1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/PseudoSourceValue.h"
31 #include "llvm/CodeGen/RegisterClassInfo.h"
32 #include "llvm/CodeGen/RegisterPressure.h"
33 #include "llvm/CodeGen/ScheduleDAG.h"
34 #include "llvm/CodeGen/SlotIndexes.h"
35 #include "llvm/CodeGen/StackMaps.h"
36 #include "llvm/MC/MCAsmInfo.h"
37 #include "llvm/MC/MCInst.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/TargetRegistry.h"
42 #include "llvm/Support/raw_ostream.h"
43 
44 using namespace llvm;
45 
46 #define DEBUG_TYPE "ppc-instr-info"
47 
48 #define GET_INSTRMAP_INFO
49 #define GET_INSTRINFO_CTOR_DTOR
50 #include "PPCGenInstrInfo.inc"
51 
52 STATISTIC(NumStoreSPILLVSRRCAsVec,
53           "Number of spillvsrrc spilled to stack as vec");
54 STATISTIC(NumStoreSPILLVSRRCAsGpr,
55           "Number of spillvsrrc spilled to stack as gpr");
56 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
57 STATISTIC(CmpIselsConverted,
58           "Number of ISELs that depend on comparison of constants converted");
59 STATISTIC(MissedConvertibleImmediateInstrs,
60           "Number of compare-immediate instructions fed by constants");
61 STATISTIC(NumRcRotatesConvertedToRcAnd,
62           "Number of record-form rotates converted to record-form andi");
63 
64 static cl::
65 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
66             cl::desc("Disable analysis for CTR loops"));
67 
68 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
69 cl::desc("Disable compare instruction optimization"), cl::Hidden);
70 
71 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
72 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
73 cl::Hidden);
74 
75 static cl::opt<bool>
76 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
77   cl::desc("Use the old (incorrect) instruction latency calculation"));
78 
79 static cl::opt<float>
80     FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5),
81                 cl::desc("register pressure factor for the transformations."));
82 
83 static cl::opt<bool> EnableFMARegPressureReduction(
84     "ppc-fma-rp-reduction", cl::Hidden, cl::init(true),
85     cl::desc("enable register pressure reduce in machine combiner pass."));
86 
87 // Pin the vtable to this file.
88 void PPCInstrInfo::anchor() {}
89 
90 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
91     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
92                       /* CatchRetOpcode */ -1,
93                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
94       Subtarget(STI), RI(STI.getTargetMachine()) {}
95 
96 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
97 /// this target when scheduling the DAG.
98 ScheduleHazardRecognizer *
99 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
100                                            const ScheduleDAG *DAG) const {
101   unsigned Directive =
102       static_cast<const PPCSubtarget *>(STI)->getCPUDirective();
103   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
104       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
105     const InstrItineraryData *II =
106         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
107     return new ScoreboardHazardRecognizer(II, DAG);
108   }
109 
110   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
111 }
112 
113 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
114 /// to use for this target when scheduling the DAG.
115 ScheduleHazardRecognizer *
116 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
117                                                  const ScheduleDAG *DAG) const {
118   unsigned Directive =
119       DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective();
120 
121   // FIXME: Leaving this as-is until we have POWER9 scheduling info
122   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
123     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
124 
125   // Most subtargets use a PPC970 recognizer.
126   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
127       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
128     assert(DAG->TII && "No InstrInfo?");
129 
130     return new PPCHazardRecognizer970(*DAG);
131   }
132 
133   return new ScoreboardHazardRecognizer(II, DAG);
134 }
135 
136 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
137                                        const MachineInstr &MI,
138                                        unsigned *PredCost) const {
139   if (!ItinData || UseOldLatencyCalc)
140     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
141 
142   // The default implementation of getInstrLatency calls getStageLatency, but
143   // getStageLatency does not do the right thing for us. While we have
144   // itinerary, most cores are fully pipelined, and so the itineraries only
145   // express the first part of the pipeline, not every stage. Instead, we need
146   // to use the listed output operand cycle number (using operand 0 here, which
147   // is an output).
148 
149   unsigned Latency = 1;
150   unsigned DefClass = MI.getDesc().getSchedClass();
151   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
152     const MachineOperand &MO = MI.getOperand(i);
153     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
154       continue;
155 
156     int Cycle = ItinData->getOperandCycle(DefClass, i);
157     if (Cycle < 0)
158       continue;
159 
160     Latency = std::max(Latency, (unsigned) Cycle);
161   }
162 
163   return Latency;
164 }
165 
166 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
167                                     const MachineInstr &DefMI, unsigned DefIdx,
168                                     const MachineInstr &UseMI,
169                                     unsigned UseIdx) const {
170   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
171                                                    UseMI, UseIdx);
172 
173   if (!DefMI.getParent())
174     return Latency;
175 
176   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
177   Register Reg = DefMO.getReg();
178 
179   bool IsRegCR;
180   if (Register::isVirtualRegister(Reg)) {
181     const MachineRegisterInfo *MRI =
182         &DefMI.getParent()->getParent()->getRegInfo();
183     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
184               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
185   } else {
186     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
187               PPC::CRBITRCRegClass.contains(Reg);
188   }
189 
190   if (UseMI.isBranch() && IsRegCR) {
191     if (Latency < 0)
192       Latency = getInstrLatency(ItinData, DefMI);
193 
194     // On some cores, there is an additional delay between writing to a condition
195     // register, and using it from a branch.
196     unsigned Directive = Subtarget.getCPUDirective();
197     switch (Directive) {
198     default: break;
199     case PPC::DIR_7400:
200     case PPC::DIR_750:
201     case PPC::DIR_970:
202     case PPC::DIR_E5500:
203     case PPC::DIR_PWR4:
204     case PPC::DIR_PWR5:
205     case PPC::DIR_PWR5X:
206     case PPC::DIR_PWR6:
207     case PPC::DIR_PWR6X:
208     case PPC::DIR_PWR7:
209     case PPC::DIR_PWR8:
210     // FIXME: Is this needed for POWER9?
211       Latency += 2;
212       break;
213     }
214   }
215 
216   return Latency;
217 }
218 
219 /// This is an architecture-specific helper function of reassociateOps.
220 /// Set special operand attributes for new instructions after reassociation.
221 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
222                                          MachineInstr &OldMI2,
223                                          MachineInstr &NewMI1,
224                                          MachineInstr &NewMI2) const {
225   // Propagate FP flags from the original instructions.
226   // But clear poison-generating flags because those may not be valid now.
227   uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
228   NewMI1.setFlags(IntersectedFlags);
229   NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
230   NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
231   NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
232 
233   NewMI2.setFlags(IntersectedFlags);
234   NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
235   NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
236   NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
237 }
238 
239 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI,
240                                          uint16_t Flags) const {
241   MI.setFlags(Flags);
242   MI.clearFlag(MachineInstr::MIFlag::NoSWrap);
243   MI.clearFlag(MachineInstr::MIFlag::NoUWrap);
244   MI.clearFlag(MachineInstr::MIFlag::IsExact);
245 }
246 
247 // This function does not list all associative and commutative operations, but
248 // only those worth feeding through the machine combiner in an attempt to
249 // reduce the critical path. Mostly, this means floating-point operations,
250 // because they have high latencies(>=5) (compared to other operations, such as
251 // and/or, which are also associative and commutative, but have low latencies).
252 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
253   switch (Inst.getOpcode()) {
254   // Floating point:
255   // FP Add:
256   case PPC::FADD:
257   case PPC::FADDS:
258   // FP Multiply:
259   case PPC::FMUL:
260   case PPC::FMULS:
261   // Altivec Add:
262   case PPC::VADDFP:
263   // VSX Add:
264   case PPC::XSADDDP:
265   case PPC::XVADDDP:
266   case PPC::XVADDSP:
267   case PPC::XSADDSP:
268   // VSX Multiply:
269   case PPC::XSMULDP:
270   case PPC::XVMULDP:
271   case PPC::XVMULSP:
272   case PPC::XSMULSP:
273     return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
274            Inst.getFlag(MachineInstr::MIFlag::FmNsz);
275   // Fixed point:
276   // Multiply:
277   case PPC::MULHD:
278   case PPC::MULLD:
279   case PPC::MULHW:
280   case PPC::MULLW:
281     return true;
282   default:
283     return false;
284   }
285 }
286 
287 #define InfoArrayIdxFMAInst 0
288 #define InfoArrayIdxFAddInst 1
289 #define InfoArrayIdxFMULInst 2
290 #define InfoArrayIdxAddOpIdx 3
291 #define InfoArrayIdxMULOpIdx 4
292 #define InfoArrayIdxFSubInst 5
293 // Array keeps info for FMA instructions:
294 // Index 0(InfoArrayIdxFMAInst): FMA instruction;
295 // Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA;
296 // Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA;
297 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands;
298 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands;
299 //                                second MUL operand index is plus 1;
300 // Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA.
301 static const uint16_t FMAOpIdxInfo[][6] = {
302     // FIXME: Add more FMA instructions like XSNMADDADP and so on.
303     {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP},
304     {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP},
305     {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP},
306     {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP},
307     {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB},
308     {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}};
309 
310 // Check if an opcode is a FMA instruction. If it is, return the index in array
311 // FMAOpIdxInfo. Otherwise, return -1.
312 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const {
313   for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++)
314     if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode)
315       return I;
316   return -1;
317 }
318 
319 // On PowerPC target, we have two kinds of patterns related to FMA:
320 // 1: Improve ILP.
321 // Try to reassociate FMA chains like below:
322 //
323 // Pattern 1:
324 //   A =  FADD X,  Y          (Leaf)
325 //   B =  FMA  A,  M21,  M22  (Prev)
326 //   C =  FMA  B,  M31,  M32  (Root)
327 // -->
328 //   A =  FMA  X,  M21,  M22
329 //   B =  FMA  Y,  M31,  M32
330 //   C =  FADD A,  B
331 //
332 // Pattern 2:
333 //   A =  FMA  X,  M11,  M12  (Leaf)
334 //   B =  FMA  A,  M21,  M22  (Prev)
335 //   C =  FMA  B,  M31,  M32  (Root)
336 // -->
337 //   A =  FMUL M11,  M12
338 //   B =  FMA  X,  M21,  M22
339 //   D =  FMA  A,  M31,  M32
340 //   C =  FADD B,  D
341 //
342 // breaking the dependency between A and B, allowing FMA to be executed in
343 // parallel (or back-to-back in a pipeline) instead of depending on each other.
344 //
345 // 2: Reduce register pressure.
346 // Try to reassociate FMA with FSUB and a constant like below:
347 // C is a floating point const.
348 //
349 // Pattern 1:
350 //   A = FSUB  X,  Y      (Leaf)
351 //   D = FMA   B,  C,  A  (Root)
352 // -->
353 //   A = FMA   B,  Y,  -C
354 //   D = FMA   A,  X,  C
355 //
356 // Pattern 2:
357 //   A = FSUB  X,  Y      (Leaf)
358 //   D = FMA   B,  A,  C  (Root)
359 // -->
360 //   A = FMA   B,  Y,  -C
361 //   D = FMA   A,  X,  C
362 //
363 //  Before the transformation, A must be assigned with different hardware
364 //  register with D. After the transformation, A and D must be assigned with
365 //  same hardware register due to TIE attribute of FMA instructions.
366 //
367 bool PPCInstrInfo::getFMAPatterns(
368     MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
369     bool DoRegPressureReduce) const {
370   MachineBasicBlock *MBB = Root.getParent();
371   const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo();
372   const TargetRegisterInfo *TRI = &getRegisterInfo();
373 
374   auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) {
375     for (const auto &MO : Instr.explicit_operands())
376       if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
377         return false;
378     return true;
379   };
380 
381   auto IsReassociableAddOrSub = [&](const MachineInstr &Instr,
382                                     unsigned OpType) {
383     if (Instr.getOpcode() !=
384         FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType])
385       return false;
386 
387     // Instruction can be reassociated.
388     // fast math flags may prohibit reassociation.
389     if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
390           Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
391       return false;
392 
393     // Instruction operands are virtual registers for reassociation.
394     if (!IsAllOpsVirtualReg(Instr))
395       return false;
396 
397     // For register pressure reassociation, the FSub must have only one use as
398     // we want to delete the sub to save its def.
399     if (OpType == InfoArrayIdxFSubInst &&
400         !MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg()))
401       return false;
402 
403     return true;
404   };
405 
406   auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx,
407                                int16_t &MulOpIdx, bool IsLeaf) {
408     int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode());
409     if (Idx < 0)
410       return false;
411 
412     // Instruction can be reassociated.
413     // fast math flags may prohibit reassociation.
414     if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
415           Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
416       return false;
417 
418     // Instruction operands are virtual registers for reassociation.
419     if (!IsAllOpsVirtualReg(Instr))
420       return false;
421 
422     MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
423     if (IsLeaf)
424       return true;
425 
426     AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
427 
428     const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx);
429     MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg());
430     // If 'add' operand's def is not in current block, don't do ILP related opt.
431     if (!MIAdd || MIAdd->getParent() != MBB)
432       return false;
433 
434     // If this is not Leaf FMA Instr, its 'add' operand should only have one use
435     // as this fma will be changed later.
436     return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg());
437   };
438 
439   int16_t AddOpIdx = -1;
440   int16_t MulOpIdx = -1;
441 
442   bool IsUsedOnceL = false;
443   bool IsUsedOnceR = false;
444   MachineInstr *MULInstrL = nullptr;
445   MachineInstr *MULInstrR = nullptr;
446 
447   auto IsRPReductionCandidate = [&]() {
448     // Currently, we only support float and double.
449     // FIXME: add support for other types.
450     unsigned Opcode = Root.getOpcode();
451     if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP)
452       return false;
453 
454     // Root must be a valid FMA like instruction.
455     // Treat it as leaf as we don't care its add operand.
456     if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) {
457       assert((MulOpIdx >= 0) && "mul operand index not right!");
458       Register MULRegL = TRI->lookThruSingleUseCopyChain(
459           Root.getOperand(MulOpIdx).getReg(), MRI);
460       Register MULRegR = TRI->lookThruSingleUseCopyChain(
461           Root.getOperand(MulOpIdx + 1).getReg(), MRI);
462       if (!MULRegL && !MULRegR)
463         return false;
464 
465       if (MULRegL && !MULRegR) {
466         MULRegR =
467             TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI);
468         IsUsedOnceL = true;
469       } else if (!MULRegL && MULRegR) {
470         MULRegL =
471             TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI);
472         IsUsedOnceR = true;
473       } else {
474         IsUsedOnceL = true;
475         IsUsedOnceR = true;
476       }
477 
478       if (!Register::isVirtualRegister(MULRegL) ||
479           !Register::isVirtualRegister(MULRegR))
480         return false;
481 
482       MULInstrL = MRI->getVRegDef(MULRegL);
483       MULInstrR = MRI->getVRegDef(MULRegR);
484       return true;
485     }
486     return false;
487   };
488 
489   // Register pressure fma reassociation patterns.
490   if (DoRegPressureReduce && IsRPReductionCandidate()) {
491     assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!");
492     // Register pressure pattern 1
493     if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR &&
494         IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) {
495       LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n");
496       Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BCA);
497       return true;
498     }
499 
500     // Register pressure pattern 2
501     if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL &&
502          IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) {
503       LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n");
504       Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BAC);
505       return true;
506     }
507   }
508 
509   // ILP fma reassociation patterns.
510   // Root must be a valid FMA like instruction.
511   AddOpIdx = -1;
512   if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false))
513     return false;
514 
515   assert((AddOpIdx >= 0) && "add operand index not right!");
516 
517   Register RegB = Root.getOperand(AddOpIdx).getReg();
518   MachineInstr *Prev = MRI->getUniqueVRegDef(RegB);
519 
520   // Prev must be a valid FMA like instruction.
521   AddOpIdx = -1;
522   if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false))
523     return false;
524 
525   assert((AddOpIdx >= 0) && "add operand index not right!");
526 
527   Register RegA = Prev->getOperand(AddOpIdx).getReg();
528   MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA);
529   AddOpIdx = -1;
530   if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) {
531     Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM);
532     LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n");
533     return true;
534   }
535   if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) {
536     Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM);
537     LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n");
538     return true;
539   }
540   return false;
541 }
542 
543 void PPCInstrInfo::finalizeInsInstrs(
544     MachineInstr &Root, MachineCombinerPattern &P,
545     SmallVectorImpl<MachineInstr *> &InsInstrs) const {
546   assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!");
547 
548   MachineFunction *MF = Root.getMF();
549   MachineRegisterInfo *MRI = &MF->getRegInfo();
550   const TargetRegisterInfo *TRI = &getRegisterInfo();
551   MachineConstantPool *MCP = MF->getConstantPool();
552 
553   int16_t Idx = getFMAOpIdxInfo(Root.getOpcode());
554   if (Idx < 0)
555     return;
556 
557   uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
558 
559   // For now we only need to fix up placeholder for register pressure reduce
560   // patterns.
561   Register ConstReg = 0;
562   switch (P) {
563   case MachineCombinerPattern::REASSOC_XY_BCA:
564     ConstReg =
565         TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI);
566     break;
567   case MachineCombinerPattern::REASSOC_XY_BAC:
568     ConstReg =
569         TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI);
570     break;
571   default:
572     // Not register pressure reduce patterns.
573     return;
574   }
575 
576   MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg);
577   // Get const value from const pool.
578   const Constant *C = getConstantFromConstantPool(ConstDefInstr);
579   assert(isa<llvm::ConstantFP>(C) && "not a valid constant!");
580 
581   // Get negative fp const.
582   APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF());
583   F1.changeSign();
584   Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1);
585   Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType());
586 
587   // Put negative fp const into constant pool.
588   unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment);
589 
590   MachineOperand *Placeholder = nullptr;
591   // Record the placeholder PPC::ZERO8 we add in reassociateFMA.
592   for (auto *Inst : InsInstrs) {
593     for (MachineOperand &Operand : Inst->explicit_operands()) {
594       assert(Operand.isReg() && "Invalid instruction in InsInstrs!");
595       if (Operand.getReg() == PPC::ZERO8) {
596         Placeholder = &Operand;
597         break;
598       }
599     }
600   }
601 
602   assert(Placeholder && "Placeholder does not exist!");
603 
604   // Generate instructions to load the const fp from constant pool.
605   // We only support PPC64 and medium code model.
606   Register LoadNewConst =
607       generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs);
608 
609   // Fill the placeholder with the new load from constant pool.
610   Placeholder->setReg(LoadNewConst);
611 }
612 
613 bool PPCInstrInfo::shouldReduceRegisterPressure(
614     MachineBasicBlock *MBB, RegisterClassInfo *RegClassInfo) const {
615 
616   if (!EnableFMARegPressureReduction)
617     return false;
618 
619   // Currently, we only enable register pressure reducing in machine combiner
620   // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector
621   // support.
622   //
623   // So we need following instructions to access a TOC entry:
624   //
625   // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0
626   // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0,
627   //   killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool)
628   //
629   // FIXME: add more supported targets, like Small and Large code model, PPC32,
630   // AIX.
631   if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() &&
632         Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium))
633     return false;
634 
635   const TargetRegisterInfo *TRI = &getRegisterInfo();
636   MachineFunction *MF = MBB->getParent();
637   MachineRegisterInfo *MRI = &MF->getRegInfo();
638 
639   auto GetMBBPressure = [&](MachineBasicBlock *MBB) -> std::vector<unsigned> {
640     RegionPressure Pressure;
641     RegPressureTracker RPTracker(Pressure);
642 
643     // Initialize the register pressure tracker.
644     RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(),
645                    /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
646 
647     for (MachineBasicBlock::iterator MII = MBB->instr_end(),
648                                      MIE = MBB->instr_begin();
649          MII != MIE; --MII) {
650       MachineInstr &MI = *std::prev(MII);
651       if (MI.isDebugValue() || MI.isDebugLabel())
652         continue;
653       RegisterOperands RegOpers;
654       RegOpers.collect(MI, *TRI, *MRI, false, false);
655       RPTracker.recedeSkipDebugValues();
656       assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!");
657       RPTracker.recede(RegOpers);
658     }
659 
660     // Close the RPTracker to finalize live ins.
661     RPTracker.closeRegion();
662 
663     return RPTracker.getPressure().MaxSetPressure;
664   };
665 
666   // For now we only care about float and double type fma.
667   unsigned VSSRCLimit = TRI->getRegPressureSetLimit(
668       *MBB->getParent(), PPC::RegisterPressureSets::VSSRC);
669 
670   // Only reduce register pressure when pressure is high.
671   return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] >
672          (float)VSSRCLimit * FMARPFactor;
673 }
674 
675 bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const {
676   // I has only one memory operand which is load from constant pool.
677   if (!I->hasOneMemOperand())
678     return false;
679 
680   MachineMemOperand *Op = I->memoperands()[0];
681   return Op->isLoad() && Op->getPseudoValue() &&
682          Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool;
683 }
684 
685 Register PPCInstrInfo::generateLoadForNewConst(
686     unsigned Idx, MachineInstr *MI, Type *Ty,
687     SmallVectorImpl<MachineInstr *> &InsInstrs) const {
688   // Now we only support PPC64, Medium code model and P9 with vector.
689   // We have immutable pattern to access const pool. See function
690   // shouldReduceRegisterPressure.
691   assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() &&
692           Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) &&
693          "Target not supported!\n");
694 
695   MachineFunction *MF = MI->getMF();
696   MachineRegisterInfo *MRI = &MF->getRegInfo();
697 
698   // Generate ADDIStocHA8
699   Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
700   MachineInstrBuilder TOCOffset =
701       BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1)
702           .addReg(PPC::X2)
703           .addConstantPoolIndex(Idx);
704 
705   assert((Ty->isFloatTy() || Ty->isDoubleTy()) &&
706          "Only float and double are supported!");
707 
708   unsigned LoadOpcode;
709   // Should be float type or double type.
710   if (Ty->isFloatTy())
711     LoadOpcode = PPC::DFLOADf32;
712   else
713     LoadOpcode = PPC::DFLOADf64;
714 
715   const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg());
716   Register VReg2 = MRI->createVirtualRegister(RC);
717   MachineMemOperand *MMO = MF->getMachineMemOperand(
718       MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad,
719       Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty));
720 
721   // Generate Load from constant pool.
722   MachineInstrBuilder Load =
723       BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2)
724           .addConstantPoolIndex(Idx)
725           .addReg(VReg1, getKillRegState(true))
726           .addMemOperand(MMO);
727 
728   Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO);
729 
730   // Insert the toc load instructions into InsInstrs.
731   InsInstrs.insert(InsInstrs.begin(), Load);
732   InsInstrs.insert(InsInstrs.begin(), TOCOffset);
733   return VReg2;
734 }
735 
736 // This function returns the const value in constant pool if the \p I is a load
737 // from constant pool.
738 const Constant *
739 PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const {
740   MachineFunction *MF = I->getMF();
741   MachineRegisterInfo *MRI = &MF->getRegInfo();
742   MachineConstantPool *MCP = MF->getConstantPool();
743   assert(I->mayLoad() && "Should be a load instruction.\n");
744   for (auto MO : I->uses()) {
745     if (!MO.isReg())
746       continue;
747     Register Reg = MO.getReg();
748     if (Reg == 0 || !Register::isVirtualRegister(Reg))
749       continue;
750     // Find the toc address.
751     MachineInstr *DefMI = MRI->getVRegDef(Reg);
752     for (auto MO2 : DefMI->uses())
753       if (MO2.isCPI())
754         return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal;
755   }
756   return nullptr;
757 }
758 
759 bool PPCInstrInfo::getMachineCombinerPatterns(
760     MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
761     bool DoRegPressureReduce) const {
762   // Using the machine combiner in this way is potentially expensive, so
763   // restrict to when aggressive optimizations are desired.
