1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/PseudoSourceValue.h" 29 #include "llvm/CodeGen/ScheduleDAG.h" 30 #include "llvm/CodeGen/SlotIndexes.h" 31 #include "llvm/CodeGen/StackMaps.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "ppc-instr-info" 43 44 #define GET_INSTRMAP_INFO 45 #define GET_INSTRINFO_CTOR_DTOR 46 #include "PPCGenInstrInfo.inc" 47 48 STATISTIC(NumStoreSPILLVSRRCAsVec, 49 "Number of spillvsrrc spilled to stack as vec"); 50 STATISTIC(NumStoreSPILLVSRRCAsGpr, 51 "Number of spillvsrrc spilled to stack as gpr"); 52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 53 STATISTIC(CmpIselsConverted, 54 "Number of ISELs that depend on comparison of constants converted"); 55 STATISTIC(MissedConvertibleImmediateInstrs, 56 "Number of compare-immediate instructions fed by constants"); 57 STATISTIC(NumRcRotatesConvertedToRcAnd, 58 "Number of record-form rotates converted to record-form andi"); 59 60 static cl:: 61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 62 cl::desc("Disable analysis for CTR loops")); 63 64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 65 cl::desc("Disable compare instruction optimization"), cl::Hidden); 66 67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 69 cl::Hidden); 70 71 static cl::opt<bool> 72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 73 cl::desc("Use the old (incorrect) instruction latency calculation")); 74 75 // Index into the OpcodesForSpill array. 76 enum SpillOpcodeKey { 77 SOK_Int4Spill, 78 SOK_Int8Spill, 79 SOK_Float8Spill, 80 SOK_Float4Spill, 81 SOK_CRSpill, 82 SOK_CRBitSpill, 83 SOK_VRVectorSpill, 84 SOK_VSXVectorSpill, 85 SOK_VectorFloat8Spill, 86 SOK_VectorFloat4Spill, 87 SOK_VRSaveSpill, 88 SOK_QuadFloat8Spill, 89 SOK_QuadFloat4Spill, 90 SOK_QuadBitSpill, 91 SOK_SpillToVSR, 92 SOK_SPESpill, 93 SOK_LastOpcodeSpill // This must be last on the enum. 94 }; 95 96 // Pin the vtable to this file. 97 void PPCInstrInfo::anchor() {} 98 99 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 100 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 101 /* CatchRetOpcode */ -1, 102 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 103 Subtarget(STI), RI(STI.getTargetMachine()) {} 104 105 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 106 /// this target when scheduling the DAG. 107 ScheduleHazardRecognizer * 108 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 109 const ScheduleDAG *DAG) const { 110 unsigned Directive = 111 static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); 112 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 113 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 114 const InstrItineraryData *II = 115 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 116 return new ScoreboardHazardRecognizer(II, DAG); 117 } 118 119 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 120 } 121 122 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 123 /// to use for this target when scheduling the DAG. 124 ScheduleHazardRecognizer * 125 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 126 const ScheduleDAG *DAG) const { 127 unsigned Directive = 128 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); 129 130 // FIXME: Leaving this as-is until we have POWER9 scheduling info 131 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 132 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 133 134 // Most subtargets use a PPC970 recognizer. 135 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 136 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 137 assert(DAG->TII && "No InstrInfo?"); 138 139 return new PPCHazardRecognizer970(*DAG); 140 } 141 142 return new ScoreboardHazardRecognizer(II, DAG); 143 } 144 145 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 146 const MachineInstr &MI, 147 unsigned *PredCost) const { 148 if (!ItinData || UseOldLatencyCalc) 149 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 150 151 // The default implementation of getInstrLatency calls getStageLatency, but 152 // getStageLatency does not do the right thing for us. While we have 153 // itinerary, most cores are fully pipelined, and so the itineraries only 154 // express the first part of the pipeline, not every stage. Instead, we need 155 // to use the listed output operand cycle number (using operand 0 here, which 156 // is an output). 157 158 unsigned Latency = 1; 159 unsigned DefClass = MI.getDesc().getSchedClass(); 160 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 161 const MachineOperand &MO = MI.getOperand(i); 162 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 163 continue; 164 165 int Cycle = ItinData->getOperandCycle(DefClass, i); 166 if (Cycle < 0) 167 continue; 168 169 Latency = std::max(Latency, (unsigned) Cycle); 170 } 171 172 return Latency; 173 } 174 175 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 176 const MachineInstr &DefMI, unsigned DefIdx, 177 const MachineInstr &UseMI, 178 unsigned UseIdx) const { 179 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 180 UseMI, UseIdx); 181 182 if (!DefMI.getParent()) 183 return Latency; 184 185 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 186 Register Reg = DefMO.getReg(); 187 188 bool IsRegCR; 189 if (Register::isVirtualRegister(Reg)) { 190 const MachineRegisterInfo *MRI = 191 &DefMI.getParent()->getParent()->getRegInfo(); 192 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 193 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 194 } else { 195 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 196 PPC::CRBITRCRegClass.contains(Reg); 197 } 198 199 if (UseMI.isBranch() && IsRegCR) { 200 if (Latency < 0) 201 Latency = getInstrLatency(ItinData, DefMI); 202 203 // On some cores, there is an additional delay between writing to a condition 204 // register, and using it from a branch. 205 unsigned Directive = Subtarget.getCPUDirective(); 206 switch (Directive) { 207 default: break; 208 case PPC::DIR_7400: 209 case PPC::DIR_750: 210 case PPC::DIR_970: 211 case PPC::DIR_E5500: 212 case PPC::DIR_PWR4: 213 case PPC::DIR_PWR5: 214 case PPC::DIR_PWR5X: 215 case PPC::DIR_PWR6: 216 case PPC::DIR_PWR6X: 217 case PPC::DIR_PWR7: 218 case PPC::DIR_PWR8: 219 // FIXME: Is this needed for POWER9? 220 Latency += 2; 221 break; 222 } 223 } 224 225 return Latency; 226 } 227 228 // This function does not list all associative and commutative operations, but 229 // only those worth feeding through the machine combiner in an attempt to 230 // reduce the critical path. Mostly, this means floating-point operations, 231 // because they have high latencies (compared to other operations, such and 232 // and/or, which are also associative and commutative, but have low latencies). 233 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 234 switch (Inst.getOpcode()) { 235 // FP Add: 236 case PPC::FADD: 237 case PPC::FADDS: 238 // FP Multiply: 239 case PPC::FMUL: 240 case PPC::FMULS: 241 // Altivec Add: 242 case PPC::VADDFP: 243 // VSX Add: 244 case PPC::XSADDDP: 245 case PPC::XVADDDP: 246 case PPC::XVADDSP: 247 case PPC::XSADDSP: 248 // VSX Multiply: 249 case PPC::XSMULDP: 250 case PPC::XVMULDP: 251 case PPC::XVMULSP: 252 case PPC::XSMULSP: 253 // QPX Add: 254 case PPC::QVFADD: 255 case PPC::QVFADDS: 256 case PPC::QVFADDSs: 257 // QPX Multiply: 258 case PPC::QVFMUL: 259 case PPC::QVFMULS: 260 case PPC::QVFMULSs: 261 return true; 262 default: 263 return false; 264 } 265 } 266 267 bool PPCInstrInfo::getMachineCombinerPatterns( 268 MachineInstr &Root, 269 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 270 // Using the machine combiner in this way is potentially expensive, so 271 // restrict to when aggressive optimizations are desired. 272 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 273 return false; 274 275 // FP reassociation is only legal when we don't need strict IEEE semantics. 276 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) 277 return false; 278 279 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 280 } 281 282 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 283 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 284 unsigned &SrcReg, unsigned &DstReg, 285 unsigned &SubIdx) const { 286 switch (MI.getOpcode()) { 287 default: return false; 288 case PPC::EXTSW: 289 case PPC::EXTSW_32: 290 case PPC::EXTSW_32_64: 291 SrcReg = MI.getOperand(1).getReg(); 292 DstReg = MI.getOperand(0).getReg(); 293 SubIdx = PPC::sub_32; 294 return true; 295 } 296 } 297 298 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 299 int &FrameIndex) const { 300 unsigned Opcode = MI.getOpcode(); 301 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 302 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 303 304 if (End != std::find(OpcodesForSpill, End, Opcode)) { 305 // Check for the operands added by addFrameReference (the immediate is the 306 // offset which defaults to 0). 307 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 308 MI.getOperand(2).isFI()) { 309 FrameIndex = MI.getOperand(2).getIndex(); 310 return MI.getOperand(0).getReg(); 311 } 312 } 313 return 0; 314 } 315 316 // For opcodes with the ReMaterializable flag set, this function is called to 317 // verify the instruction is really rematable. 318 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 319 AliasAnalysis *AA) const { 320 switch (MI.getOpcode()) { 321 default: 322 // This function should only be called for opcodes with the ReMaterializable 323 // flag set. 324 llvm_unreachable("Unknown rematerializable operation!"); 325 break; 326 case PPC::LI: 327 case PPC::LI8: 328 case PPC::LIS: 329 case PPC::LIS8: 330 case PPC::QVGPCI: 331 case PPC::ADDIStocHA: 332 case PPC::ADDIStocHA8: 333 case PPC::ADDItocL: 334 case PPC::LOAD_STACK_GUARD: 335 case PPC::XXLXORz: 336 case PPC::XXLXORspz: 337 case PPC::XXLXORdpz: 338 case PPC::XXLEQVOnes: 339 case PPC::V_SET0B: 340 case PPC::V_SET0H: 341 case PPC::V_SET0: 342 case PPC::V_SETALLONESB: 343 case PPC::V_SETALLONESH: 344 case PPC::V_SETALLONES: 345 case PPC::CRSET: 346 case PPC::CRUNSET: 347 return true; 348 } 349 return false; 350 } 351 352 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 353 int &FrameIndex) const { 354 unsigned Opcode = MI.getOpcode(); 355 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 356 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 357 358 if (End != std::find(OpcodesForSpill, End, Opcode)) { 359 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 360 MI.getOperand(2).isFI()) { 361 FrameIndex = MI.getOperand(2).getIndex(); 362 return MI.getOperand(0).getReg(); 363 } 364 } 365 return 0; 366 } 367 368 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 369 unsigned OpIdx1, 370 unsigned OpIdx2) const { 371 MachineFunction &MF = *MI.getParent()->getParent(); 372 373 // Normal instructions can be commuted the obvious way. 374 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) 375 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 376 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 377 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 378 // changing the relative order of the mask operands might change what happens 379 // to the high-bits of the mask (and, thus, the result). 380 381 // Cannot commute if it has a non-zero rotate count. 382 if (MI.getOperand(3).getImm() != 0) 383 return nullptr; 384 385 // If we have a zero rotate count, we have: 386 // M = mask(MB,ME) 387 // Op0 = (Op1 & ~M) | (Op2 & M) 388 // Change this to: 389 // M = mask((ME+1)&31, (MB-1)&31) 390 // Op0 = (Op2 & ~M) | (Op1 & M) 391 392 // Swap op1/op2 393 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 394 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); 395 Register Reg0 = MI.getOperand(0).getReg(); 396 Register Reg1 = MI.getOperand(1).getReg(); 397 Register Reg2 = MI.getOperand(2).getReg(); 398 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 399 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 400 bool Reg1IsKill = MI.getOperand(1).isKill(); 401 bool Reg2IsKill = MI.getOperand(2).isKill(); 402 bool ChangeReg0 = false; 403 // If machine instrs are no longer in two-address forms, update 404 // destination register as well. 405 if (Reg0 == Reg1) { 406 // Must be two address instruction! 407 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 408 "Expecting a two-address instruction!"); 409 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 410 Reg2IsKill = false; 411 ChangeReg0 = true; 412 } 413 414 // Masks. 415 unsigned MB = MI.getOperand(4).getImm(); 416 unsigned ME = MI.getOperand(5).getImm(); 417 418 // We can't commute a trivial mask (there is no way to represent an all-zero 419 // mask). 420 if (MB == 0 && ME == 31) 421 return nullptr; 422 423 if (NewMI) { 424 // Create a new instruction. 