1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the PowerPC implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCInstrInfo.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCHazardRecognizers.h" 18 #include "PPCInstrBuilder.h" 19 #include "PPCMachineFunctionInfo.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/SlotIndexes.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/TargetRegistry.h" 36 #include "llvm/Support/raw_ostream.h" 37 38 #define GET_INSTRMAP_INFO 39 #define GET_INSTRINFO_CTOR_DTOR 40 #include "PPCGenInstrInfo.inc" 41 42 using namespace llvm; 43 44 static cl:: 45 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 46 cl::desc("Disable analysis for CTR loops")); 47 48 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 49 cl::desc("Disable compare instruction optimization"), cl::Hidden); 50 51 static cl::opt<bool> DisableVSXFMAMutate("disable-ppc-vsx-fma-mutation", 52 cl::desc("Disable VSX FMA instruction mutation"), cl::Hidden); 53 54 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 55 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 56 cl::Hidden); 57 58 // Pin the vtable to this file. 59 void PPCInstrInfo::anchor() {} 60 61 PPCInstrInfo::PPCInstrInfo(PPCTargetMachine &tm) 62 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP), 63 TM(tm), RI(*TM.getSubtargetImpl()) {} 64 65 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 66 /// this target when scheduling the DAG. 67 ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetHazardRecognizer( 68 const TargetMachine *TM, 69 const ScheduleDAG *DAG) const { 70 unsigned Directive = TM->getSubtarget<PPCSubtarget>().getDarwinDirective(); 71 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 72 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 73 const InstrItineraryData *II = TM->getInstrItineraryData(); 74 return new ScoreboardHazardRecognizer(II, DAG); 75 } 76 77 return TargetInstrInfo::CreateTargetHazardRecognizer(TM, DAG); 78 } 79 80 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 81 /// to use for this target when scheduling the DAG. 82 ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetPostRAHazardRecognizer( 83 const InstrItineraryData *II, 84 const ScheduleDAG *DAG) const { 85 unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective(); 86 87 if (Directive == PPC::DIR_PWR7) 88 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 89 90 // Most subtargets use a PPC970 recognizer. 91 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 92 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 93 assert(TM.getInstrInfo() && "No InstrInfo?"); 94 95 return new PPCHazardRecognizer970(TM); 96 } 97 98 return new ScoreboardHazardRecognizer(II, DAG); 99 } 100 101 102 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 103 const MachineInstr *DefMI, unsigned DefIdx, 104 const MachineInstr *UseMI, 105 unsigned UseIdx) const { 106 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 107 UseMI, UseIdx); 108 109 const MachineOperand &DefMO = DefMI->getOperand(DefIdx); 110 unsigned Reg = DefMO.getReg(); 111 112 const TargetRegisterInfo *TRI = &getRegisterInfo(); 113 bool IsRegCR; 114 if (TRI->isVirtualRegister(Reg)) { 115 const MachineRegisterInfo *MRI = 116 &DefMI->getParent()->getParent()->getRegInfo(); 117 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 118 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 119 } else { 120 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 121 PPC::CRBITRCRegClass.contains(Reg); 122 } 123 124 if (UseMI->isBranch() && IsRegCR) { 125 if (Latency < 0) 126 Latency = getInstrLatency(ItinData, DefMI); 127 128 // On some cores, there is an additional delay between writing to a condition 129 // register, and using it from a branch. 130 unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective(); 131 switch (Directive) { 132 default: break; 133 case PPC::DIR_7400: 134 case PPC::DIR_750: 135 case PPC::DIR_970: 136 case PPC::DIR_E5500: 137 case PPC::DIR_PWR4: 138 case PPC::DIR_PWR5: 139 case PPC::DIR_PWR5X: 140 case PPC::DIR_PWR6: 141 case PPC::DIR_PWR6X: 142 case PPC::DIR_PWR7: 143 Latency += 2; 144 break; 145 } 146 } 147 148 return Latency; 149 } 150 151 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 152 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 153 unsigned &SrcReg, unsigned &DstReg, 154 unsigned &SubIdx) const { 155 switch (MI.getOpcode()) { 156 default: return false; 157 case PPC::EXTSW: 158 case PPC::EXTSW_32_64: 159 SrcReg = MI.getOperand(1).getReg(); 160 DstReg = MI.getOperand(0).getReg(); 161 SubIdx = PPC::sub_32; 162 return true; 163 } 164 } 165 166 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 167 int &FrameIndex) const { 168 // Note: This list must be kept consistent with LoadRegFromStackSlot. 169 switch (MI->getOpcode()) { 170 default: break; 171 case PPC::LD: 172 case PPC::LWZ: 173 case PPC::LFS: 174 case PPC::LFD: 175 case PPC::RESTORE_CR: 176 case PPC::RESTORE_CRBIT: 177 case PPC::LVX: 178 case PPC::LXVD2X: 179 case PPC::RESTORE_VRSAVE: 180 // Check for the operands added by addFrameReference (the immediate is the 181 // offset which defaults to 0). 182 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 183 MI->getOperand(2).isFI()) { 184 FrameIndex = MI->getOperand(2).getIndex(); 185 return MI->getOperand(0).getReg(); 186 } 187 break; 188 } 189 return 0; 190 } 191 192 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI, 193 int &FrameIndex) const { 194 // Note: This list must be kept consistent with StoreRegToStackSlot. 195 switch (MI->getOpcode()) { 196 default: break; 197 case PPC::STD: 198 case PPC::STW: 199 case PPC::STFS: 200 case PPC::STFD: 201 case PPC::SPILL_CR: 202 case PPC::SPILL_CRBIT: 203 case PPC::STVX: 204 case PPC::STXVD2X: 205 case PPC::SPILL_VRSAVE: 206 // Check for the operands added by addFrameReference (the immediate is the 207 // offset which defaults to 0). 208 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 209 MI->getOperand(2).isFI()) { 210 FrameIndex = MI->getOperand(2).getIndex(); 211 return MI->getOperand(0).getReg(); 212 } 213 break; 214 } 215 return 0; 216 } 217 218 // commuteInstruction - We can commute rlwimi instructions, but only if the 219 // rotate amt is zero. We also have to munge the immediates a bit. 220 MachineInstr * 221 PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { 222 MachineFunction &MF = *MI->getParent()->getParent(); 223 224 // Normal instructions can be commuted the obvious way. 225 if (MI->getOpcode() != PPC::RLWIMI && 226 MI->getOpcode() != PPC::RLWIMIo && 227 MI->getOpcode() != PPC::RLWIMI8 && 228 MI->getOpcode() != PPC::RLWIMI8o) 229 return TargetInstrInfo::commuteInstruction(MI, NewMI); 230 231 // Cannot commute if it has a non-zero rotate count. 232 if (MI->getOperand(3).getImm() != 0) 233 return 0; 234 235 // If we have a zero rotate count, we have: 236 // M = mask(MB,ME) 237 // Op0 = (Op1 & ~M) | (Op2 & M) 238 // Change this to: 239 // M = mask((ME+1)&31, (MB-1)&31) 240 // Op0 = (Op2 & ~M) | (Op1 & M) 241 242 // Swap op1/op2 243 unsigned Reg0 = MI->getOperand(0).getReg(); 244 unsigned Reg1 = MI->getOperand(1).getReg(); 245 unsigned Reg2 = MI->getOperand(2).getReg(); 246 unsigned SubReg1 = MI->getOperand(1).getSubReg(); 247 unsigned SubReg2 = MI->getOperand(2).getSubReg(); 248 bool Reg1IsKill = MI->getOperand(1).isKill(); 249 bool Reg2IsKill = MI->getOperand(2).isKill(); 250 bool ChangeReg0 = false; 251 // If machine instrs are no longer in two-address forms, update 252 // destination register as well. 253 if (Reg0 == Reg1) { 254 // Must be two address instruction! 255 assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 256 "Expecting a two-address instruction!"); 257 assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 258 Reg2IsKill = false; 259 ChangeReg0 = true; 260 } 261 262 // Masks. 263 unsigned MB = MI->getOperand(4).getImm(); 264 unsigned ME = MI->getOperand(5).getImm(); 265 266 if (NewMI) { 267 // Create a new instruction. 268 unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg(); 269 bool Reg0IsDead = MI->getOperand(0).isDead(); 270 return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) 271 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 272 .addReg(Reg2, getKillRegState(Reg2IsKill)) 273 .addReg(Reg1, getKillRegState(Reg1IsKill)) 274 .addImm((ME+1) & 31) 275 .addImm((MB-1) & 31); 276 } 277 278 if (ChangeReg0) { 279 MI->getOperand(0).setReg(Reg2); 280 MI->getOperand(0).setSubReg(SubReg2); 281 } 282 MI->getOperand(2).setReg(Reg1); 283 MI->getOperand(1).setReg(Reg2); 284 MI->getOperand(2).setSubReg(SubReg1); 285 MI->getOperand(1).setSubReg(SubReg2); 286 MI->getOperand(2).setIsKill(Reg1IsKill); 287 MI->getOperand(1).setIsKill(Reg2IsKill); 288 289 // Swap the mask around. 290 MI->getOperand(4).setImm((ME+1) & 31); 291 MI->getOperand(5).setImm((MB-1) & 31); 292 return MI; 293 } 294 295 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1, 296 unsigned &SrcOpIdx2) const { 297 // For VSX A-Type FMA instructions, it is the first two operands that can be 298 // commuted, however, because the non-encoded tied input operand is listed 299 // first, the operands to swap are actually the second and third. 300 301 int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode()); 302 if (AltOpc == -1) 303 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 304 305 SrcOpIdx1 = 2; 306 SrcOpIdx2 = 3; 307 return true; 308 } 309 310 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 311 MachineBasicBlock::iterator MI) const { 312 // This function is used for scheduling, and the nop wanted here is the type 313 // that terminates dispatch groups on the POWER cores. 