764   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
765     return false;
766 
767   if (getFMAPatterns(Root, Patterns, DoRegPressureReduce))
768     return true;
769 
770   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns,
771                                                      DoRegPressureReduce);
772 }
773 
774 void PPCInstrInfo::genAlternativeCodeSequence(
775     MachineInstr &Root, MachineCombinerPattern Pattern,
776     SmallVectorImpl<MachineInstr *> &InsInstrs,
777     SmallVectorImpl<MachineInstr *> &DelInstrs,
778     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
779   switch (Pattern) {
780   case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
781   case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
782   case MachineCombinerPattern::REASSOC_XY_BCA:
783   case MachineCombinerPattern::REASSOC_XY_BAC:
784     reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg);
785     break;
786   default:
787     // Reassociate default patterns.
788     TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
789                                                 DelInstrs, InstrIdxForVirtReg);
790     break;
791   }
792 }
793 
794 void PPCInstrInfo::reassociateFMA(
795     MachineInstr &Root, MachineCombinerPattern Pattern,
796     SmallVectorImpl<MachineInstr *> &InsInstrs,
797     SmallVectorImpl<MachineInstr *> &DelInstrs,
798     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
799   MachineFunction *MF = Root.getMF();
800   MachineRegisterInfo &MRI = MF->getRegInfo();
801   const TargetRegisterInfo *TRI = &getRegisterInfo();
802   MachineOperand &OpC = Root.getOperand(0);
803   Register RegC = OpC.getReg();
804   const TargetRegisterClass *RC = MRI.getRegClass(RegC);
805   MRI.constrainRegClass(RegC, RC);
806 
807   unsigned FmaOp = Root.getOpcode();
808   int16_t Idx = getFMAOpIdxInfo(FmaOp);
809   assert(Idx >= 0 && "Root must be a FMA instruction");
810 
811   bool IsILPReassociate =
812       (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) ||
813       (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM);
814 
815   uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
816   uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
817 
818   MachineInstr *Prev = nullptr;
819   MachineInstr *Leaf = nullptr;
820   switch (Pattern) {
821   default:
822     llvm_unreachable("not recognized pattern!");
823   case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
824   case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
825     Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg());
826     Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg());
827     break;
828   case MachineCombinerPattern::REASSOC_XY_BAC: {
829     Register MULReg =
830         TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI);
831     Leaf = MRI.getVRegDef(MULReg);
832     break;
833   }
834   case MachineCombinerPattern::REASSOC_XY_BCA: {
835     Register MULReg = TRI->lookThruCopyLike(
836         Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI);
837     Leaf = MRI.getVRegDef(MULReg);
838     break;
839   }
840   }
841 
842   uint16_t IntersectedFlags = 0;
843   if (IsILPReassociate)
844     IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags();
845   else
846     IntersectedFlags = Root.getFlags() & Leaf->getFlags();
847 
848   auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg,
849                             bool &KillFlag) {
850     Reg = Operand.getReg();
851     MRI.constrainRegClass(Reg, RC);
852     KillFlag = Operand.isKill();
853   };
854 
855   auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1,
856                              Register &MulOp2, Register &AddOp,
857                              bool &MulOp1KillFlag, bool &MulOp2KillFlag,
858                              bool &AddOpKillFlag) {
859     GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag);
860     GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag);
861     GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag);
862   };
863 
864   Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11,
865       RegA21, RegB;
866   bool KillX = false, KillY = false, KillM11 = false, KillM12 = false,
867        KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false,
868        KillA11 = false, KillA21 = false, KillB = false;
869 
870   GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB);
871 
872   if (IsILPReassociate)
873     GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21);
874 
875   if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
876     GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11);
877     GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX);
878   } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) {
879     GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
880     GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
881   } else {
882     // Get FSUB instruction info.
883     GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
884     GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
885   }
886 
887   // Create new virtual registers for the new results instead of
888   // recycling legacy ones because the MachineCombiner's computation of the
889   // critical path requires a new register definition rather than an existing
890   // one.
891   // For register pressure reassociation, we only need create one virtual
892   // register for the new fma.
893   Register NewVRA = MRI.createVirtualRegister(RC);
894   InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0));
895 
896   Register NewVRB = 0;
897   if (IsILPReassociate) {
898     NewVRB = MRI.createVirtualRegister(RC);
899     InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1));
900   }
901 
902   Register NewVRD = 0;
903   if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
904     NewVRD = MRI.createVirtualRegister(RC);
905     InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2));
906   }
907 
908   auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd,
909                                 Register RegMul1, bool KillRegMul1,
910                                 Register RegMul2, bool KillRegMul2) {
911     MI->getOperand(AddOpIdx).setReg(RegAdd);
912     MI->getOperand(AddOpIdx).setIsKill(KillAdd);
913     MI->getOperand(FirstMulOpIdx).setReg(RegMul1);
914     MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1);
915     MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2);
916     MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2);
917   };
918 
919   MachineInstrBuilder NewARegPressure, NewCRegPressure;
920   switch (Pattern) {
921   default:
922     llvm_unreachable("not recognized pattern!");
923   case MachineCombinerPattern::REASSOC_XY_AMM_BMM: {
924     // Create new instructions for insertion.
925     MachineInstrBuilder MINewB =
926         BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
927             .addReg(RegX, getKillRegState(KillX))
928             .addReg(RegM21, getKillRegState(KillM21))
929             .addReg(RegM22, getKillRegState(KillM22));
930     MachineInstrBuilder MINewA =
931         BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
932             .addReg(RegY, getKillRegState(KillY))
933             .addReg(RegM31, getKillRegState(KillM31))
934             .addReg(RegM32, getKillRegState(KillM32));
935     // If AddOpIdx is not 1, adjust the order.
936     if (AddOpIdx != 1) {
937       AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
938       AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32);
939     }
940 
941     MachineInstrBuilder MINewC =
942         BuildMI(*MF, Root.getDebugLoc(),
943                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
944             .addReg(NewVRB, getKillRegState(true))
945             .addReg(NewVRA, getKillRegState(true));
946 
947     // Update flags for newly created instructions.
948     setSpecialOperandAttr(*MINewA, IntersectedFlags);
949     setSpecialOperandAttr(*MINewB, IntersectedFlags);
950     setSpecialOperandAttr(*MINewC, IntersectedFlags);
951 
952     // Record new instructions for insertion.
953     InsInstrs.push_back(MINewA);
954     InsInstrs.push_back(MINewB);
955     InsInstrs.push_back(MINewC);
956     break;
957   }
958   case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: {
959     assert(NewVRD && "new FMA register not created!");
960     // Create new instructions for insertion.
961     MachineInstrBuilder MINewA =
962         BuildMI(*MF, Leaf->getDebugLoc(),
963                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA)
964             .addReg(RegM11, getKillRegState(KillM11))
965             .addReg(RegM12, getKillRegState(KillM12));
966     MachineInstrBuilder MINewB =
967         BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
968             .addReg(RegX, getKillRegState(KillX))
969             .addReg(RegM21, getKillRegState(KillM21))
970             .addReg(RegM22, getKillRegState(KillM22));
971     MachineInstrBuilder MINewD =
972         BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD)
973             .addReg(NewVRA, getKillRegState(true))
974             .addReg(RegM31, getKillRegState(KillM31))
975             .addReg(RegM32, getKillRegState(KillM32));
976     // If AddOpIdx is not 1, adjust the order.
977     if (AddOpIdx != 1) {
978       AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
979       AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32,
980                          KillM32);
981     }
982 
983     MachineInstrBuilder MINewC =
984         BuildMI(*MF, Root.getDebugLoc(),
985                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
986             .addReg(NewVRB, getKillRegState(true))
987             .addReg(NewVRD, getKillRegState(true));
988 
989     // Update flags for newly created instructions.
990     setSpecialOperandAttr(*MINewA, IntersectedFlags);
991     setSpecialOperandAttr(*MINewB, IntersectedFlags);
992     setSpecialOperandAttr(*MINewD, IntersectedFlags);
993     setSpecialOperandAttr(*MINewC, IntersectedFlags);
994 
995     // Record new instructions for insertion.
996     InsInstrs.push_back(MINewA);
997     InsInstrs.push_back(MINewB);
998     InsInstrs.push_back(MINewD);
999     InsInstrs.push_back(MINewC);
1000     break;
1001   }
1002   case MachineCombinerPattern::REASSOC_XY_BAC:
1003   case MachineCombinerPattern::REASSOC_XY_BCA: {
1004     Register VarReg;
1005     bool KillVarReg = false;
1006     if (Pattern == MachineCombinerPattern::REASSOC_XY_BCA) {
1007       VarReg = RegM31;
1008       KillVarReg = KillM31;
1009     } else {
1010       VarReg = RegM32;
1011       KillVarReg = KillM32;
1012     }
1013     // We don't want to get negative const from memory pool too early, as the
1014     // created entry will not be deleted even if it has no users. Since all
1015     // operand of Leaf and Root are virtual register, we use zero register
1016     // here as a placeholder. When the InsInstrs is selected in
1017     // MachineCombiner, we call finalizeInsInstrs to replace the zero register
1018     // with a virtual register which is a load from constant pool.
1019     NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
1020                           .addReg(RegB, getKillRegState(RegB))
1021                           .addReg(RegY, getKillRegState(KillY))
1022                           .addReg(PPC::ZERO8);
1023     NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC)
1024                           .addReg(NewVRA, getKillRegState(true))
1025                           .addReg(RegX, getKillRegState(KillX))
1026                           .addReg(VarReg, getKillRegState(KillVarReg));
1027     // For now, we only support xsmaddadp/xsmaddasp, their add operand are
1028     // both at index 1, no need to adjust.
1029     // FIXME: when add more fma instructions support, like fma/fmas, adjust
1030     // the operand index here.
1031     break;
1032   }
1033   }
1034 
1035   if (!IsILPReassociate) {
1036     setSpecialOperandAttr(*NewARegPressure, IntersectedFlags);
1037     setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags);
1038 
1039     InsInstrs.push_back(NewARegPressure);
1040     InsInstrs.push_back(NewCRegPressure);
1041   }
1042 
1043   assert(!InsInstrs.empty() &&
1044          "Insertion instructions set should not be empty!");
1045 
1046   // Record old instructions for deletion.
1047   DelInstrs.push_back(Leaf);
1048   if (IsILPReassociate)
1049     DelInstrs.push_back(Prev);
1050   DelInstrs.push_back(&Root);
1051 }
1052 
1053 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
1054 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1055                                          Register &SrcReg, Register &DstReg,
1056                                          unsigned &SubIdx) const {
1057   switch (MI.getOpcode()) {
1058   default: return false;
1059   case PPC::EXTSW:
1060   case PPC::EXTSW_32:
1061   case PPC::EXTSW_32_64:
1062     SrcReg = MI.getOperand(1).getReg();
1063     DstReg = MI.getOperand(0).getReg();
1064     SubIdx = PPC::sub_32;
1065     return true;
1066   }
1067 }
1068 
1069 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1070                                            int &FrameIndex) const {
1071   unsigned Opcode = MI.getOpcode();
1072   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1073   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
1074 
1075   if (End != std::find(OpcodesForSpill, End, Opcode)) {
1076     // Check for the operands added by addFrameReference (the immediate is the
1077     // offset which defaults to 0).
1078     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
1079         MI.getOperand(2).isFI()) {
1080       FrameIndex = MI.getOperand(2).getIndex();
1081       return MI.getOperand(0).getReg();
1082     }
1083   }
1084   return 0;
1085 }
1086 
1087 // For opcodes with the ReMaterializable flag set, this function is called to
1088 // verify the instruction is really rematable.
1089 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
1090                                                      AliasAnalysis *AA) const {
1091   switch (MI.getOpcode()) {
1092   default:
1093     // This function should only be called for opcodes with the ReMaterializable
1094     // flag set.
1095     llvm_unreachable("Unknown rematerializable operation!");
1096     break;
1097   case PPC::LI:
1098   case PPC::LI8:
1099   case PPC::PLI:
1100   case PPC::PLI8:
1101   case PPC::LIS:
1102   case PPC::LIS8:
1103   case PPC::ADDIStocHA:
1104   case PPC::ADDIStocHA8:
1105   case PPC::ADDItocL:
1106   case PPC::LOAD_STACK_GUARD:
1107   case PPC::XXLXORz:
1108   case PPC::XXLXORspz:
1109   case PPC::XXLXORdpz:
1110   case PPC::XXLEQVOnes:
1111   case PPC::XXSPLTI32DX:
1112   case PPC::V_SET0B:
1113   case PPC::V_SET0H:
1114   case PPC::V_SET0:
1115   case PPC::V_SETALLONESB:
1116   case PPC::V_SETALLONESH:
1117   case PPC::V_SETALLONES:
1118   case PPC::CRSET:
1119   case PPC::CRUNSET:
1120   case PPC::XXSETACCZ:
1121     return true;
1122   }
1123   return false;
1124 }
1125 
1126 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1127                                           int &FrameIndex) const {
1128   unsigned Opcode = MI.getOpcode();
1129   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1130   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
1131 
1132   if (End != std::find(OpcodesForSpill, End, Opcode)) {
1133     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
1134         MI.getOperand(2).isFI()) {
1135       FrameIndex = MI.getOperand(2).getIndex();
1136       return MI.getOperand(0).getReg();
1137     }
1138   }
1139   return 0;
1140 }
1141 
1142 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
1143                                                    unsigned OpIdx1,
1144                                                    unsigned OpIdx2) const {
1145   MachineFunction &MF = *MI.getParent()->getParent();
1146 
1147   // Normal instructions can be commuted the obvious way.
1148   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec)
1149     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1150   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
1151   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
1152   // changing the relative order of the mask operands might change what happens
1153   // to the high-bits of the mask (and, thus, the result).
1154 
1155   // Cannot commute if it has a non-zero rotate count.
1156   if (MI.getOperand(3).getImm() != 0)
1157     return nullptr;
1158 
1159   // If we have a zero rotate count, we have:
1160   //   M = mask(MB,ME)
1161   //   Op0 = (Op1 & ~M) | (Op2 & M)
1162   // Change this to:
1163   //   M = mask((ME+1)&31, (MB-1)&31)
1164   //   Op0 = (Op2 & ~M) | (Op1 & M)
1165 
1166   // Swap op1/op2
1167   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
1168          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec.");
1169   Register Reg0 = MI.getOperand(0).getReg();
1170   Register Reg1 = MI.getOperand(1).getReg();
1171   Register Reg2 = MI.getOperand(2).getReg();
1172   unsigned SubReg1 = MI.getOperand(1).getSubReg();
1173   unsigned SubReg2 = MI.getOperand(2).getSubReg();
1174   bool Reg1IsKill = MI.getOperand(1).isKill();
1175   bool Reg2IsKill = MI.getOperand(2).isKill();
1176   bool ChangeReg0 = false;
1177   // If machine instrs are no longer in two-address forms, update
1178   // destination register as well.
1179   if (Reg0 == Reg1) {
1180     // Must be two address instruction!
1181     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
1182            "Expecting a two-address instruction!");
1183     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
1184     Reg2IsKill = false;
1185     ChangeReg0 = true;
1186   }
1187 
1188   // Masks.
1189   unsigned MB = MI.getOperand(4).getImm();
1190   unsigned ME = MI.getOperand(5).getImm();
1191 
1192   // We can't commute a trivial mask (there is no way to represent an all-zero
1193   // mask).
1194   if (MB == 0 && ME == 31)
1195     return nullptr;
1196 
1197   if (NewMI) {
1198     // Create a new instruction.
1199     Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
1200     bool Reg0IsDead = MI.getOperand(0).isDead();
1201     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
1202         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
1203         .addReg(Reg2, getKillRegState(Reg2IsKill))
1204         .addReg(Reg1, getKillRegState(Reg1IsKill))
1205         .addImm((ME + 1) & 31)
1206         .addImm((MB - 1) & 31);
1207   }
1208 
1209   if (ChangeReg0) {
1210     MI.getOperand(0).setReg(Reg2);
1211     MI.getOperand(0).setSubReg(SubReg2);
1212   }
1213   MI.getOperand(2).setReg(Reg1);
1214   MI.getOperand(1).setReg(Reg2);
1215   MI.getOperand(2).setSubReg(SubReg1);
1216   MI.getOperand(1).setSubReg(SubReg2);
1217   MI.getOperand(2).setIsKill(Reg1IsKill);
1218   MI.getOperand(1).setIsKill(Reg2IsKill);
1219 
1220   // Swap the mask around.
1221   MI.getOperand(4).setImm((ME + 1) & 31);
1222   MI.getOperand(5).setImm((MB - 1) & 31);
1223   return &MI;
1224 }
1225 
1226 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
1227                                          unsigned &SrcOpIdx1,
1228                                          unsigned &SrcOpIdx2) const {
1229   // For VSX A-Type FMA instructions, it is the first two operands that can be
1230   // commuted, however, because the non-encoded tied input operand is listed
1231   // first, the operands to swap are actually the second and third.
1232 
1233   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
1234   if (AltOpc == -1)
1235     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1236 
1237   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
1238   // and SrcOpIdx2.
1239   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
1240 }
1241 
1242 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
1243                               MachineBasicBlock::iterator MI) const {
1244   // This function is used for scheduling, and the nop wanted here is the type
1245   // that terminates dispatch groups on the POWER cores.
1246   unsigned Directive = Subtarget.getCPUDirective();
1247   unsigned Opcode;
1248   switch (Directive) {
1249   default:            Opcode = PPC::NOP; break;
1250   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
1251   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
1252   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
1253   // FIXME: Update when POWER9 scheduling model is ready.
1254   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
1255   }
1256 
1257   DebugLoc DL;
1258   BuildMI(MBB, MI, DL, get(Opcode));
1259 }
1260 
1261 /// Return the noop instruction to use for a noop.
1262 MCInst PPCInstrInfo::getNop() const {
1263   MCInst Nop;
1264   Nop.setOpcode(PPC::NOP);
1265   return Nop;
1266 }
1267 
1268 // Branch analysis.
1269 // Note: If the condition register is set to CTR or CTR8 then this is a
1270 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
1271 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
1272                                  MachineBasicBlock *&TBB,
1273                                  MachineBasicBlock *&FBB,
1274                                  SmallVectorImpl<MachineOperand> &Cond,
1275                                  bool AllowModify) const {
1276   bool isPPC64 = Subtarget.isPPC64();
1277 
1278   // If the block has no terminators, it just falls into the block after it.
1279   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1280   if (I == MBB.end())
1281     return false;
1282 
1283   if (!isUnpredicatedTerminator(*I))
1284     return false;
1285 
1286   if (AllowModify) {
1287     // If the BB ends with an unconditional branch to the fallthrough BB,
1288     // we eliminate the branch instruction.
1289     if (I->getOpcode() == PPC::B &&
1290         MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1291       I->eraseFromParent();
1292 
1293       // We update iterator after deleting the last branch.
1294       I = MBB.getLastNonDebugInstr();
1295       if (I == MBB.end() || !isUnpredicatedTerminator(*I))
1296         return false;
1297     }
1298   }
1299 
1300   // Get the last instruction in the block.
1301   MachineInstr &LastInst = *I;
1302 
1303   // If there is only one terminator instruction, process it.
1304   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
1305     if (LastInst.getOpcode() == PPC::B) {
1306       if (!LastInst.getOperand(0).isMBB())
1307         return true;
1308       TBB = LastInst.getOperand(0).getMBB();
1309       return false;
1310     } else if (LastInst.getOpcode() == PPC::BCC) {
1311       if (!LastInst.getOperand(2).isMBB())
1312         return true;
1313       // Block ends with fall-through condbranch.
1314       TBB = LastInst.getOperand(2).getMBB();
1315       Cond.push_back(LastInst.getOperand(0));
1316       Cond.push_back(LastInst.getOperand(1));
1317       return false;
1318     } else if (LastInst.getOpcode() == PPC::BC) {
1319       if (!LastInst.getOperand(1).isMBB())
1320         return true;
1321       // Block ends with fall-through condbranch.
1322       TBB = LastInst.getOperand(1).getMBB();
1323       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
1324       Cond.push_back(LastInst.getOperand(0));
1325       return false;
1326     } else if (LastInst.getOpcode() == PPC::BCn) {
1327       if (!LastInst.getOperand(1).isMBB())
1328         return true;
1329       // Block ends with fall-through condbranch.
1330       TBB = LastInst.getOperand(1).getMBB();
1331       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
1332       Cond.push_back(LastInst.getOperand(0));
1333       return false;
1334     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
1335                LastInst.getOpcode() == PPC::BDNZ) {
1336       if (!LastInst.getOperand(0).isMBB())
1337         return true;
1338       if (DisableCTRLoopAnal)
1339         return true;
1340       TBB = LastInst.getOperand(0).getMBB();
1341       Cond.push_back(MachineOperand::CreateImm(1));
1342       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1343                                                true));
1344       return false;
1345     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
1346                LastInst.getOpcode() == PPC::BDZ) {
1347       if (!LastInst.getOperand(0).isMBB())
1348         return true;
1349       if (DisableCTRLoopAnal)
1350         return true;
1351       TBB = LastInst.getOperand(0).getMBB();
1352       Cond.push_back(MachineOperand::CreateImm(0));
1353       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1354                                                true));
1355       return false;
1356     }
1357 
1358     // Otherwise, don't know what this is.
1359     return true;
1360   }
1361 
1362   // Get the instruction before it if it's a terminator.
1363   MachineInstr &SecondLastInst = *I;
1364 
1365   // If there are three terminators, we don't know what sort of block this is.
1366   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
1367     return true;
1368 
1369   // If the block ends with PPC::B and PPC:BCC, handle it.
1370   if (SecondLastInst.getOpcode() == PPC::BCC &&
1371       LastInst.getOpcode() == PPC::B) {
1372     if (!SecondLastInst.getOperand(2).isMBB() ||
1373         !LastInst.getOperand(0).isMBB())
1374       return true;
1375     TBB = SecondLastInst.getOperand(2).getMBB();
1376     Cond.push_back(SecondLastInst.getOperand(0));
1377     Cond.push_back(SecondLastInst.getOperand(1));
1378     FBB = LastInst.getOperand(0).getMBB();
1379     return false;
1380   } else if (SecondLastInst.getOpcode() == PPC::BC &&
1381              LastInst.getOpcode() == PPC::B) {
1382     if (!SecondLastInst.getOperand(1).isMBB() ||
1383         !LastInst.getOperand(0).isMBB())
1384       return true;
1385     TBB = SecondLastInst.getOperand(1).getMBB();
1386     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
1387     Cond.push_back(SecondLastInst.getOperand(0));
1388     FBB = LastInst.getOperand(0).getMBB();
1389     return false;
1390   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
1391              LastInst.getOpcode() == PPC::B) {
1392     if (!SecondLastInst.getOperand(1).isMBB() ||
1393         !LastInst.getOperand(0).isMBB())
1394       return true;
1395     TBB = SecondLastInst.getOperand(1).getMBB();
1396     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
1397     Cond.push_back(SecondLastInst.getOperand(0));
1398     FBB = LastInst.getOperand(0).getMBB();
1399     return false;
1400   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
1401               SecondLastInst.getOpcode() == PPC::BDNZ) &&
1402              LastInst.getOpcode() == PPC::B) {
1403     if (!SecondLastInst.getOperand(0).isMBB() ||
1404         !LastInst.getOperand(0).isMBB())
1405       return true;
1406     if (DisableCTRLoopAnal)
1407       return true;
1408     TBB = SecondLastInst.getOperand(0).getMBB();
1409     Cond.push_back(MachineOperand::CreateImm(1));
1410     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1411                                              true));
1412     FBB = LastInst.getOperand(0).getMBB();
1413     return false;
1414   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
1415               SecondLastInst.getOpcode() == PPC::BDZ) &&
1416              LastInst.getOpcode() == PPC::B) {
1417     if (!SecondLastInst.getOperand(0).isMBB() ||
1418         !LastInst.getOperand(0).isMBB())
1419       return true;
1420     if (DisableCTRLoopAnal)
1421       return true;
1422     TBB = SecondLastInst.getOperand(0).getMBB();
1423     Cond.push_back(MachineOperand::CreateImm(0));
1424     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1425                                              true));
1426     FBB = LastInst.getOperand(0).getMBB();
1427     return false;
1428   }
1429 
1430   // If the block ends with two PPC:Bs, handle it.  The second one is not
1431   // executed, so remove it.