425 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 426 bool Reg0IsDead = MI.getOperand(0).isDead(); 427 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 428 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 429 .addReg(Reg2, getKillRegState(Reg2IsKill)) 430 .addReg(Reg1, getKillRegState(Reg1IsKill)) 431 .addImm((ME + 1) & 31) 432 .addImm((MB - 1) & 31); 433 } 434 435 if (ChangeReg0) { 436 MI.getOperand(0).setReg(Reg2); 437 MI.getOperand(0).setSubReg(SubReg2); 438 } 439 MI.getOperand(2).setReg(Reg1); 440 MI.getOperand(1).setReg(Reg2); 441 MI.getOperand(2).setSubReg(SubReg1); 442 MI.getOperand(1).setSubReg(SubReg2); 443 MI.getOperand(2).setIsKill(Reg1IsKill); 444 MI.getOperand(1).setIsKill(Reg2IsKill); 445 446 // Swap the mask around. 447 MI.getOperand(4).setImm((ME + 1) & 31); 448 MI.getOperand(5).setImm((MB - 1) & 31); 449 return &MI; 450 } 451 452 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 453 unsigned &SrcOpIdx1, 454 unsigned &SrcOpIdx2) const { 455 // For VSX A-Type FMA instructions, it is the first two operands that can be 456 // commuted, however, because the non-encoded tied input operand is listed 457 // first, the operands to swap are actually the second and third. 458 459 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 460 if (AltOpc == -1) 461 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 462 463 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 464 // and SrcOpIdx2. 465 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 466 } 467 468 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 469 MachineBasicBlock::iterator MI) const { 470 // This function is used for scheduling, and the nop wanted here is the type 471 // that terminates dispatch groups on the POWER cores. 472 unsigned Directive = Subtarget.getCPUDirective(); 473 unsigned Opcode; 474 switch (Directive) { 475 default: Opcode = PPC::NOP; break; 476 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 477 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 478 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 479 // FIXME: Update when POWER9 scheduling model is ready. 480 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 481 } 482 483 DebugLoc DL; 484 BuildMI(MBB, MI, DL, get(Opcode)); 485 } 486 487 /// Return the noop instruction to use for a noop. 488 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 489 NopInst.setOpcode(PPC::NOP); 490 } 491 492 // Branch analysis. 493 // Note: If the condition register is set to CTR or CTR8 then this is a 494 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 495 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 496 MachineBasicBlock *&TBB, 497 MachineBasicBlock *&FBB, 498 SmallVectorImpl<MachineOperand> &Cond, 499 bool AllowModify) const { 500 bool isPPC64 = Subtarget.isPPC64(); 501 502 // If the block has no terminators, it just falls into the block after it. 503 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 504 if (I == MBB.end()) 505 return false; 506 507 if (!isUnpredicatedTerminator(*I)) 508 return false; 509 510 if (AllowModify) { 511 // If the BB ends with an unconditional branch to the fallthrough BB, 512 // we eliminate the branch instruction. 513 if (I->getOpcode() == PPC::B && 514 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 515 I->eraseFromParent(); 516 517 // We update iterator after deleting the last branch. 518 I = MBB.getLastNonDebugInstr(); 519 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 520 return false; 521 } 522 } 523 524 // Get the last instruction in the block. 525 MachineInstr &LastInst = *I; 526 527 // If there is only one terminator instruction, process it. 528 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 529 if (LastInst.getOpcode() == PPC::B) { 530 if (!LastInst.getOperand(0).isMBB()) 531 return true; 532 TBB = LastInst.getOperand(0).getMBB(); 533 return false; 534 } else if (LastInst.getOpcode() == PPC::BCC) { 535 if (!LastInst.getOperand(2).isMBB()) 536 return true; 537 // Block ends with fall-through condbranch. 538 TBB = LastInst.getOperand(2).getMBB(); 539 Cond.push_back(LastInst.getOperand(0)); 540 Cond.push_back(LastInst.getOperand(1)); 541 return false; 542 } else if (LastInst.getOpcode() == PPC::BC) { 543 if (!LastInst.getOperand(1).isMBB()) 544 return true; 545 // Block ends with fall-through condbranch. 546 TBB = LastInst.getOperand(1).getMBB(); 547 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 548 Cond.push_back(LastInst.getOperand(0)); 549 return false; 550 } else if (LastInst.getOpcode() == PPC::BCn) { 551 if (!LastInst.getOperand(1).isMBB()) 552 return true; 553 // Block ends with fall-through condbranch. 554 TBB = LastInst.getOperand(1).getMBB(); 555 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 556 Cond.push_back(LastInst.getOperand(0)); 557 return false; 558 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 559 LastInst.getOpcode() == PPC::BDNZ) { 560 if (!LastInst.getOperand(0).isMBB()) 561 return true; 562 if (DisableCTRLoopAnal) 563 return true; 564 TBB = LastInst.getOperand(0).getMBB(); 565 Cond.push_back(MachineOperand::CreateImm(1)); 566 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 567 true)); 568 return false; 569 } else if (LastInst.getOpcode() == PPC::BDZ8 || 570 LastInst.getOpcode() == PPC::BDZ) { 571 if (!LastInst.getOperand(0).isMBB()) 572 return true; 573 if (DisableCTRLoopAnal) 574 return true; 575 TBB = LastInst.getOperand(0).getMBB(); 576 Cond.push_back(MachineOperand::CreateImm(0)); 577 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 578 true)); 579 return false; 580 } 581 582 // Otherwise, don't know what this is. 583 return true; 584 } 585 586 // Get the instruction before it if it's a terminator. 587 MachineInstr &SecondLastInst = *I; 588 589 // If there are three terminators, we don't know what sort of block this is. 590 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 591 return true; 592 593 // If the block ends with PPC::B and PPC:BCC, handle it. 594 if (SecondLastInst.getOpcode() == PPC::BCC && 595 LastInst.getOpcode() == PPC::B) { 596 if (!SecondLastInst.getOperand(2).isMBB() || 597 !LastInst.getOperand(0).isMBB()) 598 return true; 599 TBB = SecondLastInst.getOperand(2).getMBB(); 600 Cond.push_back(SecondLastInst.getOperand(0)); 601 Cond.push_back(SecondLastInst.getOperand(1)); 602 FBB = LastInst.getOperand(0).getMBB(); 603 return false; 604 } else if (SecondLastInst.getOpcode() == PPC::BC && 605 LastInst.getOpcode() == PPC::B) { 606 if (!SecondLastInst.getOperand(1).isMBB() || 607 !LastInst.getOperand(0).isMBB()) 608 return true; 609 TBB = SecondLastInst.getOperand(1).getMBB(); 610 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 611 Cond.push_back(SecondLastInst.getOperand(0)); 612 FBB = LastInst.getOperand(0).getMBB(); 613 return false; 614 } else if (SecondLastInst.getOpcode() == PPC::BCn && 615 LastInst.getOpcode() == PPC::B) { 616 if (!SecondLastInst.getOperand(1).isMBB() || 617 !LastInst.getOperand(0).isMBB()) 618 return true; 619 TBB = SecondLastInst.getOperand(1).getMBB(); 620 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 621 Cond.push_back(SecondLastInst.getOperand(0)); 622 FBB = LastInst.getOperand(0).getMBB(); 623 return false; 624 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 625 SecondLastInst.getOpcode() == PPC::BDNZ) && 626 LastInst.getOpcode() == PPC::B) { 627 if (!SecondLastInst.getOperand(0).isMBB() || 628 !LastInst.getOperand(0).isMBB()) 629 return true; 630 if (DisableCTRLoopAnal) 631 return true; 632 TBB = SecondLastInst.getOperand(0).getMBB(); 633 Cond.push_back(MachineOperand::CreateImm(1)); 634 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 635 true)); 636 FBB = LastInst.getOperand(0).getMBB(); 637 return false; 638 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 639 SecondLastInst.getOpcode() == PPC::BDZ) && 640 LastInst.getOpcode() == PPC::B) { 641 if (!SecondLastInst.getOperand(0).isMBB() || 642 !LastInst.getOperand(0).isMBB()) 643 return true; 644 if (DisableCTRLoopAnal) 645 return true; 646 TBB = SecondLastInst.getOperand(0).getMBB(); 647 Cond.push_back(MachineOperand::CreateImm(0)); 648 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 649 true)); 650 FBB = LastInst.getOperand(0).getMBB(); 651 return false; 652 } 653 654 // If the block ends with two PPC:Bs, handle it. The second one is not 655 // executed, so remove it. 656 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 657 if (!SecondLastInst.getOperand(0).isMBB()) 658 return true; 659 TBB = SecondLastInst.getOperand(0).getMBB(); 660 I = LastInst; 661 if (AllowModify) 662 I->eraseFromParent(); 663 return false; 664 } 665 666 // Otherwise, can't handle this. 667 return true; 668 } 669 670 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 671 int *BytesRemoved) const { 672 assert(!BytesRemoved && "code size not handled"); 673 674 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 675 if (I == MBB.end()) 676 return 0; 677 678 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 679 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 680 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 681 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 682 return 0; 683 684 // Remove the branch. 685 I->eraseFromParent(); 686 687 I = MBB.end(); 688 689 if (I == MBB.begin()) return 1; 690 --I; 691 if (I->getOpcode() != PPC::BCC && 692 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 693 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 694 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 695 return 1; 696 697 // Remove the branch. 698 I->eraseFromParent(); 699 return 2; 700 } 701 702 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 703 MachineBasicBlock *TBB, 704 MachineBasicBlock *FBB, 705 ArrayRef<MachineOperand> Cond, 706 const DebugLoc &DL, 707 int *BytesAdded) const { 708 // Shouldn't be a fall through. 709 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 710 assert((Cond.size() == 2 || Cond.size() == 0) && 711 "PPC branch conditions have two components!"); 712 assert(!BytesAdded && "code size not handled"); 713 714 bool isPPC64 = Subtarget.isPPC64(); 715 716 // One-way branch. 717 if (!FBB) { 718 if (Cond.empty()) // Unconditional branch 719 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 720 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 721 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 722 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 723 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 724 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 725 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 726 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 727 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 728 else // Conditional branch 729 BuildMI(&MBB, DL, get(PPC::BCC)) 730 .addImm(Cond[0].getImm()) 731 .add(Cond[1]) 732 .addMBB(TBB); 733 return 1; 734 } 735 736 // Two-way Conditional Branch. 737 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 738 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 739 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 740 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 741 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 742 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 743 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 744 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 745 else 746 BuildMI(&MBB, DL, get(PPC::BCC)) 747 .addImm(Cond[0].getImm()) 748 .add(Cond[1]) 749 .addMBB(TBB); 750 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 751 return 2; 752 } 753 754 // Select analysis. 755 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 756 ArrayRef<MachineOperand> Cond, 757 unsigned DstReg, unsigned TrueReg, 758 unsigned FalseReg, int &CondCycles, 759 int &TrueCycles, int &FalseCycles) const { 760 if (Cond.size() != 2) 761 return false; 762 763 // If this is really a bdnz-like condition, then it cannot be turned into a 764 // select. 765 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 766 return false; 767 768 // Check register classes. 769 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 770 const TargetRegisterClass *RC = 771 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 772 if (!RC) 773 return false; 774 775 // isel is for regular integer GPRs only. 776 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 777 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 778 !PPC::G8RCRegClass.hasSubClassEq(RC) && 779 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 780 return false; 781 782 // FIXME: These numbers are for the A2, how well they work for other cores is 783 // an open question. On the A2, the isel instruction has a 2-cycle latency 784 // but single-cycle throughput. These numbers are used in combination with 785 // the MispredictPenalty setting from the active SchedMachineModel. 786 CondCycles = 1; 787 TrueCycles = 1; 788 FalseCycles = 1; 789 790 return true; 791 } 792 793 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 794 MachineBasicBlock::iterator MI, 795 const DebugLoc &dl, unsigned DestReg, 796 ArrayRef<MachineOperand> Cond, unsigned TrueReg, 797 unsigned FalseReg) const { 798 assert(Cond.size() == 2 && 799 "PPC branch conditions have two components!"); 800 801 // Get the register classes. 