314 unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective(); 315 unsigned Opcode; 316 switch (Directive) { 317 default: Opcode = PPC::NOP; break; 318 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 319 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 320 } 321 322 DebugLoc DL; 323 BuildMI(MBB, MI, DL, get(Opcode)); 324 } 325 326 // Branch analysis. 327 // Note: If the condition register is set to CTR or CTR8 then this is a 328 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 329 bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, 330 MachineBasicBlock *&FBB, 331 SmallVectorImpl<MachineOperand> &Cond, 332 bool AllowModify) const { 333 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 334 335 // If the block has no terminators, it just falls into the block after it. 336 MachineBasicBlock::iterator I = MBB.end(); 337 if (I == MBB.begin()) 338 return false; 339 --I; 340 while (I->isDebugValue()) { 341 if (I == MBB.begin()) 342 return false; 343 --I; 344 } 345 if (!isUnpredicatedTerminator(I)) 346 return false; 347 348 // Get the last instruction in the block. 349 MachineInstr *LastInst = I; 350 351 // If there is only one terminator instruction, process it. 352 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { 353 if (LastInst->getOpcode() == PPC::B) { 354 if (!LastInst->getOperand(0).isMBB()) 355 return true; 356 TBB = LastInst->getOperand(0).getMBB(); 357 return false; 358 } else if (LastInst->getOpcode() == PPC::BCC) { 359 if (!LastInst->getOperand(2).isMBB()) 360 return true; 361 // Block ends with fall-through condbranch. 362 TBB = LastInst->getOperand(2).getMBB(); 363 Cond.push_back(LastInst->getOperand(0)); 364 Cond.push_back(LastInst->getOperand(1)); 365 return false; 366 } else if (LastInst->getOpcode() == PPC::BC) { 367 if (!LastInst->getOperand(1).isMBB()) 368 return true; 369 // Block ends with fall-through condbranch. 370 TBB = LastInst->getOperand(1).getMBB(); 371 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 372 Cond.push_back(LastInst->getOperand(0)); 373 return false; 374 } else if (LastInst->getOpcode() == PPC::BCn) { 375 if (!LastInst->getOperand(1).isMBB()) 376 return true; 377 // Block ends with fall-through condbranch. 378 TBB = LastInst->getOperand(1).getMBB(); 379 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 380 Cond.push_back(LastInst->getOperand(0)); 381 return false; 382 } else if (LastInst->getOpcode() == PPC::BDNZ8 || 383 LastInst->getOpcode() == PPC::BDNZ) { 384 if (!LastInst->getOperand(0).isMBB()) 385 return true; 386 if (DisableCTRLoopAnal) 387 return true; 388 TBB = LastInst->getOperand(0).getMBB(); 389 Cond.push_back(MachineOperand::CreateImm(1)); 390 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 391 true)); 392 return false; 393 } else if (LastInst->getOpcode() == PPC::BDZ8 || 394 LastInst->getOpcode() == PPC::BDZ) { 395 if (!LastInst->getOperand(0).isMBB()) 396 return true; 397 if (DisableCTRLoopAnal) 398 return true; 399 TBB = LastInst->getOperand(0).getMBB(); 400 Cond.push_back(MachineOperand::CreateImm(0)); 401 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 402 true)); 403 return false; 404 } 405 406 // Otherwise, don't know what this is. 407 return true; 408 } 409 410 // Get the instruction before it if it's a terminator. 411 MachineInstr *SecondLastInst = I; 412 413 // If there are three terminators, we don't know what sort of block this is. 414 if (SecondLastInst && I != MBB.begin() && 415 isUnpredicatedTerminator(--I)) 416 return true; 417 418 // If the block ends with PPC::B and PPC:BCC, handle it. 419 if (SecondLastInst->getOpcode() == PPC::BCC && 420 LastInst->getOpcode() == PPC::B) { 421 if (!SecondLastInst->getOperand(2).isMBB() || 422 !LastInst->getOperand(0).isMBB()) 423 return true; 424 TBB = SecondLastInst->getOperand(2).getMBB(); 425 Cond.push_back(SecondLastInst->getOperand(0)); 426 Cond.push_back(SecondLastInst->getOperand(1)); 427 FBB = LastInst->getOperand(0).getMBB(); 428 return false; 429 } else if (SecondLastInst->getOpcode() == PPC::BC && 430 LastInst->getOpcode() == PPC::B) { 431 if (!SecondLastInst->getOperand(1).isMBB() || 432 !LastInst->getOperand(0).isMBB()) 433 return true; 434 TBB = SecondLastInst->getOperand(1).getMBB(); 435 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 436 Cond.push_back(SecondLastInst->getOperand(0)); 437 FBB = LastInst->getOperand(0).getMBB(); 438 return false; 439 } else if (SecondLastInst->getOpcode() == PPC::BCn && 440 LastInst->getOpcode() == PPC::B) { 441 if (!SecondLastInst->getOperand(1).isMBB() || 442 !LastInst->getOperand(0).isMBB()) 443 return true; 444 TBB = SecondLastInst->getOperand(1).getMBB(); 445 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 446 Cond.push_back(SecondLastInst->getOperand(0)); 447 FBB = LastInst->getOperand(0).getMBB(); 448 return false; 449 } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 || 450 SecondLastInst->getOpcode() == PPC::BDNZ) && 451 LastInst->getOpcode() == PPC::B) { 452 if (!SecondLastInst->getOperand(0).isMBB() || 453 !LastInst->getOperand(0).isMBB()) 454 return true; 455 if (DisableCTRLoopAnal) 456 return true; 457 TBB = SecondLastInst->getOperand(0).getMBB(); 458 Cond.push_back(MachineOperand::CreateImm(1)); 459 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 460 true)); 461 FBB = LastInst->getOperand(0).getMBB(); 462 return false; 463 } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 || 464 SecondLastInst->getOpcode() == PPC::BDZ) && 465 LastInst->getOpcode() == PPC::B) { 466 if (!SecondLastInst->getOperand(0).isMBB() || 467 !LastInst->getOperand(0).isMBB()) 468 return true; 469 if (DisableCTRLoopAnal) 470 return true; 471 TBB = SecondLastInst->getOperand(0).getMBB(); 472 Cond.push_back(MachineOperand::CreateImm(0)); 473 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 474 true)); 475 FBB = LastInst->getOperand(0).getMBB(); 476 return false; 477 } 478 479 // If the block ends with two PPC:Bs, handle it. The second one is not 480 // executed, so remove it. 481 if (SecondLastInst->getOpcode() == PPC::B && 482 LastInst->getOpcode() == PPC::B) { 483 if (!SecondLastInst->getOperand(0).isMBB()) 484 return true; 485 TBB = SecondLastInst->getOperand(0).getMBB(); 486 I = LastInst; 487 if (AllowModify) 488 I->eraseFromParent(); 489 return false; 490 } 491 492 // Otherwise, can't handle this. 493 return true; 494 } 495 496 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 497 MachineBasicBlock::iterator I = MBB.end(); 498 if (I == MBB.begin()) return 0; 499 --I; 500 while (I->isDebugValue()) { 501 if (I == MBB.begin()) 502 return 0; 503 --I; 504 } 505 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 506 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 507 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 508 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 509 return 0; 510 511 // Remove the branch. 512 I->eraseFromParent(); 513 514 I = MBB.end(); 515 516 if (I == MBB.begin()) return 1; 517 --I; 518 if (I->getOpcode() != PPC::BCC && 519 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 520 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 521 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 522 return 1; 523 524 // Remove the branch. 525 I->eraseFromParent(); 526 return 2; 527 } 528 529 unsigned 530 PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 531 MachineBasicBlock *FBB, 532 const SmallVectorImpl<MachineOperand> &Cond, 533 DebugLoc DL) const { 534 // Shouldn't be a fall through. 535 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 536 assert((Cond.size() == 2 || Cond.size() == 0) && 537 "PPC branch conditions have two components!"); 538 539 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 540 541 // One-way branch. 542 if (FBB == 0) { 543 if (Cond.empty()) // Unconditional branch 544 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 545 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 546 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 547 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 548 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 549 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 550 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); 551 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 552 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); 553 else // Conditional branch 554 BuildMI(&MBB, DL, get(PPC::BCC)) 555 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); 556 return 1; 557 } 558 559 // Two-way Conditional Branch. 560 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 561 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 562 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 563 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 564 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 565 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); 566 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 567 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); 568 else 569 BuildMI(&MBB, DL, get(PPC::BCC)) 570 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); 571 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 572 return 2; 573 } 574 575 // Select analysis. 