1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the PowerPC implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCInstrInfo.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCHazardRecognizers.h" 18 #include "PPCInstrBuilder.h" 19 #include "PPCMachineFunctionInfo.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/ScheduleDAG.h" 31 #include "llvm/CodeGen/SlotIndexes.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCInst.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "ppc-instr-info" 44 45 #define GET_INSTRMAP_INFO 46 #define GET_INSTRINFO_CTOR_DTOR 47 #include "PPCGenInstrInfo.inc" 48 49 STATISTIC(NumStoreSPILLVSRRCAsVec, 50 "Number of spillvsrrc spilled to stack as vec"); 51 STATISTIC(NumStoreSPILLVSRRCAsGpr, 52 "Number of spillvsrrc spilled to stack as gpr"); 53 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 54 55 static cl:: 56 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 57 cl::desc("Disable analysis for CTR loops")); 58 59 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 60 cl::desc("Disable compare instruction optimization"), cl::Hidden); 61 62 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 63 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 64 cl::Hidden); 65 66 static cl::opt<bool> 67 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 68 cl::desc("Use the old (incorrect) instruction latency calculation")); 69 70 // Pin the vtable to this file. 71 void PPCInstrInfo::anchor() {} 72 73 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 74 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 75 /* CatchRetOpcode */ -1, 76 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 77 Subtarget(STI), RI(STI.getTargetMachine()) {} 78 79 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 80 /// this target when scheduling the DAG. 81 ScheduleHazardRecognizer * 82 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 83 const ScheduleDAG *DAG) const { 84 unsigned Directive = 85 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); 86 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 87 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 88 const InstrItineraryData *II = 89 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 90 return new ScoreboardHazardRecognizer(II, DAG); 91 } 92 93 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 94 } 95 96 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 97 /// to use for this target when scheduling the DAG. 98 ScheduleHazardRecognizer * 99 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 100 const ScheduleDAG *DAG) const { 101 unsigned Directive = 102 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective(); 103 104 // FIXME: Leaving this as-is until we have POWER9 scheduling info 105 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 106 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 107 108 // Most subtargets use a PPC970 recognizer. 109 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 110 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 111 assert(DAG->TII && "No InstrInfo?"); 112 113 return new PPCHazardRecognizer970(*DAG); 114 } 115 116 return new ScoreboardHazardRecognizer(II, DAG); 117 } 118 119 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 120 const MachineInstr &MI, 121 unsigned *PredCost) const { 122 if (!ItinData || UseOldLatencyCalc) 123 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 124 125 // The default implementation of getInstrLatency calls getStageLatency, but 126 // getStageLatency does not do the right thing for us. While we have 127 // itinerary, most cores are fully pipelined, and so the itineraries only 128 // express the first part of the pipeline, not every stage. Instead, we need 129 // to use the listed output operand cycle number (using operand 0 here, which 130 // is an output). 131 132 unsigned Latency = 1; 133 unsigned DefClass = MI.getDesc().getSchedClass(); 134 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 135 const MachineOperand &MO = MI.getOperand(i); 136 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 137 continue; 138 139 int Cycle = ItinData->getOperandCycle(DefClass, i); 140 if (Cycle < 0) 141 continue; 142 143 Latency = std::max(Latency, (unsigned) Cycle); 144 } 145 146 return Latency; 147 } 148 149 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 150 const MachineInstr &DefMI, unsigned DefIdx, 151 const MachineInstr &UseMI, 152 unsigned UseIdx) const { 153 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 154 UseMI, UseIdx); 155 156 if (!DefMI.getParent()) 157 return Latency; 158 159 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 160 unsigned Reg = DefMO.getReg(); 161 162 bool IsRegCR; 163 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 164 const MachineRegisterInfo *MRI = 165 &DefMI.getParent()->getParent()->getRegInfo(); 166 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 167 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 168 } else { 169 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 170 PPC::CRBITRCRegClass.contains(Reg); 171 } 172 173 if (UseMI.isBranch() && IsRegCR) { 174 if (Latency < 0) 175 Latency = getInstrLatency(ItinData, DefMI); 176 177 // On some cores, there is an additional delay between writing to a condition 178 // register, and using it from a branch. 179 unsigned Directive = Subtarget.getDarwinDirective(); 180 switch (Directive) { 181 default: break; 182 case PPC::DIR_7400: 183 case PPC::DIR_750: 184 case PPC::DIR_970: 185 case PPC::DIR_E5500: 186 case PPC::DIR_PWR4: 187 case PPC::DIR_PWR5: 188 case PPC::DIR_PWR5X: 189 case PPC::DIR_PWR6: 190 case PPC::DIR_PWR6X: 191 case PPC::DIR_PWR7: 192 case PPC::DIR_PWR8: 193 // FIXME: Is this needed for POWER9? 194 Latency += 2; 195 break; 196 } 197 } 198 199 return Latency; 200 } 201 202 // This function does not list all associative and commutative operations, but 203 // only those worth feeding through the machine combiner in an attempt to 204 // reduce the critical path. Mostly, this means floating-point operations, 205 // because they have high latencies (compared to other operations, such and 206 // and/or, which are also associative and commutative, but have low latencies). 207 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 208 switch (Inst.getOpcode()) { 209 // FP Add: 210 case PPC::FADD: 211 case PPC::FADDS: 212 // FP Multiply: 213 case PPC::FMUL: 214 case PPC::FMULS: 215 // Altivec Add: 216 case PPC::VADDFP: 217 // VSX Add: 218 case PPC::XSADDDP: 219 case PPC::XVADDDP: 220 case PPC::XVADDSP: 221 case PPC::XSADDSP: 222 // VSX Multiply: 223 case PPC::XSMULDP: 224 case PPC::XVMULDP: 225 case PPC::XVMULSP: 226 case PPC::XSMULSP: 227 // QPX Add: 228 case PPC::QVFADD: 229 case PPC::QVFADDS: 230 case PPC::QVFADDSs: 231 // QPX Multiply: 232 case PPC::QVFMUL: 233 case PPC::QVFMULS: 234 case PPC::QVFMULSs: 235 return true; 236 default: 237 return false; 238 } 239 } 240 241 bool PPCInstrInfo::getMachineCombinerPatterns( 242 MachineInstr &Root, 243 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 244 // Using the machine combiner in this way is potentially expensive, so 245 // restrict to when aggressive optimizations are desired. 246 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 247 return false; 248 249 // FP reassociation is only legal when we don't need strict IEEE semantics. 250 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) 251 return false; 252 253 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 254 } 255 256 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 257 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 258 unsigned &SrcReg, unsigned &DstReg, 259 unsigned &SubIdx) const { 260 switch (MI.getOpcode()) { 261 default: return false; 262 case PPC::EXTSW: 263 case PPC::EXTSW_32_64: 264 SrcReg = MI.getOperand(1).getReg(); 265 DstReg = MI.getOperand(0).getReg(); 266 SubIdx = PPC::sub_32; 267 return true; 268 } 269 } 270 271 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 272 int &FrameIndex) const { 273 // Note: This list must be kept consistent with LoadRegFromStackSlot. 274 switch (MI.getOpcode()) { 275 default: break; 276 case PPC::LD: 277 case PPC::LWZ: 278 case PPC::LFS: 279 case PPC::LFD: 280 case PPC::RESTORE_CR: 281 case PPC::RESTORE_CRBIT: 282 case PPC::LVX: 283 case PPC::LXVD2X: 284 case PPC::LXVX: 285 case PPC::QVLFDX: 286 case PPC::QVLFSXs: 287 case PPC::QVLFDXb: 288 case PPC::RESTORE_VRSAVE: 289 case PPC::SPILLTOVSR_LD: 290 // Check for the operands added by addFrameReference (the immediate is the 291 // offset which defaults to 0). 292 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 293 MI.getOperand(2).isFI()) { 294 FrameIndex = MI.getOperand(2).getIndex(); 295 return MI.getOperand(0).getReg(); 296 } 297 break; 298 } 299 return 0; 300 } 301 302 // For opcodes with the ReMaterializable flag set, this function is called to 303 // verify the instruction is really rematable. 