802 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 803 const TargetRegisterClass *RC = 804 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 805 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 806 807 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 808 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 809 assert((Is64Bit || 810 PPC::GPRCRegClass.hasSubClassEq(RC) || 811 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 812 "isel is for regular integer GPRs only"); 813 814 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 815 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 816 817 unsigned SubIdx = 0; 818 bool SwapOps = false; 819 switch (SelectPred) { 820 case PPC::PRED_EQ: 821 case PPC::PRED_EQ_MINUS: 822 case PPC::PRED_EQ_PLUS: 823 SubIdx = PPC::sub_eq; SwapOps = false; break; 824 case PPC::PRED_NE: 825 case PPC::PRED_NE_MINUS: 826 case PPC::PRED_NE_PLUS: 827 SubIdx = PPC::sub_eq; SwapOps = true; break; 828 case PPC::PRED_LT: 829 case PPC::PRED_LT_MINUS: 830 case PPC::PRED_LT_PLUS: 831 SubIdx = PPC::sub_lt; SwapOps = false; break; 832 case PPC::PRED_GE: 833 case PPC::PRED_GE_MINUS: 834 case PPC::PRED_GE_PLUS: 835 SubIdx = PPC::sub_lt; SwapOps = true; break; 836 case PPC::PRED_GT: 837 case PPC::PRED_GT_MINUS: 838 case PPC::PRED_GT_PLUS: 839 SubIdx = PPC::sub_gt; SwapOps = false; break; 840 case PPC::PRED_LE: 841 case PPC::PRED_LE_MINUS: 842 case PPC::PRED_LE_PLUS: 843 SubIdx = PPC::sub_gt; SwapOps = true; break; 844 case PPC::PRED_UN: 845 case PPC::PRED_UN_MINUS: 846 case PPC::PRED_UN_PLUS: 847 SubIdx = PPC::sub_un; SwapOps = false; break; 848 case PPC::PRED_NU: 849 case PPC::PRED_NU_MINUS: 850 case PPC::PRED_NU_PLUS: 851 SubIdx = PPC::sub_un; SwapOps = true; break; 852 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 853 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 854 } 855 856 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 857 SecondReg = SwapOps ? TrueReg : FalseReg; 858 859 // The first input register of isel cannot be r0. If it is a member 860 // of a register class that can be r0, then copy it first (the 861 // register allocator should eliminate the copy). 862 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 863 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 864 const TargetRegisterClass *FirstRC = 865 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 866 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 867 unsigned OldFirstReg = FirstReg; 868 FirstReg = MRI.createVirtualRegister(FirstRC); 869 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 870 .addReg(OldFirstReg); 871 } 872 873 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 874 .addReg(FirstReg).addReg(SecondReg) 875 .addReg(Cond[1].getReg(), 0, SubIdx); 876 } 877 878 static unsigned getCRBitValue(unsigned CRBit) { 879 unsigned Ret = 4; 880 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 881 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 882 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 883 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 884 Ret = 3; 885 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 886 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 887 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 888 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 889 Ret = 2; 890 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 891 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 892 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 893 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 894 Ret = 1; 895 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 896 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 897 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 898 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 899 Ret = 0; 900 901 assert(Ret != 4 && "Invalid CR bit register"); 902 return Ret; 903 } 904 905 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 906 MachineBasicBlock::iterator I, 907 const DebugLoc &DL, MCRegister DestReg, 908 MCRegister SrcReg, bool KillSrc) const { 909 // We can end up with self copies and similar things as a result of VSX copy 910 // legalization. Promote them here. 911 const TargetRegisterInfo *TRI = &getRegisterInfo(); 912 if (PPC::F8RCRegClass.contains(DestReg) && 913 PPC::VSRCRegClass.contains(SrcReg)) { 914 MCRegister SuperReg = 915 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 916 917 if (VSXSelfCopyCrash && SrcReg == SuperReg) 918 llvm_unreachable("nop VSX copy"); 919 920 DestReg = SuperReg; 921 } else if (PPC::F8RCRegClass.contains(SrcReg) && 922 PPC::VSRCRegClass.contains(DestReg)) { 923 MCRegister SuperReg = 924 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 925 926 if (VSXSelfCopyCrash && DestReg == SuperReg) 927 llvm_unreachable("nop VSX copy"); 928 929 SrcReg = SuperReg; 930 } 931 932 // Different class register copy 933 if (PPC::CRBITRCRegClass.contains(SrcReg) && 934 PPC::GPRCRegClass.contains(DestReg)) { 935 MCRegister CRReg = getCRFromCRBit(SrcReg); 936 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 937 getKillRegState(KillSrc); 938 // Rotate the CR bit in the CR fields to be the least significant bit and 939 // then mask with 0x1 (MB = ME = 31). 940 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 941 .addReg(DestReg, RegState::Kill) 942 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 943 .addImm(31) 944 .addImm(31); 945 return; 946 } else if (PPC::CRRCRegClass.contains(SrcReg) && 947 PPC::G8RCRegClass.contains(DestReg)) { 948 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 949 getKillRegState(KillSrc); 950 return; 951 } else if (PPC::CRRCRegClass.contains(SrcReg) && 952 PPC::GPRCRegClass.contains(DestReg)) { 953 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 954 getKillRegState(KillSrc); 955 return; 956 } else if (PPC::G8RCRegClass.contains(SrcReg) && 957 PPC::VSFRCRegClass.contains(DestReg)) { 958 assert(Subtarget.hasDirectMove() && 959 "Subtarget doesn't support directmove, don't know how to copy."); 960 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 961 NumGPRtoVSRSpill++; 962 getKillRegState(KillSrc); 963 return; 964 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 965 PPC::G8RCRegClass.contains(DestReg)) { 966 assert(Subtarget.hasDirectMove() && 967 "Subtarget doesn't support directmove, don't know how to copy."); 968 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 969 getKillRegState(KillSrc); 970 return; 971 } else if (PPC::SPERCRegClass.contains(SrcReg) && 972 PPC::GPRCRegClass.contains(DestReg)) { 973 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 974 getKillRegState(KillSrc); 975 return; 976 } else if (PPC::GPRCRegClass.contains(SrcReg) && 977 PPC::SPERCRegClass.contains(DestReg)) { 978 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 979 getKillRegState(KillSrc); 980 return; 981 } 982 983 unsigned Opc; 984 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 985 Opc = PPC::OR; 986 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 987 Opc = PPC::OR8; 988 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 989 Opc = PPC::FMR; 990 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 991 Opc = PPC::MCRF; 992 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 993 Opc = PPC::VOR; 994 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 995 // There are two different ways this can be done: 996 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 997 // issue in VSU pipeline 0. 998 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 999 // can go to either pipeline. 1000 // We'll always use xxlor here, because in practically all cases where 1001 // copies are generated, they are close enough to some use that the 1002 // lower-latency form is preferable. 1003 Opc = PPC::XXLOR; 1004 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1005 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1006 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1007 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 1008 Opc = PPC::QVFMR; 1009 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 1010 Opc = PPC::QVFMRs; 1011 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 1012 Opc = PPC::QVFMRb; 1013 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1014 Opc = PPC::CROR; 1015 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1016 Opc = PPC::EVOR; 1017 else 1018 llvm_unreachable("Impossible reg-to-reg copy"); 1019 1020 const MCInstrDesc &MCID = get(Opc); 1021 if (MCID.getNumOperands() == 3) 1022 BuildMI(MBB, I, DL, MCID, DestReg) 1023 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1024 else 1025 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1026 } 1027 1028 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg, 1029 const TargetRegisterClass *RC) 1030 const { 1031 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1032 int OpcodeIndex = 0; 1033 1034 if (RC != nullptr) { 1035 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1036 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1037 OpcodeIndex = SOK_Int4Spill; 1038 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1039 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1040 OpcodeIndex = SOK_Int8Spill; 1041 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1042 OpcodeIndex = SOK_Float8Spill; 1043 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1044 OpcodeIndex = SOK_Float4Spill; 1045 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1046 OpcodeIndex = SOK_SPESpill; 1047 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1048 OpcodeIndex = SOK_CRSpill; 1049 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1050 OpcodeIndex = SOK_CRBitSpill; 1051 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1052 OpcodeIndex = SOK_VRVectorSpill; 1053 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1054 OpcodeIndex = SOK_VSXVectorSpill; 1055 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1056 OpcodeIndex = SOK_VectorFloat8Spill; 1057 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1058 OpcodeIndex = SOK_VectorFloat4Spill; 1059 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1060 OpcodeIndex = SOK_VRSaveSpill; 1061 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1062 OpcodeIndex = SOK_QuadFloat8Spill; 1063 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1064 OpcodeIndex = SOK_QuadFloat4Spill; 1065 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1066 OpcodeIndex = SOK_QuadBitSpill; 1067 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1068 OpcodeIndex = SOK_SpillToVSR; 1069 } else { 1070 llvm_unreachable("Unknown regclass!"); 1071 } 1072 } else { 1073 if (PPC::GPRCRegClass.contains(Reg) || 1074 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1075 OpcodeIndex = SOK_Int4Spill; 1076 } else if (PPC::G8RCRegClass.contains(Reg) || 1077 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1078 OpcodeIndex = SOK_Int8Spill; 1079 } else if (PPC::F8RCRegClass.contains(Reg)) { 1080 OpcodeIndex = SOK_Float8Spill; 1081 } else if (PPC::F4RCRegClass.contains(Reg)) { 1082 OpcodeIndex = SOK_Float4Spill; 1083 } else if (PPC::SPERCRegClass.contains(Reg)) { 1084 OpcodeIndex = SOK_SPESpill; 1085 } else if (PPC::CRRCRegClass.contains(Reg)) { 1086 OpcodeIndex = SOK_CRSpill; 1087 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1088 OpcodeIndex = SOK_CRBitSpill; 1089 } else if (PPC::VRRCRegClass.contains(Reg)) { 1090 OpcodeIndex = SOK_VRVectorSpill; 1091 } else if (PPC::VSRCRegClass.contains(Reg)) { 1092 OpcodeIndex = SOK_VSXVectorSpill; 1093 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1094 OpcodeIndex = SOK_VectorFloat8Spill; 1095 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1096 OpcodeIndex = SOK_VectorFloat4Spill; 1097 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1098 OpcodeIndex = SOK_VRSaveSpill; 1099 } else if (PPC::QFRCRegClass.contains(Reg)) { 1100 OpcodeIndex = SOK_QuadFloat8Spill; 1101 } else if (PPC::QSRCRegClass.contains(Reg)) { 1102 OpcodeIndex = SOK_QuadFloat4Spill; 1103 } else if (PPC::QBRCRegClass.contains(Reg)) { 1104 OpcodeIndex = SOK_QuadBitSpill; 1105 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1106 OpcodeIndex = SOK_SpillToVSR; 1107 } else { 1108 llvm_unreachable("Unknown regclass!"); 1109 } 1110 } 1111 return OpcodesForSpill[OpcodeIndex]; 1112 } 1113 1114 unsigned 1115 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg, 1116 const TargetRegisterClass *RC) const { 1117 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1118 int OpcodeIndex = 0; 1119 1120 if (RC != nullptr) { 1121 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1122 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1123 OpcodeIndex = SOK_Int4Spill; 1124 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1125 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1126 OpcodeIndex = SOK_Int8Spill; 1127 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1128 OpcodeIndex = SOK_Float8Spill; 1129 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1130 OpcodeIndex = SOK_Float4Spill; 1131 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1132 OpcodeIndex = SOK_SPESpill; 1133 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1134 OpcodeIndex = SOK_CRSpill; 1135 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1136 