576 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 577 const SmallVectorImpl<MachineOperand> &Cond, 578 unsigned TrueReg, unsigned FalseReg, 579 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 580 if (!TM.getSubtargetImpl()->hasISEL()) 581 return false; 582 583 if (Cond.size() != 2) 584 return false; 585 586 // If this is really a bdnz-like condition, then it cannot be turned into a 587 // select. 588 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 589 return false; 590 591 // Check register classes. 592 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 593 const TargetRegisterClass *RC = 594 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 595 if (!RC) 596 return false; 597 598 // isel is for regular integer GPRs only. 599 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 600 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 601 !PPC::G8RCRegClass.hasSubClassEq(RC) && 602 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 603 return false; 604 605 // FIXME: These numbers are for the A2, how well they work for other cores is 606 // an open question. On the A2, the isel instruction has a 2-cycle latency 607 // but single-cycle throughput. These numbers are used in combination with 608 // the MispredictPenalty setting from the active SchedMachineModel. 609 CondCycles = 1; 610 TrueCycles = 1; 611 FalseCycles = 1; 612 613 return true; 614 } 615 616 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 617 MachineBasicBlock::iterator MI, DebugLoc dl, 618 unsigned DestReg, 619 const SmallVectorImpl<MachineOperand> &Cond, 620 unsigned TrueReg, unsigned FalseReg) const { 621 assert(Cond.size() == 2 && 622 "PPC branch conditions have two components!"); 623 624 assert(TM.getSubtargetImpl()->hasISEL() && 625 "Cannot insert select on target without ISEL support"); 626 627 // Get the register classes. 628 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 629 const TargetRegisterClass *RC = 630 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 631 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 632 633 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 634 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 635 assert((Is64Bit || 636 PPC::GPRCRegClass.hasSubClassEq(RC) || 637 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 638 "isel is for regular integer GPRs only"); 639 640 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 641 unsigned SelectPred = Cond[0].getImm(); 642 643 unsigned SubIdx; 644 bool SwapOps; 645 switch (SelectPred) { 646 default: llvm_unreachable("invalid predicate for isel"); 647 case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break; 648 case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break; 649 case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break; 650 case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break; 651 case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break; 652 case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break; 653 case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break; 654 case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break; 655 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 656 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 657 } 658 659 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 660 SecondReg = SwapOps ? TrueReg : FalseReg; 661 662 // The first input register of isel cannot be r0. If it is a member 663 // of a register class that can be r0, then copy it first (the 664 // register allocator should eliminate the copy). 665 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 666 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 667 const TargetRegisterClass *FirstRC = 668 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 669 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 670 unsigned OldFirstReg = FirstReg; 671 FirstReg = MRI.createVirtualRegister(FirstRC); 672 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 673 .addReg(OldFirstReg); 674 } 675 676 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 677 .addReg(FirstReg).addReg(SecondReg) 678 .addReg(Cond[1].getReg(), 0, SubIdx); 679 } 680 681 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 682 MachineBasicBlock::iterator I, DebugLoc DL, 683 unsigned DestReg, unsigned SrcReg, 684 bool KillSrc) const { 685 // We can end up with self copies and similar things as a result of VSX copy 686 // legalization. Promote them here. 687 const TargetRegisterInfo *TRI = &getRegisterInfo(); 688 if (PPC::F8RCRegClass.contains(DestReg) && 689 PPC::VSLRCRegClass.contains(SrcReg)) { 690 unsigned SuperReg = 691 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 692 693 if (VSXSelfCopyCrash && SrcReg == SuperReg) 694 llvm_unreachable("nop VSX copy"); 695 696 DestReg = SuperReg; 697 } else if (PPC::VRRCRegClass.contains(DestReg) && 698 PPC::VSHRCRegClass.contains(SrcReg)) { 699 unsigned SuperReg = 700 TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass); 701 702 if (VSXSelfCopyCrash && SrcReg == SuperReg) 703 llvm_unreachable("nop VSX copy"); 704 705 DestReg = SuperReg; 706 } else if (PPC::F8RCRegClass.contains(SrcReg) && 707 PPC::VSLRCRegClass.contains(DestReg)) { 708 unsigned SuperReg = 709 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 710 711 if (VSXSelfCopyCrash && DestReg == SuperReg) 712 llvm_unreachable("nop VSX copy"); 713 714 SrcReg = SuperReg; 715 } else if (PPC::VRRCRegClass.contains(SrcReg) && 716 PPC::VSHRCRegClass.contains(DestReg)) { 717 unsigned SuperReg = 718 TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass); 719 720 if (VSXSelfCopyCrash && DestReg == SuperReg) 721 llvm_unreachable("nop VSX copy"); 722 723 SrcReg = SuperReg; 724 } 725 726 unsigned Opc; 727 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 728 Opc = PPC::OR; 729 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 730 Opc = PPC::OR8; 731 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 732 Opc = PPC::FMR; 733 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 734 Opc = PPC::MCRF; 735 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 736 Opc = PPC::VOR; 737 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 738 // There are two different ways this can be done: 739 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 740 // issue in VSU pipeline 0. 741 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 742 // can go to either pipeline. 743 // We'll always use xxlor here, because in practically all cases where 744 // copies are generated, they are close enough to some use that the 745 // lower-latency form is preferable. 746 Opc = PPC::XXLOR; 747 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 748 Opc = PPC::CROR; 749 else 750 llvm_unreachable("Impossible reg-to-reg copy"); 751 752 const MCInstrDesc &MCID = get(Opc); 753 if (MCID.getNumOperands() == 3) 754 BuildMI(MBB, I, DL, MCID, DestReg) 755 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 756 else 757 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 758 } 759 760 // This function returns true if a CR spill is necessary and false otherwise. 761 bool 762 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, 763 unsigned SrcReg, bool isKill, 764 int FrameIdx, 765 const TargetRegisterClass *RC, 766 SmallVectorImpl<MachineInstr*> &NewMIs, 767 bool &NonRI, bool &SpillsVRS) const{ 768 // Note: If additional store instructions are added here, 769 // update isStoreToStackSlot. 770 771 DebugLoc DL; 772 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 773 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 774 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) 775 .addReg(SrcReg, 776 getKillRegState(isKill)), 777 FrameIdx)); 778 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 779 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 780 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) 781 .addReg(SrcReg, 782 getKillRegState(isKill)), 783 FrameIdx)); 784 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 785 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) 786 .addReg(SrcReg, 787 getKillRegState(isKill)), 788 FrameIdx)); 789 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 790 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) 791 .addReg(SrcReg, 792 getKillRegState(isKill)), 793 FrameIdx)); 794 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 795 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) 796 .addReg(SrcReg, 797 getKillRegState(isKill)), 798 FrameIdx)); 799 return true; 800 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 801 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT)) 802 .addReg(SrcReg, 803 getKillRegState(isKill)), 804 FrameIdx)); 805 return true; 806 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 807 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX)) 808 .addReg(SrcReg, 809 getKillRegState(isKill)), 810 FrameIdx)); 811 NonRI = true; 812 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 813 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X)) 814 .addReg(SrcReg, 815 getKillRegState(isKill)), 816 FrameIdx)); 817 NonRI = true; 818 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 819 assert(TM.getSubtargetImpl()->isDarwin() && 820 "VRSAVE only needs spill/restore on Darwin"); 821 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE)) 822 .addReg(SrcReg, 823 getKillRegState(isKill)), 824 FrameIdx)); 825 SpillsVRS = true; 826 } else { 827 llvm_unreachable("Unknown regclass!"); 828 } 829 830 return false; 831 } 832 833 void 834 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 835 MachineBasicBlock::iterator MI, 836 unsigned SrcReg, bool isKill, int FrameIdx, 837 const TargetRegisterClass *RC, 838 const TargetRegisterInfo *TRI) const { 839 MachineFunction &MF = *MBB.getParent(); 840 SmallVector<MachineInstr*, 4> NewMIs; 841 842 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 843 FuncInfo->setHasSpills(); 844 845 bool NonRI = false, SpillsVRS = false; 846 if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs, 847 NonRI, SpillsVRS)) 848 FuncInfo->setSpillsCR(); 849 850 if (SpillsVRS) 851 FuncInfo->setSpillsVRSAVE(); 852 853 if (NonRI) 854 FuncInfo->setHasNonRISpills(); 855 856 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 857 MBB.insert(MI, NewMIs[i]); 858 859 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 860 MachineMemOperand *MMO = 861 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 862 MachineMemOperand::MOStore, 863 MFI.getObjectSize(FrameIdx), 864 MFI.getObjectAlignment(FrameIdx)); 865 NewMIs.back()->addMemOperand(MF, MMO); 866 } 867 868 bool 869 PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL, 870 unsigned DestReg, int FrameIdx, 871 const TargetRegisterClass *RC, 872 SmallVectorImpl<MachineInstr*> &NewMIs, 873 bool &NonRI, bool &SpillsVRS) const{ 874 // Note: If additional load instructions are added here, 875 // update isLoadFromStackSlot. 