1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/PseudoSourceValue.h"
29 #include "llvm/CodeGen/ScheduleDAG.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/raw_ostream.h"
39 
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "ppc-instr-info"
43 
44 #define GET_INSTRMAP_INFO
45 #define GET_INSTRINFO_CTOR_DTOR
46 #include "PPCGenInstrInfo.inc"
47 
48 STATISTIC(NumStoreSPILLVSRRCAsVec,
49           "Number of spillvsrrc spilled to stack as vec");
50 STATISTIC(NumStoreSPILLVSRRCAsGpr,
51           "Number of spillvsrrc spilled to stack as gpr");
52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
53 STATISTIC(CmpIselsConverted,
54           "Number of ISELs that depend on comparison of constants converted");
55 STATISTIC(MissedConvertibleImmediateInstrs,
56           "Number of compare-immediate instructions fed by constants");
57 STATISTIC(NumRcRotatesConvertedToRcAnd,
58           "Number of record-form rotates converted to record-form andi");
59 
60 static cl::
61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
62             cl::desc("Disable analysis for CTR loops"));
63 
64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
65 cl::desc("Disable compare instruction optimization"), cl::Hidden);
66 
67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
69 cl::Hidden);
70 
71 static cl::opt<bool>
72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
73   cl::desc("Use the old (incorrect) instruction latency calculation"));
74 
75 // Index into the OpcodesForSpill array.
76 enum SpillOpcodeKey {
77   SOK_Int4Spill,
78   SOK_Int8Spill,
79   SOK_Float8Spill,
80   SOK_Float4Spill,
81   SOK_CRSpill,
82   SOK_CRBitSpill,
83   SOK_VRVectorSpill,
84   SOK_VSXVectorSpill,
85   SOK_VectorFloat8Spill,
86   SOK_VectorFloat4Spill,
87   SOK_VRSaveSpill,
88   SOK_QuadFloat8Spill,
89   SOK_QuadFloat4Spill,
90   SOK_QuadBitSpill,
91   SOK_SpillToVSR,
92   SOK_SPESpill,
93   SOK_SPE4Spill,
94   SOK_LastOpcodeSpill  // This must be last on the enum.
95 };
96 
97 // Pin the vtable to this file.
98 void PPCInstrInfo::anchor() {}
99 
100 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
101     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
102                       /* CatchRetOpcode */ -1,
103                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
104       Subtarget(STI), RI(STI.getTargetMachine()) {}
105 
106 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
107 /// this target when scheduling the DAG.
108 ScheduleHazardRecognizer *
109 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
110                                            const ScheduleDAG *DAG) const {
111   unsigned Directive =
112       static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
113   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
114       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
115     const InstrItineraryData *II =
116         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
117     return new ScoreboardHazardRecognizer(II, DAG);
118   }
119 
120   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
121 }
122 
123 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
124 /// to use for this target when scheduling the DAG.
125 ScheduleHazardRecognizer *
126 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
127                                                  const ScheduleDAG *DAG) const {
128   unsigned Directive =
129       DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
130 
131   // FIXME: Leaving this as-is until we have POWER9 scheduling info
132   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
133     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
134 
135   // Most subtargets use a PPC970 recognizer.
136   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
137       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
138     assert(DAG->TII && "No InstrInfo?");
139 
140     return new PPCHazardRecognizer970(*DAG);
141   }
142 
143   return new ScoreboardHazardRecognizer(II, DAG);
144 }
145 
146 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
147                                        const MachineInstr &MI,
148                                        unsigned *PredCost) const {
149   if (!ItinData || UseOldLatencyCalc)
150     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
151 
152   // The default implementation of getInstrLatency calls getStageLatency, but
153   // getStageLatency does not do the right thing for us. While we have
154   // itinerary, most cores are fully pipelined, and so the itineraries only
155   // express the first part of the pipeline, not every stage. Instead, we need
156   // to use the listed output operand cycle number (using operand 0 here, which
157   // is an output).
158 
159   unsigned Latency = 1;
160   unsigned DefClass = MI.getDesc().getSchedClass();
161   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
162     const MachineOperand &MO = MI.getOperand(i);
163     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
164       continue;
165 
166     int Cycle = ItinData->getOperandCycle(DefClass, i);
167     if (Cycle < 0)
168       continue;
169 
170     Latency = std::max(Latency, (unsigned) Cycle);
171   }
172 
173   return Latency;
174 }
175 
176 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
177                                     const MachineInstr &DefMI, unsigned DefIdx,
178                                     const MachineInstr &UseMI,
179                                     unsigned UseIdx) const {
180   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
181                                                    UseMI, UseIdx);
182 
183   if (!DefMI.getParent())
184     return Latency;
185 
186   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
187   Register Reg = DefMO.getReg();
188 
189   bool IsRegCR;
190   if (Register::isVirtualRegister(Reg)) {
191     const MachineRegisterInfo *MRI =
192         &DefMI.getParent()->getParent()->getRegInfo();
193     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
194               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
195   } else {
196     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
197               PPC::CRBITRCRegClass.contains(Reg);
198   }
199 
200   if (UseMI.isBranch() && IsRegCR) {
201     if (Latency < 0)
202       Latency = getInstrLatency(ItinData, DefMI);
203 
204     // On some cores, there is an additional delay between writing to a condition
205     // register, and using it from a branch.
206     unsigned Directive = Subtarget.getDarwinDirective();
207     switch (Directive) {
208     default: break;
209     case PPC::DIR_7400:
210     case PPC::DIR_750:
211     case PPC::DIR_970:
212     case PPC::DIR_E5500:
213     case PPC::DIR_PWR4:
214     case PPC::DIR_PWR5:
215     case PPC::DIR_PWR5X:
216     case PPC::DIR_PWR6:
217     case PPC::DIR_PWR6X:
218     case PPC::DIR_PWR7:
219     case PPC::DIR_PWR8:
220     // FIXME: Is this needed for POWER9?
221       Latency += 2;
222       break;
223     }
224   }
225 
226   return Latency;
227 }
228 
229 // This function does not list all associative and commutative operations, but
230 // only those worth feeding through the machine combiner in an attempt to
231 // reduce the critical path. Mostly, this means floating-point operations,
232 // because they have high latencies (compared to other operations, such and
233 // and/or, which are also associative and commutative, but have low latencies).
234 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
235   switch (Inst.getOpcode()) {
236   // FP Add:
237   case PPC::FADD:
238   case PPC::FADDS:
239   // FP Multiply:
240   case PPC::FMUL:
241   case PPC::FMULS:
242   // Altivec Add:
243   case PPC::VADDFP:
244   // VSX Add:
245   case PPC::XSADDDP:
246   case PPC::XVADDDP:
247   case PPC::XVADDSP:
248   case PPC::XSADDSP:
249   // VSX Multiply:
250   case PPC::XSMULDP:
251   case PPC::XVMULDP:
252   case PPC::XVMULSP:
253   case PPC::XSMULSP:
254   // QPX Add:
255   case PPC::QVFADD:
256   case PPC::QVFADDS:
257   case PPC::QVFADDSs:
258   // QPX Multiply:
259   case PPC::QVFMUL:
260   case PPC::QVFMULS:
261   case PPC::QVFMULSs:
262     return true;
263   default:
264     return false;
265   }
266 }
267 
268 bool PPCInstrInfo::getMachineCombinerPatterns(
269     MachineInstr &Root,
270     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
271   // Using the machine combiner in this way is potentially expensive, so
272   // restrict to when aggressive optimizations are desired.
273   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
274     return false;
275 
276   // FP reassociation is only legal when we don't need strict IEEE semantics.
277   if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
278     return false;
279 
280   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
281 }
282 
283 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
284 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
285                                          unsigned &SrcReg, unsigned &DstReg,
286                                          unsigned &SubIdx) const {
287   switch (MI.getOpcode()) {
288   default: return false;
289   case PPC::EXTSW:
290   case PPC::EXTSW_32:
291   case PPC::EXTSW_32_64:
292     SrcReg = MI.getOperand(1).getReg();
293     DstReg = MI.getOperand(0).getReg();
294     SubIdx = PPC::sub_32;
295     return true;
296   }
297 }
298 
299 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
300                                            int &FrameIndex) const {
301   unsigned Opcode = MI.getOpcode();
302   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
303   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
304 
305   if (End != std::find(OpcodesForSpill, End, Opcode)) {
306     // Check for the operands added by addFrameReference (the immediate is the
307     // offset which defaults to 0).
308     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
309         MI.getOperand(2).isFI()) {
310       FrameIndex = MI.getOperand(2).getIndex();
311       return MI.getOperand(0).getReg();
312     }
313   }
314   return 0;
315 }
316 
317 // For opcodes with the ReMaterializable flag set, this function is called to
318 // verify the instruction is really rematable.
319 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
320                                                      AliasAnalysis *AA) const {
321   switch (MI.getOpcode()) {
322   default:
323     // This function should only be called for opcodes with the ReMaterializable
324     // flag set.
325     llvm_unreachable("Unknown rematerializable operation!");
326     break;
327   case PPC::LI:
328   case PPC::LI8:
329   case PPC::LIS:
330   case PPC::LIS8:
331   case PPC::QVGPCI:
332   case PPC::ADDIStocHA8:
333   case PPC::ADDItocL:
334   case PPC::LOAD_STACK_GUARD:
335   case PPC::XXLXORz:
336   case PPC::XXLXORspz:
337   case PPC::XXLXORdpz:
338   case PPC::XXLEQVOnes:
339   case PPC::V_SET0B:
340   case PPC::V_SET0H:
341   case PPC::V_SET0:
342   case PPC::V_SETALLONESB:
343   case PPC::V_SETALLONESH:
344   case PPC::V_SETALLONES:
345   case PPC::CRSET:
346   case PPC::CRUNSET:
347     return true;
348   }
349   return false;
350 }
351 
352 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
353                                           int &FrameIndex) const {
354   unsigned Opcode = MI.getOpcode();
355   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
356   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
357 
358   if (End != std::find(OpcodesForSpill, End, Opcode)) {
359     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
360         MI.getOperand(2).isFI()) {
361       FrameIndex = MI.getOperand(2).getIndex();
362       return MI.getOperand(0).getReg();
363     }
364   }
365   return 0;
366 }
367 
368 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
369                                                    unsigned OpIdx1,
370                                                    unsigned OpIdx2) const {
371   MachineFunction &MF = *MI.getParent()->getParent();
372 
373   // Normal instructions can be commuted the obvious way.
374   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
375     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
376   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
377   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
378   // changing the relative order of the mask operands might change what happens
379   // to the high-bits of the mask (and, thus, the result).
380 
381   // Cannot commute if it has a non-zero rotate count.
382   if (MI.getOperand(3).getImm() != 0)
383     return nullptr;
384 
385   // If we have a zero rotate count, we have:
386   //   M = mask(MB,ME)
387   //   Op0 = (Op1 & ~M) | (Op2 & M)
388   // Change this to:
389   //   M = mask((ME+1)&31, (MB-1)&31)
390   //   Op0 = (Op2 & ~M) | (Op1 & M)
391 
392   // Swap op1/op2
393   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
394          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
395   Register Reg0 = MI.getOperand(0).getReg();
396   Register Reg1 = MI.getOperand(1).getReg();
397   Register Reg2 = MI.getOperand(2).getReg();
398   unsigned SubReg1 = MI.getOperand(1).getSubReg();
399   unsigned SubReg2 = MI.getOperand(2).getSubReg();
400   bool Reg1IsKill = MI.getOperand(1).isKill();
401   bool Reg2IsKill = MI.getOperand(2).isKill();
402   bool ChangeReg0 = false;
403   // If machine instrs are no longer in two-address forms, update
404   // destination register as well.
405   if (Reg0 == Reg1) {
406     // Must be two address instruction!
407     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
408            "Expecting a two-address instruction!");
409     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
410     Reg2IsKill = false;
411     ChangeReg0 = true;
412   }
413 
414   // Masks.
415   unsigned MB = MI.getOperand(4).getImm();
416   unsigned ME = MI.getOperand(5).getImm();
417 
418   // We can't commute a trivial mask (there is no way to represent an all-zero
419   // mask).
420   if (MB == 0 && ME == 31)
421     return nullptr;
422 
423   if (NewMI) {
424     // Create a new instruction.
425     Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
426     bool Reg0IsDead = MI.getOperand(0).isDead();
427     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
428         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
429         .addReg(Reg2, getKillRegState(Reg2IsKill))
430         .addReg(Reg1, getKillRegState(Reg1IsKill))
431         .addImm((ME + 1) & 31)
432         .addImm((MB - 1) & 31);
433   }
434 
435   if (ChangeReg0) {
436     MI.getOperand(0).setReg(Reg2);
437     MI.getOperand(0).setSubReg(SubReg2);
438   }
439   MI.getOperand(2).setReg(Reg1);
440   MI.getOperand(1).setReg(Reg2);
441   MI.getOperand(2).setSubReg(SubReg1);
442   MI.getOperand(1).setSubReg(SubReg2);
443   MI.getOperand(2).setIsKill(Reg1IsKill);
444   MI.getOperand(1).setIsKill(Reg2IsKill);
445 
446   // Swap the mask around.
447   MI.getOperand(4).setImm((ME + 1) & 31);
448   MI.getOperand(5).setImm((MB - 1) & 31);
449   return &MI;
450 }
451 
452 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
453                                          unsigned &SrcOpIdx2) const {
454   // For VSX A-Type FMA instructions, it is the first two operands that can be
455   // commuted, however, because the non-encoded tied input operand is listed
456   // first, the operands to swap are actually the second and third.
457 
458   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
459   if (AltOpc == -1)
460     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
461 
462   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
463   // and SrcOpIdx2.
464   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
465 }
466 
467 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
468                               MachineBasicBlock::iterator MI) const {
469   // This function is used for scheduling, and the nop wanted here is the type
470   // that terminates dispatch groups on the POWER cores.
471   unsigned Directive = Subtarget.getDarwinDirective();
472   unsigned Opcode;
473   switch (Directive) {
474   default:            Opcode = PPC::NOP; break;
475   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
476   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
477   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
478   // FIXME: Update when POWER9 scheduling model is ready.
479   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
480   }
481 
482   DebugLoc DL;
483   BuildMI(MBB, MI, DL, get(Opcode));
484 }
485 
486 /// Return the noop instruction to use for a noop.
487 void PPCInstrInfo::getNoop(MCInst &NopInst) const {
488   NopInst.setOpcode(PPC::NOP);
489 }
490 
491 // Branch analysis.
492 // Note: If the condition register is set to CTR or CTR8 then this is a
493 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
494 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
495                                  MachineBasicBlock *&TBB,
496                                  MachineBasicBlock *&FBB,
497                                  SmallVectorImpl<MachineOperand> &Cond,
498                                  bool AllowModify) const {
499   bool isPPC64 = Subtarget.isPPC64();
500 
501   // If the block has no terminators, it just falls into the block after it.
502   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
503   if (I == MBB.end())
504     return false;
505 
506   if (!isUnpredicatedTerminator(*I))
507     return false;
508 
509   if (AllowModify) {
510     // If the BB ends with an unconditional branch to the fallthrough BB,
511     // we eliminate the branch instruction.
512     if (I->getOpcode() == PPC::B &&
513         MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
514       I->eraseFromParent();
515 
516       // We update iterator after deleting the last branch.
517       I = MBB.getLastNonDebugInstr();
518       if (I == MBB.end() || !isUnpredicatedTerminator(*I))
519         return false;
520     }
521   }
522 
523   // Get the last instruction in the block.
524   MachineInstr &LastInst = *I;
525 
526   // If there is only one terminator instruction, process it.
527   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
528     if (LastInst.getOpcode() == PPC::B) {
529       if (!LastInst.getOperand(0).isMBB())
530         return true;
531       TBB = LastInst.getOperand(0).getMBB();
532       return false;
533     } else if (LastInst.getOpcode() == PPC::BCC) {
534       if (!LastInst.getOperand(2).isMBB())
535         return true;
536       // Block ends with fall-through condbranch.
537       TBB = LastInst.getOperand(2).getMBB();
538       Cond.push_back(LastInst.getOperand(0));
539       Cond.push_back(LastInst.getOperand(1));
540       return false;
541     } else if (LastInst.getOpcode() == PPC::BC) {
542       if (!LastInst.getOperand(1).isMBB())
543         return true;
544       // Block ends with fall-through condbranch.
545       TBB = LastInst.getOperand(1).getMBB();
546       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
547       Cond.push_back(LastInst.getOperand(0));
548       return false;
549     } else if (LastInst.getOpcode() == PPC::BCn) {
550       if (!LastInst.getOperand(1).isMBB())
551         return true;
552       // Block ends with fall-through condbranch.
553       TBB = LastInst.getOperand(1).getMBB();
554       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
555       Cond.push_back(LastInst.getOperand(0));
556       return false;
557     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
558                LastInst.getOpcode() == PPC::BDNZ) {
559       if (!LastInst.getOperand(0).isMBB())
560         return true;
561       if (DisableCTRLoopAnal)
562         return true;
563       TBB = LastInst.getOperand(0).getMBB();
564       Cond.push_back(MachineOperand::CreateImm(1));
565       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
566                                                true));
567       return false;
568     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
569                LastInst.getOpcode() == PPC::BDZ) {
570       if (!LastInst.getOperand(0).isMBB())
571         return true;
572       if (DisableCTRLoopAnal)
573         return true;
574       TBB = LastInst.getOperand(0).getMBB();
575       Cond.push_back(MachineOperand::CreateImm(0));
576       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
577                                                true));
578       return false;
579     }
580 
581     // Otherwise, don't know what this is.
582     return true;
583   }
584 
585   // Get the instruction before it if it's a terminator.
586   MachineInstr &SecondLastInst = *I;
587 
588   // If there are three terminators, we don't know what sort of block this is.