OpcodeIndex = SOK_CRBitSpill; 1137 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1138 OpcodeIndex = SOK_VRVectorSpill; 1139 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1140 OpcodeIndex = SOK_VSXVectorSpill; 1141 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1142 OpcodeIndex = SOK_VectorFloat8Spill; 1143 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1144 OpcodeIndex = SOK_VectorFloat4Spill; 1145 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1146 OpcodeIndex = SOK_VRSaveSpill; 1147 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1148 OpcodeIndex = SOK_QuadFloat8Spill; 1149 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1150 OpcodeIndex = SOK_QuadFloat4Spill; 1151 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1152 OpcodeIndex = SOK_QuadBitSpill; 1153 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1154 OpcodeIndex = SOK_SpillToVSR; 1155 } else { 1156 llvm_unreachable("Unknown regclass!"); 1157 } 1158 } else { 1159 if (PPC::GPRCRegClass.contains(Reg) || 1160 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1161 OpcodeIndex = SOK_Int4Spill; 1162 } else if (PPC::G8RCRegClass.contains(Reg) || 1163 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1164 OpcodeIndex = SOK_Int8Spill; 1165 } else if (PPC::F8RCRegClass.contains(Reg)) { 1166 OpcodeIndex = SOK_Float8Spill; 1167 } else if (PPC::F4RCRegClass.contains(Reg)) { 1168 OpcodeIndex = SOK_Float4Spill; 1169 } else if (PPC::SPERCRegClass.contains(Reg)) { 1170 OpcodeIndex = SOK_SPESpill; 1171 } else if (PPC::CRRCRegClass.contains(Reg)) { 1172 OpcodeIndex = SOK_CRSpill; 1173 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1174 OpcodeIndex = SOK_CRBitSpill; 1175 } else if (PPC::VRRCRegClass.contains(Reg)) { 1176 OpcodeIndex = SOK_VRVectorSpill; 1177 } else if (PPC::VSRCRegClass.contains(Reg)) { 1178 OpcodeIndex = SOK_VSXVectorSpill; 1179 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1180 OpcodeIndex = SOK_VectorFloat8Spill; 1181 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1182 OpcodeIndex = SOK_VectorFloat4Spill; 1183 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1184 OpcodeIndex = SOK_VRSaveSpill; 1185 } else if (PPC::QFRCRegClass.contains(Reg)) { 1186 OpcodeIndex = SOK_QuadFloat8Spill; 1187 } else if (PPC::QSRCRegClass.contains(Reg)) { 1188 OpcodeIndex = SOK_QuadFloat4Spill; 1189 } else if (PPC::QBRCRegClass.contains(Reg)) { 1190 OpcodeIndex = SOK_QuadBitSpill; 1191 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1192 OpcodeIndex = SOK_SpillToVSR; 1193 } else { 1194 llvm_unreachable("Unknown regclass!"); 1195 } 1196 } 1197 return OpcodesForSpill[OpcodeIndex]; 1198 } 1199 1200 void PPCInstrInfo::StoreRegToStackSlot( 1201 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1202 const TargetRegisterClass *RC, 1203 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1204 unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC); 1205 DebugLoc DL; 1206 1207 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1208 FuncInfo->setHasSpills(); 1209 1210 NewMIs.push_back(addFrameReference( 1211 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1212 FrameIdx)); 1213 1214 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1215 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1216 FuncInfo->setSpillsCR(); 1217 1218 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1219 FuncInfo->setSpillsVRSAVE(); 1220 1221 if (isXFormMemOp(Opcode)) 1222 FuncInfo->setHasNonRISpills(); 1223 } 1224 1225 void PPCInstrInfo::storeRegToStackSlotNoUpd( 1226 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, 1227 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 1228 const TargetRegisterInfo *TRI) const { 1229 MachineFunction &MF = *MBB.getParent(); 1230 SmallVector<MachineInstr *, 4> NewMIs; 1231 1232 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1233 1234 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1235 MBB.insert(MI, NewMIs[i]); 1236 1237 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1238 MachineMemOperand *MMO = MF.getMachineMemOperand( 1239 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1240 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1241 MFI.getObjectAlignment(FrameIdx)); 1242 NewMIs.back()->addMemOperand(MF, MMO); 1243 } 1244 1245 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1246 MachineBasicBlock::iterator MI, 1247 Register SrcReg, bool isKill, 1248 int FrameIdx, 1249 const TargetRegisterClass *RC, 1250 const TargetRegisterInfo *TRI) const { 1251 // We need to avoid a situation in which the value from a VRRC register is 1252 // spilled using an Altivec instruction and reloaded into a VSRC register 1253 // using a VSX instruction. The issue with this is that the VSX 1254 // load/store instructions swap the doublewords in the vector and the Altivec 1255 // ones don't. The register classes on the spill/reload may be different if 1256 // the register is defined using an Altivec instruction and is then used by a 1257 // VSX instruction. 1258 RC = updatedRC(RC); 1259 storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI); 1260 } 1261 1262 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1263 unsigned DestReg, int FrameIdx, 1264 const TargetRegisterClass *RC, 1265 SmallVectorImpl<MachineInstr *> &NewMIs) 1266 const { 1267 unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC); 1268 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1269 FrameIdx)); 1270 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1271 1272 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1273 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1274 FuncInfo->setSpillsCR(); 1275 1276 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1277 FuncInfo->setSpillsVRSAVE(); 1278 1279 if (isXFormMemOp(Opcode)) 1280 FuncInfo->setHasNonRISpills(); 1281 } 1282 1283 void PPCInstrInfo::loadRegFromStackSlotNoUpd( 1284 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, 1285 int FrameIdx, const TargetRegisterClass *RC, 1286 const TargetRegisterInfo *TRI) const { 1287 MachineFunction &MF = *MBB.getParent(); 1288 SmallVector<MachineInstr*, 4> NewMIs; 1289 DebugLoc DL; 1290 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1291 1292 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1293 FuncInfo->setHasSpills(); 1294 1295 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1296 1297 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1298 MBB.insert(MI, NewMIs[i]); 1299 1300 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1301 MachineMemOperand *MMO = MF.getMachineMemOperand( 1302 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1303 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1304 MFI.getObjectAlignment(FrameIdx)); 1305 NewMIs.back()->addMemOperand(MF, MMO); 1306 } 1307 1308 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1309 MachineBasicBlock::iterator MI, 1310 Register DestReg, int FrameIdx, 1311 const TargetRegisterClass *RC, 1312 const TargetRegisterInfo *TRI) const { 1313 // We need to avoid a situation in which the value from a VRRC register is 1314 // spilled using an Altivec instruction and reloaded into a VSRC register 1315 // using a VSX instruction. The issue with this is that the VSX 1316 // load/store instructions swap the doublewords in the vector and the Altivec 1317 // ones don't. The register classes on the spill/reload may be different if 1318 // the register is defined using an Altivec instruction and is then used by a 1319 // VSX instruction. 1320 RC = updatedRC(RC); 1321 1322 loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI); 1323 } 1324 1325 bool PPCInstrInfo:: 1326 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1327 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1328 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1329 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1330 else 1331 // Leave the CR# the same, but invert the condition. 1332 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1333 return false; 1334 } 1335 1336 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1337 unsigned Reg, MachineRegisterInfo *MRI) const { 1338 // For some instructions, it is legal to fold ZERO into the RA register field. 1339 // A zero immediate should always be loaded with a single li. 1340 unsigned DefOpc = DefMI.getOpcode(); 1341 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1342 return false; 1343 if (!DefMI.getOperand(1).isImm()) 1344 return false; 1345 if (DefMI.getOperand(1).getImm() != 0) 1346 return false; 1347 1348 // Note that we cannot here invert the arguments of an isel in order to fold 1349 // a ZERO into what is presented as the second argument. All we have here 1350 // is the condition bit, and that might come from a CR-logical bit operation. 1351 1352 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1353 1354 // Only fold into real machine instructions. 1355 if (UseMCID.isPseudo()) 1356 return false; 1357 1358 unsigned UseIdx; 1359 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1360 if (UseMI.getOperand(UseIdx).isReg() && 1361 UseMI.getOperand(UseIdx).getReg() == Reg) 1362 break; 1363 1364 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1365 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1366 1367 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1368 1369 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1370 // register (which might also be specified as a pointer class kind). 1371 if (UseInfo->isLookupPtrRegClass()) { 1372 if (UseInfo->RegClass /* Kind */ != 1) 1373 return false; 1374 } else { 1375 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1376 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1377 return false; 1378 } 1379 1380 // Make sure this is not tied to an output register (or otherwise 1381 // constrained). This is true for ST?UX registers, for example, which 1382 // are tied to their output registers. 1383 if (UseInfo->Constraints != 0) 1384 return false; 1385 1386 unsigned ZeroReg; 1387 if (UseInfo->isLookupPtrRegClass()) { 1388 bool isPPC64 = Subtarget.isPPC64(); 1389 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1390 } else { 1391 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1392 PPC::ZERO8 : PPC::ZERO; 1393 } 1394 1395 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1396 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1397 1398 if (DeleteDef) 1399 DefMI.eraseFromParent(); 1400 1401 return true; 1402 } 1403 1404 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1405 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1406 I != IE; ++I) 1407 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1408 return true; 1409 return false; 1410 } 1411 1412 // We should make sure that, if we're going to predicate both sides of a 1413 // condition (a diamond), that both sides don't define the counter register. We 1414 // can predicate counter-decrement-based branches, but while that predicates 1415 // the branching, it does not predicate the counter decrement. If we tried to 1416 // merge the triangle into one predicated block, we'd decrement the counter 1417 // twice. 1418 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1419 unsigned NumT, unsigned ExtraT, 1420 MachineBasicBlock &FMBB, 1421 unsigned NumF, unsigned ExtraF, 1422 BranchProbability Probability) const { 1423 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1424 } 1425 1426 1427 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1428 // The predicated branches are identified by their type, not really by the 1429 // explicit presence of a predicate. Furthermore, some of them can be 1430 // predicated more than once. Because if conversion won't try to predicate 1431 // any instruction which already claims to be predicated (by returning true 1432 // here), always return false. In doing so, we let isPredicable() be the 1433 // final word on whether not the instruction can be (further) predicated. 