1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/PseudoSourceValue.h" 29 #include "llvm/CodeGen/ScheduleDAG.h" 30 #include "llvm/CodeGen/SlotIndexes.h" 31 #include "llvm/CodeGen/StackMaps.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "ppc-instr-info" 43 44 #define GET_INSTRMAP_INFO 45 #define GET_INSTRINFO_CTOR_DTOR 46 #include "PPCGenInstrInfo.inc" 47 48 STATISTIC(NumStoreSPILLVSRRCAsVec, 49 "Number of spillvsrrc spilled to stack as vec"); 50 STATISTIC(NumStoreSPILLVSRRCAsGpr, 51 "Number of spillvsrrc spilled to stack as gpr"); 52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 53 STATISTIC(CmpIselsConverted, 54 "Number of ISELs that depend on comparison of constants converted"); 55 STATISTIC(MissedConvertibleImmediateInstrs, 56 "Number of compare-immediate instructions fed by constants"); 57 STATISTIC(NumRcRotatesConvertedToRcAnd, 58 "Number of record-form rotates converted to record-form andi"); 59 60 static cl:: 61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 62 cl::desc("Disable analysis for CTR loops")); 63 64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 65 cl::desc("Disable compare instruction optimization"), cl::Hidden); 66 67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 69 cl::Hidden); 70 71 static cl::opt<bool> 72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 73 cl::desc("Use the old (incorrect) instruction latency calculation")); 74 75 // Index into the OpcodesForSpill array. 76 enum SpillOpcodeKey { 77 SOK_Int4Spill, 78 SOK_Int8Spill, 79 SOK_Float8Spill, 80 SOK_Float4Spill, 81 SOK_CRSpill, 82 SOK_CRBitSpill, 83 SOK_VRVectorSpill, 84 SOK_VSXVectorSpill, 85 SOK_VectorFloat8Spill, 86 SOK_VectorFloat4Spill, 87 SOK_VRSaveSpill, 88 SOK_QuadFloat8Spill, 89 SOK_QuadFloat4Spill, 90 SOK_QuadBitSpill, 91 SOK_SpillToVSR, 92 SOK_SPESpill, 93 SOK_LastOpcodeSpill // This must be last on the enum. 94 }; 95 96 // Pin the vtable to this file. 97 void PPCInstrInfo::anchor() {} 98 99 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 100 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 101 /* CatchRetOpcode */ -1, 102 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 103 Subtarget(STI), RI(STI.getTargetMachine()) {} 104 105 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 106 /// this target when scheduling the DAG. 107 ScheduleHazardRecognizer * 108 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 109 const ScheduleDAG *DAG) const { 110 unsigned Directive = 111 static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); 112 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 113 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 114 const InstrItineraryData *II = 115 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 116 return new ScoreboardHazardRecognizer(II, DAG); 117 } 118 119 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 120 } 121 122 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 123 /// to use for this target when scheduling the DAG. 124 ScheduleHazardRecognizer * 125 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 126 const ScheduleDAG *DAG) const { 127 unsigned Directive = 128 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); 129 130 // FIXME: Leaving this as-is until we have POWER9 scheduling info 131 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 132 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 133 134 // Most subtargets use a PPC970 recognizer. 135 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 136 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 137 assert(DAG->TII && "No InstrInfo?"); 138 139 return new PPCHazardRecognizer970(*DAG); 140 } 141 142 return new ScoreboardHazardRecognizer(II, DAG); 143 } 144 145 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 146 const MachineInstr &MI, 147 unsigned *PredCost) const { 148 if (!ItinData || UseOldLatencyCalc) 149 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 150 151 // The default implementation of getInstrLatency calls getStageLatency, but 152 // getStageLatency does not do the right thing for us. While we have 153 // itinerary, most cores are fully pipelined, and so the itineraries only 154 // express the first part of the pipeline, not every stage. Instead, we need 155 // to use the listed output operand cycle number (using operand 0 here, which 156 // is an output). 157 158 unsigned Latency = 1; 159 unsigned DefClass = MI.getDesc().getSchedClass(); 160 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 161 const MachineOperand &MO = MI.getOperand(i); 162 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 163 continue; 164 165 int Cycle = ItinData->getOperandCycle(DefClass, i); 166 if (Cycle < 0) 167 continue; 168 169 Latency = std::max(Latency, (unsigned) Cycle); 170 } 171 172 return Latency; 173 } 174 175 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 176 const MachineInstr &DefMI, unsigned DefIdx, 177 const MachineInstr &UseMI, 178 unsigned UseIdx) const { 179 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 180 UseMI, UseIdx); 181 182 if (!DefMI.getParent()) 183 return Latency; 184 185 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 186 Register Reg = DefMO.getReg(); 187 188 bool IsRegCR; 189 if (Register::isVirtualRegister(Reg)) { 190 const MachineRegisterInfo *MRI = 191 &DefMI.getParent()->getParent()->getRegInfo(); 192 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 193 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 194 } else { 195 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 196 PPC::CRBITRCRegClass.contains(Reg); 197 } 198 199 if (UseMI.isBranch() && IsRegCR) { 200 if (Latency < 0) 201 Latency = getInstrLatency(ItinData, DefMI); 202 203 // On some cores, there is an additional delay between writing to a condition 204 // register, and using it from a branch. 205 unsigned Directive = Subtarget.getCPUDirective(); 206 switch (Directive) { 207 default: break; 208 case PPC::DIR_7400: 209 case PPC::DIR_750: 210 case PPC::DIR_970: 211 case PPC::DIR_E5500: 212 case PPC::DIR_PWR4: 213 case PPC::DIR_PWR5: 214 case PPC::DIR_PWR5X: 215 case PPC::DIR_PWR6: 216 case PPC::DIR_PWR6X: 217 case PPC::DIR_PWR7: 218 case PPC::DIR_PWR8: 219 // FIXME: Is this needed for POWER9? 220 Latency += 2; 221 break; 222 } 223 } 224 225 return Latency; 226 } 227 228 /// This is an architecture-specific helper function of reassociateOps. 229 /// Set special operand attributes for new instructions after reassociation. 230 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, 231 MachineInstr &OldMI2, 232 MachineInstr &NewMI1, 233 MachineInstr &NewMI2) const { 234 // Propagate FP flags from the original instructions. 235 // But clear poison-generating flags because those may not be valid now. 236 uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags(); 237 NewMI1.setFlags(IntersectedFlags); 238 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap); 239 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap); 240 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact); 241 242 NewMI2.setFlags(IntersectedFlags); 243 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap); 244 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap); 245 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact); 246 } 247 248 // This function does not list all associative and commutative operations, but 249 // only those worth feeding through the machine combiner in an attempt to 250 // reduce the critical path. Mostly, this means floating-point operations, 251 // because they have high latencies (compared to other operations, such and 252 // and/or, which are also associative and commutative, but have low latencies). 253 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 254 switch (Inst.getOpcode()) { 255 // FP Add: 256 case PPC::FADD: 257 case PPC::FADDS: 258 // FP Multiply: 259 case PPC::FMUL: 260 case PPC::FMULS: 261 // Altivec Add: 262 case PPC::VADDFP: 263 // VSX Add: 264 case PPC::XSADDDP: 265 case PPC::XVADDDP: 266 case PPC::XVADDSP: 267 case PPC::XSADDSP: 268 // VSX Multiply: 269 case PPC::XSMULDP: 270 case PPC::XVMULDP: 271 case PPC::XVMULSP: 272 case PPC::XSMULSP: 273 // QPX Add: 274 case PPC::QVFADD: 275 case PPC::QVFADDS: 276 case PPC::QVFADDSs: 277 // QPX Multiply: 278 case PPC::QVFMUL: 279 case PPC::QVFMULS: 280 case PPC::QVFMULSs: 281 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && 282 Inst.getFlag(MachineInstr::MIFlag::FmNsz); 283 default: 284 return false; 285 } 286 } 287 288 bool PPCInstrInfo::getMachineCombinerPatterns( 289 MachineInstr &Root, 290 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 291 // Using the machine combiner in this way is potentially expensive, so 292 // restrict to when aggressive optimizations are desired. 293 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 294 return false; 295 296 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 297 } 298 299 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 300 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 301 Register &SrcReg, Register &DstReg, 302 unsigned &SubIdx) const { 303 switch (MI.getOpcode()) { 304 default: return false; 305 case PPC::EXTSW: 306 case PPC::EXTSW_32: 307 case PPC::EXTSW_32_64: 308 SrcReg = MI.getOperand(1).getReg(); 309 DstReg = MI.getOperand(0).getReg(); 310 SubIdx = PPC::sub_32; 311 return true; 312 } 313 } 314 315 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 316 int &FrameIndex) const { 317 unsigned Opcode = MI.getOpcode(); 318 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 319 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 320 321 if (End != std::find(OpcodesForSpill, End, Opcode)) { 322 // Check for the operands added by addFrameReference (the immediate is the 323 // offset which defaults to 0). 324 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 325 MI.getOperand(2).isFI()) { 326 FrameIndex = MI.getOperand(2).getIndex(); 327 return MI.getOperand(0).getReg(); 328 } 329 } 330 return 0; 331 } 332 333 // For opcodes with the ReMaterializable flag set, this function is called to 334 // verify the instruction is really rematable. 335 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 336 AliasAnalysis *AA) const { 337 switch (MI.getOpcode()) { 338 default: 339 // This function should only be called for opcodes with the ReMaterializable 340 // flag set. 341 llvm_unreachable("Unknown rematerializable operation!"); 342 break; 343 case PPC::LI: 344 case PPC::LI8: 345 case PPC::LIS: 346 case PPC::LIS8: 347 case PPC::QVGPCI: 348 case PPC::ADDIStocHA: 349 case PPC::ADDIStocHA8: 350 case PPC::ADDItocL: 351 case PPC::LOAD_STACK_GUARD: 352 case PPC::XXLXORz: 353 case PPC::XXLXORspz: 354 case PPC::XXLXORdpz: 355 case PPC::XXLEQVOnes: 356 case PPC::V_SET0B: 357 case PPC::V_SET0H: 358 case PPC::V_SET0: 359 case PPC::V_SETALLONESB: 360 case PPC::V_SETALLONESH: 361 case PPC::V_SETALLONES: 362 case PPC::CRSET: 363 case PPC::CRUNSET: 364 return true; 365 } 366 return false; 367 } 368 369 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 370 int &FrameIndex) const { 371 unsigned Opcode = MI.getOpcode(); 372 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 373 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 374 375 if (End != std::find(OpcodesForSpill, End, Opcode)) { 376 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 377 MI.getOperand(2).isFI()) { 378 FrameIndex = MI.getOperand(2).getIndex(); 379 return MI.getOperand(0).getReg(); 380 } 381 } 382 return 0; 383 } 384 385 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 386 unsigned OpIdx1, 387 unsigned OpIdx2) const { 388 MachineFunction &MF = *MI.getParent()->getParent(); 389 390 // Normal instructions can be commuted the obvious way. 391 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) 392 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 393 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 394 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 395 // changing the relative order of the mask operands might change what happens 396 // to the high-bits of the mask (and, thus, the result). 397 398 // Cannot commute if it has a non-zero rotate count. 399 if (MI.getOperand(3).getImm() != 0) 400 return nullptr; 401 402 // If we have a zero rotate count, we have: 403 // M = mask(MB,ME) 404 // Op0 = (Op1 & ~M) | (Op2 & M) 405 // Change this to: 406 // M = mask((ME+1)&31, (MB-1)&31) 407 // Op0 = (Op2 & ~M) | (Op1 & M) 408 409 // Swap op1/op2 410 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 411 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); 412 Register Reg0 = MI.getOperand(0).getReg(); 413 Register Reg1 = MI.getOperand(1).getReg(); 414 Register Reg2 = MI.getOperand(2).getReg(); 415 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 416 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 417 bool Reg1IsKill = MI.getOperand(1).isKill(); 418 bool Reg2IsKill = MI.getOperand(2).isKill(); 419 bool ChangeReg0 = false; 420 // If machine instrs are no longer in two-address forms, update 421 // destination register as well. 422 if (Reg0 == Reg1) { 423 // Must be two address instruction! 424 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 425 "Expecting a two-address instruction!"); 426 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 427 Reg2IsKill = false; 428 ChangeReg0 = true; 429 } 430 431 // Masks. 432 unsigned MB = MI.getOperand(4).getImm(); 433 unsigned ME = MI.getOperand(5).getImm(); 434 435 // We can't commute a trivial mask (there is no way to represent an all-zero 436 // mask). 437 if (MB == 0 && ME == 31) 438 return nullptr; 439 440 if (NewMI) { 441 // Create a new instruction. 442 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 443 bool Reg0IsDead = MI.getOperand(0).isDead(); 444 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 445 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 446 .addReg(Reg2, getKillRegState(Reg2IsKill)) 447 .addReg(Reg1, getKillRegState(Reg1IsKill)) 448 .addImm((ME + 1) & 31) 449 .addImm((MB - 1) & 31); 450 } 451 452 if (ChangeReg0) { 453 MI.getOperand(0).setReg(Reg2); 454 MI.getOperand(0).setSubReg(SubReg2); 455 } 456 MI.getOperand(2).setReg(Reg1); 457 MI.getOperand(1).setReg(Reg2); 458 MI.getOperand(2).setSubReg(SubReg1); 459 MI.getOperand(1).setSubReg(SubReg2); 460 MI.getOperand(2).setIsKill(Reg1IsKill); 461 MI.getOperand(1).setIsKill(Reg2IsKill); 462 463 // Swap the mask around. 464 MI.getOperand(4).setImm((ME + 1) & 31); 465 MI.getOperand(5).setImm((MB - 1) & 31); 466 return &MI; 467 } 468 469 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 470 unsigned &SrcOpIdx1, 471 unsigned &SrcOpIdx2) const { 472 // For VSX A-Type FMA instructions, it is the first two operands that can be 473 // commuted, however, because the non-encoded tied input operand is listed 474 // first, the operands to swap are actually the second and third. 475 476 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 477 if (AltOpc == -1) 478 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 479 480 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 481 // and SrcOpIdx2. 482 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 483 } 484 485 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 486 MachineBasicBlock::iterator MI) const { 487 // This function is used for scheduling, and the nop wanted here is the type 488 // that terminates dispatch groups on the POWER cores. 489 unsigned Directive = Subtarget.getCPUDirective(); 490 unsigned Opcode; 491 switch (Directive) { 492 default: Opcode = PPC::NOP; break; 493 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 494 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 495 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 496 // FIXME: Update when POWER9 scheduling model is ready. 497 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 498 } 499 500 DebugLoc DL; 501 BuildMI(MBB, MI, DL, get(Opcode)); 502 } 503 504 /// Return the noop instruction to use for a noop. 505 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 506 NopInst.setOpcode(PPC::NOP); 507 } 508 509 // Branch analysis. 510 // Note: If the condition register is set to CTR or CTR8 then this is a 511 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 512 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 513 MachineBasicBlock *&TBB, 514 MachineBasicBlock *&FBB, 515 SmallVectorImpl<MachineOperand> &Cond, 516 bool AllowModify) const { 517 bool isPPC64 = Subtarget.isPPC64(); 518 519 // If the block has no terminators, it just falls into the block after it. 520 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 521 if (I == MBB.end()) 522 return false; 523 524 if (!isUnpredicatedTerminator(*I)) 525 return false; 526 527 if (AllowModify) { 528 // If the BB ends with an unconditional branch to the fallthrough BB, 529 // we eliminate the branch instruction. 530 if (I->getOpcode() == PPC::B && 531 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 532 I->eraseFromParent(); 533 534 // We update iterator after deleting the last branch. 535 I = MBB.getLastNonDebugInstr(); 536 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 537 return false; 538 } 539 } 540 541 // Get the last instruction in the block. 542 MachineInstr &LastInst = *I; 543 544 // If there is only one terminator instruction, process it. 545 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 546 if (LastInst.getOpcode() == PPC::B) { 547 if (!LastInst.getOperand(0).isMBB()) 548 return true; 549 TBB = LastInst.getOperand(0).getMBB(); 550 return false; 551 } else if (LastInst.getOpcode() == PPC::BCC) { 552 if (!LastInst.getOperand(2).isMBB()) 553 return true; 554 // Block ends with fall-through condbranch. 555 TBB = LastInst.getOperand(2).getMBB(); 556 Cond.push_back(LastInst.getOperand(0)); 557 Cond.push_back(LastInst.getOperand(1)); 558 return false; 559 } else if (LastInst.getOpcode() == PPC::BC) { 560 if (!LastInst.getOperand(1).isMBB()) 561 return true; 562 // Block ends with fall-through condbranch. 563 TBB = LastInst.getOperand(1).getMBB(); 564 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 565 Cond.push_back(LastInst.getOperand(0)); 566 return false; 567 } else if (LastInst.getOpcode() == PPC::BCn) { 568 if (!LastInst.getOperand(1).isMBB()) 569 return true; 570 // Block ends with fall-through condbranch. 571 TBB = LastInst.getOperand(1).getMBB(); 572 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 573 Cond.push_back(LastInst.getOperand(0)); 574 return false; 575 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 576 LastInst.getOpcode() == PPC::BDNZ) { 577 if (!LastInst.getOperand(0).isMBB()) 578 return true; 579 if (DisableCTRLoopAnal) 580 return true; 581 TBB = LastInst.getOperand(0).getMBB(); 582 Cond.push_back(MachineOperand::CreateImm(1)); 583 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 584 true)); 585 return false; 586 } else if (LastInst.getOpcode() == PPC::BDZ8 || 587 LastInst.getOpcode() == PPC::BDZ) { 588 if (!LastInst.getOperand(0).isMBB()) 589 return true; 590 if (DisableCTRLoopAnal) 591 return true; 592 TBB = LastInst.getOperand(0).getMBB(); 593 Cond.push_back(MachineOperand::CreateImm(0)); 594 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 595 true)); 596 return false; 597 } 598 599 // Otherwise, don't know what this is. 600 return true; 601 } 602 603 // Get the instruction before it if it's a terminator. 