1432   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
1433     if (!SecondLastInst.getOperand(0).isMBB())
1434       return true;
1435     TBB = SecondLastInst.getOperand(0).getMBB();
1436     I = LastInst;
1437     if (AllowModify)
1438       I->eraseFromParent();
1439     return false;
1440   }
1441 
1442   // Otherwise, can't handle this.
1443   return true;
1444 }
1445 
1446 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
1447                                     int *BytesRemoved) const {
1448   assert(!BytesRemoved && "code size not handled");
1449 
1450   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1451   if (I == MBB.end())
1452     return 0;
1453 
1454   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
1455       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1456       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1457       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
1458     return 0;
1459 
1460   // Remove the branch.
1461   I->eraseFromParent();
1462 
1463   I = MBB.end();
1464 
1465   if (I == MBB.begin()) return 1;
1466   --I;
1467   if (I->getOpcode() != PPC::BCC &&
1468       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1469       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1470       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
1471     return 1;
1472 
1473   // Remove the branch.
1474   I->eraseFromParent();
1475   return 2;
1476 }
1477 
1478 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
1479                                     MachineBasicBlock *TBB,
1480                                     MachineBasicBlock *FBB,
1481                                     ArrayRef<MachineOperand> Cond,
1482                                     const DebugLoc &DL,
1483                                     int *BytesAdded) const {
1484   // Shouldn't be a fall through.
1485   assert(TBB && "insertBranch must not be told to insert a fallthrough");
1486   assert((Cond.size() == 2 || Cond.size() == 0) &&
1487          "PPC branch conditions have two components!");
1488   assert(!BytesAdded && "code size not handled");
1489 
1490   bool isPPC64 = Subtarget.isPPC64();
1491 
1492   // One-way branch.
1493   if (!FBB) {
1494     if (Cond.empty())   // Unconditional branch
1495       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
1496     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1497       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1498                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1499                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
1500     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1501       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1502     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1503       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1504     else                // Conditional branch
1505       BuildMI(&MBB, DL, get(PPC::BCC))
1506           .addImm(Cond[0].getImm())
1507           .add(Cond[1])
1508           .addMBB(TBB);
1509     return 1;
1510   }
1511 
1512   // Two-way Conditional Branch.
1513   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1514     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1515                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1516                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
1517   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1518     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1519   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1520     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1521   else
1522     BuildMI(&MBB, DL, get(PPC::BCC))
1523         .addImm(Cond[0].getImm())
1524         .add(Cond[1])
1525         .addMBB(TBB);
1526   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
1527   return 2;
1528 }
1529 
1530 // Select analysis.
1531 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
1532                                    ArrayRef<MachineOperand> Cond,
1533                                    Register DstReg, Register TrueReg,
1534                                    Register FalseReg, int &CondCycles,
1535                                    int &TrueCycles, int &FalseCycles) const {
1536   if (Cond.size() != 2)
1537     return false;
1538 
1539   // If this is really a bdnz-like condition, then it cannot be turned into a
1540   // select.
1541   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1542     return false;
1543 
1544   // If the conditional branch uses a physical register, then it cannot be
1545   // turned into a select.
1546   if (Register::isPhysicalRegister(Cond[1].getReg()))
1547     return false;
1548 
1549   // Check register classes.
1550   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1551   const TargetRegisterClass *RC =
1552     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1553   if (!RC)
1554     return false;
1555 
1556   // isel is for regular integer GPRs only.
1557   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
1558       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
1559       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
1560       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
1561     return false;
1562 
1563   // FIXME: These numbers are for the A2, how well they work for other cores is
1564   // an open question. On the A2, the isel instruction has a 2-cycle latency
1565   // but single-cycle throughput. These numbers are used in combination with
1566   // the MispredictPenalty setting from the active SchedMachineModel.
1567   CondCycles = 1;
1568   TrueCycles = 1;
1569   FalseCycles = 1;
1570 
1571   return true;
1572 }
1573 
1574 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
1575                                 MachineBasicBlock::iterator MI,
1576                                 const DebugLoc &dl, Register DestReg,
1577                                 ArrayRef<MachineOperand> Cond, Register TrueReg,
1578                                 Register FalseReg) const {
1579   assert(Cond.size() == 2 &&
1580          "PPC branch conditions have two components!");
1581 
1582   // Get the register classes.
1583   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1584   const TargetRegisterClass *RC =
1585     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1586   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
1587 
1588   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
1589                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
1590   assert((Is64Bit ||
1591           PPC::GPRCRegClass.hasSubClassEq(RC) ||
1592           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
1593          "isel is for regular integer GPRs only");
1594 
1595   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
1596   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
1597 
1598   unsigned SubIdx = 0;
1599   bool SwapOps = false;
1600   switch (SelectPred) {
1601   case PPC::PRED_EQ:
1602   case PPC::PRED_EQ_MINUS:
1603   case PPC::PRED_EQ_PLUS:
1604       SubIdx = PPC::sub_eq; SwapOps = false; break;
1605   case PPC::PRED_NE:
1606   case PPC::PRED_NE_MINUS:
1607   case PPC::PRED_NE_PLUS:
1608       SubIdx = PPC::sub_eq; SwapOps = true; break;
1609   case PPC::PRED_LT:
1610   case PPC::PRED_LT_MINUS:
1611   case PPC::PRED_LT_PLUS:
1612       SubIdx = PPC::sub_lt; SwapOps = false; break;
1613   case PPC::PRED_GE:
1614   case PPC::PRED_GE_MINUS:
1615   case PPC::PRED_GE_PLUS:
1616       SubIdx = PPC::sub_lt; SwapOps = true; break;
1617   case PPC::PRED_GT:
1618   case PPC::PRED_GT_MINUS:
1619   case PPC::PRED_GT_PLUS:
1620       SubIdx = PPC::sub_gt; SwapOps = false; break;
1621   case PPC::PRED_LE:
1622   case PPC::PRED_LE_MINUS:
1623   case PPC::PRED_LE_PLUS:
1624       SubIdx = PPC::sub_gt; SwapOps = true; break;
1625   case PPC::PRED_UN:
1626   case PPC::PRED_UN_MINUS:
1627   case PPC::PRED_UN_PLUS:
1628       SubIdx = PPC::sub_un; SwapOps = false; break;
1629   case PPC::PRED_NU:
1630   case PPC::PRED_NU_MINUS:
1631   case PPC::PRED_NU_PLUS:
1632       SubIdx = PPC::sub_un; SwapOps = true; break;
1633   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
1634   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
1635   }
1636 
1637   Register FirstReg =  SwapOps ? FalseReg : TrueReg,
1638            SecondReg = SwapOps ? TrueReg  : FalseReg;
1639 
1640   // The first input register of isel cannot be r0. If it is a member
1641   // of a register class that can be r0, then copy it first (the
1642   // register allocator should eliminate the copy).
1643   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
1644       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
1645     const TargetRegisterClass *FirstRC =
1646       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
1647         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
1648     Register OldFirstReg = FirstReg;
1649     FirstReg = MRI.createVirtualRegister(FirstRC);
1650     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
1651       .addReg(OldFirstReg);
1652   }
1653 
1654   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
1655     .addReg(FirstReg).addReg(SecondReg)
1656     .addReg(Cond[1].getReg(), 0, SubIdx);
1657 }
1658 
1659 static unsigned getCRBitValue(unsigned CRBit) {
1660   unsigned Ret = 4;
1661   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
1662       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
1663       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
1664       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
1665     Ret = 3;
1666   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
1667       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
1668       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
1669       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
1670     Ret = 2;
1671   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
1672       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
1673       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
1674       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
1675     Ret = 1;
1676   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
1677       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
1678       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
1679       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
1680     Ret = 0;
1681 
1682   assert(Ret != 4 && "Invalid CR bit register");
1683   return Ret;
1684 }
1685 
1686 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1687                                MachineBasicBlock::iterator I,
1688                                const DebugLoc &DL, MCRegister DestReg,
1689                                MCRegister SrcReg, bool KillSrc) const {
1690   // We can end up with self copies and similar things as a result of VSX copy
1691   // legalization. Promote them here.
1692   const TargetRegisterInfo *TRI = &getRegisterInfo();
1693   if (PPC::F8RCRegClass.contains(DestReg) &&
1694       PPC::VSRCRegClass.contains(SrcReg)) {
1695     MCRegister SuperReg =
1696         TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
1697 
1698     if (VSXSelfCopyCrash && SrcReg == SuperReg)
1699       llvm_unreachable("nop VSX copy");
1700 
1701     DestReg = SuperReg;
1702   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
1703              PPC::VSRCRegClass.contains(DestReg)) {
1704     MCRegister SuperReg =
1705         TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
1706 
1707     if (VSXSelfCopyCrash && DestReg == SuperReg)
1708       llvm_unreachable("nop VSX copy");
1709 
1710     SrcReg = SuperReg;
1711   }
1712 
1713   // Different class register copy
1714   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
1715       PPC::GPRCRegClass.contains(DestReg)) {
1716     MCRegister CRReg = getCRFromCRBit(SrcReg);
1717     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
1718     getKillRegState(KillSrc);
1719     // Rotate the CR bit in the CR fields to be the least significant bit and
1720     // then mask with 0x1 (MB = ME = 31).
1721     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
1722        .addReg(DestReg, RegState::Kill)
1723        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
1724        .addImm(31)
1725        .addImm(31);
1726     return;
1727   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
1728              (PPC::G8RCRegClass.contains(DestReg) ||
1729               PPC::GPRCRegClass.contains(DestReg))) {
1730     bool Is64Bit = PPC::G8RCRegClass.contains(DestReg);
1731     unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF;
1732     unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM;
1733     unsigned CRNum = TRI->getEncodingValue(SrcReg);
1734     BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg);
1735     getKillRegState(KillSrc);
1736     if (CRNum == 7)
1737       return;
1738     // Shift the CR bits to make the CR field in the lowest 4 bits of GRC.
1739     BuildMI(MBB, I, DL, get(ShCode), DestReg)
1740         .addReg(DestReg, RegState::Kill)
1741         .addImm(CRNum * 4 + 4)
1742         .addImm(28)
1743         .addImm(31);
1744     return;
1745   } else if (PPC::G8RCRegClass.contains(SrcReg) &&
1746              PPC::VSFRCRegClass.contains(DestReg)) {
1747     assert(Subtarget.hasDirectMove() &&
1748            "Subtarget doesn't support directmove, don't know how to copy.");
1749     BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
1750     NumGPRtoVSRSpill++;
1751     getKillRegState(KillSrc);
1752     return;
1753   } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
1754              PPC::G8RCRegClass.contains(DestReg)) {
1755     assert(Subtarget.hasDirectMove() &&
1756            "Subtarget doesn't support directmove, don't know how to copy.");
1757     BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
1758     getKillRegState(KillSrc);
1759     return;
1760   } else if (PPC::SPERCRegClass.contains(SrcReg) &&
1761              PPC::GPRCRegClass.contains(DestReg)) {
1762     BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
1763     getKillRegState(KillSrc);
1764     return;
1765   } else if (PPC::GPRCRegClass.contains(SrcReg) &&
1766              PPC::SPERCRegClass.contains(DestReg)) {
1767     BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
1768     getKillRegState(KillSrc);
1769     return;
1770   }
1771 
1772   unsigned Opc;
1773   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
1774     Opc = PPC::OR;
1775   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
1776     Opc = PPC::OR8;
1777   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
1778     Opc = PPC::FMR;
1779   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
1780     Opc = PPC::MCRF;
1781   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
1782     Opc = PPC::VOR;
1783   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
1784     // There are two different ways this can be done:
1785     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
1786     //      issue in VSU pipeline 0.
1787     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
1788     //      can go to either pipeline.
1789     // We'll always use xxlor here, because in practically all cases where
1790     // copies are generated, they are close enough to some use that the
1791     // lower-latency form is preferable.
1792     Opc = PPC::XXLOR;
1793   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1794            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1795     Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1796   else if (Subtarget.pairedVectorMemops() &&
1797            PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) {
1798     if (SrcReg > PPC::VSRp15)
1799       SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2;
1800     else
1801       SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2;
1802     if (DestReg > PPC::VSRp15)
1803       DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2;
1804     else
1805       DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2;
1806     BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg).
1807       addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1808     BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1).
1809       addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc));
1810     return;
1811   }
1812   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1813     Opc = PPC::CROR;
1814   else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1815     Opc = PPC::EVOR;
1816   else if ((PPC::ACCRCRegClass.contains(DestReg) ||
1817             PPC::UACCRCRegClass.contains(DestReg)) &&
1818            (PPC::ACCRCRegClass.contains(SrcReg) ||
1819             PPC::UACCRCRegClass.contains(SrcReg))) {
1820     // If primed, de-prime the source register, copy the individual registers
1821     // and prime the destination if needed. The vector subregisters are
1822     // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the
1823     // source is primed, we need to re-prime it after the copy as well.
1824     PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg);
1825     bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg);
1826     bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg);
1827     MCRegister VSLSrcReg =
1828         PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
1829     MCRegister VSLDestReg =
1830         PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
1831     if (SrcPrimed)
1832       BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
1833     for (unsigned Idx = 0; Idx < 4; Idx++)
1834       BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx)
1835           .addReg(VSLSrcReg + Idx)
1836           .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc));
1837     if (DestPrimed)
1838       BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg);
1839     if (SrcPrimed && !KillSrc)
1840       BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
1841     return;
1842   } else if (PPC::G8pRCRegClass.contains(DestReg) &&
1843              PPC::G8pRCRegClass.contains(SrcReg)) {
1844     // TODO: Handle G8RC to G8pRC (and vice versa) copy.
1845     unsigned DestRegIdx = DestReg - PPC::G8p0;
1846     MCRegister DestRegSub0 = PPC::X0 + 2 * DestRegIdx;
1847     MCRegister DestRegSub1 = PPC::X0 + 2 * DestRegIdx + 1;
1848     unsigned SrcRegIdx = SrcReg - PPC::G8p0;
1849     MCRegister SrcRegSub0 = PPC::X0 + 2 * SrcRegIdx;
1850     MCRegister SrcRegSub1 = PPC::X0 + 2 * SrcRegIdx + 1;
1851     BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub0)
1852         .addReg(SrcRegSub0)
1853         .addReg(SrcRegSub0, getKillRegState(KillSrc));
1854     BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub1)
1855         .addReg(SrcRegSub1)
1856         .addReg(SrcRegSub1, getKillRegState(KillSrc));
1857     return;
1858   } else
1859     llvm_unreachable("Impossible reg-to-reg copy");
1860 
1861   const MCInstrDesc &MCID = get(Opc);
1862   if (MCID.getNumOperands() == 3)
1863     BuildMI(MBB, I, DL, MCID, DestReg)
1864       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1865   else
1866     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1867 }
1868 
1869 unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const {
1870   int OpcodeIndex = 0;
1871 
1872   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1873       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1874     OpcodeIndex = SOK_Int4Spill;
1875   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1876              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1877     OpcodeIndex = SOK_Int8Spill;
1878   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1879     OpcodeIndex = SOK_Float8Spill;
1880   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1881     OpcodeIndex = SOK_Float4Spill;
1882   } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1883     OpcodeIndex = SOK_SPESpill;
1884   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1885     OpcodeIndex = SOK_CRSpill;
1886   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1887     OpcodeIndex = SOK_CRBitSpill;
1888   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1889     OpcodeIndex = SOK_VRVectorSpill;
1890   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1891     OpcodeIndex = SOK_VSXVectorSpill;
1892   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1893     OpcodeIndex = SOK_VectorFloat8Spill;
1894   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1895     OpcodeIndex = SOK_VectorFloat4Spill;
1896   } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1897     OpcodeIndex = SOK_SpillToVSR;
1898   } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) {
1899     assert(Subtarget.pairedVectorMemops() &&
1900            "Register unexpected when paired memops are disabled.");
1901     OpcodeIndex = SOK_AccumulatorSpill;
1902   } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) {
1903     assert(Subtarget.pairedVectorMemops() &&
1904            "Register unexpected when paired memops are disabled.");
1905     OpcodeIndex = SOK_UAccumulatorSpill;
1906   } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) {
1907     assert(Subtarget.pairedVectorMemops() &&
1908            "Register unexpected when paired memops are disabled.");
1909     OpcodeIndex = SOK_PairedVecSpill;
1910   } else if (PPC::G8pRCRegClass.hasSubClassEq(RC)) {
1911     OpcodeIndex = SOK_PairedG8Spill;
1912   } else {
1913     llvm_unreachable("Unknown regclass!");
1914   }
1915   return OpcodeIndex;
1916 }
1917 
1918 unsigned
1919 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const {
1920   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1921   return OpcodesForSpill[getSpillIndex(RC)];
1922 }
1923 
1924 unsigned
1925 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const {
1926   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1927   return OpcodesForSpill[getSpillIndex(RC)];
1928 }
1929 
1930 void PPCInstrInfo::StoreRegToStackSlot(
1931     MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1932     const TargetRegisterClass *RC,
1933     SmallVectorImpl<MachineInstr *> &NewMIs) const {
1934   unsigned Opcode = getStoreOpcodeForSpill(RC);
1935   DebugLoc DL;
1936 
1937   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1938   FuncInfo->setHasSpills();
1939 
1940   NewMIs.push_back(addFrameReference(
1941       BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1942       FrameIdx));
1943 
1944   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1945       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1946     FuncInfo->setSpillsCR();
1947 
1948   if (isXFormMemOp(Opcode))
1949     FuncInfo->setHasNonRISpills();
1950 }
1951 
1952 void PPCInstrInfo::storeRegToStackSlotNoUpd(
1953     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg,
1954     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
1955     const TargetRegisterInfo *TRI) const {
1956   MachineFunction &MF = *MBB.getParent();
1957   SmallVector<MachineInstr *, 4> NewMIs;
1958 
1959   StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1960 
1961   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1962     MBB.insert(MI, NewMIs[i]);
1963 
1964   const MachineFrameInfo &MFI = MF.getFrameInfo();
1965   MachineMemOperand *MMO = MF.getMachineMemOperand(
1966       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1967       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1968       MFI.getObjectAlign(FrameIdx));
1969   NewMIs.back()->addMemOperand(MF, MMO);
1970 }
1971 
1972 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1973                                        MachineBasicBlock::iterator MI,
1974                                        Register SrcReg, bool isKill,
1975                                        int FrameIdx,
1976                                        const TargetRegisterClass *RC,
1977                                        const TargetRegisterInfo *TRI) const {
1978   // We need to avoid a situation in which the value from a VRRC register is
1979   // spilled using an Altivec instruction and reloaded into a VSRC register
1980   // using a VSX instruction. The issue with this is that the VSX
1981   // load/store instructions swap the doublewords in the vector and the Altivec
1982   // ones don't. The register classes on the spill/reload may be different if
1983   // the register is defined using an Altivec instruction and is then used by a
1984   // VSX instruction.
1985   RC = updatedRC(RC);
1986   storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI);
1987 }
1988 
1989 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1990                                         unsigned DestReg, int FrameIdx,
1991                                         const TargetRegisterClass *RC,
1992                                         SmallVectorImpl<MachineInstr *> &NewMIs)
1993                                         const {
1994   unsigned Opcode = getLoadOpcodeForSpill(RC);
1995   NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1996                                      FrameIdx));
1997   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1998 
1999   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
2000       PPC::CRBITRCRegClass.hasSubClassEq(RC))
2001     FuncInfo->setSpillsCR();
2002 
2003   if (isXFormMemOp(Opcode))
2004     FuncInfo->setHasNonRISpills();
2005 }
2006 
2007 void PPCInstrInfo::loadRegFromStackSlotNoUpd(
2008     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg,
2009     int FrameIdx, const TargetRegisterClass *RC,
2010     const TargetRegisterInfo *TRI) const {
2011   MachineFunction &MF = *MBB.getParent();
2012   SmallVector<MachineInstr*, 4> NewMIs;
2013   DebugLoc DL;
2014   if (MI != MBB.end()) DL = MI->getDebugLoc();
2015 
2016   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2017   FuncInfo->setHasSpills();
2018 
2019   LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
2020 
2021   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
2022     MBB.insert(MI, NewMIs[i]);
2023 
2024   const MachineFrameInfo &MFI = MF.getFrameInfo();
2025   MachineMemOperand *MMO = MF.getMachineMemOperand(
2026       MachinePointerInfo::getFixedStack(MF, FrameIdx),
2027       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
2028       MFI.getObjectAlign(FrameIdx));
2029   NewMIs.back()->addMemOperand(MF, MMO);
2030 }
2031 
2032 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2033                                         MachineBasicBlock::iterator MI,
2034                                         Register DestReg, int FrameIdx,
2035                                         const TargetRegisterClass *RC,
2036                                         const TargetRegisterInfo *TRI) const {
2037   // We need to avoid a situation in which the value from a VRRC register is
2038   // spilled using an Altivec instruction and reloaded into a VSRC register
2039   // using a VSX instruction. The issue with this is that the VSX
2040   // load/store instructions swap the doublewords in the vector and the Altivec
2041   // ones don't. The register classes on the spill/reload may be different if
2042   // the register is defined using an Altivec instruction and is then used by a
2043   // VSX instruction.
2044   RC = updatedRC(RC);
2045 
2046   loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI);
2047 }
2048 
2049 bool PPCInstrInfo::
2050 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
2051   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
2052   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
2053     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
2054   else
2055     // Leave the CR# the same, but invert the condition.
2056     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
2057   return false;
2058 }
2059 
2060 // For some instructions, it is legal to fold ZERO into the RA register field.
2061 // This function performs that fold by replacing the operand with PPC::ZERO,
2062 // it does not consider whether the load immediate zero is no longer in use.
2063 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
2064                                      Register Reg) const {
2065   // A zero immediate should always be loaded with a single li.
2066   unsigned DefOpc = DefMI.getOpcode();
2067   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
2068     return false;
2069   if (!DefMI.getOperand(1).isImm())
2070     return false;
2071   if (DefMI.getOperand(1).getImm() != 0)
2072     return false;
2073 
2074   // Note that we cannot here invert the arguments of an isel in order to fold
2075   // a ZERO into what is presented as the second argument. All we have here
2076   // is the condition bit, and that might come from a CR-logical bit operation.
2077 
2078   const MCInstrDesc &UseMCID = UseMI.getDesc();
2079 
2080   // Only fold into real machine instructions.
2081   if (UseMCID.isPseudo())
2082     return false;
2083 
2084   // We need to find which of the User's operands is to be folded, that will be
2085   // the operand that matches the given register ID.
2086   unsigned UseIdx;
2087   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
2088     if (UseMI.getOperand(UseIdx).isReg() &&
2089         UseMI.getOperand(UseIdx).getReg() == Reg)
2090       break;
2091 
2092   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
2093   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
2094 
2095   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
2096 
2097   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
2098   // register (which might also be specified as a pointer class kind).
2099   if (UseInfo->isLookupPtrRegClass()) {
2100     if (UseInfo->RegClass /* Kind */ != 1)
2101       return false;
2102   } else {
2103     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
2104         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
2105       return false;
2106   }
2107 
2108   // Make sure this is not tied to an output register (or otherwise
2109   // constrained). This is true for ST?UX registers, for example, which
2110   // are tied to their output registers.
2111   if (UseInfo->Constraints != 0)
2112     return false;
2113 
2114   MCRegister ZeroReg;
2115   if (UseInfo->isLookupPtrRegClass()) {
2116     bool isPPC64 = Subtarget.isPPC64();
2117     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
2118   } else {
2119     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
2120               PPC::ZERO8 : PPC::ZERO;
2121   }
2122 
2123   UseMI.getOperand(UseIdx).setReg(ZeroReg);
2124   return true;
2125 }
2126 
2127 // Folds zero into instructions which have a load immediate zero as an operand
2128 // but also recognize zero as immediate zero. If the definition of the load
2129 // has no more users it is deleted.