304 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 305 AliasAnalysis *AA) const { 306 switch (MI.getOpcode()) { 307 default: 308 // This function should only be called for opcodes with the ReMaterializable 309 // flag set. 310 llvm_unreachable("Unknown rematerializable operation!"); 311 break; 312 case PPC::LI: 313 case PPC::LI8: 314 case PPC::LIS: 315 case PPC::LIS8: 316 case PPC::QVGPCI: 317 case PPC::ADDIStocHA: 318 case PPC::ADDItocL: 319 case PPC::LOAD_STACK_GUARD: 320 return true; 321 } 322 return false; 323 } 324 325 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 326 int &FrameIndex) const { 327 // Note: This list must be kept consistent with StoreRegToStackSlot. 328 switch (MI.getOpcode()) { 329 default: break; 330 case PPC::STD: 331 case PPC::STW: 332 case PPC::STFS: 333 case PPC::STFD: 334 case PPC::SPILL_CR: 335 case PPC::SPILL_CRBIT: 336 case PPC::STVX: 337 case PPC::STXVD2X: 338 case PPC::STXVX: 339 case PPC::QVSTFDX: 340 case PPC::QVSTFSXs: 341 case PPC::QVSTFDXb: 342 case PPC::SPILL_VRSAVE: 343 case PPC::SPILLTOVSR_ST: 344 // Check for the operands added by addFrameReference (the immediate is the 345 // offset which defaults to 0). 346 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 347 MI.getOperand(2).isFI()) { 348 FrameIndex = MI.getOperand(2).getIndex(); 349 return MI.getOperand(0).getReg(); 350 } 351 break; 352 } 353 return 0; 354 } 355 356 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 357 unsigned OpIdx1, 358 unsigned OpIdx2) const { 359 MachineFunction &MF = *MI.getParent()->getParent(); 360 361 // Normal instructions can be commuted the obvious way. 362 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo) 363 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 364 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 365 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 366 // changing the relative order of the mask operands might change what happens 367 // to the high-bits of the mask (and, thus, the result). 368 369 // Cannot commute if it has a non-zero rotate count. 370 if (MI.getOperand(3).getImm() != 0) 371 return nullptr; 372 373 // If we have a zero rotate count, we have: 374 // M = mask(MB,ME) 375 // Op0 = (Op1 & ~M) | (Op2 & M) 376 // Change this to: 377 // M = mask((ME+1)&31, (MB-1)&31) 378 // Op0 = (Op2 & ~M) | (Op1 & M) 379 380 // Swap op1/op2 381 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 382 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo."); 383 unsigned Reg0 = MI.getOperand(0).getReg(); 384 unsigned Reg1 = MI.getOperand(1).getReg(); 385 unsigned Reg2 = MI.getOperand(2).getReg(); 386 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 387 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 388 bool Reg1IsKill = MI.getOperand(1).isKill(); 389 bool Reg2IsKill = MI.getOperand(2).isKill(); 390 bool ChangeReg0 = false; 391 // If machine instrs are no longer in two-address forms, update 392 // destination register as well. 393 if (Reg0 == Reg1) { 394 // Must be two address instruction! 395 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 396 "Expecting a two-address instruction!"); 397 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 398 Reg2IsKill = false; 399 ChangeReg0 = true; 400 } 401 402 // Masks. 403 unsigned MB = MI.getOperand(4).getImm(); 404 unsigned ME = MI.getOperand(5).getImm(); 405 406 // We can't commute a trivial mask (there is no way to represent an all-zero 407 // mask). 408 if (MB == 0 && ME == 31) 409 return nullptr; 410 411 if (NewMI) { 412 // Create a new instruction. 413 unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 414 bool Reg0IsDead = MI.getOperand(0).isDead(); 415 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 416 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 417 .addReg(Reg2, getKillRegState(Reg2IsKill)) 418 .addReg(Reg1, getKillRegState(Reg1IsKill)) 419 .addImm((ME + 1) & 31) 420 .addImm((MB - 1) & 31); 421 } 422 423 if (ChangeReg0) { 424 MI.getOperand(0).setReg(Reg2); 425 MI.getOperand(0).setSubReg(SubReg2); 426 } 427 MI.getOperand(2).setReg(Reg1); 428 MI.getOperand(1).setReg(Reg2); 429 MI.getOperand(2).setSubReg(SubReg1); 430 MI.getOperand(1).setSubReg(SubReg2); 431 MI.getOperand(2).setIsKill(Reg1IsKill); 432 MI.getOperand(1).setIsKill(Reg2IsKill); 433 434 // Swap the mask around. 435 MI.getOperand(4).setImm((ME + 1) & 31); 436 MI.getOperand(5).setImm((MB - 1) & 31); 437 return &MI; 438 } 439 440 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, 441 unsigned &SrcOpIdx2) const { 442 // For VSX A-Type FMA instructions, it is the first two operands that can be 443 // commuted, however, because the non-encoded tied input operand is listed 444 // first, the operands to swap are actually the second and third. 445 446 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 447 if (AltOpc == -1) 448 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 449 450 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 451 // and SrcOpIdx2. 452 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 453 } 454 455 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 456 MachineBasicBlock::iterator MI) const { 457 // This function is used for scheduling, and the nop wanted here is the type 458 // that terminates dispatch groups on the POWER cores. 459 unsigned Directive = Subtarget.getDarwinDirective(); 460 unsigned Opcode; 461 switch (Directive) { 462 default: Opcode = PPC::NOP; break; 463 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 464 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 465 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 466 // FIXME: Update when POWER9 scheduling model is ready. 467 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 468 } 469 470 DebugLoc DL; 471 BuildMI(MBB, MI, DL, get(Opcode)); 472 } 473 474 /// Return the noop instruction to use for a noop. 475 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 476 NopInst.setOpcode(PPC::NOP); 477 } 478 479 // Branch analysis. 480 // Note: If the condition register is set to CTR or CTR8 then this is a 481 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 482 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 483 MachineBasicBlock *&TBB, 484 MachineBasicBlock *&FBB, 485 SmallVectorImpl<MachineOperand> &Cond, 486 bool AllowModify) const { 487 bool isPPC64 = Subtarget.isPPC64(); 488 489 // If the block has no terminators, it just falls into the block after it. 490 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 491 if (I == MBB.end()) 492 return false; 493 494 if (!isUnpredicatedTerminator(*I)) 495 return false; 496 497 if (AllowModify) { 498 // If the BB ends with an unconditional branch to the fallthrough BB, 499 // we eliminate the branch instruction. 500 if (I->getOpcode() == PPC::B && 501 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 502 I->eraseFromParent(); 503 504 // We update iterator after deleting the last branch. 505 I = MBB.getLastNonDebugInstr(); 506 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 507 return false; 508 } 509 } 510 511 // Get the last instruction in the block. 512 MachineInstr &LastInst = *I; 513 514 // If there is only one terminator instruction, process it. 515 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 516 if (LastInst.getOpcode() == PPC::B) { 517 if (!LastInst.getOperand(0).isMBB()) 518 return true; 519 TBB = LastInst.getOperand(0).getMBB(); 520 return false; 521 } else if (LastInst.getOpcode() == PPC::BCC) { 522 if (!LastInst.getOperand(2).isMBB()) 523 return true; 524 // Block ends with fall-through condbranch. 525 TBB = LastInst.getOperand(2).getMBB(); 526 Cond.push_back(LastInst.getOperand(0)); 527 Cond.push_back(LastInst.getOperand(1)); 528 return false; 529 } else if (LastInst.getOpcode() == PPC::BC) { 530 if (!LastInst.getOperand(1).isMBB()) 531 return true; 532 // Block ends with fall-through condbranch. 533 TBB = LastInst.getOperand(1).getMBB(); 534 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 535 Cond.push_back(LastInst.getOperand(0)); 536 return false; 537 } else if (LastInst.getOpcode() == PPC::BCn) { 538 if (!LastInst.getOperand(1).isMBB()) 539 return true; 540 // Block ends with fall-through condbranch. 541 TBB = LastInst.getOperand(1).getMBB(); 542 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 543 Cond.push_back(LastInst.getOperand(0)); 544 return false; 545 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 546 LastInst.getOpcode() == PPC::BDNZ) { 547 if (!LastInst.getOperand(0).isMBB()) 548 return true; 549 if (DisableCTRLoopAnal) 550 return true; 551 TBB = LastInst.getOperand(0).getMBB(); 552 Cond.push_back(MachineOperand::CreateImm(1)); 553 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 554 true)); 555 return false; 556 } else if (LastInst.getOpcode() == PPC::BDZ8 || 557 LastInst.getOpcode() == PPC::BDZ) { 558 if (!LastInst.getOperand(0).isMBB()) 559 return true; 560 if (DisableCTRLoopAnal) 561 return true; 562 TBB = LastInst.getOperand(0).getMBB(); 563 Cond.push_back(MachineOperand::CreateImm(0)); 564 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 565 true)); 566 return false; 567 } 568 569 // Otherwise, don't know what this is. 570 return true; 571 } 572 573 // Get the instruction before it if it's a terminator. 