 2731 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 2732 MachineInstr **KilledDef) const { 2733 MachineFunction *MF = MI.getParent()->getParent(); 2734 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2735 bool PostRA = !MRI->isSSA(); 2736 bool SeenIntermediateUse = true; 2737 unsigned ForwardingOperand = ~0U; 2738 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 2739 SeenIntermediateUse); 2740 if (!DefMI) 2741 return false; 2742 assert(ForwardingOperand < MI.getNumOperands() && 2743 "The forwarding operand needs to be valid at this point"); 2744 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 2745 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 2746 Register ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg(); 2747 if (KilledDef && KillFwdDefMI) 2748 *KilledDef = DefMI; 2749 2750 ImmInstrInfo III; 2751 bool IsVFReg = MI.getOperand(0).isReg() 2752 ? isVFRegister(MI.getOperand(0).getReg()) 2753 : false; 2754 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 2755 // If this is a reg+reg instruction that has a reg+imm form, 2756 // and one of the operands is produced by an add-immediate, 2757 // try to convert it. 2758 if (HasImmForm && 2759 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 2760 KillFwdDefMI)) 2761 return true; 2762 2763 if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) || 2764 !DefMI->getOperand(1).isImm()) 2765 return false; 2766 2767 int64_t Immediate = DefMI->getOperand(1).getImm(); 2768 // Sign-extend to 64-bits. 2769 int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 2770 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 2771 2772 // If this is a reg+reg instruction that has a reg+imm form, 2773 // and one of the operands is produced by LI, convert it now. 2774 if (HasImmForm) 2775 return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm); 2776 2777 bool ReplaceWithLI = false; 2778 bool Is64BitLI = false; 2779 int64_t NewImm = 0; 2780 bool SetCR = false; 2781 unsigned Opc = MI.getOpcode(); 2782 switch (Opc) { 2783 default: return false; 2784 2785 // FIXME: Any branches conditional on such a comparison can be made 2786 // unconditional. At this time, this happens too infrequently to be worth 2787 // the implementation effort, but if that ever changes, we could convert 2788 // such a pattern here. 2789 case PPC::CMPWI: 2790 case PPC::CMPLWI: 2791 case PPC::CMPDI: 2792 case PPC::CMPLDI: { 2793 // Doing this post-RA would require dataflow analysis to reliably find uses 2794 // of the CR register set by the compare. 2795 // No need to fixup killed/dead flag since this transformation is only valid 2796 // before RA. 2797 if (PostRA) 2798 return false; 2799 // If a compare-immediate is fed by an immediate and is itself an input of 2800 // an ISEL (the most common case) into a COPY of the correct register. 2801 bool Changed = false; 2802 Register DefReg = MI.getOperand(0).getReg(); 2803 int64_t Comparand = MI.getOperand(2).getImm(); 2804 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ? 2805 (Comparand | 0xFFFFFFFFFFFF0000) : Comparand; 2806 2807 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 2808 unsigned UseOpc = CompareUseMI.getOpcode(); 2809 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 2810 continue; 2811 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 2812 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 2813 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 2814 unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg, 2815 FalseReg, CRSubReg); 2816 if (RegToCopy == PPC::NoRegister) 2817 continue; 2818 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 2819 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 2820 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 2821 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 2822 CompareUseMI.RemoveOperand(3); 2823 CompareUseMI.RemoveOperand(2); 2824 continue; 2825 } 2826 LLVM_DEBUG( 2827 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 2828 LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump()); 2829 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 2830 // Convert to copy and remove unneeded operands. 2831 CompareUseMI.setDesc(get(PPC::COPY)); 2832 CompareUseMI.RemoveOperand(3); 2833 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 2834 CmpIselsConverted++; 2835 Changed = true; 2836 LLVM_DEBUG(CompareUseMI.dump()); 2837 } 2838 if (Changed) 2839 return true; 2840 // This may end up incremented multiple times since this function is called 2841 // during a fixed-point transformation, but it is only meant to indicate the 2842 // presence of this opportunity. 2843 MissedConvertibleImmediateInstrs++; 2844 return false; 2845 } 2846 2847 // Immediate forms - may simply be convertable to an LI. 2848 case PPC::ADDI: 2849 case PPC::ADDI8: { 2850 // Does the sum fit in a 16-bit signed field? 2851 int64_t Addend = MI.getOperand(2).getImm(); 2852 if (isInt<16>(Addend + SExtImm)) { 2853 ReplaceWithLI = true; 2854 Is64BitLI = Opc == PPC::ADDI8; 2855 NewImm = Addend + SExtImm; 2856 break; 2857 } 2858 return false; 2859 } 2860 case PPC::RLDICL: 2861 case PPC::RLDICL_rec: 2862 case PPC::RLDICL_32: 2863 case PPC::RLDICL_32_64: { 2864 // Use APInt's rotate function. 2865 int64_t SH = MI.getOperand(2).getImm(); 2866 int64_t MB = MI.getOperand(3).getImm(); 2867 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, 2868 SExtImm, true); 2869 InVal = InVal.rotl(SH); 2870 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2871 InVal &= Mask; 2872 // Can't replace negative values with an LI as that will sign-extend 2873 // and not clear the left bits. If we're setting the CR bit, we will use 2874 // ANDI_rec which won't sign extend, so that's safe. 2875 if (isUInt<15>(InVal.getSExtValue()) || 2876 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { 2877 ReplaceWithLI = true; 2878 Is64BitLI = Opc != PPC::RLDICL_32; 2879 NewImm = InVal.getSExtValue(); 2880 SetCR = Opc == PPC::RLDICL_rec; 2881 break; 2882 } 2883 return false; 2884 } 2885 case PPC::RLWINM: 2886 case PPC::RLWINM8: 2887 case PPC::RLWINM_rec: 2888 case PPC::RLWINM8_rec: { 2889 int64_t SH = MI.getOperand(2).getImm(); 2890 int64_t MB = MI.getOperand(3).getImm(); 2891 int64_t ME = MI.getOperand(4).getImm(); 2892 APInt InVal(32, SExtImm, true); 2893 InVal = InVal.rotl(SH); 2894 // Set the bits ( MB + 32 ) to ( ME + 32 ). 2895 uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2896 InVal &= Mask; 2897 // Can't replace negative values with an LI as that will sign-extend 2898 // and not clear the left bits. If we're setting the CR bit, we will use 2899 // ANDI_rec which won't sign extend, so that's safe. 2900 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 2901 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && 2902 isUInt<16>(InVal.getSExtValue())); 2903 if (ValueFits) { 2904 ReplaceWithLI = true; 2905 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; 2906 NewImm = InVal.getSExtValue(); 2907 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; 2908 break; 2909 } 2910 return false; 2911 } 2912 case PPC::ORI: 2913 case PPC::ORI8: 2914 case PPC::XORI: 2915 case PPC::XORI8: { 2916 int64_t LogicalImm = MI.getOperand(2).getImm(); 2917 int64_t Result = 0; 2918 if (Opc == PPC::ORI || Opc == PPC::ORI8) 2919 Result = LogicalImm | SExtImm; 2920 else 2921 Result = LogicalImm ^ SExtImm; 2922 if (isInt<16>(Result)) { 2923 ReplaceWithLI = true; 2924 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 2925 NewImm = Result; 2926 break; 2927 } 2928 return false; 2929 } 2930 } 2931 2932 if (ReplaceWithLI) { 2933 // We need to be careful with CR-setting instructions we're replacing. 