876 877 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 878 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 879 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), 880 DestReg), FrameIdx)); 881 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 882 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 883 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), 884 FrameIdx)); 885 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 886 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), 887 FrameIdx)); 888 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 889 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), 890 FrameIdx)); 891 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 892 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 893 get(PPC::RESTORE_CR), DestReg), 894 FrameIdx)); 895 return true; 896 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 897 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 898 get(PPC::RESTORE_CRBIT), DestReg), 899 FrameIdx)); 900 return true; 901 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 902 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg), 903 FrameIdx)); 904 NonRI = true; 905 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 906 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg), 907 FrameIdx)); 908 NonRI = true; 909 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 910 assert(TM.getSubtargetImpl()->isDarwin() && 911 "VRSAVE only needs spill/restore on Darwin"); 912 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 913 get(PPC::RESTORE_VRSAVE), 914 DestReg), 915 FrameIdx)); 916 SpillsVRS = true; 917 } else { 918 llvm_unreachable("Unknown regclass!"); 919 } 920 921 return false; 922 } 923 924 void 925 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 926 MachineBasicBlock::iterator MI, 927 unsigned DestReg, int FrameIdx, 928 const TargetRegisterClass *RC, 929 const TargetRegisterInfo *TRI) const { 930 MachineFunction &MF = *MBB.getParent(); 931 SmallVector<MachineInstr*, 4> NewMIs; 932 DebugLoc DL; 933 if (MI != MBB.end()) DL = MI->getDebugLoc(); 934 935 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 936 FuncInfo->setHasSpills(); 937 938 bool NonRI = false, SpillsVRS = false; 939 if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs, 940 NonRI, SpillsVRS)) 941 FuncInfo->setSpillsCR(); 942 943 if (SpillsVRS) 944 FuncInfo->setSpillsVRSAVE(); 945 946 if (NonRI) 947 FuncInfo->setHasNonRISpills(); 948 949 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 950 MBB.insert(MI, NewMIs[i]); 951 952 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 953 MachineMemOperand *MMO = 954 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 955 MachineMemOperand::MOLoad, 956 MFI.getObjectSize(FrameIdx), 957 MFI.getObjectAlignment(FrameIdx)); 958 NewMIs.back()->addMemOperand(MF, MMO); 959 } 960 961 bool PPCInstrInfo:: 962 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 963 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 964 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 965 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 966 else 967 // Leave the CR# the same, but invert the condition. 968 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 969 return false; 970 } 971 972 bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, 973 unsigned Reg, MachineRegisterInfo *MRI) const { 974 // For some instructions, it is legal to fold ZERO into the RA register field. 975 // A zero immediate should always be loaded with a single li. 976 unsigned DefOpc = DefMI->getOpcode(); 977 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 978 return false; 979 if (!DefMI->getOperand(1).isImm()) 980 return false; 981 if (DefMI->getOperand(1).getImm() != 0) 982 return false; 983 984 // Note that we cannot here invert the arguments of an isel in order to fold 985 // a ZERO into what is presented as the second argument. All we have here 986 // is the condition bit, and that might come from a CR-logical bit operation. 987 988 const MCInstrDesc &UseMCID = UseMI->getDesc(); 989 990 // Only fold into real machine instructions. 991 if (UseMCID.isPseudo()) 992 return false; 993 994 unsigned UseIdx; 995 for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx) 996 if (UseMI->getOperand(UseIdx).isReg() && 997 UseMI->getOperand(UseIdx).getReg() == Reg) 998 break; 999 1000 assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI"); 1001 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1002 1003 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1004 1005 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1006 // register (which might also be specified as a pointer class kind). 1007 if (UseInfo->isLookupPtrRegClass()) { 1008 if (UseInfo->RegClass /* Kind */ != 1) 1009 return false; 1010 } else { 1011 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1012 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1013 return false; 1014 } 1015 1016 // Make sure this is not tied to an output register (or otherwise 1017 // constrained). This is true for ST?UX registers, for example, which 1018 // are tied to their output registers. 1019 if (UseInfo->Constraints != 0) 1020 return false; 1021 1022 unsigned ZeroReg; 1023 if (UseInfo->isLookupPtrRegClass()) { 1024 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 1025 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1026 } else { 1027 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1028 PPC::ZERO8 : PPC::ZERO; 1029 } 1030 1031 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1032 UseMI->getOperand(UseIdx).setReg(ZeroReg); 1033 1034 if (DeleteDef) 1035 DefMI->eraseFromParent(); 1036 1037 return true; 1038 } 1039 1040 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1041 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1042 I != IE; ++I) 1043 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1044 return true; 1045 return false; 1046 } 1047 1048 // We should make sure that, if we're going to predicate both sides of a 1049 // condition (a diamond), that both sides don't define the counter register. We 1050 // can predicate counter-decrement-based branches, but while that predicates 1051 // the branching, it does not predicate the counter decrement. If we tried to 1052 // merge the triangle into one predicated block, we'd decrement the counter 1053 // twice. 1054 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1055 unsigned NumT, unsigned ExtraT, 1056 MachineBasicBlock &FMBB, 1057 unsigned NumF, unsigned ExtraF, 1058 const BranchProbability &Probability) const { 1059 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1060 } 1061 1062 1063 bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const { 1064 // The predicated branches are identified by their type, not really by the 1065 // explicit presence of a predicate. Furthermore, some of them can be 1066 // predicated more than once. Because if conversion won't try to predicate 1067 // any instruction which already claims to be predicated (by returning true 1068 // here), always return false. In doing so, we let isPredicable() be the 1069 // final word on whether not the instruction can be (further) predicated. 1070 1071 return false; 1072 } 1073 1074 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 1075 if (!MI->isTerminator()) 1076 return false; 1077 1078 // Conditional branch is a special case. 1079 if (MI->isBranch() && !MI->isBarrier()) 1080 return true; 1081 1082 return !isPredicated(MI); 1083 } 1084 1085 bool PPCInstrInfo::PredicateInstruction( 1086 MachineInstr *MI, 1087 const SmallVectorImpl<MachineOperand> &Pred) const { 1088 unsigned OpC = MI->getOpcode(); 1089 if (OpC == PPC::BLR) { 1090 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1091 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 1092 MI->setDesc(get(Pred[0].getImm() ? 