589   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
590     return true;
591 
592   // If the block ends with PPC::B and PPC:BCC, handle it.
593   if (SecondLastInst.getOpcode() == PPC::BCC &&
594       LastInst.getOpcode() == PPC::B) {
595     if (!SecondLastInst.getOperand(2).isMBB() ||
596         !LastInst.getOperand(0).isMBB())
597       return true;
598     TBB = SecondLastInst.getOperand(2).getMBB();
599     Cond.push_back(SecondLastInst.getOperand(0));
600     Cond.push_back(SecondLastInst.getOperand(1));
601     FBB = LastInst.getOperand(0).getMBB();
602     return false;
603   } else if (SecondLastInst.getOpcode() == PPC::BC &&
604              LastInst.getOpcode() == PPC::B) {
605     if (!SecondLastInst.getOperand(1).isMBB() ||
606         !LastInst.getOperand(0).isMBB())
607       return true;
608     TBB = SecondLastInst.getOperand(1).getMBB();
609     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
610     Cond.push_back(SecondLastInst.getOperand(0));
611     FBB = LastInst.getOperand(0).getMBB();
612     return false;
613   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
614              LastInst.getOpcode() == PPC::B) {
615     if (!SecondLastInst.getOperand(1).isMBB() ||
616         !LastInst.getOperand(0).isMBB())
617       return true;
618     TBB = SecondLastInst.getOperand(1).getMBB();
619     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
620     Cond.push_back(SecondLastInst.getOperand(0));
621     FBB = LastInst.getOperand(0).getMBB();
622     return false;
623   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
624               SecondLastInst.getOpcode() == PPC::BDNZ) &&
625              LastInst.getOpcode() == PPC::B) {
626     if (!SecondLastInst.getOperand(0).isMBB() ||
627         !LastInst.getOperand(0).isMBB())
628       return true;
629     if (DisableCTRLoopAnal)
630       return true;
631     TBB = SecondLastInst.getOperand(0).getMBB();
632     Cond.push_back(MachineOperand::CreateImm(1));
633     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
634                                              true));
635     FBB = LastInst.getOperand(0).getMBB();
636     return false;
637   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
638               SecondLastInst.getOpcode() == PPC::BDZ) &&
639              LastInst.getOpcode() == PPC::B) {
640     if (!SecondLastInst.getOperand(0).isMBB() ||
641         !LastInst.getOperand(0).isMBB())
642       return true;
643     if (DisableCTRLoopAnal)
644       return true;
645     TBB = SecondLastInst.getOperand(0).getMBB();
646     Cond.push_back(MachineOperand::CreateImm(0));
647     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
648                                              true));
649     FBB = LastInst.getOperand(0).getMBB();
650     return false;
651   }
652 
653   // If the block ends with two PPC:Bs, handle it.  The second one is not
654   // executed, so remove it.
655   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
656     if (!SecondLastInst.getOperand(0).isMBB())
657       return true;
658     TBB = SecondLastInst.getOperand(0).getMBB();
659     I = LastInst;
660     if (AllowModify)
661       I->eraseFromParent();
662     return false;
663   }
664 
665   // Otherwise, can't handle this.
666   return true;
667 }
668 
669 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
670                                     int *BytesRemoved) const {
671   assert(!BytesRemoved && "code size not handled");
672 
673   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
674   if (I == MBB.end())
675     return 0;
676 
677   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
678       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
679       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
680       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
681     return 0;
682 
683   // Remove the branch.
684   I->eraseFromParent();
685 
686   I = MBB.end();
687 
688   if (I == MBB.begin()) return 1;
689   --I;
690   if (I->getOpcode() != PPC::BCC &&
691       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
692       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
693       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
694     return 1;
695 
696   // Remove the branch.
697   I->eraseFromParent();
698   return 2;
699 }
700 
701 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
702                                     MachineBasicBlock *TBB,
703                                     MachineBasicBlock *FBB,
704                                     ArrayRef<MachineOperand> Cond,
705                                     const DebugLoc &DL,
706                                     int *BytesAdded) const {
707   // Shouldn't be a fall through.
708   assert(TBB && "insertBranch must not be told to insert a fallthrough");
709   assert((Cond.size() == 2 || Cond.size() == 0) &&
710          "PPC branch conditions have two components!");
711   assert(!BytesAdded && "code size not handled");
712 
713   bool isPPC64 = Subtarget.isPPC64();
714 
715   // One-way branch.
716   if (!FBB) {
717     if (Cond.empty())   // Unconditional branch
718       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
719     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
720       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
721                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
722                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
723     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
724       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
725     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
726       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
727     else                // Conditional branch
728       BuildMI(&MBB, DL, get(PPC::BCC))
729           .addImm(Cond[0].getImm())
730           .add(Cond[1])
731           .addMBB(TBB);
732     return 1;
733   }
734 
735   // Two-way Conditional Branch.
736   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
737     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
738                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
739                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
740   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
741     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
742   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
743     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
744   else
745     BuildMI(&MBB, DL, get(PPC::BCC))
746         .addImm(Cond[0].getImm())
747         .add(Cond[1])
748         .addMBB(TBB);
749   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
750   return 2;
751 }
752 
753 // Select analysis.
754 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
755                 ArrayRef<MachineOperand> Cond,
756                 unsigned TrueReg, unsigned FalseReg,
757                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
758   if (Cond.size() != 2)
759     return false;
760 
761   // If this is really a bdnz-like condition, then it cannot be turned into a
762   // select.
763   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
764     return false;
765 
766   // Check register classes.
767   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
768   const TargetRegisterClass *RC =
769     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
770   if (!RC)
771     return false;
772 
773   // isel is for regular integer GPRs only.
774   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
775       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
776       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
777       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
778     return false;
779 
780   // FIXME: These numbers are for the A2, how well they work for other cores is
781   // an open question. On the A2, the isel instruction has a 2-cycle latency
782   // but single-cycle throughput. These numbers are used in combination with
783   // the MispredictPenalty setting from the active SchedMachineModel.
784   CondCycles = 1;
785   TrueCycles = 1;
786   FalseCycles = 1;
787 
788   return true;
789 }
790 
791 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
792                                 MachineBasicBlock::iterator MI,
793                                 const DebugLoc &dl, unsigned DestReg,
794                                 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
795                                 unsigned FalseReg) const {
796   assert(Cond.size() == 2 &&
797          "PPC branch conditions have two components!");
798 
799   // Get the register classes.
800   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
801   const TargetRegisterClass *RC =
802     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
803   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
804 
805   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
806                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
807   assert((Is64Bit ||
808           PPC::GPRCRegClass.hasSubClassEq(RC) ||
809           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
810          "isel is for regular integer GPRs only");
811 
812   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
813   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
814 
815   unsigned SubIdx = 0;
816   bool SwapOps = false;
817   switch (SelectPred) {
818   case PPC::PRED_EQ:
819   case PPC::PRED_EQ_MINUS:
820   case PPC::PRED_EQ_PLUS:
821       SubIdx = PPC::sub_eq; SwapOps = false; break;
822   case PPC::PRED_NE:
823   case PPC::PRED_NE_MINUS:
824   case PPC::PRED_NE_PLUS:
825       SubIdx = PPC::sub_eq; SwapOps = true; break;
826   case PPC::PRED_LT:
827   case PPC::PRED_LT_MINUS:
828   case PPC::PRED_LT_PLUS:
829       SubIdx = PPC::sub_lt; SwapOps = false; break;
830   case PPC::PRED_GE:
831   case PPC::PRED_GE_MINUS:
832   case PPC::PRED_GE_PLUS:
833       SubIdx = PPC::sub_lt; SwapOps = true; break;
834   case PPC::PRED_GT:
835   case PPC::PRED_GT_MINUS:
836   case PPC::PRED_GT_PLUS:
837       SubIdx = PPC::sub_gt; SwapOps = false; break;
838   case PPC::PRED_LE:
839   case PPC::PRED_LE_MINUS:
840   case PPC::PRED_LE_PLUS:
841       SubIdx = PPC::sub_gt; SwapOps = true; break;
842   case PPC::PRED_UN:
843   case PPC::PRED_UN_MINUS:
844   case PPC::PRED_UN_PLUS:
845       SubIdx = PPC::sub_un; SwapOps = false; break;
846   case PPC::PRED_NU:
847   case PPC::PRED_NU_MINUS:
848   case PPC::PRED_NU_PLUS:
849       SubIdx = PPC::sub_un; SwapOps = true; break;
850   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
851   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
852   }
853 
854   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
855            SecondReg = SwapOps ? TrueReg  : FalseReg;
856 
857   // The first input register of isel cannot be r0. If it is a member
858   // of a register class that can be r0, then copy it first (the
859   // register allocator should eliminate the copy).
860   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
861       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
862     const TargetRegisterClass *FirstRC =
863       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
864         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
865     unsigned OldFirstReg = FirstReg;
866     FirstReg = MRI.createVirtualRegister(FirstRC);
867     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
868       .addReg(OldFirstReg);
869   }
870 
871   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
872     .addReg(FirstReg).addReg(SecondReg)
873     .addReg(Cond[1].getReg(), 0, SubIdx);
874 }
875 
876 static unsigned getCRBitValue(unsigned CRBit) {
877   unsigned Ret = 4;
878   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
879       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
880       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
881       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
882     Ret = 3;
883   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
884       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
885       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
886       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
887     Ret = 2;
888   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
889       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
890       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
891       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
892     Ret = 1;
893   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
894       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
895       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
896       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
897     Ret = 0;
898 
899   assert(Ret != 4 && "Invalid CR bit register");
900   return Ret;
901 }
902 
903 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
904                                MachineBasicBlock::iterator I,
905                                const DebugLoc &DL, unsigned DestReg,
906                                unsigned SrcReg, bool KillSrc) const {
907   // We can end up with self copies and similar things as a result of VSX copy
908   // legalization. Promote them here.
909   const TargetRegisterInfo *TRI = &getRegisterInfo();
910   if (PPC::F8RCRegClass.contains(DestReg) &&
911       PPC::VSRCRegClass.contains(SrcReg)) {
912     unsigned SuperReg =
913       TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
914 
915     if (VSXSelfCopyCrash && SrcReg == SuperReg)
916       llvm_unreachable("nop VSX copy");
917 
918     DestReg = SuperReg;
919   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
920              PPC::VSRCRegClass.contains(DestReg)) {
921     unsigned SuperReg =
922       TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
923 
924     if (VSXSelfCopyCrash && DestReg == SuperReg)
925       llvm_unreachable("nop VSX copy");
926 
927     SrcReg = SuperReg;
928   }
929 
930   // Different class register copy
931   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
932       PPC::GPRCRegClass.contains(DestReg)) {
933     unsigned CRReg = getCRFromCRBit(SrcReg);
934     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
935     getKillRegState(KillSrc);
936     // Rotate the CR bit in the CR fields to be the least significant bit and
937     // then mask with 0x1 (MB = ME = 31).
938     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
939        .addReg(DestReg, RegState::Kill)
940        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
941        .addImm(31)
942        .addImm(31);
943     return;
944   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
945       PPC::G8RCRegClass.contains(DestReg)) {
946     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
947     getKillRegState(KillSrc);
948     return;
949   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
950       PPC::GPRCRegClass.contains(DestReg)) {
951     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
952     getKillRegState(KillSrc);
953     return;
954   } else if (PPC::G8RCRegClass.contains(SrcReg) &&
955              PPC::VSFRCRegClass.contains(DestReg)) {
956     assert(Subtarget.hasDirectMove() &&
957            "Subtarget doesn't support directmove, don't know how to copy.");
958     BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
959     NumGPRtoVSRSpill++;
960     getKillRegState(KillSrc);
961     return;
962   } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
963              PPC::G8RCRegClass.contains(DestReg)) {
964     assert(Subtarget.hasDirectMove() &&
965            "Subtarget doesn't support directmove, don't know how to copy.");
966     BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
967     getKillRegState(KillSrc);
968     return;
969   } else if (PPC::SPERCRegClass.contains(SrcReg) &&
970              PPC::SPE4RCRegClass.contains(DestReg)) {
971     BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
972     getKillRegState(KillSrc);
973     return;
974   } else if (PPC::SPE4RCRegClass.contains(SrcReg) &&
975              PPC::SPERCRegClass.contains(DestReg)) {
976     BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
977     getKillRegState(KillSrc);
978     return;
979   }
980 
981   unsigned Opc;
982   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
983     Opc = PPC::OR;
984   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
985     Opc = PPC::OR8;
986   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
987     Opc = PPC::FMR;
988   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
989     Opc = PPC::MCRF;
990   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
991     Opc = PPC::VOR;
992   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
993     // There are two different ways this can be done:
994     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
995     //      issue in VSU pipeline 0.
996     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
997     //      can go to either pipeline.
998     // We'll always use xxlor here, because in practically all cases where
999     // copies are generated, they are close enough to some use that the
1000     // lower-latency form is preferable.