574 MachineInstr &SecondLastInst = *I; 575 576 // If there are three terminators, we don't know what sort of block this is. 577 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 578 return true; 579 580 // If the block ends with PPC::B and PPC:BCC, handle it. 581 if (SecondLastInst.getOpcode() == PPC::BCC && 582 LastInst.getOpcode() == PPC::B) { 583 if (!SecondLastInst.getOperand(2).isMBB() || 584 !LastInst.getOperand(0).isMBB()) 585 return true; 586 TBB = SecondLastInst.getOperand(2).getMBB(); 587 Cond.push_back(SecondLastInst.getOperand(0)); 588 Cond.push_back(SecondLastInst.getOperand(1)); 589 FBB = LastInst.getOperand(0).getMBB(); 590 return false; 591 } else if (SecondLastInst.getOpcode() == PPC::BC && 592 LastInst.getOpcode() == PPC::B) { 593 if (!SecondLastInst.getOperand(1).isMBB() || 594 !LastInst.getOperand(0).isMBB()) 595 return true; 596 TBB = SecondLastInst.getOperand(1).getMBB(); 597 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 598 Cond.push_back(SecondLastInst.getOperand(0)); 599 FBB = LastInst.getOperand(0).getMBB(); 600 return false; 601 } else if (SecondLastInst.getOpcode() == PPC::BCn && 602 LastInst.getOpcode() == PPC::B) { 603 if (!SecondLastInst.getOperand(1).isMBB() || 604 !LastInst.getOperand(0).isMBB()) 605 return true; 606 TBB = SecondLastInst.getOperand(1).getMBB(); 607 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 608 Cond.push_back(SecondLastInst.getOperand(0)); 609 FBB = LastInst.getOperand(0).getMBB(); 610 return false; 611 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 612 SecondLastInst.getOpcode() == PPC::BDNZ) && 613 LastInst.getOpcode() == PPC::B) { 614 if (!SecondLastInst.getOperand(0).isMBB() || 615 !LastInst.getOperand(0).isMBB()) 616 return true; 617 if (DisableCTRLoopAnal) 618 return true; 619 TBB = SecondLastInst.getOperand(0).getMBB(); 620 Cond.push_back(MachineOperand::CreateImm(1)); 621 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 622 true)); 623 FBB = LastInst.getOperand(0).getMBB(); 624 return false; 625 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 626 SecondLastInst.getOpcode() == PPC::BDZ) && 627 LastInst.getOpcode() == PPC::B) { 628 if (!SecondLastInst.getOperand(0).isMBB() || 629 !LastInst.getOperand(0).isMBB()) 630 return true; 631 if (DisableCTRLoopAnal) 632 return true; 633 TBB = SecondLastInst.getOperand(0).getMBB(); 634 Cond.push_back(MachineOperand::CreateImm(0)); 635 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 636 true)); 637 FBB = LastInst.getOperand(0).getMBB(); 638 return false; 639 } 640 641 // If the block ends with two PPC:Bs, handle it. The second one is not 642 // executed, so remove it. 643 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 644 if (!SecondLastInst.getOperand(0).isMBB()) 645 return true; 646 TBB = SecondLastInst.getOperand(0).getMBB(); 647 I = LastInst; 648 if (AllowModify) 649 I->eraseFromParent(); 650 return false; 651 } 652 653 // Otherwise, can't handle this. 654 return true; 655 } 656 657 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 658 int *BytesRemoved) const { 659 assert(!BytesRemoved && "code size not handled"); 660 661 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 662 if (I == MBB.end()) 663 return 0; 664 665 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 666 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 667 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 668 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 669 return 0; 670 671 // Remove the branch. 672 I->eraseFromParent(); 673 674 I = MBB.end(); 675 676 if (I == MBB.begin()) return 1; 677 --I; 678 if (I->getOpcode() != PPC::BCC && 679 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 680 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 681 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 682 return 1; 683 684 // Remove the branch. 685 I->eraseFromParent(); 686 return 2; 687 } 688 689 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 690 MachineBasicBlock *TBB, 691 MachineBasicBlock *FBB, 692 ArrayRef<MachineOperand> Cond, 693 const DebugLoc &DL, 694 int *BytesAdded) const { 695 // Shouldn't be a fall through. 696 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 697 assert((Cond.size() == 2 || Cond.size() == 0) && 698 "PPC branch conditions have two components!"); 699 assert(!BytesAdded && "code size not handled"); 700 701 bool isPPC64 = Subtarget.isPPC64(); 702 703 // One-way branch. 704 if (!FBB) { 705 if (Cond.empty()) // Unconditional branch 706 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 707 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 708 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 709 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 710 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 711 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 712 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 713 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 714 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 715 else // Conditional branch 716 BuildMI(&MBB, DL, get(PPC::BCC)) 717 .addImm(Cond[0].getImm()) 718 .add(Cond[1]) 719 .addMBB(TBB); 720 return 1; 721 } 722 723 // Two-way Conditional Branch. 724 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 725 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 726 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 727 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 728 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 729 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 730 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 731 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 732 else 733 BuildMI(&MBB, DL, get(PPC::BCC)) 734 .addImm(Cond[0].getImm()) 735 .add(Cond[1]) 736 .addMBB(TBB); 737 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 738 return 2; 739 } 740 741 // Select analysis. 742 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 743 ArrayRef<MachineOperand> Cond, 744 unsigned TrueReg, unsigned FalseReg, 745 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 746 if (Cond.size() != 2) 747 return false; 748 749 // If this is really a bdnz-like condition, then it cannot be turned into a 750 // select. 751 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 752 return false; 753 754 // Check register classes. 755 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 756 const TargetRegisterClass *RC = 757 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 758 if (!RC) 759 return false; 760 761 // isel is for regular integer GPRs only. 762 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 763 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 764 !PPC::G8RCRegClass.hasSubClassEq(RC) && 765 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 766 return false; 767 768 // FIXME: These numbers are for the A2, how well they work for other cores is 769 // an open question. On the A2, the isel instruction has a 2-cycle latency 770 // but single-cycle throughput. These numbers are used in combination with 771 // the MispredictPenalty setting from the active SchedMachineModel. 772 CondCycles = 1; 773 TrueCycles = 1; 774 FalseCycles = 1; 775 776 return true; 777 } 778 779 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 780 MachineBasicBlock::iterator MI, 781 const DebugLoc &dl, unsigned DestReg, 782 ArrayRef<MachineOperand> Cond, unsigned TrueReg, 783 unsigned FalseReg) const { 784 assert(Cond.size() == 2 && 785 "PPC branch conditions have two components!"); 786 787 // Get the register classes. 788 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 789 const TargetRegisterClass *RC = 790 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 791 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 792 793 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 794 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 795 assert((Is64Bit || 796 PPC::GPRCRegClass.hasSubClassEq(RC) || 797 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 798 "isel is for regular integer GPRs only"); 799 800 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 801 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 802 803 unsigned SubIdx = 0; 804 bool SwapOps = false; 805 switch (SelectPred) { 806 case PPC::PRED_EQ: 807 case PPC::PRED_EQ_MINUS: 808 case PPC::PRED_EQ_PLUS: 809 SubIdx = PPC::sub_eq; SwapOps = false; break; 810 case PPC::PRED_NE: 811 case PPC::PRED_NE_MINUS: 812 case PPC::PRED_NE_PLUS: 813 SubIdx = PPC::sub_eq; SwapOps = true; break; 814 case PPC::PRED_LT: 815 case PPC::PRED_LT_MINUS: 816 case PPC::PRED_LT_PLUS: 817 SubIdx = PPC::sub_lt; SwapOps = false; break; 818 case PPC::PRED_GE: 819 case PPC::PRED_GE_MINUS: 820 case PPC::PRED_GE_PLUS: 821 SubIdx = PPC::sub_lt; SwapOps = true; break; 822 case PPC::PRED_GT: 823 case PPC::PRED_GT_MINUS: 824 case PPC::PRED_GT_PLUS: 825 SubIdx = PPC::sub_gt; SwapOps = false; break; 826 case PPC::PRED_LE: 827 case PPC::PRED_LE_MINUS: 828 case PPC::PRED_LE_PLUS: 829 SubIdx = PPC::sub_gt; SwapOps = true; break; 830 case PPC::PRED_UN: 831 case PPC::PRED_UN_MINUS: 832 case PPC::PRED_UN_PLUS: 833 SubIdx = PPC::sub_un; SwapOps = false; break; 834 case PPC::PRED_NU: 835 case PPC::PRED_NU_MINUS: 836 case PPC::PRED_NU_PLUS: 837 SubIdx = PPC::sub_un; SwapOps = true; break; 838 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 839 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 840 } 841 842 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 843 SecondReg = SwapOps ? TrueReg : FalseReg; 844 845 // The first input register of isel cannot be r0. If it is a member 846 // of a register class that can be r0, then copy it first (the 847 // register allocator should eliminate the copy). 