2934 if (SetCR) { 2935 // We don't know anything about uses when we're out of SSA, so only 2936 // replace if the new immediate will be reproduced. 2937 bool ImmChanged = (SExtImm & NewImm) != NewImm; 2938 if (PostRA && ImmChanged) 2939 return false; 2940 2941 if (!PostRA) { 2942 // If the defining load-immediate has no other uses, we can just replace 2943 // the immediate with the new immediate. 2944 if (MRI->hasOneUse(DefMI->getOperand(0).getReg())) 2945 DefMI->getOperand(1).setImm(NewImm); 2946 2947 // If we're not using the GPR result of the CR-setting instruction, we 2948 // just need to and with zero/non-zero depending on the new immediate. 2949 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 2950 if (NewImm) { 2951 assert(Immediate && "Transformation converted zero to non-zero?"); 2952 NewImm = Immediate; 2953 } 2954 } 2955 else if (ImmChanged) 2956 return false; 2957 } 2958 } 2959 2960 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 2961 LLVM_DEBUG(MI.dump()); 2962 LLVM_DEBUG(dbgs() << "Fed by:\n"); 2963 LLVM_DEBUG(DefMI->dump()); 2964 LoadImmediateInfo LII; 2965 LII.Imm = NewImm; 2966 LII.Is64Bit = Is64BitLI; 2967 LII.SetCR = SetCR; 2968 // If we're setting the CR, the original load-immediate must be kept (as an 2969 // operand to ANDI_rec/ANDI8_rec). 2970 if (KilledDef && SetCR) 2971 *KilledDef = nullptr; 2972 replaceInstrWithLI(MI, LII); 2973 2974 // Fixup killed/dead flag after transformation. 2975 // Pattern: 2976 // ForwardingOperandReg = LI imm1 2977 // y = op2 imm2, ForwardingOperandReg(killed) 2978 if (IsForwardingOperandKilled) 2979 fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg); 2980 2981 LLVM_DEBUG(dbgs() << "With:\n"); 2982 LLVM_DEBUG(MI.dump()); 2983 return true; 2984 } 2985 return false; 2986 } 2987 2988 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 2989 ImmInstrInfo &III, bool PostRA) const { 2990 // The vast majority of the instructions would need their operand 2 replaced 2991 // with an immediate when switching to the reg+imm form. A marked exception 2992 // are the update form loads/stores for which a constant operand 2 would need 2993 // to turn into a displacement and move operand 1 to the operand 2 position. 2994 III.ImmOpNo = 2; 2995 III.OpNoForForwarding = 2; 2996 III.ImmWidth = 16; 2997 III.ImmMustBeMultipleOf = 1; 2998 III.TruncateImmTo = 0; 2999 III.IsSummingOperands = false; 3000 switch (Opc) { 3001 default: return false; 3002 case PPC::ADD4: 3003 case PPC::ADD8: 3004 III.SignedImm = true; 3005 III.ZeroIsSpecialOrig = 0; 3006 III.ZeroIsSpecialNew = 1; 3007 III.IsCommutative = true; 3008 III.IsSummingOperands = true; 3009 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 3010 break; 3011 case PPC::ADDC: 3012 case PPC::ADDC8: 3013 III.SignedImm = true; 3014 III.ZeroIsSpecialOrig = 0; 3015 III.ZeroIsSpecialNew = 0; 3016 III.IsCommutative = true; 3017 III.IsSummingOperands = true; 3018 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 3019 break; 3020 case PPC::ADDC_rec: 3021 III.SignedImm = true; 3022 III.ZeroIsSpecialOrig = 0; 3023 III.ZeroIsSpecialNew = 0; 3024 III.IsCommutative = true; 3025 III.IsSummingOperands = true; 3026 III.ImmOpcode = PPC::ADDIC_rec; 3027 break; 3028 case PPC::SUBFC: 3029 case PPC::SUBFC8: 3030 III.SignedImm = true; 3031 III.ZeroIsSpecialOrig = 0; 3032 III.ZeroIsSpecialNew = 0; 3033 III.IsCommutative = false; 3034 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 3035 break; 3036 case PPC::CMPW: 3037 case PPC::CMPD: 3038 III.SignedImm = true; 3039 III.ZeroIsSpecialOrig = 0; 3040 III.ZeroIsSpecialNew = 0; 3041 III.IsCommutative = false; 3042 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 3043 break; 3044 case PPC::CMPLW: 3045 case PPC::CMPLD: 3046 III.SignedImm = false; 3047 III.ZeroIsSpecialOrig = 0; 3048 III.ZeroIsSpecialNew = 0; 3049 III.IsCommutative = false; 3050 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 3051 break; 3052 case PPC::AND_rec: 3053 case PPC::AND8_rec: 3054 case PPC::OR: 3055 case PPC::OR8: 3056 case PPC::XOR: 3057 case PPC::XOR8: 3058 III.SignedImm = false; 3059 III.ZeroIsSpecialOrig = 0; 3060 III.ZeroIsSpecialNew = 0; 3061 III.IsCommutative = true; 3062 switch(Opc) { 3063 default: llvm_unreachable("Unknown opcode"); 3064 case PPC::AND_rec: 3065 III.ImmOpcode = PPC::ANDI_rec; 3066 break; 3067 case PPC::AND8_rec: 3068 III.ImmOpcode = PPC::ANDI8_rec; 3069 break; 3070 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 3071 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 3072 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 3073 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 3074 } 3075 break; 3076 case PPC::RLWNM: 3077 case PPC::RLWNM8: 3078 case PPC::RLWNM_rec: 3079 case PPC::RLWNM8_rec: 3080 case PPC::SLW: 3081 case PPC::SLW8: 3082 case PPC::SLW_rec: 3083 case PPC::SLW8_rec: 3084 case PPC::SRW: 3085 case PPC::SRW8: 3086 case PPC::SRW_rec: 3087 case PPC::SRW8_rec: 3088 case PPC::SRAW: 3089 case PPC::SRAW_rec: 3090 III.SignedImm = false; 3091 III.ZeroIsSpecialOrig = 0; 3092 III.ZeroIsSpecialNew = 0; 3093 III.IsCommutative = false; 3094 // This isn't actually true, but the instructions ignore any of the 3095 // upper bits, so any immediate loaded with an LI is acceptable. 3096 // This does not apply to shift right algebraic because a value 3097 // out of range will produce a -1/0. 3098 III.ImmWidth = 16; 3099 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || 3100 Opc == PPC::RLWNM8_rec) 3101 III.TruncateImmTo = 5; 3102 else 3103 III.TruncateImmTo = 6; 3104 switch(Opc) { 3105 default: llvm_unreachable("Unknown opcode"); 3106 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 3107 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 3108 case PPC::RLWNM_rec: 3109 III.ImmOpcode = PPC::RLWINM_rec; 3110 break; 3111 case PPC::RLWNM8_rec: 3112 III.ImmOpcode = PPC::RLWINM8_rec; 3113 break; 3114 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 3115 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 3116 case PPC::SLW_rec: 3117 III.ImmOpcode = PPC::RLWINM_rec; 3118 break; 3119 case PPC::SLW8_rec: 3120 III.ImmOpcode = PPC::RLWINM8_rec; 3121 break; 3122 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 3123 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 3124 case PPC::SRW_rec: 3125 III.ImmOpcode = PPC::RLWINM_rec; 3126 break; 3127 case PPC::SRW8_rec: 3128 III.ImmOpcode = PPC::RLWINM8_rec; 3129 break; 3130 case PPC::SRAW: 3131 III.ImmWidth = 5; 3132 III.TruncateImmTo = 0; 3133 III.ImmOpcode = PPC::SRAWI; 3134 break; 3135 case PPC::SRAW_rec: 3136 III.ImmWidth = 5; 3137 III.TruncateImmTo = 0; 3138 III.ImmOpcode = PPC::SRAWI_rec; 3139 break; 3140 } 3141 break; 3142 case PPC::RLDCL: 3143 case PPC::RLDCL_rec: 3144 case PPC::RLDCR: 3145 case PPC::RLDCR_rec: 3146 case PPC::SLD: 3147 case PPC::SLD_rec: 3148 case PPC::SRD: 3149 case PPC::SRD_rec: 3150 case PPC::SRAD: 3151 case PPC::SRAD_rec: 3152 III.SignedImm = false; 3153 III.ZeroIsSpecialOrig = 0; 3154 III.ZeroIsSpecialNew = 0; 3155 III.IsCommutative = false; 3156 // This isn't actually true, but the instructions ignore any of the 3157 // upper bits, so any immediate loaded with an LI is acceptable. 