604 MachineInstr &SecondLastInst = *I; 605 606 // If there are three terminators, we don't know what sort of block this is. 607 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 608 return true; 609 610 // If the block ends with PPC::B and PPC:BCC, handle it. 611 if (SecondLastInst.getOpcode() == PPC::BCC && 612 LastInst.getOpcode() == PPC::B) { 613 if (!SecondLastInst.getOperand(2).isMBB() || 614 !LastInst.getOperand(0).isMBB()) 615 return true; 616 TBB = SecondLastInst.getOperand(2).getMBB(); 617 Cond.push_back(SecondLastInst.getOperand(0)); 618 Cond.push_back(SecondLastInst.getOperand(1)); 619 FBB = LastInst.getOperand(0).getMBB(); 620 return false; 621 } else if (SecondLastInst.getOpcode() == PPC::BC && 622 LastInst.getOpcode() == PPC::B) { 623 if (!SecondLastInst.getOperand(1).isMBB() || 624 !LastInst.getOperand(0).isMBB()) 625 return true; 626 TBB = SecondLastInst.getOperand(1).getMBB(); 627 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 628 Cond.push_back(SecondLastInst.getOperand(0)); 629 FBB = LastInst.getOperand(0).getMBB(); 630 return false; 631 } else if (SecondLastInst.getOpcode() == PPC::BCn && 632 LastInst.getOpcode() == PPC::B) { 633 if (!SecondLastInst.getOperand(1).isMBB() || 634 !LastInst.getOperand(0).isMBB()) 635 return true; 636 TBB = SecondLastInst.getOperand(1).getMBB(); 637 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 638 Cond.push_back(SecondLastInst.getOperand(0)); 639 FBB = LastInst.getOperand(0).getMBB(); 640 return false; 641 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 642 SecondLastInst.getOpcode() == PPC::BDNZ) && 643 LastInst.getOpcode() == PPC::B) { 644 if (!SecondLastInst.getOperand(0).isMBB() || 645 !LastInst.getOperand(0).isMBB()) 646 return true; 647 if (DisableCTRLoopAnal) 648 return true; 649 TBB = SecondLastInst.getOperand(0).getMBB(); 650 Cond.push_back(MachineOperand::CreateImm(1)); 651 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 652 true)); 653 FBB = LastInst.getOperand(0).getMBB(); 654 return false; 655 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 656 SecondLastInst.getOpcode() == PPC::BDZ) && 657 LastInst.getOpcode() == PPC::B) { 658 if (!SecondLastInst.getOperand(0).isMBB() || 659 !LastInst.getOperand(0).isMBB()) 660 return true; 661 if (DisableCTRLoopAnal) 662 return true; 663 TBB = SecondLastInst.getOperand(0).getMBB(); 664 Cond.push_back(MachineOperand::CreateImm(0)); 665 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 666 true)); 667 FBB = LastInst.getOperand(0).getMBB(); 668 return false; 669 } 670 671 // If the block ends with two PPC:Bs, handle it. The second one is not 672 // executed, so remove it. 673 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 674 if (!SecondLastInst.getOperand(0).isMBB()) 675 return true; 676 TBB = SecondLastInst.getOperand(0).getMBB(); 677 I = LastInst; 678 if (AllowModify) 679 I->eraseFromParent(); 680 return false; 681 } 682 683 // Otherwise, can't handle this. 684 return true; 685 } 686 687 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 688 int *BytesRemoved) const { 689 assert(!BytesRemoved && "code size not handled"); 690 691 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 692 if (I == MBB.end()) 693 return 0; 694 695 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 696 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 697 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 698 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 699 return 0; 700 701 // Remove the branch. 702 I->eraseFromParent(); 703 704 I = MBB.end(); 705 706 if (I == MBB.begin()) return 1; 707 --I; 708 if (I->getOpcode() != PPC::BCC && 709 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 710 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 711 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 712 return 1; 713 714 // Remove the branch. 715 I->eraseFromParent(); 716 return 2; 717 } 718 719 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 720 MachineBasicBlock *TBB, 721 MachineBasicBlock *FBB, 722 ArrayRef<MachineOperand> Cond, 723 const DebugLoc &DL, 724 int *BytesAdded) const { 725 // Shouldn't be a fall through. 726 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 727 assert((Cond.size() == 2 || Cond.size() == 0) && 728 "PPC branch conditions have two components!"); 729 assert(!BytesAdded && "code size not handled"); 730 731 bool isPPC64 = Subtarget.isPPC64(); 732 733 // One-way branch. 734 if (!FBB) { 735 if (Cond.empty()) // Unconditional branch 736 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 737 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 738 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 739 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 740 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 741 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 742 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 743 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 744 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 745 else // Conditional branch 746 BuildMI(&MBB, DL, get(PPC::BCC)) 747 .addImm(Cond[0].getImm()) 748 .add(Cond[1]) 749 .addMBB(TBB); 750 return 1; 751 } 752 753 // Two-way Conditional Branch. 754 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 755 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 756 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 757 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 758 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 759 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 760 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 761 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 762 else 763 BuildMI(&MBB, DL, get(PPC::BCC)) 764 .addImm(Cond[0].getImm()) 765 .add(Cond[1]) 766 .addMBB(TBB); 767 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 768 return 2; 769 } 770 771 // Select analysis. 772 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 773 ArrayRef<MachineOperand> Cond, 774 Register DstReg, Register TrueReg, 775 Register FalseReg, int &CondCycles, 776 int &TrueCycles, int &FalseCycles) const { 777 if (Cond.size() != 2) 778 return false; 779 780 // If this is really a bdnz-like condition, then it cannot be turned into a 781 // select. 782 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 783 return false; 784 785 // Check register classes. 786 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 787 const TargetRegisterClass *RC = 788 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 789 if (!RC) 790 return false; 791 792 // isel is for regular integer GPRs only. 793 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 794 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 795 !PPC::G8RCRegClass.hasSubClassEq(RC) && 796 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 797 return false; 798 799 // FIXME: These numbers are for the A2, how well they work for other cores is 800 // an open question. On the A2, the isel instruction has a 2-cycle latency 801 // but single-cycle throughput. These numbers are used in combination with 802 // the MispredictPenalty setting from the active SchedMachineModel. 803 CondCycles = 1; 804 TrueCycles = 1; 805 FalseCycles = 1; 806 807 return true; 808 } 809 810 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 811 MachineBasicBlock::iterator MI, 812 const DebugLoc &dl, Register DestReg, 813 ArrayRef<MachineOperand> Cond, Register TrueReg, 814 Register FalseReg) const { 815 assert(Cond.size() == 2 && 816 "PPC branch conditions have two components!"); 817 818 // Get the register classes. 819 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 820 const TargetRegisterClass *RC = 821 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 822 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 823 824 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 825 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 826 assert((Is64Bit || 827 PPC::GPRCRegClass.hasSubClassEq(RC) || 828 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 829 "isel is for regular integer GPRs only"); 830 831 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 832 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 833 834 unsigned SubIdx = 0; 835 bool SwapOps = false; 836 switch (SelectPred) { 837 case PPC::PRED_EQ: 838 case PPC::PRED_EQ_MINUS: 839 case PPC::PRED_EQ_PLUS: 840 SubIdx = PPC::sub_eq; SwapOps = false; break; 841 case PPC::PRED_NE: 842 case PPC::PRED_NE_MINUS: 843 case PPC::PRED_NE_PLUS: 844 SubIdx = PPC::sub_eq; SwapOps = true; break; 845 case PPC::PRED_LT: 846 case PPC::PRED_LT_MINUS: 847 case PPC::PRED_LT_PLUS: 848 SubIdx = PPC::sub_lt; SwapOps = false; break; 849 case PPC::PRED_GE: 850 case PPC::PRED_GE_MINUS: 851 case PPC::PRED_GE_PLUS: 852 SubIdx = PPC::sub_lt; SwapOps = true; break; 853 case PPC::PRED_GT: 854 case PPC::PRED_GT_MINUS: 855 case PPC::PRED_GT_PLUS: 856 SubIdx = PPC::sub_gt; SwapOps = false; break; 857 case PPC::PRED_LE: 858 case PPC::PRED_LE_MINUS: 859 case PPC::PRED_LE_PLUS: 860 SubIdx = PPC::sub_gt; SwapOps = true; break; 861 case PPC::PRED_UN: 862 case PPC::PRED_UN_MINUS: 863 case PPC::PRED_UN_PLUS: 864 SubIdx = PPC::sub_un; SwapOps = false; break; 865 case PPC::PRED_NU: 866 case PPC::PRED_NU_MINUS: 867 case PPC::PRED_NU_PLUS: 868 SubIdx = PPC::sub_un; SwapOps = true; break; 869 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 870 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 871 } 872 873 Register FirstReg = SwapOps ? FalseReg : TrueReg, 874 SecondReg = SwapOps ? TrueReg : FalseReg; 875 876 // The first input register of isel cannot be r0. If it is a member 877 // of a register class that can be r0, then copy it first (the 878 // register allocator should eliminate the copy). 879 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 880 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 881 const TargetRegisterClass *FirstRC = 882 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 883 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 884 Register OldFirstReg = FirstReg; 885 FirstReg = MRI.createVirtualRegister(FirstRC); 886 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 887 .addReg(OldFirstReg); 888 } 889 890 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 891 .addReg(FirstReg).addReg(SecondReg) 892 .addReg(Cond[1].getReg(), 0, SubIdx); 893 } 894 895 static unsigned getCRBitValue(unsigned CRBit) { 896 unsigned Ret = 4; 897 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 898 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 899 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 900 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 901 Ret = 3; 902 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 903 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 904 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 905 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 906 Ret = 2; 907 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 908 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 909 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 910 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 911 Ret = 1; 912 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 913 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 914 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 915 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 916 Ret = 0; 917 918 assert(Ret != 4 && "Invalid CR bit register"); 919 return Ret; 920 } 921 922 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 923 MachineBasicBlock::iterator I, 924 const DebugLoc &DL, MCRegister DestReg, 925 MCRegister SrcReg, bool KillSrc) const { 926 // We can end up with self copies and similar things as a result of VSX copy 927 // legalization. Promote them here. 928 const TargetRegisterInfo *TRI = &getRegisterInfo(); 929 if (PPC::F8RCRegClass.contains(DestReg) && 930 PPC::VSRCRegClass.contains(SrcReg)) { 931 MCRegister SuperReg = 932 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 933 934 if (VSXSelfCopyCrash && SrcReg == SuperReg) 935 llvm_unreachable("nop VSX copy"); 936 937 DestReg = SuperReg; 938 } else if (PPC::F8RCRegClass.contains(SrcReg) && 939 PPC::VSRCRegClass.contains(DestReg)) { 940 MCRegister SuperReg = 941 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 942 943 if (VSXSelfCopyCrash && DestReg == SuperReg) 944 llvm_unreachable("nop VSX copy"); 945 946 SrcReg = SuperReg; 947 } 948 949 // Different class register copy 950 if (PPC::CRBITRCRegClass.contains(SrcReg) && 951 PPC::GPRCRegClass.contains(DestReg)) { 952 MCRegister CRReg = getCRFromCRBit(SrcReg); 953 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 954 getKillRegState(KillSrc); 955 // Rotate the CR bit in the CR fields to be the least significant bit and 956 // then mask with 0x1 (MB = ME = 31). 957 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 958 .addReg(DestReg, RegState::Kill) 959 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 960 .addImm(31) 961 .addImm(31); 962 return; 963 } else if (PPC::CRRCRegClass.contains(SrcReg) && 964 PPC::G8RCRegClass.contains(DestReg)) { 965 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 966 getKillRegState(KillSrc); 967 return; 968 } else if (PPC::CRRCRegClass.contains(SrcReg) && 969 PPC::GPRCRegClass.contains(DestReg)) { 970 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 971 getKillRegState(KillSrc); 972 return; 973 } else if (PPC::G8RCRegClass.contains(SrcReg) && 974 PPC::VSFRCRegClass.contains(DestReg)) { 975 assert(Subtarget.hasDirectMove() && 976 "Subtarget doesn't support directmove, don't know how to copy."); 977 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 978 NumGPRtoVSRSpill++; 979 getKillRegState(KillSrc); 980 return; 981 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 982 PPC::G8RCRegClass.contains(DestReg)) { 983 assert(Subtarget.hasDirectMove() && 984 "Subtarget doesn't support directmove, don't know how to copy."); 985 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 986 getKillRegState(KillSrc); 987 return; 988 } else if (PPC::SPERCRegClass.contains(SrcReg) && 989 PPC::GPRCRegClass.contains(DestReg)) { 990 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 991 getKillRegState(KillSrc); 992 return; 993 } else if (PPC::GPRCRegClass.contains(SrcReg) && 994 PPC::SPERCRegClass.contains(DestReg)) { 995 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 996 getKillRegState(KillSrc); 997 return; 998 } 999 1000 unsigned Opc; 1001 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 1002 Opc = PPC::OR; 1003 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 1004 Opc = PPC::OR8; 1005 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 1006 Opc = PPC::FMR; 1007 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 1008 Opc = PPC::MCRF; 1009 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 1010 Opc = PPC::VOR; 1011 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 1012 // There are two different ways this can be done: 1013 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 1014 // issue in VSU pipeline 0. 1015 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 1016 // can go to either pipeline. 1017 // We'll always use xxlor here, because in practically all cases where 1018 // copies are generated, they are close enough to some use that the 1019 // lower-latency form is preferable. 1020 Opc = PPC::XXLOR; 1021 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1022 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1023 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1024 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 1025 Opc = PPC::QVFMR; 1026 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 1027 Opc = PPC::QVFMRs; 1028 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 1029 Opc = PPC::QVFMRb; 1030 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1031 Opc = PPC::CROR; 1032 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1033 Opc = PPC::EVOR; 1034 else 1035 llvm_unreachable("Impossible reg-to-reg copy"); 1036 1037 const MCInstrDesc &MCID = get(Opc); 1038 if (MCID.getNumOperands() == 3) 1039 BuildMI(MBB, I, DL, MCID, DestReg) 1040 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1041 else 1042 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1043 } 1044 1045 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg, 1046 const TargetRegisterClass *RC) 1047 const { 1048 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1049 int OpcodeIndex = 0; 1050 1051 if (RC != nullptr) { 1052 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1053 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1054 OpcodeIndex = SOK_Int4Spill; 1055 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1056 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1057 OpcodeIndex = SOK_Int8Spill; 1058 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1059 OpcodeIndex = SOK_Float8Spill; 1060 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1061 OpcodeIndex = SOK_Float4Spill; 1062 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1063 OpcodeIndex = SOK_SPESpill; 1064 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1065 OpcodeIndex = SOK_CRSpill; 1066 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1067 OpcodeIndex = SOK_CRBitSpill; 1068 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1069 OpcodeIndex = SOK_VRVectorSpill; 1070 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1071 OpcodeIndex = SOK_VSXVectorSpill; 1072 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1073 OpcodeIndex = SOK_VectorFloat8Spill; 1074 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1075 OpcodeIndex = SOK_VectorFloat4Spill; 1076 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1077 OpcodeIndex = SOK_VRSaveSpill; 1078 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1079 OpcodeIndex = SOK_QuadFloat8Spill; 1080 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1081 OpcodeIndex = SOK_QuadFloat4Spill; 1082 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1083 OpcodeIndex = SOK_QuadBitSpill; 1084 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1085 OpcodeIndex = SOK_SpillToVSR; 1086 } else { 1087 llvm_unreachable("Unknown regclass!"); 1088 } 1089 } else { 1090 if (PPC::GPRCRegClass.contains(Reg) || 1091 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1092 OpcodeIndex = SOK_Int4Spill; 1093 } else if (PPC::G8RCRegClass.contains(Reg) || 1094 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1095 OpcodeIndex = SOK_Int8Spill; 1096 } else if (PPC::F8RCRegClass.contains(Reg)) { 1097 OpcodeIndex = SOK_Float8Spill; 1098 } else if (PPC::F4RCRegClass.contains(Reg)) { 1099 OpcodeIndex = SOK_Float4Spill; 1100 } else if (PPC::SPERCRegClass.contains(Reg)) { 1101 OpcodeIndex = SOK_SPESpill; 1102 } else if (PPC::CRRCRegClass.contains(Reg)) { 1103 OpcodeIndex = SOK_CRSpill; 1104 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1105 OpcodeIndex = SOK_CRBitSpill; 1106 } else if (PPC::VRRCRegClass.contains(Reg)) { 1107 OpcodeIndex = SOK_VRVectorSpill; 1108 } else if (PPC::VSRCRegClass.contains(Reg)) { 1109 OpcodeIndex = SOK_VSXVectorSpill; 1110 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1111 OpcodeIndex = SOK_VectorFloat8Spill; 1112 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1113 OpcodeIndex = SOK_VectorFloat4Spill; 1114 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1115 OpcodeIndex = SOK_VRSaveSpill; 1116 } else if (PPC::QFRCRegClass.contains(Reg)) { 1117 OpcodeIndex = SOK_QuadFloat8Spill; 1118 } else if (PPC::QSRCRegClass.contains(Reg)) { 1119 OpcodeIndex = SOK_QuadFloat4Spill; 