2130 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
2131                                  Register Reg, MachineRegisterInfo *MRI) const {
2132   bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg);
2133   if (MRI->use_nodbg_empty(Reg))
2134     DefMI.eraseFromParent();
2135   return Changed;
2136 }
2137 
2138 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
2139   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
2140        I != IE; ++I)
2141     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
2142       return true;
2143   return false;
2144 }
2145 
2146 // We should make sure that, if we're going to predicate both sides of a
2147 // condition (a diamond), that both sides don't define the counter register. We
2148 // can predicate counter-decrement-based branches, but while that predicates
2149 // the branching, it does not predicate the counter decrement. If we tried to
2150 // merge the triangle into one predicated block, we'd decrement the counter
2151 // twice.
2152 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
2153                      unsigned NumT, unsigned ExtraT,
2154                      MachineBasicBlock &FMBB,
2155                      unsigned NumF, unsigned ExtraF,
2156                      BranchProbability Probability) const {
2157   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
2158 }
2159 
2160 
2161 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
2162   // The predicated branches are identified by their type, not really by the
2163   // explicit presence of a predicate. Furthermore, some of them can be
2164   // predicated more than once. Because if conversion won't try to predicate
2165   // any instruction which already claims to be predicated (by returning true
2166   // here), always return false. In doing so, we let isPredicable() be the
2167   // final word on whether not the instruction can be (further) predicated.
2168 
2169   return false;
2170 }
2171 
2172 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
2173                                         const MachineBasicBlock *MBB,
2174                                         const MachineFunction &MF) const {
2175   // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion
2176   // across them, since some FP operations may change content of FPSCR.
2177   // TODO: Model FPSCR in PPC instruction definitions and remove the workaround
2178   if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF)
2179     return true;
2180   return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
2181 }
2182 
2183 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
2184                                         ArrayRef<MachineOperand> Pred) const {
2185   unsigned OpC = MI.getOpcode();
2186   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
2187     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
2188       bool isPPC64 = Subtarget.isPPC64();
2189       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
2190                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
2191       // Need add Def and Use for CTR implicit operand.
2192       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2193           .addReg(Pred[1].getReg(), RegState::Implicit)
2194           .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
2195     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2196       MI.setDesc(get(PPC::BCLR));
2197       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2198     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2199       MI.setDesc(get(PPC::BCLRn));
2200       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2201     } else {
2202       MI.setDesc(get(PPC::BCCLR));
2203       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2204           .addImm(Pred[0].getImm())
2205           .add(Pred[1]);
2206     }
2207 
2208     return true;
2209   } else if (OpC == PPC::B) {
2210     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
2211       bool isPPC64 = Subtarget.isPPC64();
2212       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
2213                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
2214       // Need add Def and Use for CTR implicit operand.
2215       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2216           .addReg(Pred[1].getReg(), RegState::Implicit)
2217           .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
2218     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2219       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2220       MI.RemoveOperand(0);
2221 
2222       MI.setDesc(get(PPC::BC));
2223       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2224           .add(Pred[1])
2225           .addMBB(MBB);
2226     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2227       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2228       MI.RemoveOperand(0);
2229 
2230       MI.setDesc(get(PPC::BCn));
2231       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2232           .add(Pred[1])
2233           .addMBB(MBB);
2234     } else {
2235       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2236       MI.RemoveOperand(0);
2237 
2238       MI.setDesc(get(PPC::BCC));
2239       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2240           .addImm(Pred[0].getImm())
2241           .add(Pred[1])
2242           .addMBB(MBB);
2243     }
2244 
2245     return true;
2246   } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
2247              OpC == PPC::BCTRL8) {
2248     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
2249       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
2250 
2251     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
2252     bool isPPC64 = Subtarget.isPPC64();
2253 
2254     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2255       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
2256                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
2257       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2258     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2259       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
2260                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
2261       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2262     } else {
2263       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
2264                              : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
2265       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2266           .addImm(Pred[0].getImm())
2267           .add(Pred[1]);
2268     }
2269 
2270     // Need add Def and Use for LR implicit operand.
2271     if (setLR)
2272       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2273           .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit)
2274           .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine);
2275 
2276     return true;
2277   }
2278 
2279   return false;
2280 }
2281 
2282 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
2283                                      ArrayRef<MachineOperand> Pred2) const {
2284   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
2285   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
2286 
2287   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
2288     return false;
2289   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
2290     return false;
2291 
2292   // P1 can only subsume P2 if they test the same condition register.
2293   if (Pred1[1].getReg() != Pred2[1].getReg())
2294     return false;
2295 
2296   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
2297   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
2298 
2299   if (P1 == P2)
2300     return true;
2301 
2302   // Does P1 subsume P2, e.g. GE subsumes GT.
2303   if (P1 == PPC::PRED_LE &&
2304       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
2305     return true;
2306   if (P1 == PPC::PRED_GE &&
2307       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
2308     return true;
2309 
2310   return false;
2311 }
2312 
2313 bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI,
2314                                      std::vector<MachineOperand> &Pred,
2315                                      bool SkipDead) const {
2316   // Note: At the present time, the contents of Pred from this function is
2317   // unused by IfConversion. This implementation follows ARM by pushing the
2318   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
2319   // predicate, instructions defining CTR or CTR8 are also included as
2320   // predicate-defining instructions.
2321 
2322   const TargetRegisterClass *RCs[] =
2323     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
2324       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
2325 
2326   bool Found = false;
2327   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2328     const MachineOperand &MO = MI.getOperand(i);
2329     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
2330       const TargetRegisterClass *RC = RCs[c];
2331       if (MO.isReg()) {
2332         if (MO.isDef() && RC->contains(MO.getReg())) {
2333           Pred.push_back(MO);
2334           Found = true;
2335         }
2336       } else if (MO.isRegMask()) {
2337         for (TargetRegisterClass::iterator I = RC->begin(),
2338              IE = RC->end(); I != IE; ++I)
2339           if (MO.clobbersPhysReg(*I)) {
2340             Pred.push_back(MO);
2341             Found = true;
2342           }
2343       }
2344     }
2345   }
2346 
2347   return Found;
2348 }
2349 
2350 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
2351                                   Register &SrcReg2, int64_t &Mask,
2352                                   int64_t &Value) const {
2353   unsigned Opc = MI.getOpcode();
2354 
2355   switch (Opc) {
2356   default: return false;
2357   case PPC::CMPWI:
2358   case PPC::CMPLWI:
2359   case PPC::CMPDI:
2360   case PPC::CMPLDI:
2361     SrcReg = MI.getOperand(1).getReg();
2362     SrcReg2 = 0;
2363     Value = MI.getOperand(2).getImm();
2364     Mask = 0xFFFF;
2365     return true;
2366   case PPC::CMPW:
2367   case PPC::CMPLW:
2368   case PPC::CMPD:
2369   case PPC::CMPLD:
2370   case PPC::FCMPUS:
2371   case PPC::FCMPUD:
2372     SrcReg = MI.getOperand(1).getReg();
2373     SrcReg2 = MI.getOperand(2).getReg();
2374     Value = 0;
2375     Mask = 0;
2376     return true;
2377   }
2378 }
2379 
2380 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
2381                                         Register SrcReg2, int64_t Mask,
2382                                         int64_t Value,
2383                                         const MachineRegisterInfo *MRI) const {
2384   if (DisableCmpOpt)
2385     return false;
2386 
2387   int OpC = CmpInstr.getOpcode();
2388   Register CRReg = CmpInstr.getOperand(0).getReg();
2389 
2390   // FP record forms set CR1 based on the exception status bits, not a
2391   // comparison with zero.
2392   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
2393     return false;
2394 
2395   const TargetRegisterInfo *TRI = &getRegisterInfo();
2396   // The record forms set the condition register based on a signed comparison
2397   // with zero (so says the ISA manual). This is not as straightforward as it
2398   // seems, however, because this is always a 64-bit comparison on PPC64, even
2399   // for instructions that are 32-bit in nature (like slw for example).
2400   // So, on PPC32, for unsigned comparisons, we can use the record forms only
2401   // for equality checks (as those don't depend on the sign). On PPC64,
2402   // we are restricted to equality for unsigned 64-bit comparisons and for
2403   // signed 32-bit comparisons the applicability is more restricted.
2404   bool isPPC64 = Subtarget.isPPC64();
2405   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
2406   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
2407   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
2408 
2409   // Look through copies unless that gets us to a physical register.
2410   Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
2411   if (ActualSrc.isVirtual())
2412     SrcReg = ActualSrc;
2413 
2414   // Get the unique definition of SrcReg.
2415   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2416   if (!MI) return false;
2417 
2418   bool equalityOnly = false;
2419   bool noSub = false;
2420   if (isPPC64) {
2421     if (is32BitSignedCompare) {
2422       // We can perform this optimization only if MI is sign-extending.
2423       if (isSignExtended(*MI))
2424         noSub = true;
2425       else
2426         return false;
2427     } else if (is32BitUnsignedCompare) {
2428       // We can perform this optimization, equality only, if MI is
2429       // zero-extending.
2430       if (isZeroExtended(*MI)) {
2431         noSub = true;
2432         equalityOnly = true;
2433       } else
2434         return false;
2435     } else
2436       equalityOnly = is64BitUnsignedCompare;
2437   } else
2438     equalityOnly = is32BitUnsignedCompare;
2439 
2440   if (equalityOnly) {
2441     // We need to check the uses of the condition register in order to reject
2442     // non-equality comparisons.
2443     for (MachineRegisterInfo::use_instr_iterator
2444          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
2445          I != IE; ++I) {
2446       MachineInstr *UseMI = &*I;
2447       if (UseMI->getOpcode() == PPC::BCC) {
2448         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
2449         unsigned PredCond = PPC::getPredicateCondition(Pred);
2450         // We ignore hint bits when checking for non-equality comparisons.
2451         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
2452           return false;
2453       } else if (UseMI->getOpcode() == PPC::ISEL ||
2454                  UseMI->getOpcode() == PPC::ISEL8) {
2455         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
2456         if (SubIdx != PPC::sub_eq)
2457           return false;
2458       } else
2459         return false;
2460     }
2461   }
2462 
2463   MachineBasicBlock::iterator I = CmpInstr;
2464 
2465   // Scan forward to find the first use of the compare.
2466   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
2467        ++I) {
2468     bool FoundUse = false;
2469     for (MachineRegisterInfo::use_instr_iterator
2470          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
2471          J != JE; ++J)
2472       if (&*J == &*I) {
2473         FoundUse = true;
2474         break;
2475       }
2476 
2477     if (FoundUse)
2478       break;
2479   }
2480 
2481   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
2482   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
2483 
2484   // There are two possible candidates which can be changed to set CR[01].
2485   // One is MI, the other is a SUB instruction.
2486   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
2487   MachineInstr *Sub = nullptr;
2488   if (SrcReg2 != 0)
2489     // MI is not a candidate for CMPrr.
2490     MI = nullptr;
2491   // FIXME: Conservatively refuse to convert an instruction which isn't in the
2492   // same BB as the comparison. This is to allow the check below to avoid calls
2493   // (and other explicit clobbers); instead we should really check for these
2494   // more explicitly (in at least a few predecessors).
2495   else if (MI->getParent() != CmpInstr.getParent())
2496     return false;
2497   else if (Value != 0) {
2498     // The record-form instructions set CR bit based on signed comparison
2499     // against 0. We try to convert a compare against 1 or -1 into a compare
2500     // against 0 to exploit record-form instructions. For example, we change
2501     // the condition "greater than -1" into "greater than or equal to 0"
2502     // and "less than 1" into "less than or equal to 0".
2503 
2504     // Since we optimize comparison based on a specific branch condition,
2505     // we don't optimize if condition code is used by more than once.
2506     if (equalityOnly || !MRI->hasOneUse(CRReg))
2507       return false;
2508 
2509     MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
2510     if (UseMI->getOpcode() != PPC::BCC)
2511       return false;
2512 
2513     PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
2514     unsigned PredCond = PPC::getPredicateCondition(Pred);
2515     unsigned PredHint = PPC::getPredicateHint(Pred);
2516     int16_t Immed = (int16_t)Value;
2517 
2518     // When modifying the condition in the predicate, we propagate hint bits
2519     // from the original predicate to the new one.
2520     if (Immed == -1 && PredCond == PPC::PRED_GT)
2521       // We convert "greater than -1" into "greater than or equal to 0",
2522       // since we are assuming signed comparison by !equalityOnly
2523       Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
2524     else if (Immed == -1 && PredCond == PPC::PRED_LE)
2525       // We convert "less than or equal to -1" into "less than 0".
2526       Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
2527     else if (Immed == 1 && PredCond == PPC::PRED_LT)
2528       // We convert "less than 1" into "less than or equal to 0".
2529       Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
2530     else if (Immed == 1 && PredCond == PPC::PRED_GE)
2531       // We convert "greater than or equal to 1" into "greater than 0".
2532       Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
2533     else
2534       return false;
2535 
2536     PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
2537   }
2538 
2539   // Search for Sub.
2540   --I;
2541 
2542   // Get ready to iterate backward from CmpInstr.
2543   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
2544 
2545   for (; I != E && !noSub; --I) {
2546     const MachineInstr &Instr = *I;
2547     unsigned IOpC = Instr.getOpcode();
2548 
2549     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
2550                              Instr.readsRegister(PPC::CR0, TRI)))
2551       // This instruction modifies or uses the record condition register after
2552       // the one we want to change. While we could do this transformation, it
2553       // would likely not be profitable. This transformation removes one
2554       // instruction, and so even forcing RA to generate one move probably
2555       // makes it unprofitable.
2556       return false;
2557 
2558     // Check whether CmpInstr can be made redundant by the current instruction.
2559     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
2560          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
2561         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
2562         ((Instr.getOperand(1).getReg() == SrcReg &&
2563           Instr.getOperand(2).getReg() == SrcReg2) ||
2564         (Instr.getOperand(1).getReg() == SrcReg2 &&
2565          Instr.getOperand(2).getReg() == SrcReg))) {
2566       Sub = &*I;
2567       break;
2568     }
2569 
2570     if (I == B)
2571       // The 'and' is below the comparison instruction.
2572       return false;
2573   }
2574 
2575   // Return false if no candidates exist.
2576   if (!MI && !Sub)
2577     return false;
2578 
2579   // The single candidate is called MI.
2580   if (!MI) MI = Sub;
2581 
2582   int NewOpC = -1;
2583   int MIOpC = MI->getOpcode();
2584   if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec ||
2585       MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec)
2586     NewOpC = MIOpC;
2587   else {
2588     NewOpC = PPC::getRecordFormOpcode(MIOpC);
2589     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
2590       NewOpC = MIOpC;
2591   }
2592 
2593   // FIXME: On the non-embedded POWER architectures, only some of the record
2594   // forms are fast, and we should use only the fast ones.
2595 
2596   // The defining instruction has a record form (or is already a record
2597   // form). It is possible, however, that we'll need to reverse the condition
2598   // code of the users.
2599   if (NewOpC == -1)
2600     return false;
2601 
2602   // This transformation should not be performed if `nsw` is missing and is not
2603   // `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in
2604   // CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in
2605   // CRReg can reflect if compared values are equal, this optz is still valid.
2606   if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) &&
2607       Sub && !Sub->getFlag(MachineInstr::NoSWrap))
2608     return false;
2609 
2610   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
2611   // needs to be updated to be based on SUB.  Push the condition code
2612   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
2613   // condition code of these operands will be modified.
2614   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
2615   // comparison against 0, which may modify predicate.
2616   bool ShouldSwap = false;
2617   if (Sub && Value == 0) {
2618     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2619       Sub->getOperand(2).getReg() == SrcReg;
2620 
2621     // The operands to subf are the opposite of sub, so only in the fixed-point
2622     // case, invert the order.
2623     ShouldSwap = !ShouldSwap;
2624   }
2625 
2626   if (ShouldSwap)
2627     for (MachineRegisterInfo::use_instr_iterator
2628          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
2629          I != IE; ++I) {
2630       MachineInstr *UseMI = &*I;
2631       if (UseMI->getOpcode() == PPC::BCC) {
2632         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
2633         unsigned PredCond = PPC::getPredicateCondition(Pred);
2634         assert((!equalityOnly ||
2635                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
2636                "Invalid predicate for equality-only optimization");
2637         (void)PredCond; // To suppress warning in release build.
2638         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
2639                                 PPC::getSwappedPredicate(Pred)));
2640       } else if (UseMI->getOpcode() == PPC::ISEL ||
2641                  UseMI->getOpcode() == PPC::ISEL8) {
2642         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
2643         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
2644                "Invalid CR bit for equality-only optimization");
2645 
2646         if (NewSubReg == PPC::sub_lt)
2647           NewSubReg = PPC::sub_gt;
2648         else if (NewSubReg == PPC::sub_gt)
2649           NewSubReg = PPC::sub_lt;
2650 
2651         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
2652                                                  NewSubReg));
2653       } else // We need to abort on a user we don't understand.
2654         return false;
2655     }
2656   assert(!(Value != 0 && ShouldSwap) &&
2657          "Non-zero immediate support and ShouldSwap"
2658          "may conflict in updating predicate");
2659 
2660   // Create a new virtual register to hold the value of the CR set by the
2661   // record-form instruction. If the instruction was not previously in
2662   // record form, then set the kill flag on the CR.
2663   CmpInstr.eraseFromParent();
2664 
2665   MachineBasicBlock::iterator MII = MI;
2666   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
2667           get(TargetOpcode::COPY), CRReg)
2668     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
2669 
2670   // Even if CR0 register were dead before, it is alive now since the
2671   // instruction we just built uses it.
2672   MI->clearRegisterDeads(PPC::CR0);
2673 
2674   if (MIOpC != NewOpC) {
2675     // We need to be careful here: we're replacing one instruction with
2676     // another, and we need to make sure that we get all of the right
2677     // implicit uses and defs. On the other hand, the caller may be holding
2678     // an iterator to this instruction, and so we can't delete it (this is
2679     // specifically the case if this is the instruction directly after the
2680     // compare).
2681 
2682     // Rotates are expensive instructions. If we're emitting a record-form
2683     // rotate that can just be an andi/andis, we should just emit that.
2684     if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
2685       Register GPRRes = MI->getOperand(0).getReg();
2686       int64_t SH = MI->getOperand(2).getImm();
2687       int64_t MB = MI->getOperand(3).getImm();
2688       int64_t ME = MI->getOperand(4).getImm();
2689       // We can only do this if both the start and end of the mask are in the
2690       // same halfword.
2691       bool MBInLoHWord = MB >= 16;
2692       bool MEInLoHWord = ME >= 16;
2693       uint64_t Mask = ~0LLU;
2694 
2695       if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
2696         Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2697         // The mask value needs to shift right 16 if we're emitting andis.
2698         Mask >>= MBInLoHWord ? 0 : 16;
2699         NewOpC = MIOpC == PPC::RLWINM
2700                      ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec)
2701                      : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec);
2702       } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
2703                  (ME - MB + 1 == SH) && (MB >= 16)) {
2704         // If we are rotating by the exact number of bits as are in the mask
2705         // and the mask is in the least significant bits of the register,
2706         // that's just an andis. (as long as the GPR result has no uses).
2707         Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
2708         Mask >>= 16;
2709         NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec;
2710       }
2711       // If we've set the mask, we can transform.
2712       if (Mask != ~0LLU) {
2713         MI->RemoveOperand(4);
2714         MI->RemoveOperand(3);
2715         MI->getOperand(2).setImm(Mask);
2716         NumRcRotatesConvertedToRcAnd++;
2717       }
2718     } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
2719       int64_t MB = MI->getOperand(3).getImm();
2720       if (MB >= 48) {
2721         uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2722         NewOpC = PPC::ANDI8_rec;
2723         MI->RemoveOperand(3);
2724         MI->getOperand(2).setImm(Mask);
2725         NumRcRotatesConvertedToRcAnd++;
2726       }
2727     }
2728 
2729     const MCInstrDesc &NewDesc = get(NewOpC);
2730     MI->setDesc(NewDesc);
2731 
2732     if (NewDesc.ImplicitDefs)
2733       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
2734            *ImpDefs; ++ImpDefs)
2735         if (!MI->definesRegister(*ImpDefs))
2736           MI->addOperand(*MI->getParent()->getParent(),
2737                          MachineOperand::CreateReg(*ImpDefs, true, true));
2738     if (NewDesc.ImplicitUses)
2739       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
2740            *ImpUses; ++ImpUses)
2741         if (!MI->readsRegister(*ImpUses))
2742           MI->addOperand(*MI->getParent()->getParent(),
2743                          MachineOperand::CreateReg(*ImpUses, false, true));
2744   }
2745   assert(MI->definesRegister(PPC::CR0) &&
2746          "Record-form instruction does not define cr0?");
2747 
2748   // Modify the condition code of operands in OperandsToUpdate.
2749   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2750   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2751   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
2752     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
2753 
2754   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2755     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2756 
2757   return true;
2758 }
2759 
2760 bool PPCInstrInfo::getMemOperandsWithOffsetWidth(
2761     const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
2762     int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
2763     const TargetRegisterInfo *TRI) const {
2764   const MachineOperand *BaseOp;
2765   OffsetIsScalable = false;
2766   if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI))
2767     return false;
2768   BaseOps.push_back(BaseOp);
2769   return true;
2770 }
2771 
2772 static bool isLdStSafeToCluster(const MachineInstr &LdSt,
2773                                 const TargetRegisterInfo *TRI) {
2774   // If this is a volatile load/store, don't mess with it.
2775   if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3)
2776     return false;
2777 
2778   if (LdSt.getOperand(2).isFI())
2779     return true;
2780 
2781   assert(LdSt.getOperand(2).isReg() && "Expected a reg operand.");
2782   // Can't cluster if the instruction modifies the base register
2783   // or it is update form. e.g. ld r2,3(r2)
2784   if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI))
2785     return false;
2786 
2787   return true;
2788 }
2789 
2790 // Only cluster instruction pair that have the same opcode, and they are
2791 // clusterable according to PowerPC specification.
2792 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc,
2793                                      const PPCSubtarget &Subtarget) {
2794   switch (FirstOpc) {
2795   default:
2796     return false;
2797   case PPC::STD:
2798   case PPC::STFD:
2799   case PPC::STXSD:
2800   case PPC::DFSTOREf64:
2801     return FirstOpc == SecondOpc;
2802   // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with
2803   // 32bit and 64bit instruction selection. They are clusterable pair though
2804   // they are different opcode.
2805   case PPC::STW:
2806   case PPC::STW8:
2807     return SecondOpc == PPC::STW || SecondOpc == PPC::STW8;
2808   }
2809 }
2810 
2811 bool PPCInstrInfo::shouldClusterMemOps(
2812     ArrayRef<const MachineOperand *> BaseOps1,
2813     ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads,
2814     unsigned NumBytes) const {
2815 
2816   assert(BaseOps1.size() == 1 && BaseOps2.size() == 1);
2817   const MachineOperand &BaseOp1 = *BaseOps1.front();
2818   const MachineOperand &BaseOp2 = *BaseOps2.front();
2819   assert((BaseOp1.isReg() || BaseOp1.isFI()) &&
2820          "Only base registers and frame indices are supported.");
2821 
2822   // The NumLoads means the number of loads that has been clustered.
2823   // Don't cluster memory op if there are already two ops clustered at least.
2824   if (NumLoads > 2)
2825     return false;
2826 
2827   // Cluster the load/store only when they have the same base
2828   // register or FI.
2829   if ((BaseOp1.isReg() != BaseOp2.isReg()) ||
2830       (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) ||
2831       (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex()))
2832     return false;
2833 
2834   // Check if the load/store are clusterable according to the PowerPC
2835   // specification.
2836   const MachineInstr &FirstLdSt = *BaseOp1.getParent();
2837   const MachineInstr &SecondLdSt = *BaseOp2.getParent();
2838   unsigned FirstOpc = FirstLdSt.getOpcode();
2839   unsigned SecondOpc = SecondLdSt.getOpcode();
2840   const TargetRegisterInfo *TRI = &getRegisterInfo();
2841   // Cluster the load/store only when they have the same opcode, and they are
2842   // clusterable opcode according to PowerPC specification.
2843   if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget))
2844     return false;
2845 
2846   // Can't cluster load/store that have ordered or volatile memory reference.