1434 1435 return false; 1436 } 1437 1438 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 1439 if (!MI.isTerminator()) 1440 return false; 1441 1442 // Conditional branch is a special case. 1443 if (MI.isBranch() && !MI.isBarrier()) 1444 return true; 1445 1446 return !isPredicated(MI); 1447 } 1448 1449 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1450 ArrayRef<MachineOperand> Pred) const { 1451 unsigned OpC = MI.getOpcode(); 1452 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1453 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1454 bool isPPC64 = Subtarget.isPPC64(); 1455 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1456 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1457 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1458 MI.setDesc(get(PPC::BCLR)); 1459 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1460 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1461 MI.setDesc(get(PPC::BCLRn)); 1462 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1463 } else { 1464 MI.setDesc(get(PPC::BCCLR)); 1465 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1466 .addImm(Pred[0].getImm()) 1467 .add(Pred[1]); 1468 } 1469 1470 return true; 1471 } else if (OpC == PPC::B) { 1472 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1473 bool isPPC64 = Subtarget.isPPC64(); 1474 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1475 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1476 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1477 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1478 MI.RemoveOperand(0); 1479 1480 MI.setDesc(get(PPC::BC)); 1481 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1482 .add(Pred[1]) 1483 .addMBB(MBB); 1484 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1485 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1486 MI.RemoveOperand(0); 1487 1488 MI.setDesc(get(PPC::BCn)); 1489 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1490 .add(Pred[1]) 1491 .addMBB(MBB); 1492 } else { 1493 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1494 MI.RemoveOperand(0); 1495 1496 MI.setDesc(get(PPC::BCC)); 1497 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1498 .addImm(Pred[0].getImm()) 1499 .add(Pred[1]) 1500 .addMBB(MBB); 1501 } 1502 1503 return true; 1504 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 1505 OpC == PPC::BCTRL8) { 1506 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1507 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1508 1509 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1510 bool isPPC64 = Subtarget.isPPC64(); 1511 1512 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1513 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1514 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1515 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1516 return true; 1517 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1518 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1519 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1520 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1521 return true; 1522 } 1523 1524 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1525 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1526 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1527 .addImm(Pred[0].getImm()) 1528 .add(Pred[1]); 1529 return true; 1530 } 1531 1532 return false; 1533 } 1534 1535 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1536 ArrayRef<MachineOperand> Pred2) const { 1537 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1538 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1539 1540 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1541 return false; 1542 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1543 return false; 1544 1545 // P1 can only subsume P2 if they test the same condition register. 1546 if (Pred1[1].getReg() != Pred2[1].getReg()) 1547 return false; 1548 1549 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1550 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1551 1552 if (P1 == P2) 1553 return true; 1554 1555 // Does P1 subsume P2, e.g. GE subsumes GT. 1556 if (P1 == PPC::PRED_LE && 1557 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1558 return true; 1559 if (P1 == PPC::PRED_GE && 1560 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1561 return true; 1562 1563 return false; 1564 } 1565 1566 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1567 std::vector<MachineOperand> &Pred) const { 1568 // Note: At the present time, the contents of Pred from this function is 1569 // unused by IfConversion. This implementation follows ARM by pushing the 1570 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1571 // predicate, instructions defining CTR or CTR8 are also included as 1572 // predicate-defining instructions. 1573 1574 const TargetRegisterClass *RCs[] = 1575 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1576 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1577 1578 bool Found = false; 1579 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1580 const MachineOperand &MO = MI.getOperand(i); 1581 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1582 const TargetRegisterClass *RC = RCs[c]; 1583 if (MO.isReg()) { 1584 if (MO.isDef() && RC->contains(MO.getReg())) { 1585 Pred.push_back(MO); 1586 Found = true; 1587 } 1588 } else if (MO.isRegMask()) { 1589 for (TargetRegisterClass::iterator I = RC->begin(), 1590 IE = RC->end(); I != IE; ++I) 1591 if (MO.clobbersPhysReg(*I)) { 1592 Pred.push_back(MO); 1593 Found = true; 1594 } 1595 } 1596 } 1597 } 1598 1599 return Found; 1600 } 1601 1602 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 1603 unsigned &SrcReg2, int &Mask, 1604 int &Value) const { 1605 unsigned Opc = MI.getOpcode(); 1606 1607 switch (Opc) { 1608 default: return false; 1609 case PPC::CMPWI: 1610 case PPC::CMPLWI: 1611 case PPC::CMPDI: 1612 case PPC::CMPLDI: 1613 SrcReg = MI.getOperand(1).getReg(); 1614 SrcReg2 = 0; 1615 Value = MI.getOperand(2).getImm(); 1616 Mask = 0xFFFF; 1617 return true; 1618 case PPC::CMPW: 1619 case PPC::CMPLW: 1620 case PPC::CMPD: 1621 case PPC::CMPLD: 1622 case PPC::FCMPUS: 1623 case PPC::FCMPUD: 1624 SrcReg = MI.getOperand(1).getReg(); 1625 SrcReg2 = MI.getOperand(2).getReg(); 1626 Value = 0; 1627 Mask = 0; 1628 return true; 1629 } 1630 } 1631 1632 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, 1633 unsigned SrcReg2, int Mask, int Value, 1634 const MachineRegisterInfo *MRI) const { 1635 if (DisableCmpOpt) 1636 return false; 1637 1638 int OpC = CmpInstr.getOpcode(); 1639 Register CRReg = CmpInstr.getOperand(0).getReg(); 1640 1641 // FP record forms set CR1 based on the exception status bits, not a 1642 // comparison with zero. 1643 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1644 return false; 1645 1646 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1647 // The record forms set the condition register based on a signed comparison 1648 // with zero (so says the ISA manual). This is not as straightforward as it 1649 // seems, however, because this is always a 64-bit comparison on PPC64, even 1650 // for instructions that are 32-bit in nature (like slw for example). 1651 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1652 // for equality checks (as those don't depend on the sign). On PPC64, 1653 // we are restricted to equality for unsigned 64-bit comparisons and for 1654 // signed 32-bit comparisons the applicability is more restricted. 1655 bool isPPC64 = Subtarget.isPPC64(); 1656 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1657 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1658 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1659 1660 // Look through copies unless that gets us to a physical register. 1661 unsigned ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 1662 if (Register::isVirtualRegister(ActualSrc)) 1663 SrcReg = ActualSrc; 1664 1665 // Get the unique definition of SrcReg. 1666 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1667 if (!MI) return false; 1668 1669 bool equalityOnly = false; 1670 bool noSub = false; 1671 if (isPPC64) { 1672 if (is32BitSignedCompare) { 1673 // We can perform this optimization only if MI is sign-extending. 1674 if (isSignExtended(*MI)) 1675 noSub = true; 1676 else 1677 return false; 1678 } else if (is32BitUnsignedCompare) { 1679 // We can perform this optimization, equality only, if MI is 1680 // zero-extending. 1681 if (isZeroExtended(*MI)) { 1682 noSub = true; 1683 equalityOnly = true; 1684 } else 1685 return false; 1686 } else 1687 equalityOnly = is64BitUnsignedCompare; 1688 } else 1689 equalityOnly = is32BitUnsignedCompare; 1690 1691 if (equalityOnly) { 1692 // We need to check the uses of the condition register in order to reject 1693 // non-equality comparisons. 1694 for (MachineRegisterInfo::use_instr_iterator 1695 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1696 I != IE; ++I) { 1697 MachineInstr *UseMI = &*I; 1698 if (UseMI->getOpcode() == PPC::BCC) { 1699 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1700 unsigned PredCond = PPC::getPredicateCondition(Pred); 1701 // We ignore hint bits when checking for non-equality comparisons. 1702 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1703 return false; 1704 } else if (UseMI->getOpcode() == PPC::ISEL || 1705 UseMI->getOpcode() == PPC::ISEL8) { 1706 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1707 if (SubIdx != PPC::sub_eq) 1708 return false; 1709 } else 1710 return false; 1711 } 1712 } 1713 1714 MachineBasicBlock::iterator I = CmpInstr; 1715 1716 // Scan forward to find the first use of the compare. 1717 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1718 ++I) { 1719 bool FoundUse = false; 1720 for (MachineRegisterInfo::use_instr_iterator 1721 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 1722 J != JE; ++J) 1723 if (&*J == &*I) { 1724 FoundUse = true; 1725 break; 1726 } 1727 1728 if (FoundUse) 1729 break; 1730 } 1731 1732 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1733 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1734 1735 // There are two possible candidates which can be changed to set CR[01]. 1736 // One is MI, the other is a SUB instruction. 1737 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1738 MachineInstr *Sub = nullptr; 1739 if (SrcReg2 != 0) 1740 // MI is not a candidate for CMPrr. 1741 MI = nullptr; 1742 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1743 // same BB as the comparison. This is to allow the check below to avoid calls 1744 // (and other explicit clobbers); instead we should really check for these 1745 // more explicitly (in at least a few predecessors). 1746 else if (MI->getParent() != CmpInstr.getParent()) 1747 return false; 1748 else if (Value != 0) { 1749 // The record-form instructions set CR bit based on signed comparison 1750 // against 0. We try to convert a compare against 1 or -1 into a compare 1751 // against 0 to exploit record-form instructions. For example, we change 1752 // the condition "greater than -1" into "greater than or equal to 0" 1753 // and "less than 1" into "less than or equal to 0". 1754 1755 // Since we optimize comparison based on a specific branch condition, 1756 // we don't optimize if condition code is used by more than once. 1757 if (equalityOnly || !MRI->hasOneUse(CRReg)) 1758 return false; 1759 1760 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 1761 if (UseMI->getOpcode() != PPC::BCC) 1762 return false; 1763 1764 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1765 unsigned PredCond = PPC::getPredicateCondition(Pred); 1766 unsigned PredHint = PPC::getPredicateHint(Pred); 1767 int16_t Immed = (int16_t)Value; 1768 1769 // When modifying the condition in the predicate, we propagate hint bits 1770 // from the original predicate to the new one. 1771 if (Immed == -1 && PredCond == PPC::PRED_GT) 1772 // We convert "greater than -1" into "greater than or equal to 0", 1773 // since we are assuming signed comparison by !equalityOnly 1774 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 1775 else if (Immed == -1 && PredCond == PPC::PRED_LE) 1776 // We convert "less than or equal to -1" into "less than 0". 1777 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 1778 else if (Immed == 1 && PredCond == PPC::PRED_LT) 1779 // We convert "less than 1" into "less than or equal to 0". 1780 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 1781 else if (Immed == 1 && PredCond == PPC::PRED_GE) 1782 // We convert "greater than or equal to 1" into "greater than 0". 1783 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 1784 else 1785 return false; 1786 1787 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred)); 1788 } 1789 1790 // Search for Sub. 1791 --I; 1792 1793 // Get ready to iterate backward from CmpInstr. 1794 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 1795 1796 for (; I != E && !noSub; --I) { 1797 const MachineInstr &Instr = *I; 1798 unsigned IOpC = Instr.getOpcode(); 1799 1800 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 1801 Instr.readsRegister(PPC::CR0, TRI))) 1802 // This instruction modifies or uses the record condition register after 1803 // the one we want to change. While we could do this transformation, it 1804 // would likely not be profitable. This transformation removes one 1805 // instruction, and so even forcing RA to generate one move probably 1806 // makes it unprofitable. 1807 return false; 1808 1809 // Check whether CmpInstr can be made redundant by the current instruction. 1810 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1811 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1812 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1813 ((Instr.getOperand(1).getReg() == SrcReg && 1814 Instr.getOperand(2).getReg() == SrcReg2) || 1815 (Instr.getOperand(1).getReg() == SrcReg2 && 1816 Instr.getOperand(2).getReg() == SrcReg))) { 1817 Sub = &*I; 1818 break; 1819 } 1820 1821 if (I == B) 1822 // The 'and' is below the comparison instruction. 1823 return false; 1824 } 1825 1826 // Return false if no candidates exist. 