1093 (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) : 1094 (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1095 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1096 MI->setDesc(get(PPC::BCLR)); 1097 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1098 .addReg(Pred[1].getReg()); 1099 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1100 MI->setDesc(get(PPC::BCLRn)); 1101 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1102 .addReg(Pred[1].getReg()); 1103 } else { 1104 MI->setDesc(get(PPC::BCCLR)); 1105 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1106 .addImm(Pred[0].getImm()) 1107 .addReg(Pred[1].getReg()); 1108 } 1109 1110 return true; 1111 } else if (OpC == PPC::B) { 1112 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1113 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 1114 MI->setDesc(get(Pred[0].getImm() ? 1115 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1116 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1117 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1118 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1119 MI->RemoveOperand(0); 1120 1121 MI->setDesc(get(PPC::BC)); 1122 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1123 .addReg(Pred[1].getReg()) 1124 .addMBB(MBB); 1125 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1126 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1127 MI->RemoveOperand(0); 1128 1129 MI->setDesc(get(PPC::BCn)); 1130 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1131 .addReg(Pred[1].getReg()) 1132 .addMBB(MBB); 1133 } else { 1134 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1135 MI->RemoveOperand(0); 1136 1137 MI->setDesc(get(PPC::BCC)); 1138 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1139 .addImm(Pred[0].getImm()) 1140 .addReg(Pred[1].getReg()) 1141 .addMBB(MBB); 1142 } 1143 1144 return true; 1145 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || 1146 OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { 1147 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1148 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1149 1150 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1151 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 1152 1153 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1154 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) : 1155 (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1156 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1157 .addReg(Pred[1].getReg()); 1158 return true; 1159 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1160 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) : 1161 (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1162 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1163 .addReg(Pred[1].getReg()); 1164 return true; 1165 } 1166 1167 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) : 1168 (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1169 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1170 .addImm(Pred[0].getImm()) 1171 .addReg(Pred[1].getReg()); 1172 return true; 1173 } 1174 1175 return false; 1176 } 1177 1178 bool PPCInstrInfo::SubsumesPredicate( 1179 const SmallVectorImpl<MachineOperand> &Pred1, 1180 const SmallVectorImpl<MachineOperand> &Pred2) const { 1181 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1182 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1183 1184 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1185 return false; 1186 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1187 return false; 1188 1189 // P1 can only subsume P2 if they test the same condition register. 1190 if (Pred1[1].getReg() != Pred2[1].getReg()) 1191 return false; 1192 1193 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1194 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1195 1196 if (P1 == P2) 1197 return true; 1198 1199 // Does P1 subsume P2, e.g. GE subsumes GT. 1200 if (P1 == PPC::PRED_LE && 1201 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1202 return true; 1203 if (P1 == PPC::PRED_GE && 1204 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1205 return true; 1206 1207 return false; 1208 } 1209 1210 bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI, 1211 std::vector<MachineOperand> &Pred) const { 1212 // Note: At the present time, the contents of Pred from this function is 1213 // unused by IfConversion. This implementation follows ARM by pushing the 1214 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1215 // predicate, instructions defining CTR or CTR8 are also included as 1216 // predicate-defining instructions. 1217 1218 const TargetRegisterClass *RCs[] = 1219 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1220 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1221 1222 bool Found = false; 1223 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1224 const MachineOperand &MO = MI->getOperand(i); 1225 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1226 const TargetRegisterClass *RC = RCs[c]; 1227 if (MO.isReg()) { 1228 if (MO.isDef() && RC->contains(MO.getReg())) { 1229 Pred.push_back(MO); 1230 Found = true; 1231 } 1232 } else if (MO.isRegMask()) { 1233 for (TargetRegisterClass::iterator I = RC->begin(), 1234 IE = RC->end(); I != IE; ++I) 1235 if (MO.clobbersPhysReg(*I)) { 1236 Pred.push_back(MO); 1237 Found = true; 1238 } 1239 } 1240 } 1241 } 1242 1243 return Found; 1244 } 1245 1246 bool PPCInstrInfo::isPredicable(MachineInstr *MI) const { 1247 unsigned OpC = MI->getOpcode(); 1248 switch (OpC) { 1249 default: 1250 return false; 1251 case PPC::B: 1252 case PPC::BLR: 1253 case PPC::BCTR: 1254 case PPC::BCTR8: 1255 case PPC::BCTRL: 1256 case PPC::BCTRL8: 1257 return true; 1258 } 1259 } 1260 1261 bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI, 1262 unsigned &SrcReg, unsigned &SrcReg2, 1263 int &Mask, int &Value) const { 1264 unsigned Opc = MI->getOpcode(); 1265 1266 switch (Opc) { 1267 default: return false; 1268 case PPC::CMPWI: 1269 case PPC::CMPLWI: 1270 case PPC::CMPDI: 1271 case PPC::CMPLDI: 1272 SrcReg = MI->getOperand(1).getReg(); 1273 SrcReg2 = 0; 1274 Value = MI->getOperand(2).getImm(); 1275 Mask = 0xFFFF; 1276 return true; 1277 case PPC::CMPW: 1278 case PPC::CMPLW: 1279 case PPC::CMPD: 1280 case PPC::CMPLD: 1281 case PPC::FCMPUS: 1282 case PPC::FCMPUD: 1283 SrcReg = MI->getOperand(1).getReg(); 1284 SrcReg2 = MI->getOperand(2).getReg(); 1285 return true; 1286 } 1287 } 1288 1289 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr, 1290 unsigned SrcReg, unsigned SrcReg2, 1291 int Mask, int Value, 1292 const MachineRegisterInfo *MRI) const { 1293 if (DisableCmpOpt) 1294 return false; 1295 1296 int OpC = CmpInstr->getOpcode(); 1297 unsigned CRReg = CmpInstr->getOperand(0).getReg(); 1298 1299 // FP record forms set CR1 based on the execption status bits, not a 1300 // comparison with zero. 1301 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1302 return false; 1303 1304 // The record forms set the condition register based on a signed comparison 1305 // with zero (so says the ISA manual). This is not as straightforward as it 1306 // seems, however, because this is always a 64-bit comparison on PPC64, even 1307 // for instructions that are 32-bit in nature (like slw for example). 1308 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1309 // for equality checks (as those don't depend on the sign). On PPC64, 1310 // we are restricted to equality for unsigned 64-bit comparisons and for 1311 // signed 32-bit comparisons the applicability is more restricted. 1312 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 1313 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1314 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1315 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1316 1317 // Get the unique definition of SrcReg. 1318 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1319 if (!MI) return false; 1320 int MIOpC = MI->getOpcode(); 1321 1322 bool equalityOnly = false; 1323 bool noSub = false; 1324 if (isPPC64) { 1325 if (is32BitSignedCompare) { 1326 // We can perform this optimization only if MI is sign-extending. 1327 if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo || 1328 MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo || 1329 MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo || 1330 MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo || 1331 MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) { 1332 noSub = true; 1333 } else 1334 return false; 1335 } else if (is32BitUnsignedCompare) { 1336 // We can perform this optimization, equality only, if MI is 1337 // zero-extending. 1338 if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo || 1339 MIOpC == PPC::SLW || MIOpC == PPC::SLWo || 1340 MIOpC == PPC::SRW || MIOpC == PPC::SRWo) { 1341 noSub = true; 1342 equalityOnly = true; 1343 } else 1344 return false; 1345 } else 1346 equalityOnly = is64BitUnsignedCompare; 1347 } else 1348 equalityOnly = is32BitUnsignedCompare; 1349 1350 if (equalityOnly) { 1351 // We need to check the uses of the condition register in order to reject 1352 // non-equality comparisons. 1353 for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg), 1354 IE = MRI->use_instr_end(); I != IE; ++I) { 1355 MachineInstr *UseMI = &*I; 1356 if (UseMI->getOpcode() == PPC::BCC) { 1357 unsigned Pred = UseMI->getOperand(0).getImm(); 1358 if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE) 1359 return false; 1360 } else if (UseMI->getOpcode() == PPC::ISEL || 1361 UseMI->getOpcode() == PPC::ISEL8) { 1362 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1363 if (SubIdx != PPC::sub_eq) 1364 return false; 1365 } else 1366 return false; 1367 } 1368 } 1369 1370 MachineBasicBlock::iterator I = CmpInstr; 1371 1372 // Scan forward to find the first use of the compare. 