2847   if (!isLdStSafeToCluster(FirstLdSt, TRI) ||
2848       !isLdStSafeToCluster(SecondLdSt, TRI))
2849     return false;
2850 
2851   int64_t Offset1 = 0, Offset2 = 0;
2852   unsigned Width1 = 0, Width2 = 0;
2853   const MachineOperand *Base1 = nullptr, *Base2 = nullptr;
2854   if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) ||
2855       !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) ||
2856       Width1 != Width2)
2857     return false;
2858 
2859   assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 &&
2860          "getMemOperandWithOffsetWidth return incorrect base op");
2861   // The caller should already have ordered FirstMemOp/SecondMemOp by offset.
2862   assert(Offset1 <= Offset2 && "Caller should have ordered offsets.");
2863   return Offset1 + Width1 == Offset2;
2864 }
2865 
2866 /// GetInstSize - Return the number of bytes of code the specified
2867 /// instruction may be.  This returns the maximum number of bytes.
2868 ///
2869 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2870   unsigned Opcode = MI.getOpcode();
2871 
2872   if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
2873     const MachineFunction *MF = MI.getParent()->getParent();
2874     const char *AsmStr = MI.getOperand(0).getSymbolName();
2875     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2876   } else if (Opcode == TargetOpcode::STACKMAP) {
2877     StackMapOpers Opers(&MI);
2878     return Opers.getNumPatchBytes();
2879   } else if (Opcode == TargetOpcode::PATCHPOINT) {
2880     PatchPointOpers Opers(&MI);
2881     return Opers.getNumPatchBytes();
2882   } else {
2883     return get(Opcode).getSize();
2884   }
2885 }
2886 
2887 std::pair<unsigned, unsigned>
2888 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2889   const unsigned Mask = PPCII::MO_ACCESS_MASK;
2890   return std::make_pair(TF & Mask, TF & ~Mask);
2891 }
2892 
2893 ArrayRef<std::pair<unsigned, const char *>>
2894 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2895   using namespace PPCII;
2896   static const std::pair<unsigned, const char *> TargetFlags[] = {
2897       {MO_LO, "ppc-lo"},
2898       {MO_HA, "ppc-ha"},
2899       {MO_TPREL_LO, "ppc-tprel-lo"},
2900       {MO_TPREL_HA, "ppc-tprel-ha"},
2901       {MO_DTPREL_LO, "ppc-dtprel-lo"},
2902       {MO_TLSLD_LO, "ppc-tlsld-lo"},
2903       {MO_TOC_LO, "ppc-toc-lo"},
2904       {MO_TLS, "ppc-tls"}};
2905   return makeArrayRef(TargetFlags);
2906 }
2907 
2908 ArrayRef<std::pair<unsigned, const char *>>
2909 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2910   using namespace PPCII;
2911   static const std::pair<unsigned, const char *> TargetFlags[] = {
2912       {MO_PLT, "ppc-plt"},
2913       {MO_PIC_FLAG, "ppc-pic"},
2914       {MO_PCREL_FLAG, "ppc-pcrel"},
2915       {MO_GOT_FLAG, "ppc-got"},
2916       {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"},
2917       {MO_TLSGD_FLAG, "ppc-tlsgd"},
2918       {MO_TLSLD_FLAG, "ppc-tlsld"},
2919       {MO_TPREL_FLAG, "ppc-tprel"},
2920       {MO_TLSGDM_FLAG, "ppc-tlsgdm"},
2921       {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"},
2922       {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"},
2923       {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}};
2924   return makeArrayRef(TargetFlags);
2925 }
2926 
2927 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2928 // The VSX versions have the advantage of a full 64-register target whereas
2929 // the FP ones have the advantage of lower latency and higher throughput. So
2930 // what we are after is using the faster instructions in low register pressure
2931 // situations and using the larger register file in high register pressure
2932 // situations.
2933 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2934     unsigned UpperOpcode, LowerOpcode;
2935     switch (MI.getOpcode()) {
2936     case PPC::DFLOADf32:
2937       UpperOpcode = PPC::LXSSP;
2938       LowerOpcode = PPC::LFS;
2939       break;
2940     case PPC::DFLOADf64:
2941       UpperOpcode = PPC::LXSD;
2942       LowerOpcode = PPC::LFD;
2943       break;
2944     case PPC::DFSTOREf32:
2945       UpperOpcode = PPC::STXSSP;
2946       LowerOpcode = PPC::STFS;
2947       break;
2948     case PPC::DFSTOREf64:
2949       UpperOpcode = PPC::STXSD;
2950       LowerOpcode = PPC::STFD;
2951       break;
2952     case PPC::XFLOADf32:
2953       UpperOpcode = PPC::LXSSPX;
2954       LowerOpcode = PPC::LFSX;
2955       break;
2956     case PPC::XFLOADf64:
2957       UpperOpcode = PPC::LXSDX;
2958       LowerOpcode = PPC::LFDX;
2959       break;
2960     case PPC::XFSTOREf32:
2961       UpperOpcode = PPC::STXSSPX;
2962       LowerOpcode = PPC::STFSX;
2963       break;
2964     case PPC::XFSTOREf64:
2965       UpperOpcode = PPC::STXSDX;
2966       LowerOpcode = PPC::STFDX;
2967       break;
2968     case PPC::LIWAX:
2969       UpperOpcode = PPC::LXSIWAX;
2970       LowerOpcode = PPC::LFIWAX;
2971       break;
2972     case PPC::LIWZX:
2973       UpperOpcode = PPC::LXSIWZX;
2974       LowerOpcode = PPC::LFIWZX;
2975       break;
2976     case PPC::STIWX:
2977       UpperOpcode = PPC::STXSIWX;
2978       LowerOpcode = PPC::STFIWX;
2979       break;
2980     default:
2981       llvm_unreachable("Unknown Operation!");
2982     }
2983 
2984     Register TargetReg = MI.getOperand(0).getReg();
2985     unsigned Opcode;
2986     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2987         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2988       Opcode = LowerOpcode;
2989     else
2990       Opcode = UpperOpcode;
2991     MI.setDesc(get(Opcode));
2992     return true;
2993 }
2994 
2995 static bool isAnImmediateOperand(const MachineOperand &MO) {
2996   return MO.isCPI() || MO.isGlobal() || MO.isImm();
2997 }
2998 
2999 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
3000   auto &MBB = *MI.getParent();
3001   auto DL = MI.getDebugLoc();
3002 
3003   switch (MI.getOpcode()) {
3004   case PPC::BUILD_UACC: {
3005     MCRegister ACC = MI.getOperand(0).getReg();
3006     MCRegister UACC = MI.getOperand(1).getReg();
3007     if (ACC - PPC::ACC0 != UACC - PPC::UACC0) {
3008       MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4;
3009       MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4;
3010       // FIXME: This can easily be improved to look up to the top of the MBB
3011       // to see if the inputs are XXLOR's. If they are and SrcReg is killed,
3012       // we can just re-target any such XXLOR's to DstVSR + offset.
3013       for (int VecNo = 0; VecNo < 4; VecNo++)
3014         BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo)
3015             .addReg(SrcVSR + VecNo)
3016             .addReg(SrcVSR + VecNo);
3017     }
3018     // BUILD_UACC is expanded to 4 copies of the underlying vsx registers.
3019     // So after building the 4 copies, we can replace the BUILD_UACC instruction
3020     // with a NOP.
3021     LLVM_FALLTHROUGH;
3022   }
3023   case PPC::KILL_PAIR: {
3024     MI.setDesc(get(PPC::UNENCODED_NOP));
3025     MI.RemoveOperand(1);
3026     MI.RemoveOperand(0);
3027     return true;
3028   }
3029   case TargetOpcode::LOAD_STACK_GUARD: {
3030     assert(Subtarget.isTargetLinux() &&
3031            "Only Linux target is expected to contain LOAD_STACK_GUARD");
3032     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
3033     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
3034     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
3035     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3036         .addImm(Offset)
3037         .addReg(Reg);
3038     return true;
3039   }
3040   case PPC::DFLOADf32:
3041   case PPC::DFLOADf64:
3042   case PPC::DFSTOREf32:
3043   case PPC::DFSTOREf64: {
3044     assert(Subtarget.hasP9Vector() &&
3045            "Invalid D-Form Pseudo-ops on Pre-P9 target.");
3046     assert(MI.getOperand(2).isReg() &&
3047            isAnImmediateOperand(MI.getOperand(1)) &&
3048            "D-form op must have register and immediate operands");
3049     return expandVSXMemPseudo(MI);
3050   }
3051   case PPC::XFLOADf32:
3052   case PPC::XFSTOREf32:
3053   case PPC::LIWAX:
3054   case PPC::LIWZX:
3055   case PPC::STIWX: {
3056     assert(Subtarget.hasP8Vector() &&
3057            "Invalid X-Form Pseudo-ops on Pre-P8 target.");
3058     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
3059            "X-form op must have register and register operands");
3060     return expandVSXMemPseudo(MI);
3061   }
3062   case PPC::XFLOADf64:
3063   case PPC::XFSTOREf64: {
3064     assert(Subtarget.hasVSX() &&
3065            "Invalid X-Form Pseudo-ops on target that has no VSX.");
3066     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
3067            "X-form op must have register and register operands");
3068     return expandVSXMemPseudo(MI);
3069   }
3070   case PPC::SPILLTOVSR_LD: {
3071     Register TargetReg = MI.getOperand(0).getReg();
3072     if (PPC::VSFRCRegClass.contains(TargetReg)) {
3073       MI.setDesc(get(PPC::DFLOADf64));
3074       return expandPostRAPseudo(MI);
3075     }
3076     else
3077       MI.setDesc(get(PPC::LD));
3078     return true;
3079   }
3080   case PPC::SPILLTOVSR_ST: {
3081     Register SrcReg = MI.getOperand(0).getReg();
3082     if (PPC::VSFRCRegClass.contains(SrcReg)) {
3083       NumStoreSPILLVSRRCAsVec++;
3084       MI.setDesc(get(PPC::DFSTOREf64));
3085       return expandPostRAPseudo(MI);
3086     } else {
3087       NumStoreSPILLVSRRCAsGpr++;
3088       MI.setDesc(get(PPC::STD));
3089     }
3090     return true;
3091   }
3092   case PPC::SPILLTOVSR_LDX: {
3093     Register TargetReg = MI.getOperand(0).getReg();
3094     if (PPC::VSFRCRegClass.contains(TargetReg))
3095       MI.setDesc(get(PPC::LXSDX));
3096     else
3097       MI.setDesc(get(PPC::LDX));
3098     return true;
3099   }
3100   case PPC::SPILLTOVSR_STX: {
3101     Register SrcReg = MI.getOperand(0).getReg();
3102     if (PPC::VSFRCRegClass.contains(SrcReg)) {
3103       NumStoreSPILLVSRRCAsVec++;
3104       MI.setDesc(get(PPC::STXSDX));
3105     } else {
3106       NumStoreSPILLVSRRCAsGpr++;
3107       MI.setDesc(get(PPC::STDX));
3108     }
3109     return true;
3110   }
3111 
3112     // FIXME: Maybe we can expand it in 'PowerPC Expand Atomic' pass.
3113   case PPC::CFENCE8: {
3114     auto Val = MI.getOperand(0).getReg();
3115     BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
3116     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
3117         .addImm(PPC::PRED_NE_MINUS)
3118         .addReg(PPC::CR7)
3119         .addImm(1);
3120     MI.setDesc(get(PPC::ISYNC));
3121     MI.RemoveOperand(0);
3122     return true;
3123   }
3124   }
3125   return false;
3126 }
3127 
3128 // Essentially a compile-time implementation of a compare->isel sequence.
3129 // It takes two constants to compare, along with the true/false registers
3130 // and the comparison type (as a subreg to a CR field) and returns one
3131 // of the true/false registers, depending on the comparison results.
3132 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
3133                           unsigned TrueReg, unsigned FalseReg,
3134                           unsigned CRSubReg) {
3135   // Signed comparisons. The immediates are assumed to be sign-extended.
3136   if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
3137     switch (CRSubReg) {
3138     default: llvm_unreachable("Unknown integer comparison type.");
3139     case PPC::sub_lt:
3140       return Imm1 < Imm2 ? TrueReg : FalseReg;
3141     case PPC::sub_gt:
3142       return Imm1 > Imm2 ? TrueReg : FalseReg;
3143     case PPC::sub_eq:
3144       return Imm1 == Imm2 ? TrueReg : FalseReg;
3145     }
3146   }
3147   // Unsigned comparisons.
3148   else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
3149     switch (CRSubReg) {
3150     default: llvm_unreachable("Unknown integer comparison type.");
3151     case PPC::sub_lt:
3152       return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
3153     case PPC::sub_gt:
3154       return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
3155     case PPC::sub_eq:
3156       return Imm1 == Imm2 ? TrueReg : FalseReg;
3157     }
3158   }
3159   return PPC::NoRegister;
3160 }
3161 
3162 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
3163                                               unsigned OpNo,
3164                                               int64_t Imm) const {
3165   assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
3166   // Replace the REG with the Immediate.
3167   Register InUseReg = MI.getOperand(OpNo).getReg();
3168   MI.getOperand(OpNo).ChangeToImmediate(Imm);
3169 
3170   // We need to make sure that the MI didn't have any implicit use
3171   // of this REG any more. We don't call MI.implicit_operands().empty() to
3172   // return early, since MI's MCID might be changed in calling context, as a
3173   // result its number of explicit operands may be changed, thus the begin of
3174   // implicit operand is changed.
3175   const TargetRegisterInfo *TRI = &getRegisterInfo();
3176   int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
3177   if (UseOpIdx >= 0) {
3178     MachineOperand &MO = MI.getOperand(UseOpIdx);
3179     if (MO.isImplicit())
3180       // The operands must always be in the following order:
3181       // - explicit reg defs,
3182       // - other explicit operands (reg uses, immediates, etc.),
3183       // - implicit reg defs
3184       // - implicit reg uses
3185       // Therefore, removing the implicit operand won't change the explicit
3186       // operands layout.
3187       MI.RemoveOperand(UseOpIdx);
3188   }
3189 }
3190 
3191 // Replace an instruction with one that materializes a constant (and sets
3192 // CR0 if the original instruction was a record-form instruction).
3193 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
3194                                       const LoadImmediateInfo &LII) const {
3195   // Remove existing operands.
3196   int OperandToKeep = LII.SetCR ? 1 : 0;
3197   for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
3198     MI.RemoveOperand(i);
3199 
3200   // Replace the instruction.
3201   if (LII.SetCR) {
3202     MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
3203     // Set the immediate.
3204     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3205         .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
3206     return;
3207   }
3208   else
3209     MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
3210 
3211   // Set the immediate.
3212   MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3213       .addImm(LII.Imm);
3214 }
3215 
3216 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
3217                                            bool &SeenIntermediateUse) const {
3218   assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
3219          "Should be called after register allocation.");
3220   const TargetRegisterInfo *TRI = &getRegisterInfo();
3221   MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
3222   It++;
3223   SeenIntermediateUse = false;
3224   for (; It != E; ++It) {
3225     if (It->modifiesRegister(Reg, TRI))
3226       return &*It;
3227     if (It->readsRegister(Reg, TRI))
3228       SeenIntermediateUse = true;
3229   }
3230   return nullptr;
3231 }
3232 
3233 MachineInstr *PPCInstrInfo::getForwardingDefMI(
3234   MachineInstr &MI,
3235   unsigned &OpNoForForwarding,
3236   bool &SeenIntermediateUse) const {
3237   OpNoForForwarding = ~0U;
3238   MachineInstr *DefMI = nullptr;
3239   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
3240   const TargetRegisterInfo *TRI = &getRegisterInfo();
3241   // If we're in SSA, get the defs through the MRI. Otherwise, only look
3242   // within the basic block to see if the register is defined using an
3243   // LI/LI8/ADDI/ADDI8.
3244   if (MRI->isSSA()) {
3245     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
3246       if (!MI.getOperand(i).isReg())
3247         continue;
3248       Register Reg = MI.getOperand(i).getReg();
3249       if (!Register::isVirtualRegister(Reg))
3250         continue;
3251       unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
3252       if (Register::isVirtualRegister(TrueReg)) {
3253         DefMI = MRI->getVRegDef(TrueReg);
3254         if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 ||
3255             DefMI->getOpcode() == PPC::ADDI ||
3256             DefMI->getOpcode() == PPC::ADDI8) {
3257           OpNoForForwarding = i;
3258           // The ADDI and LI operand maybe exist in one instruction at same
3259           // time. we prefer to fold LI operand as LI only has one Imm operand
3260           // and is more possible to be converted. So if current DefMI is
3261           // ADDI/ADDI8, we continue to find possible LI/LI8.
3262           if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8)
3263             break;
3264         }
3265       }
3266     }
3267   } else {
3268     // Looking back through the definition for each operand could be expensive,
3269     // so exit early if this isn't an instruction that either has an immediate
3270     // form or is already an immediate form that we can handle.
3271     ImmInstrInfo III;
3272     unsigned Opc = MI.getOpcode();
3273     bool ConvertibleImmForm =
3274         Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI ||
3275         Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
3276         Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI ||
3277         Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec ||
3278         Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
3279         Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 ||
3280         Opc == PPC::RLWINM8_rec;
3281     bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
3282                        ? isVFRegister(MI.getOperand(0).getReg())
3283                        : false;
3284     if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
3285       return nullptr;
3286 
3287     // Don't convert or %X, %Y, %Y since that's just a register move.
3288     if ((Opc == PPC::OR || Opc == PPC::OR8) &&
3289         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
3290       return nullptr;
3291     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
3292       MachineOperand &MO = MI.getOperand(i);
3293       SeenIntermediateUse = false;
3294       if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
3295         Register Reg = MI.getOperand(i).getReg();
3296         // If we see another use of this reg between the def and the MI,
3297         // we want to flat it so the def isn't deleted.
3298         MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
3299         if (DefMI) {
3300           // Is this register defined by some form of add-immediate (including
3301           // load-immediate) within this basic block?
3302           switch (DefMI->getOpcode()) {
3303           default:
3304             break;
3305           case PPC::LI:
3306           case PPC::LI8:
3307           case PPC::ADDItocL:
3308           case PPC::ADDI:
3309           case PPC::ADDI8:
3310             OpNoForForwarding = i;
3311             return DefMI;
3312           }
3313         }
3314       }
3315     }
3316   }
3317   return OpNoForForwarding == ~0U ? nullptr : DefMI;
3318 }
3319 
3320 unsigned PPCInstrInfo::getSpillTarget() const {
3321   // With P10, we may need to spill paired vector registers or accumulator
3322   // registers. MMA implies paired vectors, so we can just check that.
3323   bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops();
3324   return IsP10Variant ? 2 : Subtarget.hasP9Vector() ? 1 : 0;
3325 }
3326 
3327 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
3328   return StoreSpillOpcodesArray[getSpillTarget()];
3329 }
3330 
3331 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
3332   return LoadSpillOpcodesArray[getSpillTarget()];
3333 }
3334 
3335 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI,
3336                                      unsigned RegNo) const {
3337   // Conservatively clear kill flag for the register if the instructions are in
3338   // different basic blocks and in SSA form, because the kill flag may no longer
3339   // be right. There is no need to bother with dead flags since defs with no
3340   // uses will be handled by DCE.
3341   MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo();
3342   if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) {
3343     MRI.clearKillFlags(RegNo);
3344     return;
3345   }
3346 
3347   // Instructions between [StartMI, EndMI] should be in same basic block.
3348   assert((StartMI->getParent() == EndMI->getParent()) &&
3349          "Instructions are not in same basic block");
3350 
3351   // If before RA, StartMI may be def through COPY, we need to adjust it to the
3352   // real def. See function getForwardingDefMI.
3353   if (MRI.isSSA()) {
3354     bool Reads, Writes;
3355     std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo);
3356     if (!Reads && !Writes) {
3357       assert(Register::isVirtualRegister(RegNo) &&
3358              "Must be a virtual register");
3359       // Get real def and ignore copies.
3360       StartMI = MRI.getVRegDef(RegNo);
3361     }
3362   }
3363 
3364   bool IsKillSet = false;
3365 
3366   auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
3367     MachineOperand &MO = MI.getOperand(Index);
3368     if (MO.isReg() && MO.isUse() && MO.isKill() &&
3369         getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
3370       MO.setIsKill(false);
3371   };
3372 
3373   // Set killed flag for EndMI.
3374   // No need to do anything if EndMI defines RegNo.
3375   int UseIndex =
3376       EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
3377   if (UseIndex != -1) {
3378     EndMI->getOperand(UseIndex).setIsKill(true);
3379     IsKillSet = true;
3380     // Clear killed flag for other EndMI operands related to RegNo. In some
3381     // upexpected cases, killed may be set multiple times for same register
3382     // operand in same MI.
3383     for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i)
3384       if (i != UseIndex)
3385         clearOperandKillInfo(*EndMI, i);
3386   }
3387 
3388   // Walking the inst in reverse order (EndMI -> StartMI].
3389   MachineBasicBlock::reverse_iterator It = *EndMI;
3390   MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend();
3391   // EndMI has been handled above, skip it here.
3392   It++;
3393   MachineOperand *MO = nullptr;
3394   for (; It != E; ++It) {
3395     // Skip insturctions which could not be a def/use of RegNo.
3396     if (It->isDebugInstr() || It->isPosition())
3397       continue;
3398 
3399     // Clear killed flag for all It operands related to RegNo. In some
3400     // upexpected cases, killed may be set multiple times for same register
3401     // operand in same MI.
3402     for (int i = 0, e = It->getNumOperands(); i != e; ++i)
3403         clearOperandKillInfo(*It, i);
3404 
3405     // If killed is not set, set killed for its last use or set dead for its def
3406     // if no use found.
3407     if (!IsKillSet) {
3408       if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
3409         // Use found, set it killed.
3410         IsKillSet = true;
3411         MO->setIsKill(true);
3412         continue;
3413       } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
3414                                                   &getRegisterInfo()))) {
3415         // No use found, set dead for its def.
3416         assert(&*It == StartMI && "No new def between StartMI and EndMI.");
3417         MO->setIsDead(true);
3418         break;
3419       }
3420     }
3421 
3422     if ((&*It) == StartMI)
3423       break;
3424   }
3425   // Ensure RegMo liveness is killed after EndMI.
3426   assert((IsKillSet || (MO && MO->isDead())) &&
3427          "RegNo should be killed or dead");
3428 }
3429 
3430 // This opt tries to convert the following imm form to an index form to save an
3431 // add for stack variables.
3432 // Return false if no such pattern found.
3433 //
3434 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
3435 // ADD instr:  ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg
3436 // Imm instr:  Reg            = op OffsetImm, ToBeDeletedReg(killed)
3437 //
3438 // can be converted to:
3439 //
3440 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm)
3441 // Index instr:    Reg            = opx ScaleReg, ToBeChangedReg(killed)
3442 //
3443 // In order to eliminate ADD instr, make sure that:
3444 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in
3445 //    new ADDI instr and ADDI can only take int16 Imm.
3446 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use
3447 //    between ADDI and ADD instr since its original def in ADDI will be changed
3448 //    in new ADDI instr. And also there should be no new def for it between
3449 //    ADD and Imm instr as ToBeChangedReg will be used in Index instr.
3450 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use
3451 //    between ADD and Imm instr since ADD instr will be eliminated.
3452 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be
3453 //    moved to Index instr.
3454 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const {
3455   MachineFunction *MF = MI.getParent()->getParent();
3456   MachineRegisterInfo *MRI = &MF->getRegInfo();
3457   bool PostRA = !MRI->isSSA();
3458   // Do this opt after PEI which is after RA. The reason is stack slot expansion
3459   // in PEI may expose such opportunities since in PEI, stack slot offsets to
3460   // frame base(OffsetAddi) are determined.
3461   if (!PostRA)
3462     return false;
3463   unsigned ToBeDeletedReg = 0;
3464   int64_t OffsetImm = 0;
3465   unsigned XFormOpcode = 0;
3466   ImmInstrInfo III;
3467 
3468   // Check if Imm instr meets requirement.
3469   if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm,
3470                                     III))
3471     return false;
3472 
3473   bool OtherIntermediateUse = false;
3474   MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse);
3475 
3476   // Exit if there is other use between ADD and Imm instr or no def found.