1120 } else if (PPC::QBRCRegClass.contains(Reg)) { 1121 OpcodeIndex = SOK_QuadBitSpill; 1122 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1123 OpcodeIndex = SOK_SpillToVSR; 1124 } else { 1125 llvm_unreachable("Unknown regclass!"); 1126 } 1127 } 1128 return OpcodesForSpill[OpcodeIndex]; 1129 } 1130 1131 unsigned 1132 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg, 1133 const TargetRegisterClass *RC) const { 1134 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1135 int OpcodeIndex = 0; 1136 1137 if (RC != nullptr) { 1138 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1139 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1140 OpcodeIndex = SOK_Int4Spill; 1141 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1142 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1143 OpcodeIndex = SOK_Int8Spill; 1144 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1145 OpcodeIndex = SOK_Float8Spill; 1146 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1147 OpcodeIndex = SOK_Float4Spill; 1148 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1149 OpcodeIndex = SOK_SPESpill; 1150 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1151 OpcodeIndex = SOK_CRSpill; 1152 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1153 OpcodeIndex = SOK_CRBitSpill; 1154 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1155 OpcodeIndex = SOK_VRVectorSpill; 1156 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1157 OpcodeIndex = SOK_VSXVectorSpill; 1158 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1159 OpcodeIndex = SOK_VectorFloat8Spill; 1160 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1161 OpcodeIndex = SOK_VectorFloat4Spill; 1162 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1163 OpcodeIndex = SOK_VRSaveSpill; 1164 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1165 OpcodeIndex = SOK_QuadFloat8Spill; 1166 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1167 OpcodeIndex = SOK_QuadFloat4Spill; 1168 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1169 OpcodeIndex = SOK_QuadBitSpill; 1170 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1171 OpcodeIndex = SOK_SpillToVSR; 1172 } else { 1173 llvm_unreachable("Unknown regclass!"); 1174 } 1175 } else { 1176 if (PPC::GPRCRegClass.contains(Reg) || 1177 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1178 OpcodeIndex = SOK_Int4Spill; 1179 } else if (PPC::G8RCRegClass.contains(Reg) || 1180 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1181 OpcodeIndex = SOK_Int8Spill; 1182 } else if (PPC::F8RCRegClass.contains(Reg)) { 1183 OpcodeIndex = SOK_Float8Spill; 1184 } else if (PPC::F4RCRegClass.contains(Reg)) { 1185 OpcodeIndex = SOK_Float4Spill; 1186 } else if (PPC::SPERCRegClass.contains(Reg)) { 1187 OpcodeIndex = SOK_SPESpill; 1188 } else if (PPC::CRRCRegClass.contains(Reg)) { 1189 OpcodeIndex = SOK_CRSpill; 1190 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1191 OpcodeIndex = SOK_CRBitSpill; 1192 } else if (PPC::VRRCRegClass.contains(Reg)) { 1193 OpcodeIndex = SOK_VRVectorSpill; 1194 } else if (PPC::VSRCRegClass.contains(Reg)) { 1195 OpcodeIndex = SOK_VSXVectorSpill; 1196 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1197 OpcodeIndex = SOK_VectorFloat8Spill; 1198 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1199 OpcodeIndex = SOK_VectorFloat4Spill; 1200 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1201 OpcodeIndex = SOK_VRSaveSpill; 1202 } else if (PPC::QFRCRegClass.contains(Reg)) { 1203 OpcodeIndex = SOK_QuadFloat8Spill; 1204 } else if (PPC::QSRCRegClass.contains(Reg)) { 1205 OpcodeIndex = SOK_QuadFloat4Spill; 1206 } else if (PPC::QBRCRegClass.contains(Reg)) { 1207 OpcodeIndex = SOK_QuadBitSpill; 1208 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1209 OpcodeIndex = SOK_SpillToVSR; 1210 } else { 1211 llvm_unreachable("Unknown regclass!"); 1212 } 1213 } 1214 return OpcodesForSpill[OpcodeIndex]; 1215 } 1216 1217 void PPCInstrInfo::StoreRegToStackSlot( 1218 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1219 const TargetRegisterClass *RC, 1220 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1221 unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC); 1222 DebugLoc DL; 1223 1224 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1225 FuncInfo->setHasSpills(); 1226 1227 NewMIs.push_back(addFrameReference( 1228 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1229 FrameIdx)); 1230 1231 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1232 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1233 FuncInfo->setSpillsCR(); 1234 1235 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1236 FuncInfo->setSpillsVRSAVE(); 1237 1238 if (isXFormMemOp(Opcode)) 1239 FuncInfo->setHasNonRISpills(); 1240 } 1241 1242 void PPCInstrInfo::storeRegToStackSlotNoUpd( 1243 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, 1244 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 1245 const TargetRegisterInfo *TRI) const { 1246 MachineFunction &MF = *MBB.getParent(); 1247 SmallVector<MachineInstr *, 4> NewMIs; 1248 1249 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1250 1251 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1252 MBB.insert(MI, NewMIs[i]); 1253 1254 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1255 MachineMemOperand *MMO = MF.getMachineMemOperand( 1256 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1257 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1258 MFI.getObjectAlign(FrameIdx)); 1259 NewMIs.back()->addMemOperand(MF, MMO); 1260 } 1261 1262 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1263 MachineBasicBlock::iterator MI, 1264 Register SrcReg, bool isKill, 1265 int FrameIdx, 1266 const TargetRegisterClass *RC, 1267 const TargetRegisterInfo *TRI) const { 1268 // We need to avoid a situation in which the value from a VRRC register is 1269 // spilled using an Altivec instruction and reloaded into a VSRC register 1270 // using a VSX instruction. The issue with this is that the VSX 1271 // load/store instructions swap the doublewords in the vector and the Altivec 1272 // ones don't. The register classes on the spill/reload may be different if 1273 // the register is defined using an Altivec instruction and is then used by a 1274 // VSX instruction. 1275 RC = updatedRC(RC); 1276 storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI); 1277 } 1278 1279 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1280 unsigned DestReg, int FrameIdx, 1281 const TargetRegisterClass *RC, 1282 SmallVectorImpl<MachineInstr *> &NewMIs) 1283 const { 1284 unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC); 1285 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1286 FrameIdx)); 1287 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1288 1289 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1290 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1291 FuncInfo->setSpillsCR(); 1292 1293 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1294 FuncInfo->setSpillsVRSAVE(); 1295 1296 if (isXFormMemOp(Opcode)) 1297 FuncInfo->setHasNonRISpills(); 1298 } 1299 1300 void PPCInstrInfo::loadRegFromStackSlotNoUpd( 1301 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, 1302 int FrameIdx, const TargetRegisterClass *RC, 1303 const TargetRegisterInfo *TRI) const { 1304 MachineFunction &MF = *MBB.getParent(); 1305 SmallVector<MachineInstr*, 4> NewMIs; 1306 DebugLoc DL; 1307 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1308 1309 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1310 FuncInfo->setHasSpills(); 1311 1312 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1313 1314 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1315 MBB.insert(MI, NewMIs[i]); 1316 1317 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1318 MachineMemOperand *MMO = MF.getMachineMemOperand( 1319 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1320 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1321 MFI.getObjectAlign(FrameIdx)); 1322 NewMIs.back()->addMemOperand(MF, MMO); 1323 } 1324 1325 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1326 MachineBasicBlock::iterator MI, 1327 Register DestReg, int FrameIdx, 1328 const TargetRegisterClass *RC, 1329 const TargetRegisterInfo *TRI) const { 1330 // We need to avoid a situation in which the value from a VRRC register is 1331 // spilled using an Altivec instruction and reloaded into a VSRC register 1332 // using a VSX instruction. The issue with this is that the VSX 1333 // load/store instructions swap the doublewords in the vector and the Altivec 1334 // ones don't. The register classes on the spill/reload may be different if 1335 // the register is defined using an Altivec instruction and is then used by a 1336 // VSX instruction. 1337 RC = updatedRC(RC); 1338 1339 loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI); 1340 } 1341 1342 bool PPCInstrInfo:: 1343 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1344 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1345 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1346 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1347 else 1348 // Leave the CR# the same, but invert the condition. 1349 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1350 return false; 1351 } 1352 1353 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1354 Register Reg, MachineRegisterInfo *MRI) const { 1355 // For some instructions, it is legal to fold ZERO into the RA register field. 1356 // A zero immediate should always be loaded with a single li. 1357 unsigned DefOpc = DefMI.getOpcode(); 1358 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1359 return false; 1360 if (!DefMI.getOperand(1).isImm()) 1361 return false; 1362 if (DefMI.getOperand(1).getImm() != 0) 1363 return false; 1364 1365 // Note that we cannot here invert the arguments of an isel in order to fold 1366 // a ZERO into what is presented as the second argument. All we have here 1367 // is the condition bit, and that might come from a CR-logical bit operation. 1368 1369 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1370 1371 // Only fold into real machine instructions. 1372 if (UseMCID.isPseudo()) 1373 return false; 1374 1375 unsigned UseIdx; 1376 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1377 if (UseMI.getOperand(UseIdx).isReg() && 1378 UseMI.getOperand(UseIdx).getReg() == Reg) 1379 break; 1380 1381 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1382 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1383 1384 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1385 1386 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1387 // register (which might also be specified as a pointer class kind). 1388 if (UseInfo->isLookupPtrRegClass()) { 1389 if (UseInfo->RegClass /* Kind */ != 1) 1390 return false; 1391 } else { 1392 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1393 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1394 return false; 1395 } 1396 1397 // Make sure this is not tied to an output register (or otherwise 1398 // constrained). This is true for ST?UX registers, for example, which 1399 // are tied to their output registers. 1400 if (UseInfo->Constraints != 0) 1401 return false; 1402 1403 MCRegister ZeroReg; 1404 if (UseInfo->isLookupPtrRegClass()) { 1405 bool isPPC64 = Subtarget.isPPC64(); 1406 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1407 } else { 1408 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1409 PPC::ZERO8 : PPC::ZERO; 1410 } 1411 1412 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1413 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1414 1415 if (DeleteDef) 1416 DefMI.eraseFromParent(); 1417 1418 return true; 1419 } 1420 1421 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1422 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1423 I != IE; ++I) 1424 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1425 return true; 1426 return false; 1427 } 1428 1429 // We should make sure that, if we're going to predicate both sides of a 1430 // condition (a diamond), that both sides don't define the counter register. We 1431 // can predicate counter-decrement-based branches, but while that predicates 1432 // the branching, it does not predicate the counter decrement. If we tried to 1433 // merge the triangle into one predicated block, we'd decrement the counter 1434 // twice. 1435 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1436 unsigned NumT, unsigned ExtraT, 1437 MachineBasicBlock &FMBB, 1438 unsigned NumF, unsigned ExtraF, 1439 BranchProbability Probability) const { 1440 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1441 } 1442 1443 1444 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1445 // The predicated branches are identified by their type, not really by the 1446 // explicit presence of a predicate. Furthermore, some of them can be 1447 // predicated more than once. Because if conversion won't try to predicate 1448 // any instruction which already claims to be predicated (by returning true 1449 // here), always return false. In doing so, we let isPredicable() be the 1450 // final word on whether not the instruction can be (further) predicated. 1451 1452 return false; 1453 } 1454 1455 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1456 ArrayRef<MachineOperand> Pred) const { 1457 unsigned OpC = MI.getOpcode(); 1458 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1459 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1460 bool isPPC64 = Subtarget.isPPC64(); 1461 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1462 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1463 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1464 MI.setDesc(get(PPC::BCLR)); 1465 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1466 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1467 MI.setDesc(get(PPC::BCLRn)); 1468 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1469 } else { 1470 MI.setDesc(get(PPC::BCCLR)); 1471 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1472 .addImm(Pred[0].getImm()) 1473 .add(Pred[1]); 1474 } 1475 1476 return true; 1477 } else if (OpC == PPC::B) { 1478 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1479 bool isPPC64 = Subtarget.isPPC64(); 1480 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1481 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1482 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1483 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1484 MI.RemoveOperand(0); 1485 1486 MI.setDesc(get(PPC::BC)); 1487 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1488 .add(Pred[1]) 1489 .addMBB(MBB); 1490 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1491 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1492 MI.RemoveOperand(0); 1493 1494 MI.setDesc(get(PPC::BCn)); 1495 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1496 .add(Pred[1]) 1497 .addMBB(MBB); 1498 } else { 1499 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1500 MI.RemoveOperand(0); 1501 1502 MI.setDesc(get(PPC::BCC)); 1503 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1504 .addImm(Pred[0].getImm()) 1505 .add(Pred[1]) 1506 .addMBB(MBB); 1507 } 1508 1509 return true; 1510 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 1511 OpC == PPC::BCTRL8) { 1512 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1513 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1514 1515 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1516 bool isPPC64 = Subtarget.isPPC64(); 1517 1518 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1519 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1520 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1521 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1522 return true; 1523 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1524 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1525 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1526 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1527 return true; 1528 } 1529 1530 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1531 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1532 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1533 .addImm(Pred[0].getImm()) 1534 .add(Pred[1]); 1535 return true; 1536 } 1537 1538 return false; 1539 } 1540 1541 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1542 ArrayRef<MachineOperand> Pred2) const { 1543 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1544 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1545 1546 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1547 return false; 1548 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1549 return false; 1550 1551 // P1 can only subsume P2 if they test the same condition register. 1552 if (Pred1[1].getReg() != Pred2[1].getReg()) 1553 return false; 1554 1555 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1556 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1557 1558 if (P1 == P2) 1559 return true; 1560 1561 // Does P1 subsume P2, e.g. GE subsumes GT. 1562 if (P1 == PPC::PRED_LE && 1563 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1564 return true; 1565 if (P1 == PPC::PRED_GE && 1566 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1567 return true; 1568 1569 return false; 1570 } 1571 1572 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1573 std::vector<MachineOperand> &Pred) const { 1574 // Note: At the present time, the contents of Pred from this function is 1575 // unused by IfConversion. This implementation follows ARM by pushing the 1576 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1577 // predicate, instructions defining CTR or CTR8 are also included as 1578 // predicate-defining instructions. 1579 1580 const TargetRegisterClass *RCs[] = 1581 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1582 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1583 1584 bool Found = false; 1585 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1586 const MachineOperand &MO = MI.getOperand(i); 1587 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1588 const TargetRegisterClass *RC = RCs[c]; 1589 if (MO.isReg()) { 1590 if (MO.isDef() && RC->contains(MO.getReg())) { 1591 Pred.push_back(MO); 1592 Found = true; 1593 } 1594 } else if (MO.isRegMask()) { 1595 for (TargetRegisterClass::iterator I = RC->begin(), 1596 IE = RC->end(); I != IE; ++I) 1597 if (MO.clobbersPhysReg(*I)) { 1598 Pred.push_back(MO); 1599 Found = true; 1600 } 1601 } 1602 } 1603 } 1604 1605 return Found; 1606 } 1607 1608 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 1609 Register &SrcReg2, int &Mask, 1610 int &Value) const { 1611 unsigned Opc = MI.getOpcode(); 1612 1613 switch (Opc) { 1614 default: return false; 1615 case PPC::CMPWI: 1616 case PPC::CMPLWI: 1617 case PPC::CMPDI: 1618 case PPC::CMPLDI: 1619 SrcReg = MI.getOperand(1).getReg(); 1620 SrcReg2 = 0; 1621 Value = MI.getOperand(2).getImm(); 1622 Mask = 0xFFFF; 1623 return true; 1624 case PPC::CMPW: 1625 case PPC::CMPLW: 1626 case PPC::CMPD: 1627 case PPC::CMPLD: 1628 case PPC::FCMPUS: 1629 case PPC::FCMPUD: 1630 SrcReg = MI.getOperand(1).getReg(); 1631 SrcReg2 = MI.getOperand(2).getReg(); 1632 Value = 0; 1633 Mask = 0; 1634 return true; 1635 } 1636 } 1637 1638 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 1639 Register SrcReg2, int Mask, int Value, 1640 const MachineRegisterInfo *MRI) const { 1641 if (DisableCmpOpt) 1642 return false; 1643 1644 int OpC = CmpInstr.getOpcode(); 1645 Register CRReg = CmpInstr.getOperand(0).getReg(); 1646 1647 // FP record forms set CR1 based on the exception status bits, not a 1648 // comparison with zero. 1649 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1650 return false; 1651 1652 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1653 // The record forms set the condition register based on a signed comparison 1654 // with zero (so says the ISA manual). This is not as straightforward as it 1655 // seems, however, because this is always a 64-bit comparison on PPC64, even 1656 // for instructions that are 32-bit in nature (like slw for example). 