848 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 849 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 850 const TargetRegisterClass *FirstRC = 851 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 852 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 853 unsigned OldFirstReg = FirstReg; 854 FirstReg = MRI.createVirtualRegister(FirstRC); 855 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 856 .addReg(OldFirstReg); 857 } 858 859 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 860 .addReg(FirstReg).addReg(SecondReg) 861 .addReg(Cond[1].getReg(), 0, SubIdx); 862 } 863 864 static unsigned getCRBitValue(unsigned CRBit) { 865 unsigned Ret = 4; 866 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 867 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 868 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 869 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 870 Ret = 3; 871 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 872 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 873 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 874 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 875 Ret = 2; 876 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 877 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 878 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 879 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 880 Ret = 1; 881 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 882 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 883 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 884 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 885 Ret = 0; 886 887 assert(Ret != 4 && "Invalid CR bit register"); 888 return Ret; 889 } 890 891 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 892 MachineBasicBlock::iterator I, 893 const DebugLoc &DL, unsigned DestReg, 894 unsigned SrcReg, bool KillSrc) const { 895 // We can end up with self copies and similar things as a result of VSX copy 896 // legalization. Promote them here. 897 const TargetRegisterInfo *TRI = &getRegisterInfo(); 898 if (PPC::F8RCRegClass.contains(DestReg) && 899 PPC::VSRCRegClass.contains(SrcReg)) { 900 unsigned SuperReg = 901 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 902 903 if (VSXSelfCopyCrash && SrcReg == SuperReg) 904 llvm_unreachable("nop VSX copy"); 905 906 DestReg = SuperReg; 907 } else if (PPC::F8RCRegClass.contains(SrcReg) && 908 PPC::VSRCRegClass.contains(DestReg)) { 909 unsigned SuperReg = 910 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 911 912 if (VSXSelfCopyCrash && DestReg == SuperReg) 913 llvm_unreachable("nop VSX copy"); 914 915 SrcReg = SuperReg; 916 } 917 918 // Different class register copy 919 if (PPC::CRBITRCRegClass.contains(SrcReg) && 920 PPC::GPRCRegClass.contains(DestReg)) { 921 unsigned CRReg = getCRFromCRBit(SrcReg); 922 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 923 getKillRegState(KillSrc); 924 // Rotate the CR bit in the CR fields to be the least significant bit and 925 // then mask with 0x1 (MB = ME = 31). 926 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 927 .addReg(DestReg, RegState::Kill) 928 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 929 .addImm(31) 930 .addImm(31); 931 return; 932 } else if (PPC::CRRCRegClass.contains(SrcReg) && 933 PPC::G8RCRegClass.contains(DestReg)) { 934 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 935 getKillRegState(KillSrc); 936 return; 937 } else if (PPC::CRRCRegClass.contains(SrcReg) && 938 PPC::GPRCRegClass.contains(DestReg)) { 939 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 940 getKillRegState(KillSrc); 941 return; 942 } else if (PPC::G8RCRegClass.contains(SrcReg) && 943 PPC::VSFRCRegClass.contains(DestReg)) { 944 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 945 NumGPRtoVSRSpill++; 946 getKillRegState(KillSrc); 947 return; 948 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 949 PPC::G8RCRegClass.contains(DestReg)) { 950 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 951 getKillRegState(KillSrc); 952 return; 953 } 954 955 unsigned Opc; 956 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 957 Opc = PPC::OR; 958 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 959 Opc = PPC::OR8; 960 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 961 Opc = PPC::FMR; 962 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 963 Opc = PPC::MCRF; 964 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 965 Opc = PPC::VOR; 966 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 967 // There are two different ways this can be done: 968 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 969 // issue in VSU pipeline 0. 970 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 971 // can go to either pipeline. 972 // We'll always use xxlor here, because in practically all cases where 973 // copies are generated, they are close enough to some use that the 974 // lower-latency form is preferable. 975 Opc = PPC::XXLOR; 976 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 977 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 978 Opc = PPC::XXLORf; 979 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 980 Opc = PPC::QVFMR; 981 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 982 Opc = PPC::QVFMRs; 983 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 984 Opc = PPC::QVFMRb; 985 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 986 Opc = PPC::CROR; 987 else 988 llvm_unreachable("Impossible reg-to-reg copy"); 989 990 const MCInstrDesc &MCID = get(Opc); 991 if (MCID.getNumOperands() == 3) 992 BuildMI(MBB, I, DL, MCID, DestReg) 993 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 994 else 995 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 996 } 997 998 // This function returns true if a CR spill is necessary and false otherwise. 999 bool 1000 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, 1001 unsigned SrcReg, bool isKill, 1002 int FrameIdx, 1003 const TargetRegisterClass *RC, 1004 SmallVectorImpl<MachineInstr*> &NewMIs, 1005 bool &NonRI, bool &SpillsVRS) const{ 1006 // Note: If additional store instructions are added here, 1007 // update isStoreToStackSlot. 1008 1009 DebugLoc DL; 1010 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1011 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1012 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) 1013 .addReg(SrcReg, 1014 getKillRegState(isKill)), 1015 FrameIdx)); 1016 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1017 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1018 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) 1019 .addReg(SrcReg, 1020 getKillRegState(isKill)), 1021 FrameIdx)); 1022 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1023 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) 1024 .addReg(SrcReg, 1025 getKillRegState(isKill)), 1026 FrameIdx)); 1027 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1028 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) 1029 .addReg(SrcReg, 1030 getKillRegState(isKill)), 1031 FrameIdx)); 1032 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1033 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) 1034 .addReg(SrcReg, 1035 getKillRegState(isKill)), 1036 FrameIdx)); 1037 return true; 1038 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1039 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT)) 1040 .addReg(SrcReg, 1041 getKillRegState(isKill)), 1042 FrameIdx)); 1043 return true; 1044 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1045 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX)) 1046 .addReg(SrcReg, 1047 getKillRegState(isKill)), 1048 FrameIdx)); 1049 NonRI = true; 1050 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1051 unsigned Op = Subtarget.hasP9Vector() ? PPC::STXVX : PPC::STXVD2X; 1052 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Op)) 1053 .addReg(SrcReg, 1054 getKillRegState(isKill)), 1055 FrameIdx)); 1056 NonRI = true; 1057 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1058 unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFSTOREf64 : PPC::STXSDX; 1059 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc)) 1060 .addReg(SrcReg, 1061 getKillRegState(isKill)), 1062 FrameIdx)); 1063 NonRI = true; 1064 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1065 unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFSTOREf32 : PPC::STXSSPX; 1066 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc)) 1067 .addReg(SrcReg, 1068 getKillRegState(isKill)), 1069 FrameIdx)); 1070 NonRI = true; 1071 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1072 assert(Subtarget.isDarwin() && 1073 "VRSAVE only needs spill/restore on Darwin"); 1074 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE)) 1075 .addReg(SrcReg, 1076 getKillRegState(isKill)), 1077 FrameIdx)); 1078 SpillsVRS = true; 1079 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1080 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX)) 1081 .addReg(SrcReg, 1082 getKillRegState(isKill)), 1083 FrameIdx)); 1084 NonRI = true; 1085 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1086 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs)) 