1827 if (!MI && !Sub) 1828 return false; 1829 1830 // The single candidate is called MI. 1831 if (!MI) MI = Sub; 1832 1833 int NewOpC = -1; 1834 int MIOpC = MI->getOpcode(); 1835 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || 1836 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) 1837 NewOpC = MIOpC; 1838 else { 1839 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1840 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1841 NewOpC = MIOpC; 1842 } 1843 1844 // FIXME: On the non-embedded POWER architectures, only some of the record 1845 // forms are fast, and we should use only the fast ones. 1846 1847 // The defining instruction has a record form (or is already a record 1848 // form). It is possible, however, that we'll need to reverse the condition 1849 // code of the users. 1850 if (NewOpC == -1) 1851 return false; 1852 1853 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1854 // needs to be updated to be based on SUB. Push the condition code 1855 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1856 // condition code of these operands will be modified. 1857 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 1858 // comparison against 0, which may modify predicate. 1859 bool ShouldSwap = false; 1860 if (Sub && Value == 0) { 1861 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1862 Sub->getOperand(2).getReg() == SrcReg; 1863 1864 // The operands to subf are the opposite of sub, so only in the fixed-point 1865 // case, invert the order. 1866 ShouldSwap = !ShouldSwap; 1867 } 1868 1869 if (ShouldSwap) 1870 for (MachineRegisterInfo::use_instr_iterator 1871 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1872 I != IE; ++I) { 1873 MachineInstr *UseMI = &*I; 1874 if (UseMI->getOpcode() == PPC::BCC) { 1875 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1876 unsigned PredCond = PPC::getPredicateCondition(Pred); 1877 assert((!equalityOnly || 1878 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 1879 "Invalid predicate for equality-only optimization"); 1880 (void)PredCond; // To suppress warning in release build. 1881 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1882 PPC::getSwappedPredicate(Pred))); 1883 } else if (UseMI->getOpcode() == PPC::ISEL || 1884 UseMI->getOpcode() == PPC::ISEL8) { 1885 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1886 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1887 "Invalid CR bit for equality-only optimization"); 1888 1889 if (NewSubReg == PPC::sub_lt) 1890 NewSubReg = PPC::sub_gt; 1891 else if (NewSubReg == PPC::sub_gt) 1892 NewSubReg = PPC::sub_lt; 1893 1894 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1895 NewSubReg)); 1896 } else // We need to abort on a user we don't understand. 1897 return false; 1898 } 1899 assert(!(Value != 0 && ShouldSwap) && 1900 "Non-zero immediate support and ShouldSwap" 1901 "may conflict in updating predicate"); 1902 1903 // Create a new virtual register to hold the value of the CR set by the 1904 // record-form instruction. If the instruction was not previously in 1905 // record form, then set the kill flag on the CR. 1906 CmpInstr.eraseFromParent(); 1907 1908 MachineBasicBlock::iterator MII = MI; 1909 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1910 get(TargetOpcode::COPY), CRReg) 1911 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1912 1913 // Even if CR0 register were dead before, it is alive now since the 1914 // instruction we just built uses it. 1915 MI->clearRegisterDeads(PPC::CR0); 1916 1917 if (MIOpC != NewOpC) { 1918 // We need to be careful here: we're replacing one instruction with 1919 // another, and we need to make sure that we get all of the right 1920 // implicit uses and defs. On the other hand, the caller may be holding 1921 // an iterator to this instruction, and so we can't delete it (this is 1922 // specifically the case if this is the instruction directly after the 1923 // compare). 1924 1925 // Rotates are expensive instructions. If we're emitting a record-form 1926 // rotate that can just be an andi/andis, we should just emit that. 1927 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 1928 Register GPRRes = MI->getOperand(0).getReg(); 1929 int64_t SH = MI->getOperand(2).getImm(); 1930 int64_t MB = MI->getOperand(3).getImm(); 1931 int64_t ME = MI->getOperand(4).getImm(); 1932 // We can only do this if both the start and end of the mask are in the 1933 // same halfword. 1934 bool MBInLoHWord = MB >= 16; 1935 bool MEInLoHWord = ME >= 16; 1936 uint64_t Mask = ~0LLU; 1937 1938 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 1939 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 1940 // The mask value needs to shift right 16 if we're emitting andis. 1941 Mask >>= MBInLoHWord ? 0 : 16; 1942 NewOpC = MIOpC == PPC::RLWINM 1943 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) 1944 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); 1945 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 1946 (ME - MB + 1 == SH) && (MB >= 16)) { 1947 // If we are rotating by the exact number of bits as are in the mask 1948 // and the mask is in the least significant bits of the register, 1949 // that's just an andis. (as long as the GPR result has no uses). 1950 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 1951 Mask >>= 16; 1952 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; 1953 } 1954 // If we've set the mask, we can transform. 1955 if (Mask != ~0LLU) { 1956 MI->RemoveOperand(4); 1957 MI->RemoveOperand(3); 1958 MI->getOperand(2).setImm(Mask); 1959 NumRcRotatesConvertedToRcAnd++; 1960 } 1961 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 1962 int64_t MB = MI->getOperand(3).getImm(); 1963 if (MB >= 48) { 1964 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 1965 NewOpC = PPC::ANDI8_rec; 1966 MI->RemoveOperand(3); 1967 MI->getOperand(2).setImm(Mask); 1968 NumRcRotatesConvertedToRcAnd++; 1969 } 1970 } 1971 1972 const MCInstrDesc &NewDesc = get(NewOpC); 1973 MI->setDesc(NewDesc); 1974 1975 if (NewDesc.ImplicitDefs) 1976 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 1977 *ImpDefs; ++ImpDefs) 1978 if (!MI->definesRegister(*ImpDefs)) 1979 MI->addOperand(*MI->getParent()->getParent(), 1980 MachineOperand::CreateReg(*ImpDefs, true, true)); 1981 if (NewDesc.ImplicitUses) 1982 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 1983 *ImpUses; ++ImpUses) 1984 if (!MI->readsRegister(*ImpUses)) 1985 MI->addOperand(*MI->getParent()->getParent(), 1986 MachineOperand::CreateReg(*ImpUses, false, true)); 1987 } 1988 assert(MI->definesRegister(PPC::CR0) && 1989 "Record-form instruction does not define cr0?"); 1990 1991 // Modify the condition code of operands in OperandsToUpdate. 1992 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1993 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1994 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1995 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1996 1997 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1998 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1999 2000 return true; 2001 } 2002 2003 /// GetInstSize - Return the number of bytes of code the specified 2004 /// instruction may be. This returns the maximum number of bytes. 2005 /// 2006 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2007 unsigned Opcode = MI.getOpcode(); 2008 2009 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 2010 const MachineFunction *MF = MI.getParent()->getParent(); 2011 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2012 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2013 } else if (Opcode == TargetOpcode::STACKMAP) { 2014 StackMapOpers Opers(&MI); 2015 return Opers.getNumPatchBytes(); 2016 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2017 PatchPointOpers Opers(&MI); 2018 return Opers.getNumPatchBytes(); 2019 } else { 2020 return get(Opcode).getSize(); 2021 } 2022 } 2023 2024 std::pair<unsigned, unsigned> 2025 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2026 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2027 return std::make_pair(TF & Mask, TF & ~Mask); 2028 } 2029 2030 ArrayRef<std::pair<unsigned, const char *>> 2031 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2032 using namespace PPCII; 2033 static const std::pair<unsigned, const char *> TargetFlags[] = { 2034 {MO_LO, "ppc-lo"}, 2035 {MO_HA, "ppc-ha"}, 2036 {MO_TPREL_LO, "ppc-tprel-lo"}, 2037 {MO_TPREL_HA, "ppc-tprel-ha"}, 2038 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2039 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2040 {MO_TOC_LO, "ppc-toc-lo"}, 2041 {MO_TLS, "ppc-tls"}}; 2042 return makeArrayRef(TargetFlags); 2043 } 2044 2045 ArrayRef<std::pair<unsigned, const char *>> 2046 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2047 using namespace PPCII; 2048 static const std::pair<unsigned, const char *> TargetFlags[] = { 2049 {MO_PLT, "ppc-plt"}, {MO_PIC_FLAG, "ppc-pic"}}; 2050 return makeArrayRef(TargetFlags); 2051 } 2052 2053 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2054 // The VSX versions have the advantage of a full 64-register target whereas 2055 // the FP ones have the advantage of lower latency and higher throughput. So 2056 // what we are after is using the faster instructions in low register pressure 2057 // situations and using the larger register file in high register pressure 2058 // situations. 2059 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2060 unsigned UpperOpcode, LowerOpcode; 2061 switch (MI.getOpcode()) { 2062 case PPC::DFLOADf32: 2063 UpperOpcode = PPC::LXSSP; 2064 LowerOpcode = PPC::LFS; 2065 break; 2066 case PPC::DFLOADf64: 2067 UpperOpcode = PPC::LXSD; 2068 LowerOpcode = PPC::LFD; 2069 break; 2070 case PPC::DFSTOREf32: 2071 UpperOpcode = PPC::STXSSP; 2072 LowerOpcode = PPC::STFS; 2073 break; 2074 case PPC::DFSTOREf64: 2075 UpperOpcode = PPC::STXSD; 2076 LowerOpcode = PPC::STFD; 2077 break; 2078 case PPC::XFLOADf32: 2079 UpperOpcode = PPC::LXSSPX; 2080 LowerOpcode = PPC::LFSX; 2081 break; 2082 case PPC::XFLOADf64: 2083 UpperOpcode = PPC::LXSDX; 2084 LowerOpcode = PPC::LFDX; 2085 break; 2086 case PPC::XFSTOREf32: 2087 UpperOpcode = PPC::STXSSPX; 2088 LowerOpcode = PPC::STFSX; 2089 break; 2090 case PPC::XFSTOREf64: 2091 UpperOpcode = PPC::STXSDX; 2092 LowerOpcode = PPC::STFDX; 2093 break; 2094 case PPC::LIWAX: 2095 UpperOpcode = PPC::LXSIWAX; 2096 LowerOpcode = PPC::LFIWAX; 2097 break; 2098 case PPC::LIWZX: 2099 UpperOpcode = PPC::LXSIWZX; 2100 LowerOpcode = PPC::LFIWZX; 2101 break; 2102 case PPC::STIWX: 2103 UpperOpcode = PPC::STXSIWX; 2104 LowerOpcode = PPC::STFIWX; 2105 break; 2106 default: 2107 llvm_unreachable("Unknown Operation!"); 2108 } 2109 2110 Register TargetReg = MI.getOperand(0).getReg(); 2111 unsigned Opcode; 2112 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2113 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2114 Opcode = LowerOpcode; 2115 else 2116 Opcode = UpperOpcode; 2117 MI.setDesc(get(Opcode)); 2118 return true; 2119 } 2120 2121 static bool isAnImmediateOperand(const MachineOperand &MO) { 2122 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2123 } 2124 2125 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2126 auto &MBB = *MI.getParent(); 2127 auto DL = MI.getDebugLoc(); 2128 2129 switch (MI.getOpcode()) { 2130 case TargetOpcode::LOAD_STACK_GUARD: { 2131 assert(Subtarget.isTargetLinux() && 2132 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 2133 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 2134 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 2135 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 2136 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2137 .addImm(Offset) 2138 .addReg(Reg); 2139 return true; 2140 } 2141 case PPC::DFLOADf32: 2142 case PPC::DFLOADf64: 2143 case PPC::DFSTOREf32: 2144 case PPC::DFSTOREf64: { 2145 assert(Subtarget.hasP9Vector() && 2146 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 2147 assert(MI.getOperand(2).isReg() && 2148 isAnImmediateOperand(MI.getOperand(1)) && 2149 "D-form op must have register and immediate operands"); 2150 return expandVSXMemPseudo(MI); 2151 } 2152 case PPC::XFLOADf32: 2153 case PPC::XFSTOREf32: 2154 case PPC::LIWAX: 2155 case PPC::LIWZX: 2156 case PPC::STIWX: { 2157 assert(Subtarget.hasP8Vector() && 2158 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 2159 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2160 "X-form op must have register and register operands"); 2161 return expandVSXMemPseudo(MI); 2162 } 2163 case PPC::XFLOADf64: 2164 case PPC::XFSTOREf64: { 2165 assert(Subtarget.hasVSX() && 2166 "Invalid X-Form Pseudo-ops on target that has no VSX."); 2167 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2168 "X-form op must have register and register operands"); 2169 return expandVSXMemPseudo(MI); 2170 } 2171 case PPC::SPILLTOVSR_LD: { 2172 Register TargetReg = MI.getOperand(0).getReg(); 2173 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2174 MI.setDesc(get(PPC::DFLOADf64)); 2175 return expandPostRAPseudo(MI); 2176 } 2177 else 2178 MI.setDesc(get(PPC::LD)); 2179 return true; 2180 } 2181 case PPC::SPILLTOVSR_ST: { 2182 Register SrcReg = MI.getOperand(0).getReg(); 2183 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2184 NumStoreSPILLVSRRCAsVec++; 2185 MI.setDesc(get(PPC::DFSTOREf64)); 2186 return expandPostRAPseudo(MI); 2187 } else { 2188 NumStoreSPILLVSRRCAsGpr++; 2189 MI.setDesc(get(PPC::STD)); 2190 } 2191 return true; 2192 } 2193 case PPC::SPILLTOVSR_LDX: { 2194 Register TargetReg = MI.getOperand(0).getReg(); 2195 if (PPC::VSFRCRegClass.contains(TargetReg)) 2196 MI.setDesc(get(PPC::LXSDX)); 2197 else 2198 MI.setDesc(get(PPC::LDX)); 2199 return true; 2200 } 2201 case PPC::SPILLTOVSR_STX: { 2202 Register SrcReg = MI.getOperand(0).getReg(); 2203 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2204 NumStoreSPILLVSRRCAsVec++; 2205 MI.setDesc(get(PPC::STXSDX)); 2206 } else { 2207 NumStoreSPILLVSRRCAsGpr++; 2208 MI.setDesc(get(PPC::STDX)); 2209 } 2210 return true; 2211 } 2212 2213 case PPC::CFENCE8: { 2214 auto Val = MI.getOperand(0).getReg(); 2215 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2216 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2217 .addImm(PPC::PRED_NE_MINUS) 2218 .addReg(PPC::CR7) 2219 .addImm(1); 2220 MI.setDesc(get(PPC::ISYNC)); 2221 MI.RemoveOperand(0); 2222 return true; 2223 } 2224 } 2225 return false; 2226 } 2227 2228 // Essentially a compile-time implementation of a compare->isel sequence. 