1657 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1658 // for equality checks (as those don't depend on the sign). On PPC64, 1659 // we are restricted to equality for unsigned 64-bit comparisons and for 1660 // signed 32-bit comparisons the applicability is more restricted. 1661 bool isPPC64 = Subtarget.isPPC64(); 1662 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1663 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1664 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1665 1666 // Look through copies unless that gets us to a physical register. 1667 Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 1668 if (ActualSrc.isVirtual()) 1669 SrcReg = ActualSrc; 1670 1671 // Get the unique definition of SrcReg. 1672 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1673 if (!MI) return false; 1674 1675 bool equalityOnly = false; 1676 bool noSub = false; 1677 if (isPPC64) { 1678 if (is32BitSignedCompare) { 1679 // We can perform this optimization only if MI is sign-extending. 1680 if (isSignExtended(*MI)) 1681 noSub = true; 1682 else 1683 return false; 1684 } else if (is32BitUnsignedCompare) { 1685 // We can perform this optimization, equality only, if MI is 1686 // zero-extending. 1687 if (isZeroExtended(*MI)) { 1688 noSub = true; 1689 equalityOnly = true; 1690 } else 1691 return false; 1692 } else 1693 equalityOnly = is64BitUnsignedCompare; 1694 } else 1695 equalityOnly = is32BitUnsignedCompare; 1696 1697 if (equalityOnly) { 1698 // We need to check the uses of the condition register in order to reject 1699 // non-equality comparisons. 1700 for (MachineRegisterInfo::use_instr_iterator 1701 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1702 I != IE; ++I) { 1703 MachineInstr *UseMI = &*I; 1704 if (UseMI->getOpcode() == PPC::BCC) { 1705 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1706 unsigned PredCond = PPC::getPredicateCondition(Pred); 1707 // We ignore hint bits when checking for non-equality comparisons. 1708 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1709 return false; 1710 } else if (UseMI->getOpcode() == PPC::ISEL || 1711 UseMI->getOpcode() == PPC::ISEL8) { 1712 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1713 if (SubIdx != PPC::sub_eq) 1714 return false; 1715 } else 1716 return false; 1717 } 1718 } 1719 1720 MachineBasicBlock::iterator I = CmpInstr; 1721 1722 // Scan forward to find the first use of the compare. 1723 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1724 ++I) { 1725 bool FoundUse = false; 1726 for (MachineRegisterInfo::use_instr_iterator 1727 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 1728 J != JE; ++J) 1729 if (&*J == &*I) { 1730 FoundUse = true; 1731 break; 1732 } 1733 1734 if (FoundUse) 1735 break; 1736 } 1737 1738 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1739 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1740 1741 // There are two possible candidates which can be changed to set CR[01]. 1742 // One is MI, the other is a SUB instruction. 1743 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1744 MachineInstr *Sub = nullptr; 1745 if (SrcReg2 != 0) 1746 // MI is not a candidate for CMPrr. 1747 MI = nullptr; 1748 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1749 // same BB as the comparison. This is to allow the check below to avoid calls 1750 // (and other explicit clobbers); instead we should really check for these 1751 // more explicitly (in at least a few predecessors). 1752 else if (MI->getParent() != CmpInstr.getParent()) 1753 return false; 1754 else if (Value != 0) { 1755 // The record-form instructions set CR bit based on signed comparison 1756 // against 0. We try to convert a compare against 1 or -1 into a compare 1757 // against 0 to exploit record-form instructions. For example, we change 1758 // the condition "greater than -1" into "greater than or equal to 0" 1759 // and "less than 1" into "less than or equal to 0". 1760 1761 // Since we optimize comparison based on a specific branch condition, 1762 // we don't optimize if condition code is used by more than once. 1763 if (equalityOnly || !MRI->hasOneUse(CRReg)) 1764 return false; 1765 1766 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 1767 if (UseMI->getOpcode() != PPC::BCC) 1768 return false; 1769 1770 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1771 unsigned PredCond = PPC::getPredicateCondition(Pred); 1772 unsigned PredHint = PPC::getPredicateHint(Pred); 1773 int16_t Immed = (int16_t)Value; 1774 1775 // When modifying the condition in the predicate, we propagate hint bits 1776 // from the original predicate to the new one. 1777 if (Immed == -1 && PredCond == PPC::PRED_GT) 1778 // We convert "greater than -1" into "greater than or equal to 0", 1779 // since we are assuming signed comparison by !equalityOnly 1780 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 1781 else if (Immed == -1 && PredCond == PPC::PRED_LE) 1782 // We convert "less than or equal to -1" into "less than 0". 1783 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 1784 else if (Immed == 1 && PredCond == PPC::PRED_LT) 1785 // We convert "less than 1" into "less than or equal to 0". 1786 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 1787 else if (Immed == 1 && PredCond == PPC::PRED_GE) 1788 // We convert "greater than or equal to 1" into "greater than 0". 1789 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 1790 else 1791 return false; 1792 1793 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred)); 1794 } 1795 1796 // Search for Sub. 1797 --I; 1798 1799 // Get ready to iterate backward from CmpInstr. 1800 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 1801 1802 for (; I != E && !noSub; --I) { 1803 const MachineInstr &Instr = *I; 1804 unsigned IOpC = Instr.getOpcode(); 1805 1806 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 1807 Instr.readsRegister(PPC::CR0, TRI))) 1808 // This instruction modifies or uses the record condition register after 1809 // the one we want to change. While we could do this transformation, it 1810 // would likely not be profitable. This transformation removes one 1811 // instruction, and so even forcing RA to generate one move probably 1812 // makes it unprofitable. 1813 return false; 1814 1815 // Check whether CmpInstr can be made redundant by the current instruction. 1816 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1817 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1818 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1819 ((Instr.getOperand(1).getReg() == SrcReg && 1820 Instr.getOperand(2).getReg() == SrcReg2) || 1821 (Instr.getOperand(1).getReg() == SrcReg2 && 1822 Instr.getOperand(2).getReg() == SrcReg))) { 1823 Sub = &*I; 1824 break; 1825 } 1826 1827 if (I == B) 1828 // The 'and' is below the comparison instruction. 1829 return false; 1830 } 1831 1832 // Return false if no candidates exist. 1833 if (!MI && !Sub) 1834 return false; 1835 1836 // The single candidate is called MI. 1837 if (!MI) MI = Sub; 1838 1839 int NewOpC = -1; 1840 int MIOpC = MI->getOpcode(); 1841 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || 1842 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) 1843 NewOpC = MIOpC; 1844 else { 1845 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1846 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1847 NewOpC = MIOpC; 1848 } 1849 1850 // FIXME: On the non-embedded POWER architectures, only some of the record 1851 // forms are fast, and we should use only the fast ones. 1852 1853 // The defining instruction has a record form (or is already a record 1854 // form). It is possible, however, that we'll need to reverse the condition 1855 // code of the users. 1856 if (NewOpC == -1) 1857 return false; 1858 1859 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1860 // needs to be updated to be based on SUB. Push the condition code 1861 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1862 // condition code of these operands will be modified. 1863 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 1864 // comparison against 0, which may modify predicate. 1865 bool ShouldSwap = false; 1866 if (Sub && Value == 0) { 1867 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1868 Sub->getOperand(2).getReg() == SrcReg; 1869 1870 // The operands to subf are the opposite of sub, so only in the fixed-point 1871 // case, invert the order. 1872 ShouldSwap = !ShouldSwap; 1873 } 1874 1875 if (ShouldSwap) 1876 for (MachineRegisterInfo::use_instr_iterator 1877 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1878 I != IE; ++I) { 1879 MachineInstr *UseMI = &*I; 1880 if (UseMI->getOpcode() == PPC::BCC) { 1881 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1882 unsigned PredCond = PPC::getPredicateCondition(Pred); 1883 assert((!equalityOnly || 1884 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 1885 "Invalid predicate for equality-only optimization"); 1886 (void)PredCond; // To suppress warning in release build. 1887 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1888 PPC::getSwappedPredicate(Pred))); 1889 } else if (UseMI->getOpcode() == PPC::ISEL || 1890 UseMI->getOpcode() == PPC::ISEL8) { 1891 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1892 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1893 "Invalid CR bit for equality-only optimization"); 1894 1895 if (NewSubReg == PPC::sub_lt) 1896 NewSubReg = PPC::sub_gt; 1897 else if (NewSubReg == PPC::sub_gt) 1898 NewSubReg = PPC::sub_lt; 1899 1900 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1901 NewSubReg)); 1902 } else // We need to abort on a user we don't understand. 1903 return false; 1904 } 1905 assert(!(Value != 0 && ShouldSwap) && 1906 "Non-zero immediate support and ShouldSwap" 1907 "may conflict in updating predicate"); 1908 1909 // Create a new virtual register to hold the value of the CR set by the 1910 // record-form instruction. If the instruction was not previously in 1911 // record form, then set the kill flag on the CR. 1912 CmpInstr.eraseFromParent(); 1913 1914 MachineBasicBlock::iterator MII = MI; 1915 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1916 get(TargetOpcode::COPY), CRReg) 1917 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1918 1919 // Even if CR0 register were dead before, it is alive now since the 1920 // instruction we just built uses it. 1921 MI->clearRegisterDeads(PPC::CR0); 1922 1923 if (MIOpC != NewOpC) { 1924 // We need to be careful here: we're replacing one instruction with 1925 // another, and we need to make sure that we get all of the right 1926 // implicit uses and defs. On the other hand, the caller may be holding 1927 // an iterator to this instruction, and so we can't delete it (this is 1928 // specifically the case if this is the instruction directly after the 1929 // compare). 1930 1931 // Rotates are expensive instructions. If we're emitting a record-form 1932 // rotate that can just be an andi/andis, we should just emit that. 1933 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 1934 Register GPRRes = MI->getOperand(0).getReg(); 1935 int64_t SH = MI->getOperand(2).getImm(); 1936 int64_t MB = MI->getOperand(3).getImm(); 1937 int64_t ME = MI->getOperand(4).getImm(); 1938 // We can only do this if both the start and end of the mask are in the 1939 // same halfword. 1940 bool MBInLoHWord = MB >= 16; 1941 bool MEInLoHWord = ME >= 16; 1942 uint64_t Mask = ~0LLU; 1943 1944 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 1945 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 1946 // The mask value needs to shift right 16 if we're emitting andis. 1947 Mask >>= MBInLoHWord ? 0 : 16; 1948 NewOpC = MIOpC == PPC::RLWINM 1949 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) 1950 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); 1951 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 1952 (ME - MB + 1 == SH) && (MB >= 16)) { 1953 // If we are rotating by the exact number of bits as are in the mask 1954 // and the mask is in the least significant bits of the register, 1955 // that's just an andis. (as long as the GPR result has no uses). 1956 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 1957 Mask >>= 16; 1958 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; 1959 } 1960 // If we've set the mask, we can transform. 1961 if (Mask != ~0LLU) { 1962 MI->RemoveOperand(4); 1963 MI->RemoveOperand(3); 1964 MI->getOperand(2).setImm(Mask); 1965 NumRcRotatesConvertedToRcAnd++; 1966 } 1967 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 1968 int64_t MB = MI->getOperand(3).getImm(); 1969 if (MB >= 48) { 1970 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 1971 NewOpC = PPC::ANDI8_rec; 1972 MI->RemoveOperand(3); 1973 MI->getOperand(2).setImm(Mask); 1974 NumRcRotatesConvertedToRcAnd++; 1975 } 1976 } 1977 1978 const MCInstrDesc &NewDesc = get(NewOpC); 1979 MI->setDesc(NewDesc); 1980 1981 if (NewDesc.ImplicitDefs) 1982 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 1983 *ImpDefs; ++ImpDefs) 1984 if (!MI->definesRegister(*ImpDefs)) 1985 MI->addOperand(*MI->getParent()->getParent(), 1986 MachineOperand::CreateReg(*ImpDefs, true, true)); 1987 if (NewDesc.ImplicitUses) 1988 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 1989 *ImpUses; ++ImpUses) 1990 if (!MI->readsRegister(*ImpUses)) 1991 MI->addOperand(*MI->getParent()->getParent(), 1992 MachineOperand::CreateReg(*ImpUses, false, true)); 1993 } 1994 assert(MI->definesRegister(PPC::CR0) && 1995 "Record-form instruction does not define cr0?"); 1996 1997 // Modify the condition code of operands in OperandsToUpdate. 1998 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1999 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 2000 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 2001 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 2002 2003 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 2004 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 2005 2006 return true; 2007 } 2008 2009 /// GetInstSize - Return the number of bytes of code the specified 2010 /// instruction may be. This returns the maximum number of bytes. 2011 /// 2012 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2013 unsigned Opcode = MI.getOpcode(); 2014 2015 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 2016 const MachineFunction *MF = MI.getParent()->getParent(); 2017 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2018 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2019 } else if (Opcode == TargetOpcode::STACKMAP) { 2020 StackMapOpers Opers(&MI); 2021 return Opers.getNumPatchBytes(); 2022 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2023 PatchPointOpers Opers(&MI); 2024 return Opers.getNumPatchBytes(); 2025 } else { 2026 return get(Opcode).getSize(); 2027 } 2028 } 2029 2030 std::pair<unsigned, unsigned> 2031 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2032 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2033 return std::make_pair(TF & Mask, TF & ~Mask); 2034 } 2035 2036 ArrayRef<std::pair<unsigned, const char *>> 2037 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2038 using namespace PPCII; 2039 static const std::pair<unsigned, const char *> TargetFlags[] = { 2040 {MO_LO, "ppc-lo"}, 2041 {MO_HA, "ppc-ha"}, 2042 {MO_TPREL_LO, "ppc-tprel-lo"}, 2043 {MO_TPREL_HA, "ppc-tprel-ha"}, 2044 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2045 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2046 {MO_TOC_LO, "ppc-toc-lo"}, 2047 {MO_TLS, "ppc-tls"}}; 2048 return makeArrayRef(TargetFlags); 2049 } 2050 2051 ArrayRef<std::pair<unsigned, const char *>> 2052 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2053 using namespace PPCII; 2054 static const std::pair<unsigned, const char *> TargetFlags[] = { 2055 {MO_PLT, "ppc-plt"}, 2056 {MO_PIC_FLAG, "ppc-pic"}, 2057 {MO_PCREL_FLAG, "ppc-pcrel"}, 2058 {MO_GOT_FLAG, "ppc-got"}}; 2059 return makeArrayRef(TargetFlags); 2060 } 2061 2062 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2063 // The VSX versions have the advantage of a full 64-register target whereas 2064 // the FP ones have the advantage of lower latency and higher throughput. So 2065 // what we are after is using the faster instructions in low register pressure 2066 // situations and using the larger register file in high register pressure 2067 // situations. 