1087 .addReg(SrcReg, 1088 getKillRegState(isKill)), 1089 FrameIdx)); 1090 NonRI = true; 1091 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1092 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb)) 1093 .addReg(SrcReg, 1094 getKillRegState(isKill)), 1095 FrameIdx)); 1096 NonRI = true; 1097 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1098 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILLTOVSR_ST)) 1099 .addReg(SrcReg, 1100 getKillRegState(isKill)), 1101 FrameIdx)); 1102 } else { 1103 llvm_unreachable("Unknown regclass!"); 1104 } 1105 1106 return false; 1107 } 1108 1109 void 1110 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1111 MachineBasicBlock::iterator MI, 1112 unsigned SrcReg, bool isKill, int FrameIdx, 1113 const TargetRegisterClass *RC, 1114 const TargetRegisterInfo *TRI) const { 1115 MachineFunction &MF = *MBB.getParent(); 1116 SmallVector<MachineInstr*, 4> NewMIs; 1117 1118 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1119 FuncInfo->setHasSpills(); 1120 1121 // We need to avoid a situation in which the value from a VRRC register is 1122 // spilled using an Altivec instruction and reloaded into a VSRC register 1123 // using a VSX instruction. The issue with this is that the VSX 1124 // load/store instructions swap the doublewords in the vector and the Altivec 1125 // ones don't. The register classes on the spill/reload may be different if 1126 // the register is defined using an Altivec instruction and is then used by a 1127 // VSX instruction. 1128 RC = updatedRC(RC); 1129 1130 bool NonRI = false, SpillsVRS = false; 1131 if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs, 1132 NonRI, SpillsVRS)) 1133 FuncInfo->setSpillsCR(); 1134 1135 if (SpillsVRS) 1136 FuncInfo->setSpillsVRSAVE(); 1137 1138 if (NonRI) 1139 FuncInfo->setHasNonRISpills(); 1140 1141 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1142 MBB.insert(MI, NewMIs[i]); 1143 1144 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1145 MachineMemOperand *MMO = MF.getMachineMemOperand( 1146 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1147 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1148 MFI.getObjectAlignment(FrameIdx)); 1149 NewMIs.back()->addMemOperand(MF, MMO); 1150 } 1151 1152 bool PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1153 unsigned DestReg, int FrameIdx, 1154 const TargetRegisterClass *RC, 1155 SmallVectorImpl<MachineInstr *> &NewMIs, 1156 bool &NonRI, bool &SpillsVRS) const { 1157 // Note: If additional load instructions are added here, 1158 // update isLoadFromStackSlot. 1159 1160 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1161 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1162 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), 1163 DestReg), FrameIdx)); 1164 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1165 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1166 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), 1167 FrameIdx)); 1168 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1169 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), 1170 FrameIdx)); 1171 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1172 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), 1173 FrameIdx)); 1174 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1175 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1176 get(PPC::RESTORE_CR), DestReg), 1177 FrameIdx)); 1178 return true; 1179 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1180 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1181 get(PPC::RESTORE_CRBIT), DestReg), 1182 FrameIdx)); 1183 return true; 1184 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1185 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg), 1186 FrameIdx)); 1187 NonRI = true; 1188 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1189 unsigned Op = Subtarget.hasP9Vector() ? PPC::LXVX : PPC::LXVD2X; 1190 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Op), DestReg), 1191 FrameIdx)); 1192 NonRI = true; 1193 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1194 unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFLOADf64 : PPC::LXSDX; 1195 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc), 1196 DestReg), FrameIdx)); 1197 NonRI = true; 1198 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1199 unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFLOADf32 : PPC::LXSSPX; 1200 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc), 1201 DestReg), FrameIdx)); 1202 NonRI = true; 1203 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1204 assert(Subtarget.isDarwin() && 1205 "VRSAVE only needs spill/restore on Darwin"); 1206 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1207 get(PPC::RESTORE_VRSAVE), 1208 DestReg), 1209 FrameIdx)); 1210 SpillsVRS = true; 1211 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1212 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg), 1213 FrameIdx)); 1214 NonRI = true; 1215 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1216 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg), 1217 FrameIdx)); 1218 NonRI = true; 1219 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1220 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg), 1221 FrameIdx)); 1222 NonRI = true; 1223 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1224 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILLTOVSR_LD), 1225 DestReg), FrameIdx)); 1226 } else { 1227 llvm_unreachable("Unknown regclass!"); 1228 } 1229 1230 return false; 1231 } 1232 1233 void 1234 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1235 MachineBasicBlock::iterator MI, 1236 unsigned DestReg, int FrameIdx, 1237 const TargetRegisterClass *RC, 1238 const TargetRegisterInfo *TRI) const { 1239 MachineFunction &MF = *MBB.getParent(); 1240 SmallVector<MachineInstr*, 4> NewMIs; 1241 DebugLoc DL; 1242 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1243 1244 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1245 FuncInfo->setHasSpills(); 1246 1247 // We need to avoid a situation in which the value from a VRRC register is 1248 // spilled using an Altivec instruction and reloaded into a VSRC register 1249 // using a VSX instruction. The issue with this is that the VSX 1250 // load/store instructions swap the doublewords in the vector and the Altivec 1251 // ones don't. The register classes on the spill/reload may be different if 1252 // the register is defined using an Altivec instruction and is then used by a 1253 // VSX instruction. 1254 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 1255 RC = &PPC::VSRCRegClass; 1256 1257 bool NonRI = false, SpillsVRS = false; 1258 if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs, 1259 NonRI, SpillsVRS)) 1260 FuncInfo->setSpillsCR(); 1261 1262 if (SpillsVRS) 1263 FuncInfo->setSpillsVRSAVE(); 1264 1265 if (NonRI) 1266 FuncInfo->setHasNonRISpills(); 1267 1268 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1269 MBB.insert(MI, NewMIs[i]); 1270 1271 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1272 MachineMemOperand *MMO = MF.getMachineMemOperand( 1273 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1274 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1275 MFI.getObjectAlignment(FrameIdx)); 1276 NewMIs.back()->addMemOperand(MF, MMO); 1277 } 1278 1279 bool PPCInstrInfo:: 1280 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1281 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1282 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1283 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1284 else 1285 // Leave the CR# the same, but invert the condition. 1286 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1287 return false; 1288 } 1289 1290 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1291 unsigned Reg, MachineRegisterInfo *MRI) const { 1292 // For some instructions, it is legal to fold ZERO into the RA register field. 1293 // A zero immediate should always be loaded with a single li. 1294 unsigned DefOpc = DefMI.getOpcode(); 1295 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1296 return false; 1297 if (!DefMI.getOperand(1).isImm()) 1298 return false; 1299 if (DefMI.getOperand(1).getImm() != 0) 1300 return false; 1301 1302 // Note that we cannot here invert the arguments of an isel in order to fold 1303 // a ZERO into what is presented as the second argument. All we have here 1304 // is the condition bit, and that might come from a CR-logical bit operation. 1305 1306 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1307 1308 // Only fold into real machine instructions. 1309 if (UseMCID.isPseudo()) 1310 return false; 1311 1312 unsigned UseIdx; 1313 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1314 if (UseMI.getOperand(UseIdx).isReg() && 1315 UseMI.getOperand(UseIdx).getReg() == Reg) 1316 break; 1317 1318 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1319 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1320 1321 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1322 1323 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1324 // register (which might also be specified as a pointer class kind). 