3158 // This does not apply to shift right algebraic because a value 3159 // out of range will produce a -1/0. 3160 III.ImmWidth = 16; 3161 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || 3162 Opc == PPC::RLDCR_rec) 3163 III.TruncateImmTo = 6; 3164 else 3165 III.TruncateImmTo = 7; 3166 switch(Opc) { 3167 default: llvm_unreachable("Unknown opcode"); 3168 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 3169 case PPC::RLDCL_rec: 3170 III.ImmOpcode = PPC::RLDICL_rec; 3171 break; 3172 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 3173 case PPC::RLDCR_rec: 3174 III.ImmOpcode = PPC::RLDICR_rec; 3175 break; 3176 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 3177 case PPC::SLD_rec: 3178 III.ImmOpcode = PPC::RLDICR_rec; 3179 break; 3180 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 3181 case PPC::SRD_rec: 3182 III.ImmOpcode = PPC::RLDICL_rec; 3183 break; 3184 case PPC::SRAD: 3185 III.ImmWidth = 6; 3186 III.TruncateImmTo = 0; 3187 III.ImmOpcode = PPC::SRADI; 3188 break; 3189 case PPC::SRAD_rec: 3190 III.ImmWidth = 6; 3191 III.TruncateImmTo = 0; 3192 III.ImmOpcode = PPC::SRADI_rec; 3193 break; 3194 } 3195 break; 3196 // Loads and stores: 3197 case PPC::LBZX: 3198 case PPC::LBZX8: 3199 case PPC::LHZX: 3200 case PPC::LHZX8: 3201 case PPC::LHAX: 3202 case PPC::LHAX8: 3203 case PPC::LWZX: 3204 case PPC::LWZX8: 3205 case PPC::LWAX: 3206 case PPC::LDX: 3207 case PPC::LFSX: 3208 case PPC::LFDX: 3209 case PPC::STBX: 3210 case PPC::STBX8: 3211 case PPC::STHX: 3212 case PPC::STHX8: 3213 case PPC::STWX: 3214 case PPC::STWX8: 3215 case PPC::STDX: 3216 case PPC::STFSX: 3217 case PPC::STFDX: 3218 III.SignedImm = true; 3219 III.ZeroIsSpecialOrig = 1; 3220 III.ZeroIsSpecialNew = 2; 3221 III.IsCommutative = true; 3222 III.IsSummingOperands = true; 3223 III.ImmOpNo = 1; 3224 III.OpNoForForwarding = 2; 3225 switch(Opc) { 3226 default: llvm_unreachable("Unknown opcode"); 3227 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 3228 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 3229 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 3230 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 3231 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 3232 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 3233 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 3234 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 3235 case PPC::LWAX: 3236 III.ImmOpcode = PPC::LWA; 3237 III.ImmMustBeMultipleOf = 4; 3238 break; 3239 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 3240 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 3241 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 3242 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 3243 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 3244 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 3245 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 3246 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 3247 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 3248 case PPC::STDX: 3249 III.ImmOpcode = PPC::STD; 3250 III.ImmMustBeMultipleOf = 4; 3251 break; 3252 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 3253 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 3254 } 3255 break; 3256 case PPC::LBZUX: 3257 case PPC::LBZUX8: 3258 case PPC::LHZUX: 3259 case PPC::LHZUX8: 3260 case PPC::LHAUX: 3261 case PPC::LHAUX8: 3262 case PPC::LWZUX: 3263 case PPC::LWZUX8: 3264 case PPC::LDUX: 3265 case PPC::LFSUX: 3266 case PPC::LFDUX: 3267 case PPC::STBUX: 3268 case PPC::STBUX8: 3269 case PPC::STHUX: 3270 case PPC::STHUX8: 3271 case PPC::STWUX: 3272 case PPC::STWUX8: 3273 case PPC::STDUX: 3274 case PPC::STFSUX: 3275 case PPC::STFDUX: 3276 III.SignedImm = true; 3277 III.ZeroIsSpecialOrig = 2; 3278 III.ZeroIsSpecialNew = 3; 3279 III.IsCommutative = false; 3280 III.IsSummingOperands = true; 3281 III.ImmOpNo = 2; 3282 III.OpNoForForwarding = 3; 3283 switch(Opc) { 3284 default: llvm_unreachable("Unknown opcode"); 3285 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 3286 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 3287 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 3288 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 3289 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 3290 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 3291 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 3292 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 3293 case PPC::LDUX: 3294 III.ImmOpcode = PPC::LDU; 3295 III.ImmMustBeMultipleOf = 4; 3296 break; 3297 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 3298 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 3299 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 3300 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 3301 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 3302 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 3303 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 3304 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 3305 case PPC::STDUX: 3306 III.ImmOpcode = PPC::STDU; 3307 III.ImmMustBeMultipleOf = 4; 3308 break; 3309 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 3310 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 3311 } 3312 break; 3313 // Power9 and up only. For some of these, the X-Form version has access to all 3314 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 3315 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 3316 // into or stored from is one of the VR registers. 