2068 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2069 unsigned UpperOpcode, LowerOpcode; 2070 switch (MI.getOpcode()) { 2071 case PPC::DFLOADf32: 2072 UpperOpcode = PPC::LXSSP; 2073 LowerOpcode = PPC::LFS; 2074 break; 2075 case PPC::DFLOADf64: 2076 UpperOpcode = PPC::LXSD; 2077 LowerOpcode = PPC::LFD; 2078 break; 2079 case PPC::DFSTOREf32: 2080 UpperOpcode = PPC::STXSSP; 2081 LowerOpcode = PPC::STFS; 2082 break; 2083 case PPC::DFSTOREf64: 2084 UpperOpcode = PPC::STXSD; 2085 LowerOpcode = PPC::STFD; 2086 break; 2087 case PPC::XFLOADf32: 2088 UpperOpcode = PPC::LXSSPX; 2089 LowerOpcode = PPC::LFSX; 2090 break; 2091 case PPC::XFLOADf64: 2092 UpperOpcode = PPC::LXSDX; 2093 LowerOpcode = PPC::LFDX; 2094 break; 2095 case PPC::XFSTOREf32: 2096 UpperOpcode = PPC::STXSSPX; 2097 LowerOpcode = PPC::STFSX; 2098 break; 2099 case PPC::XFSTOREf64: 2100 UpperOpcode = PPC::STXSDX; 2101 LowerOpcode = PPC::STFDX; 2102 break; 2103 case PPC::LIWAX: 2104 UpperOpcode = PPC::LXSIWAX; 2105 LowerOpcode = PPC::LFIWAX; 2106 break; 2107 case PPC::LIWZX: 2108 UpperOpcode = PPC::LXSIWZX; 2109 LowerOpcode = PPC::LFIWZX; 2110 break; 2111 case PPC::STIWX: 2112 UpperOpcode = PPC::STXSIWX; 2113 LowerOpcode = PPC::STFIWX; 2114 break; 2115 default: 2116 llvm_unreachable("Unknown Operation!"); 2117 } 2118 2119 Register TargetReg = MI.getOperand(0).getReg(); 2120 unsigned Opcode; 2121 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2122 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2123 Opcode = LowerOpcode; 2124 else 2125 Opcode = UpperOpcode; 2126 MI.setDesc(get(Opcode)); 2127 return true; 2128 } 2129 2130 static bool isAnImmediateOperand(const MachineOperand &MO) { 2131 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2132 } 2133 2134 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2135 auto &MBB = *MI.getParent(); 2136 auto DL = MI.getDebugLoc(); 2137 2138 switch (MI.getOpcode()) { 2139 case TargetOpcode::LOAD_STACK_GUARD: { 2140 assert(Subtarget.isTargetLinux() && 2141 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 2142 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 2143 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 2144 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 2145 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2146 .addImm(Offset) 2147 .addReg(Reg); 2148 return true; 2149 } 2150 case PPC::DFLOADf32: 2151 case PPC::DFLOADf64: 2152 case PPC::DFSTOREf32: 2153 case PPC::DFSTOREf64: { 2154 assert(Subtarget.hasP9Vector() && 2155 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 2156 assert(MI.getOperand(2).isReg() && 2157 isAnImmediateOperand(MI.getOperand(1)) && 2158 "D-form op must have register and immediate operands"); 2159 return expandVSXMemPseudo(MI); 2160 } 2161 case PPC::XFLOADf32: 2162 case PPC::XFSTOREf32: 2163 case PPC::LIWAX: 2164 case PPC::LIWZX: 2165 case PPC::STIWX: { 2166 assert(Subtarget.hasP8Vector() && 2167 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 2168 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2169 "X-form op must have register and register operands"); 2170 return expandVSXMemPseudo(MI); 2171 } 2172 case PPC::XFLOADf64: 2173 case PPC::XFSTOREf64: { 2174 assert(Subtarget.hasVSX() && 2175 "Invalid X-Form Pseudo-ops on target that has no VSX."); 2176 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2177 "X-form op must have register and register operands"); 2178 return expandVSXMemPseudo(MI); 2179 } 2180 case PPC::SPILLTOVSR_LD: { 2181 Register TargetReg = MI.getOperand(0).getReg(); 2182 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2183 MI.setDesc(get(PPC::DFLOADf64)); 2184 return expandPostRAPseudo(MI); 2185 } 2186 else 2187 MI.setDesc(get(PPC::LD)); 2188 return true; 2189 } 2190 case PPC::SPILLTOVSR_ST: { 2191 Register SrcReg = MI.getOperand(0).getReg(); 2192 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2193 NumStoreSPILLVSRRCAsVec++; 2194 MI.setDesc(get(PPC::DFSTOREf64)); 2195 return expandPostRAPseudo(MI); 2196 } else { 2197 NumStoreSPILLVSRRCAsGpr++; 2198 MI.setDesc(get(PPC::STD)); 2199 } 2200 return true; 2201 } 2202 case PPC::SPILLTOVSR_LDX: { 2203 Register TargetReg = MI.getOperand(0).getReg(); 2204 if (PPC::VSFRCRegClass.contains(TargetReg)) 2205 MI.setDesc(get(PPC::LXSDX)); 2206 else 2207 MI.setDesc(get(PPC::LDX)); 2208 return true; 2209 } 2210 case PPC::SPILLTOVSR_STX: { 2211 Register SrcReg = MI.getOperand(0).getReg(); 2212 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2213 NumStoreSPILLVSRRCAsVec++; 2214 MI.setDesc(get(PPC::STXSDX)); 2215 } else { 2216 NumStoreSPILLVSRRCAsGpr++; 2217 MI.setDesc(get(PPC::STDX)); 2218 } 2219 return true; 2220 } 2221 2222 case PPC::CFENCE8: { 2223 auto Val = MI.getOperand(0).getReg(); 2224 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2225 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2226 .addImm(PPC::PRED_NE_MINUS) 2227 .addReg(PPC::CR7) 2228 .addImm(1); 2229 MI.setDesc(get(PPC::ISYNC)); 2230 MI.RemoveOperand(0); 2231 return true; 2232 } 2233 } 2234 return false; 2235 } 2236 2237 // Essentially a compile-time implementation of a compare->isel sequence. 2238 // It takes two constants to compare, along with the true/false registers 2239 // and the comparison type (as a subreg to a CR field) and returns one 2240 // of the true/false registers, depending on the comparison results. 2241 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 2242 unsigned TrueReg, unsigned FalseReg, 2243 unsigned CRSubReg) { 2244 // Signed comparisons. The immediates are assumed to be sign-extended. 2245 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 2246 switch (CRSubReg) { 2247 default: llvm_unreachable("Unknown integer comparison type."); 2248 case PPC::sub_lt: 2249 return Imm1 < Imm2 ? TrueReg : FalseReg; 2250 case PPC::sub_gt: 2251 return Imm1 > Imm2 ? TrueReg : FalseReg; 2252 case PPC::sub_eq: 2253 return Imm1 == Imm2 ? TrueReg : FalseReg; 2254 } 2255 } 2256 // Unsigned comparisons. 2257 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 2258 switch (CRSubReg) { 2259 default: llvm_unreachable("Unknown integer comparison type."); 2260 case PPC::sub_lt: 2261 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 2262 case PPC::sub_gt: 2263 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 2264 case PPC::sub_eq: 2265 return Imm1 == Imm2 ? TrueReg : FalseReg; 2266 } 2267 } 2268 return PPC::NoRegister; 2269 } 2270 2271 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 2272 unsigned OpNo, 2273 int64_t Imm) const { 2274 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 2275 // Replace the REG with the Immediate. 2276 Register InUseReg = MI.getOperand(OpNo).getReg(); 2277 MI.getOperand(OpNo).ChangeToImmediate(Imm); 2278 2279 if (MI.implicit_operands().empty()) 2280 return; 2281 2282 // We need to make sure that the MI didn't have any implicit use 2283 // of this REG any more. 2284 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2285 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 2286 if (UseOpIdx >= 0) { 2287 MachineOperand &MO = MI.getOperand(UseOpIdx); 2288 if (MO.isImplicit()) 2289 // The operands must always be in the following order: 2290 // - explicit reg defs, 2291 // - other explicit operands (reg uses, immediates, etc.), 2292 // - implicit reg defs 2293 // - implicit reg uses 2294 // Therefore, removing the implicit operand won't change the explicit 2295 // operands layout. 2296 MI.RemoveOperand(UseOpIdx); 2297 } 2298 } 2299 2300 // Replace an instruction with one that materializes a constant (and sets 2301 // CR0 if the original instruction was a record-form instruction). 2302 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 2303 const LoadImmediateInfo &LII) const { 2304 // Remove existing operands. 2305 int OperandToKeep = LII.SetCR ? 1 : 0; 2306 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 2307 MI.RemoveOperand(i); 2308 2309 // Replace the instruction. 2310 if (LII.SetCR) { 2311 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 2312 // Set the immediate. 2313 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2314 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 2315 return; 2316 } 2317 else 2318 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 2319 2320 // Set the immediate. 2321 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2322 .addImm(LII.Imm); 2323 } 2324 2325 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 2326 bool &SeenIntermediateUse) const { 2327 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 2328 "Should be called after register allocation."); 2329 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2330 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 2331 It++; 2332 SeenIntermediateUse = false; 2333 for (; It != E; ++It) { 2334 if (It->modifiesRegister(Reg, TRI)) 2335 return &*It; 2336 if (It->readsRegister(Reg, TRI)) 2337 SeenIntermediateUse = true; 2338 } 2339 return nullptr; 2340 } 2341 2342 MachineInstr *PPCInstrInfo::getForwardingDefMI( 2343 MachineInstr &MI, 2344 unsigned &OpNoForForwarding, 2345 bool &SeenIntermediateUse) const { 2346 OpNoForForwarding = ~0U; 2347 MachineInstr *DefMI = nullptr; 2348 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 2349 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2350 // If we're in SSA, get the defs through the MRI. Otherwise, only look 2351 // within the basic block to see if the register is defined using an LI/LI8. 2352 if (MRI->isSSA()) { 2353 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2354 if (!MI.getOperand(i).isReg()) 2355 continue; 2356 Register Reg = MI.getOperand(i).getReg(); 2357 if (!Register::isVirtualRegister(Reg)) 2358 continue; 2359 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 2360 if (Register::isVirtualRegister(TrueReg)) { 2361 DefMI = MRI->getVRegDef(TrueReg); 2362 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) { 2363 OpNoForForwarding = i; 2364 break; 2365 } 2366 } 2367 } 2368 } else { 2369 // Looking back through the definition for each operand could be expensive, 2370 // so exit early if this isn't an instruction that either has an immediate 2371 // form or is already an immediate form that we can handle. 2372 ImmInstrInfo III; 2373 unsigned Opc = MI.getOpcode(); 2374 bool ConvertibleImmForm = 2375 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || 2376 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || 2377 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || 2378 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || 2379 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 2380 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || 2381 Opc == PPC::RLWINM8_rec; 2382 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 2383 ? isVFRegister(MI.getOperand(0).getReg()) 2384 : false; 2385 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 2386 return nullptr; 2387 2388 // Don't convert or %X, %Y, %Y since that's just a register move. 2389 if ((Opc == PPC::OR || Opc == PPC::OR8) && 2390 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 2391 return nullptr; 2392 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2393 MachineOperand &MO = MI.getOperand(i); 2394 SeenIntermediateUse = false; 2395 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 2396 Register Reg = MI.getOperand(i).getReg(); 2397 // If we see another use of this reg between the def and the MI, 2398 // we want to flat it so the def isn't deleted. 2399 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 2400 if (DefMI) { 2401 // Is this register defined by some form of add-immediate (including 2402 // load-immediate) within this basic block? 2403 switch (DefMI->getOpcode()) { 2404 default: 2405 break; 2406 case PPC::LI: 2407 case PPC::LI8: 2408 case PPC::ADDItocL: 2409 case PPC::ADDI: 2410 case PPC::ADDI8: 2411 OpNoForForwarding = i; 2412 return DefMI; 2413 } 2414 } 2415 } 2416 } 2417 } 2418 return OpNoForForwarding == ~0U ? nullptr : DefMI; 2419 } 2420 2421 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 2422 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2423 // Power 8 2424 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2425 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, 2426 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2427 PPC::SPILLTOVSR_ST, PPC::EVSTDD}, 2428 // Power 9 2429 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2430 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, 2431 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2432 PPC::SPILLTOVSR_ST}}; 2433 2434 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2435 } 2436 2437 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 2438 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2439 // Power 8 2440 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2441 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX, 2442 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2443 PPC::SPILLTOVSR_LD, PPC::EVLDD}, 2444 // Power 9 2445 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2446 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32, 2447 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2448 PPC::SPILLTOVSR_LD}}; 2449 2450 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2451 } 2452 2453 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI, 2454 unsigned RegNo) const { 2455 const MachineRegisterInfo &MRI = 2456 StartMI.getParent()->getParent()->getRegInfo(); 2457 if (MRI.isSSA()) 2458 return; 2459 2460 // Instructions between [StartMI, EndMI] should be in same basic block. 2461 assert((StartMI.getParent() == EndMI.getParent()) && 2462 "Instructions are not in same basic block"); 2463 2464 bool IsKillSet = false; 2465 2466 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 2467 MachineOperand &MO = MI.getOperand(Index); 2468 if (MO.isReg() && MO.isUse() && MO.isKill() && 2469 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 2470 MO.setIsKill(false); 2471 }; 2472 2473 // Set killed flag for EndMI. 2474 // No need to do anything if EndMI defines RegNo. 2475 int UseIndex = 2476 EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 2477 if (UseIndex != -1) { 2478 EndMI.getOperand(UseIndex).setIsKill(true); 2479 IsKillSet = true; 2480 // Clear killed flag for other EndMI operands related to RegNo. In some 2481 // upexpected cases, killed may be set multiple times for same register 2482 // operand in same MI. 2483 for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i) 2484 if (i != UseIndex) 2485 clearOperandKillInfo(EndMI, i); 2486 } 2487 2488 // Walking the inst in reverse order (EndMI -> StartMI]. 2489 MachineBasicBlock::reverse_iterator It = EndMI; 2490 MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend(); 2491 // EndMI has been handled above, skip it here. 2492 It++; 2493 MachineOperand *MO = nullptr; 2494 for (; It != E; ++It) { 2495 // Skip insturctions which could not be a def/use of RegNo. 2496 if (It->isDebugInstr() || It->isPosition()) 2497 continue; 2498 2499 // Clear killed flag for all It operands related to RegNo. In some 2500 // upexpected cases, killed may be set multiple times for same register 2501 // operand in same MI. 2502 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 2503 clearOperandKillInfo(*It, i); 2504 2505 // If killed is not set, set killed for its last use or set dead for its def 2506 // if no use found. 2507 if (!IsKillSet) { 2508 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 2509 // Use found, set it killed. 2510 IsKillSet = true; 2511 MO->setIsKill(true); 2512 continue; 2513 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 2514 &getRegisterInfo()))) { 2515 // No use found, set dead for its def. 2516 assert(&*It == &StartMI && "No new def between StartMI and EndMI."); 2517 MO->setIsDead(true); 2518 break; 2519 } 2520 } 2521 2522 if ((&*It) == &StartMI) 2523 break; 2524 } 2525 // Ensure RegMo liveness is killed after EndMI. 2526 assert((IsKillSet || (MO && MO->isDead())) && 2527 "RegNo should be killed or dead"); 2528 } 2529 2530 // This opt tries to convert the following imm form to an index form to save an 2531 // add for stack variables. 2532 // Return false if no such pattern found. 2533 // 2534 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 2535 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg 2536 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) 2537 // 2538 // can be converted to: 2539 // 2540 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) 2541 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) 2542 // 2543 // In order to eliminate ADD instr, make sure that: 2544 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in 2545 // new ADDI instr and ADDI can only take int16 Imm. 2546 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use 2547 // between ADDI and ADD instr since its original def in ADDI will be changed 2548 // in new ADDI instr. And also there should be no new def for it between 2549 // ADD and Imm instr as ToBeChangedReg will be used in Index instr. 2550 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use 2551 // between ADD and Imm instr since ADD instr will be eliminated. 2552 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be 2553 // moved to Index instr. 2554 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { 2555 MachineFunction *MF = MI.getParent()->getParent(); 2556 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2557 bool PostRA = !MRI->isSSA(); 2558 // Do this opt after PEI which is after RA. The reason is stack slot expansion 2559 // in PEI may expose such opportunities since in PEI, stack slot offsets to 2560 // frame base(OffsetAddi) are determined. 2561 if (!PostRA) 2562 return false; 2563 unsigned ToBeDeletedReg = 0; 2564 int64_t OffsetImm = 0; 2565 unsigned XFormOpcode = 0; 2566 ImmInstrInfo III; 2567 2568 // Check if Imm instr meets requirement. 2569 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, 2570 III)) 2571 return false; 2572 2573 bool OtherIntermediateUse = false; 2574 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); 2575 2576 // Exit if there is other use between ADD and Imm instr or no def found. 2577 if (OtherIntermediateUse || !ADDMI) 2578 return false; 2579 2580 // Check if ADD instr meets requirement. 2581 if (!isADDInstrEligibleForFolding(*ADDMI)) 2582 return false; 2583 2584 unsigned ScaleRegIdx = 0; 2585 int64_t OffsetAddi = 0; 2586 MachineInstr *ADDIMI = nullptr; 2587 2588 // Check if there is a valid ToBeChangedReg in ADDMI. 2589 // 1: It must be killed. 2590 // 2: Its definition must be a valid ADDIMI. 2591 // 3: It must satify int16 offset requirement. 2592 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) 2593 ScaleRegIdx = 2; 2594 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) 2595 ScaleRegIdx = 1; 2596 else 2597 return false; 2598 2599 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); 2600 unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg(); 2601 unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); 2602 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, 2603 MachineBasicBlock::iterator End) { 2604 for (auto It = ++Start; It != End; It++) 2605 if (It->modifiesRegister(Reg, &getRegisterInfo())) 2606 return true; 2607 return false; 2608 }; 2609 2610 // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is 2611 // treated as special zero when ScaleReg is R0/X0 register. 2612 if (III.ZeroIsSpecialOrig == III.ImmOpNo && 2613 (ScaleReg == PPC::R0 || ScaleReg == PPC::X0)) 2614 return false; 2615 2616 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr 2617 // and Imm Instr. 2618 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) 2619 return false; 2620 2621 // Now start to do the transformation. 2622 LLVM_DEBUG(dbgs() << "Replace instruction: " 2623 << "\n"); 2624 LLVM_DEBUG(ADDIMI->dump()); 2625 LLVM_DEBUG(ADDMI->dump()); 2626 LLVM_DEBUG(MI.dump()); 2627 LLVM_DEBUG(dbgs() << "with: " 2628 << "\n"); 2629 2630 // Update ADDI instr. 2631 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); 2632 2633 // Update Imm instr. 2634 MI.setDesc(get(XFormOpcode)); 2635 MI.getOperand(III.ImmOpNo) 2636 .ChangeToRegister(ScaleReg, false, false, 2637 ADDMI->getOperand(ScaleRegIdx).isKill()); 2638 2639 MI.getOperand(III.OpNoForForwarding) 2640 .ChangeToRegister(ToBeChangedReg, false, false, true); 2641 2642 // Eliminate ADD instr. 2643 ADDMI->eraseFromParent(); 2644 2645 LLVM_DEBUG(ADDIMI->dump()); 2646 LLVM_DEBUG(MI.dump()); 2647 2648 return true; 2649 } 2650 2651 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, 2652 int64_t &Imm) const { 2653 unsigned Opc = ADDIMI.getOpcode(); 2654 2655 // Exit if the instruction is not ADDI. 2656 if (Opc != PPC::ADDI && Opc != PPC::ADDI8) 2657 return false; 2658 2659 Imm = ADDIMI.getOperand(2).getImm(); 2660 2661 return true; 2662 } 2663 2664 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { 2665 unsigned Opc = ADDMI.getOpcode(); 2666 2667 // Exit if the instruction is not ADD. 2668 return Opc == PPC::ADD4 || Opc == PPC::ADD8; 2669 } 2670 2671 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, 2672 unsigned &ToBeDeletedReg, 2673 unsigned &XFormOpcode, 2674 int64_t &OffsetImm, 2675 ImmInstrInfo &III) const { 2676 // Only handle load/store. 2677 if (!MI.mayLoadOrStore()) 2678 return false; 2679 2680 unsigned Opc = MI.getOpcode(); 2681 2682 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); 2683 2684 // Exit if instruction has no index form. 2685 if (XFormOpcode == PPC::INSTRUCTION_LIST_END) 2686 return false; 2687 2688 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. 2689 if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()), 2690 III, true)) 2691 return false; 2692 2693 if (!III.IsSummingOperands) 2694 return false; 2695 2696 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); 2697 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); 2698 // Only support imm operands, not relocation slots or others. 