3477   if (OtherIntermediateUse || !ADDMI)
3478     return false;
3479 
3480   // Check if ADD instr meets requirement.
3481   if (!isADDInstrEligibleForFolding(*ADDMI))
3482     return false;
3483 
3484   unsigned ScaleRegIdx = 0;
3485   int64_t OffsetAddi = 0;
3486   MachineInstr *ADDIMI = nullptr;
3487 
3488   // Check if there is a valid ToBeChangedReg in ADDMI.
3489   // 1: It must be killed.
3490   // 2: Its definition must be a valid ADDIMI.
3491   // 3: It must satify int16 offset requirement.
3492   if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm))
3493     ScaleRegIdx = 2;
3494   else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm))
3495     ScaleRegIdx = 1;
3496   else
3497     return false;
3498 
3499   assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg.");
3500   unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg();
3501   unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg();
3502   auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start,
3503                        MachineBasicBlock::iterator End) {
3504     for (auto It = ++Start; It != End; It++)
3505       if (It->modifiesRegister(Reg, &getRegisterInfo()))
3506         return true;
3507     return false;
3508   };
3509 
3510   // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is
3511   // treated as special zero when ScaleReg is R0/X0 register.
3512   if (III.ZeroIsSpecialOrig == III.ImmOpNo &&
3513       (ScaleReg == PPC::R0 || ScaleReg == PPC::X0))
3514     return false;
3515 
3516   // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr
3517   // and Imm Instr.
3518   if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI))
3519     return false;
3520 
3521   // Now start to do the transformation.
3522   LLVM_DEBUG(dbgs() << "Replace instruction: "
3523                     << "\n");
3524   LLVM_DEBUG(ADDIMI->dump());
3525   LLVM_DEBUG(ADDMI->dump());
3526   LLVM_DEBUG(MI.dump());
3527   LLVM_DEBUG(dbgs() << "with: "
3528                     << "\n");
3529 
3530   // Update ADDI instr.
3531   ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm);
3532 
3533   // Update Imm instr.
3534   MI.setDesc(get(XFormOpcode));
3535   MI.getOperand(III.ImmOpNo)
3536       .ChangeToRegister(ScaleReg, false, false,
3537                         ADDMI->getOperand(ScaleRegIdx).isKill());
3538 
3539   MI.getOperand(III.OpNoForForwarding)
3540       .ChangeToRegister(ToBeChangedReg, false, false, true);
3541 
3542   // Eliminate ADD instr.
3543   ADDMI->eraseFromParent();
3544 
3545   LLVM_DEBUG(ADDIMI->dump());
3546   LLVM_DEBUG(MI.dump());
3547 
3548   return true;
3549 }
3550 
3551 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI,
3552                                                  int64_t &Imm) const {
3553   unsigned Opc = ADDIMI.getOpcode();
3554 
3555   // Exit if the instruction is not ADDI.
3556   if (Opc != PPC::ADDI && Opc != PPC::ADDI8)
3557     return false;
3558 
3559   // The operand may not necessarily be an immediate - it could be a relocation.
3560   if (!ADDIMI.getOperand(2).isImm())
3561     return false;
3562 
3563   Imm = ADDIMI.getOperand(2).getImm();
3564 
3565   return true;
3566 }
3567 
3568 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const {
3569   unsigned Opc = ADDMI.getOpcode();
3570 
3571   // Exit if the instruction is not ADD.
3572   return Opc == PPC::ADD4 || Opc == PPC::ADD8;
3573 }
3574 
3575 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI,
3576                                                 unsigned &ToBeDeletedReg,
3577                                                 unsigned &XFormOpcode,
3578                                                 int64_t &OffsetImm,
3579                                                 ImmInstrInfo &III) const {
3580   // Only handle load/store.
3581   if (!MI.mayLoadOrStore())
3582     return false;
3583 
3584   unsigned Opc = MI.getOpcode();
3585 
3586   XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc);
3587 
3588   // Exit if instruction has no index form.
3589   if (XFormOpcode == PPC::INSTRUCTION_LIST_END)
3590     return false;
3591 
3592   // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap.
3593   if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()),
3594                        III, true))
3595     return false;
3596 
3597   if (!III.IsSummingOperands)
3598     return false;
3599 
3600   MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo);
3601   MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding);
3602   // Only support imm operands, not relocation slots or others.
3603   if (!ImmOperand.isImm())
3604     return false;
3605 
3606   assert(RegOperand.isReg() && "Instruction format is not right");
3607 
3608   // There are other use for ToBeDeletedReg after Imm instr, can not delete it.
3609   if (!RegOperand.isKill())
3610     return false;
3611 
3612   ToBeDeletedReg = RegOperand.getReg();
3613   OffsetImm = ImmOperand.getImm();
3614 
3615   return true;
3616 }
3617 
3618 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
3619                                          MachineInstr *&ADDIMI,
3620                                          int64_t &OffsetAddi,
3621                                          int64_t OffsetImm) const {
3622   assert((Index == 1 || Index == 2) && "Invalid operand index for add.");
3623   MachineOperand &MO = ADDMI->getOperand(Index);
3624 
3625   if (!MO.isKill())
3626     return false;
3627 
3628   bool OtherIntermediateUse = false;
3629 
3630   ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse);
3631   // Currently handle only one "add + Imminstr" pair case, exit if other
3632   // intermediate use for ToBeChangedReg found.
3633   // TODO: handle the cases where there are other "add + Imminstr" pairs
3634   // with same offset in Imminstr which is like:
3635   //
3636   // ADDI instr: ToBeChangedReg  = ADDI FrameBaseReg, OffsetAddi
3637   // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1
3638   // Imm instr1: Reg1            = op1 OffsetImm, ToBeDeletedReg1(killed)
3639   // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2
3640   // Imm instr2: Reg2            = op2 OffsetImm, ToBeDeletedReg2(killed)
3641   //
3642   // can be converted to:
3643   //
3644   // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg,
3645   //                                       (OffsetAddi + OffsetImm)
3646   // Index instr1:   Reg1           = opx1 ScaleReg1, ToBeChangedReg
3647   // Index instr2:   Reg2           = opx2 ScaleReg2, ToBeChangedReg(killed)
3648 
3649   if (OtherIntermediateUse || !ADDIMI)
3650     return false;
3651   // Check if ADDI instr meets requirement.
3652   if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi))
3653     return false;
3654 
3655   if (isInt<16>(OffsetAddi + OffsetImm))
3656     return true;
3657   return false;
3658 }
3659 
3660 // If this instruction has an immediate form and one of its operands is a
3661 // result of a load-immediate or an add-immediate, convert it to
3662 // the immediate form if the constant is in range.
3663 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
3664                                           MachineInstr **KilledDef) const {
3665   MachineFunction *MF = MI.getParent()->getParent();
3666   MachineRegisterInfo *MRI = &MF->getRegInfo();
3667   bool PostRA = !MRI->isSSA();
3668   bool SeenIntermediateUse = true;
3669   unsigned ForwardingOperand = ~0U;
3670   MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
3671                                            SeenIntermediateUse);
3672   if (!DefMI)
3673     return false;
3674   assert(ForwardingOperand < MI.getNumOperands() &&
3675          "The forwarding operand needs to be valid at this point");
3676   bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
3677   bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
3678   if (KilledDef && KillFwdDefMI)
3679     *KilledDef = DefMI;
3680 
3681   // If this is a imm instruction and its register operands is produced by ADDI,
3682   // put the imm into imm inst directly.
3683   if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) !=
3684           PPC::INSTRUCTION_LIST_END &&
3685       transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand))
3686     return true;
3687 
3688   ImmInstrInfo III;
3689   bool IsVFReg = MI.getOperand(0).isReg()
3690                      ? isVFRegister(MI.getOperand(0).getReg())
3691                      : false;
3692   bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
3693   // If this is a reg+reg instruction that has a reg+imm form,
3694   // and one of the operands is produced by an add-immediate,
3695   // try to convert it.
3696   if (HasImmForm &&
3697       transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
3698                                  KillFwdDefMI))
3699     return true;
3700 
3701   // If this is a reg+reg instruction that has a reg+imm form,
3702   // and one of the operands is produced by LI, convert it now.
3703   if (HasImmForm &&
3704       transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI))
3705     return true;
3706 
3707   // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI
3708   // can be simpified to LI.
3709   if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef))
3710     return true;
3711 
3712   return false;
3713 }
3714 
3715 bool PPCInstrInfo::combineRLWINM(MachineInstr &MI,
3716                                  MachineInstr **ToErase) const {
3717   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
3718   unsigned FoldingReg = MI.getOperand(1).getReg();
3719   if (!Register::isVirtualRegister(FoldingReg))
3720     return false;
3721   MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg);
3722   if (SrcMI->getOpcode() != PPC::RLWINM &&
3723       SrcMI->getOpcode() != PPC::RLWINM_rec &&
3724       SrcMI->getOpcode() != PPC::RLWINM8 &&
3725       SrcMI->getOpcode() != PPC::RLWINM8_rec)
3726     return false;
3727   assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() &&
3728           MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() &&
3729           SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) &&
3730          "Invalid PPC::RLWINM Instruction!");
3731   uint64_t SHSrc = SrcMI->getOperand(2).getImm();
3732   uint64_t SHMI = MI.getOperand(2).getImm();
3733   uint64_t MBSrc = SrcMI->getOperand(3).getImm();
3734   uint64_t MBMI = MI.getOperand(3).getImm();
3735   uint64_t MESrc = SrcMI->getOperand(4).getImm();
3736   uint64_t MEMI = MI.getOperand(4).getImm();
3737 
3738   assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) &&
3739          "Invalid PPC::RLWINM Instruction!");
3740   // If MBMI is bigger than MEMI, we always can not get run of ones.
3741   // RotatedSrcMask non-wrap:
3742   //                 0........31|32........63
3743   // RotatedSrcMask:   B---E        B---E
3744   // MaskMI:         -----------|--E  B------
3745   // Result:           -----          ---      (Bad candidate)
3746   //
3747   // RotatedSrcMask wrap:
3748   //                 0........31|32........63
3749   // RotatedSrcMask: --E   B----|--E    B----
3750   // MaskMI:         -----------|--E  B------
3751   // Result:         ---   -----|---    -----  (Bad candidate)
3752   //
3753   // One special case is RotatedSrcMask is a full set mask.
3754   // RotatedSrcMask full:
3755   //                 0........31|32........63
3756   // RotatedSrcMask: ------EB---|-------EB---
3757   // MaskMI:         -----------|--E  B------
3758   // Result:         -----------|---  -------  (Good candidate)
3759 
3760   // Mark special case.
3761   bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31);
3762 
3763   // For other MBMI > MEMI cases, just return.
3764   if ((MBMI > MEMI) && !SrcMaskFull)
3765     return false;
3766 
3767   // Handle MBMI <= MEMI cases.
3768   APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI);
3769   // In MI, we only need low 32 bits of SrcMI, just consider about low 32
3770   // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0,
3771   // while in PowerPC ISA, lowerest bit is at index 63.
3772   APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc);
3773 
3774   APInt RotatedSrcMask = MaskSrc.rotl(SHMI);
3775   APInt FinalMask = RotatedSrcMask & MaskMI;
3776   uint32_t NewMB, NewME;
3777   bool Simplified = false;
3778 
3779   // If final mask is 0, MI result should be 0 too.
3780   if (FinalMask.isNullValue()) {
3781     bool Is64Bit =
3782         (MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec);
3783     Simplified = true;
3784     LLVM_DEBUG(dbgs() << "Replace Instr: ");
3785     LLVM_DEBUG(MI.dump());
3786 
3787     if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) {
3788       // Replace MI with "LI 0"
3789       MI.RemoveOperand(4);
3790       MI.RemoveOperand(3);
3791       MI.RemoveOperand(2);
3792       MI.getOperand(1).ChangeToImmediate(0);
3793       MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI));
3794     } else {
3795       // Replace MI with "ANDI_rec reg, 0"
3796       MI.RemoveOperand(4);
3797       MI.RemoveOperand(3);
3798       MI.getOperand(2).setImm(0);
3799       MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
3800       MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
3801       if (SrcMI->getOperand(1).isKill()) {
3802         MI.getOperand(1).setIsKill(true);
3803         SrcMI->getOperand(1).setIsKill(false);
3804       } else
3805         // About to replace MI.getOperand(1), clear its kill flag.
3806         MI.getOperand(1).setIsKill(false);
3807     }
3808 
3809     LLVM_DEBUG(dbgs() << "With: ");
3810     LLVM_DEBUG(MI.dump());
3811 
3812   } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) &&
3813               NewMB <= NewME) ||
3814              SrcMaskFull) {
3815     // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger
3816     // than NewME. Otherwise we get a 64 bit value after folding, but MI
3817     // return a 32 bit value.
3818     Simplified = true;
3819     LLVM_DEBUG(dbgs() << "Converting Instr: ");
3820     LLVM_DEBUG(MI.dump());
3821 
3822     uint16_t NewSH = (SHSrc + SHMI) % 32;
3823     MI.getOperand(2).setImm(NewSH);
3824     // If SrcMI mask is full, no need to update MBMI and MEMI.
3825     if (!SrcMaskFull) {
3826       MI.getOperand(3).setImm(NewMB);
3827       MI.getOperand(4).setImm(NewME);
3828     }
3829     MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
3830     if (SrcMI->getOperand(1).isKill()) {
3831       MI.getOperand(1).setIsKill(true);
3832       SrcMI->getOperand(1).setIsKill(false);
3833     } else
3834       // About to replace MI.getOperand(1), clear its kill flag.
3835       MI.getOperand(1).setIsKill(false);
3836 
3837     LLVM_DEBUG(dbgs() << "To: ");
3838     LLVM_DEBUG(MI.dump());
3839   }
3840   if (Simplified & MRI->use_nodbg_empty(FoldingReg) &&
3841       !SrcMI->hasImplicitDef()) {
3842     // If FoldingReg has no non-debug use and it has no implicit def (it
3843     // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI.
3844     // Otherwise keep it.
3845     *ToErase = SrcMI;
3846     LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
3847     LLVM_DEBUG(SrcMI->dump());
3848   }
3849   return Simplified;
3850 }
3851 
3852 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
3853                                    ImmInstrInfo &III, bool PostRA) const {
3854   // The vast majority of the instructions would need their operand 2 replaced
3855   // with an immediate when switching to the reg+imm form. A marked exception
3856   // are the update form loads/stores for which a constant operand 2 would need
3857   // to turn into a displacement and move operand 1 to the operand 2 position.
3858   III.ImmOpNo = 2;
3859   III.OpNoForForwarding = 2;
3860   III.ImmWidth = 16;
3861   III.ImmMustBeMultipleOf = 1;
3862   III.TruncateImmTo = 0;
3863   III.IsSummingOperands = false;
3864   switch (Opc) {
3865   default: return false;
3866   case PPC::ADD4:
3867   case PPC::ADD8:
3868     III.SignedImm = true;
3869     III.ZeroIsSpecialOrig = 0;
3870     III.ZeroIsSpecialNew = 1;
3871     III.IsCommutative = true;
3872     III.IsSummingOperands = true;
3873     III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
3874     break;
3875   case PPC::ADDC:
3876   case PPC::ADDC8:
3877     III.SignedImm = true;
3878     III.ZeroIsSpecialOrig = 0;
3879     III.ZeroIsSpecialNew = 0;
3880     III.IsCommutative = true;
3881     III.IsSummingOperands = true;
3882     III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
3883     break;
3884   case PPC::ADDC_rec:
3885     III.SignedImm = true;
3886     III.ZeroIsSpecialOrig = 0;
3887     III.ZeroIsSpecialNew = 0;
3888     III.IsCommutative = true;
3889     III.IsSummingOperands = true;
3890     III.ImmOpcode = PPC::ADDIC_rec;
3891     break;
3892   case PPC::SUBFC:
3893   case PPC::SUBFC8:
3894     III.SignedImm = true;
3895     III.ZeroIsSpecialOrig = 0;
3896     III.ZeroIsSpecialNew = 0;
3897     III.IsCommutative = false;
3898     III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
3899     break;
3900   case PPC::CMPW:
3901   case PPC::CMPD:
3902     III.SignedImm = true;
3903     III.ZeroIsSpecialOrig = 0;
3904     III.ZeroIsSpecialNew = 0;
3905     III.IsCommutative = false;
3906     III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
3907     break;
3908   case PPC::CMPLW:
3909   case PPC::CMPLD:
3910     III.SignedImm = false;
3911     III.ZeroIsSpecialOrig = 0;
3912     III.ZeroIsSpecialNew = 0;
3913     III.IsCommutative = false;
3914     III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
3915     break;
3916   case PPC::AND_rec:
3917   case PPC::AND8_rec:
3918   case PPC::OR:
3919   case PPC::OR8:
3920   case PPC::XOR:
3921   case PPC::XOR8:
3922     III.SignedImm = false;
3923     III.ZeroIsSpecialOrig = 0;
3924     III.ZeroIsSpecialNew = 0;
3925     III.IsCommutative = true;
3926     switch(Opc) {
3927     default: llvm_unreachable("Unknown opcode");
3928     case PPC::AND_rec:
3929       III.ImmOpcode = PPC::ANDI_rec;
3930       break;
3931     case PPC::AND8_rec:
3932       III.ImmOpcode = PPC::ANDI8_rec;
3933       break;
3934     case PPC::OR: III.ImmOpcode = PPC::ORI; break;
3935     case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
3936     case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
3937     case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
3938     }
3939     break;
3940   case PPC::RLWNM:
3941   case PPC::RLWNM8:
3942   case PPC::RLWNM_rec:
3943   case PPC::RLWNM8_rec:
3944   case PPC::SLW:
3945   case PPC::SLW8:
3946   case PPC::SLW_rec:
3947   case PPC::SLW8_rec:
3948   case PPC::SRW:
3949   case PPC::SRW8:
3950   case PPC::SRW_rec:
3951   case PPC::SRW8_rec:
3952   case PPC::SRAW:
3953   case PPC::SRAW_rec:
3954     III.SignedImm = false;
3955     III.ZeroIsSpecialOrig = 0;
3956     III.ZeroIsSpecialNew = 0;
3957     III.IsCommutative = false;
3958     // This isn't actually true, but the instructions ignore any of the
3959     // upper bits, so any immediate loaded with an LI is acceptable.
3960     // This does not apply to shift right algebraic because a value
3961     // out of range will produce a -1/0.
3962     III.ImmWidth = 16;
3963     if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec ||
3964         Opc == PPC::RLWNM8_rec)
3965       III.TruncateImmTo = 5;
3966     else
3967       III.TruncateImmTo = 6;
3968     switch(Opc) {
3969     default: llvm_unreachable("Unknown opcode");
3970     case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
3971     case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
3972     case PPC::RLWNM_rec:
3973       III.ImmOpcode = PPC::RLWINM_rec;
3974       break;
3975     case PPC::RLWNM8_rec:
3976       III.ImmOpcode = PPC::RLWINM8_rec;
3977       break;
3978     case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
3979     case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
3980     case PPC::SLW_rec:
3981       III.ImmOpcode = PPC::RLWINM_rec;
3982       break;
3983     case PPC::SLW8_rec:
3984       III.ImmOpcode = PPC::RLWINM8_rec;
3985       break;
3986     case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
3987     case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
3988     case PPC::SRW_rec:
3989       III.ImmOpcode = PPC::RLWINM_rec;
3990       break;
3991     case PPC::SRW8_rec:
3992       III.ImmOpcode = PPC::RLWINM8_rec;
3993       break;
3994     case PPC::SRAW:
3995       III.ImmWidth = 5;
3996       III.TruncateImmTo = 0;
3997       III.ImmOpcode = PPC::SRAWI;
3998       break;
3999     case PPC::SRAW_rec:
4000       III.ImmWidth = 5;
4001       III.TruncateImmTo = 0;
4002       III.ImmOpcode = PPC::SRAWI_rec;
4003       break;
4004     }
4005     break;
4006   case PPC::RLDCL:
4007   case PPC::RLDCL_rec:
4008   case PPC::RLDCR:
4009   case PPC::RLDCR_rec:
4010   case PPC::SLD:
4011   case PPC::SLD_rec:
4012   case PPC::SRD:
4013   case PPC::SRD_rec:
4014   case PPC::SRAD:
4015   case PPC::SRAD_rec:
4016     III.SignedImm = false;
4017     III.ZeroIsSpecialOrig = 0;
4018     III.ZeroIsSpecialNew = 0;
4019     III.IsCommutative = false;
4020     // This isn't actually true, but the instructions ignore any of the
4021     // upper bits, so any immediate loaded with an LI is acceptable.
4022     // This does not apply to shift right algebraic because a value
4023     // out of range will produce a -1/0.
4024     III.ImmWidth = 16;
4025     if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR ||
4026         Opc == PPC::RLDCR_rec)
4027       III.TruncateImmTo = 6;
4028     else
4029       III.TruncateImmTo = 7;
4030     switch(Opc) {
4031     default: llvm_unreachable("Unknown opcode");
4032     case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
4033     case PPC::RLDCL_rec:
4034       III.ImmOpcode = PPC::RLDICL_rec;
4035       break;
4036     case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
4037     case PPC::RLDCR_rec:
4038       III.ImmOpcode = PPC::RLDICR_rec;
4039       break;
4040     case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
4041     case PPC::SLD_rec:
4042       III.ImmOpcode = PPC::RLDICR_rec;
4043       break;
4044     case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
4045     case PPC::SRD_rec:
4046       III.ImmOpcode = PPC::RLDICL_rec;
4047       break;
4048     case PPC::SRAD:
4049       III.ImmWidth = 6;
4050       III.TruncateImmTo = 0;
4051       III.ImmOpcode = PPC::SRADI;
4052        break;
4053     case PPC::SRAD_rec:
4054       III.ImmWidth = 6;
4055       III.TruncateImmTo = 0;
4056       III.ImmOpcode = PPC::SRADI_rec;
4057       break;
4058     }
4059     break;
4060   // Loads and stores:
4061   case PPC::LBZX:
4062   case PPC::LBZX8:
4063   case PPC::LHZX:
4064   case PPC::LHZX8:
4065   case PPC::LHAX:
4066   case PPC::LHAX8:
4067   case PPC::LWZX:
4068   case PPC::LWZX8:
4069   case PPC::LWAX:
4070   case PPC::LDX:
4071   case PPC::LFSX:
4072   case PPC::LFDX:
4073   case PPC::STBX:
4074   case PPC::STBX8:
4075   case PPC::STHX:
4076   case PPC::STHX8:
4077   case PPC::STWX:
4078   case PPC::STWX8:
4079   case PPC::STDX:
4080   case PPC::STFSX:
4081   case PPC::STFDX:
4082     III.SignedImm = true;
4083     III.ZeroIsSpecialOrig = 1;
4084     III.ZeroIsSpecialNew = 2;
4085     III.IsCommutative = true;
4086     III.IsSummingOperands = true;
4087     III.ImmOpNo = 1;
4088     III.OpNoForForwarding = 2;
4089     switch(Opc) {
4090     default: llvm_unreachable("Unknown opcode");
4091     case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
4092     case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
4093     case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
4094     case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
4095     case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
4096     case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
4097     case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
4098     case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
4099     case PPC::LWAX:
4100       III.ImmOpcode = PPC::LWA;
4101       III.ImmMustBeMultipleOf = 4;
4102       break;
4103     case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
4104     case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
4105     case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
4106     case PPC::STBX: III.ImmOpcode = PPC::STB; break;
4107     case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
4108     case PPC::STHX: III.ImmOpcode = PPC::STH; break;
4109     case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
4110     case PPC::STWX: III.ImmOpcode = PPC::STW; break;
4111     case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
4112     case PPC::STDX:
4113       III.ImmOpcode = PPC::STD;
4114       III.ImmMustBeMultipleOf = 4;
4115       break;
4116     case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
4117     case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
4118     }
4119     break;
4120   case PPC::LBZUX:
4121   case PPC::LBZUX8:
4122   case PPC::LHZUX:
4123   case PPC::LHZUX8:
4124   case PPC::LHAUX:
4125   case PPC::LHAUX8:
4126   case PPC::LWZUX:
4127   case PPC::LWZUX8:
4128   case PPC::LDUX:
4129   case PPC::LFSUX:
4130   case PPC::LFDUX:
4131   case PPC::STBUX:
4132   case PPC::STBUX8:
4133   case PPC::STHUX:
4134   case PPC::STHUX8:
4135   case PPC::STWUX:
4136   case PPC::STWUX8:
4137   case PPC::STDUX:
4138   case PPC::STFSUX:
4139   case PPC::STFDUX:
4140     III.SignedImm = true;
4141     III.ZeroIsSpecialOrig = 2;
4142     III.ZeroIsSpecialNew = 3;
4143     III.IsCommutative = false;
4144     III.IsSummingOperands = true;
4145     III.ImmOpNo = 2;
4146     III.OpNoForForwarding = 3;
4147     switch(Opc) {
4148     default: llvm_unreachable("Unknown opcode");
4149     case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
4150     case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
4151     case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
4152     case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
4153     case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
4154     case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
4155     case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
4156     case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
4157     case PPC::LDUX:
4158       III.ImmOpcode = PPC::LDU;
4159       III.ImmMustBeMultipleOf = 4;
4160       break;
4161     case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
4162     case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
4163     case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
4164     case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
4165     case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
4166     case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
4167     case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
4168     case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
4169     case PPC::STDUX:
4170       III.ImmOpcode = PPC::STDU;
4171       III.ImmMustBeMultipleOf = 4;
4172       break;
4173     case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
4174     case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
4175     }
4176     break;
4177   // Power9 and up only. For some of these, the X-Form version has access to all
4178   // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
4179   // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
4180   // into or stored from is one of the VR registers.