3317 case PPC::LXVX: 3318 case PPC::LXSSPX: 3319 case PPC::LXSDX: 3320 case PPC::STXVX: 3321 case PPC::STXSSPX: 3322 case PPC::STXSDX: 3323 case PPC::XFLOADf32: 3324 case PPC::XFLOADf64: 3325 case PPC::XFSTOREf32: 3326 case PPC::XFSTOREf64: 3327 if (!Subtarget.hasP9Vector()) 3328 return false; 3329 III.SignedImm = true; 3330 III.ZeroIsSpecialOrig = 1; 3331 III.ZeroIsSpecialNew = 2; 3332 III.IsCommutative = true; 3333 III.IsSummingOperands = true; 3334 III.ImmOpNo = 1; 3335 III.OpNoForForwarding = 2; 3336 III.ImmMustBeMultipleOf = 4; 3337 switch(Opc) { 3338 default: llvm_unreachable("Unknown opcode"); 3339 case PPC::LXVX: 3340 III.ImmOpcode = PPC::LXV; 3341 III.ImmMustBeMultipleOf = 16; 3342 break; 3343 case PPC::LXSSPX: 3344 if (PostRA) { 3345 if (IsVFReg) 3346 III.ImmOpcode = PPC::LXSSP; 3347 else { 3348 III.ImmOpcode = PPC::LFS; 3349 III.ImmMustBeMultipleOf = 1; 3350 } 3351 break; 3352 } 3353 LLVM_FALLTHROUGH; 3354 case PPC::XFLOADf32: 3355 III.ImmOpcode = PPC::DFLOADf32; 3356 break; 3357 case PPC::LXSDX: 3358 if (PostRA) { 3359 if (IsVFReg) 3360 III.ImmOpcode = PPC::LXSD; 3361 else { 3362 III.ImmOpcode = PPC::LFD; 3363 III.ImmMustBeMultipleOf = 1; 3364 } 3365 break; 3366 } 3367 LLVM_FALLTHROUGH; 3368 case PPC::XFLOADf64: 3369 III.ImmOpcode = PPC::DFLOADf64; 3370 break; 3371 case PPC::STXVX: 3372 III.ImmOpcode = PPC::STXV; 3373 III.ImmMustBeMultipleOf = 16; 3374 break; 3375 case PPC::STXSSPX: 3376 if (PostRA) { 3377 if (IsVFReg) 3378 III.ImmOpcode = PPC::STXSSP; 3379 else { 3380 III.ImmOpcode = PPC::STFS; 3381 III.ImmMustBeMultipleOf = 1; 3382 } 3383 break; 3384 } 3385 LLVM_FALLTHROUGH; 3386 case PPC::XFSTOREf32: 3387 III.ImmOpcode = PPC::DFSTOREf32; 3388 break; 3389 case PPC::STXSDX: 3390 if (PostRA) { 3391 if (IsVFReg) 3392 III.ImmOpcode = PPC::STXSD; 3393 else { 3394 III.ImmOpcode = PPC::STFD; 3395 III.ImmMustBeMultipleOf = 1; 3396 } 3397 break; 3398 } 3399 LLVM_FALLTHROUGH; 3400 case PPC::XFSTOREf64: 3401 III.ImmOpcode = PPC::DFSTOREf64; 3402 break; 3403 } 3404 break; 3405 } 3406 return true; 3407 } 3408 3409 // Utility function for swaping two arbitrary operands of an instruction. 3410 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 3411 assert(Op1 != Op2 && "Cannot swap operand with itself."); 3412 3413 unsigned MaxOp = std::max(Op1, Op2); 3414 unsigned MinOp = std::min(Op1, Op2); 3415 MachineOperand MOp1 = MI.getOperand(MinOp); 3416 MachineOperand MOp2 = MI.getOperand(MaxOp); 3417 MI.RemoveOperand(std::max(Op1, Op2)); 3418 MI.RemoveOperand(std::min(Op1, Op2)); 3419 3420 // If the operands we are swapping are the two at the end (the common case) 3421 // we can just remove both and add them in the opposite order. 3422 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 3423 MI.addOperand(MOp2); 3424 MI.addOperand(MOp1); 3425 } else { 3426 // Store all operands in a temporary vector, remove them and re-add in the 3427 // right order. 3428 SmallVector<MachineOperand, 2> MOps; 3429 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 3430 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 3431 MOps.push_back(MI.getOperand(i)); 3432 MI.RemoveOperand(i); 3433 } 3434 // MOp2 needs to be added next. 3435 MI.addOperand(MOp2); 3436 // Now add the rest. 3437 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 3438 if (i == MaxOp) 3439 MI.addOperand(MOp1); 3440 else { 3441 MI.addOperand(MOps.back()); 3442 MOps.pop_back(); 3443 } 3444 } 3445 } 3446 } 3447 3448 // Check if the 'MI' that has the index OpNoForForwarding 3449 // meets the requirement described in the ImmInstrInfo. 3450 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 3451 const ImmInstrInfo &III, 3452 unsigned OpNoForForwarding 3453 ) const { 3454 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 3455 // would not work pre-RA, we can only do the check post RA. 3456 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3457 if (MRI.isSSA()) 3458 return false; 3459 3460 // Cannot do the transform if MI isn't summing the operands. 3461 if (!III.IsSummingOperands) 3462 return false; 3463 3464 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 3465 if (!III.ZeroIsSpecialOrig) 3466 return false; 3467 3468 // We cannot do the transform if the operand we are trying to replace 3469 // isn't the same as the operand the instruction allows. 3470 if (OpNoForForwarding != III.OpNoForForwarding) 3471 return false; 3472 3473 // Check if the instruction we are trying to transform really has 3474 // the special zero register as its operand. 3475 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 3476 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 3477 return false; 3478 3479 // This machine instruction is convertible if it is, 3480 // 1. summing the operands. 3481 // 2. one of the operands is special zero register. 3482 // 3. the operand we are trying to replace is allowed by the MI. 3483 return true; 3484 } 3485 3486 // Check if the DefMI is the add inst and set the ImmMO and RegMO 3487 // accordingly. 3488 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 3489 const ImmInstrInfo &III, 3490 MachineOperand *&ImmMO, 3491 MachineOperand *&RegMO) const { 3492 unsigned Opc = DefMI.getOpcode(); 3493 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 3494 return false; 3495 3496 assert(DefMI.getNumOperands() >= 3 && 3497 "Add inst must have at least three operands"); 3498 RegMO = &DefMI.getOperand(1); 3499 ImmMO = &DefMI.getOperand(2); 3500 3501 // This DefMI is elgible for forwarding if it is: 3502 // 1. add inst 3503 // 2. one of the operands is Imm/CPI/Global. 3504 return isAnImmediateOperand(*ImmMO); 3505 } 3506 3507 bool PPCInstrInfo::isRegElgibleForForwarding( 3508 const MachineOperand &RegMO, const MachineInstr &DefMI, 3509 const MachineInstr &MI, bool KillDefMI, 3510 bool &IsFwdFeederRegKilled) const { 3511 // x = addi y, imm 3512 // ... 3513 // z = lfdx 0, x -> z = lfd imm(y) 3514 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 3515 // of "y" between the DEF of "x" and "z". 3516 // The query is only valid post RA. 3517 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3518 if (MRI.isSSA()) 3519 return false; 3520 3521 Register Reg = RegMO.getReg(); 3522 3523 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 3524 MachineBasicBlock::const_reverse_iterator It = MI; 3525 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 3526 It++; 3527 for (; It != E; ++It) { 3528 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3529 return false; 3530 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3531 IsFwdFeederRegKilled = true; 3532 // Made it to DefMI without encountering a clobber. 3533 if ((&*It) == &DefMI) 3534 break; 3535 } 3536 assert((&*It) == &DefMI && "DefMI is missing"); 3537 3538 // If DefMI also defines the register to be forwarded, we can only forward it 3539 // if DefMI is being erased. 3540 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 3541 return KillDefMI; 3542 3543 return true; 3544 } 3545 3546 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 3547 const MachineInstr &DefMI, 3548 const ImmInstrInfo &III, 3549 int64_t &Imm) const { 3550 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 3551 if (DefMI.getOpcode() == PPC::ADDItocL) { 3552 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 3553 // However, we know that, it is 16-bit width, and has the alignment of 4. 3554 // Check if the instruction met the requirement. 3555 if (III.ImmMustBeMultipleOf > 4 || 3556 III.TruncateImmTo || III.ImmWidth != 16) 3557 return false; 3558 3559 // Going from XForm to DForm loads means that the displacement needs to be 3560 // not just an immediate but also a multiple of 4, or 16 depending on the 3561 // load. A DForm load cannot be represented if it is a multiple of say 2. 3562 // XForm loads do not have this restriction. 