1373 for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end(); 1374 I != EL; ++I) { 1375 bool FoundUse = false; 1376 for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg), 1377 JE = MRI->use_instr_end(); J != JE; ++J) 1378 if (&*J == &*I) { 1379 FoundUse = true; 1380 break; 1381 } 1382 1383 if (FoundUse) 1384 break; 1385 } 1386 1387 // There are two possible candidates which can be changed to set CR[01]. 1388 // One is MI, the other is a SUB instruction. 1389 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1390 MachineInstr *Sub = NULL; 1391 if (SrcReg2 != 0) 1392 // MI is not a candidate for CMPrr. 1393 MI = NULL; 1394 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1395 // same BB as the comparison. This is to allow the check below to avoid calls 1396 // (and other explicit clobbers); instead we should really check for these 1397 // more explicitly (in at least a few predecessors). 1398 else if (MI->getParent() != CmpInstr->getParent() || Value != 0) { 1399 // PPC does not have a record-form SUBri. 1400 return false; 1401 } 1402 1403 // Search for Sub. 1404 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1405 --I; 1406 1407 // Get ready to iterate backward from CmpInstr. 1408 MachineBasicBlock::iterator E = MI, 1409 B = CmpInstr->getParent()->begin(); 1410 1411 for (; I != E && !noSub; --I) { 1412 const MachineInstr &Instr = *I; 1413 unsigned IOpC = Instr.getOpcode(); 1414 1415 if (&*I != CmpInstr && ( 1416 Instr.modifiesRegister(PPC::CR0, TRI) || 1417 Instr.readsRegister(PPC::CR0, TRI))) 1418 // This instruction modifies or uses the record condition register after 1419 // the one we want to change. While we could do this transformation, it 1420 // would likely not be profitable. This transformation removes one 1421 // instruction, and so even forcing RA to generate one move probably 1422 // makes it unprofitable. 1423 return false; 1424 1425 // Check whether CmpInstr can be made redundant by the current instruction. 1426 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1427 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1428 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1429 ((Instr.getOperand(1).getReg() == SrcReg && 1430 Instr.getOperand(2).getReg() == SrcReg2) || 1431 (Instr.getOperand(1).getReg() == SrcReg2 && 1432 Instr.getOperand(2).getReg() == SrcReg))) { 1433 Sub = &*I; 1434 break; 1435 } 1436 1437 if (I == B) 1438 // The 'and' is below the comparison instruction. 1439 return false; 1440 } 1441 1442 // Return false if no candidates exist. 1443 if (!MI && !Sub) 1444 return false; 1445 1446 // The single candidate is called MI. 1447 if (!MI) MI = Sub; 1448 1449 int NewOpC = -1; 1450 MIOpC = MI->getOpcode(); 1451 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8) 1452 NewOpC = MIOpC; 1453 else { 1454 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1455 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1456 NewOpC = MIOpC; 1457 } 1458 1459 // FIXME: On the non-embedded POWER architectures, only some of the record 1460 // forms are fast, and we should use only the fast ones. 1461 1462 // The defining instruction has a record form (or is already a record 1463 // form). It is possible, however, that we'll need to reverse the condition 1464 // code of the users. 1465 if (NewOpC == -1) 1466 return false; 1467 1468 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1469 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1470 1471 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1472 // needs to be updated to be based on SUB. Push the condition code 1473 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1474 // condition code of these operands will be modified. 1475 bool ShouldSwap = false; 1476 if (Sub) { 1477 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1478 Sub->getOperand(2).getReg() == SrcReg; 1479 1480 // The operands to subf are the opposite of sub, so only in the fixed-point 1481 // case, invert the order. 1482 ShouldSwap = !ShouldSwap; 1483 } 1484 1485 if (ShouldSwap) 1486 for (MachineRegisterInfo::use_instr_iterator 1487 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1488 I != IE; ++I) { 1489 MachineInstr *UseMI = &*I; 1490 if (UseMI->getOpcode() == PPC::BCC) { 1491 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1492 assert((!equalityOnly || 1493 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) && 1494 "Invalid predicate for equality-only optimization"); 1495 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1496 PPC::getSwappedPredicate(Pred))); 1497 } else if (UseMI->getOpcode() == PPC::ISEL || 1498 UseMI->getOpcode() == PPC::ISEL8) { 1499 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1500 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1501 "Invalid CR bit for equality-only optimization"); 1502 1503 if (NewSubReg == PPC::sub_lt) 1504 NewSubReg = PPC::sub_gt; 1505 else if (NewSubReg == PPC::sub_gt) 1506 NewSubReg = PPC::sub_lt; 1507 1508 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1509 NewSubReg)); 1510 } else // We need to abort on a user we don't understand. 1511 return false; 1512 } 1513 1514 // Create a new virtual register to hold the value of the CR set by the 1515 // record-form instruction. If the instruction was not previously in 1516 // record form, then set the kill flag on the CR. 1517 CmpInstr->eraseFromParent(); 1518 1519 MachineBasicBlock::iterator MII = MI; 1520 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1521 get(TargetOpcode::COPY), CRReg) 1522 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1523 1524 if (MIOpC != NewOpC) { 1525 // We need to be careful here: we're replacing one instruction with 1526 // another, and we need to make sure that we get all of the right 1527 // implicit uses and defs. On the other hand, the caller may be holding 1528 // an iterator to this instruction, and so we can't delete it (this is 1529 // specifically the case if this is the instruction directly after the 1530 // compare). 1531 1532 const MCInstrDesc &NewDesc = get(NewOpC); 1533 MI->setDesc(NewDesc); 1534 1535 if (NewDesc.ImplicitDefs) 1536 for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs(); 1537 *ImpDefs; ++ImpDefs) 1538 if (!MI->definesRegister(*ImpDefs)) 1539 MI->addOperand(*MI->getParent()->getParent(), 1540 MachineOperand::CreateReg(*ImpDefs, true, true)); 1541 if (NewDesc.ImplicitUses) 1542 for (const uint16_t *ImpUses = NewDesc.getImplicitUses(); 1543 *ImpUses; ++ImpUses) 1544 if (!MI->readsRegister(*ImpUses)) 1545 MI->addOperand(*MI->getParent()->getParent(), 1546 MachineOperand::CreateReg(*ImpUses, false, true)); 1547 } 1548 1549 // Modify the condition code of operands in OperandsToUpdate. 1550 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1551 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1552 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1553 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1554 1555 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1556 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1557 1558 return true; 1559 } 1560 1561 /// GetInstSize - Return the number of bytes of code the specified 1562 /// instruction may be. This returns the maximum number of bytes. 1563 /// 1564 unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { 1565 unsigned Opcode = MI->getOpcode(); 1566 1567 if (Opcode == PPC::INLINEASM) { 1568 const MachineFunction *MF = MI->getParent()->getParent(); 1569 const char *AsmStr = MI->getOperand(0).getSymbolName(); 1570 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1571 } else { 1572 const MCInstrDesc &Desc = get(Opcode); 1573 return Desc.getSize(); 1574 } 1575 } 1576 1577 #undef DEBUG_TYPE 1578 #define DEBUG_TYPE "ppc-vsx-fma-mutate" 1579 1580 namespace { 1581 // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers 1582 // (Altivec and scalar floating-point registers), we need to transform the 1583 // copies into subregister copies with other restrictions. 1584 struct PPCVSXFMAMutate : public MachineFunctionPass { 1585 static char ID; 1586 PPCVSXFMAMutate() : MachineFunctionPass(ID) { 1587 initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry()); 1588 } 1589 1590 LiveIntervals *LIS; 1591 1592 const PPCTargetMachine *TM; 1593 const PPCInstrInfo *TII; 1594 1595 protected: 1596 bool processBlock(MachineBasicBlock &MBB) { 1597 bool Changed = false; 1598 1599 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1600 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1601 I != IE; ++I) { 1602 MachineInstr *MI = I; 1603 1604 // The default (A-type) VSX FMA form kills the addend (it is taken from 1605 // the target register, which is then updated to reflect the result of 1606 // the FMA). If the instruction, however, kills one of the registers 1607 // used for the product, then we can use the M-form instruction (which 1608 // will take that value from the to-be-defined register). 1609 1610 int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode()); 1611 if (AltOpc == -1) 1612 continue; 1613 1614 // This pass is run after register coalescing, and so we're looking for 1615 // a situation like this: 1616 // ... 1617 // %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9 1618 // %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16, 1619 // %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16 1620 // ... 1621 // %vreg9<def,tied1> = XSMADDADP %vreg9<tied0>, %vreg17, %vreg19, 1622 // %RM<imp-use>; VSLRC:%vreg9,%vreg17,%vreg19 1623 // ... 