1325 if (UseInfo->isLookupPtrRegClass()) { 1326 if (UseInfo->RegClass /* Kind */ != 1) 1327 return false; 1328 } else { 1329 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1330 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1331 return false; 1332 } 1333 1334 // Make sure this is not tied to an output register (or otherwise 1335 // constrained). This is true for ST?UX registers, for example, which 1336 // are tied to their output registers. 1337 if (UseInfo->Constraints != 0) 1338 return false; 1339 1340 unsigned ZeroReg; 1341 if (UseInfo->isLookupPtrRegClass()) { 1342 bool isPPC64 = Subtarget.isPPC64(); 1343 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1344 } else { 1345 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1346 PPC::ZERO8 : PPC::ZERO; 1347 } 1348 1349 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1350 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1351 1352 if (DeleteDef) 1353 DefMI.eraseFromParent(); 1354 1355 return true; 1356 } 1357 1358 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1359 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1360 I != IE; ++I) 1361 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1362 return true; 1363 return false; 1364 } 1365 1366 // We should make sure that, if we're going to predicate both sides of a 1367 // condition (a diamond), that both sides don't define the counter register. We 1368 // can predicate counter-decrement-based branches, but while that predicates 1369 // the branching, it does not predicate the counter decrement. If we tried to 1370 // merge the triangle into one predicated block, we'd decrement the counter 1371 // twice. 1372 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1373 unsigned NumT, unsigned ExtraT, 1374 MachineBasicBlock &FMBB, 1375 unsigned NumF, unsigned ExtraF, 1376 BranchProbability Probability) const { 1377 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1378 } 1379 1380 1381 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1382 // The predicated branches are identified by their type, not really by the 1383 // explicit presence of a predicate. Furthermore, some of them can be 1384 // predicated more than once. Because if conversion won't try to predicate 1385 // any instruction which already claims to be predicated (by returning true 1386 // here), always return false. In doing so, we let isPredicable() be the 1387 // final word on whether not the instruction can be (further) predicated. 1388 1389 return false; 1390 } 1391 1392 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 1393 if (!MI.isTerminator()) 1394 return false; 1395 1396 // Conditional branch is a special case. 1397 if (MI.isBranch() && !MI.isBarrier()) 1398 return true; 1399 1400 return !isPredicated(MI); 1401 } 1402 1403 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1404 ArrayRef<MachineOperand> Pred) const { 1405 unsigned OpC = MI.getOpcode(); 1406 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1407 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1408 bool isPPC64 = Subtarget.isPPC64(); 1409 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1410 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1411 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1412 MI.setDesc(get(PPC::BCLR)); 1413 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1414 .addReg(Pred[1].getReg()); 1415 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1416 MI.setDesc(get(PPC::BCLRn)); 1417 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1418 .addReg(Pred[1].getReg()); 1419 } else { 1420 MI.setDesc(get(PPC::BCCLR)); 1421 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1422 .addImm(Pred[0].getImm()) 1423 .addReg(Pred[1].getReg()); 1424 } 1425 1426 return true; 1427 } else if (OpC == PPC::B) { 1428 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1429 bool isPPC64 = Subtarget.isPPC64(); 1430 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1431 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1432 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1433 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1434 MI.RemoveOperand(0); 1435 1436 MI.setDesc(get(PPC::BC)); 1437 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1438 .addReg(Pred[1].getReg()) 1439 .addMBB(MBB); 1440 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1441 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1442 MI.RemoveOperand(0); 1443 1444 MI.setDesc(get(PPC::BCn)); 1445 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1446 .addReg(Pred[1].getReg()) 1447 .addMBB(MBB); 1448 } else { 1449 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1450 MI.RemoveOperand(0); 1451 1452 MI.setDesc(get(PPC::BCC)); 1453 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1454 .addImm(Pred[0].getImm()) 1455 .addReg(Pred[1].getReg()) 1456 .addMBB(MBB); 1457 } 1458 1459 return true; 1460 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || 1461 OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { 1462 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1463 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1464 1465 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1466 bool isPPC64 = Subtarget.isPPC64(); 1467 1468 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1469 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1470 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1471 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1472 .addReg(Pred[1].getReg()); 1473 return true; 1474 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1475 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1476 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1477 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1478 .addReg(Pred[1].getReg()); 1479 return true; 1480 } 1481 1482 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1483 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1484 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1485 .addImm(Pred[0].getImm()) 1486 .addReg(Pred[1].getReg()); 1487 return true; 1488 } 1489 1490 return false; 1491 } 1492 1493 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1494 ArrayRef<MachineOperand> Pred2) const { 1495 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1496 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1497 1498 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1499 return false; 1500 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1501 return false; 1502 1503 // P1 can only subsume P2 if they test the same condition register. 1504 if (Pred1[1].getReg() != Pred2[1].getReg()) 1505 return false; 1506 1507 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1508 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1509 1510 if (P1 == P2) 1511 return true; 1512 1513 // Does P1 subsume P2, e.g. GE subsumes GT. 1514 if (P1 == PPC::PRED_LE && 1515 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1516 return true; 1517 if (P1 == PPC::PRED_GE && 1518 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1519 return true; 1520 1521 return false; 1522 } 1523 1524 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1525 std::vector<MachineOperand> &Pred) const { 1526 // Note: At the present time, the contents of Pred from this function is 1527 // unused by IfConversion. This implementation follows ARM by pushing the 1528 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1529 // predicate, instructions defining CTR or CTR8 are also included as 1530 // predicate-defining instructions. 1531 1532 const TargetRegisterClass *RCs[] = 1533 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1534 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1535 1536 bool Found = false; 1537 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1538 const MachineOperand &MO = MI.getOperand(i); 1539 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1540 const TargetRegisterClass *RC = RCs[c]; 1541 if (MO.isReg()) { 1542 if (MO.isDef() && RC->contains(MO.getReg())) { 1543 Pred.push_back(MO); 1544 Found = true; 1545 } 1546 } else if (MO.isRegMask()) { 1547 for (TargetRegisterClass::iterator I = RC->begin(), 1548 IE = RC->end(); I != IE; ++I) 1549 if (MO.clobbersPhysReg(*I)) { 1550 Pred.push_back(MO); 1551 Found = true; 1552 } 1553 } 1554 } 1555 } 1556 1557 return Found; 1558 } 1559 1560 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const { 1561 unsigned OpC = MI.getOpcode(); 1562 switch (OpC) { 1563 default: 1564 return false; 1565 case PPC::B: 1566 case PPC::BLR: 1567 case PPC::BLR8: 1568 case PPC::BCTR: 1569 case PPC::BCTR8: 1570 case PPC::BCTRL: 1571 case PPC::BCTRL8: 1572 return true; 1573 } 1574 } 1575 1576 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 1577 unsigned &SrcReg2, int &Mask, 1578 int &Value) const { 1579 unsigned Opc = MI.getOpcode(); 1580 1581 switch (Opc) { 1582 default: return false; 1583 case PPC::CMPWI: 1584 case PPC::CMPLWI: 1585 case PPC::CMPDI: 1586 case PPC::CMPLDI: 1587 SrcReg = MI.getOperand(1).getReg(); 1588 SrcReg2 = 0; 1589 Value = MI.getOperand(2).getImm(); 1590 Mask = 0xFFFF; 1591 return true; 1592 case PPC::CMPW: 1593 case PPC::CMPLW: 1594 case PPC::CMPD: 1595 case PPC::CMPLD: 1596 case PPC::FCMPUS: 1597 case PPC::FCMPUD: 1598 SrcReg = MI.getOperand(1).getReg(); 1599 SrcReg2 = MI.getOperand(2).getReg(); 1600 Value = 0; 1601 Mask = 0; 1602 return true; 1603 } 1604 } 1605 1606 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, 1607 unsigned SrcReg2, int Mask, int Value, 1608 const MachineRegisterInfo *MRI) const { 1609 if (DisableCmpOpt) 1610 return false; 1611 1612 int OpC = CmpInstr.getOpcode(); 1613 unsigned CRReg = CmpInstr.getOperand(0).getReg(); 1614 1615 // FP record forms set CR1 based on the execption status bits, not a 1616 // comparison with zero. 1617 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1618 return false; 1619 1620 // The record forms set the condition register based on a signed comparison 1621 // with zero (so says the ISA manual). This is not as straightforward as it 1622 // seems, however, because this is always a 64-bit comparison on PPC64, even 1623 // for instructions that are 32-bit in nature (like slw for example). 