2229 // It takes two constants to compare, along with the true/false registers 2230 // and the comparison type (as a subreg to a CR field) and returns one 2231 // of the true/false registers, depending on the comparison results. 2232 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 2233 unsigned TrueReg, unsigned FalseReg, 2234 unsigned CRSubReg) { 2235 // Signed comparisons. The immediates are assumed to be sign-extended. 2236 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 2237 switch (CRSubReg) { 2238 default: llvm_unreachable("Unknown integer comparison type."); 2239 case PPC::sub_lt: 2240 return Imm1 < Imm2 ? TrueReg : FalseReg; 2241 case PPC::sub_gt: 2242 return Imm1 > Imm2 ? TrueReg : FalseReg; 2243 case PPC::sub_eq: 2244 return Imm1 == Imm2 ? TrueReg : FalseReg; 2245 } 2246 } 2247 // Unsigned comparisons. 2248 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 2249 switch (CRSubReg) { 2250 default: llvm_unreachable("Unknown integer comparison type."); 2251 case PPC::sub_lt: 2252 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 2253 case PPC::sub_gt: 2254 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 2255 case PPC::sub_eq: 2256 return Imm1 == Imm2 ? TrueReg : FalseReg; 2257 } 2258 } 2259 return PPC::NoRegister; 2260 } 2261 2262 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 2263 unsigned OpNo, 2264 int64_t Imm) const { 2265 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 2266 // Replace the REG with the Immediate. 2267 Register InUseReg = MI.getOperand(OpNo).getReg(); 2268 MI.getOperand(OpNo).ChangeToImmediate(Imm); 2269 2270 if (MI.implicit_operands().empty()) 2271 return; 2272 2273 // We need to make sure that the MI didn't have any implicit use 2274 // of this REG any more. 2275 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2276 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 2277 if (UseOpIdx >= 0) { 2278 MachineOperand &MO = MI.getOperand(UseOpIdx); 2279 if (MO.isImplicit()) 2280 // The operands must always be in the following order: 2281 // - explicit reg defs, 2282 // - other explicit operands (reg uses, immediates, etc.), 2283 // - implicit reg defs 2284 // - implicit reg uses 2285 // Therefore, removing the implicit operand won't change the explicit 2286 // operands layout. 2287 MI.RemoveOperand(UseOpIdx); 2288 } 2289 } 2290 2291 // Replace an instruction with one that materializes a constant (and sets 2292 // CR0 if the original instruction was a record-form instruction). 2293 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 2294 const LoadImmediateInfo &LII) const { 2295 // Remove existing operands. 2296 int OperandToKeep = LII.SetCR ? 1 : 0; 2297 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 2298 MI.RemoveOperand(i); 2299 2300 // Replace the instruction. 2301 if (LII.SetCR) { 2302 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 2303 // Set the immediate. 2304 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2305 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 2306 return; 2307 } 2308 else 2309 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 2310 2311 // Set the immediate. 2312 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2313 .addImm(LII.Imm); 2314 } 2315 2316 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 2317 bool &SeenIntermediateUse) const { 2318 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 2319 "Should be called after register allocation."); 2320 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2321 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 2322 It++; 2323 SeenIntermediateUse = false; 2324 for (; It != E; ++It) { 2325 if (It->modifiesRegister(Reg, TRI)) 2326 return &*It; 2327 if (It->readsRegister(Reg, TRI)) 2328 SeenIntermediateUse = true; 2329 } 2330 return nullptr; 2331 } 2332 2333 MachineInstr *PPCInstrInfo::getForwardingDefMI( 2334 MachineInstr &MI, 2335 unsigned &OpNoForForwarding, 2336 bool &SeenIntermediateUse) const { 2337 OpNoForForwarding = ~0U; 2338 MachineInstr *DefMI = nullptr; 2339 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 2340 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2341 // If we're in SSA, get the defs through the MRI. Otherwise, only look 2342 // within the basic block to see if the register is defined using an LI/LI8. 2343 if (MRI->isSSA()) { 2344 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2345 if (!MI.getOperand(i).isReg()) 2346 continue; 2347 Register Reg = MI.getOperand(i).getReg(); 2348 if (!Register::isVirtualRegister(Reg)) 2349 continue; 2350 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 2351 if (Register::isVirtualRegister(TrueReg)) { 2352 DefMI = MRI->getVRegDef(TrueReg); 2353 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) { 2354 OpNoForForwarding = i; 2355 break; 2356 } 2357 } 2358 } 2359 } else { 2360 // Looking back through the definition for each operand could be expensive, 2361 // so exit early if this isn't an instruction that either has an immediate 2362 // form or is already an immediate form that we can handle. 2363 ImmInstrInfo III; 2364 unsigned Opc = MI.getOpcode(); 2365 bool ConvertibleImmForm = 2366 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || 2367 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || 2368 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || 2369 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || 2370 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 2371 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || 2372 Opc == PPC::RLWINM8_rec; 2373 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 2374 ? isVFRegister(MI.getOperand(0).getReg()) 2375 : false; 2376 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 2377 return nullptr; 2378 2379 // Don't convert or %X, %Y, %Y since that's just a register move. 2380 if ((Opc == PPC::OR || Opc == PPC::OR8) && 2381 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 2382 return nullptr; 2383 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2384 MachineOperand &MO = MI.getOperand(i); 2385 SeenIntermediateUse = false; 2386 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 2387 Register Reg = MI.getOperand(i).getReg(); 2388 // If we see another use of this reg between the def and the MI, 2389 // we want to flat it so the def isn't deleted. 2390 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 2391 if (DefMI) { 2392 // Is this register defined by some form of add-immediate (including 2393 // load-immediate) within this basic block? 2394 switch (DefMI->getOpcode()) { 2395 default: 2396 break; 2397 case PPC::LI: 2398 case PPC::LI8: 2399 case PPC::ADDItocL: 2400 case PPC::ADDI: 2401 case PPC::ADDI8: 2402 OpNoForForwarding = i; 2403 return DefMI; 2404 } 2405 } 2406 } 2407 } 2408 } 2409 return OpNoForForwarding == ~0U ? nullptr : DefMI; 2410 } 2411 2412 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 2413 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2414 // Power 8 2415 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2416 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, 2417 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2418 PPC::SPILLTOVSR_ST, PPC::EVSTDD}, 2419 // Power 9 2420 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2421 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, 2422 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2423 PPC::SPILLTOVSR_ST}}; 2424 2425 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2426 } 2427 2428 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 2429 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2430 // Power 8 2431 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2432 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX, 2433 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2434 PPC::SPILLTOVSR_LD, PPC::EVLDD}, 2435 // Power 9 2436 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2437 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32, 2438 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2439 PPC::SPILLTOVSR_LD}}; 2440 2441 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2442 } 2443 2444 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI, 2445 unsigned RegNo) const { 2446 const MachineRegisterInfo &MRI = 2447 StartMI.getParent()->getParent()->getRegInfo(); 2448 if (MRI.isSSA()) 2449 return; 2450 2451 // Instructions between [StartMI, EndMI] should be in same basic block. 2452 assert((StartMI.getParent() == EndMI.getParent()) && 2453 "Instructions are not in same basic block"); 2454 2455 bool IsKillSet = false; 2456 2457 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 2458 MachineOperand &MO = MI.getOperand(Index); 2459 if (MO.isReg() && MO.isUse() && MO.isKill() && 2460 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 2461 MO.setIsKill(false); 2462 }; 2463 2464 // Set killed flag for EndMI. 2465 // No need to do anything if EndMI defines RegNo. 2466 int UseIndex = 2467 EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 2468 if (UseIndex != -1) { 2469 EndMI.getOperand(UseIndex).setIsKill(true); 2470 IsKillSet = true; 2471 // Clear killed flag for other EndMI operands related to RegNo. In some 2472 // upexpected cases, killed may be set multiple times for same register 2473 // operand in same MI. 2474 for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i) 2475 if (i != UseIndex) 2476 clearOperandKillInfo(EndMI, i); 2477 } 2478 2479 // Walking the inst in reverse order (EndMI -> StartMI]. 2480 MachineBasicBlock::reverse_iterator It = EndMI; 2481 MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend(); 2482 // EndMI has been handled above, skip it here. 2483 It++; 2484 MachineOperand *MO = nullptr; 2485 for (; It != E; ++It) { 2486 // Skip insturctions which could not be a def/use of RegNo. 2487 if (It->isDebugInstr() || It->isPosition()) 2488 continue; 2489 2490 // Clear killed flag for all It operands related to RegNo. In some 2491 // upexpected cases, killed may be set multiple times for same register 2492 // operand in same MI. 2493 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 2494 clearOperandKillInfo(*It, i); 2495 2496 // If killed is not set, set killed for its last use or set dead for its def 2497 // if no use found. 2498 if (!IsKillSet) { 2499 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 2500 // Use found, set it killed. 2501 IsKillSet = true; 2502 MO->setIsKill(true); 2503 continue; 2504 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 2505 &getRegisterInfo()))) { 2506 // No use found, set dead for its def. 2507 assert(&*It == &StartMI && "No new def between StartMI and EndMI."); 2508 MO->setIsDead(true); 2509 break; 2510 } 2511 } 2512 2513 if ((&*It) == &StartMI) 2514 break; 2515 } 2516 // Ensure RegMo liveness is killed after EndMI. 2517 assert((IsKillSet || (MO && MO->isDead())) && 2518 "RegNo should be killed or dead"); 2519 } 2520 2521 // This opt tries to convert the following imm form to an index form to save an 2522 // add for stack variables. 2523 // Return false if no such pattern found. 2524 // 2525 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 2526 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg 2527 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) 2528 // 2529 // can be converted to: 2530 // 2531 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) 2532 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) 2533 // 2534 // In order to eliminate ADD instr, make sure that: 2535 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in 2536 // new ADDI instr and ADDI can only take int16 Imm. 2537 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use 2538 // between ADDI and ADD instr since its original def in ADDI will be changed 2539 // in new ADDI instr. And also there should be no new def for it between 2540 // ADD and Imm instr as ToBeChangedReg will be used in Index instr. 