1001     Opc = PPC::XXLOR;
1002   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1003            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1004     Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1005   else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
1006     Opc = PPC::QVFMR;
1007   else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
1008     Opc = PPC::QVFMRs;
1009   else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
1010     Opc = PPC::QVFMRb;
1011   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1012     Opc = PPC::CROR;
1013   else if (PPC::SPE4RCRegClass.contains(DestReg, SrcReg))
1014     Opc = PPC::OR;
1015   else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1016     Opc = PPC::EVOR;
1017   else
1018     llvm_unreachable("Impossible reg-to-reg copy");
1019 
1020   const MCInstrDesc &MCID = get(Opc);
1021   if (MCID.getNumOperands() == 3)
1022     BuildMI(MBB, I, DL, MCID, DestReg)
1023       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1024   else
1025     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1026 }
1027 
1028 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg,
1029                                               const TargetRegisterClass *RC)
1030                                               const {
1031   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1032   int OpcodeIndex = 0;
1033 
1034   if (RC != nullptr) {
1035     if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1036         PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1037       OpcodeIndex = SOK_Int4Spill;
1038     } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1039                PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1040       OpcodeIndex = SOK_Int8Spill;
1041     } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1042       OpcodeIndex = SOK_Float8Spill;
1043     } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1044       OpcodeIndex = SOK_Float4Spill;
1045     } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1046       OpcodeIndex = SOK_SPESpill;
1047     } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) {
1048       OpcodeIndex = SOK_SPE4Spill;
1049     } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1050       OpcodeIndex = SOK_CRSpill;
1051     } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1052       OpcodeIndex = SOK_CRBitSpill;
1053     } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1054       OpcodeIndex = SOK_VRVectorSpill;
1055     } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1056       OpcodeIndex = SOK_VSXVectorSpill;
1057     } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1058       OpcodeIndex = SOK_VectorFloat8Spill;
1059     } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1060       OpcodeIndex = SOK_VectorFloat4Spill;
1061     } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1062       OpcodeIndex = SOK_VRSaveSpill;
1063     } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1064       OpcodeIndex = SOK_QuadFloat8Spill;
1065     } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1066       OpcodeIndex = SOK_QuadFloat4Spill;
1067     } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1068       OpcodeIndex = SOK_QuadBitSpill;
1069     } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1070       OpcodeIndex = SOK_SpillToVSR;
1071     } else {
1072       llvm_unreachable("Unknown regclass!");
1073     }
1074   } else {
1075     if (PPC::GPRCRegClass.contains(Reg) ||
1076         PPC::GPRC_NOR0RegClass.contains(Reg)) {
1077       OpcodeIndex = SOK_Int4Spill;
1078     } else if (PPC::G8RCRegClass.contains(Reg) ||
1079                PPC::G8RC_NOX0RegClass.contains(Reg)) {
1080       OpcodeIndex = SOK_Int8Spill;
1081     } else if (PPC::F8RCRegClass.contains(Reg)) {
1082       OpcodeIndex = SOK_Float8Spill;
1083     } else if (PPC::F4RCRegClass.contains(Reg)) {
1084       OpcodeIndex = SOK_Float4Spill;
1085     } else if (PPC::SPERCRegClass.contains(Reg)) {
1086       OpcodeIndex = SOK_SPESpill;
1087     } else if (PPC::SPE4RCRegClass.contains(Reg)) {
1088       OpcodeIndex = SOK_SPE4Spill;
1089     } else if (PPC::CRRCRegClass.contains(Reg)) {
1090       OpcodeIndex = SOK_CRSpill;
1091     } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1092       OpcodeIndex = SOK_CRBitSpill;
1093     } else if (PPC::VRRCRegClass.contains(Reg)) {
1094       OpcodeIndex = SOK_VRVectorSpill;
1095     } else if (PPC::VSRCRegClass.contains(Reg)) {
1096       OpcodeIndex = SOK_VSXVectorSpill;
1097     } else if (PPC::VSFRCRegClass.contains(Reg)) {
1098       OpcodeIndex = SOK_VectorFloat8Spill;
1099     } else if (PPC::VSSRCRegClass.contains(Reg)) {
1100       OpcodeIndex = SOK_VectorFloat4Spill;
1101     } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1102       OpcodeIndex = SOK_VRSaveSpill;
1103     } else if (PPC::QFRCRegClass.contains(Reg)) {
1104       OpcodeIndex = SOK_QuadFloat8Spill;
1105     } else if (PPC::QSRCRegClass.contains(Reg)) {
1106       OpcodeIndex = SOK_QuadFloat4Spill;
1107     } else if (PPC::QBRCRegClass.contains(Reg)) {
1108       OpcodeIndex = SOK_QuadBitSpill;
1109     } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1110       OpcodeIndex = SOK_SpillToVSR;
1111     } else {
1112       llvm_unreachable("Unknown regclass!");
1113     }
1114   }
1115   return OpcodesForSpill[OpcodeIndex];
1116 }
1117 
1118 unsigned
1119 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg,
1120                                     const TargetRegisterClass *RC) const {
1121   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1122   int OpcodeIndex = 0;
1123 
1124   if (RC != nullptr) {
1125     if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1126         PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1127       OpcodeIndex = SOK_Int4Spill;
1128     } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1129                PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1130       OpcodeIndex = SOK_Int8Spill;
1131     } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1132       OpcodeIndex = SOK_Float8Spill;
1133     } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1134       OpcodeIndex = SOK_Float4Spill;
1135     } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1136       OpcodeIndex = SOK_SPESpill;
1137     } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) {
1138       OpcodeIndex = SOK_SPE4Spill;
1139     } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1140       OpcodeIndex = SOK_CRSpill;
1141     } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1142       OpcodeIndex = SOK_CRBitSpill;
1143     } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1144       OpcodeIndex = SOK_VRVectorSpill;
1145     } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1146       OpcodeIndex = SOK_VSXVectorSpill;
1147     } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1148       OpcodeIndex = SOK_VectorFloat8Spill;
1149     } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1150       OpcodeIndex = SOK_VectorFloat4Spill;
1151     } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1152       OpcodeIndex = SOK_VRSaveSpill;
1153     } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1154       OpcodeIndex = SOK_QuadFloat8Spill;
1155     } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1156       OpcodeIndex = SOK_QuadFloat4Spill;
1157     } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1158       OpcodeIndex = SOK_QuadBitSpill;
1159     } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1160       OpcodeIndex = SOK_SpillToVSR;
1161     } else {
1162       llvm_unreachable("Unknown regclass!");
1163     }
1164   } else {
1165     if (PPC::GPRCRegClass.contains(Reg) ||
1166         PPC::GPRC_NOR0RegClass.contains(Reg)) {
1167       OpcodeIndex = SOK_Int4Spill;
1168     } else if (PPC::G8RCRegClass.contains(Reg) ||
1169                PPC::G8RC_NOX0RegClass.contains(Reg)) {
1170       OpcodeIndex = SOK_Int8Spill;
1171     } else if (PPC::F8RCRegClass.contains(Reg)) {
1172       OpcodeIndex = SOK_Float8Spill;
1173     } else if (PPC::F4RCRegClass.contains(Reg)) {
1174       OpcodeIndex = SOK_Float4Spill;
1175     } else if (PPC::SPERCRegClass.contains(Reg)) {
1176       OpcodeIndex = SOK_SPESpill;
1177     } else if (PPC::SPE4RCRegClass.contains(Reg)) {
1178       OpcodeIndex = SOK_SPE4Spill;
1179     } else if (PPC::CRRCRegClass.contains(Reg)) {
1180       OpcodeIndex = SOK_CRSpill;
1181     } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1182       OpcodeIndex = SOK_CRBitSpill;
1183     } else if (PPC::VRRCRegClass.contains(Reg)) {
1184       OpcodeIndex = SOK_VRVectorSpill;
1185     } else if (PPC::VSRCRegClass.contains(Reg)) {
1186       OpcodeIndex = SOK_VSXVectorSpill;
1187     } else if (PPC::VSFRCRegClass.contains(Reg)) {
1188       OpcodeIndex = SOK_VectorFloat8Spill;
1189     } else if (PPC::VSSRCRegClass.contains(Reg)) {
1190       OpcodeIndex = SOK_VectorFloat4Spill;
1191     } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1192       OpcodeIndex = SOK_VRSaveSpill;
1193     } else if (PPC::QFRCRegClass.contains(Reg)) {
1194       OpcodeIndex = SOK_QuadFloat8Spill;
1195     } else if (PPC::QSRCRegClass.contains(Reg)) {
1196       OpcodeIndex = SOK_QuadFloat4Spill;
1197     } else if (PPC::QBRCRegClass.contains(Reg)) {
1198       OpcodeIndex = SOK_QuadBitSpill;
1199     } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1200       OpcodeIndex = SOK_SpillToVSR;
1201     } else {
1202       llvm_unreachable("Unknown regclass!");
1203     }
1204   }
1205   return OpcodesForSpill[OpcodeIndex];
1206 }
1207 
1208 void PPCInstrInfo::StoreRegToStackSlot(
1209     MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1210     const TargetRegisterClass *RC,
1211     SmallVectorImpl<MachineInstr *> &NewMIs) const {
1212   unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC);
1213   DebugLoc DL;
1214 
1215   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1216   FuncInfo->setHasSpills();
1217 
1218   NewMIs.push_back(addFrameReference(
1219       BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1220       FrameIdx));
1221 
1222   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1223       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1224     FuncInfo->setSpillsCR();
1225 
1226   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1227     FuncInfo->setSpillsVRSAVE();
1228 
1229   if (isXFormMemOp(Opcode))
1230     FuncInfo->setHasNonRISpills();
1231 }
1232 
1233 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1234                                        MachineBasicBlock::iterator MI,
1235                                        unsigned SrcReg, bool isKill,
1236                                        int FrameIdx,
1237                                        const TargetRegisterClass *RC,
1238                                        const TargetRegisterInfo *TRI) const {
1239   MachineFunction &MF = *MBB.getParent();
1240   SmallVector<MachineInstr *, 4> NewMIs;
1241 
1242   // We need to avoid a situation in which the value from a VRRC register is
1243   // spilled using an Altivec instruction and reloaded into a VSRC register
1244   // using a VSX instruction. The issue with this is that the VSX
1245   // load/store instructions swap the doublewords in the vector and the Altivec
1246   // ones don't. The register classes on the spill/reload may be different if
1247   // the register is defined using an Altivec instruction and is then used by a
1248   // VSX instruction.
1249   RC = updatedRC(RC);
1250 
1251   StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1252 
1253   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1254     MBB.insert(MI, NewMIs[i]);
1255 
1256   const MachineFrameInfo &MFI = MF.getFrameInfo();
1257   MachineMemOperand *MMO = MF.getMachineMemOperand(
1258       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1259       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1260       MFI.getObjectAlignment(FrameIdx));
1261   NewMIs.back()->addMemOperand(MF, MMO);
1262 }
1263 
1264 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1265                                         unsigned DestReg, int FrameIdx,
1266                                         const TargetRegisterClass *RC,
1267                                         SmallVectorImpl<MachineInstr *> &NewMIs)
1268                                         const {
1269   unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC);
1270   NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1271                                      FrameIdx));
1272   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1273 
1274   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1275       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1276     FuncInfo->setSpillsCR();
1277 
1278   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1279     FuncInfo->setSpillsVRSAVE();
1280 
1281   if (isXFormMemOp(Opcode))
1282     FuncInfo->setHasNonRISpills();
1283 }
1284 
1285 void
1286 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1287                                    MachineBasicBlock::iterator MI,
1288                                    unsigned DestReg, int FrameIdx,
1289                                    const TargetRegisterClass *RC,
1290                                    const TargetRegisterInfo *TRI) const {
1291   MachineFunction &MF = *MBB.getParent();
1292   SmallVector<MachineInstr*, 4> NewMIs;
1293   DebugLoc DL;
1294   if (MI != MBB.end()) DL = MI->getDebugLoc();
1295 
1296   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1297   FuncInfo->setHasSpills();
1298 
1299   // We need to avoid a situation in which the value from a VRRC register is
1300   // spilled using an Altivec instruction and reloaded into a VSRC register
1301   // using a VSX instruction. The issue with this is that the VSX
1302   // load/store instructions swap the doublewords in the vector and the Altivec
1303   // ones don't. The register classes on the spill/reload may be different if
1304   // the register is defined using an Altivec instruction and is then used by a
1305   // VSX instruction.
1306   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
1307     RC = &PPC::VSRCRegClass;
1308 
1309   LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
1310 
1311   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1312     MBB.insert(MI, NewMIs[i]);
1313 
1314   const MachineFrameInfo &MFI = MF.getFrameInfo();
1315   MachineMemOperand *MMO = MF.getMachineMemOperand(
1316       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1317       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1318       MFI.getObjectAlignment(FrameIdx));
1319   NewMIs.back()->addMemOperand(MF, MMO);
1320 }
1321 
1322 bool PPCInstrInfo::
1323 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1324   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1325   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1326     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1327   else
1328     // Leave the CR# the same, but invert the condition.
1329     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1330   return false;
1331 }
1332 
1333 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1334                                  unsigned Reg, MachineRegisterInfo *MRI) const {
1335   // For some instructions, it is legal to fold ZERO into the RA register field.
1336   // A zero immediate should always be loaded with a single li.
1337   unsigned DefOpc = DefMI.getOpcode();
1338   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1339     return false;
1340   if (!DefMI.getOperand(1).isImm())
1341     return false;
1342   if (DefMI.getOperand(1).getImm() != 0)
1343     return false;
1344 
1345   // Note that we cannot here invert the arguments of an isel in order to fold
1346   // a ZERO into what is presented as the second argument. All we have here
1347   // is the condition bit, and that might come from a CR-logical bit operation.
1348 
1349   const MCInstrDesc &UseMCID = UseMI.getDesc();
1350 
1351   // Only fold into real machine instructions.
1352   if (UseMCID.isPseudo())
1353     return false;
1354 
1355   unsigned UseIdx;
1356   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1357     if (UseMI.getOperand(UseIdx).isReg() &&
1358         UseMI.getOperand(UseIdx).getReg() == Reg)
1359       break;
1360 
1361   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1362   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1363 
1364   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1365 
1366   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1367   // register (which might also be specified as a pointer class kind).
1368   if (UseInfo->isLookupPtrRegClass()) {
1369     if (UseInfo->RegClass /* Kind */ != 1)
1370       return false;
1371   } else {
1372     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1373         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1374       return false;
1375   }
1376 
1377   // Make sure this is not tied to an output register (or otherwise
1378   // constrained). This is true for ST?UX registers, for example, which
1379   // are tied to their output registers.
1380   if (UseInfo->Constraints != 0)
1381     return false;
1382 
1383   unsigned ZeroReg;
1384   if (UseInfo->isLookupPtrRegClass()) {
1385     bool isPPC64 = Subtarget.isPPC64();
1386     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1387   } else {
1388     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1389               PPC::ZERO8 : PPC::ZERO;
1390   }
1391 
1392   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1393   UseMI.getOperand(UseIdx).setReg(ZeroReg);
1394 
1395   if (DeleteDef)
1396     DefMI.eraseFromParent();
1397 
1398   return true;
1399 }
1400 
1401 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1402   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1403        I != IE; ++I)
1404     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1405       return true;
1406   return false;
1407 }
1408 
1409 // We should make sure that, if we're going to predicate both sides of a
1410 // condition (a diamond), that both sides don't define the counter register. We
1411 // can predicate counter-decrement-based branches, but while that predicates
1412 // the branching, it does not predicate the counter decrement. If we tried to
1413 // merge the triangle into one predicated block, we'd decrement the counter
1414 // twice.
1415 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1416                      unsigned NumT, unsigned ExtraT,
1417                      MachineBasicBlock &FMBB,
1418                      unsigned NumF, unsigned ExtraF,
1419                      BranchProbability Probability) const {
1420   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1421 }
1422 
1423 
1424 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1425   // The predicated branches are identified by their type, not really by the
1426   // explicit presence of a predicate. Furthermore, some of them can be
1427   // predicated more than once. Because if conversion won't try to predicate
1428   // any instruction which already claims to be predicated (by returning true
1429   // here), always return false. In doing so, we let isPredicable() be the
1430   // final word on whether not the instruction can be (further) predicated.
1431 
1432   return false;
1433 }
1434 
1435 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1436   if (!MI.isTerminator())
1437     return false;
1438 
1439   // Conditional branch is a special case.
1440   if (MI.isBranch() && !MI.isBarrier())
1441     return true;
1442 
1443   return !isPredicated(MI);
1444 }
1445 
1446 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1447                                         ArrayRef<MachineOperand> Pred) const {
1448   unsigned OpC = MI.getOpcode();
1449   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1450     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1451       bool isPPC64 = Subtarget.isPPC64();
1452       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1453                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1454     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1455       MI.setDesc(get(PPC::BCLR));
1456       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1457     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1458       MI.setDesc(get(PPC::BCLRn));
1459       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1460     } else {
1461       MI.setDesc(get(PPC::BCCLR));
1462       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1463           .addImm(Pred[0].getImm())
1464           .add(Pred[1]);
1465     }
1466 
1467     return true;
1468   } else if (OpC == PPC::B) {
1469     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1470       bool isPPC64 = Subtarget.isPPC64();
1471       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1472                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1473     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1474       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1475       MI.RemoveOperand(0);
1476 
1477       MI.setDesc(get(PPC::BC));
1478       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1479           .add(Pred[1])
1480           .addMBB(MBB);
1481     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1482       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1483       MI.RemoveOperand(0);
1484 
1485       MI.setDesc(get(PPC::BCn));
1486       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1487           .add(Pred[1])
1488           .addMBB(MBB);
1489     } else {
1490       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1491       MI.RemoveOperand(0);
1492 
1493       MI.setDesc(get(PPC::BCC));
1494       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1495           .addImm(Pred[0].getImm())
1496           .add(Pred[1])
1497           .addMBB(MBB);
1498     }
1499 
1500     return true;
1501   } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
1502              OpC == PPC::BCTRL8) {
1503     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1504       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1505 
1506     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1507     bool isPPC64 = Subtarget.isPPC64();
1508 
1509     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1510       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1511                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1512       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1513       return true;
1514     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1515       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1516                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1517       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1518       return true;
1519     }
1520 
1521     MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1522                            : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1523     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1524         .addImm(Pred[0].getImm())
1525         .add(Pred[1]);
1526     return true;
1527   }
1528 
1529   return false;
1530 }
1531 
1532 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1533                                      ArrayRef<MachineOperand> Pred2) const {
1534   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1535   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1536 
1537   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1538     return false;
1539   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1540     return false;
1541 
1542   // P1 can only subsume P2 if they test the same condition register.
1543   if (Pred1[1].getReg() != Pred2[1].getReg())
1544     return false;
1545 
1546   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1547   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1548 
1549   if (P1 == P2)
1550     return true;
1551 
1552   // Does P1 subsume P2, e.g. GE subsumes GT.
1553   if (P1 == PPC::PRED_LE &&
1554       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1555     return true;
1556   if (P1 == PPC::PRED_GE &&
1557       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1558     return true;
1559 
1560   return false;
1561 }
1562 
1563 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1564                                     std::vector<MachineOperand> &Pred) const {
1565   // Note: At the present time, the contents of Pred from this function is
1566   // unused by IfConversion. This implementation follows ARM by pushing the
1567   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1568   // predicate, instructions defining CTR or CTR8 are also included as
1569   // predicate-defining instructions.
1570 
1571   const TargetRegisterClass *RCs[] =
1572     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1573       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1574 
1575   bool Found = false;
1576   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1577     const MachineOperand &MO = MI.getOperand(i);
1578     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1579       const TargetRegisterClass *RC = RCs[c];
1580       if (MO.isReg()) {
1581         if (MO.isDef() && RC->contains(MO.getReg())) {
1582           Pred.push_back(MO);
1583           Found = true;
1584         }
1585       } else if (MO.isRegMask()) {
1586         for (TargetRegisterClass::iterator I = RC->begin(),
1587              IE = RC->end(); I != IE; ++I)
1588           if (MO.clobbersPhysReg(*I)) {
1589             Pred.push_back(MO);
1590             Found = true;
1591           }
1592       }
1593     }
1594   }
1595 
1596   return Found;
1597 }
1598 
1599 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const {
1600   unsigned OpC = MI.getOpcode();
1601   switch (OpC) {
1602   default:
1603     return false;
1604   case PPC::B:
1605   case PPC::BLR:
1606   case PPC::BLR8:
1607   case PPC::BCTR:
1608   case PPC::BCTR8:
1609   case PPC::BCTRL:
1610   case PPC::BCTRL8:
1611     return true;
1612   }
1613 }
1614 
1615 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1616                                   unsigned &SrcReg2, int &Mask,
1617                                   int &Value) const {
1618   unsigned Opc = MI.getOpcode();
1619 
1620   switch (Opc) {
1621   default: return false;
1622   case PPC::CMPWI:
1623   case PPC::CMPLWI:
1624   case PPC::CMPDI:
1625   case PPC::CMPLDI:
1626     SrcReg = MI.getOperand(1).getReg();
1627     SrcReg2 = 0;
1628     Value = MI.getOperand(2).getImm();
1629     Mask = 0xFFFF;
1630     return true;
1631   case PPC::CMPW:
1632   case PPC::CMPLW:
1633   case PPC::CMPD:
1634   case PPC::CMPLD:
1635   case PPC::FCMPUS:
1636   case PPC::FCMPUD:
1637     SrcReg = MI.getOperand(1).getReg();
1638     SrcReg2 = MI.getOperand(2).getReg();
1639     Value = 0;
1640     Mask = 0;
1641     return true;
1642   }
1643 }
1644 
1645 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1646                                         unsigned SrcReg2, int Mask, int Value,
1647                                         const MachineRegisterInfo *MRI) const {
1648   if (DisableCmpOpt)
1649     return false;
1650 
1651   int OpC = CmpInstr.getOpcode();
1652   Register CRReg = CmpInstr.getOperand(0).getReg();
1653 
1654   // FP record forms set CR1 based on the exception status bits, not a
1655   // comparison with zero.
1656   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1657     return false;
1658 
1659   const TargetRegisterInfo *TRI = &getRegisterInfo();
1660   // The record forms set the condition register based on a signed comparison
1661   // with zero (so says the ISA manual). This is not as straightforward as it
1662   // seems, however, because this is always a 64-bit comparison on PPC64, even
1663   // for instructions that are 32-bit in nature (like slw for example).
1664   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1665   // for equality checks (as those don't depend on the sign). On PPC64,
1666   // we are restricted to equality for unsigned 64-bit comparisons and for
1667   // signed 32-bit comparisons the applicability is more restricted.