1624 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1625 // for equality checks (as those don't depend on the sign). On PPC64, 1626 // we are restricted to equality for unsigned 64-bit comparisons and for 1627 // signed 32-bit comparisons the applicability is more restricted. 1628 bool isPPC64 = Subtarget.isPPC64(); 1629 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1630 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1631 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1632 1633 // Get the unique definition of SrcReg. 1634 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1635 if (!MI) return false; 1636 int MIOpC = MI->getOpcode(); 1637 1638 bool equalityOnly = false; 1639 bool noSub = false; 1640 if (isPPC64) { 1641 if (is32BitSignedCompare) { 1642 // We can perform this optimization only if MI is sign-extending. 1643 if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo || 1644 MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo || 1645 MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo || 1646 MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo || 1647 MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) { 1648 noSub = true; 1649 } else 1650 return false; 1651 } else if (is32BitUnsignedCompare) { 1652 // 32-bit rotate and mask instructions are zero extending only if MB <= ME 1653 bool isZeroExtendingRotate = 1654 (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINMo || 1655 MIOpC == PPC::RLWNM || MIOpC == PPC::RLWNMo) 1656 && MI->getOperand(3).getImm() <= MI->getOperand(4).getImm(); 1657 1658 // We can perform this optimization, equality only, if MI is 1659 // zero-extending. 1660 // FIXME: Other possible target instructions include ANDISo and 1661 // RLWINM aliases, such as ROTRWI, EXTLWI, SLWI and SRWI. 1662 if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo || 1663 MIOpC == PPC::SLW || MIOpC == PPC::SLWo || 1664 MIOpC == PPC::SRW || MIOpC == PPC::SRWo || 1665 MIOpC == PPC::ANDIo || 1666 isZeroExtendingRotate) { 1667 noSub = true; 1668 equalityOnly = true; 1669 } else 1670 return false; 1671 } else 1672 equalityOnly = is64BitUnsignedCompare; 1673 } else 1674 equalityOnly = is32BitUnsignedCompare; 1675 1676 if (equalityOnly) { 1677 // We need to check the uses of the condition register in order to reject 1678 // non-equality comparisons. 1679 for (MachineRegisterInfo::use_instr_iterator 1680 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1681 I != IE; ++I) { 1682 MachineInstr *UseMI = &*I; 1683 if (UseMI->getOpcode() == PPC::BCC) { 1684 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1685 unsigned PredCond = PPC::getPredicateCondition(Pred); 1686 // We ignore hint bits when checking for non-equality comparisons. 1687 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1688 return false; 1689 } else if (UseMI->getOpcode() == PPC::ISEL || 1690 UseMI->getOpcode() == PPC::ISEL8) { 1691 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1692 if (SubIdx != PPC::sub_eq) 1693 return false; 1694 } else 1695 return false; 1696 } 1697 } 1698 1699 MachineBasicBlock::iterator I = CmpInstr; 1700 1701 // Scan forward to find the first use of the compare. 1702 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1703 ++I) { 1704 bool FoundUse = false; 1705 for (MachineRegisterInfo::use_instr_iterator 1706 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 1707 J != JE; ++J) 1708 if (&*J == &*I) { 1709 FoundUse = true; 1710 break; 1711 } 1712 1713 if (FoundUse) 1714 break; 1715 } 1716 1717 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1718 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1719 1720 // There are two possible candidates which can be changed to set CR[01]. 1721 // One is MI, the other is a SUB instruction. 1722 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1723 MachineInstr *Sub = nullptr; 1724 if (SrcReg2 != 0) 1725 // MI is not a candidate for CMPrr. 1726 MI = nullptr; 1727 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1728 // same BB as the comparison. This is to allow the check below to avoid calls 1729 // (and other explicit clobbers); instead we should really check for these 1730 // more explicitly (in at least a few predecessors). 1731 else if (MI->getParent() != CmpInstr.getParent()) 1732 return false; 1733 else if (Value != 0) { 1734 // The record-form instructions set CR bit based on signed comparison against 0. 1735 // We try to convert a compare against 1 or -1 into a compare against 0. 1736 bool Success = false; 1737 if (!equalityOnly && MRI->hasOneUse(CRReg)) { 1738 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 1739 if (UseMI->getOpcode() == PPC::BCC) { 1740 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1741 unsigned PredCond = PPC::getPredicateCondition(Pred); 1742 unsigned PredHint = PPC::getPredicateHint(Pred); 1743 int16_t Immed = (int16_t)Value; 1744 1745 // When modyfing the condition in the predicate, we propagate hint bits 1746 // from the original predicate to the new one. 1747 if (Immed == -1 && PredCond == PPC::PRED_GT) { 1748 // We convert "greater than -1" into "greater than or equal to 0", 1749 // since we are assuming signed comparison by !equalityOnly 1750 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1751 PPC::getPredicate(PPC::PRED_GE, PredHint))); 1752 Success = true; 1753 } 1754 else if (Immed == 1 && PredCond == PPC::PRED_LT) { 1755 // We convert "less than 1" into "less than or equal to 0". 1756 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1757 PPC::getPredicate(PPC::PRED_LE, PredHint))); 1758 Success = true; 1759 } 1760 } 1761 } 1762 1763 // PPC does not have a record-form SUBri. 1764 if (!Success) 1765 return false; 1766 } 1767 1768 // Search for Sub. 1769 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1770 --I; 1771 1772 // Get ready to iterate backward from CmpInstr. 1773 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 1774 1775 for (; I != E && !noSub; --I) { 1776 const MachineInstr &Instr = *I; 1777 unsigned IOpC = Instr.getOpcode(); 1778 1779 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 1780 Instr.readsRegister(PPC::CR0, TRI))) 1781 // This instruction modifies or uses the record condition register after 1782 // the one we want to change. While we could do this transformation, it 1783 // would likely not be profitable. This transformation removes one 1784 // instruction, and so even forcing RA to generate one move probably 1785 // makes it unprofitable. 1786 return false; 1787 1788 // Check whether CmpInstr can be made redundant by the current instruction. 1789 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1790 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1791 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1792 ((Instr.getOperand(1).getReg() == SrcReg && 1793 Instr.getOperand(2).getReg() == SrcReg2) || 1794 (Instr.getOperand(1).getReg() == SrcReg2 && 1795 Instr.getOperand(2).getReg() == SrcReg))) { 1796 Sub = &*I; 1797 break; 1798 } 1799 1800 if (I == B) 1801 // The 'and' is below the comparison instruction. 1802 return false; 1803 } 1804 1805 // Return false if no candidates exist. 1806 if (!MI && !Sub) 1807 return false; 1808 1809 // The single candidate is called MI. 1810 if (!MI) MI = Sub; 1811 1812 int NewOpC = -1; 1813 MIOpC = MI->getOpcode(); 1814 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8) 1815 NewOpC = MIOpC; 1816 else { 1817 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1818 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1819 NewOpC = MIOpC; 1820 } 1821 1822 // FIXME: On the non-embedded POWER architectures, only some of the record 1823 // forms are fast, and we should use only the fast ones. 1824 1825 // The defining instruction has a record form (or is already a record 1826 // form). It is possible, however, that we'll need to reverse the condition 1827 // code of the users. 1828 if (NewOpC == -1) 1829 return false; 1830 1831 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1832 // needs to be updated to be based on SUB. Push the condition code 1833 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1834 // condition code of these operands will be modified. 1835 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 1836 // comparison against 0, which may modify predicate. 1837 bool ShouldSwap = false; 1838 if (Sub && Value == 0) { 1839 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1840 Sub->getOperand(2).getReg() == SrcReg; 1841 1842 // The operands to subf are the opposite of sub, so only in the fixed-point 1843 // case, invert the order. 