2699 if (!ImmOperand.isImm()) 2700 return false; 2701 2702 assert(RegOperand.isReg() && "Instruction format is not right"); 2703 2704 // There are other use for ToBeDeletedReg after Imm instr, can not delete it. 2705 if (!RegOperand.isKill()) 2706 return false; 2707 2708 ToBeDeletedReg = RegOperand.getReg(); 2709 OffsetImm = ImmOperand.getImm(); 2710 2711 return true; 2712 } 2713 2714 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, 2715 MachineInstr *&ADDIMI, 2716 int64_t &OffsetAddi, 2717 int64_t OffsetImm) const { 2718 assert((Index == 1 || Index == 2) && "Invalid operand index for add."); 2719 MachineOperand &MO = ADDMI->getOperand(Index); 2720 2721 if (!MO.isKill()) 2722 return false; 2723 2724 bool OtherIntermediateUse = false; 2725 2726 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); 2727 // Currently handle only one "add + Imminstr" pair case, exit if other 2728 // intermediate use for ToBeChangedReg found. 2729 // TODO: handle the cases where there are other "add + Imminstr" pairs 2730 // with same offset in Imminstr which is like: 2731 // 2732 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 2733 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 2734 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) 2735 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 2736 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) 2737 // 2738 // can be converted to: 2739 // 2740 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, 2741 // (OffsetAddi + OffsetImm) 2742 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg 2743 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) 2744 2745 if (OtherIntermediateUse || !ADDIMI) 2746 return false; 2747 // Check if ADDI instr meets requirement. 2748 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) 2749 return false; 2750 2751 if (isInt<16>(OffsetAddi + OffsetImm)) 2752 return true; 2753 return false; 2754 } 2755 2756 // If this instruction has an immediate form and one of its operands is a 2757 // result of a load-immediate or an add-immediate, convert it to 2758 // the immediate form if the constant is in range. 2759 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 2760 MachineInstr **KilledDef) const { 2761 MachineFunction *MF = MI.getParent()->getParent(); 2762 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2763 bool PostRA = !MRI->isSSA(); 2764 bool SeenIntermediateUse = true; 2765 unsigned ForwardingOperand = ~0U; 2766 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 2767 SeenIntermediateUse); 2768 if (!DefMI) 2769 return false; 2770 assert(ForwardingOperand < MI.getNumOperands() && 2771 "The forwarding operand needs to be valid at this point"); 2772 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 2773 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 2774 Register ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg(); 2775 if (KilledDef && KillFwdDefMI) 2776 *KilledDef = DefMI; 2777 2778 ImmInstrInfo III; 2779 bool IsVFReg = MI.getOperand(0).isReg() 2780 ? isVFRegister(MI.getOperand(0).getReg()) 2781 : false; 2782 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 2783 // If this is a reg+reg instruction that has a reg+imm form, 2784 // and one of the operands is produced by an add-immediate, 2785 // try to convert it. 2786 if (HasImmForm && 2787 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 2788 KillFwdDefMI)) 2789 return true; 2790 2791 if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) || 2792 !DefMI->getOperand(1).isImm()) 2793 return false; 2794 2795 int64_t Immediate = DefMI->getOperand(1).getImm(); 2796 // Sign-extend to 64-bits. 2797 int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 2798 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 2799 2800 // If this is a reg+reg instruction that has a reg+imm form, 2801 // and one of the operands is produced by LI, convert it now. 2802 if (HasImmForm) 2803 return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm); 2804 2805 bool ReplaceWithLI = false; 2806 bool Is64BitLI = false; 2807 int64_t NewImm = 0; 2808 bool SetCR = false; 2809 unsigned Opc = MI.getOpcode(); 2810 switch (Opc) { 2811 default: return false; 2812 2813 // FIXME: Any branches conditional on such a comparison can be made 2814 // unconditional. At this time, this happens too infrequently to be worth 2815 // the implementation effort, but if that ever changes, we could convert 2816 // such a pattern here. 2817 case PPC::CMPWI: 2818 case PPC::CMPLWI: 2819 case PPC::CMPDI: 2820 case PPC::CMPLDI: { 2821 // Doing this post-RA would require dataflow analysis to reliably find uses 2822 // of the CR register set by the compare. 2823 // No need to fixup killed/dead flag since this transformation is only valid 2824 // before RA. 2825 if (PostRA) 2826 return false; 2827 // If a compare-immediate is fed by an immediate and is itself an input of 2828 // an ISEL (the most common case) into a COPY of the correct register. 2829 bool Changed = false; 2830 Register DefReg = MI.getOperand(0).getReg(); 2831 int64_t Comparand = MI.getOperand(2).getImm(); 2832 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ? 2833 (Comparand | 0xFFFFFFFFFFFF0000) : Comparand; 2834 2835 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 2836 unsigned UseOpc = CompareUseMI.getOpcode(); 2837 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 2838 continue; 2839 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 2840 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 2841 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 2842 unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg, 2843 FalseReg, CRSubReg); 2844 if (RegToCopy == PPC::NoRegister) 2845 continue; 2846 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 2847 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 2848 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 2849 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 2850 CompareUseMI.RemoveOperand(3); 2851 CompareUseMI.RemoveOperand(2); 2852 continue; 2853 } 2854 LLVM_DEBUG( 2855 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 2856 LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump()); 2857 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 2858 // Convert to copy and remove unneeded operands. 2859 CompareUseMI.setDesc(get(PPC::COPY)); 2860 CompareUseMI.RemoveOperand(3); 2861 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 2862 CmpIselsConverted++; 2863 Changed = true; 2864 LLVM_DEBUG(CompareUseMI.dump()); 2865 } 2866 if (Changed) 2867 return true; 2868 // This may end up incremented multiple times since this function is called 2869 // during a fixed-point transformation, but it is only meant to indicate the 2870 // presence of this opportunity. 2871 MissedConvertibleImmediateInstrs++; 2872 return false; 2873 } 2874 2875 // Immediate forms - may simply be convertable to an LI. 2876 case PPC::ADDI: 2877 case PPC::ADDI8: { 2878 // Does the sum fit in a 16-bit signed field? 2879 int64_t Addend = MI.getOperand(2).getImm(); 2880 if (isInt<16>(Addend + SExtImm)) { 2881 ReplaceWithLI = true; 2882 Is64BitLI = Opc == PPC::ADDI8; 2883 NewImm = Addend + SExtImm; 2884 break; 2885 } 2886 return false; 2887 } 2888 case PPC::RLDICL: 2889 case PPC::RLDICL_rec: 2890 case PPC::RLDICL_32: 2891 case PPC::RLDICL_32_64: { 2892 // Use APInt's rotate function. 2893 int64_t SH = MI.getOperand(2).getImm(); 2894 int64_t MB = MI.getOperand(3).getImm(); 2895 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, 2896 SExtImm, true); 2897 InVal = InVal.rotl(SH); 2898 uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1; 2899 InVal &= Mask; 2900 // Can't replace negative values with an LI as that will sign-extend 2901 // and not clear the left bits. If we're setting the CR bit, we will use 2902 // ANDI_rec which won't sign extend, so that's safe. 2903 if (isUInt<15>(InVal.getSExtValue()) || 2904 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { 2905 ReplaceWithLI = true; 2906 Is64BitLI = Opc != PPC::RLDICL_32; 2907 NewImm = InVal.getSExtValue(); 2908 SetCR = Opc == PPC::RLDICL_rec; 2909 break; 2910 } 2911 return false; 2912 } 2913 case PPC::RLWINM: 2914 case PPC::RLWINM8: 2915 case PPC::RLWINM_rec: 2916 case PPC::RLWINM8_rec: { 2917 int64_t SH = MI.getOperand(2).getImm(); 2918 int64_t MB = MI.getOperand(3).getImm(); 2919 int64_t ME = MI.getOperand(4).getImm(); 2920 APInt InVal(32, SExtImm, true); 2921 InVal = InVal.rotl(SH); 2922 // Set the bits ( MB + 32 ) to ( ME + 32 ). 2923 uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2924 InVal &= Mask; 2925 // Can't replace negative values with an LI as that will sign-extend 2926 // and not clear the left bits. If we're setting the CR bit, we will use 2927 // ANDI_rec which won't sign extend, so that's safe. 2928 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 2929 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && 2930 isUInt<16>(InVal.getSExtValue())); 2931 if (ValueFits) { 2932 ReplaceWithLI = true; 2933 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; 2934 NewImm = InVal.getSExtValue(); 2935 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; 2936 break; 2937 } 2938 return false; 2939 } 2940 case PPC::ORI: 2941 case PPC::ORI8: 2942 case PPC::XORI: 2943 case PPC::XORI8: { 2944 int64_t LogicalImm = MI.getOperand(2).getImm(); 2945 int64_t Result = 0; 2946 if (Opc == PPC::ORI || Opc == PPC::ORI8) 2947 Result = LogicalImm | SExtImm; 2948 else 2949 Result = LogicalImm ^ SExtImm; 2950 if (isInt<16>(Result)) { 2951 ReplaceWithLI = true; 2952 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 2953 NewImm = Result; 2954 break; 2955 } 2956 return false; 2957 } 2958 } 2959 2960 if (ReplaceWithLI) { 2961 // We need to be careful with CR-setting instructions we're replacing. 2962 if (SetCR) { 2963 // We don't know anything about uses when we're out of SSA, so only 2964 // replace if the new immediate will be reproduced. 2965 bool ImmChanged = (SExtImm & NewImm) != NewImm; 2966 if (PostRA && ImmChanged) 2967 return false; 2968 2969 if (!PostRA) { 2970 // If the defining load-immediate has no other uses, we can just replace 2971 // the immediate with the new immediate. 2972 if (MRI->hasOneUse(DefMI->getOperand(0).getReg())) 2973 DefMI->getOperand(1).setImm(NewImm); 2974 2975 // If we're not using the GPR result of the CR-setting instruction, we 2976 // just need to and with zero/non-zero depending on the new immediate. 2977 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 2978 if (NewImm) { 2979 assert(Immediate && "Transformation converted zero to non-zero?"); 2980 NewImm = Immediate; 2981 } 2982 } 2983 else if (ImmChanged) 2984 return false; 2985 } 2986 } 2987 2988 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 2989 LLVM_DEBUG(MI.dump()); 2990 LLVM_DEBUG(dbgs() << "Fed by:\n"); 2991 LLVM_DEBUG(DefMI->dump()); 2992 LoadImmediateInfo LII; 2993 LII.Imm = NewImm; 2994 LII.Is64Bit = Is64BitLI; 2995 LII.SetCR = SetCR; 2996 // If we're setting the CR, the original load-immediate must be kept (as an 2997 // operand to ANDI_rec/ANDI8_rec). 2998 if (KilledDef && SetCR) 2999 *KilledDef = nullptr; 3000 replaceInstrWithLI(MI, LII); 3001 3002 // Fixup killed/dead flag after transformation. 3003 // Pattern: 3004 // ForwardingOperandReg = LI imm1 3005 // y = op2 imm2, ForwardingOperandReg(killed) 3006 if (IsForwardingOperandKilled) 3007 fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg); 3008 3009 LLVM_DEBUG(dbgs() << "With:\n"); 3010 LLVM_DEBUG(MI.dump()); 3011 return true; 3012 } 3013 return false; 3014 } 3015 3016 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 3017 ImmInstrInfo &III, bool PostRA) const { 3018 // The vast majority of the instructions would need their operand 2 replaced 3019 // with an immediate when switching to the reg+imm form. A marked exception 3020 // are the update form loads/stores for which a constant operand 2 would need 3021 // to turn into a displacement and move operand 1 to the operand 2 position. 3022 III.ImmOpNo = 2; 3023 III.OpNoForForwarding = 2; 3024 III.ImmWidth = 16; 3025 III.ImmMustBeMultipleOf = 1; 3026 III.TruncateImmTo = 0; 3027 III.IsSummingOperands = false; 3028 switch (Opc) { 3029 default: return false; 3030 case PPC::ADD4: 3031 case PPC::ADD8: 3032 III.SignedImm = true; 3033 III.ZeroIsSpecialOrig = 0; 3034 III.ZeroIsSpecialNew = 1; 3035 III.IsCommutative = true; 3036 III.IsSummingOperands = true; 3037 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 3038 break; 3039 case PPC::ADDC: 3040 case PPC::ADDC8: 3041 III.SignedImm = true; 3042 III.ZeroIsSpecialOrig = 0; 3043 III.ZeroIsSpecialNew = 0; 3044 III.IsCommutative = true; 3045 III.IsSummingOperands = true; 3046 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 3047 break; 3048 case PPC::ADDC_rec: 3049 III.SignedImm = true; 3050 III.ZeroIsSpecialOrig = 0; 3051 III.ZeroIsSpecialNew = 0; 3052 III.IsCommutative = true; 3053 III.IsSummingOperands = true; 3054 III.ImmOpcode = PPC::ADDIC_rec; 3055 break; 3056 case PPC::SUBFC: 3057 case PPC::SUBFC8: 3058 III.SignedImm = true; 3059 III.ZeroIsSpecialOrig = 0; 3060 III.ZeroIsSpecialNew = 0; 3061 III.IsCommutative = false; 3062 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 3063 break; 3064 case PPC::CMPW: 3065 case PPC::CMPD: 3066 III.SignedImm = true; 3067 III.ZeroIsSpecialOrig = 0; 3068 III.ZeroIsSpecialNew = 0; 3069 III.IsCommutative = false; 3070 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 3071 break; 3072 case PPC::CMPLW: 3073 case PPC::CMPLD: 3074 III.SignedImm = false; 3075 III.ZeroIsSpecialOrig = 0; 3076 III.ZeroIsSpecialNew = 0; 3077 III.IsCommutative = false; 3078 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 3079 break; 3080 case PPC::AND_rec: 3081 case PPC::AND8_rec: 3082 case PPC::OR: 3083 case PPC::OR8: 3084 case PPC::XOR: 3085 case PPC::XOR8: 3086 III.SignedImm = false; 3087 III.ZeroIsSpecialOrig = 0; 3088 III.ZeroIsSpecialNew = 0; 3089 III.IsCommutative = true; 3090 switch(Opc) { 3091 default: llvm_unreachable("Unknown opcode"); 3092 case PPC::AND_rec: 3093 III.ImmOpcode = PPC::ANDI_rec; 3094 break; 3095 case PPC::AND8_rec: 3096 III.ImmOpcode = PPC::ANDI8_rec; 3097 break; 3098 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 3099 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 3100 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 3101 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 3102 } 3103 break; 3104 case PPC::RLWNM: 3105 case PPC::RLWNM8: 3106 case PPC::RLWNM_rec: 3107 case PPC::RLWNM8_rec: 3108 case PPC::SLW: 3109 case PPC::SLW8: 3110 case PPC::SLW_rec: 3111 case PPC::SLW8_rec: 3112 case PPC::SRW: 3113 case PPC::SRW8: 3114 case PPC::SRW_rec: 3115 case PPC::SRW8_rec: 3116 case PPC::SRAW: 3117 case PPC::SRAW_rec: 3118 III.SignedImm = false; 3119 III.ZeroIsSpecialOrig = 0; 3120 III.ZeroIsSpecialNew = 0; 3121 III.IsCommutative = false; 3122 // This isn't actually true, but the instructions ignore any of the 3123 // upper bits, so any immediate loaded with an LI is acceptable. 3124 // This does not apply to shift right algebraic because a value 3125 // out of range will produce a -1/0. 3126 III.ImmWidth = 16; 3127 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || 3128 Opc == PPC::RLWNM8_rec) 3129 III.TruncateImmTo = 5; 3130 else 3131 III.TruncateImmTo = 6; 3132 switch(Opc) { 3133 default: llvm_unreachable("Unknown opcode"); 3134 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 3135 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 3136 case PPC::RLWNM_rec: 3137 III.ImmOpcode = PPC::RLWINM_rec; 3138 break; 3139 case PPC::RLWNM8_rec: 3140 III.ImmOpcode = PPC::RLWINM8_rec; 3141 break; 3142 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 3143 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 3144 case PPC::SLW_rec: 3145 III.ImmOpcode = PPC::RLWINM_rec; 3146 break; 3147 case PPC::SLW8_rec: 3148 III.ImmOpcode = PPC::RLWINM8_rec; 3149 break; 3150 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 3151 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 3152 case PPC::SRW_rec: 3153 III.ImmOpcode = PPC::RLWINM_rec; 3154 break; 3155 case PPC::SRW8_rec: 3156 III.ImmOpcode = PPC::RLWINM8_rec; 3157 break; 3158 case PPC::SRAW: 3159 III.ImmWidth = 5; 3160 III.TruncateImmTo = 0; 3161 III.ImmOpcode = PPC::SRAWI; 3162 break; 3163 case PPC::SRAW_rec: 3164 III.ImmWidth = 5; 3165 III.TruncateImmTo = 0; 3166 III.ImmOpcode = PPC::SRAWI_rec; 3167 break; 3168 } 3169 break; 3170 case PPC::RLDCL: 3171 case PPC::RLDCL_rec: 3172 case PPC::RLDCR: 3173 case PPC::RLDCR_rec: 3174 case PPC::SLD: 3175 case PPC::SLD_rec: 3176 case PPC::SRD: 3177 case PPC::SRD_rec: 3178 case PPC::SRAD: 3179 case PPC::SRAD_rec: 3180 III.SignedImm = false; 3181 III.ZeroIsSpecialOrig = 0; 3182 III.ZeroIsSpecialNew = 0; 3183 III.IsCommutative = false; 3184 // This isn't actually true, but the instructions ignore any of the 3185 // upper bits, so any immediate loaded with an LI is acceptable. 3186 // This does not apply to shift right algebraic because a value 3187 // out of range will produce a -1/0. 