1668   bool isPPC64 = Subtarget.isPPC64();
1669   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1670   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1671   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1672 
1673   // Look through copies unless that gets us to a physical register.
1674   unsigned ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
1675   if (Register::isVirtualRegister(ActualSrc))
1676     SrcReg = ActualSrc;
1677 
1678   // Get the unique definition of SrcReg.
1679   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1680   if (!MI) return false;
1681 
1682   bool equalityOnly = false;
1683   bool noSub = false;
1684   if (isPPC64) {
1685     if (is32BitSignedCompare) {
1686       // We can perform this optimization only if MI is sign-extending.
1687       if (isSignExtended(*MI))
1688         noSub = true;
1689       else
1690         return false;
1691     } else if (is32BitUnsignedCompare) {
1692       // We can perform this optimization, equality only, if MI is
1693       // zero-extending.
1694       if (isZeroExtended(*MI)) {
1695         noSub = true;
1696         equalityOnly = true;
1697       } else
1698         return false;
1699     } else
1700       equalityOnly = is64BitUnsignedCompare;
1701   } else
1702     equalityOnly = is32BitUnsignedCompare;
1703 
1704   if (equalityOnly) {
1705     // We need to check the uses of the condition register in order to reject
1706     // non-equality comparisons.
1707     for (MachineRegisterInfo::use_instr_iterator
1708          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1709          I != IE; ++I) {
1710       MachineInstr *UseMI = &*I;
1711       if (UseMI->getOpcode() == PPC::BCC) {
1712         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1713         unsigned PredCond = PPC::getPredicateCondition(Pred);
1714         // We ignore hint bits when checking for non-equality comparisons.
1715         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
1716           return false;
1717       } else if (UseMI->getOpcode() == PPC::ISEL ||
1718                  UseMI->getOpcode() == PPC::ISEL8) {
1719         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1720         if (SubIdx != PPC::sub_eq)
1721           return false;
1722       } else
1723         return false;
1724     }
1725   }
1726 
1727   MachineBasicBlock::iterator I = CmpInstr;
1728 
1729   // Scan forward to find the first use of the compare.
1730   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1731        ++I) {
1732     bool FoundUse = false;
1733     for (MachineRegisterInfo::use_instr_iterator
1734          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
1735          J != JE; ++J)
1736       if (&*J == &*I) {
1737         FoundUse = true;
1738         break;
1739       }
1740 
1741     if (FoundUse)
1742       break;
1743   }
1744 
1745   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1746   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1747 
1748   // There are two possible candidates which can be changed to set CR[01].
1749   // One is MI, the other is a SUB instruction.
1750   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1751   MachineInstr *Sub = nullptr;
1752   if (SrcReg2 != 0)
1753     // MI is not a candidate for CMPrr.
1754     MI = nullptr;
1755   // FIXME: Conservatively refuse to convert an instruction which isn't in the
1756   // same BB as the comparison. This is to allow the check below to avoid calls
1757   // (and other explicit clobbers); instead we should really check for these
1758   // more explicitly (in at least a few predecessors).
1759   else if (MI->getParent() != CmpInstr.getParent())
1760     return false;
1761   else if (Value != 0) {
1762     // The record-form instructions set CR bit based on signed comparison
1763     // against 0. We try to convert a compare against 1 or -1 into a compare
1764     // against 0 to exploit record-form instructions. For example, we change
1765     // the condition "greater than -1" into "greater than or equal to 0"
1766     // and "less than 1" into "less than or equal to 0".
1767 
1768     // Since we optimize comparison based on a specific branch condition,
1769     // we don't optimize if condition code is used by more than once.
1770     if (equalityOnly || !MRI->hasOneUse(CRReg))
1771       return false;
1772 
1773     MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
1774     if (UseMI->getOpcode() != PPC::BCC)
1775       return false;
1776 
1777     PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1778     unsigned PredCond = PPC::getPredicateCondition(Pred);
1779     unsigned PredHint = PPC::getPredicateHint(Pred);
1780     int16_t Immed = (int16_t)Value;
1781 
1782     // When modifying the condition in the predicate, we propagate hint bits
1783     // from the original predicate to the new one.
1784     if (Immed == -1 && PredCond == PPC::PRED_GT)
1785       // We convert "greater than -1" into "greater than or equal to 0",
1786       // since we are assuming signed comparison by !equalityOnly
1787       Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
1788     else if (Immed == -1 && PredCond == PPC::PRED_LE)
1789       // We convert "less than or equal to -1" into "less than 0".
1790       Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
1791     else if (Immed == 1 && PredCond == PPC::PRED_LT)
1792       // We convert "less than 1" into "less than or equal to 0".
1793       Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
1794     else if (Immed == 1 && PredCond == PPC::PRED_GE)
1795       // We convert "greater than or equal to 1" into "greater than 0".
1796       Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
1797     else
1798       return false;
1799 
1800     PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
1801   }
1802 
1803   // Search for Sub.
1804   --I;
1805 
1806   // Get ready to iterate backward from CmpInstr.
1807   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
1808 
1809   for (; I != E && !noSub; --I) {
1810     const MachineInstr &Instr = *I;
1811     unsigned IOpC = Instr.getOpcode();
1812 
1813     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
1814                              Instr.readsRegister(PPC::CR0, TRI)))
1815       // This instruction modifies or uses the record condition register after
1816       // the one we want to change. While we could do this transformation, it
1817       // would likely not be profitable. This transformation removes one
1818       // instruction, and so even forcing RA to generate one move probably
1819       // makes it unprofitable.
1820       return false;
1821 
1822     // Check whether CmpInstr can be made redundant by the current instruction.
1823     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1824          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1825         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1826         ((Instr.getOperand(1).getReg() == SrcReg &&
1827           Instr.getOperand(2).getReg() == SrcReg2) ||
1828         (Instr.getOperand(1).getReg() == SrcReg2 &&
1829          Instr.getOperand(2).getReg() == SrcReg))) {
1830       Sub = &*I;
1831       break;
1832     }
1833 
1834     if (I == B)
1835       // The 'and' is below the comparison instruction.
1836       return false;
1837   }
1838 
1839   // Return false if no candidates exist.
1840   if (!MI && !Sub)
1841     return false;
1842 
1843   // The single candidate is called MI.
1844   if (!MI) MI = Sub;
1845 
1846   int NewOpC = -1;
1847   int MIOpC = MI->getOpcode();
1848   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 ||
1849       MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8)
1850     NewOpC = MIOpC;
1851   else {
1852     NewOpC = PPC::getRecordFormOpcode(MIOpC);
1853     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1854       NewOpC = MIOpC;
1855   }
1856 
1857   // FIXME: On the non-embedded POWER architectures, only some of the record
1858   // forms are fast, and we should use only the fast ones.
1859 
1860   // The defining instruction has a record form (or is already a record
1861   // form). It is possible, however, that we'll need to reverse the condition
1862   // code of the users.
1863   if (NewOpC == -1)
1864     return false;
1865 
1866   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1867   // needs to be updated to be based on SUB.  Push the condition code
1868   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1869   // condition code of these operands will be modified.
1870   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
1871   // comparison against 0, which may modify predicate.
1872   bool ShouldSwap = false;
1873   if (Sub && Value == 0) {
1874     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1875       Sub->getOperand(2).getReg() == SrcReg;
1876 
1877     // The operands to subf are the opposite of sub, so only in the fixed-point
1878     // case, invert the order.
1879     ShouldSwap = !ShouldSwap;
1880   }
1881 
1882   if (ShouldSwap)
1883     for (MachineRegisterInfo::use_instr_iterator
1884          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1885          I != IE; ++I) {
1886       MachineInstr *UseMI = &*I;
1887       if (UseMI->getOpcode() == PPC::BCC) {
1888         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1889         unsigned PredCond = PPC::getPredicateCondition(Pred);
1890         assert((!equalityOnly ||
1891                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
1892                "Invalid predicate for equality-only optimization");
1893         (void)PredCond; // To suppress warning in release build.
1894         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1895                                 PPC::getSwappedPredicate(Pred)));
1896       } else if (UseMI->getOpcode() == PPC::ISEL ||
1897                  UseMI->getOpcode() == PPC::ISEL8) {
1898         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1899         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1900                "Invalid CR bit for equality-only optimization");
1901 
1902         if (NewSubReg == PPC::sub_lt)
1903           NewSubReg = PPC::sub_gt;
1904         else if (NewSubReg == PPC::sub_gt)
1905           NewSubReg = PPC::sub_lt;
1906 
1907         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1908                                                  NewSubReg));
1909       } else // We need to abort on a user we don't understand.
1910         return false;
1911     }
1912   assert(!(Value != 0 && ShouldSwap) &&
1913          "Non-zero immediate support and ShouldSwap"
1914          "may conflict in updating predicate");
1915 
1916   // Create a new virtual register to hold the value of the CR set by the
1917   // record-form instruction. If the instruction was not previously in
1918   // record form, then set the kill flag on the CR.
1919   CmpInstr.eraseFromParent();
1920 
1921   MachineBasicBlock::iterator MII = MI;
1922   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1923           get(TargetOpcode::COPY), CRReg)
1924     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1925 
1926   // Even if CR0 register were dead before, it is alive now since the
1927   // instruction we just built uses it.
1928   MI->clearRegisterDeads(PPC::CR0);
1929 
1930   if (MIOpC != NewOpC) {
1931     // We need to be careful here: we're replacing one instruction with
1932     // another, and we need to make sure that we get all of the right
1933     // implicit uses and defs. On the other hand, the caller may be holding
1934     // an iterator to this instruction, and so we can't delete it (this is
1935     // specifically the case if this is the instruction directly after the
1936     // compare).
1937 
1938     // Rotates are expensive instructions. If we're emitting a record-form
1939     // rotate that can just be an andi/andis, we should just emit that.
1940     if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
1941       Register GPRRes = MI->getOperand(0).getReg();
1942       int64_t SH = MI->getOperand(2).getImm();
1943       int64_t MB = MI->getOperand(3).getImm();
1944       int64_t ME = MI->getOperand(4).getImm();
1945       // We can only do this if both the start and end of the mask are in the
1946       // same halfword.
1947       bool MBInLoHWord = MB >= 16;
1948       bool MEInLoHWord = ME >= 16;
1949       uint64_t Mask = ~0LLU;
1950 
1951       if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
1952         Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
1953         // The mask value needs to shift right 16 if we're emitting andis.
1954         Mask >>= MBInLoHWord ? 0 : 16;
1955         NewOpC = MIOpC == PPC::RLWINM ?
1956           (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) :
1957           (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8);
1958       } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
1959                  (ME - MB + 1 == SH) && (MB >= 16)) {
1960         // If we are rotating by the exact number of bits as are in the mask
1961         // and the mask is in the least significant bits of the register,
1962         // that's just an andis. (as long as the GPR result has no uses).
1963         Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
1964         Mask >>= 16;
1965         NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8;
1966       }
1967       // If we've set the mask, we can transform.
1968       if (Mask != ~0LLU) {
1969         MI->RemoveOperand(4);
1970         MI->RemoveOperand(3);
1971         MI->getOperand(2).setImm(Mask);
1972         NumRcRotatesConvertedToRcAnd++;
1973       }
1974     } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
1975       int64_t MB = MI->getOperand(3).getImm();
1976       if (MB >= 48) {
1977         uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
1978         NewOpC = PPC::ANDIo8;
1979         MI->RemoveOperand(3);
1980         MI->getOperand(2).setImm(Mask);
1981         NumRcRotatesConvertedToRcAnd++;
1982       }
1983     }
1984 
1985     const MCInstrDesc &NewDesc = get(NewOpC);
1986     MI->setDesc(NewDesc);
1987 
1988     if (NewDesc.ImplicitDefs)
1989       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1990            *ImpDefs; ++ImpDefs)
1991         if (!MI->definesRegister(*ImpDefs))
1992           MI->addOperand(*MI->getParent()->getParent(),
1993                          MachineOperand::CreateReg(*ImpDefs, true, true));
1994     if (NewDesc.ImplicitUses)
1995       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1996            *ImpUses; ++ImpUses)
1997         if (!MI->readsRegister(*ImpUses))
1998           MI->addOperand(*MI->getParent()->getParent(),
1999                          MachineOperand::CreateReg(*ImpUses, false, true));
2000   }
2001   assert(MI->definesRegister(PPC::CR0) &&
2002          "Record-form instruction does not define cr0?");
2003 
2004   // Modify the condition code of operands in OperandsToUpdate.
2005   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2006   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2007   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
2008     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
2009 
2010   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2011     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2012 
2013   return true;
2014 }
2015 
2016 /// GetInstSize - Return the number of bytes of code the specified
2017 /// instruction may be.  This returns the maximum number of bytes.
2018 ///
2019 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2020   unsigned Opcode = MI.getOpcode();
2021 
2022   if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
2023     const MachineFunction *MF = MI.getParent()->getParent();
2024     const char *AsmStr = MI.getOperand(0).getSymbolName();
2025     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2026   } else if (Opcode == TargetOpcode::STACKMAP) {
2027     StackMapOpers Opers(&MI);
2028     return Opers.getNumPatchBytes();
2029   } else if (Opcode == TargetOpcode::PATCHPOINT) {
2030     PatchPointOpers Opers(&MI);
2031     return Opers.getNumPatchBytes();
2032   } else {
2033     return get(Opcode).getSize();
2034   }
2035 }
2036 
2037 std::pair<unsigned, unsigned>
2038 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2039   const unsigned Mask = PPCII::MO_ACCESS_MASK;
2040   return std::make_pair(TF & Mask, TF & ~Mask);
2041 }
2042 
2043 ArrayRef<std::pair<unsigned, const char *>>
2044 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2045   using namespace PPCII;
2046   static const std::pair<unsigned, const char *> TargetFlags[] = {
2047       {MO_LO, "ppc-lo"},
2048       {MO_HA, "ppc-ha"},
2049       {MO_TPREL_LO, "ppc-tprel-lo"},
2050       {MO_TPREL_HA, "ppc-tprel-ha"},
2051       {MO_DTPREL_LO, "ppc-dtprel-lo"},
2052       {MO_TLSLD_LO, "ppc-tlsld-lo"},
2053       {MO_TOC_LO, "ppc-toc-lo"},
2054       {MO_TLS, "ppc-tls"}};
2055   return makeArrayRef(TargetFlags);
2056 }
2057 
2058 ArrayRef<std::pair<unsigned, const char *>>
2059 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2060   using namespace PPCII;
2061   static const std::pair<unsigned, const char *> TargetFlags[] = {
2062       {MO_PLT, "ppc-plt"},
2063       {MO_PIC_FLAG, "ppc-pic"},
2064       {MO_NLP_FLAG, "ppc-nlp"},
2065       {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
2066   return makeArrayRef(TargetFlags);
2067 }
2068 
2069 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2070 // The VSX versions have the advantage of a full 64-register target whereas
2071 // the FP ones have the advantage of lower latency and higher throughput. So
2072 // what we are after is using the faster instructions in low register pressure
2073 // situations and using the larger register file in high register pressure
2074 // situations.