3563 if (ImmMO.isGlobal() && 3564 ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf) 3565 return false; 3566 3567 return true; 3568 } 3569 3570 if (ImmMO.isImm()) { 3571 // It is Imm, we need to check if the Imm fit the range. 3572 int64_t Immediate = ImmMO.getImm(); 3573 // Sign-extend to 64-bits. 3574 Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 3575 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 3576 3577 if (Imm % III.ImmMustBeMultipleOf) 3578 return false; 3579 if (III.TruncateImmTo) 3580 Imm &= ((1 << III.TruncateImmTo) - 1); 3581 if (III.SignedImm) { 3582 APInt ActualValue(64, Imm, true); 3583 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3584 return false; 3585 } else { 3586 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3587 if ((uint64_t)Imm > UnsignedMax) 3588 return false; 3589 } 3590 } 3591 else 3592 return false; 3593 3594 // This ImmMO is forwarded if it meets the requriement describle 3595 // in ImmInstrInfo 3596 return true; 3597 } 3598 3599 // If an X-Form instruction is fed by an add-immediate and one of its operands 3600 // is the literal zero, attempt to forward the source of the add-immediate to 3601 // the corresponding D-Form instruction with the displacement coming from 3602 // the immediate being added. 3603 bool PPCInstrInfo::transformToImmFormFedByAdd( 3604 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 3605 MachineInstr &DefMI, bool KillDefMI) const { 3606 // RegMO ImmMO 3607 // | | 3608 // x = addi reg, imm <----- DefMI 3609 // y = op 0 , x <----- MI 3610 // | 3611 // OpNoForForwarding 3612 // Check if the MI meet the requirement described in the III. 3613 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 3614 return false; 3615 3616 // Check if the DefMI meet the requirement 3617 // described in the III. If yes, set the ImmMO and RegMO accordingly. 3618 MachineOperand *ImmMO = nullptr; 3619 MachineOperand *RegMO = nullptr; 3620 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 3621 return false; 3622 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 3623 3624 // As we get the Imm operand now, we need to check if the ImmMO meet 3625 // the requirement described in the III. If yes set the Imm. 3626 int64_t Imm = 0; 3627 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 3628 return false; 3629 3630 bool IsFwdFeederRegKilled = false; 3631 // Check if the RegMO can be forwarded to MI. 3632 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 3633 IsFwdFeederRegKilled)) 3634 return false; 3635 3636 // Get killed info in case fixup needed after transformation. 3637 unsigned ForwardKilledOperandReg = ~0U; 3638 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3639 bool PostRA = !MRI.isSSA(); 3640 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 3641 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 3642 3643 // We know that, the MI and DefMI both meet the pattern, and 3644 // the Imm also meet the requirement with the new Imm-form. 3645 // It is safe to do the transformation now. 3646 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 3647 LLVM_DEBUG(MI.dump()); 3648 LLVM_DEBUG(dbgs() << "Fed by:\n"); 3649 LLVM_DEBUG(DefMI.dump()); 3650 3651 // Update the base reg first. 3652 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 3653 false, false, 3654 RegMO->isKill()); 3655 3656 // Then, update the imm. 3657 if (ImmMO->isImm()) { 3658 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 3659 // directly. 3660 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 3661 } 3662 else { 3663 // Otherwise, it is Constant Pool Index(CPI) or Global, 3664 // which is relocation in fact. We need to replace the special zero 3665 // register with ImmMO. 3666 // Before that, we need to fixup the target flags for imm. 3667 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 3668 if (DefMI.getOpcode() == PPC::ADDItocL) 3669 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 3670 3671 // MI didn't have the interface such as MI.setOperand(i) though 3672 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 3673 // ImmMO, we need to remove ZERO operand and all the operands behind it, 3674 // and, add the ImmMO, then, move back all the operands behind ZERO. 3675 SmallVector<MachineOperand, 2> MOps; 3676 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 3677 MOps.push_back(MI.getOperand(i)); 3678 MI.RemoveOperand(i); 3679 } 3680 3681 // Remove the last MO in the list, which is ZERO operand in fact. 3682 MOps.pop_back(); 3683 // Add the imm operand. 3684 MI.addOperand(*ImmMO); 3685 // Now add the rest back. 3686 for (auto &MO : MOps) 3687 MI.addOperand(MO); 3688 } 3689 3690 // Update the opcode. 3691 MI.setDesc(get(III.ImmOpcode)); 3692 3693 // Fix up killed/dead flag after transformation. 3694 // Pattern 1: 3695 // x = ADD KilledFwdFeederReg, imm 3696 // n = opn KilledFwdFeederReg(killed), regn 3697 // y = XOP 0, x 3698 // Pattern 2: 3699 // x = ADD reg(killed), imm 3700 // y = XOP 0, x 3701 if (IsFwdFeederRegKilled || RegMO->isKill()) 3702 fixupIsDeadOrKill(DefMI, MI, RegMO->getReg()); 3703 // Pattern 3: 3704 // ForwardKilledOperandReg = ADD reg, imm 3705 // y = XOP 0, ForwardKilledOperandReg(killed) 3706 if (ForwardKilledOperandReg != ~0U) 3707 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3708 3709 LLVM_DEBUG(dbgs() << "With:\n"); 3710 LLVM_DEBUG(MI.dump()); 3711 3712 return true; 3713 } 3714 3715 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 3716 const ImmInstrInfo &III, 3717 unsigned ConstantOpNo, 3718 MachineInstr &DefMI, 3719 int64_t Imm) const { 3720 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3721 bool PostRA = !MRI.isSSA(); 3722 // Exit early if we can't convert this. 3723 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 3724 return false; 3725 if (Imm % III.ImmMustBeMultipleOf) 3726 return false; 3727 if (III.TruncateImmTo) 3728 Imm &= ((1 << III.TruncateImmTo) - 1); 3729 if (III.SignedImm) { 3730 APInt ActualValue(64, Imm, true); 3731 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3732 return false; 3733 } else { 3734 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3735 if ((uint64_t)Imm > UnsignedMax) 3736 return false; 3737 } 3738 3739 // If we're post-RA, the instructions don't agree on whether register zero is 3740 // special, we can transform this as long as the register operand that will 3741 // end up in the location where zero is special isn't R0. 3742 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3743 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 3744 III.ZeroIsSpecialNew + 1; 3745 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 3746 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3747 // If R0 is in the operand where zero is special for the new instruction, 3748 // it is unsafe to transform if the constant operand isn't that operand. 3749 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 3750 ConstantOpNo != III.ZeroIsSpecialNew) 3751 return false; 3752 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 3753 ConstantOpNo != PosForOrigZero) 3754 return false; 3755 } 3756 3757 // Get killed info in case fixup needed after transformation. 