1624 // Where we can eliminate the copy by changing from the A-type to the 1625 // M-type instruction. Specifically, for this example, this means: 1626 // %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16, 1627 // %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16 1628 // is replaced by: 1629 // %vreg16<def,tied1> = XSMADDMDP %vreg16<tied0>, %vreg18, %vreg9, 1630 // %RM<imp-use>; VSLRC:%vreg16,%vreg18,%vreg9 1631 // and we remove: %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9 1632 1633 SlotIndex FMAIdx = LIS->getInstructionIndex(MI); 1634 1635 VNInfo *AddendValNo = 1636 LIS->getInterval(MI->getOperand(1).getReg()).Query(FMAIdx).valueIn(); 1637 MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def); 1638 1639 // The addend and this instruction must be in the same block. 1640 1641 if (AddendMI->getParent() != MI->getParent()) 1642 continue; 1643 1644 // The addend must be a full copy within the same register class. 1645 1646 if (!AddendMI->isFullCopy()) 1647 continue; 1648 1649 if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) != 1650 MRI.getRegClass(AddendMI->getOperand(1).getReg())) 1651 continue; 1652 1653 // In theory, there could be other uses of the addend copy before this 1654 // fma. We could deal with this, but that would require additional 1655 // logic below and I suspect it will not occur in any relevant 1656 // situations. 1657 bool OtherUsers = false; 1658 for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI); 1659 J != JE; --J) 1660 if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) { 1661 OtherUsers = true; 1662 break; 1663 } 1664 1665 if (OtherUsers) 1666 continue; 1667 1668 // Find one of the product operands that is killed by this instruction. 1669 1670 unsigned KilledProdOp = 0, OtherProdOp = 0; 1671 if (LIS->getInterval(MI->getOperand(2).getReg()) 1672 .Query(FMAIdx).isKill()) { 1673 KilledProdOp = 2; 1674 OtherProdOp = 3; 1675 } else if (LIS->getInterval(MI->getOperand(3).getReg()) 1676 .Query(FMAIdx).isKill()) { 1677 KilledProdOp = 3; 1678 OtherProdOp = 2; 1679 } 1680 1681 // If there are no killed product operands, then this transformation is 1682 // likely not profitable. 1683 if (!KilledProdOp) 1684 continue; 1685 1686 // In order to replace the addend here with the source of the copy, 1687 // it must still be live here. 1688 if (!LIS->getInterval(AddendMI->getOperand(1).getReg()).liveAt(FMAIdx)) 1689 continue; 1690 1691 // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3. 1692 1693 unsigned AddReg = AddendMI->getOperand(1).getReg(); 1694 unsigned KilledProdReg = MI->getOperand(KilledProdOp).getReg(); 1695 unsigned OtherProdReg = MI->getOperand(OtherProdOp).getReg(); 1696 1697 unsigned AddSubReg = AddendMI->getOperand(1).getSubReg(); 1698 unsigned KilledProdSubReg = MI->getOperand(KilledProdOp).getSubReg(); 1699 unsigned OtherProdSubReg = MI->getOperand(OtherProdOp).getSubReg(); 1700 1701 bool AddRegKill = AddendMI->getOperand(1).isKill(); 1702 bool KilledProdRegKill = MI->getOperand(KilledProdOp).isKill(); 1703 bool OtherProdRegKill = MI->getOperand(OtherProdOp).isKill(); 1704 1705 bool AddRegUndef = AddendMI->getOperand(1).isUndef(); 1706 bool KilledProdRegUndef = MI->getOperand(KilledProdOp).isUndef(); 1707 bool OtherProdRegUndef = MI->getOperand(OtherProdOp).isUndef(); 1708 1709 unsigned OldFMAReg = MI->getOperand(0).getReg(); 1710 1711 assert(OldFMAReg == AddendMI->getOperand(0).getReg() && 1712 "Addend copy not tied to old FMA output!"); 1713 1714 DEBUG(dbgs() << "VSX FMA Mutation:\n " << *MI;); 1715 1716 MI->getOperand(0).setReg(KilledProdReg); 1717 MI->getOperand(1).setReg(KilledProdReg); 1718 MI->getOperand(3).setReg(AddReg); 1719 MI->getOperand(2).setReg(OtherProdReg); 1720 1721 MI->getOperand(0).setSubReg(KilledProdSubReg); 1722 MI->getOperand(1).setSubReg(KilledProdSubReg); 1723 MI->getOperand(3).setSubReg(AddSubReg); 1724 MI->getOperand(2).setSubReg(OtherProdSubReg); 1725 1726 MI->getOperand(1).setIsKill(KilledProdRegKill); 1727 MI->getOperand(3).setIsKill(AddRegKill); 1728 MI->getOperand(2).setIsKill(OtherProdRegKill); 1729 1730 MI->getOperand(1).setIsUndef(KilledProdRegUndef); 1731 MI->getOperand(3).setIsUndef(AddRegUndef); 1732 MI->getOperand(2).setIsUndef(OtherProdRegUndef); 1733 1734 MI->setDesc(TII->get(AltOpc)); 1735 1736 DEBUG(dbgs() << " -> " << *MI); 1737 1738 // The killed product operand was killed here, so we can reuse it now 1739 // for the result of the fma. 1740 1741 LiveInterval &FMAInt = LIS->getInterval(OldFMAReg); 1742 VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot()); 1743 for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end(); 1744 UI != UE;) { 1745 MachineOperand &UseMO = *UI; 1746 MachineInstr *UseMI = UseMO.getParent(); 1747 ++UI; 1748 1749 // Don't replace the result register of the copy we're about to erase. 1750 if (UseMI == AddendMI) 1751 continue; 1752 1753 UseMO.setReg(KilledProdReg); 1754 UseMO.setSubReg(KilledProdSubReg); 1755 } 1756 1757 // Extend the live intervals of the killed product operand to hold the 1758 // fma result. 1759 1760 LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg); 1761 for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end(); 1762 AI != AE; ++AI) { 1763 // Don't add the segment that corresponds to the original copy. 1764 if (AI->valno == AddendValNo) 1765 continue; 1766 1767 VNInfo *NewFMAValNo = 1768 NewFMAInt.getNextValue(AI->start, 1769 LIS->getVNInfoAllocator()); 1770 1771 NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end, 1772 NewFMAValNo)); 1773 } 1774 DEBUG(dbgs() << " extended: " << NewFMAInt << '\n'); 1775 1776 FMAInt.removeValNo(FMAValNo); 1777 DEBUG(dbgs() << " trimmed: " << FMAInt << '\n'); 1778 1779 // Remove the (now unused) copy. 1780 1781 DEBUG(dbgs() << " removing: " << *AddendMI << '\n'); 1782 LIS->RemoveMachineInstrFromMaps(AddendMI); 1783 AddendMI->eraseFromParent(); 1784 1785 Changed = true; 1786 } 1787 1788 return Changed; 1789 } 1790 1791 public: 1792 virtual bool runOnMachineFunction(MachineFunction &MF) { 1793 LIS = &getAnalysis<LiveIntervals>(); 1794 1795 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 1796 TII = TM->getInstrInfo(); 1797 1798 bool Changed = false; 1799 1800 if (DisableVSXFMAMutate) 1801 return Changed; 1802 1803 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 1804 MachineBasicBlock &B = *I++; 1805 if (processBlock(B)) 1806 Changed = true; 1807 } 1808 1809 return Changed; 1810 } 1811 1812 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1813 AU.addRequired<LiveIntervals>(); 1814 AU.addPreserved<LiveIntervals>(); 1815 AU.addRequired<SlotIndexes>(); 1816 AU.addPreserved<SlotIndexes>(); 1817 MachineFunctionPass::getAnalysisUsage(AU); 1818 } 1819 }; 1820 } 1821 1822 INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE, 1823 "PowerPC VSX FMA Mutation", false, false) 1824 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 1825 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 1826 INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE, 1827 "PowerPC VSX FMA Mutation", false, false) 1828 1829 char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID; 1830 1831 char PPCVSXFMAMutate::ID = 0; 1832 FunctionPass* 1833 llvm::createPPCVSXFMAMutatePass() { return new PPCVSXFMAMutate(); } 1834 1835 #undef DEBUG_TYPE 1836 #define DEBUG_TYPE "ppc-vsx-copy" 1837 1838 namespace llvm { 1839 void initializePPCVSXCopyPass(PassRegistry&); 1840 } 1841 1842 namespace { 1843 // PPCVSXCopy pass - For copies between VSX registers and non-VSX registers 1844 // (Altivec and scalar floating-point registers), we need to transform the 1845 // copies into subregister copies with other restrictions. 1846 struct PPCVSXCopy : public MachineFunctionPass { 1847 static char ID; 1848 PPCVSXCopy() : MachineFunctionPass(ID) { 1849 initializePPCVSXCopyPass(*PassRegistry::getPassRegistry()); 1850 } 1851 1852 const PPCTargetMachine *TM; 1853 const PPCInstrInfo *TII; 1854 1855 bool IsRegInClass(unsigned Reg, const TargetRegisterClass *RC, 1856 MachineRegisterInfo &MRI) { 1857 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1858 return RC->hasSubClassEq(MRI.getRegClass(Reg)); 1859 } else if (RC->contains(Reg)) { 1860 return true; 1861 } 1862 1863 return false; 1864 } 1865 1866 bool IsVSReg(unsigned Reg, MachineRegisterInfo &MRI) { 1867 return IsRegInClass(Reg, &PPC::VSRCRegClass, MRI); 1868 } 1869 1870 bool IsVRReg(unsigned Reg, MachineRegisterInfo &MRI) { 1871 return IsRegInClass(Reg, &PPC::VRRCRegClass, MRI); 1872 } 1873 1874 bool IsF8Reg(unsigned Reg, MachineRegisterInfo &MRI) { 1875 return IsRegInClass(Reg, &PPC::F8RCRegClass, MRI); 1876 } 1877 1878 protected: 1879 bool processBlock(MachineBasicBlock &MBB) { 1880 bool Changed = false; 1881 1882 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1883 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1884 I != IE; ++I) { 1885 MachineInstr *MI = I; 1886 if (!MI->isFullCopy()) 1887 continue; 1888 1889 MachineOperand &DstMO = MI->getOperand(0); 1890 MachineOperand &SrcMO = MI->getOperand(1); 1891 1892 if ( IsVSReg(DstMO.getReg(), MRI) && 1893 !IsVSReg(SrcMO.getReg(), MRI)) { 1894 // This is a copy *to* a VSX register from a non-VSX register. 