2075 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2076     unsigned UpperOpcode, LowerOpcode;
2077     switch (MI.getOpcode()) {
2078     case PPC::DFLOADf32:
2079       UpperOpcode = PPC::LXSSP;
2080       LowerOpcode = PPC::LFS;
2081       break;
2082     case PPC::DFLOADf64:
2083       UpperOpcode = PPC::LXSD;
2084       LowerOpcode = PPC::LFD;
2085       break;
2086     case PPC::DFSTOREf32:
2087       UpperOpcode = PPC::STXSSP;
2088       LowerOpcode = PPC::STFS;
2089       break;
2090     case PPC::DFSTOREf64:
2091       UpperOpcode = PPC::STXSD;
2092       LowerOpcode = PPC::STFD;
2093       break;
2094     case PPC::XFLOADf32:
2095       UpperOpcode = PPC::LXSSPX;
2096       LowerOpcode = PPC::LFSX;
2097       break;
2098     case PPC::XFLOADf64:
2099       UpperOpcode = PPC::LXSDX;
2100       LowerOpcode = PPC::LFDX;
2101       break;
2102     case PPC::XFSTOREf32:
2103       UpperOpcode = PPC::STXSSPX;
2104       LowerOpcode = PPC::STFSX;
2105       break;
2106     case PPC::XFSTOREf64:
2107       UpperOpcode = PPC::STXSDX;
2108       LowerOpcode = PPC::STFDX;
2109       break;
2110     case PPC::LIWAX:
2111       UpperOpcode = PPC::LXSIWAX;
2112       LowerOpcode = PPC::LFIWAX;
2113       break;
2114     case PPC::LIWZX:
2115       UpperOpcode = PPC::LXSIWZX;
2116       LowerOpcode = PPC::LFIWZX;
2117       break;
2118     case PPC::STIWX:
2119       UpperOpcode = PPC::STXSIWX;
2120       LowerOpcode = PPC::STFIWX;
2121       break;
2122     default:
2123       llvm_unreachable("Unknown Operation!");
2124     }
2125 
2126     Register TargetReg = MI.getOperand(0).getReg();
2127     unsigned Opcode;
2128     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2129         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2130       Opcode = LowerOpcode;
2131     else
2132       Opcode = UpperOpcode;
2133     MI.setDesc(get(Opcode));
2134     return true;
2135 }
2136 
2137 static bool isAnImmediateOperand(const MachineOperand &MO) {
2138   return MO.isCPI() || MO.isGlobal() || MO.isImm();
2139 }
2140 
2141 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2142   auto &MBB = *MI.getParent();
2143   auto DL = MI.getDebugLoc();
2144 
2145   switch (MI.getOpcode()) {
2146   case TargetOpcode::LOAD_STACK_GUARD: {
2147     assert(Subtarget.isTargetLinux() &&
2148            "Only Linux target is expected to contain LOAD_STACK_GUARD");
2149     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
2150     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
2151     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
2152     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2153         .addImm(Offset)
2154         .addReg(Reg);
2155     return true;
2156   }
2157   case PPC::DFLOADf32:
2158   case PPC::DFLOADf64:
2159   case PPC::DFSTOREf32:
2160   case PPC::DFSTOREf64: {
2161     assert(Subtarget.hasP9Vector() &&
2162            "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2163     assert(MI.getOperand(2).isReg() &&
2164            isAnImmediateOperand(MI.getOperand(1)) &&
2165            "D-form op must have register and immediate operands");
2166     return expandVSXMemPseudo(MI);
2167   }
2168   case PPC::XFLOADf32:
2169   case PPC::XFSTOREf32:
2170   case PPC::LIWAX:
2171   case PPC::LIWZX:
2172   case PPC::STIWX: {
2173     assert(Subtarget.hasP8Vector() &&
2174            "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2175     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2176            "X-form op must have register and register operands");
2177     return expandVSXMemPseudo(MI);
2178   }
2179   case PPC::XFLOADf64:
2180   case PPC::XFSTOREf64: {
2181     assert(Subtarget.hasVSX() &&
2182            "Invalid X-Form Pseudo-ops on target that has no VSX.");
2183     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2184            "X-form op must have register and register operands");
2185     return expandVSXMemPseudo(MI);
2186   }
2187   case PPC::SPILLTOVSR_LD: {
2188     Register TargetReg = MI.getOperand(0).getReg();
2189     if (PPC::VSFRCRegClass.contains(TargetReg)) {
2190       MI.setDesc(get(PPC::DFLOADf64));
2191       return expandPostRAPseudo(MI);
2192     }
2193     else
2194       MI.setDesc(get(PPC::LD));
2195     return true;
2196   }
2197   case PPC::SPILLTOVSR_ST: {
2198     Register SrcReg = MI.getOperand(0).getReg();
2199     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2200       NumStoreSPILLVSRRCAsVec++;
2201       MI.setDesc(get(PPC::DFSTOREf64));
2202       return expandPostRAPseudo(MI);
2203     } else {
2204       NumStoreSPILLVSRRCAsGpr++;
2205       MI.setDesc(get(PPC::STD));
2206     }
2207     return true;
2208   }
2209   case PPC::SPILLTOVSR_LDX: {
2210     Register TargetReg = MI.getOperand(0).getReg();
2211     if (PPC::VSFRCRegClass.contains(TargetReg))
2212       MI.setDesc(get(PPC::LXSDX));
2213     else
2214       MI.setDesc(get(PPC::LDX));
2215     return true;
2216   }
2217   case PPC::SPILLTOVSR_STX: {
2218     Register SrcReg = MI.getOperand(0).getReg();
2219     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2220       NumStoreSPILLVSRRCAsVec++;
2221       MI.setDesc(get(PPC::STXSDX));
2222     } else {
2223       NumStoreSPILLVSRRCAsGpr++;
2224       MI.setDesc(get(PPC::STDX));
2225     }
2226     return true;
2227   }
2228 
2229   case PPC::CFENCE8: {
2230     auto Val = MI.getOperand(0).getReg();
2231     BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
2232     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
2233         .addImm(PPC::PRED_NE_MINUS)
2234         .addReg(PPC::CR7)
2235         .addImm(1);
2236     MI.setDesc(get(PPC::ISYNC));
2237     MI.RemoveOperand(0);
2238     return true;
2239   }
2240   }
2241   return false;
2242 }
2243 
2244 // Essentially a compile-time implementation of a compare->isel sequence.
2245 // It takes two constants to compare, along with the true/false registers
2246 // and the comparison type (as a subreg to a CR field) and returns one
2247 // of the true/false registers, depending on the comparison results.
2248 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
2249                           unsigned TrueReg, unsigned FalseReg,
2250                           unsigned CRSubReg) {
2251   // Signed comparisons. The immediates are assumed to be sign-extended.
2252   if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
2253     switch (CRSubReg) {
2254     default: llvm_unreachable("Unknown integer comparison type.");
2255     case PPC::sub_lt:
2256       return Imm1 < Imm2 ? TrueReg : FalseReg;
2257     case PPC::sub_gt:
2258       return Imm1 > Imm2 ? TrueReg : FalseReg;
2259     case PPC::sub_eq:
2260       return Imm1 == Imm2 ? TrueReg : FalseReg;
2261     }
2262   }
2263   // Unsigned comparisons.
2264   else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
2265     switch (CRSubReg) {
2266     default: llvm_unreachable("Unknown integer comparison type.");
2267     case PPC::sub_lt:
2268       return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
2269     case PPC::sub_gt:
2270       return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
2271     case PPC::sub_eq:
2272       return Imm1 == Imm2 ? TrueReg : FalseReg;
2273     }
2274   }
2275   return PPC::NoRegister;
2276 }
2277 
2278 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
2279                                               unsigned OpNo,
2280                                               int64_t Imm) const {
2281   assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
2282   // Replace the REG with the Immediate.
2283   Register InUseReg = MI.getOperand(OpNo).getReg();
2284   MI.getOperand(OpNo).ChangeToImmediate(Imm);
2285 
2286   if (empty(MI.implicit_operands()))
2287     return;
2288 
2289   // We need to make sure that the MI didn't have any implicit use
2290   // of this REG any more.
2291   const TargetRegisterInfo *TRI = &getRegisterInfo();
2292   int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
2293   if (UseOpIdx >= 0) {
2294     MachineOperand &MO = MI.getOperand(UseOpIdx);
2295     if (MO.isImplicit())
2296       // The operands must always be in the following order:
2297       // - explicit reg defs,
2298       // - other explicit operands (reg uses, immediates, etc.),
2299       // - implicit reg defs
2300       // - implicit reg uses
2301       // Therefore, removing the implicit operand won't change the explicit
2302       // operands layout.
2303       MI.RemoveOperand(UseOpIdx);
2304   }
2305 }
2306 
2307 // Replace an instruction with one that materializes a constant (and sets
2308 // CR0 if the original instruction was a record-form instruction).
2309 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
2310                                       const LoadImmediateInfo &LII) const {
2311   // Remove existing operands.
2312   int OperandToKeep = LII.SetCR ? 1 : 0;
2313   for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
2314     MI.RemoveOperand(i);
2315 
2316   // Replace the instruction.
2317   if (LII.SetCR) {
2318     MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo));
2319     // Set the immediate.
2320     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2321         .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
2322     return;
2323   }
2324   else
2325     MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
2326 
2327   // Set the immediate.
2328   MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2329       .addImm(LII.Imm);
2330 }
2331 
2332 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
2333                                            bool &SeenIntermediateUse) const {
2334   assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
2335          "Should be called after register allocation.");
2336   const TargetRegisterInfo *TRI = &getRegisterInfo();
2337   MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
2338   It++;
2339   SeenIntermediateUse = false;
2340   for (; It != E; ++It) {
2341     if (It->modifiesRegister(Reg, TRI))
2342       return &*It;
2343     if (It->readsRegister(Reg, TRI))
2344       SeenIntermediateUse = true;
2345   }
2346   return nullptr;
2347 }
2348 
2349 MachineInstr *PPCInstrInfo::getForwardingDefMI(
2350   MachineInstr &MI,
2351   unsigned &OpNoForForwarding,
2352   bool &SeenIntermediateUse) const {
2353   OpNoForForwarding = ~0U;
2354   MachineInstr *DefMI = nullptr;
2355   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
2356   const TargetRegisterInfo *TRI = &getRegisterInfo();
2357   // If we're in SSA, get the defs through the MRI. Otherwise, only look
2358   // within the basic block to see if the register is defined using an LI/LI8.
2359   if (MRI->isSSA()) {
2360     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2361       if (!MI.getOperand(i).isReg())
2362         continue;
2363       Register Reg = MI.getOperand(i).getReg();
2364       if (!Register::isVirtualRegister(Reg))
2365         continue;
2366       unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
2367       if (Register::isVirtualRegister(TrueReg)) {
2368         DefMI = MRI->getVRegDef(TrueReg);
2369         if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) {
2370           OpNoForForwarding = i;
2371           break;
2372         }
2373       }
2374     }
2375   } else {
2376     // Looking back through the definition for each operand could be expensive,
2377     // so exit early if this isn't an instruction that either has an immediate
2378     // form or is already an immediate form that we can handle.
2379     ImmInstrInfo III;
2380     unsigned Opc = MI.getOpcode();
2381     bool ConvertibleImmForm =
2382       Opc == PPC::CMPWI || Opc == PPC::CMPLWI ||
2383       Opc == PPC::CMPDI || Opc == PPC::CMPLDI ||
2384       Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
2385       Opc == PPC::ORI || Opc == PPC::ORI8 ||
2386       Opc == PPC::XORI || Opc == PPC::XORI8 ||
2387       Opc == PPC::RLDICL || Opc == PPC::RLDICLo ||
2388       Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
2389       Opc == PPC::RLWINM || Opc == PPC::RLWINMo ||
2390       Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2391     bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
2392                        ? isVFRegister(MI.getOperand(0).getReg())
2393                        : false;
2394     if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
2395       return nullptr;
2396 
2397     // Don't convert or %X, %Y, %Y since that's just a register move.
2398     if ((Opc == PPC::OR || Opc == PPC::OR8) &&
2399         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
2400       return nullptr;
2401     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2402       MachineOperand &MO = MI.getOperand(i);
2403       SeenIntermediateUse = false;
2404       if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
2405         Register Reg = MI.getOperand(i).getReg();
2406         // If we see another use of this reg between the def and the MI,
2407         // we want to flat it so the def isn't deleted.
2408         MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
2409         if (DefMI) {
2410           // Is this register defined by some form of add-immediate (including
2411           // load-immediate) within this basic block?
2412           switch (DefMI->getOpcode()) {
2413           default:
2414             break;
2415           case PPC::LI:
2416           case PPC::LI8:
2417           case PPC::ADDItocL:
2418           case PPC::ADDI:
2419           case PPC::ADDI8:
2420             OpNoForForwarding = i;
2421             return DefMI;
2422           }
2423         }
2424       }
2425     }
2426   }
2427   return OpNoForForwarding == ~0U ? nullptr : DefMI;
2428 }
2429 
2430 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2431   static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2432       // Power 8
2433       {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2434        PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX,
2435        PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2436        PPC::SPILLTOVSR_ST, PPC::EVSTDD, PPC::SPESTW},
2437       // Power 9
2438       {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2439        PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32,
2440        PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2441        PPC::SPILLTOVSR_ST}};
2442 
2443   return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2444 }
2445 
2446 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2447   static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2448       // Power 8
2449       {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2450        PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX,
2451        PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2452        PPC::SPILLTOVSR_LD, PPC::EVLDD, PPC::SPELWZ},
2453       // Power 9
2454       {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2455        PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32,
2456        PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2457        PPC::SPILLTOVSR_LD}};
2458 
2459   return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2460 }
2461 
2462 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI,
2463                                      unsigned RegNo) const {
2464   const MachineRegisterInfo &MRI =
2465       StartMI.getParent()->getParent()->getRegInfo();
2466   if (MRI.isSSA())
2467     return;
2468 
2469   // Instructions between [StartMI, EndMI] should be in same basic block.
2470   assert((StartMI.getParent() == EndMI.getParent()) &&
2471          "Instructions are not in same basic block");
2472 
2473   bool IsKillSet = false;
2474 
2475   auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
2476     MachineOperand &MO = MI.getOperand(Index);
2477     if (MO.isReg() && MO.isUse() && MO.isKill() &&
2478         getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
2479       MO.setIsKill(false);
2480   };
2481 
2482   // Set killed flag for EndMI.
2483   // No need to do anything if EndMI defines RegNo.
2484   int UseIndex =
2485       EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
2486   if (UseIndex != -1) {
2487     EndMI.getOperand(UseIndex).setIsKill(true);
2488     IsKillSet = true;
2489     // Clear killed flag for other EndMI operands related to RegNo. In some
2490     // upexpected cases, killed may be set multiple times for same register
2491     // operand in same MI.
2492     for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i)
2493       if (i != UseIndex)
2494         clearOperandKillInfo(EndMI, i);
2495   }
2496 
2497   // Walking the inst in reverse order (EndMI -> StartMI].
2498   MachineBasicBlock::reverse_iterator It = EndMI;
2499   MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend();
2500   // EndMI has been handled above, skip it here.
2501   It++;
2502   MachineOperand *MO = nullptr;
2503   for (; It != E; ++It) {
2504     // Skip insturctions which could not be a def/use of RegNo.
2505     if (It->isDebugInstr() || It->isPosition())
2506       continue;
2507 
2508     // Clear killed flag for all It operands related to RegNo. In some
2509     // upexpected cases, killed may be set multiple times for same register
2510     // operand in same MI.
2511     for (int i = 0, e = It->getNumOperands(); i != e; ++i)
2512         clearOperandKillInfo(*It, i);
2513 
2514     // If killed is not set, set killed for its last use or set dead for its def
2515     // if no use found.
2516     if (!IsKillSet) {
2517       if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
2518         // Use found, set it killed.
2519         IsKillSet = true;
2520         MO->setIsKill(true);
2521         continue;
2522       } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
2523                                                   &getRegisterInfo()))) {
2524         // No use found, set dead for its def.
2525         assert(&*It == &StartMI && "No new def between StartMI and EndMI.");
2526         MO->setIsDead(true);
2527         break;
2528       }
2529     }
2530 
2531     if ((&*It) == &StartMI)
2532       break;
2533   }
2534   // Ensure RegMo liveness is killed after EndMI.
2535   assert((IsKillSet || (MO && MO->isDead())) &&
2536          "RegNo should be killed or dead");
2537 }
2538 
2539 // If this instruction has an immediate form and one of its operands is a
2540 // result of a load-immediate or an add-immediate, convert it to
2541 // the immediate form if the constant is in range.
2542 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
2543                                           MachineInstr **KilledDef) const {
2544   MachineFunction *MF = MI.getParent()->getParent();
2545   MachineRegisterInfo *MRI = &MF->getRegInfo();
2546   bool PostRA = !MRI->isSSA();
2547   bool SeenIntermediateUse = true;
2548   unsigned ForwardingOperand = ~0U;
2549   MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
2550                                            SeenIntermediateUse);
2551   if (!DefMI)
2552     return false;
2553   assert(ForwardingOperand < MI.getNumOperands() &&
2554          "The forwarding operand needs to be valid at this point");
2555   bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
2556   bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
2557   Register ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg();
2558   if (KilledDef && KillFwdDefMI)
2559     *KilledDef = DefMI;
2560 
2561   ImmInstrInfo III;
2562   bool IsVFReg = MI.getOperand(0).isReg()
2563                      ? isVFRegister(MI.getOperand(0).getReg())
2564                      : false;
2565   bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
2566   // If this is a reg+reg instruction that has a reg+imm form,
2567   // and one of the operands is produced by an add-immediate,
2568   // try to convert it.
2569   if (HasImmForm &&
2570       transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
2571                                  KillFwdDefMI))
2572     return true;
2573 
2574   if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) ||
2575       !DefMI->getOperand(1).isImm())
2576     return false;
2577 
2578   int64_t Immediate = DefMI->getOperand(1).getImm();
2579   // Sign-extend to 64-bits.
2580   int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
2581     (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
2582 
2583   // If this is a reg+reg instruction that has a reg+imm form,
2584   // and one of the operands is produced by LI, convert it now.
2585   if (HasImmForm)
2586     return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm);
2587 
2588   bool ReplaceWithLI = false;
2589   bool Is64BitLI = false;
2590   int64_t NewImm = 0;
2591   bool SetCR = false;
2592   unsigned Opc = MI.getOpcode();
2593   switch (Opc) {
2594   default: return false;
2595 
2596   // FIXME: Any branches conditional on such a comparison can be made
2597   // unconditional. At this time, this happens too infrequently to be worth
2598   // the implementation effort, but if that ever changes, we could convert
2599   // such a pattern here.
2600   case PPC::CMPWI:
2601   case PPC::CMPLWI:
2602   case PPC::CMPDI:
2603   case PPC::CMPLDI: {
2604     // Doing this post-RA would require dataflow analysis to reliably find uses
2605     // of the CR register set by the compare.
2606     // No need to fixup killed/dead flag since this transformation is only valid
2607     // before RA.
2608     if (PostRA)
2609       return false;
2610     // If a compare-immediate is fed by an immediate and is itself an input of
2611     // an ISEL (the most common case) into a COPY of the correct register.
2612     bool Changed = false;
2613     Register DefReg = MI.getOperand(0).getReg();
2614     int64_t Comparand = MI.getOperand(2).getImm();
2615     int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ?
2616       (Comparand | 0xFFFFFFFFFFFF0000) : Comparand;
2617 
2618     for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
2619       unsigned UseOpc = CompareUseMI.getOpcode();
2620       if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
2621         continue;
2622       unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
2623       Register TrueReg = CompareUseMI.getOperand(1).getReg();
2624       Register FalseReg = CompareUseMI.getOperand(2).getReg();
2625       unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg,
2626                                      FalseReg, CRSubReg);
2627       if (RegToCopy == PPC::NoRegister)
2628         continue;
2629       // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
2630       if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
2631         CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
2632         replaceInstrOperandWithImm(CompareUseMI, 1, 0);
2633         CompareUseMI.RemoveOperand(3);
2634         CompareUseMI.RemoveOperand(2);
2635         continue;
2636       }
2637       LLVM_DEBUG(
2638           dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
2639       LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump());
2640       LLVM_DEBUG(dbgs() << "Is converted to:\n");
2641       // Convert to copy and remove unneeded operands.