3758 unsigned ForwardKilledOperandReg = ~0U; 3759 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 3760 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 3761 3762 unsigned Opc = MI.getOpcode(); 3763 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || 3764 Opc == PPC::SRW || Opc == PPC::SRW_rec || 3765 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || 3766 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; 3767 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || 3768 Opc == PPC::SRD || Opc == PPC::SRD_rec; 3769 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || 3770 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; 3771 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || 3772 Opc == PPC::SRD_rec; 3773 3774 MI.setDesc(get(III.ImmOpcode)); 3775 if (ConstantOpNo == III.OpNoForForwarding) { 3776 // Converting shifts to immediate form is a bit tricky since they may do 3777 // one of three things: 3778 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 3779 // 2. If the shift amount is zero, the result is unchanged (save for maybe 3780 // setting CR0) 3781 // 3. If the shift amount is in [1, OpSize), it's just a shift 3782 if (SpecialShift32 || SpecialShift64) { 3783 LoadImmediateInfo LII; 3784 LII.Imm = 0; 3785 LII.SetCR = SetCR; 3786 LII.Is64Bit = SpecialShift64; 3787 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 3788 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 3789 replaceInstrWithLI(MI, LII); 3790 // Shifts by zero don't change the value. If we don't need to set CR0, 3791 // just convert this to a COPY. Can't do this post-RA since we've already 3792 // cleaned up the copies. 3793 else if (!SetCR && ShAmt == 0 && !PostRA) { 3794 MI.RemoveOperand(2); 3795 MI.setDesc(get(PPC::COPY)); 3796 } else { 3797 // The 32 bit and 64 bit instructions are quite different. 3798 if (SpecialShift32) { 3799 // Left shifts use (N, 0, 31-N). 3800 // Right shifts use (32-N, N, 31) if 0 < N < 32. 3801 // use (0, 0, 31) if N == 0. 3802 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; 3803 uint64_t MB = RightShift ? ShAmt : 0; 3804 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 3805 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3806 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 3807 .addImm(ME); 3808 } else { 3809 // Left shifts use (N, 63-N). 3810 // Right shifts use (64-N, N) if 0 < N < 64. 3811 // use (0, 0) if N == 0. 3812 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; 3813 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 3814 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3815 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 3816 } 3817 } 3818 } else 3819 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3820 } 3821 // Convert commutative instructions (switch the operands and convert the 3822 // desired one to an immediate. 3823 else if (III.IsCommutative) { 3824 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3825 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 3826 } else 3827 llvm_unreachable("Should have exited early!"); 3828 3829 // For instructions for which the constant register replaces a different 3830 // operand than where the immediate goes, we need to swap them. 3831 if (III.OpNoForForwarding != III.ImmOpNo) 3832 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 3833 3834 // If the special R0/X0 register index are different for original instruction 3835 // and new instruction, we need to fix up the register class in new 3836 // instruction. 3837 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3838 if (III.ZeroIsSpecialNew) { 3839 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 3840 // need to fix up register class. 3841 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3842 if (Register::isVirtualRegister(RegToModify)) { 3843 const TargetRegisterClass *NewRC = 3844 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 3845 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 3846 MRI.setRegClass(RegToModify, NewRC); 3847 } 3848 } 3849 } 3850 3851 // Fix up killed/dead flag after transformation. 3852 // Pattern: 3853 // ForwardKilledOperandReg = LI imm 3854 // y = XOP reg, ForwardKilledOperandReg(killed) 3855 if (ForwardKilledOperandReg != ~0U) 3856 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3857 return true; 3858 } 3859 3860 const TargetRegisterClass * 3861 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 3862 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 3863 return &PPC::VSRCRegClass; 3864 return RC; 3865 } 3866 3867 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 3868 return PPC::getRecordFormOpcode(Opcode); 3869 } 3870 3871 // This function returns true if the machine instruction 3872 // always outputs a value by sign-extending a 32 bit value, 3873 // i.e. 0 to 31-th bits are same as 32-th bit. 3874 static bool isSignExtendingOp(const MachineInstr &MI) { 3875 int Opcode = MI.getOpcode(); 3876 if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS || 3877 Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec || 3878 Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA || 3879 Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 3880 Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 || 3881 Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3882 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU || 3883 Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3884 Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 || 3885 Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3886 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB || 3887 Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH || 3888 Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 || 3889 Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW || 3890 Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 || 3891 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 3892 Opcode == PPC::EXTSB8_32_64) 3893 return true; 3894 3895 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 3896 return true; 3897 3898 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 3899 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && 3900 MI.getOperand(3).getImm() > 0 && 3901 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3902 return true; 3903 3904 return false; 3905 } 3906 3907 // This function returns true if the machine instruction 3908 // always outputs zeros in higher 32 bits. 3909 static bool isZeroExtendingOp(const MachineInstr &MI) { 3910 int Opcode = MI.getOpcode(); 3911 // The 16-bit immediate is sign-extended in li/lis. 3912 // If the most significant bit is zero, all higher bits are zero. 3913 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3914 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 3915 int64_t Imm = MI.getOperand(1).getImm(); 3916 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 3917 return true; 3918 } 3919 3920 // We have some variations of rotate-and-mask instructions 3921 // that clear