3188 III.ImmWidth = 16; 3189 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || 3190 Opc == PPC::RLDCR_rec) 3191 III.TruncateImmTo = 6; 3192 else 3193 III.TruncateImmTo = 7; 3194 switch(Opc) { 3195 default: llvm_unreachable("Unknown opcode"); 3196 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 3197 case PPC::RLDCL_rec: 3198 III.ImmOpcode = PPC::RLDICL_rec; 3199 break; 3200 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 3201 case PPC::RLDCR_rec: 3202 III.ImmOpcode = PPC::RLDICR_rec; 3203 break; 3204 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 3205 case PPC::SLD_rec: 3206 III.ImmOpcode = PPC::RLDICR_rec; 3207 break; 3208 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 3209 case PPC::SRD_rec: 3210 III.ImmOpcode = PPC::RLDICL_rec; 3211 break; 3212 case PPC::SRAD: 3213 III.ImmWidth = 6; 3214 III.TruncateImmTo = 0; 3215 III.ImmOpcode = PPC::SRADI; 3216 break; 3217 case PPC::SRAD_rec: 3218 III.ImmWidth = 6; 3219 III.TruncateImmTo = 0; 3220 III.ImmOpcode = PPC::SRADI_rec; 3221 break; 3222 } 3223 break; 3224 // Loads and stores: 3225 case PPC::LBZX: 3226 case PPC::LBZX8: 3227 case PPC::LHZX: 3228 case PPC::LHZX8: 3229 case PPC::LHAX: 3230 case PPC::LHAX8: 3231 case PPC::LWZX: 3232 case PPC::LWZX8: 3233 case PPC::LWAX: 3234 case PPC::LDX: 3235 case PPC::LFSX: 3236 case PPC::LFDX: 3237 case PPC::STBX: 3238 case PPC::STBX8: 3239 case PPC::STHX: 3240 case PPC::STHX8: 3241 case PPC::STWX: 3242 case PPC::STWX8: 3243 case PPC::STDX: 3244 case PPC::STFSX: 3245 case PPC::STFDX: 3246 III.SignedImm = true; 3247 III.ZeroIsSpecialOrig = 1; 3248 III.ZeroIsSpecialNew = 2; 3249 III.IsCommutative = true; 3250 III.IsSummingOperands = true; 3251 III.ImmOpNo = 1; 3252 III.OpNoForForwarding = 2; 3253 switch(Opc) { 3254 default: llvm_unreachable("Unknown opcode"); 3255 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 3256 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 3257 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 3258 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 3259 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 3260 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 3261 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 3262 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 3263 case PPC::LWAX: 3264 III.ImmOpcode = PPC::LWA; 3265 III.ImmMustBeMultipleOf = 4; 3266 break; 3267 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 3268 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 3269 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 3270 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 3271 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 3272 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 3273 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 3274 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 3275 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 3276 case PPC::STDX: 3277 III.ImmOpcode = PPC::STD; 3278 III.ImmMustBeMultipleOf = 4; 3279 break; 3280 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 3281 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 3282 } 3283 break; 3284 case PPC::LBZUX: 3285 case PPC::LBZUX8: 3286 case PPC::LHZUX: 3287 case PPC::LHZUX8: 3288 case PPC::LHAUX: 3289 case PPC::LHAUX8: 3290 case PPC::LWZUX: 3291 case PPC::LWZUX8: 3292 case PPC::LDUX: 3293 case PPC::LFSUX: 3294 case PPC::LFDUX: 3295 case PPC::STBUX: 3296 case PPC::STBUX8: 3297 case PPC::STHUX: 3298 case PPC::STHUX8: 3299 case PPC::STWUX: 3300 case PPC::STWUX8: 3301 case PPC::STDUX: 3302 case PPC::STFSUX: 3303 case PPC::STFDUX: 3304 III.SignedImm = true; 3305 III.ZeroIsSpecialOrig = 2; 3306 III.ZeroIsSpecialNew = 3; 3307 III.IsCommutative = false; 3308 III.IsSummingOperands = true; 3309 III.ImmOpNo = 2; 3310 III.OpNoForForwarding = 3; 3311 switch(Opc) { 3312 default: llvm_unreachable("Unknown opcode"); 3313 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 3314 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 3315 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 3316 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 3317 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 3318 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 3319 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 3320 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 3321 case PPC::LDUX: 3322 III.ImmOpcode = PPC::LDU; 3323 III.ImmMustBeMultipleOf = 4; 3324 break; 3325 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 3326 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 3327 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 3328 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 3329 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 3330 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 3331 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 3332 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 3333 case PPC::STDUX: 3334 III.ImmOpcode = PPC::STDU; 3335 III.ImmMustBeMultipleOf = 4; 3336 break; 3337 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 3338 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 3339 } 3340 break; 3341 // Power9 and up only. For some of these, the X-Form version has access to all 3342 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 3343 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 3344 // into or stored from is one of the VR registers. 3345 case PPC::LXVX: 3346 case PPC::LXSSPX: 3347 case PPC::LXSDX: 3348 case PPC::STXVX: 3349 case PPC::STXSSPX: 3350 case PPC::STXSDX: 3351 case PPC::XFLOADf32: 3352 case PPC::XFLOADf64: 3353 case PPC::XFSTOREf32: 3354 case PPC::XFSTOREf64: 3355 if (!Subtarget.hasP9Vector()) 3356 return false; 3357 III.SignedImm = true; 3358 III.ZeroIsSpecialOrig = 1; 3359 III.ZeroIsSpecialNew = 2; 3360 III.IsCommutative = true; 3361 III.IsSummingOperands = true; 3362 III.ImmOpNo = 1; 3363 III.OpNoForForwarding = 2; 3364 III.ImmMustBeMultipleOf = 4; 3365 switch(Opc) { 3366 default: llvm_unreachable("Unknown opcode"); 3367 case PPC::LXVX: 3368 III.ImmOpcode = PPC::LXV; 3369 III.ImmMustBeMultipleOf = 16; 3370 break; 3371 case PPC::LXSSPX: 3372 if (PostRA) { 3373 if (IsVFReg) 3374 III.ImmOpcode = PPC::LXSSP; 3375 else { 3376 III.ImmOpcode = PPC::LFS; 3377 III.ImmMustBeMultipleOf = 1; 3378 } 3379 break; 3380 } 3381 LLVM_FALLTHROUGH; 3382 case PPC::XFLOADf32: 3383 III.ImmOpcode = PPC::DFLOADf32; 3384 break; 3385 case PPC::LXSDX: 3386 if (PostRA) { 3387 if (IsVFReg) 3388 III.ImmOpcode = PPC::LXSD; 3389 else { 3390 III.ImmOpcode = PPC::LFD; 3391 III.ImmMustBeMultipleOf = 1; 3392 } 3393 break; 3394 } 3395 LLVM_FALLTHROUGH; 3396 case PPC::XFLOADf64: 3397 III.ImmOpcode = PPC::DFLOADf64; 3398 break; 3399 case PPC::STXVX: 3400 III.ImmOpcode = PPC::STXV; 3401 III.ImmMustBeMultipleOf = 16; 3402 break; 3403 case PPC::STXSSPX: 3404 if (PostRA) { 3405 if (IsVFReg) 3406 III.ImmOpcode = PPC::STXSSP; 3407 else { 3408 III.ImmOpcode = PPC::STFS; 3409 III.ImmMustBeMultipleOf = 1; 3410 } 3411 break; 3412 } 3413 LLVM_FALLTHROUGH; 3414 case PPC::XFSTOREf32: 3415 III.ImmOpcode = PPC::DFSTOREf32; 3416 break; 3417 case PPC::STXSDX: 3418 if (PostRA) { 3419 if (IsVFReg) 3420 III.ImmOpcode = PPC::STXSD; 3421 else { 3422 III.ImmOpcode = PPC::STFD; 3423 III.ImmMustBeMultipleOf = 1; 3424 } 3425 break; 3426 } 3427 LLVM_FALLTHROUGH; 3428 case PPC::XFSTOREf64: 3429 III.ImmOpcode = PPC::DFSTOREf64; 3430 break; 3431 } 3432 break; 3433 } 3434 return true; 3435 } 3436 3437 // Utility function for swaping two arbitrary operands of an instruction. 3438 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 3439 assert(Op1 != Op2 && "Cannot swap operand with itself."); 3440 3441 unsigned MaxOp = std::max(Op1, Op2); 3442 unsigned MinOp = std::min(Op1, Op2); 3443 MachineOperand MOp1 = MI.getOperand(MinOp); 3444 MachineOperand MOp2 = MI.getOperand(MaxOp); 3445 MI.RemoveOperand(std::max(Op1, Op2)); 3446 MI.RemoveOperand(std::min(Op1, Op2)); 3447 3448 // If the operands we are swapping are the two at the end (the common case) 3449 // we can just remove both and add them in the opposite order. 3450 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 3451 MI.addOperand(MOp2); 3452 MI.addOperand(MOp1); 3453 } else { 3454 // Store all operands in a temporary vector, remove them and re-add in the 3455 // right order. 3456 SmallVector<MachineOperand, 2> MOps; 3457 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 3458 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 3459 MOps.push_back(MI.getOperand(i)); 3460 MI.RemoveOperand(i); 3461 } 3462 // MOp2 needs to be added next. 3463 MI.addOperand(MOp2); 3464 // Now add the rest. 3465 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 3466 if (i == MaxOp) 3467 MI.addOperand(MOp1); 3468 else { 3469 MI.addOperand(MOps.back()); 3470 MOps.pop_back(); 3471 } 3472 } 3473 } 3474 } 3475 3476 // Check if the 'MI' that has the index OpNoForForwarding 3477 // meets the requirement described in the ImmInstrInfo. 3478 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 3479 const ImmInstrInfo &III, 3480 unsigned OpNoForForwarding 3481 ) const { 3482 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 3483 // would not work pre-RA, we can only do the check post RA. 3484 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3485 if (MRI.isSSA()) 3486 return false; 3487 3488 // Cannot do the transform if MI isn't summing the operands. 3489 if (!III.IsSummingOperands) 3490 return false; 3491 3492 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 3493 if (!III.ZeroIsSpecialOrig) 3494 return false; 3495 3496 // We cannot do the transform if the operand we are trying to replace 3497 // isn't the same as the operand the instruction allows. 3498 if (OpNoForForwarding != III.OpNoForForwarding) 3499 return false; 3500 3501 // Check if the instruction we are trying to transform really has 3502 // the special zero register as its operand. 3503 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 3504 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 3505 return false; 3506 3507 // This machine instruction is convertible if it is, 3508 // 1. summing the operands. 3509 // 2. one of the operands is special zero register. 3510 // 3. the operand we are trying to replace is allowed by the MI. 3511 return true; 3512 } 3513 3514 // Check if the DefMI is the add inst and set the ImmMO and RegMO 3515 // accordingly. 3516 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 3517 const ImmInstrInfo &III, 3518 MachineOperand *&ImmMO, 3519 MachineOperand *&RegMO) const { 3520 unsigned Opc = DefMI.getOpcode(); 3521 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 3522 return false; 3523 3524 assert(DefMI.getNumOperands() >= 3 && 3525 "Add inst must have at least three operands"); 3526 RegMO = &DefMI.getOperand(1); 3527 ImmMO = &DefMI.getOperand(2); 3528 3529 // This DefMI is elgible for forwarding if it is: 3530 // 1. add inst 3531 // 2. one of the operands is Imm/CPI/Global. 3532 return isAnImmediateOperand(*ImmMO); 3533 } 3534 3535 bool PPCInstrInfo::isRegElgibleForForwarding( 3536 const MachineOperand &RegMO, const MachineInstr &DefMI, 3537 const MachineInstr &MI, bool KillDefMI, 3538 bool &IsFwdFeederRegKilled) const { 3539 // x = addi y, imm 3540 // ... 3541 // z = lfdx 0, x -> z = lfd imm(y) 3542 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 3543 // of "y" between the DEF of "x" and "z". 3544 // The query is only valid post RA. 3545 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3546 if (MRI.isSSA()) 3547 return false; 3548 3549 Register Reg = RegMO.getReg(); 3550 3551 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 3552 MachineBasicBlock::const_reverse_iterator It = MI; 3553 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 3554 It++; 3555 for (; It != E; ++It) { 3556 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3557 return false; 3558 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3559 IsFwdFeederRegKilled = true; 3560 // Made it to DefMI without encountering a clobber. 3561 if ((&*It) == &DefMI) 3562 break; 3563 } 3564 assert((&*It) == &DefMI && "DefMI is missing"); 3565 3566 // If DefMI also defines the register to be forwarded, we can only forward it 3567 // if DefMI is being erased. 3568 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 3569 return KillDefMI; 3570 3571 return true; 3572 } 3573 3574 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 3575 const MachineInstr &DefMI, 3576 const ImmInstrInfo &III, 3577 int64_t &Imm) const { 3578 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 3579 if (DefMI.getOpcode() == PPC::ADDItocL) { 3580 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 3581 // However, we know that, it is 16-bit width, and has the alignment of 4. 3582 // Check if the instruction met the requirement. 3583 if (III.ImmMustBeMultipleOf > 4 || 3584 III.TruncateImmTo || III.ImmWidth != 16) 3585 return false; 3586 3587 // Going from XForm to DForm loads means that the displacement needs to be 3588 // not just an immediate but also a multiple of 4, or 16 depending on the 3589 // load. A DForm load cannot be represented if it is a multiple of say 2. 3590 // XForm loads do not have this restriction. 3591 if (ImmMO.isGlobal() && 3592 ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf) 3593 return false; 3594 3595 return true; 3596 } 3597 3598 if (ImmMO.isImm()) { 3599 // It is Imm, we need to check if the Imm fit the range. 3600 int64_t Immediate = ImmMO.getImm(); 3601 // Sign-extend to 64-bits. 3602 Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 3603 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 3604 3605 if (Imm % III.ImmMustBeMultipleOf) 3606 return false; 3607 if (III.TruncateImmTo) 3608 Imm &= ((1 << III.TruncateImmTo) - 1); 3609 if (III.SignedImm) { 3610 APInt ActualValue(64, Imm, true); 3611 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3612 return false; 3613 } else { 3614 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3615 if ((uint64_t)Imm > UnsignedMax) 3616 return false; 3617 } 3618 } 3619 else 3620 return false; 3621 3622 // This ImmMO is forwarded if it meets the requriement describle 3623 // in ImmInstrInfo 3624 return true; 3625 } 3626 3627 // If an X-Form instruction is fed by an add-immediate and one of its operands 3628 // is the literal zero, attempt to forward the source of the add-immediate to 3629 // the corresponding D-Form instruction with the displacement coming from 3630 // the immediate being added. 3631 bool PPCInstrInfo::transformToImmFormFedByAdd( 3632 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 3633 MachineInstr &DefMI, bool KillDefMI) const { 3634 // RegMO ImmMO 3635 // | | 3636 // x = addi reg, imm <----- DefMI 3637 // y = op 0 , x <----- MI 3638 // | 3639 // OpNoForForwarding 3640 // Check if the MI meet the requirement described in the III. 3641 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 3642 return false; 3643 3644 // Check if the DefMI meet the requirement 3645 // described in the III. If yes, set the ImmMO and RegMO accordingly. 3646 MachineOperand *ImmMO = nullptr; 3647 MachineOperand *RegMO = nullptr; 3648 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 3649 return false; 3650 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 3651 3652 // As we get the Imm operand now, we need to check if the ImmMO meet 3653 // the requirement described in the III. If yes set the Imm. 3654 int64_t Imm = 0; 3655 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 3656 return false; 3657 3658 bool IsFwdFeederRegKilled = false; 3659 // Check if the RegMO can be forwarded to MI. 3660 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 3661 IsFwdFeederRegKilled)) 3662 return false; 3663 3664 // Get killed info in case fixup needed after transformation. 3665 unsigned ForwardKilledOperandReg = ~0U; 3666 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3667 bool PostRA = !MRI.isSSA(); 3668 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 3669 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 3670 3671 // We know that, the MI and DefMI both meet the pattern, and 3672 // the Imm also meet the requirement with the new Imm-form. 3673 // It is safe to do the transformation now. 3674 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 3675 LLVM_DEBUG(MI.dump()); 3676 LLVM_DEBUG(dbgs() << "Fed by:\n"); 3677 LLVM_DEBUG(DefMI.dump()); 3678 3679 // Update the base reg first. 3680 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 3681 false, false, 3682 RegMO->isKill()); 3683 3684 // Then, update the imm. 3685 if (ImmMO->isImm()) { 3686 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 3687 // directly. 3688 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 3689 } 3690 else { 3691 // Otherwise, it is Constant Pool Index(CPI) or Global, 3692 // which is relocation in fact. We need to replace the special zero 3693 // register with ImmMO. 3694 // Before that, we need to fixup the target flags for imm. 3695 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 3696 if (DefMI.getOpcode() == PPC::ADDItocL) 3697 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 3698 3699 // MI didn't have the interface such as MI.setOperand(i) though 3700 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 3701 // ImmMO, we need to remove ZERO operand and all the operands behind it, 3702 // and, add the ImmMO, then, move back all the operands behind ZERO. 3703 SmallVector<MachineOperand, 2> MOps; 3704 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 3705 MOps.push_back(MI.getOperand(i)); 3706 MI.RemoveOperand(i); 3707 } 3708 3709 // Remove the last MO in the list, which is ZERO operand in fact. 3710 MOps.pop_back(); 3711 // Add the imm operand. 3712 MI.addOperand(*ImmMO); 3713 // Now add the rest back. 3714 for (auto &MO : MOps) 3715 MI.addOperand(MO); 3716 } 3717 3718 // Update the opcode. 3719 MI.setDesc(get(III.ImmOpcode)); 3720 3721 // Fix up killed/dead flag after transformation. 3722 // Pattern 1: 3723 // x = ADD KilledFwdFeederReg, imm 3724 // n = opn KilledFwdFeederReg(killed), regn 3725 // y = XOP 0, x 3726 // Pattern 2: 3727 // x = ADD reg(killed), imm 3728 // y = XOP 0, x 3729 if (IsFwdFeederRegKilled || RegMO->isKill()) 3730 fixupIsDeadOrKill(DefMI, MI, RegMO->getReg()); 3731 // Pattern 3: 3732 // ForwardKilledOperandReg = ADD reg, imm 3733 // y = XOP 0, ForwardKilledOperandReg(killed) 3734 if (ForwardKilledOperandReg != ~0U) 3735 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3736 3737 LLVM_DEBUG(dbgs() << "With:\n"); 3738 LLVM_DEBUG(MI.dump()); 3739 3740 return true; 3741 } 3742 3743 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 3744 const ImmInstrInfo &III, 3745 unsigned ConstantOpNo, 3746 MachineInstr &DefMI, 3747 int64_t Imm) const { 3748 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3749 bool PostRA = !MRI.isSSA(); 3750 // Exit early if we can't convert this. 3751 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 3752 return false; 3753 if (Imm % III.ImmMustBeMultipleOf) 3754 return false; 3755 if (III.TruncateImmTo) 3756 Imm &= ((1 << III.TruncateImmTo) - 1); 3757 if (III.SignedImm) { 3758 APInt ActualValue(64, Imm, true); 3759 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3760 return false; 3761 } else { 3762 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3763 if ((uint64_t)Imm > UnsignedMax) 3764 return false; 3765 } 3766 3767 // If we're post-RA, the instructions don't agree on whether register zero is 3768 // special, we can transform this as long as the register operand that will 3769 // end up in the location where zero is special isn't R0. 3770 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3771 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 3772 III.ZeroIsSpecialNew + 1; 3773 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 3774 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3775 // If R0 is in the operand where zero is special for the new instruction, 3776 // it is unsafe to transform if the constant operand isn't that operand. 3777 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 3778 ConstantOpNo != III.ZeroIsSpecialNew) 3779 return false; 3780 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 3781 ConstantOpNo != PosForOrigZero) 3782 return false; 3783 } 3784 3785 // Get killed info in case fixup needed after transformation. 3786 unsigned ForwardKilledOperandReg = ~0U; 3787 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 3788 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 3789 3790 unsigned Opc = MI.getOpcode(); 3791 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || 3792 Opc == PPC::SRW || Opc == PPC::SRW_rec || 3793 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || 3794 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; 3795 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || 3796 Opc == PPC::SRD || Opc == PPC::SRD_rec; 3797 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || 3798 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; 3799 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || 3800 Opc == PPC::SRD_rec; 3801 3802 MI.setDesc(get(III.ImmOpcode)); 3803 if (ConstantOpNo == III.OpNoForForwarding) { 3804 // Converting shifts to immediate form is a bit tricky since they may do 3805 // one of three things: 3806 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 3807 // 2. If the shift amount is zero, the result is unchanged (save for maybe 3808 // setting CR0) 3809 // 3. If the shift amount is in [1, OpSize), it's just a shift 3810 if (SpecialShift32 || SpecialShift64) { 3811 LoadImmediateInfo LII; 3812 LII.Imm = 0; 3813 LII.SetCR = SetCR; 3814 LII.Is64Bit = SpecialShift64; 3815 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 3816 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 3817 replaceInstrWithLI(MI, LII); 3818 // Shifts by zero don't change the value. If we don't need to set CR0, 3819 // just convert this to a COPY. Can't do this post-RA since we've already 3820 // cleaned up the copies. 