2642       CompareUseMI.setDesc(get(PPC::COPY));
2643       CompareUseMI.RemoveOperand(3);
2644       CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
2645       CmpIselsConverted++;
2646       Changed = true;
2647       LLVM_DEBUG(CompareUseMI.dump());
2648     }
2649     if (Changed)
2650       return true;
2651     // This may end up incremented multiple times since this function is called
2652     // during a fixed-point transformation, but it is only meant to indicate the
2653     // presence of this opportunity.
2654     MissedConvertibleImmediateInstrs++;
2655     return false;
2656   }
2657 
2658   // Immediate forms - may simply be convertable to an LI.
2659   case PPC::ADDI:
2660   case PPC::ADDI8: {
2661     // Does the sum fit in a 16-bit signed field?
2662     int64_t Addend = MI.getOperand(2).getImm();
2663     if (isInt<16>(Addend + SExtImm)) {
2664       ReplaceWithLI = true;
2665       Is64BitLI = Opc == PPC::ADDI8;
2666       NewImm = Addend + SExtImm;
2667       break;
2668     }
2669     return false;
2670   }
2671   case PPC::RLDICL:
2672   case PPC::RLDICLo:
2673   case PPC::RLDICL_32:
2674   case PPC::RLDICL_32_64: {
2675     // Use APInt's rotate function.
2676     int64_t SH = MI.getOperand(2).getImm();
2677     int64_t MB = MI.getOperand(3).getImm();
2678     APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ?
2679                 64 : 32, SExtImm, true);
2680     InVal = InVal.rotl(SH);
2681     uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2682     InVal &= Mask;
2683     // Can't replace negative values with an LI as that will sign-extend
2684     // and not clear the left bits. If we're setting the CR bit, we will use
2685     // ANDIo which won't sign extend, so that's safe.
2686     if (isUInt<15>(InVal.getSExtValue()) ||
2687         (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) {
2688       ReplaceWithLI = true;
2689       Is64BitLI = Opc != PPC::RLDICL_32;
2690       NewImm = InVal.getSExtValue();
2691       SetCR = Opc == PPC::RLDICLo;
2692       break;
2693     }
2694     return false;
2695   }
2696   case PPC::RLWINM:
2697   case PPC::RLWINM8:
2698   case PPC::RLWINMo:
2699   case PPC::RLWINM8o: {
2700     int64_t SH = MI.getOperand(2).getImm();
2701     int64_t MB = MI.getOperand(3).getImm();
2702     int64_t ME = MI.getOperand(4).getImm();
2703     APInt InVal(32, SExtImm, true);
2704     InVal = InVal.rotl(SH);
2705     // Set the bits (        MB + 32        ) to (        ME + 32        ).
2706     uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2707     InVal &= Mask;
2708     // Can't replace negative values with an LI as that will sign-extend
2709     // and not clear the left bits. If we're setting the CR bit, we will use
2710     // ANDIo which won't sign extend, so that's safe.
2711     bool ValueFits = isUInt<15>(InVal.getSExtValue());
2712     ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) &&
2713                   isUInt<16>(InVal.getSExtValue()));
2714     if (ValueFits) {
2715       ReplaceWithLI = true;
2716       Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2717       NewImm = InVal.getSExtValue();
2718       SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o;
2719       break;
2720     }
2721     return false;
2722   }
2723   case PPC::ORI:
2724   case PPC::ORI8:
2725   case PPC::XORI:
2726   case PPC::XORI8: {
2727     int64_t LogicalImm = MI.getOperand(2).getImm();
2728     int64_t Result = 0;
2729     if (Opc == PPC::ORI || Opc == PPC::ORI8)
2730       Result = LogicalImm | SExtImm;
2731     else
2732       Result = LogicalImm ^ SExtImm;
2733     if (isInt<16>(Result)) {
2734       ReplaceWithLI = true;
2735       Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
2736       NewImm = Result;
2737       break;
2738     }
2739     return false;
2740   }
2741   }
2742 
2743   if (ReplaceWithLI) {
2744     // We need to be careful with CR-setting instructions we're replacing.
2745     if (SetCR) {
2746       // We don't know anything about uses when we're out of SSA, so only
2747       // replace if the new immediate will be reproduced.
2748       bool ImmChanged = (SExtImm & NewImm) != NewImm;
2749       if (PostRA && ImmChanged)
2750         return false;
2751 
2752       if (!PostRA) {
2753         // If the defining load-immediate has no other uses, we can just replace
2754         // the immediate with the new immediate.
2755         if (MRI->hasOneUse(DefMI->getOperand(0).getReg()))
2756           DefMI->getOperand(1).setImm(NewImm);
2757 
2758         // If we're not using the GPR result of the CR-setting instruction, we
2759         // just need to and with zero/non-zero depending on the new immediate.
2760         else if (MRI->use_empty(MI.getOperand(0).getReg())) {
2761           if (NewImm) {
2762             assert(Immediate && "Transformation converted zero to non-zero?");
2763             NewImm = Immediate;
2764           }
2765         }
2766         else if (ImmChanged)
2767           return false;
2768       }
2769     }
2770 
2771     LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
2772     LLVM_DEBUG(MI.dump());
2773     LLVM_DEBUG(dbgs() << "Fed by:\n");
2774     LLVM_DEBUG(DefMI->dump());
2775     LoadImmediateInfo LII;
2776     LII.Imm = NewImm;
2777     LII.Is64Bit = Is64BitLI;
2778     LII.SetCR = SetCR;
2779     // If we're setting the CR, the original load-immediate must be kept (as an
2780     // operand to ANDIo/ANDI8o).
2781     if (KilledDef && SetCR)
2782       *KilledDef = nullptr;
2783     replaceInstrWithLI(MI, LII);
2784 
2785     // Fixup killed/dead flag after transformation.
2786     // Pattern:
2787     // ForwardingOperandReg = LI imm1
2788     // y = op2 imm2, ForwardingOperandReg(killed)
2789     if (IsForwardingOperandKilled)
2790       fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg);
2791 
2792     LLVM_DEBUG(dbgs() << "With:\n");
2793     LLVM_DEBUG(MI.dump());
2794     return true;
2795   }
2796   return false;
2797 }
2798 
2799 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
2800                                    ImmInstrInfo &III, bool PostRA) const {
2801   // The vast majority of the instructions would need their operand 2 replaced
2802   // with an immediate when switching to the reg+imm form. A marked exception
2803   // are the update form loads/stores for which a constant operand 2 would need
2804   // to turn into a displacement and move operand 1 to the operand 2 position.
2805   III.ImmOpNo = 2;
2806   III.OpNoForForwarding = 2;
2807   III.ImmWidth = 16;
2808   III.ImmMustBeMultipleOf = 1;
2809   III.TruncateImmTo = 0;
2810   III.IsSummingOperands = false;
2811   switch (Opc) {
2812   default: return false;
2813   case PPC::ADD4:
2814   case PPC::ADD8:
2815     III.SignedImm = true;
2816     III.ZeroIsSpecialOrig = 0;
2817     III.ZeroIsSpecialNew = 1;
2818     III.IsCommutative = true;
2819     III.IsSummingOperands = true;
2820     III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
2821     break;
2822   case PPC::ADDC:
2823   case PPC::ADDC8:
2824     III.SignedImm = true;
2825     III.ZeroIsSpecialOrig = 0;
2826     III.ZeroIsSpecialNew = 0;
2827     III.IsCommutative = true;
2828     III.IsSummingOperands = true;
2829     III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
2830     break;
2831   case PPC::ADDCo:
2832     III.SignedImm = true;
2833     III.ZeroIsSpecialOrig = 0;
2834     III.ZeroIsSpecialNew = 0;
2835     III.IsCommutative = true;
2836     III.IsSummingOperands = true;
2837     III.ImmOpcode = PPC::ADDICo;
2838     break;
2839   case PPC::SUBFC:
2840   case PPC::SUBFC8:
2841     III.SignedImm = true;
2842     III.ZeroIsSpecialOrig = 0;
2843     III.ZeroIsSpecialNew = 0;
2844     III.IsCommutative = false;
2845     III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
2846     break;
2847   case PPC::CMPW:
2848   case PPC::CMPD:
2849     III.SignedImm = true;
2850     III.ZeroIsSpecialOrig = 0;
2851     III.ZeroIsSpecialNew = 0;
2852     III.IsCommutative = false;
2853     III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
2854     break;
2855   case PPC::CMPLW:
2856   case PPC::CMPLD:
2857     III.SignedImm = false;
2858     III.ZeroIsSpecialOrig = 0;
2859     III.ZeroIsSpecialNew = 0;
2860     III.IsCommutative = false;
2861     III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
2862     break;
2863   case PPC::ANDo:
2864   case PPC::AND8o:
2865   case PPC::OR:
2866   case PPC::OR8:
2867   case PPC::XOR:
2868   case PPC::XOR8:
2869     III.SignedImm = false;
2870     III.ZeroIsSpecialOrig = 0;
2871     III.ZeroIsSpecialNew = 0;
2872     III.IsCommutative = true;
2873     switch(Opc) {
2874     default: llvm_unreachable("Unknown opcode");
2875     case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break;
2876     case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break;
2877     case PPC::OR: III.ImmOpcode = PPC::ORI; break;
2878     case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
2879     case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
2880     case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
2881     }
2882     break;
2883   case PPC::RLWNM:
2884   case PPC::RLWNM8:
2885   case PPC::RLWNMo:
2886   case PPC::RLWNM8o:
2887   case PPC::SLW:
2888   case PPC::SLW8:
2889   case PPC::SLWo:
2890   case PPC::SLW8o:
2891   case PPC::SRW:
2892   case PPC::SRW8:
2893   case PPC::SRWo:
2894   case PPC::SRW8o:
2895   case PPC::SRAW:
2896   case PPC::SRAWo:
2897     III.SignedImm = false;
2898     III.ZeroIsSpecialOrig = 0;
2899     III.ZeroIsSpecialNew = 0;
2900     III.IsCommutative = false;
2901     // This isn't actually true, but the instructions ignore any of the
2902     // upper bits, so any immediate loaded with an LI is acceptable.
2903     // This does not apply to shift right algebraic because a value
2904     // out of range will produce a -1/0.
2905     III.ImmWidth = 16;
2906     if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 ||
2907         Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o)
2908       III.TruncateImmTo = 5;
2909     else
2910       III.TruncateImmTo = 6;
2911     switch(Opc) {
2912     default: llvm_unreachable("Unknown opcode");
2913     case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
2914     case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
2915     case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break;
2916     case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break;
2917     case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
2918     case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
2919     case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break;
2920     case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2921     case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
2922     case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
2923     case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break;
2924     case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2925     case PPC::SRAW:
2926       III.ImmWidth = 5;
2927       III.TruncateImmTo = 0;
2928       III.ImmOpcode = PPC::SRAWI;
2929       break;
2930     case PPC::SRAWo:
2931       III.ImmWidth = 5;
2932       III.TruncateImmTo = 0;
2933       III.ImmOpcode = PPC::SRAWIo;
2934       break;
2935     }
2936     break;
2937   case PPC::RLDCL:
2938   case PPC::RLDCLo:
2939   case PPC::RLDCR:
2940   case PPC::RLDCRo:
2941   case PPC::SLD:
2942   case PPC::SLDo:
2943   case PPC::SRD:
2944   case PPC::SRDo:
2945   case PPC::SRAD:
2946   case PPC::SRADo:
2947     III.SignedImm = false;
2948     III.ZeroIsSpecialOrig = 0;
2949     III.ZeroIsSpecialNew = 0;
2950     III.IsCommutative = false;
2951     // This isn't actually true, but the instructions ignore any of the
2952     // upper bits, so any immediate loaded with an LI is acceptable.
2953     // This does not apply to shift right algebraic because a value
2954     // out of range will produce a -1/0.
2955     III.ImmWidth = 16;
2956     if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo ||
2957         Opc == PPC::RLDCR || Opc == PPC::RLDCRo)
2958       III.TruncateImmTo = 6;
2959     else
2960       III.TruncateImmTo = 7;
2961     switch(Opc) {
2962     default: llvm_unreachable("Unknown opcode");
2963     case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
2964     case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break;
2965     case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
2966     case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break;
2967     case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
2968     case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break;
2969     case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
2970     case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break;
2971     case PPC::SRAD:
2972       III.ImmWidth = 6;
2973       III.TruncateImmTo = 0;
2974       III.ImmOpcode = PPC::SRADI;
2975        break;
2976     case PPC::SRADo:
2977       III.ImmWidth = 6;
2978       III.TruncateImmTo = 0;
2979       III.ImmOpcode = PPC::SRADIo;
2980       break;
2981     }
2982     break;
2983   // Loads and stores:
2984   case PPC::LBZX:
2985   case PPC::LBZX8:
2986   case PPC::LHZX:
2987   case PPC::LHZX8:
2988   case PPC::LHAX:
2989   case PPC::LHAX8:
2990   case PPC::LWZX:
2991   case PPC::LWZX8:
2992   case PPC::LWAX:
2993   case PPC::LDX:
2994   case PPC::LFSX:
2995   case PPC::LFDX:
2996   case PPC::STBX:
2997   case PPC::STBX8:
2998   case PPC::STHX:
2999   case PPC::STHX8:
3000   case PPC::STWX:
3001   case PPC::STWX8:
3002   case PPC::STDX:
3003   case PPC::STFSX:
3004   case PPC::STFDX:
3005     III.SignedImm = true;
3006     III.ZeroIsSpecialOrig = 1;
3007     III.ZeroIsSpecialNew = 2;
3008     III.IsCommutative = true;
3009     III.IsSummingOperands = true;
3010     III.ImmOpNo = 1;
3011     III.OpNoForForwarding = 2;
3012     switch(Opc) {
3013     default: llvm_unreachable("Unknown opcode");
3014     case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
3015     case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
3016     case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
3017     case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
3018     case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
3019     case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
3020     case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
3021     case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
3022     case PPC::LWAX:
3023       III.ImmOpcode = PPC::LWA;
3024       III.ImmMustBeMultipleOf = 4;
3025       break;
3026     case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
3027     case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
3028     case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
3029     case PPC::STBX: III.ImmOpcode = PPC::STB; break;
3030     case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
3031     case PPC::STHX: III.ImmOpcode = PPC::STH; break;
3032     case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
3033     case PPC::STWX: III.ImmOpcode = PPC::STW; break;
3034     case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
3035     case PPC::STDX:
3036       III.ImmOpcode = PPC::STD;
3037       III.ImmMustBeMultipleOf = 4;
3038       break;
3039     case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
3040     case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
3041     }
3042     break;
3043   case PPC::LBZUX:
3044   case PPC::LBZUX8:
3045   case PPC::LHZUX:
3046   case PPC::LHZUX8:
3047   case PPC::LHAUX:
3048   case PPC::LHAUX8:
3049   case PPC::LWZUX:
3050   case PPC::LWZUX8:
3051   case PPC::LDUX:
3052   case PPC::LFSUX:
3053   case PPC::LFDUX:
3054   case PPC::STBUX:
3055   case PPC::STBUX8:
3056   case PPC::STHUX:
3057   case PPC::STHUX8:
3058   case PPC::STWUX:
3059   case PPC::STWUX8:
3060   case PPC::STDUX:
3061   case PPC::STFSUX:
3062   case PPC::STFDUX:
3063     III.SignedImm = true;
3064     III.ZeroIsSpecialOrig = 2;
3065     III.ZeroIsSpecialNew = 3;
3066     III.IsCommutative = false;
3067     III.IsSummingOperands = true;
3068     III.ImmOpNo = 2;
3069     III.OpNoForForwarding = 3;
3070     switch(Opc) {
3071     default: llvm_unreachable("Unknown opcode");
3072     case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
3073     case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
3074     case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
3075     case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
3076     case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
3077     case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
3078     case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
3079     case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
3080     case PPC::LDUX:
3081       III.ImmOpcode = PPC::LDU;
3082       III.ImmMustBeMultipleOf = 4;
3083       break;
3084     case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
3085     case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
3086     case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
3087     case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
3088     case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
3089     case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
3090     case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
3091     case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
3092     case PPC::STDUX:
3093       III.ImmOpcode = PPC::STDU;
3094       III.ImmMustBeMultipleOf = 4;
3095       break;
3096     case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
3097     case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
3098     }
3099     break;
3100   // Power9 and up only. For some of these, the X-Form version has access to all
3101   // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
3102   // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
3103   // into or stored from is one of the VR registers.