1844 ShouldSwap = !ShouldSwap; 1845 } 1846 1847 if (ShouldSwap) 1848 for (MachineRegisterInfo::use_instr_iterator 1849 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1850 I != IE; ++I) { 1851 MachineInstr *UseMI = &*I; 1852 if (UseMI->getOpcode() == PPC::BCC) { 1853 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1854 unsigned PredCond = PPC::getPredicateCondition(Pred); 1855 assert((!equalityOnly || 1856 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 1857 "Invalid predicate for equality-only optimization"); 1858 (void)PredCond; // To suppress warning in release build. 1859 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1860 PPC::getSwappedPredicate(Pred))); 1861 } else if (UseMI->getOpcode() == PPC::ISEL || 1862 UseMI->getOpcode() == PPC::ISEL8) { 1863 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1864 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1865 "Invalid CR bit for equality-only optimization"); 1866 1867 if (NewSubReg == PPC::sub_lt) 1868 NewSubReg = PPC::sub_gt; 1869 else if (NewSubReg == PPC::sub_gt) 1870 NewSubReg = PPC::sub_lt; 1871 1872 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1873 NewSubReg)); 1874 } else // We need to abort on a user we don't understand. 1875 return false; 1876 } 1877 assert(!(Value != 0 && ShouldSwap) && 1878 "Non-zero immediate support and ShouldSwap" 1879 "may conflict in updating predicate"); 1880 1881 // Create a new virtual register to hold the value of the CR set by the 1882 // record-form instruction. If the instruction was not previously in 1883 // record form, then set the kill flag on the CR. 1884 CmpInstr.eraseFromParent(); 1885 1886 MachineBasicBlock::iterator MII = MI; 1887 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1888 get(TargetOpcode::COPY), CRReg) 1889 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1890 1891 // Even if CR0 register were dead before, it is alive now since the 1892 // instruction we just built uses it. 1893 MI->clearRegisterDeads(PPC::CR0); 1894 1895 if (MIOpC != NewOpC) { 1896 // We need to be careful here: we're replacing one instruction with 1897 // another, and we need to make sure that we get all of the right 1898 // implicit uses and defs. On the other hand, the caller may be holding 1899 // an iterator to this instruction, and so we can't delete it (this is 1900 // specifically the case if this is the instruction directly after the 1901 // compare). 1902 1903 const MCInstrDesc &NewDesc = get(NewOpC); 1904 MI->setDesc(NewDesc); 1905 1906 if (NewDesc.ImplicitDefs) 1907 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 1908 *ImpDefs; ++ImpDefs) 1909 if (!MI->definesRegister(*ImpDefs)) 1910 MI->addOperand(*MI->getParent()->getParent(), 1911 MachineOperand::CreateReg(*ImpDefs, true, true)); 1912 if (NewDesc.ImplicitUses) 1913 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 1914 *ImpUses; ++ImpUses) 1915 if (!MI->readsRegister(*ImpUses)) 1916 MI->addOperand(*MI->getParent()->getParent(), 1917 MachineOperand::CreateReg(*ImpUses, false, true)); 1918 } 1919 assert(MI->definesRegister(PPC::CR0) && 1920 "Record-form instruction does not define cr0?"); 1921 1922 // Modify the condition code of operands in OperandsToUpdate. 1923 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1924 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1925 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1926 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1927 1928 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1929 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1930 1931 return true; 1932 } 1933 1934 /// GetInstSize - Return the number of bytes of code the specified 1935 /// instruction may be. This returns the maximum number of bytes. 1936 /// 1937 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 1938 unsigned Opcode = MI.getOpcode(); 1939 1940 if (Opcode == PPC::INLINEASM) { 1941 const MachineFunction *MF = MI.getParent()->getParent(); 1942 const char *AsmStr = MI.getOperand(0).getSymbolName(); 1943 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1944 } else if (Opcode == TargetOpcode::STACKMAP) { 1945 StackMapOpers Opers(&MI); 1946 return Opers.getNumPatchBytes(); 1947 } else if (Opcode == TargetOpcode::PATCHPOINT) { 1948 PatchPointOpers Opers(&MI); 1949 return Opers.getNumPatchBytes(); 1950 } else { 1951 return get(Opcode).getSize(); 1952 } 1953 } 1954 1955 std::pair<unsigned, unsigned> 1956 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 1957 const unsigned Mask = PPCII::MO_ACCESS_MASK; 1958 return std::make_pair(TF & Mask, TF & ~Mask); 1959 } 1960 1961 ArrayRef<std::pair<unsigned, const char *>> 1962 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 1963 using namespace PPCII; 1964 static const std::pair<unsigned, const char *> TargetFlags[] = { 1965 {MO_LO, "ppc-lo"}, 1966 {MO_HA, "ppc-ha"}, 1967 {MO_TPREL_LO, "ppc-tprel-lo"}, 1968 {MO_TPREL_HA, "ppc-tprel-ha"}, 1969 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 1970 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 1971 {MO_TOC_LO, "ppc-toc-lo"}, 1972 {MO_TLS, "ppc-tls"}}; 1973 return makeArrayRef(TargetFlags); 1974 } 1975 1976 ArrayRef<std::pair<unsigned, const char *>> 1977 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 1978 using namespace PPCII; 1979 static const std::pair<unsigned, const char *> TargetFlags[] = { 1980 {MO_PLT, "ppc-plt"}, 1981 {MO_PIC_FLAG, "ppc-pic"}, 1982 {MO_NLP_FLAG, "ppc-nlp"}, 1983 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}}; 1984 return makeArrayRef(TargetFlags); 1985 } 1986 1987 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1988 auto &MBB = *MI.getParent(); 1989 auto DL = MI.getDebugLoc(); 1990 switch (MI.getOpcode()) { 1991 case TargetOpcode::LOAD_STACK_GUARD: { 1992 assert(Subtarget.isTargetLinux() && 1993 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 1994 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 1995 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 1996 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 1997 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1998 .addImm(Offset) 1999 .addReg(Reg); 2000 return true; 2001 } 2002 case PPC::DFLOADf32: 2003 case PPC::DFLOADf64: 2004 case PPC::DFSTOREf32: 2005 case PPC::DFSTOREf64: { 2006 assert(Subtarget.hasP9Vector() && 2007 "Invalid D-Form Pseudo-ops on non-P9 target."); 2008 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isImm() && 2009 "D-form op must have register and immediate operands"); 2010 unsigned UpperOpcode, LowerOpcode; 2011 switch (MI.getOpcode()) { 2012 case PPC::DFLOADf32: 2013 UpperOpcode = PPC::LXSSP; 2014 LowerOpcode = PPC::LFS; 2015 break; 2016 case PPC::DFLOADf64: 2017 UpperOpcode = PPC::LXSD; 2018 LowerOpcode = PPC::LFD; 2019 break; 2020 case PPC::DFSTOREf32: 2021 UpperOpcode = PPC::STXSSP; 2022 LowerOpcode = PPC::STFS; 2023 break; 2024 case PPC::DFSTOREf64: 2025 UpperOpcode = PPC::STXSD; 2026 LowerOpcode = PPC::STFD; 2027 break; 2028 } 2029 unsigned TargetReg = MI.getOperand(0).getReg(); 2030 unsigned Opcode; 2031 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2032 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2033 Opcode = LowerOpcode; 2034 else 2035 Opcode = UpperOpcode; 2036 MI.setDesc(get(Opcode)); 2037 return true; 2038 } 2039 case PPC::SPILLTOVSR_LD: { 2040 unsigned TargetReg = MI.getOperand(0).getReg(); 2041 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2042 MI.setDesc(get(PPC::DFLOADf64)); 2043 return expandPostRAPseudo(MI); 2044 } 2045 else 2046 MI.setDesc(get(PPC::LD)); 2047 return true; 2048 } 2049 case PPC::SPILLTOVSR_ST: { 2050 unsigned SrcReg = MI.getOperand(0).getReg(); 2051 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2052 NumStoreSPILLVSRRCAsVec++; 2053 MI.setDesc(get(PPC::DFSTOREf64)); 2054 return expandPostRAPseudo(MI); 2055 } else { 2056 NumStoreSPILLVSRRCAsGpr++; 2057 MI.setDesc(get(PPC::STD)); 2058 } 2059 return true; 2060 } 2061 case PPC::SPILLTOVSR_LDX: { 2062 unsigned TargetReg = MI.getOperand(0).getReg(); 2063 if (PPC::VSFRCRegClass.contains(TargetReg)) 2064 MI.setDesc(get(PPC::LXSDX)); 2065 else 2066 MI.setDesc(get(PPC::LDX)); 2067 return true; 2068 } 2069 case PPC::SPILLTOVSR_STX: { 2070 unsigned SrcReg = MI.getOperand(0).getReg(); 2071 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2072 NumStoreSPILLVSRRCAsVec++; 2073 MI.setDesc(get(PPC::STXSDX)); 2074 } else { 2075 NumStoreSPILLVSRRCAsGpr++; 2076 MI.setDesc(get(PPC::STDX)); 2077 } 2078 return true; 2079 } 2080 2081 case PPC::CFENCE8: { 2082 auto Val = MI.getOperand(0).getReg(); 2083 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2084 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2085 .addImm(PPC::PRED_NE_MINUS) 2086 .addReg(PPC::CR7) 2087 .addImm(1); 2088 MI.setDesc(get(PPC::ISYNC)); 2089 MI.RemoveOperand(0); 2090 return true; 2091 } 2092 } 2093 return false; 2094 } 2095 2096 const TargetRegisterClass * 2097 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 2098 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 2099 return &PPC::VSRCRegClass; 2100 return RC; 2101 } 2102 2103 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 2104 return PPC::getRecordFormOpcode(Opcode); 2105 } 2106