higher 32-bits. 3922 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 3923 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || 3924 Opcode == PPC::RLDICL_32_64) && 3925 MI.getOperand(3).getImm() >= 32) 3926 return true; 3927 3928 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 3929 MI.getOperand(3).getImm() >= 32 && 3930 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 3931 return true; 3932 3933 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 3934 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 3935 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 3936 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3937 return true; 3938 3939 // There are other instructions that clear higher 32-bits. 3940 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec || 3941 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec || 3942 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 3943 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec || 3944 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec || 3945 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW || 3946 Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec || 3947 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI || 3948 Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI || 3949 Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX || 3950 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX || 3951 Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3952 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ || 3953 Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 3954 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 || 3955 Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 3956 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 || 3957 Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 3958 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3959 Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec || 3960 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec || 3961 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec || 3962 Opcode == PPC::MFVSRWZ) 3963 return true; 3964 3965 return false; 3966 } 3967 3968 // This function returns true if the input MachineInstr is a TOC save 3969 // instruction. 3970 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 3971 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 3972 return false; 3973 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 3974 unsigned StackOffset = MI.getOperand(1).getImm(); 3975 Register StackReg = MI.getOperand(2).getReg(); 3976 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) 3977 return true; 3978 3979 return false; 3980 } 3981 3982 // We limit the max depth to track incoming values of PHIs or binary ops 3983 // (e.g. AND) to avoid excessive cost. 3984 const unsigned MAX_DEPTH = 1; 3985 3986 bool 3987 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 3988 const unsigned Depth) const { 3989 const MachineFunction *MF = MI.getParent()->getParent(); 3990 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 3991 3992 // If we know this instruction returns sign- or zero-extended result, 3993 // return true. 3994 if (SignExt ? isSignExtendingOp(MI): 3995 isZeroExtendingOp(MI)) 3996 return true; 3997 3998 switch (MI.getOpcode()) { 3999 case PPC::COPY: { 4000 Register SrcReg = MI.getOperand(1).getReg(); 4001 4002 // In both ELFv1 and v2 ABI, method parameters and the return value 4003 // are sign- or zero-extended. 4004 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 4005 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 4006 // We check the ZExt/SExt flags for a method parameter. 4007 if (MI.getParent()->getBasicBlock() == 4008 &MF->getFunction().getEntryBlock()) { 4009 Register VReg = MI.getOperand(0).getReg(); 4010 if (MF->getRegInfo().isLiveIn(VReg)) 4011 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 4012 FuncInfo->isLiveInZExt(VReg); 4013 } 4014 4015 // For a method return value, we check the ZExt/SExt flags in attribute. 4016 // We assume the following code sequence for method call. 4017 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 4018 // BL8_NOP @func,... 4019 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 4020 // %5 = COPY %x3; G8RC:%5 4021 if (SrcReg == PPC::X3) { 4022 const MachineBasicBlock *MBB = MI.getParent(); 4023 MachineBasicBlock::const_instr_iterator II = 4024 MachineBasicBlock::const_instr_iterator(&MI); 4025 if (II != MBB->instr_begin() && 4026 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 4027 const MachineInstr &CallMI = *(--II); 4028 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 4029 const Function *CalleeFn = 4030 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 4031 if (!CalleeFn) 4032 return false; 4033 const IntegerType *IntTy = 4034 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 4035 const AttributeSet &Attrs = 4036 CalleeFn->getAttributes().getRetAttributes(); 4037 if (IntTy && IntTy->getBitWidth() <= 32) 4038 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 4039 Attribute::ZExt); 4040 } 4041 } 4042 } 4043 } 4044 4045 // If this is a copy from another register, we recursively check source. 4046 if (!Register::isVirtualRegister(SrcReg)) 4047 return false; 4048 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4049 if (SrcMI != NULL) 4050 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 4051 4052 return false; 4053 } 4054 4055 case PPC::ANDI_rec: 4056 case PPC::ANDIS_rec: 4057 case PPC::ORI: 4058 case PPC::ORIS: 4059 case PPC::XORI: 4060 case PPC::XORIS: 4061 case PPC::ANDI8_rec: 4062 case PPC::ANDIS8_rec: 4063 case PPC::ORI8: 4064 case PPC::ORIS8: 4065 case PPC::XORI8: 4066 case PPC::XORIS8: { 4067 // logical operation with 16-bit immediate does not change the upper bits. 4068 // So, we track the operand register as we do for register copy. 4069 Register SrcReg = MI.getOperand(1).getReg(); 4070 if (!Register::isVirtualRegister(SrcReg)) 4071 return false; 4072 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4073 if (SrcMI != NULL) 4074 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 4075 4076 return false; 4077 } 4078 4079 // If all incoming values are sign-/zero-extended, 4080 // the output of OR, ISEL or PHI is also sign-/zero-extended. 4081 case PPC::OR: 4082 case PPC::OR8: 4083 case PPC::ISEL: 4084 case PPC::PHI: { 4085 if (Depth >= MAX_DEPTH) 4086 return false; 4087 4088 // The input registers for PHI are operand 1, 3, ... 4089 // The input registers for others are operand 1 and 2. 4090 unsigned E = 3, D = 1; 4091 if (MI.getOpcode() == PPC::PHI) { 4092 E = MI.getNumOperands(); 4093 D = 2; 4094 } 4095 4096 for (unsigned I = 1; I != E; I += D) { 4097 if (MI.getOperand(I).isReg()) { 4098 Register SrcReg = MI.getOperand(I).getReg(); 4099 if (!Register::isVirtualRegister(SrcReg)) 4100 return false; 4101 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4102 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 4103 return false; 4104 } 4105 else 4106 return false; 4107 } 4108 return true; 4109 } 4110 4111 // If at least one of the incoming values of an AND is zero extended 4112 // then the output is also zero-extended. If both of the incoming values 4113 // are sign-extended then the output is also sign extended. 