3104   case PPC::LXVX:
3105   case PPC::LXSSPX:
3106   case PPC::LXSDX:
3107   case PPC::STXVX:
3108   case PPC::STXSSPX:
3109   case PPC::STXSDX:
3110   case PPC::XFLOADf32:
3111   case PPC::XFLOADf64:
3112   case PPC::XFSTOREf32:
3113   case PPC::XFSTOREf64:
3114     if (!Subtarget.hasP9Vector())
3115       return false;
3116     III.SignedImm = true;
3117     III.ZeroIsSpecialOrig = 1;
3118     III.ZeroIsSpecialNew = 2;
3119     III.IsCommutative = true;
3120     III.IsSummingOperands = true;
3121     III.ImmOpNo = 1;
3122     III.OpNoForForwarding = 2;
3123     III.ImmMustBeMultipleOf = 4;
3124     switch(Opc) {
3125     default: llvm_unreachable("Unknown opcode");
3126     case PPC::LXVX:
3127       III.ImmOpcode = PPC::LXV;
3128       III.ImmMustBeMultipleOf = 16;
3129       break;
3130     case PPC::LXSSPX:
3131       if (PostRA) {
3132         if (IsVFReg)
3133           III.ImmOpcode = PPC::LXSSP;
3134         else {
3135           III.ImmOpcode = PPC::LFS;
3136           III.ImmMustBeMultipleOf = 1;
3137         }
3138         break;
3139       }
3140       LLVM_FALLTHROUGH;
3141     case PPC::XFLOADf32:
3142       III.ImmOpcode = PPC::DFLOADf32;
3143       break;
3144     case PPC::LXSDX:
3145       if (PostRA) {
3146         if (IsVFReg)
3147           III.ImmOpcode = PPC::LXSD;
3148         else {
3149           III.ImmOpcode = PPC::LFD;
3150           III.ImmMustBeMultipleOf = 1;
3151         }
3152         break;
3153       }
3154       LLVM_FALLTHROUGH;
3155     case PPC::XFLOADf64:
3156       III.ImmOpcode = PPC::DFLOADf64;
3157       break;
3158     case PPC::STXVX:
3159       III.ImmOpcode = PPC::STXV;
3160       III.ImmMustBeMultipleOf = 16;
3161       break;
3162     case PPC::STXSSPX:
3163       if (PostRA) {
3164         if (IsVFReg)
3165           III.ImmOpcode = PPC::STXSSP;
3166         else {
3167           III.ImmOpcode = PPC::STFS;
3168           III.ImmMustBeMultipleOf = 1;
3169         }
3170         break;
3171       }
3172       LLVM_FALLTHROUGH;
3173     case PPC::XFSTOREf32:
3174       III.ImmOpcode = PPC::DFSTOREf32;
3175       break;
3176     case PPC::STXSDX:
3177       if (PostRA) {
3178         if (IsVFReg)
3179           III.ImmOpcode = PPC::STXSD;
3180         else {
3181           III.ImmOpcode = PPC::STFD;
3182           III.ImmMustBeMultipleOf = 1;
3183         }
3184         break;
3185       }
3186       LLVM_FALLTHROUGH;
3187     case PPC::XFSTOREf64:
3188       III.ImmOpcode = PPC::DFSTOREf64;
3189       break;
3190     }
3191     break;
3192   }
3193   return true;
3194 }
3195 
3196 // Utility function for swaping two arbitrary operands of an instruction.
3197 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
3198   assert(Op1 != Op2 && "Cannot swap operand with itself.");
3199 
3200   unsigned MaxOp = std::max(Op1, Op2);
3201   unsigned MinOp = std::min(Op1, Op2);
3202   MachineOperand MOp1 = MI.getOperand(MinOp);
3203   MachineOperand MOp2 = MI.getOperand(MaxOp);
3204   MI.RemoveOperand(std::max(Op1, Op2));
3205   MI.RemoveOperand(std::min(Op1, Op2));
3206 
3207   // If the operands we are swapping are the two at the end (the common case)
3208   // we can just remove both and add them in the opposite order.
3209   if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
3210     MI.addOperand(MOp2);
3211     MI.addOperand(MOp1);
3212   } else {
3213     // Store all operands in a temporary vector, remove them and re-add in the
3214     // right order.
3215     SmallVector<MachineOperand, 2> MOps;
3216     unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
3217     for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
3218       MOps.push_back(MI.getOperand(i));
3219       MI.RemoveOperand(i);
3220     }
3221     // MOp2 needs to be added next.
3222     MI.addOperand(MOp2);
3223     // Now add the rest.
3224     for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
3225       if (i == MaxOp)
3226         MI.addOperand(MOp1);
3227       else {
3228         MI.addOperand(MOps.back());
3229         MOps.pop_back();
3230       }
3231     }
3232   }
3233 }
3234 
3235 // Check if the 'MI' that has the index OpNoForForwarding
3236 // meets the requirement described in the ImmInstrInfo.
3237 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
3238                                                const ImmInstrInfo &III,
3239                                                unsigned OpNoForForwarding
3240                                                ) const {
3241   // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
3242   // would not work pre-RA, we can only do the check post RA.
3243   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3244   if (MRI.isSSA())
3245     return false;
3246 
3247   // Cannot do the transform if MI isn't summing the operands.
3248   if (!III.IsSummingOperands)
3249     return false;
3250 
3251   // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
3252   if (!III.ZeroIsSpecialOrig)
3253     return false;
3254 
3255   // We cannot do the transform if the operand we are trying to replace
3256   // isn't the same as the operand the instruction allows.
3257   if (OpNoForForwarding != III.OpNoForForwarding)
3258     return false;
3259 
3260   // Check if the instruction we are trying to transform really has
3261   // the special zero register as its operand.
3262   if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
3263       MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
3264     return false;
3265 
3266   // This machine instruction is convertible if it is,
3267   // 1. summing the operands.
3268   // 2. one of the operands is special zero register.
3269   // 3. the operand we are trying to replace is allowed by the MI.
3270   return true;
3271 }
3272 
3273 // Check if the DefMI is the add inst and set the ImmMO and RegMO
3274 // accordingly.
3275 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
3276                                                const ImmInstrInfo &III,
3277                                                MachineOperand *&ImmMO,
3278                                                MachineOperand *&RegMO) const {
3279   unsigned Opc = DefMI.getOpcode();
3280   if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
3281     return false;
3282 
3283   assert(DefMI.getNumOperands() >= 3 &&
3284          "Add inst must have at least three operands");
3285   RegMO = &DefMI.getOperand(1);
3286   ImmMO = &DefMI.getOperand(2);
3287 
3288   // This DefMI is elgible for forwarding if it is:
3289   // 1. add inst
3290   // 2. one of the operands is Imm/CPI/Global.
3291   return isAnImmediateOperand(*ImmMO);
3292 }
3293 
3294 bool PPCInstrInfo::isRegElgibleForForwarding(
3295     const MachineOperand &RegMO, const MachineInstr &DefMI,
3296     const MachineInstr &MI, bool KillDefMI,
3297     bool &IsFwdFeederRegKilled) const {
3298   // x = addi y, imm
3299   // ...
3300   // z = lfdx 0, x   -> z = lfd imm(y)
3301   // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
3302   // of "y" between the DEF of "x" and "z".
3303   // The query is only valid post RA.
3304   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3305   if (MRI.isSSA())
3306     return false;
3307 
3308   Register Reg = RegMO.getReg();
3309 
3310   // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
3311   MachineBasicBlock::const_reverse_iterator It = MI;
3312   MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
3313   It++;
3314   for (; It != E; ++It) {
3315     if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3316       return false;
3317     else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3318       IsFwdFeederRegKilled = true;
3319     // Made it to DefMI without encountering a clobber.
3320     if ((&*It) == &DefMI)
3321       break;
3322   }
3323   assert((&*It) == &DefMI && "DefMI is missing");
3324 
3325   // If DefMI also defines the register to be forwarded, we can only forward it
3326   // if DefMI is being erased.
3327   if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
3328     return KillDefMI;
3329 
3330   return true;
3331 }
3332 
3333 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
3334                                              const MachineInstr &DefMI,
3335                                              const ImmInstrInfo &III,
3336                                              int64_t &Imm) const {
3337   assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
3338   if (DefMI.getOpcode() == PPC::ADDItocL) {
3339     // The operand for ADDItocL is CPI, which isn't imm at compiling time,
3340     // However, we know that, it is 16-bit width, and has the alignment of 4.
3341     // Check if the instruction met the requirement.
3342     if (III.ImmMustBeMultipleOf > 4 ||
3343        III.TruncateImmTo || III.ImmWidth != 16)
3344       return false;
3345 
3346     // Going from XForm to DForm loads means that the displacement needs to be
3347     // not just an immediate but also a multiple of 4, or 16 depending on the
3348     // load. A DForm load cannot be represented if it is a multiple of say 2.
3349     // XForm loads do not have this restriction.
3350     if (ImmMO.isGlobal() &&
3351         ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf)
3352       return false;
3353 
3354     return true;
3355   }
3356 
3357   if (ImmMO.isImm()) {
3358     // It is Imm, we need to check if the Imm fit the range.
3359     int64_t Immediate = ImmMO.getImm();
3360     // Sign-extend to 64-bits.
3361     Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
3362       (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
3363 
3364     if (Imm % III.ImmMustBeMultipleOf)
3365       return false;
3366     if (III.TruncateImmTo)
3367       Imm &= ((1 << III.TruncateImmTo) - 1);
3368     if (III.SignedImm) {
3369       APInt ActualValue(64, Imm, true);
3370       if (!ActualValue.isSignedIntN(III.ImmWidth))
3371         return false;
3372     } else {
3373       uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3374       if ((uint64_t)Imm > UnsignedMax)
3375         return false;
3376     }
3377   }
3378   else
3379     return false;
3380 
3381   // This ImmMO is forwarded if it meets the requriement describle
3382   // in ImmInstrInfo
3383   return true;
3384 }
3385 
3386 // If an X-Form instruction is fed by an add-immediate and one of its operands
3387 // is the literal zero, attempt to forward the source of the add-immediate to
3388 // the corresponding D-Form instruction with the displacement coming from
3389 // the immediate being added.
3390 bool PPCInstrInfo::transformToImmFormFedByAdd(
3391     MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
3392     MachineInstr &DefMI, bool KillDefMI) const {
3393   //         RegMO ImmMO
3394   //           |    |
3395   // x = addi reg, imm  <----- DefMI
3396   // y = op    0 ,  x   <----- MI
3397   //                |
3398   //         OpNoForForwarding
3399   // Check if the MI meet the requirement described in the III.
3400   if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
3401     return false;
3402 
3403   // Check if the DefMI meet the requirement
3404   // described in the III. If yes, set the ImmMO and RegMO accordingly.
3405   MachineOperand *ImmMO = nullptr;
3406   MachineOperand *RegMO = nullptr;
3407   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
3408     return false;
3409   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
3410 
3411   // As we get the Imm operand now, we need to check if the ImmMO meet
3412   // the requirement described in the III. If yes set the Imm.
3413   int64_t Imm = 0;
3414   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
3415     return false;
3416 
3417   bool IsFwdFeederRegKilled = false;
3418   // Check if the RegMO can be forwarded to MI.
3419   if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
3420                                  IsFwdFeederRegKilled))
3421     return false;
3422 
3423   // Get killed info in case fixup needed after transformation.
3424   unsigned ForwardKilledOperandReg = ~0U;
3425   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3426   bool PostRA = !MRI.isSSA();
3427   if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
3428     ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
3429 
3430   // We know that, the MI and DefMI both meet the pattern, and
3431   // the Imm also meet the requirement with the new Imm-form.
3432   // It is safe to do the transformation now.
3433   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
3434   LLVM_DEBUG(MI.dump());
3435   LLVM_DEBUG(dbgs() << "Fed by:\n");
3436   LLVM_DEBUG(DefMI.dump());
3437 
3438   // Update the base reg first.
3439   MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
3440                                                         false, false,
3441                                                         RegMO->isKill());
3442 
3443   // Then, update the imm.
3444   if (ImmMO->isImm()) {
3445     // If the ImmMO is Imm, change the operand that has ZERO to that Imm
3446     // directly.
3447     replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
3448   }
3449   else {
3450     // Otherwise, it is Constant Pool Index(CPI) or Global,
3451     // which is relocation in fact. We need to replace the special zero
3452     // register with ImmMO.
3453     // Before that, we need to fixup the target flags for imm.
3454     // For some reason, we miss to set the flag for the ImmMO if it is CPI.
3455     if (DefMI.getOpcode() == PPC::ADDItocL)
3456       ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
3457 
3458     // MI didn't have the interface such as MI.setOperand(i) though
3459     // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
3460     // ImmMO, we need to remove ZERO operand and all the operands behind it,
3461     // and, add the ImmMO, then, move back all the operands behind ZERO.
3462     SmallVector<MachineOperand, 2> MOps;
3463     for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
3464       MOps.push_back(MI.getOperand(i));
3465       MI.RemoveOperand(i);
3466     }
3467 
3468     // Remove the last MO in the list, which is ZERO operand in fact.
3469     MOps.pop_back();
3470     // Add the imm operand.
3471     MI.addOperand(*ImmMO);
3472     // Now add the rest back.
3473     for (auto &MO : MOps)
3474       MI.addOperand(MO);
3475   }
3476 
3477   // Update the opcode.
3478   MI.setDesc(get(III.ImmOpcode));
3479 
3480   // Fix up killed/dead flag after transformation.
3481   // Pattern 1:
3482   // x = ADD KilledFwdFeederReg, imm
3483   // n = opn KilledFwdFeederReg(killed), regn
3484   // y = XOP 0, x
3485   // Pattern 2:
3486   // x = ADD reg(killed), imm
3487   // y = XOP 0, x
3488   if (IsFwdFeederRegKilled || RegMO->isKill())
3489     fixupIsDeadOrKill(DefMI, MI, RegMO->getReg());
3490   // Pattern 3:
3491   // ForwardKilledOperandReg = ADD reg, imm
3492   // y = XOP 0, ForwardKilledOperandReg(killed)
3493   if (ForwardKilledOperandReg != ~0U)
3494     fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3495 
3496   LLVM_DEBUG(dbgs() << "With:\n");
3497   LLVM_DEBUG(MI.dump());
3498 
3499   return true;
3500 }
3501 
3502 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
3503                                              const ImmInstrInfo &III,
3504                                              unsigned ConstantOpNo,
3505                                              MachineInstr &DefMI,
3506                                              int64_t Imm) const {
3507   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3508   bool PostRA = !MRI.isSSA();
3509   // Exit early if we can't convert this.
3510   if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
3511     return false;
3512   if (Imm % III.ImmMustBeMultipleOf)
3513     return false;
3514   if (III.TruncateImmTo)
3515     Imm &= ((1 << III.TruncateImmTo) - 1);
3516   if (III.SignedImm) {
3517     APInt ActualValue(64, Imm, true);
3518     if (!ActualValue.isSignedIntN(III.ImmWidth))
3519       return false;
3520   } else {
3521     uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3522     if ((uint64_t)Imm > UnsignedMax)
3523       return false;
3524   }
3525 
3526   // If we're post-RA, the instructions don't agree on whether register zero is
3527   // special, we can transform this as long as the register operand that will
3528   // end up in the location where zero is special isn't R0.
3529   if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3530     unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
3531       III.ZeroIsSpecialNew + 1;
3532     Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
3533     Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3534     // If R0 is in the operand where zero is special for the new instruction,
3535     // it is unsafe to transform if the constant operand isn't that operand.
3536     if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
3537         ConstantOpNo != III.ZeroIsSpecialNew)
3538       return false;
3539     if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
3540         ConstantOpNo != PosForOrigZero)
3541       return false;
3542   }
3543 
3544   // Get killed info in case fixup needed after transformation.
3545   unsigned ForwardKilledOperandReg = ~0U;
3546   if (PostRA && MI.getOperand(ConstantOpNo).isKill())
3547     ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
3548 
3549   unsigned Opc = MI.getOpcode();
3550   bool SpecialShift32 =
3551     Opc == PPC::SLW || Opc == PPC::SLWo || Opc == PPC::SRW || Opc == PPC::SRWo;
3552   bool SpecialShift64 =
3553     Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo;
3554   bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo ||
3555     Opc == PPC::SLDo || Opc == PPC::SRDo;
3556   bool RightShift =
3557     Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo;
3558 
3559   MI.setDesc(get(III.ImmOpcode));
3560   if (ConstantOpNo == III.OpNoForForwarding) {
3561     // Converting shifts to immediate form is a bit tricky since they may do
3562     // one of three things:
3563     // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
3564     // 2. If the shift amount is zero, the result is unchanged (save for maybe
3565     //    setting CR0)
3566     // 3. If the shift amount is in [1, OpSize), it's just a shift
3567     if (SpecialShift32 || SpecialShift64) {
3568       LoadImmediateInfo LII;
3569       LII.Imm = 0;
3570       LII.SetCR = SetCR;
3571       LII.Is64Bit = SpecialShift64;
3572       uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
3573       if (Imm & (SpecialShift32 ? 0x20 : 0x40))
3574         replaceInstrWithLI(MI, LII);
3575       // Shifts by zero don't change the value. If we don't need to set CR0,
3576       // just convert this to a COPY. Can't do this post-RA since we've already
3577       // cleaned up the copies.
3578       else if (!SetCR && ShAmt == 0 && !PostRA) {
3579         MI.RemoveOperand(2);
3580         MI.setDesc(get(PPC::COPY));
3581       } else {
3582         // The 32 bit and 64 bit instructions are quite different.
3583         if (SpecialShift32) {
3584           // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31).
3585           uint64_t SH = RightShift ? 32 - ShAmt : ShAmt;
3586           uint64_t MB = RightShift ? ShAmt : 0;
3587           uint64_t ME = RightShift ? 31 : 31 - ShAmt;
3588           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3589           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
3590             .addImm(ME);
3591         } else {
3592           // Left shifts use (N, 63-N), right shifts use (64-N, N).
3593           uint64_t SH = RightShift ? 64 - ShAmt : ShAmt;
3594           uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
3595           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3596           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
3597         }
3598       }
3599     } else
3600       replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3601   }
3602   // Convert commutative instructions (switch the operands and convert the
3603   // desired one to an immediate.
3604   else if (III.IsCommutative) {
3605     replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3606     swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
3607   } else
3608     llvm_unreachable("Should have exited early!");
3609 
3610   // For instructions for which the constant register replaces a different
3611   // operand than where the immediate goes, we need to swap them.
3612   if (III.OpNoForForwarding != III.ImmOpNo)
3613     swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
3614 
3615   // If the special R0/X0 register index are different for original instruction
3616   // and new instruction, we need to fix up the register class in new
3617   // instruction.
3618   if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3619     if (III.ZeroIsSpecialNew) {
3620       // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
3621       // need to fix up register class.
3622       Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3623       if (Register::isVirtualRegister(RegToModify)) {
3624         const TargetRegisterClass *NewRC =
3625           MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
3626           &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
3627         MRI.setRegClass(RegToModify, NewRC);
3628       }
3629     }
3630   }
3631 
3632   // Fix up killed/dead flag after transformation.