1895 Changed = true; 1896 1897 const TargetRegisterClass *SrcRC = 1898 IsVRReg(SrcMO.getReg(), MRI) ? &PPC::VSHRCRegClass : 1899 &PPC::VSLRCRegClass; 1900 assert((IsF8Reg(SrcMO.getReg(), MRI) || 1901 IsVRReg(SrcMO.getReg(), MRI)) && 1902 "Unknown source for a VSX copy"); 1903 1904 unsigned NewVReg = MRI.createVirtualRegister(SrcRC); 1905 BuildMI(MBB, MI, MI->getDebugLoc(), 1906 TII->get(TargetOpcode::SUBREG_TO_REG), NewVReg) 1907 .addImm(1) // add 1, not 0, because there is no implicit clearing 1908 // of the high bits. 1909 .addOperand(SrcMO) 1910 .addImm(IsVRReg(SrcMO.getReg(), MRI) ? PPC::sub_128 : 1911 PPC::sub_64); 1912 1913 // The source of the original copy is now the new virtual register. 1914 SrcMO.setReg(NewVReg); 1915 } else if (!IsVSReg(DstMO.getReg(), MRI) && 1916 IsVSReg(SrcMO.getReg(), MRI)) { 1917 // This is a copy *from* a VSX register to a non-VSX register. 1918 Changed = true; 1919 1920 const TargetRegisterClass *DstRC = 1921 IsVRReg(DstMO.getReg(), MRI) ? &PPC::VSHRCRegClass : 1922 &PPC::VSLRCRegClass; 1923 assert((IsF8Reg(DstMO.getReg(), MRI) || 1924 IsVRReg(DstMO.getReg(), MRI)) && 1925 "Unknown destination for a VSX copy"); 1926 1927 // Copy the VSX value into a new VSX register of the correct subclass. 1928 unsigned NewVReg = MRI.createVirtualRegister(DstRC); 1929 BuildMI(MBB, MI, MI->getDebugLoc(), 1930 TII->get(TargetOpcode::COPY), NewVReg) 1931 .addOperand(SrcMO); 1932 1933 // Transform the original copy into a subregister extraction copy. 1934 SrcMO.setReg(NewVReg); 1935 SrcMO.setSubReg(IsVRReg(DstMO.getReg(), MRI) ? PPC::sub_128 : 1936 PPC::sub_64); 1937 } 1938 } 1939 1940 return Changed; 1941 } 1942 1943 public: 1944 virtual bool runOnMachineFunction(MachineFunction &MF) { 1945 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 1946 TII = TM->getInstrInfo(); 1947 1948 bool Changed = false; 1949 1950 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 1951 MachineBasicBlock &B = *I++; 1952 if (processBlock(B)) 1953 Changed = true; 1954 } 1955 1956 return Changed; 1957 } 1958 1959 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1960 MachineFunctionPass::getAnalysisUsage(AU); 1961 } 1962 }; 1963 } 1964 1965 INITIALIZE_PASS(PPCVSXCopy, DEBUG_TYPE, 1966 "PowerPC VSX Copy Legalization", false, false) 1967 1968 char PPCVSXCopy::ID = 0; 1969 FunctionPass* 1970 llvm::createPPCVSXCopyPass() { return new PPCVSXCopy(); } 1971 1972 #undef DEBUG_TYPE 1973 #define DEBUG_TYPE "ppc-vsx-copy-cleanup" 1974 1975 namespace llvm { 1976 void initializePPCVSXCopyCleanupPass(PassRegistry&); 1977 } 1978 1979 namespace { 1980 // PPCVSXCopyCleanup pass - We sometimes end up generating self copies of VSX 1981 // registers (mostly because the ABI code still places all values into the 1982 // "traditional" floating-point and vector registers). Remove them here. 1983 struct PPCVSXCopyCleanup : public MachineFunctionPass { 1984 static char ID; 1985 PPCVSXCopyCleanup() : MachineFunctionPass(ID) { 1986 initializePPCVSXCopyCleanupPass(*PassRegistry::getPassRegistry()); 1987 } 1988 1989 const PPCTargetMachine *TM; 1990 const PPCInstrInfo *TII; 1991 1992 protected: 1993 bool processBlock(MachineBasicBlock &MBB) { 1994 bool Changed = false; 1995 1996 SmallVector<MachineInstr *, 4> ToDelete; 1997 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1998 I != IE; ++I) { 1999 MachineInstr *MI = I; 2000 if (MI->getOpcode() == PPC::XXLOR && 2001 MI->getOperand(0).getReg() == MI->getOperand(1).getReg() && 2002 MI->getOperand(0).getReg() == MI->getOperand(2).getReg()) 2003 ToDelete.push_back(MI); 2004 } 2005 2006 if (!ToDelete.empty()) 2007 Changed = true; 2008 2009 for (unsigned i = 0, ie = ToDelete.size(); i != ie; ++i) { 2010 DEBUG(dbgs() << "Removing VSX self-copy: " << *ToDelete[i]); 2011 ToDelete[i]->eraseFromParent(); 2012 } 2013 2014 return Changed; 2015 } 2016 2017 public: 2018 virtual bool runOnMachineFunction(MachineFunction &MF) { 2019 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 2020 TII = TM->getInstrInfo(); 2021 2022 bool Changed = false; 2023 2024 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 2025 MachineBasicBlock &B = *I++; 2026 if (processBlock(B)) 2027 Changed = true; 2028 } 2029 2030 return Changed; 2031 } 2032 2033 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 2034 MachineFunctionPass::getAnalysisUsage(AU); 2035 } 2036 }; 2037 } 2038 2039 INITIALIZE_PASS(PPCVSXCopyCleanup, DEBUG_TYPE, 2040 "PowerPC VSX Copy Cleanup", false, false) 2041 2042 char PPCVSXCopyCleanup::ID = 0; 2043 FunctionPass* 2044 llvm::createPPCVSXCopyCleanupPass() { return new PPCVSXCopyCleanup(); } 2045 2046 #undef DEBUG_TYPE 2047 #define DEBUG_TYPE "ppc-early-ret" 2048 STATISTIC(NumBCLR, "Number of early conditional returns"); 2049 STATISTIC(NumBLR, "Number of early returns"); 2050 2051 namespace llvm { 2052 void initializePPCEarlyReturnPass(PassRegistry&); 2053 } 2054 2055 namespace { 2056 // PPCEarlyReturn pass - For simple functions without epilogue code, move 2057 // returns up, and create conditional returns, to avoid unnecessary 2058 // branch-to-blr sequences. 2059 struct PPCEarlyReturn : public MachineFunctionPass { 2060 static char ID; 2061 PPCEarlyReturn() : MachineFunctionPass(ID) { 2062 initializePPCEarlyReturnPass(*PassRegistry::getPassRegistry()); 2063 } 2064 2065 const PPCTargetMachine *TM; 2066 const PPCInstrInfo *TII; 2067 2068 protected: 2069 bool processBlock(MachineBasicBlock &ReturnMBB) { 2070 bool Changed = false; 2071 2072 MachineBasicBlock::iterator I = ReturnMBB.begin(); 2073 I = ReturnMBB.SkipPHIsAndLabels(I); 2074 2075 // The block must be essentially empty except for the blr. 2076 if (I == ReturnMBB.end() || I->getOpcode() != PPC::BLR || 2077 I != ReturnMBB.getLastNonDebugInstr()) 2078 return Changed; 2079 2080 SmallVector<MachineBasicBlock*, 8> PredToRemove; 2081 for (MachineBasicBlock::pred_iterator PI = ReturnMBB.pred_begin(), 2082 PIE = ReturnMBB.pred_end(); PI != PIE; ++PI) { 2083 bool OtherReference = false, BlockChanged = false; 2084 for (MachineBasicBlock::iterator J = (*PI)->getLastNonDebugInstr();;) { 2085 if (J->getOpcode() == PPC::B) { 2086 if (J->getOperand(0).getMBB() == &ReturnMBB) { 2087 // This is an unconditional branch to the return. Replace the 2088 // branch with a blr. 2089 BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BLR)); 2090 MachineBasicBlock::iterator K = J--; 2091 K->eraseFromParent(); 2092 BlockChanged = true; 2093 ++NumBLR; 2094 continue; 2095 } 2096 } else if (J->getOpcode() == PPC::BCC) { 2097 if (J->getOperand(2).getMBB() == &ReturnMBB) { 2098 // This is a conditional branch to the return. Replace the branch 2099 // with a bclr. 2100 BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BCCLR)) 2101 .addImm(J->getOperand(0).getImm()) 2102 .addReg(J->getOperand(1).getReg()); 2103 MachineBasicBlock::iterator K = J--; 2104 K->eraseFromParent(); 2105 BlockChanged = true; 2106 ++NumBCLR; 2107 continue; 2108 } 2109 } else if (J->getOpcode() == PPC::BC || J->getOpcode() == PPC::BCn) { 2110 if (J->getOperand(1).getMBB() == &ReturnMBB) { 2111 // This is a conditional branch to the return. Replace the branch 2112 // with a bclr. 2113 BuildMI(**PI, J, J->getDebugLoc(), 2114 TII->get(J->getOpcode() == PPC::BC ? 2115 PPC::BCLR : PPC::BCLRn)) 2116 .addReg(J->getOperand(0).getReg()); 2117 MachineBasicBlock::iterator K = J--; 2118 K->eraseFromParent(); 2119 BlockChanged = true; 2120 ++NumBCLR; 2121 continue; 2122 } 2123 } else if (J->isBranch()) { 2124 if (J->isIndirectBranch()) { 2125 if (ReturnMBB.hasAddressTaken()) 2126 OtherReference = true; 2127 } else 2128 for (unsigned i = 0; i < J->getNumOperands(); ++i) 2129 if (J->getOperand(i).isMBB() && 2130 J->getOperand(i).getMBB() == &ReturnMBB) 2131 OtherReference = true; 2132 } else if (!J->isTerminator() && !J->isDebugValue()) 2133 break; 2134 2135 if (J == (*PI)->begin()) 2136 break; 2137 2138 --J; 2139 } 2140 2141 if ((*PI)->canFallThrough() && (*PI)->isLayoutSuccessor(&ReturnMBB)) 2142 OtherReference = true; 2143 2144 // Predecessors are stored in a vector and can't be removed here. 2145 if (!OtherReference && BlockChanged) { 2146 PredToRemove.push_back(*PI); 2147 } 2148 2149 if (BlockChanged) 2150 Changed = true; 2151 } 2152 2153 for (unsigned i = 0, ie = PredToRemove.size(); i != ie; ++i) 2154 PredToRemove[i]->removeSuccessor(&ReturnMBB); 2155 2156 if (Changed && !ReturnMBB.hasAddressTaken()) { 2157 // We now might be able to merge this blr-only block into its 2158 // by-layout predecessor. 2159 if (ReturnMBB.pred_size() == 1 && 2160 (*ReturnMBB.pred_begin())->isLayoutSuccessor(&ReturnMBB)) { 2161 // Move the blr into the preceding block. 2162 MachineBasicBlock &PrevMBB = **ReturnMBB.pred_begin(); 2163 PrevMBB.splice(PrevMBB.end(), &ReturnMBB, I); 2164 PrevMBB.removeSuccessor(&ReturnMBB); 2165 } 2166 2167 if (ReturnMBB.pred_empty()) 2168 ReturnMBB.eraseFromParent(); 2169 } 2170 2171 return Changed; 2172 } 2173 2174 public: 2175 virtual bool runOnMachineFunction(MachineFunction &MF) { 2176 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 2177 TII = TM->getInstrInfo(); 2178 2179 bool Changed = false; 2180 2181 // If the function does not have at least two blocks, then there is 2182 // nothing to do. 2183 if (MF.size() < 2) 2184 return Changed; 2185 2186 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 2187 MachineBasicBlock &B = *I++; 2188 if (processBlock(B)) 2189 Changed = true; 2190 } 2191 2192 return Changed; 2193 } 2194 2195 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 2196 MachineFunctionPass::getAnalysisUsage(AU); 2197 } 2198 }; 2199 } 2200 2201 INITIALIZE_PASS(PPCEarlyReturn, DEBUG_TYPE, 2202 "PowerPC Early-Return Creation", false, false) 2203 2204 char PPCEarlyReturn::ID = 0; 2205 FunctionPass* 2206 llvm::createPPCEarlyReturnPass() { return new PPCEarlyReturn(); } 2207