4181   case PPC::LXVX:
4182   case PPC::LXSSPX:
4183   case PPC::LXSDX:
4184   case PPC::STXVX:
4185   case PPC::STXSSPX:
4186   case PPC::STXSDX:
4187   case PPC::XFLOADf32:
4188   case PPC::XFLOADf64:
4189   case PPC::XFSTOREf32:
4190   case PPC::XFSTOREf64:
4191     if (!Subtarget.hasP9Vector())
4192       return false;
4193     III.SignedImm = true;
4194     III.ZeroIsSpecialOrig = 1;
4195     III.ZeroIsSpecialNew = 2;
4196     III.IsCommutative = true;
4197     III.IsSummingOperands = true;
4198     III.ImmOpNo = 1;
4199     III.OpNoForForwarding = 2;
4200     III.ImmMustBeMultipleOf = 4;
4201     switch(Opc) {
4202     default: llvm_unreachable("Unknown opcode");
4203     case PPC::LXVX:
4204       III.ImmOpcode = PPC::LXV;
4205       III.ImmMustBeMultipleOf = 16;
4206       break;
4207     case PPC::LXSSPX:
4208       if (PostRA) {
4209         if (IsVFReg)
4210           III.ImmOpcode = PPC::LXSSP;
4211         else {
4212           III.ImmOpcode = PPC::LFS;
4213           III.ImmMustBeMultipleOf = 1;
4214         }
4215         break;
4216       }
4217       LLVM_FALLTHROUGH;
4218     case PPC::XFLOADf32:
4219       III.ImmOpcode = PPC::DFLOADf32;
4220       break;
4221     case PPC::LXSDX:
4222       if (PostRA) {
4223         if (IsVFReg)
4224           III.ImmOpcode = PPC::LXSD;
4225         else {
4226           III.ImmOpcode = PPC::LFD;
4227           III.ImmMustBeMultipleOf = 1;
4228         }
4229         break;
4230       }
4231       LLVM_FALLTHROUGH;
4232     case PPC::XFLOADf64:
4233       III.ImmOpcode = PPC::DFLOADf64;
4234       break;
4235     case PPC::STXVX:
4236       III.ImmOpcode = PPC::STXV;
4237       III.ImmMustBeMultipleOf = 16;
4238       break;
4239     case PPC::STXSSPX:
4240       if (PostRA) {
4241         if (IsVFReg)
4242           III.ImmOpcode = PPC::STXSSP;
4243         else {
4244           III.ImmOpcode = PPC::STFS;
4245           III.ImmMustBeMultipleOf = 1;
4246         }
4247         break;
4248       }
4249       LLVM_FALLTHROUGH;
4250     case PPC::XFSTOREf32:
4251       III.ImmOpcode = PPC::DFSTOREf32;
4252       break;
4253     case PPC::STXSDX:
4254       if (PostRA) {
4255         if (IsVFReg)
4256           III.ImmOpcode = PPC::STXSD;
4257         else {
4258           III.ImmOpcode = PPC::STFD;
4259           III.ImmMustBeMultipleOf = 1;
4260         }
4261         break;
4262       }
4263       LLVM_FALLTHROUGH;
4264     case PPC::XFSTOREf64:
4265       III.ImmOpcode = PPC::DFSTOREf64;
4266       break;
4267     }
4268     break;
4269   }
4270   return true;
4271 }
4272 
4273 // Utility function for swaping two arbitrary operands of an instruction.
4274 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
4275   assert(Op1 != Op2 && "Cannot swap operand with itself.");
4276 
4277   unsigned MaxOp = std::max(Op1, Op2);
4278   unsigned MinOp = std::min(Op1, Op2);
4279   MachineOperand MOp1 = MI.getOperand(MinOp);
4280   MachineOperand MOp2 = MI.getOperand(MaxOp);
4281   MI.RemoveOperand(std::max(Op1, Op2));
4282   MI.RemoveOperand(std::min(Op1, Op2));
4283 
4284   // If the operands we are swapping are the two at the end (the common case)
4285   // we can just remove both and add them in the opposite order.
4286   if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
4287     MI.addOperand(MOp2);
4288     MI.addOperand(MOp1);
4289   } else {
4290     // Store all operands in a temporary vector, remove them and re-add in the
4291     // right order.
4292     SmallVector<MachineOperand, 2> MOps;
4293     unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
4294     for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
4295       MOps.push_back(MI.getOperand(i));
4296       MI.RemoveOperand(i);
4297     }
4298     // MOp2 needs to be added next.
4299     MI.addOperand(MOp2);
4300     // Now add the rest.
4301     for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
4302       if (i == MaxOp)
4303         MI.addOperand(MOp1);
4304       else {
4305         MI.addOperand(MOps.back());
4306         MOps.pop_back();
4307       }
4308     }
4309   }
4310 }
4311 
4312 // Check if the 'MI' that has the index OpNoForForwarding
4313 // meets the requirement described in the ImmInstrInfo.
4314 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
4315                                                const ImmInstrInfo &III,
4316                                                unsigned OpNoForForwarding
4317                                                ) const {
4318   // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
4319   // would not work pre-RA, we can only do the check post RA.
4320   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4321   if (MRI.isSSA())
4322     return false;
4323 
4324   // Cannot do the transform if MI isn't summing the operands.
4325   if (!III.IsSummingOperands)
4326     return false;
4327 
4328   // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
4329   if (!III.ZeroIsSpecialOrig)
4330     return false;
4331 
4332   // We cannot do the transform if the operand we are trying to replace
4333   // isn't the same as the operand the instruction allows.
4334   if (OpNoForForwarding != III.OpNoForForwarding)
4335     return false;
4336 
4337   // Check if the instruction we are trying to transform really has
4338   // the special zero register as its operand.
4339   if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
4340       MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
4341     return false;
4342 
4343   // This machine instruction is convertible if it is,
4344   // 1. summing the operands.
4345   // 2. one of the operands is special zero register.
4346   // 3. the operand we are trying to replace is allowed by the MI.
4347   return true;
4348 }
4349 
4350 // Check if the DefMI is the add inst and set the ImmMO and RegMO
4351 // accordingly.
4352 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
4353                                                const ImmInstrInfo &III,
4354                                                MachineOperand *&ImmMO,
4355                                                MachineOperand *&RegMO) const {
4356   unsigned Opc = DefMI.getOpcode();
4357   if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
4358     return false;
4359 
4360   assert(DefMI.getNumOperands() >= 3 &&
4361          "Add inst must have at least three operands");
4362   RegMO = &DefMI.getOperand(1);
4363   ImmMO = &DefMI.getOperand(2);
4364 
4365   // Before RA, ADDI first operand could be a frame index.
4366   if (!RegMO->isReg())
4367     return false;
4368 
4369   // This DefMI is elgible for forwarding if it is:
4370   // 1. add inst
4371   // 2. one of the operands is Imm/CPI/Global.
4372   return isAnImmediateOperand(*ImmMO);
4373 }
4374 
4375 bool PPCInstrInfo::isRegElgibleForForwarding(
4376     const MachineOperand &RegMO, const MachineInstr &DefMI,
4377     const MachineInstr &MI, bool KillDefMI,
4378     bool &IsFwdFeederRegKilled) const {
4379   // x = addi y, imm
4380   // ...
4381   // z = lfdx 0, x   -> z = lfd imm(y)
4382   // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
4383   // of "y" between the DEF of "x" and "z".
4384   // The query is only valid post RA.
4385   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4386   if (MRI.isSSA())
4387     return false;
4388 
4389   Register Reg = RegMO.getReg();
4390 
4391   // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
4392   MachineBasicBlock::const_reverse_iterator It = MI;
4393   MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
4394   It++;
4395   for (; It != E; ++It) {
4396     if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
4397       return false;
4398     else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
4399       IsFwdFeederRegKilled = true;
4400     // Made it to DefMI without encountering a clobber.
4401     if ((&*It) == &DefMI)
4402       break;
4403   }
4404   assert((&*It) == &DefMI && "DefMI is missing");
4405 
4406   // If DefMI also defines the register to be forwarded, we can only forward it
4407   // if DefMI is being erased.
4408   if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
4409     return KillDefMI;
4410 
4411   return true;
4412 }
4413 
4414 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
4415                                              const MachineInstr &DefMI,
4416                                              const ImmInstrInfo &III,
4417                                              int64_t &Imm,
4418                                              int64_t BaseImm) const {
4419   assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
4420   if (DefMI.getOpcode() == PPC::ADDItocL) {
4421     // The operand for ADDItocL is CPI, which isn't imm at compiling time,
4422     // However, we know that, it is 16-bit width, and has the alignment of 4.
4423     // Check if the instruction met the requirement.
4424     if (III.ImmMustBeMultipleOf > 4 ||
4425        III.TruncateImmTo || III.ImmWidth != 16)
4426       return false;
4427 
4428     // Going from XForm to DForm loads means that the displacement needs to be
4429     // not just an immediate but also a multiple of 4, or 16 depending on the
4430     // load. A DForm load cannot be represented if it is a multiple of say 2.
4431     // XForm loads do not have this restriction.
4432     if (ImmMO.isGlobal()) {
4433       const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout();
4434       if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf)
4435         return false;
4436     }
4437 
4438     return true;
4439   }
4440 
4441   if (ImmMO.isImm()) {
4442     // It is Imm, we need to check if the Imm fit the range.
4443     // Sign-extend to 64-bits.
4444     // DefMI may be folded with another imm form instruction, the result Imm is
4445     // the sum of Imm of DefMI and BaseImm which is from imm form instruction.
4446     APInt ActualValue(64, ImmMO.getImm() + BaseImm, true);
4447     if (III.SignedImm && !ActualValue.isSignedIntN(III.ImmWidth))
4448       return false;
4449     if (!III.SignedImm && !ActualValue.isIntN(III.ImmWidth))
4450       return false;
4451     Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm);
4452 
4453     if (Imm % III.ImmMustBeMultipleOf)
4454       return false;
4455     if (III.TruncateImmTo)
4456       Imm &= ((1 << III.TruncateImmTo) - 1);
4457   }
4458   else
4459     return false;
4460 
4461   // This ImmMO is forwarded if it meets the requriement describle
4462   // in ImmInstrInfo
4463   return true;
4464 }
4465 
4466 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
4467                                 unsigned OpNoForForwarding,
4468                                 MachineInstr **KilledDef) const {
4469   if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
4470       !DefMI.getOperand(1).isImm())
4471     return false;
4472 
4473   MachineFunction *MF = MI.getParent()->getParent();
4474   MachineRegisterInfo *MRI = &MF->getRegInfo();
4475   bool PostRA = !MRI->isSSA();
4476 
4477   int64_t Immediate = DefMI.getOperand(1).getImm();
4478   // Sign-extend to 64-bits.
4479   int64_t SExtImm = SignExtend64<16>(Immediate);
4480 
4481   bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill();
4482   Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg();
4483 
4484   bool ReplaceWithLI = false;
4485   bool Is64BitLI = false;
4486   int64_t NewImm = 0;
4487   bool SetCR = false;
4488   unsigned Opc = MI.getOpcode();
4489   switch (Opc) {
4490   default:
4491     return false;
4492 
4493   // FIXME: Any branches conditional on such a comparison can be made
4494   // unconditional. At this time, this happens too infrequently to be worth
4495   // the implementation effort, but if that ever changes, we could convert
4496   // such a pattern here.
4497   case PPC::CMPWI:
4498   case PPC::CMPLWI:
4499   case PPC::CMPDI:
4500   case PPC::CMPLDI: {
4501     // Doing this post-RA would require dataflow analysis to reliably find uses
4502     // of the CR register set by the compare.
4503     // No need to fixup killed/dead flag since this transformation is only valid
4504     // before RA.
4505     if (PostRA)
4506       return false;
4507     // If a compare-immediate is fed by an immediate and is itself an input of
4508     // an ISEL (the most common case) into a COPY of the correct register.
4509     bool Changed = false;
4510     Register DefReg = MI.getOperand(0).getReg();
4511     int64_t Comparand = MI.getOperand(2).getImm();
4512     int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0
4513                                 ? (Comparand | 0xFFFFFFFFFFFF0000)
4514                                 : Comparand;
4515 
4516     for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
4517       unsigned UseOpc = CompareUseMI.getOpcode();
4518       if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
4519         continue;
4520       unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
4521       Register TrueReg = CompareUseMI.getOperand(1).getReg();
4522       Register FalseReg = CompareUseMI.getOperand(2).getReg();
4523       unsigned RegToCopy =
4524           selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg);
4525       if (RegToCopy == PPC::NoRegister)
4526         continue;
4527       // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
4528       if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
4529         CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
4530         replaceInstrOperandWithImm(CompareUseMI, 1, 0);
4531         CompareUseMI.RemoveOperand(3);
4532         CompareUseMI.RemoveOperand(2);
4533         continue;
4534       }
4535       LLVM_DEBUG(
4536           dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
4537       LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump());
4538       LLVM_DEBUG(dbgs() << "Is converted to:\n");
4539       // Convert to copy and remove unneeded operands.
4540       CompareUseMI.setDesc(get(PPC::COPY));
4541       CompareUseMI.RemoveOperand(3);
4542       CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
4543       CmpIselsConverted++;
4544       Changed = true;
4545       LLVM_DEBUG(CompareUseMI.dump());
4546     }
4547     if (Changed)
4548       return true;
4549     // This may end up incremented multiple times since this function is called
4550     // during a fixed-point transformation, but it is only meant to indicate the
4551     // presence of this opportunity.
4552     MissedConvertibleImmediateInstrs++;
4553     return false;
4554   }
4555 
4556   // Immediate forms - may simply be convertable to an LI.
4557   case PPC::ADDI:
4558   case PPC::ADDI8: {
4559     // Does the sum fit in a 16-bit signed field?
4560     int64_t Addend = MI.getOperand(2).getImm();
4561     if (isInt<16>(Addend + SExtImm)) {
4562       ReplaceWithLI = true;
4563       Is64BitLI = Opc == PPC::ADDI8;
4564       NewImm = Addend + SExtImm;
4565       break;
4566     }
4567     return false;
4568   }
4569   case PPC::SUBFIC:
4570   case PPC::SUBFIC8: {
4571     // Only transform this if the CARRY implicit operand is dead.
4572     if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead())
4573       return false;
4574     int64_t Minuend = MI.getOperand(2).getImm();
4575     if (isInt<16>(Minuend - SExtImm)) {
4576       ReplaceWithLI = true;
4577       Is64BitLI = Opc == PPC::SUBFIC8;
4578       NewImm = Minuend - SExtImm;
4579       break;
4580     }
4581     return false;
4582   }
4583   case PPC::RLDICL:
4584   case PPC::RLDICL_rec:
4585   case PPC::RLDICL_32:
4586   case PPC::RLDICL_32_64: {
4587     // Use APInt's rotate function.
4588     int64_t SH = MI.getOperand(2).getImm();
4589     int64_t MB = MI.getOperand(3).getImm();
4590     APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32,
4591                 SExtImm, true);
4592     InVal = InVal.rotl(SH);
4593     uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1;
4594     InVal &= Mask;
4595     // Can't replace negative values with an LI as that will sign-extend
4596     // and not clear the left bits. If we're setting the CR bit, we will use
4597     // ANDI_rec which won't sign extend, so that's safe.
4598     if (isUInt<15>(InVal.getSExtValue()) ||
4599         (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) {
4600       ReplaceWithLI = true;
4601       Is64BitLI = Opc != PPC::RLDICL_32;
4602       NewImm = InVal.getSExtValue();
4603       SetCR = Opc == PPC::RLDICL_rec;
4604       break;
4605     }
4606     return false;
4607   }
4608   case PPC::RLWINM:
4609   case PPC::RLWINM8:
4610   case PPC::RLWINM_rec:
4611   case PPC::RLWINM8_rec: {
4612     int64_t SH = MI.getOperand(2).getImm();
4613     int64_t MB = MI.getOperand(3).getImm();
4614     int64_t ME = MI.getOperand(4).getImm();
4615     APInt InVal(32, SExtImm, true);
4616     InVal = InVal.rotl(SH);
4617     APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB);
4618     InVal &= Mask;
4619     // Can't replace negative values with an LI as that will sign-extend
4620     // and not clear the left bits. If we're setting the CR bit, we will use
4621     // ANDI_rec which won't sign extend, so that's safe.
4622     bool ValueFits = isUInt<15>(InVal.getSExtValue());
4623     ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) &&
4624                   isUInt<16>(InVal.getSExtValue()));
4625     if (ValueFits) {
4626       ReplaceWithLI = true;
4627       Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec;
4628       NewImm = InVal.getSExtValue();
4629       SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec;
4630       break;
4631     }
4632     return false;
4633   }
4634   case PPC::ORI:
4635   case PPC::ORI8:
4636   case PPC::XORI:
4637   case PPC::XORI8: {
4638     int64_t LogicalImm = MI.getOperand(2).getImm();
4639     int64_t Result = 0;
4640     if (Opc == PPC::ORI || Opc == PPC::ORI8)
4641       Result = LogicalImm | SExtImm;
4642     else
4643       Result = LogicalImm ^ SExtImm;
4644     if (isInt<16>(Result)) {
4645       ReplaceWithLI = true;
4646       Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
4647       NewImm = Result;
4648       break;
4649     }
4650     return false;
4651   }
4652   }
4653 
4654   if (ReplaceWithLI) {
4655     // We need to be careful with CR-setting instructions we're replacing.
4656     if (SetCR) {
4657       // We don't know anything about uses when we're out of SSA, so only
4658       // replace if the new immediate will be reproduced.
4659       bool ImmChanged = (SExtImm & NewImm) != NewImm;
4660       if (PostRA && ImmChanged)
4661         return false;
4662 
4663       if (!PostRA) {
4664         // If the defining load-immediate has no other uses, we can just replace
4665         // the immediate with the new immediate.
4666         if (MRI->hasOneUse(DefMI.getOperand(0).getReg()))
4667           DefMI.getOperand(1).setImm(NewImm);
4668 
4669         // If we're not using the GPR result of the CR-setting instruction, we
4670         // just need to and with zero/non-zero depending on the new immediate.
4671         else if (MRI->use_empty(MI.getOperand(0).getReg())) {
4672           if (NewImm) {
4673             assert(Immediate && "Transformation converted zero to non-zero?");
4674             NewImm = Immediate;
4675           }
4676         } else if (ImmChanged)
4677           return false;
4678       }
4679     }
4680 
4681     LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4682     LLVM_DEBUG(MI.dump());
4683     LLVM_DEBUG(dbgs() << "Fed by:\n");
4684     LLVM_DEBUG(DefMI.dump());
4685     LoadImmediateInfo LII;
4686     LII.Imm = NewImm;
4687     LII.Is64Bit = Is64BitLI;
4688     LII.SetCR = SetCR;
4689     // If we're setting the CR, the original load-immediate must be kept (as an
4690     // operand to ANDI_rec/ANDI8_rec).
4691     if (KilledDef && SetCR)
4692       *KilledDef = nullptr;
4693     replaceInstrWithLI(MI, LII);
4694 
4695     // Fixup killed/dead flag after transformation.
4696     // Pattern:
4697     // ForwardingOperandReg = LI imm1
4698     // y = op2 imm2, ForwardingOperandReg(killed)
4699     if (IsForwardingOperandKilled)
4700       fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg);
4701 
4702     LLVM_DEBUG(dbgs() << "With:\n");
4703     LLVM_DEBUG(MI.dump());
4704     return true;
4705   }
4706   return false;
4707 }
4708 
4709 bool PPCInstrInfo::transformToNewImmFormFedByAdd(
4710     MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const {
4711   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
4712   bool PostRA = !MRI->isSSA();
4713   // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI
4714   // for post-ra.
4715   if (PostRA)
4716     return false;
4717 
4718   // Only handle load/store.
4719   if (!MI.mayLoadOrStore())
4720     return false;
4721 
4722   unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode());
4723 
4724   assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) &&
4725          "MI must have x-form opcode");
4726 
4727   // get Imm Form info.
4728   ImmInstrInfo III;
4729   bool IsVFReg = MI.getOperand(0).isReg()
4730                      ? isVFRegister(MI.getOperand(0).getReg())
4731                      : false;
4732 
4733   if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA))
4734     return false;
4735 
4736   if (!III.IsSummingOperands)
4737     return false;
4738 
4739   if (OpNoForForwarding != III.OpNoForForwarding)
4740     return false;
4741 
4742   MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo);
4743   if (!ImmOperandMI.isImm())
4744     return false;
4745 
4746   // Check DefMI.
4747   MachineOperand *ImmMO = nullptr;
4748   MachineOperand *RegMO = nullptr;
4749   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
4750     return false;
4751   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
4752 
4753   // Check Imm.
4754   // Set ImmBase from imm instruction as base and get new Imm inside
4755   // isImmElgibleForForwarding.
4756   int64_t ImmBase = ImmOperandMI.getImm();
4757   int64_t Imm = 0;
4758   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase))
4759     return false;
4760 
4761   // Get killed info in case fixup needed after transformation.
4762   unsigned ForwardKilledOperandReg = ~0U;
4763   if (MI.getOperand(III.OpNoForForwarding).isKill())
4764     ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg();
4765 
4766   // Do the transform
4767   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4768   LLVM_DEBUG(MI.dump());
4769   LLVM_DEBUG(dbgs() << "Fed by:\n");
4770   LLVM_DEBUG(DefMI.dump());
4771 
4772   MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg());
4773   if (RegMO->isKill()) {
4774     MI.getOperand(III.OpNoForForwarding).setIsKill(true);
4775     // Clear the killed flag in RegMO. Doing this here can handle some cases
4776     // that DefMI and MI are not in same basic block.
4777     RegMO->setIsKill(false);
4778   }
4779   MI.getOperand(III.ImmOpNo).setImm(Imm);
4780 
4781   // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block.
4782   if (DefMI.getParent() == MI.getParent()) {
4783     // Check if reg is killed between MI and DefMI.
4784     auto IsKilledFor = [&](unsigned Reg) {
4785       MachineBasicBlock::const_reverse_iterator It = MI;
4786       MachineBasicBlock::const_reverse_iterator E = DefMI;
4787       It++;
4788       for (; It != E; ++It) {
4789         if (It->killsRegister(Reg))
4790           return true;
4791       }
4792       return false;
4793     };
4794 
4795     // Update kill flag
4796     if (RegMO->isKill() || IsKilledFor(RegMO->getReg()))
4797       fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
4798     if (ForwardKilledOperandReg != ~0U)
4799       fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
4800   }
4801 
4802   LLVM_DEBUG(dbgs() << "With:\n");
4803   LLVM_DEBUG(MI.dump());
4804   return true;
4805 }
4806 
4807 // If an X-Form instruction is fed by an add-immediate and one of its operands
4808 // is the literal zero, attempt to forward the source of the add-immediate to
4809 // the corresponding D-Form instruction with the displacement coming from
4810 // the immediate being added.