3633   // Pattern:
3634   // ForwardKilledOperandReg = LI imm
3635   // y = XOP reg, ForwardKilledOperandReg(killed)
3636   if (ForwardKilledOperandReg != ~0U)
3637     fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3638   return true;
3639 }
3640 
3641 const TargetRegisterClass *
3642 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
3643   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
3644     return &PPC::VSRCRegClass;
3645   return RC;
3646 }
3647 
3648 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
3649   return PPC::getRecordFormOpcode(Opcode);
3650 }
3651 
3652 // This function returns true if the machine instruction
3653 // always outputs a value by sign-extending a 32 bit value,
3654 // i.e. 0 to 31-th bits are same as 32-th bit.
3655 static bool isSignExtendingOp(const MachineInstr &MI) {
3656   int Opcode = MI.getOpcode();
3657   if (Opcode == PPC::LI     || Opcode == PPC::LI8     ||
3658       Opcode == PPC::LIS    || Opcode == PPC::LIS8    ||
3659       Opcode == PPC::SRAW   || Opcode == PPC::SRAWo   ||
3660       Opcode == PPC::SRAWI  || Opcode == PPC::SRAWIo  ||
3661       Opcode == PPC::LWA    || Opcode == PPC::LWAX    ||
3662       Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
3663       Opcode == PPC::LHA    || Opcode == PPC::LHAX    ||
3664       Opcode == PPC::LHA8   || Opcode == PPC::LHAX8   ||
3665       Opcode == PPC::LBZ    || Opcode == PPC::LBZX    ||
3666       Opcode == PPC::LBZ8   || Opcode == PPC::LBZX8   ||
3667       Opcode == PPC::LBZU   || Opcode == PPC::LBZUX   ||
3668       Opcode == PPC::LBZU8  || Opcode == PPC::LBZUX8  ||
3669       Opcode == PPC::LHZ    || Opcode == PPC::LHZX    ||
3670       Opcode == PPC::LHZ8   || Opcode == PPC::LHZX8   ||
3671       Opcode == PPC::LHZU   || Opcode == PPC::LHZUX   ||
3672       Opcode == PPC::LHZU8  || Opcode == PPC::LHZUX8  ||
3673       Opcode == PPC::EXTSB  || Opcode == PPC::EXTSBo  ||
3674       Opcode == PPC::EXTSH  || Opcode == PPC::EXTSHo  ||
3675       Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8  ||
3676       Opcode == PPC::EXTSW  || Opcode == PPC::EXTSWo  ||
3677       Opcode == PPC::SETB   || Opcode == PPC::SETB8   ||
3678       Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
3679       Opcode == PPC::EXTSB8_32_64)
3680     return true;
3681 
3682   if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
3683     return true;
3684 
3685   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
3686        Opcode == PPC::RLWNM  || Opcode == PPC::RLWNMo) &&
3687       MI.getOperand(3).getImm() > 0 &&
3688       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3689     return true;
3690 
3691   return false;
3692 }
3693 
3694 // This function returns true if the machine instruction
3695 // always outputs zeros in higher 32 bits.
3696 static bool isZeroExtendingOp(const MachineInstr &MI) {
3697   int Opcode = MI.getOpcode();
3698   // The 16-bit immediate is sign-extended in li/lis.
3699   // If the most significant bit is zero, all higher bits are zero.
3700   if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
3701       Opcode == PPC::LIS || Opcode == PPC::LIS8) {
3702     int64_t Imm = MI.getOperand(1).getImm();
3703     if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
3704       return true;
3705   }
3706 
3707   // We have some variations of rotate-and-mask instructions
3708   // that clear higher 32-bits.
3709   if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
3710        Opcode == PPC::RLDCL  || Opcode == PPC::RLDCLo  ||
3711        Opcode == PPC::RLDICL_32_64) &&
3712       MI.getOperand(3).getImm() >= 32)
3713     return true;
3714 
3715   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
3716       MI.getOperand(3).getImm() >= 32 &&
3717       MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
3718     return true;
3719 
3720   if ((Opcode == PPC::RLWINM  || Opcode == PPC::RLWINMo ||
3721        Opcode == PPC::RLWNM   || Opcode == PPC::RLWNMo  ||
3722        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
3723       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3724     return true;
3725 
3726   // There are other instructions that clear higher 32-bits.
3727   if (Opcode == PPC::CNTLZW  || Opcode == PPC::CNTLZWo ||
3728       Opcode == PPC::CNTTZW  || Opcode == PPC::CNTTZWo ||
3729       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
3730       Opcode == PPC::CNTLZD  || Opcode == PPC::CNTLZDo ||
3731       Opcode == PPC::CNTTZD  || Opcode == PPC::CNTTZDo ||
3732       Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW ||
3733       Opcode == PPC::SLW     || Opcode == PPC::SLWo    ||
3734       Opcode == PPC::SRW     || Opcode == PPC::SRWo    ||
3735       Opcode == PPC::SLW8    || Opcode == PPC::SRW8    ||
3736       Opcode == PPC::SLWI    || Opcode == PPC::SLWIo   ||
3737       Opcode == PPC::SRWI    || Opcode == PPC::SRWIo   ||
3738       Opcode == PPC::LWZ     || Opcode == PPC::LWZX    ||
3739       Opcode == PPC::LWZU    || Opcode == PPC::LWZUX   ||
3740       Opcode == PPC::LWBRX   || Opcode == PPC::LHBRX   ||
3741       Opcode == PPC::LHZ     || Opcode == PPC::LHZX    ||
3742       Opcode == PPC::LHZU    || Opcode == PPC::LHZUX   ||
3743       Opcode == PPC::LBZ     || Opcode == PPC::LBZX    ||
3744       Opcode == PPC::LBZU    || Opcode == PPC::LBZUX   ||
3745       Opcode == PPC::LWZ8    || Opcode == PPC::LWZX8   ||
3746       Opcode == PPC::LWZU8   || Opcode == PPC::LWZUX8  ||
3747       Opcode == PPC::LWBRX8  || Opcode == PPC::LHBRX8  ||
3748       Opcode == PPC::LHZ8    || Opcode == PPC::LHZX8   ||
3749       Opcode == PPC::LHZU8   || Opcode == PPC::LHZUX8  ||
3750       Opcode == PPC::LBZ8    || Opcode == PPC::LBZX8   ||
3751       Opcode == PPC::LBZU8   || Opcode == PPC::LBZUX8  ||
3752       Opcode == PPC::ANDIo   || Opcode == PPC::ANDISo  ||
3753       Opcode == PPC::ROTRWI  || Opcode == PPC::ROTRWIo ||
3754       Opcode == PPC::EXTLWI  || Opcode == PPC::EXTLWIo ||
3755       Opcode == PPC::MFVSRWZ)
3756     return true;
3757 
3758   return false;
3759 }
3760 
3761 // This function returns true if the input MachineInstr is a TOC save
3762 // instruction.
3763 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
3764   if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
3765     return false;
3766   unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
3767   unsigned StackOffset = MI.getOperand(1).getImm();
3768   Register StackReg = MI.getOperand(2).getReg();
3769   if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
3770     return true;
3771 
3772   return false;
3773 }
3774 
3775 // We limit the max depth to track incoming values of PHIs or binary ops
3776 // (e.g. AND) to avoid excessive cost.
3777 const unsigned MAX_DEPTH = 1;
3778 
3779 bool
3780 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
3781                                    const unsigned Depth) const {
3782   const MachineFunction *MF = MI.getParent()->getParent();
3783   const MachineRegisterInfo *MRI = &MF->getRegInfo();
3784 
3785   // If we know this instruction returns sign- or zero-extended result,
3786   // return true.
3787   if (SignExt ? isSignExtendingOp(MI):
3788                 isZeroExtendingOp(MI))
3789     return true;
3790 
3791   switch (MI.getOpcode()) {
3792   case PPC::COPY: {
3793     Register SrcReg = MI.getOperand(1).getReg();
3794 
3795     // In both ELFv1 and v2 ABI, method parameters and the return value
3796     // are sign- or zero-extended.
3797     if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
3798       const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
3799       // We check the ZExt/SExt flags for a method parameter.
3800       if (MI.getParent()->getBasicBlock() ==
3801           &MF->getFunction().getEntryBlock()) {
3802         Register VReg = MI.getOperand(0).getReg();
3803         if (MF->getRegInfo().isLiveIn(VReg))
3804           return SignExt ? FuncInfo->isLiveInSExt(VReg) :
3805                            FuncInfo->isLiveInZExt(VReg);
3806       }
3807 
3808       // For a method return value, we check the ZExt/SExt flags in attribute.
3809       // We assume the following code sequence for method call.
3810       //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
3811       //   BL8_NOP @func,...
3812       //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
3813       //   %5 = COPY %x3; G8RC:%5
3814       if (SrcReg == PPC::X3) {
3815         const MachineBasicBlock *MBB = MI.getParent();
3816         MachineBasicBlock::const_instr_iterator II =
3817           MachineBasicBlock::const_instr_iterator(&MI);
3818         if (II != MBB->instr_begin() &&
3819             (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
3820           const MachineInstr &CallMI = *(--II);
3821           if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
3822             const Function *CalleeFn =
3823               dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
3824             if (!CalleeFn)
3825               return false;
3826             const IntegerType *IntTy =
3827               dyn_cast<IntegerType>(CalleeFn->getReturnType());
3828             const AttributeSet &Attrs =
3829               CalleeFn->getAttributes().getRetAttributes();
3830             if (IntTy && IntTy->getBitWidth() <= 32)
3831               return Attrs.hasAttribute(SignExt ? Attribute::SExt :
3832                                                   Attribute::ZExt);
3833           }
3834         }
3835       }
3836     }
3837 
3838     // If this is a copy from another register, we recursively check source.
3839     if (!Register::isVirtualRegister(SrcReg))
3840       return false;
3841     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3842     if (SrcMI != NULL)
3843       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3844 
3845     return false;
3846   }
3847 
3848   case PPC::ANDIo:
3849   case PPC::ANDISo:
3850   case PPC::ORI:
3851   case PPC::ORIS:
3852   case PPC::XORI:
3853   case PPC::XORIS:
3854   case PPC::ANDIo8:
3855   case PPC::ANDISo8:
3856   case PPC::ORI8:
3857   case PPC::ORIS8:
3858   case PPC::XORI8:
3859   case PPC::XORIS8: {
3860     // logical operation with 16-bit immediate does not change the upper bits.
3861     // So, we track the operand register as we do for register copy.
3862     Register SrcReg = MI.getOperand(1).getReg();
3863     if (!Register::isVirtualRegister(SrcReg))
3864       return false;
3865     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3866     if (SrcMI != NULL)
3867       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3868 
3869     return false;
3870   }
3871 
3872   // If all incoming values are sign-/zero-extended,
3873   // the output of OR, ISEL or PHI is also sign-/zero-extended.
3874   case PPC::OR:
3875   case PPC::OR8:
3876   case PPC::ISEL:
3877   case PPC::PHI: {
3878     if (Depth >= MAX_DEPTH)
3879       return false;
3880 
3881     // The input registers for PHI are operand 1, 3, ...
3882     // The input registers for others are operand 1 and 2.
3883     unsigned E = 3, D = 1;
3884     if (MI.getOpcode() == PPC::PHI) {
3885       E = MI.getNumOperands();
3886       D = 2;
3887     }
3888 
3889     for (unsigned I = 1; I != E; I += D) {
3890       if (MI.getOperand(I).isReg()) {
3891         Register SrcReg = MI.getOperand(I).getReg();
3892         if (!Register::isVirtualRegister(SrcReg))
3893           return false;
3894         const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3895         if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
3896           return false;
3897       }
3898       else
3899         return false;
3900     }
3901     return true;
3902   }
3903 
3904   // If at least one of the incoming values of an AND is zero extended
3905   // then the output is also zero-extended. If both of the incoming values
3906   // are sign-extended then the output is also sign extended.
3907   case PPC::AND:
3908   case PPC::AND8: {
3909     if (Depth >= MAX_DEPTH)
3910        return false;
3911 
3912     assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
3913 
3914     Register SrcReg1 = MI.getOperand(1).getReg();
3915     Register SrcReg2 = MI.getOperand(2).getReg();
3916 
3917     if (!Register::isVirtualRegister(SrcReg1) ||
3918         !Register::isVirtualRegister(SrcReg2))
3919       return false;
3920 
3921     const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
3922     const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
3923     if (!MISrc1 || !MISrc2)
3924         return false;
3925 
3926     if(SignExt)
3927         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
3928                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3929     else
3930         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
3931                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3932   }
3933 
3934   default:
3935     break;
3936   }
3937   return false;
3938 }
3939 
3940 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
3941   return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
3942 }
3943 
3944 bool PPCInstrInfo::analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
3945                                MachineInstr *&CmpInst) const {
3946   MachineBasicBlock *LoopEnd = L.getBottomBlock();
3947   MachineBasicBlock::iterator I = LoopEnd->getFirstTerminator();
3948   // We really "analyze" only CTR loops right now.
3949   if (I != LoopEnd->end() && isBDNZ(I->getOpcode())) {
3950     IndVarInst = nullptr;
3951     CmpInst = &*I;
3952     return false;
3953   }
3954   return true;
3955 }
3956 
3957 MachineInstr *
3958 PPCInstrInfo::findLoopInstr(MachineBasicBlock &PreHeader) const {
3959 
3960   unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
3961 
3962   // The loop set-up instruction should be in preheader
3963   for (auto &I : PreHeader.instrs())
3964     if (I.getOpcode() == LOOPi)
3965       return &I;
3966   return nullptr;
3967 }
3968 
3969 unsigned PPCInstrInfo::reduceLoopCount(
3970     MachineBasicBlock &MBB, MachineBasicBlock &PreHeader, MachineInstr *IndVar,
3971     MachineInstr &Cmp, SmallVectorImpl<MachineOperand> &Cond,
3972     SmallVectorImpl<MachineInstr *> &PrevInsts, unsigned Iter,
3973     unsigned MaxIter) const {
3974   // We expect a hardware loop currently. This means that IndVar is set
3975   // to null, and the compare is the ENDLOOP instruction.
3976   assert((!IndVar) && isBDNZ(Cmp.getOpcode()) && "Expecting a CTR loop");
3977   MachineFunction *MF = MBB.getParent();
3978   DebugLoc DL = Cmp.getDebugLoc();
3979   MachineInstr *Loop = findLoopInstr(PreHeader);
3980   if (!Loop)
3981     return 0;
3982   Register LoopCountReg = Loop->getOperand(0).getReg();
3983   MachineRegisterInfo &MRI = MF->getRegInfo();
3984   MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
3985 
3986   if (!LoopCount)
3987     return 0;
3988   // If the loop trip count is a compile-time value, then just change the
3989   // value.
3990   if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) {
3991     int64_t Offset = LoopCount->getOperand(1).getImm();
3992     if (Offset <= 1) {
3993       LoopCount->eraseFromParent();
3994       Loop->eraseFromParent();
3995       return 0;
3996     }
3997     LoopCount->getOperand(1).setImm(Offset - 1);
3998     return Offset - 1;
3999   }
4000 
4001   // The loop trip count is a run-time value.
4002   // We need to subtract one from the trip count,
4003   // and insert branch later to check if we're done with the loop.
4004 
4005   // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
4006   // so we don't need to generate any thing here.
4007   Cond.push_back(MachineOperand::CreateImm(0));
4008   Cond.push_back(MachineOperand::CreateReg(
4009       Subtarget.isPPC64() ? PPC::CTR8 : PPC::CTR, true));
4010   return LoopCountReg;
4011 }
4012 
4013 // Return true if get the base operand, byte offset of an instruction and the
4014 // memory width. Width is the size of memory that is being loaded/stored.
4015 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
4016   const MachineInstr &LdSt,
4017   const MachineOperand *&BaseReg,
4018   int64_t &Offset,
4019   unsigned &Width,
4020   const TargetRegisterInfo *TRI) const {
4021   assert(LdSt.mayLoadOrStore() && "Expected a memory operation.");
4022 
4023   // Handle only loads/stores with base register followed by immediate offset.
4024   if (LdSt.getNumExplicitOperands() != 3)
4025     return false;
4026   if (!LdSt.getOperand(1).isImm() || !LdSt.getOperand(2).isReg())
4027     return false;
4028 
4029   if (!LdSt.hasOneMemOperand())
4030     return false;
4031 
4032   Width = (*LdSt.memoperands_begin())->getSize();
4033   Offset = LdSt.getOperand(1).getImm();
4034   BaseReg = &LdSt.getOperand(2);
4035   return true;
4036 }
4037 
4038 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
4039     const MachineInstr &MIa, const MachineInstr &MIb,
4040     AliasAnalysis * /*AA*/) const {
4041   assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
4042   assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
4043 
4044   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
4045       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
4046     return false;
4047 
4048   // Retrieve the base register, offset from the base register and width. Width
4049   // is the size of memory that is being loaded/stored (e.g. 1, 2, 4).  If
4050   // base registers are identical, and the offset of a lower memory access +
4051   // the width doesn't overlap the offset of a higher memory access,
4052   // then the memory accesses are different.
4053   const TargetRegisterInfo *TRI = &getRegisterInfo();
4054   const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
4055   int64_t OffsetA = 0, OffsetB = 0;
4056   unsigned int WidthA = 0, WidthB = 0;
4057   if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
4058       getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
4059     if (BaseOpA->isIdenticalTo(*BaseOpB)) {
4060       int LowOffset = std::min(OffsetA, OffsetB);
4061       int HighOffset = std::max(OffsetA, OffsetB);
4062       int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
4063       if (LowOffset + LowWidth <= HighOffset)
4064         return true;
4065     }
4066   }
4067   return false;
4068 }
4069