3821 else if (!SetCR && ShAmt == 0 && !PostRA) { 3822 MI.RemoveOperand(2); 3823 MI.setDesc(get(PPC::COPY)); 3824 } else { 3825 // The 32 bit and 64 bit instructions are quite different. 3826 if (SpecialShift32) { 3827 // Left shifts use (N, 0, 31-N). 3828 // Right shifts use (32-N, N, 31) if 0 < N < 32. 3829 // use (0, 0, 31) if N == 0. 3830 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; 3831 uint64_t MB = RightShift ? ShAmt : 0; 3832 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 3833 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3834 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 3835 .addImm(ME); 3836 } else { 3837 // Left shifts use (N, 63-N). 3838 // Right shifts use (64-N, N) if 0 < N < 64. 3839 // use (0, 0) if N == 0. 3840 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; 3841 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 3842 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3843 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 3844 } 3845 } 3846 } else 3847 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3848 } 3849 // Convert commutative instructions (switch the operands and convert the 3850 // desired one to an immediate. 3851 else if (III.IsCommutative) { 3852 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3853 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 3854 } else 3855 llvm_unreachable("Should have exited early!"); 3856 3857 // For instructions for which the constant register replaces a different 3858 // operand than where the immediate goes, we need to swap them. 3859 if (III.OpNoForForwarding != III.ImmOpNo) 3860 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 3861 3862 // If the special R0/X0 register index are different for original instruction 3863 // and new instruction, we need to fix up the register class in new 3864 // instruction. 3865 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3866 if (III.ZeroIsSpecialNew) { 3867 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 3868 // need to fix up register class. 3869 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3870 if (Register::isVirtualRegister(RegToModify)) { 3871 const TargetRegisterClass *NewRC = 3872 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 3873 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 3874 MRI.setRegClass(RegToModify, NewRC); 3875 } 3876 } 3877 } 3878 3879 // Fix up killed/dead flag after transformation. 3880 // Pattern: 3881 // ForwardKilledOperandReg = LI imm 3882 // y = XOP reg, ForwardKilledOperandReg(killed) 3883 if (ForwardKilledOperandReg != ~0U) 3884 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3885 return true; 3886 } 3887 3888 const TargetRegisterClass * 3889 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 3890 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 3891 return &PPC::VSRCRegClass; 3892 return RC; 3893 } 3894 3895 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 3896 return PPC::getRecordFormOpcode(Opcode); 3897 } 3898 3899 // This function returns true if the machine instruction 3900 // always outputs a value by sign-extending a 32 bit value, 3901 // i.e. 0 to 31-th bits are same as 32-th bit. 3902 static bool isSignExtendingOp(const MachineInstr &MI) { 3903 int Opcode = MI.getOpcode(); 3904 if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS || 3905 Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec || 3906 Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA || 3907 Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 3908 Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 || 3909 Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3910 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU || 3911 Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3912 Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 || 3913 Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3914 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB || 3915 Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH || 3916 Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 || 3917 Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW || 3918 Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 || 3919 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 3920 Opcode == PPC::EXTSB8_32_64) 3921 return true; 3922 3923 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 3924 return true; 3925 3926 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 3927 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && 3928 MI.getOperand(3).getImm() > 0 && 3929 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3930 return true; 3931 3932 return false; 3933 } 3934 3935 // This function returns true if the machine instruction 3936 // always outputs zeros in higher 32 bits. 3937 static bool isZeroExtendingOp(const MachineInstr &MI) { 3938 int Opcode = MI.getOpcode(); 3939 // The 16-bit immediate is sign-extended in li/lis. 3940 // If the most significant bit is zero, all higher bits are zero. 3941 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3942 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 3943 int64_t Imm = MI.getOperand(1).getImm(); 3944 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 3945 return true; 3946 } 3947 3948 // We have some variations of rotate-and-mask instructions 3949 // that clear higher 32-bits. 3950 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 3951 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || 3952 Opcode == PPC::RLDICL_32_64) && 3953 MI.getOperand(3).getImm() >= 32) 3954 return true; 3955 3956 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 3957 MI.getOperand(3).getImm() >= 32 && 3958 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 3959 return true; 3960 3961 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 3962 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 3963 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 3964 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3965 return true; 3966 3967 // There are other instructions that clear higher 32-bits. 3968 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec || 3969 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec || 3970 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 3971 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec || 3972 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec || 3973 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW || 3974 Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec || 3975 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI || 3976 Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI || 3977 Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX || 3978 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX || 3979 Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3980 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ || 3981 Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 3982 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 || 3983 Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 3984 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 || 3985 Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 3986 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3987 Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec || 3988 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec || 3989 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec || 3990 Opcode == PPC::MFVSRWZ) 3991 return true; 3992 3993 return false; 3994 } 3995 3996 // This function returns true if the input MachineInstr is a TOC save 3997 // instruction. 3998 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 3999 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 4000 return false; 4001 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4002 unsigned StackOffset = MI.getOperand(1).getImm(); 4003 Register StackReg = MI.getOperand(2).getReg(); 4004 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) 4005 return true; 4006 4007 return false; 4008 } 4009 4010 // We limit the max depth to track incoming values of PHIs or binary ops 4011 // (e.g. AND) to avoid excessive cost. 4012 const unsigned MAX_DEPTH = 1; 4013 4014 bool 4015 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 4016 const unsigned Depth) const { 4017 const MachineFunction *MF = MI.getParent()->getParent(); 4018 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 4019 4020 // If we know this instruction returns sign- or zero-extended result, 4021 // return true. 4022 if (SignExt ? isSignExtendingOp(MI): 4023 isZeroExtendingOp(MI)) 4024 return true; 4025 4026 switch (MI.getOpcode()) { 4027 case PPC::COPY: { 4028 Register SrcReg = MI.getOperand(1).getReg(); 4029 4030 // In both ELFv1 and v2 ABI, method parameters and the return value 4031 // are sign- or zero-extended. 4032 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 4033 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 4034 // We check the ZExt/SExt flags for a method parameter. 4035 if (MI.getParent()->getBasicBlock() == 4036 &MF->getFunction().getEntryBlock()) { 4037 Register VReg = MI.getOperand(0).getReg(); 4038 if (MF->getRegInfo().isLiveIn(VReg)) 4039 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 4040 FuncInfo->isLiveInZExt(VReg); 4041 } 4042 4043 // For a method return value, we check the ZExt/SExt flags in attribute. 4044 // We assume the following code sequence for method call. 4045 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 4046 // BL8_NOP @func,... 4047 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 4048 // %5 = COPY %x3; G8RC:%5 4049 if (SrcReg == PPC::X3) { 4050 const MachineBasicBlock *MBB = MI.getParent(); 4051 MachineBasicBlock::const_instr_iterator II = 4052 MachineBasicBlock::const_instr_iterator(&MI); 4053 if (II != MBB->instr_begin() && 4054 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 4055 const MachineInstr &CallMI = *(--II); 4056 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 4057 const Function *CalleeFn = 4058 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 4059 if (!CalleeFn) 4060 return false; 4061 const IntegerType *IntTy = 4062 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 4063 const AttributeSet &Attrs = 4064 CalleeFn->getAttributes().getRetAttributes(); 4065 if (IntTy && IntTy->getBitWidth() <= 32) 4066 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 4067 Attribute::ZExt); 4068 } 4069 } 4070 } 4071 } 4072 4073 // If this is a copy from another register, we recursively check source. 4074 if (!Register::isVirtualRegister(SrcReg)) 4075 return false; 4076 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4077 if (SrcMI != NULL) 4078 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 4079 4080 return false; 4081 } 4082 4083 case PPC::ANDI_rec: 4084 case PPC::ANDIS_rec: 4085 case PPC::ORI: 4086 case PPC::ORIS: 4087 case PPC::XORI: 4088 case PPC::XORIS: 4089 case PPC::ANDI8_rec: 4090 case PPC::ANDIS8_rec: 4091 case PPC::ORI8: 4092 case PPC::ORIS8: 4093 case PPC::XORI8: 4094 case PPC::XORIS8: { 4095 // logical operation with 16-bit immediate does not change the upper bits. 4096 // So, we track the operand register as we do for register copy. 4097 Register SrcReg = MI.getOperand(1).getReg(); 4098 if (!Register::isVirtualRegister(SrcReg)) 4099 return false; 4100 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4101 if (SrcMI != NULL) 4102 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 4103 4104 return false; 4105 } 4106 4107 // If all incoming values are sign-/zero-extended, 4108 // the output of OR, ISEL or PHI is also sign-/zero-extended. 4109 case PPC::OR: 4110 case PPC::OR8: 4111 case PPC::ISEL: 4112 case PPC::PHI: { 4113 if (Depth >= MAX_DEPTH) 4114 return false; 4115 4116 // The input registers for PHI are operand 1, 3, ... 4117 // The input registers for others are operand 1 and 2. 4118 unsigned E = 3, D = 1; 4119 if (MI.getOpcode() == PPC::PHI) { 4120 E = MI.getNumOperands(); 4121 D = 2; 4122 } 4123 4124 for (unsigned I = 1; I != E; I += D) { 4125 if (MI.getOperand(I).isReg()) { 4126 Register SrcReg = MI.getOperand(I).getReg(); 4127 if (!Register::isVirtualRegister(SrcReg)) 4128 return false; 4129 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4130 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 4131 return false; 4132 } 4133 else 4134 return false; 4135 } 4136 return true; 4137 } 4138 4139 // If at least one of the incoming values of an AND is zero extended 4140 // then the output is also zero-extended. If both of the incoming values 4141 // are sign-extended then the output is also sign extended. 4142 case PPC::AND: 4143 case PPC::AND8: { 4144 if (Depth >= MAX_DEPTH) 4145 return false; 4146 4147 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 4148 4149 Register SrcReg1 = MI.getOperand(1).getReg(); 4150 Register SrcReg2 = MI.getOperand(2).getReg(); 4151 4152 if (!Register::isVirtualRegister(SrcReg1) || 4153 !Register::isVirtualRegister(SrcReg2)) 4154 return false; 4155 4156 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 4157 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 4158 if (!MISrc1 || !MISrc2) 4159 return false; 4160 4161 if(SignExt) 4162 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 4163 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4164 else 4165 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 4166 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4167 } 4168 4169 default: 4170 break; 4171 } 4172 return false; 4173 } 4174 4175 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 4176 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 4177 } 4178 4179 namespace { 4180 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 4181 MachineInstr *Loop, *EndLoop, *LoopCount; 4182 MachineFunction *MF; 4183 const TargetInstrInfo *TII; 4184 int64_t TripCount; 4185 4186 public: 4187 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 4188 MachineInstr *LoopCount) 4189 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 4190 MF(Loop->getParent()->getParent()), 4191 TII(MF->getSubtarget().getInstrInfo()) { 4192 // Inspect the Loop instruction up-front, as it may be deleted when we call 4193 // createTripCountGreaterCondition. 4194 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 4195 TripCount = LoopCount->getOperand(1).getImm(); 4196 else 4197 TripCount = -1; 4198 } 4199 4200 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 4201 // Only ignore the terminator. 4202 return MI == EndLoop; 4203 } 4204 4205 Optional<bool> 4206 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 4207 SmallVectorImpl<MachineOperand> &Cond) override { 4208 if (TripCount == -1) { 4209 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4210 // so we don't need to generate any thing here. 4211 Cond.push_back(MachineOperand::CreateImm(0)); 4212 Cond.push_back(MachineOperand::CreateReg( 4213 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 4214 true)); 4215 return {}; 4216 } 4217 4218 return TripCount > TC; 4219 } 4220 4221 void setPreheader(MachineBasicBlock *NewPreheader) override { 4222 // Do nothing. We want the LOOP setup instruction to stay in the *old* 4223 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 4224 } 4225 4226 void adjustTripCount(int TripCountAdjust) override { 4227 // If the loop trip count is a compile-time value, then just change the 4228 // value. 4229 if (LoopCount->getOpcode() == PPC::LI8 || 4230 LoopCount->getOpcode() == PPC::LI) { 4231 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 4232 LoopCount->getOperand(1).setImm(TripCount); 4233 return; 4234 } 4235 4236 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4237 // so we don't need to generate any thing here. 4238 } 4239 4240 void disposed() override { 4241 Loop->eraseFromParent(); 4242 // Ensure the loop setup instruction is deleted too. 4243 LoopCount->eraseFromParent(); 4244 } 4245 }; 4246 } // namespace 4247 4248 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 4249 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 4250 // We really "analyze" only hardware loops right now. 4251 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 4252 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 4253 if (Preheader == LoopBB) 4254 Preheader = *std::next(LoopBB->pred_begin()); 4255 MachineFunction *MF = Preheader->getParent(); 4256 4257 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 4258 SmallPtrSet<MachineBasicBlock *, 8> Visited; 4259 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 4260 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 4261 MachineRegisterInfo &MRI = MF->getRegInfo(); 4262 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 4263 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 4264 } 4265 } 4266 return nullptr; 4267 } 4268 4269 MachineInstr *PPCInstrInfo::findLoopInstr( 4270 MachineBasicBlock &PreHeader, 4271 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 4272 4273 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 4274 4275 // The loop set-up instruction should be in preheader 4276 for (auto &I : PreHeader.instrs()) 4277 if (I.getOpcode() == LOOPi) 4278 return &I; 4279 return nullptr; 4280 } 4281 4282 // Return true if get the base operand, byte offset of an instruction and the 4283 // memory width. Width is the size of memory that is being loaded/stored. 4284 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 4285 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, 4286 unsigned &Width, const TargetRegisterInfo *TRI) const { 4287 if (!LdSt.mayLoadOrStore()) 4288 return false; 4289 4290 // Handle only loads/stores with base register followed by immediate offset. 4291 if (LdSt.getNumExplicitOperands() != 3) 4292 return false; 4293 if (!LdSt.getOperand(1).isImm() || !LdSt.getOperand(2).isReg()) 4294 return false; 4295 4296 if (!LdSt.hasOneMemOperand()) 4297 return false; 4298 4299 Width = (*LdSt.memoperands_begin())->getSize(); 4300 Offset = LdSt.getOperand(1).getImm(); 4301 BaseReg = &LdSt.getOperand(2); 4302 return true; 4303 } 4304 4305 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 4306 const MachineInstr &MIa, const MachineInstr &MIb) const { 4307 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 4308 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 4309 4310 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 4311 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 4312 return false; 4313 4314 // Retrieve the base register, offset from the base register and width. Width 4315 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 4316 // base registers are identical, and the offset of a lower memory access + 4317 // the width doesn't overlap the offset of a higher memory access, 4318 // then the memory accesses are different. 4319 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4320 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 4321 int64_t OffsetA = 0, OffsetB = 0; 4322 unsigned int WidthA = 0, WidthB = 0; 4323 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 4324 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 4325 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 4326 int LowOffset = std::min(OffsetA, OffsetB); 4327 int HighOffset = std::max(OffsetA, OffsetB); 4328 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 4329 if (LowOffset + LowWidth <= HighOffset) 4330 return true; 4331 } 4332 } 4333 return false; 4334 } 4335