4811 bool PPCInstrInfo::transformToImmFormFedByAdd(
4812     MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
4813     MachineInstr &DefMI, bool KillDefMI) const {
4814   //         RegMO ImmMO
4815   //           |    |
4816   // x = addi reg, imm  <----- DefMI
4817   // y = op    0 ,  x   <----- MI
4818   //                |
4819   //         OpNoForForwarding
4820   // Check if the MI meet the requirement described in the III.
4821   if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
4822     return false;
4823 
4824   // Check if the DefMI meet the requirement
4825   // described in the III. If yes, set the ImmMO and RegMO accordingly.
4826   MachineOperand *ImmMO = nullptr;
4827   MachineOperand *RegMO = nullptr;
4828   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
4829     return false;
4830   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
4831 
4832   // As we get the Imm operand now, we need to check if the ImmMO meet
4833   // the requirement described in the III. If yes set the Imm.
4834   int64_t Imm = 0;
4835   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
4836     return false;
4837 
4838   bool IsFwdFeederRegKilled = false;
4839   // Check if the RegMO can be forwarded to MI.
4840   if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
4841                                  IsFwdFeederRegKilled))
4842     return false;
4843 
4844   // Get killed info in case fixup needed after transformation.
4845   unsigned ForwardKilledOperandReg = ~0U;
4846   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4847   bool PostRA = !MRI.isSSA();
4848   if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
4849     ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
4850 
4851   // We know that, the MI and DefMI both meet the pattern, and
4852   // the Imm also meet the requirement with the new Imm-form.
4853   // It is safe to do the transformation now.
4854   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4855   LLVM_DEBUG(MI.dump());
4856   LLVM_DEBUG(dbgs() << "Fed by:\n");
4857   LLVM_DEBUG(DefMI.dump());
4858 
4859   // Update the base reg first.
4860   MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
4861                                                         false, false,
4862                                                         RegMO->isKill());
4863 
4864   // Then, update the imm.
4865   if (ImmMO->isImm()) {
4866     // If the ImmMO is Imm, change the operand that has ZERO to that Imm
4867     // directly.
4868     replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
4869   }
4870   else {
4871     // Otherwise, it is Constant Pool Index(CPI) or Global,
4872     // which is relocation in fact. We need to replace the special zero
4873     // register with ImmMO.
4874     // Before that, we need to fixup the target flags for imm.
4875     // For some reason, we miss to set the flag for the ImmMO if it is CPI.
4876     if (DefMI.getOpcode() == PPC::ADDItocL)
4877       ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
4878 
4879     // MI didn't have the interface such as MI.setOperand(i) though
4880     // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
4881     // ImmMO, we need to remove ZERO operand and all the operands behind it,
4882     // and, add the ImmMO, then, move back all the operands behind ZERO.
4883     SmallVector<MachineOperand, 2> MOps;
4884     for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
4885       MOps.push_back(MI.getOperand(i));
4886       MI.RemoveOperand(i);
4887     }
4888 
4889     // Remove the last MO in the list, which is ZERO operand in fact.
4890     MOps.pop_back();
4891     // Add the imm operand.
4892     MI.addOperand(*ImmMO);
4893     // Now add the rest back.
4894     for (auto &MO : MOps)
4895       MI.addOperand(MO);
4896   }
4897 
4898   // Update the opcode.
4899   MI.setDesc(get(III.ImmOpcode));
4900 
4901   // Fix up killed/dead flag after transformation.
4902   // Pattern 1:
4903   // x = ADD KilledFwdFeederReg, imm
4904   // n = opn KilledFwdFeederReg(killed), regn
4905   // y = XOP 0, x
4906   // Pattern 2:
4907   // x = ADD reg(killed), imm
4908   // y = XOP 0, x
4909   if (IsFwdFeederRegKilled || RegMO->isKill())
4910     fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
4911   // Pattern 3:
4912   // ForwardKilledOperandReg = ADD reg, imm
4913   // y = XOP 0, ForwardKilledOperandReg(killed)
4914   if (ForwardKilledOperandReg != ~0U)
4915     fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
4916 
4917   LLVM_DEBUG(dbgs() << "With:\n");
4918   LLVM_DEBUG(MI.dump());
4919 
4920   return true;
4921 }
4922 
4923 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
4924                                              const ImmInstrInfo &III,
4925                                              unsigned ConstantOpNo,
4926                                              MachineInstr &DefMI) const {
4927   // DefMI must be LI or LI8.
4928   if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
4929       !DefMI.getOperand(1).isImm())
4930     return false;
4931 
4932   // Get Imm operand and Sign-extend to 64-bits.
4933   int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm());
4934 
4935   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4936   bool PostRA = !MRI.isSSA();
4937   // Exit early if we can't convert this.
4938   if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
4939     return false;
4940   if (Imm % III.ImmMustBeMultipleOf)
4941     return false;
4942   if (III.TruncateImmTo)
4943     Imm &= ((1 << III.TruncateImmTo) - 1);
4944   if (III.SignedImm) {
4945     APInt ActualValue(64, Imm, true);
4946     if (!ActualValue.isSignedIntN(III.ImmWidth))
4947       return false;
4948   } else {
4949     uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
4950     if ((uint64_t)Imm > UnsignedMax)
4951       return false;
4952   }
4953 
4954   // If we're post-RA, the instructions don't agree on whether register zero is
4955   // special, we can transform this as long as the register operand that will
4956   // end up in the location where zero is special isn't R0.
4957   if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
4958     unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
4959       III.ZeroIsSpecialNew + 1;
4960     Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
4961     Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
4962     // If R0 is in the operand where zero is special for the new instruction,
4963     // it is unsafe to transform if the constant operand isn't that operand.
4964     if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
4965         ConstantOpNo != III.ZeroIsSpecialNew)
4966       return false;
4967     if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
4968         ConstantOpNo != PosForOrigZero)
4969       return false;
4970   }
4971 
4972   // Get killed info in case fixup needed after transformation.
4973   unsigned ForwardKilledOperandReg = ~0U;
4974   if (PostRA && MI.getOperand(ConstantOpNo).isKill())
4975     ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
4976 
4977   unsigned Opc = MI.getOpcode();
4978   bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec ||
4979                         Opc == PPC::SRW || Opc == PPC::SRW_rec ||
4980                         Opc == PPC::SLW8 || Opc == PPC::SLW8_rec ||
4981                         Opc == PPC::SRW8 || Opc == PPC::SRW8_rec;
4982   bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec ||
4983                         Opc == PPC::SRD || Opc == PPC::SRD_rec;
4984   bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec ||
4985                Opc == PPC::SLD_rec || Opc == PPC::SRD_rec;
4986   bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD ||
4987                     Opc == PPC::SRD_rec;
4988 
4989   MI.setDesc(get(III.ImmOpcode));
4990   if (ConstantOpNo == III.OpNoForForwarding) {
4991     // Converting shifts to immediate form is a bit tricky since they may do
4992     // one of three things:
4993     // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
4994     // 2. If the shift amount is zero, the result is unchanged (save for maybe
4995     //    setting CR0)
4996     // 3. If the shift amount is in [1, OpSize), it's just a shift
4997     if (SpecialShift32 || SpecialShift64) {
4998       LoadImmediateInfo LII;
4999       LII.Imm = 0;
5000       LII.SetCR = SetCR;
5001       LII.Is64Bit = SpecialShift64;
5002       uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
5003       if (Imm & (SpecialShift32 ? 0x20 : 0x40))
5004         replaceInstrWithLI(MI, LII);
5005       // Shifts by zero don't change the value. If we don't need to set CR0,
5006       // just convert this to a COPY. Can't do this post-RA since we've already
5007       // cleaned up the copies.
5008       else if (!SetCR && ShAmt == 0 && !PostRA) {
5009         MI.RemoveOperand(2);
5010         MI.setDesc(get(PPC::COPY));
5011       } else {
5012         // The 32 bit and 64 bit instructions are quite different.
5013         if (SpecialShift32) {
5014           // Left shifts use (N, 0, 31-N).
5015           // Right shifts use (32-N, N, 31) if 0 < N < 32.
5016           //              use (0, 0, 31)    if N == 0.
5017           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt;
5018           uint64_t MB = RightShift ? ShAmt : 0;
5019           uint64_t ME = RightShift ? 31 : 31 - ShAmt;
5020           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
5021           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
5022             .addImm(ME);
5023         } else {
5024           // Left shifts use (N, 63-N).
5025           // Right shifts use (64-N, N) if 0 < N < 64.
5026           //              use (0, 0)    if N == 0.
5027           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt;
5028           uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
5029           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
5030           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
5031         }
5032       }
5033     } else
5034       replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
5035   }
5036   // Convert commutative instructions (switch the operands and convert the
5037   // desired one to an immediate.
5038   else if (III.IsCommutative) {
5039     replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
5040     swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
5041   } else
5042     llvm_unreachable("Should have exited early!");
5043 
5044   // For instructions for which the constant register replaces a different
5045   // operand than where the immediate goes, we need to swap them.
5046   if (III.OpNoForForwarding != III.ImmOpNo)
5047     swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
5048 
5049   // If the special R0/X0 register index are different for original instruction
5050   // and new instruction, we need to fix up the register class in new
5051   // instruction.
5052   if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
5053     if (III.ZeroIsSpecialNew) {
5054       // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
5055       // need to fix up register class.
5056       Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
5057       if (Register::isVirtualRegister(RegToModify)) {
5058         const TargetRegisterClass *NewRC =
5059           MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
5060           &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
5061         MRI.setRegClass(RegToModify, NewRC);
5062       }
5063     }
5064   }
5065 
5066   // Fix up killed/dead flag after transformation.
5067   // Pattern:
5068   // ForwardKilledOperandReg = LI imm
5069   // y = XOP reg, ForwardKilledOperandReg(killed)
5070   if (ForwardKilledOperandReg != ~0U)
5071     fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
5072   return true;
5073 }
5074 
5075 const TargetRegisterClass *
5076 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
5077   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
5078     return &PPC::VSRCRegClass;
5079   return RC;
5080 }
5081 
5082 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
5083   return PPC::getRecordFormOpcode(Opcode);
5084 }
5085 
5086 // This function returns true if the machine instruction
5087 // always outputs a value by sign-extending a 32 bit value,
5088 // i.e. 0 to 31-th bits are same as 32-th bit.
5089 static bool isSignExtendingOp(const MachineInstr &MI) {
5090   int Opcode = MI.getOpcode();
5091   if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS ||
5092       Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec ||
5093       Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA ||
5094       Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
5095       Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 ||
5096       Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
5097       Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU ||
5098       Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
5099       Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 ||
5100       Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
5101       Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB ||
5102       Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH ||
5103       Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 ||
5104       Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW ||
5105       Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 ||
5106       Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
5107       Opcode == PPC::EXTSB8_32_64)
5108     return true;
5109 
5110   if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
5111     return true;
5112 
5113   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
5114        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) &&
5115       MI.getOperand(3).getImm() > 0 &&
5116       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
5117     return true;
5118 
5119   return false;
5120 }
5121 
5122 // This function returns true if the machine instruction
5123 // always outputs zeros in higher 32 bits.
5124 static bool isZeroExtendingOp(const MachineInstr &MI) {
5125   int Opcode = MI.getOpcode();
5126   // The 16-bit immediate is sign-extended in li/lis.
5127   // If the most significant bit is zero, all higher bits are zero.
5128   if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
5129       Opcode == PPC::LIS || Opcode == PPC::LIS8) {
5130     int64_t Imm = MI.getOperand(1).getImm();
5131     if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
5132       return true;
5133   }
5134 
5135   // We have some variations of rotate-and-mask instructions
5136   // that clear higher 32-bits.
5137   if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
5138        Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec ||
5139        Opcode == PPC::RLDICL_32_64) &&
5140       MI.getOperand(3).getImm() >= 32)
5141     return true;
5142 
5143   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
5144       MI.getOperand(3).getImm() >= 32 &&
5145       MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
5146     return true;
5147 
5148   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
5149        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
5150        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
5151       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
5152     return true;
5153 
5154   // There are other instructions that clear higher 32-bits.
5155   if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
5156       Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
5157       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
5158       Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
5159       Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec ||
5160       Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW ||
5161       Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec ||
5162       Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI ||
5163       Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI ||
5164       Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX ||
5165       Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX ||
5166       Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
5167       Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ ||
5168       Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
5169       Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 ||
5170       Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 ||
5171       Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 ||
5172       Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
5173       Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
5174       Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec ||
5175       Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec ||
5176       Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec ||
5177       Opcode == PPC::MFVSRWZ)
5178     return true;
5179 
5180   return false;
5181 }
5182 
5183 // This function returns true if the input MachineInstr is a TOC save
5184 // instruction.
5185 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
5186   if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
5187     return false;
5188   unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5189   unsigned StackOffset = MI.getOperand(1).getImm();
5190   Register StackReg = MI.getOperand(2).getReg();
5191   Register SPReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
5192   if (StackReg == SPReg && StackOffset == TOCSaveOffset)
5193     return true;
5194 
5195   return false;
5196 }
5197 
5198 // We limit the max depth to track incoming values of PHIs or binary ops
5199 // (e.g. AND) to avoid excessive cost.
5200 const unsigned MAX_DEPTH = 1;
5201 
5202 bool
5203 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
5204                                    const unsigned Depth) const {
5205   const MachineFunction *MF = MI.getParent()->getParent();
5206   const MachineRegisterInfo *MRI = &MF->getRegInfo();
5207 
5208   // If we know this instruction returns sign- or zero-extended result,
5209   // return true.
5210   if (SignExt ? isSignExtendingOp(MI):
5211                 isZeroExtendingOp(MI))
5212     return true;
5213 
5214   switch (MI.getOpcode()) {
5215   case PPC::COPY: {
5216     Register SrcReg = MI.getOperand(1).getReg();
5217 
5218     // In both ELFv1 and v2 ABI, method parameters and the return value
5219     // are sign- or zero-extended.
5220     if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
5221       const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
5222       // We check the ZExt/SExt flags for a method parameter.
5223       if (MI.getParent()->getBasicBlock() ==
5224           &MF->getFunction().getEntryBlock()) {
5225         Register VReg = MI.getOperand(0).getReg();
5226         if (MF->getRegInfo().isLiveIn(VReg))
5227           return SignExt ? FuncInfo->isLiveInSExt(VReg) :
5228                            FuncInfo->isLiveInZExt(VReg);
5229       }
5230 
5231       // For a method return value, we check the ZExt/SExt flags in attribute.
5232       // We assume the following code sequence for method call.
5233       //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
5234       //   BL8_NOP @func,...
5235       //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
5236       //   %5 = COPY %x3; G8RC:%5
5237       if (SrcReg == PPC::X3) {
5238         const MachineBasicBlock *MBB = MI.getParent();
5239         MachineBasicBlock::const_instr_iterator II =
5240           MachineBasicBlock::const_instr_iterator(&MI);
5241         if (II != MBB->instr_begin() &&
5242             (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
5243           const MachineInstr &CallMI = *(--II);
5244           if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
5245             const Function *CalleeFn =
5246               dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
5247             if (!CalleeFn)
5248               return false;
5249             const IntegerType *IntTy =
5250               dyn_cast<IntegerType>(CalleeFn->getReturnType());
5251             const AttributeSet &Attrs = CalleeFn->getAttributes().getRetAttrs();
5252             if (IntTy && IntTy->getBitWidth() <= 32)
5253               return Attrs.hasAttribute(SignExt ? Attribute::SExt :
5254                                                   Attribute::ZExt);
5255           }
5256         }
5257       }
5258     }
5259 
5260     // If this is a copy from another register, we recursively check source.
5261     if (!Register::isVirtualRegister(SrcReg))
5262       return false;
5263     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
5264     if (SrcMI != NULL)
5265       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
5266 
5267     return false;
5268   }
5269 
5270   case PPC::ANDI_rec:
5271   case PPC::ANDIS_rec:
5272   case PPC::ORI:
5273   case PPC::ORIS:
5274   case PPC::XORI:
5275   case PPC::XORIS:
5276   case PPC::ANDI8_rec:
5277   case PPC::ANDIS8_rec:
5278   case PPC::ORI8:
5279   case PPC::ORIS8:
5280   case PPC::XORI8:
5281   case PPC::XORIS8: {
5282     // logical operation with 16-bit immediate does not change the upper bits.
5283     // So, we track the operand register as we do for register copy.
5284     Register SrcReg = MI.getOperand(1).getReg();
5285     if (!Register::isVirtualRegister(SrcReg))
5286       return false;
5287     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
5288     if (SrcMI != NULL)
5289       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
5290 
5291     return false;
5292   }
5293 
5294   // If all incoming values are sign-/zero-extended,
5295   // the output of OR, ISEL or PHI is also sign-/zero-extended.
5296   case PPC::OR:
5297   case PPC::OR8:
5298   case PPC::ISEL:
5299   case PPC::PHI: {
5300     if (Depth >= MAX_DEPTH)
5301       return false;
5302 
5303     // The input registers for PHI are operand 1, 3, ...
5304     // The input registers for others are operand 1 and 2.
5305     unsigned E = 3, D = 1;
5306     if (MI.getOpcode() == PPC::PHI) {
5307       E = MI.getNumOperands();
5308       D = 2;
5309     }
5310 
5311     for (unsigned I = 1; I != E; I += D) {
5312       if (MI.getOperand(I).isReg()) {
5313         Register SrcReg = MI.getOperand(I).getReg();
5314         if (!Register::isVirtualRegister(SrcReg))
5315           return false;
5316         const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
5317         if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
5318           return false;
5319       }
5320       else
5321         return false;
5322     }
5323     return true;
5324   }
5325 
5326   // If at least one of the incoming values of an AND is zero extended
5327   // then the output is also zero-extended. If both of the incoming values
5328   // are sign-extended then the output is also sign extended.
5329   case PPC::AND:
5330   case PPC::AND8: {
5331     if (Depth >= MAX_DEPTH)
5332        return false;
5333 
5334     assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
5335 
5336     Register SrcReg1 = MI.getOperand(1).getReg();
5337     Register SrcReg2 = MI.getOperand(2).getReg();
5338 
5339     if (!Register::isVirtualRegister(SrcReg1) ||
5340         !Register::isVirtualRegister(SrcReg2))
5341       return false;
5342 
5343     const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
5344     const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
5345     if (!MISrc1 || !MISrc2)
5346         return false;
5347 
5348     if(SignExt)
5349         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
5350                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
5351     else
5352         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
5353                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
5354   }
5355 
5356   default:
5357     break;
5358   }
5359   return false;
5360 }
5361 
5362 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
5363   return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
5364 }
5365 
5366 namespace {
5367 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
5368   MachineInstr *Loop, *EndLoop, *LoopCount;
5369   MachineFunction *MF;
5370   const TargetInstrInfo *TII;
5371   int64_t TripCount;
5372 
5373 public:
5374   PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
5375                        MachineInstr *LoopCount)
5376       : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
5377         MF(Loop->getParent()->getParent()),
5378         TII(MF->getSubtarget().getInstrInfo()) {
5379     // Inspect the Loop instruction up-front, as it may be deleted when we call
5380     // createTripCountGreaterCondition.
5381     if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
5382       TripCount = LoopCount->getOperand(1).getImm();
5383     else
5384       TripCount = -1;
5385   }
5386 
5387   bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
5388     // Only ignore the terminator.
5389     return MI == EndLoop;
5390   }
5391 
5392   Optional<bool>
5393   createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
5394                                   SmallVectorImpl<MachineOperand> &Cond) override {
5395     if (TripCount == -1) {
5396       // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
5397       // so we don't need to generate any thing here.
5398       Cond.push_back(MachineOperand::CreateImm(0));
5399       Cond.push_back(MachineOperand::CreateReg(
5400           MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
5401           true));
5402       return {};
5403     }
5404 
5405     return TripCount > TC;
5406   }
5407 
5408   void setPreheader(MachineBasicBlock *NewPreheader) override {
5409     // Do nothing. We want the LOOP setup instruction to stay in the *old*
5410     // preheader, so we can use BDZ in the prologs to adapt the loop trip count.
5411   }
5412 
5413   void adjustTripCount(int TripCountAdjust) override {
5414     // If the loop trip count is a compile-time value, then just change the
5415     // value.
5416     if (LoopCount->getOpcode() == PPC::LI8 ||
5417         LoopCount->getOpcode() == PPC::LI) {
5418       int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
5419       LoopCount->getOperand(1).setImm(TripCount);
5420       return;
5421     }
5422 
5423     // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
5424     // so we don't need to generate any thing here.
5425   }
5426 
5427   void disposed() override {
5428     Loop->eraseFromParent();
5429     // Ensure the loop setup instruction is deleted too.
5430     LoopCount->eraseFromParent();
5431   }
5432 };
5433 } // namespace
5434 
5435 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
5436 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
5437   // We really "analyze" only hardware loops right now.
5438   MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
5439   MachineBasicBlock *Preheader = *LoopBB->pred_begin();
5440   if (Preheader == LoopBB)
5441     Preheader = *std::next(LoopBB->pred_begin());
5442   MachineFunction *MF = Preheader->getParent();
5443 
5444   if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
5445     SmallPtrSet<MachineBasicBlock *, 8> Visited;
5446     if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
5447       Register LoopCountReg = LoopInst->getOperand(0).getReg();
5448       MachineRegisterInfo &MRI = MF->getRegInfo();
5449       MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
5450       return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
5451     }
5452   }
5453   return nullptr;
5454 }
5455 
5456 MachineInstr *PPCInstrInfo::findLoopInstr(
5457     MachineBasicBlock &PreHeader,
5458     SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
5459 
5460   unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
5461 
5462   // The loop set-up instruction should be in preheader
5463   for (auto &I : PreHeader.instrs())
5464     if (I.getOpcode() == LOOPi)
5465       return &I;
5466   return nullptr;
5467 }
5468 
5469 // Return true if get the base operand, byte offset of an instruction and the
5470 // memory width. Width is the size of memory that is being loaded/stored.
5471 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
5472     const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
5473     unsigned &Width, const TargetRegisterInfo *TRI) const {
5474   if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3)
5475     return false;
5476 
5477   // Handle only loads/stores with base register followed by immediate offset.
5478   if (!LdSt.getOperand(1).isImm() ||
5479       (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
5480     return false;
5481   if (!LdSt.getOperand(1).isImm() ||
5482       (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
5483     return false;
5484 
5485   if (!LdSt.hasOneMemOperand())
5486     return false;
5487 
5488   Width = (*LdSt.memoperands_begin())->getSize();
5489   Offset = LdSt.getOperand(1).getImm();
5490   BaseReg = &LdSt.getOperand(2);
5491   return true;
5492 }
5493 
5494 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
5495     const MachineInstr &MIa, const MachineInstr &MIb) const {
5496   assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
5497   assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
5498 
5499   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
5500       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
5501     return false;
5502 
5503   // Retrieve the base register, offset from the base register and width. Width
5504   // is the size of memory that is being loaded/stored (e.g. 1, 2, 4).  If
5505   // base registers are identical, and the offset of a lower memory access +
5506   // the width doesn't overlap the offset of a higher memory access,
5507   // then the memory accesses are different.
5508   const TargetRegisterInfo *TRI = &getRegisterInfo();
5509   const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
5510   int64_t OffsetA = 0, OffsetB = 0;
5511   unsigned int WidthA = 0, WidthB = 0;
5512   if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
5513       getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
5514     if (BaseOpA->isIdenticalTo(*BaseOpB)) {
5515       int LowOffset = std::min(OffsetA, OffsetB);
5516       int HighOffset = std::max(OffsetA, OffsetB);
5517       int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
5518       if (LowOffset + LowWidth <= HighOffset)
5519         return true;
5520     }
5521   }
5522   return false;
5523 }
5524