4114 case PPC::AND: 4115 case PPC::AND8: { 4116 if (Depth >= MAX_DEPTH) 4117 return false; 4118 4119 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 4120 4121 Register SrcReg1 = MI.getOperand(1).getReg(); 4122 Register SrcReg2 = MI.getOperand(2).getReg(); 4123 4124 if (!Register::isVirtualRegister(SrcReg1) || 4125 !Register::isVirtualRegister(SrcReg2)) 4126 return false; 4127 4128 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 4129 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 4130 if (!MISrc1 || !MISrc2) 4131 return false; 4132 4133 if(SignExt) 4134 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 4135 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4136 else 4137 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 4138 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4139 } 4140 4141 default: 4142 break; 4143 } 4144 return false; 4145 } 4146 4147 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 4148 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 4149 } 4150 4151 namespace { 4152 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 4153 MachineInstr *Loop, *EndLoop, *LoopCount; 4154 MachineFunction *MF; 4155 const TargetInstrInfo *TII; 4156 int64_t TripCount; 4157 4158 public: 4159 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 4160 MachineInstr *LoopCount) 4161 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 4162 MF(Loop->getParent()->getParent()), 4163 TII(MF->getSubtarget().getInstrInfo()) { 4164 // Inspect the Loop instruction up-front, as it may be deleted when we call 4165 // createTripCountGreaterCondition. 4166 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 4167 TripCount = LoopCount->getOperand(1).getImm(); 4168 else 4169 TripCount = -1; 4170 } 4171 4172 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 4173 // Only ignore the terminator. 4174 return MI == EndLoop; 4175 } 4176 4177 Optional<bool> 4178 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 4179 SmallVectorImpl<MachineOperand> &Cond) override { 4180 if (TripCount == -1) { 4181 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4182 // so we don't need to generate any thing here. 4183 Cond.push_back(MachineOperand::CreateImm(0)); 4184 Cond.push_back(MachineOperand::CreateReg( 4185 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 4186 true)); 4187 return {}; 4188 } 4189 4190 return TripCount > TC; 4191 } 4192 4193 void setPreheader(MachineBasicBlock *NewPreheader) override { 4194 // Do nothing. We want the LOOP setup instruction to stay in the *old* 4195 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 4196 } 4197 4198 void adjustTripCount(int TripCountAdjust) override { 4199 // If the loop trip count is a compile-time value, then just change the 4200 // value. 4201 if (LoopCount->getOpcode() == PPC::LI8 || 4202 LoopCount->getOpcode() == PPC::LI) { 4203 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 4204 LoopCount->getOperand(1).setImm(TripCount); 4205 return; 4206 } 4207 4208 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4209 // so we don't need to generate any thing here. 4210 } 4211 4212 void disposed() override { 4213 Loop->eraseFromParent(); 4214 // Ensure the loop setup instruction is deleted too. 4215 LoopCount->eraseFromParent(); 4216 } 4217 }; 4218 } // namespace 4219 4220 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 4221 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 4222 // We really "analyze" only hardware loops right now. 4223 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 4224 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 4225 if (Preheader == LoopBB) 4226 Preheader = *std::next(LoopBB->pred_begin()); 4227 MachineFunction *MF = Preheader->getParent(); 4228 4229 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 4230 SmallPtrSet<MachineBasicBlock *, 8> Visited; 4231 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 4232 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 4233 MachineRegisterInfo &MRI = MF->getRegInfo(); 4234 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 4235 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 4236 } 4237 } 4238 return nullptr; 4239 } 4240 4241 MachineInstr *PPCInstrInfo::findLoopInstr( 4242 MachineBasicBlock &PreHeader, 4243 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 4244 4245 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 4246 4247 // The loop set-up instruction should be in preheader 4248 for (auto &I : PreHeader.instrs()) 4249 if (I.getOpcode() == LOOPi) 4250 return &I; 4251 return nullptr; 4252 } 4253 4254 // Return true if get the base operand, byte offset of an instruction and the 4255 // memory width. Width is the size of memory that is being loaded/stored. 4256 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 4257 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, 4258 unsigned &Width, const TargetRegisterInfo *TRI) const { 4259 if (!LdSt.mayLoadOrStore()) 4260 return false; 4261 4262 // Handle only loads/stores with base register followed by immediate offset. 4263 if (LdSt.getNumExplicitOperands() != 3) 4264 return false; 4265 if (!LdSt.getOperand(1).isImm() || !LdSt.getOperand(2).isReg()) 4266 return false; 4267 4268 if (!LdSt.hasOneMemOperand()) 4269 return false; 4270 4271 Width = (*LdSt.memoperands_begin())->getSize(); 4272 Offset = LdSt.getOperand(1).getImm(); 4273 BaseReg = &LdSt.getOperand(2); 4274 return true; 4275 } 4276 4277 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 4278 const MachineInstr &MIa, const MachineInstr &MIb) const { 4279 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 4280 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 4281 4282 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 4283 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 4284 return false; 4285 4286 // Retrieve the base register, offset from the base register and width. Width 4287 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 4288 // base registers are identical, and the offset of a lower memory access + 4289 // the width doesn't overlap the offset of a higher memory access, 4290 // then the memory accesses are different. 4291 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4292 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 4293 int64_t OffsetA = 0, OffsetB = 0; 4294 unsigned int WidthA = 0, WidthB = 0; 4295 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 4296 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 4297 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 4298 int LowOffset = std::min(OffsetA, OffsetB); 4299 int HighOffset = std::max(OffsetA, OffsetB); 4300 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 4301 if (LowOffset + LowWidth <= HighOffset) 4302 return true; 4303 } 4304 } 4305 return false; 4306 } 4307