2541 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use 2542 // between ADD and Imm instr since ADD instr will be eliminated. 2543 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be 2544 // moved to Index instr. 2545 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { 2546 MachineFunction *MF = MI.getParent()->getParent(); 2547 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2548 bool PostRA = !MRI->isSSA(); 2549 // Do this opt after PEI which is after RA. The reason is stack slot expansion 2550 // in PEI may expose such opportunities since in PEI, stack slot offsets to 2551 // frame base(OffsetAddi) are determined. 2552 if (!PostRA) 2553 return false; 2554 unsigned ToBeDeletedReg = 0; 2555 int64_t OffsetImm = 0; 2556 unsigned XFormOpcode = 0; 2557 ImmInstrInfo III; 2558 2559 // Check if Imm instr meets requirement. 2560 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, 2561 III)) 2562 return false; 2563 2564 bool OtherIntermediateUse = false; 2565 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); 2566 2567 // Exit if there is other use between ADD and Imm instr or no def found. 2568 if (OtherIntermediateUse || !ADDMI) 2569 return false; 2570 2571 // Check if ADD instr meets requirement. 2572 if (!isADDInstrEligibleForFolding(*ADDMI)) 2573 return false; 2574 2575 unsigned ScaleRegIdx = 0; 2576 int64_t OffsetAddi = 0; 2577 MachineInstr *ADDIMI = nullptr; 2578 2579 // Check if there is a valid ToBeChangedReg in ADDMI. 2580 // 1: It must be killed. 2581 // 2: Its definition must be a valid ADDIMI. 2582 // 3: It must satify int16 offset requirement. 2583 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) 2584 ScaleRegIdx = 2; 2585 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) 2586 ScaleRegIdx = 1; 2587 else 2588 return false; 2589 2590 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); 2591 unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg(); 2592 unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); 2593 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, 2594 MachineBasicBlock::iterator End) { 2595 for (auto It = ++Start; It != End; It++) 2596 if (It->modifiesRegister(Reg, &getRegisterInfo())) 2597 return true; 2598 return false; 2599 }; 2600 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr 2601 // and Imm Instr. 2602 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) 2603 return false; 2604 2605 // Now start to do the transformation. 2606 LLVM_DEBUG(dbgs() << "Replace instruction: " 2607 << "\n"); 2608 LLVM_DEBUG(ADDIMI->dump()); 2609 LLVM_DEBUG(ADDMI->dump()); 2610 LLVM_DEBUG(MI.dump()); 2611 LLVM_DEBUG(dbgs() << "with: " 2612 << "\n"); 2613 2614 // Update ADDI instr. 2615 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); 2616 2617 // Update Imm instr. 2618 MI.setDesc(get(XFormOpcode)); 2619 MI.getOperand(III.ImmOpNo) 2620 .ChangeToRegister(ScaleReg, false, false, 2621 ADDMI->getOperand(ScaleRegIdx).isKill()); 2622 2623 MI.getOperand(III.OpNoForForwarding) 2624 .ChangeToRegister(ToBeChangedReg, false, false, true); 2625 2626 // Eliminate ADD instr. 2627 ADDMI->eraseFromParent(); 2628 2629 LLVM_DEBUG(ADDIMI->dump()); 2630 LLVM_DEBUG(MI.dump()); 2631 2632 return true; 2633 } 2634 2635 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, 2636 int64_t &Imm) const { 2637 unsigned Opc = ADDIMI.getOpcode(); 2638 2639 // Exit if the instruction is not ADDI. 2640 if (Opc != PPC::ADDI && Opc != PPC::ADDI8) 2641 return false; 2642 2643 Imm = ADDIMI.getOperand(2).getImm(); 2644 2645 return true; 2646 } 2647 2648 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { 2649 unsigned Opc = ADDMI.getOpcode(); 2650 2651 // Exit if the instruction is not ADD. 2652 return Opc == PPC::ADD4 || Opc == PPC::ADD8; 2653 } 2654 2655 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, 2656 unsigned &ToBeDeletedReg, 2657 unsigned &XFormOpcode, 2658 int64_t &OffsetImm, 2659 ImmInstrInfo &III) const { 2660 // Only handle load/store. 2661 if (!MI.mayLoadOrStore()) 2662 return false; 2663 2664 unsigned Opc = MI.getOpcode(); 2665 2666 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); 2667 2668 // Exit if instruction has no index form. 2669 if (XFormOpcode == PPC::INSTRUCTION_LIST_END) 2670 return false; 2671 2672 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. 2673 if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()), 2674 III, true)) 2675 return false; 2676 2677 if (!III.IsSummingOperands) 2678 return false; 2679 2680 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); 2681 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); 2682 // Only support imm operands, not relocation slots or others. 2683 if (!ImmOperand.isImm()) 2684 return false; 2685 2686 assert(RegOperand.isReg() && "Instruction format is not right"); 2687 2688 // There are other use for ToBeDeletedReg after Imm instr, can not delete it. 2689 if (!RegOperand.isKill()) 2690 return false; 2691 2692 ToBeDeletedReg = RegOperand.getReg(); 2693 OffsetImm = ImmOperand.getImm(); 2694 2695 return true; 2696 } 2697 2698 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, 2699 MachineInstr *&ADDIMI, 2700 int64_t &OffsetAddi, 2701 int64_t OffsetImm) const { 2702 assert((Index == 1 || Index == 2) && "Invalid operand index for add."); 2703 MachineOperand &MO = ADDMI->getOperand(Index); 2704 2705 if (!MO.isKill()) 2706 return false; 2707 2708 bool OtherIntermediateUse = false; 2709 2710 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); 2711 // Currently handle only one "add + Imminstr" pair case, exit if other 2712 // intermediate use for ToBeChangedReg found. 2713 // TODO: handle the cases where there are other "add + Imminstr" pairs 2714 // with same offset in Imminstr which is like: 2715 // 2716 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 2717 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 2718 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) 2719 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 2720 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) 2721 // 2722 // can be converted to: 2723 // 2724 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, 2725 // (OffsetAddi + OffsetImm) 2726 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg 2727 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) 2728 2729 if (OtherIntermediateUse || !ADDIMI) 2730 return false; 2731 // Check if ADDI instr meets requirement. 2732 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) 2733 return false; 2734 2735 if (isInt<16>(OffsetAddi + OffsetImm)) 2736 return true; 2737 return false; 2738 } 2739 2740 // If this instruction has an immediate form and one of its operands is a 2741 // result of a load-immediate or an add-immediate, convert it to 2742 // the immediate form if the constant is in range. 2743 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 2744 MachineInstr **KilledDef) const { 2745 MachineFunction *MF = MI.getParent()->getParent(); 2746 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2747 bool PostRA = !MRI->isSSA(); 2748 bool SeenIntermediateUse = true; 2749 unsigned ForwardingOperand = ~0U; 2750 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 2751 SeenIntermediateUse); 2752 if (!DefMI) 2753 return false; 2754 assert(ForwardingOperand < MI.getNumOperands() && 2755 "The forwarding operand needs to be valid at this point"); 2756 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 2757 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 2758 Register ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg(); 2759 if (KilledDef && KillFwdDefMI) 2760 *KilledDef = DefMI; 2761 2762 ImmInstrInfo III; 2763 bool IsVFReg = MI.getOperand(0).isReg() 2764 ? isVFRegister(MI.getOperand(0).getReg()) 2765 : false; 2766 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 2767 // If this is a reg+reg instruction that has a reg+imm form, 2768 // and one of the operands is produced by an add-immediate, 2769 // try to convert it. 2770 if (HasImmForm && 2771 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 2772 KillFwdDefMI)) 2773 return true; 2774 2775 if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) || 2776 !DefMI->getOperand(1).isImm()) 2777 return false; 2778 2779 int64_t Immediate = DefMI->getOperand(1).getImm(); 2780 // Sign-extend to 64-bits. 2781 int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 2782 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 2783 2784 // If this is a reg+reg instruction that has a reg+imm form, 2785 // and one of the operands is produced by LI, convert it now. 2786 if (HasImmForm) 2787 return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm); 2788 2789 bool ReplaceWithLI = false; 2790 bool Is64BitLI = false; 2791 int64_t NewImm = 0; 2792 bool SetCR = false; 2793 unsigned Opc = MI.getOpcode(); 2794 switch (Opc) { 2795 default: return false; 2796 2797 // FIXME: Any branches conditional on such a comparison can be made 2798 // unconditional. At this time, this happens too infrequently to be worth 2799 // the implementation effort, but if that ever changes, we could convert 2800 // such a pattern here. 2801 case PPC::CMPWI: 2802 case PPC::CMPLWI: 2803 case PPC::CMPDI: 2804 case PPC::CMPLDI: { 2805 // Doing this post-RA would require dataflow analysis to reliably find uses 2806 // of the CR register set by the compare. 2807 // No need to fixup killed/dead flag since this transformation is only valid 2808 // before RA. 2809 if (PostRA) 2810 return false; 2811 // If a compare-immediate is fed by an immediate and is itself an input of 2812 // an ISEL (the most common case) into a COPY of the correct register. 2813 bool Changed = false; 2814 Register DefReg = MI.getOperand(0).getReg(); 2815 int64_t Comparand = MI.getOperand(2).getImm(); 2816 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ? 2817 (Comparand | 0xFFFFFFFFFFFF0000) : Comparand; 2818 2819 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 2820 unsigned UseOpc = CompareUseMI.getOpcode(); 2821 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 2822 continue; 2823 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 2824 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 2825 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 2826 unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg, 2827 FalseReg, CRSubReg); 2828 if (RegToCopy == PPC::NoRegister) 2829 continue; 2830 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 2831 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 2832 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 2833 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 2834 CompareUseMI.RemoveOperand(3); 2835 CompareUseMI.RemoveOperand(2); 2836 continue; 2837 } 2838 LLVM_DEBUG( 2839 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 2840 LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump()); 2841 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 2842 // Convert to copy and remove unneeded operands. 2843 CompareUseMI.setDesc(get(PPC::COPY)); 2844 CompareUseMI.RemoveOperand(3); 2845 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 2846 CmpIselsConverted++; 2847 Changed = true; 2848 LLVM_DEBUG(CompareUseMI.dump()); 2849 } 2850 if (Changed) 2851 return true; 2852 // This may end up incremented multiple times since this function is called 2853 // during a fixed-point transformation, but it is only meant to indicate the 2854 // presence of this opportunity. 2855 MissedConvertibleImmediateInstrs++; 2856 return false; 2857 } 2858 2859 // Immediate forms - may simply be convertable to an LI. 2860 case PPC::ADDI: 2861 case PPC::ADDI8: { 2862 // Does the sum fit in a 16-bit signed field? 2863 int64_t Addend = MI.getOperand(2).getImm(); 2864 if (isInt<16>(Addend + SExtImm)) { 2865 ReplaceWithLI = true; 2866 Is64BitLI = Opc == PPC::ADDI8; 2867 NewImm = Addend + SExtImm; 2868 break; 2869 } 2870 return false; 2871 } 2872 case PPC::RLDICL: 2873 case PPC::RLDICL_rec: 2874 case PPC::RLDICL_32: 2875 case PPC::RLDICL_32_64: { 2876 // Use APInt's rotate function. 2877 int64_t SH = MI.getOperand(2).getImm(); 2878 int64_t MB = MI.getOperand(3).getImm(); 2879 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, 2880 SExtImm, true); 2881 InVal = InVal.rotl(SH); 2882 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2883 InVal &= Mask; 2884 // Can't replace negative values with an LI as that will sign-extend 2885 // and not clear the left bits. If we're setting the CR bit, we will use 2886 // ANDI_rec which won't sign extend, so that's safe. 2887 if (isUInt<15>(InVal.getSExtValue()) || 2888 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { 2889 ReplaceWithLI = true; 2890 Is64BitLI = Opc != PPC::RLDICL_32; 2891 NewImm = InVal.getSExtValue(); 2892 SetCR = Opc == PPC::RLDICL_rec; 2893 break; 2894 } 2895 return false; 2896 } 2897 case PPC::RLWINM: 2898 case PPC::RLWINM8: 2899 case PPC::RLWINM_rec: 2900 case PPC::RLWINM8_rec: { 2901 int64_t SH = MI.getOperand(2).getImm(); 2902 int64_t MB = MI.getOperand(3).getImm(); 2903 int64_t ME = MI.getOperand(4).getImm(); 2904 APInt InVal(32, SExtImm, true); 2905 InVal = InVal.rotl(SH); 2906 // Set the bits ( MB + 32 ) to ( ME + 32 ). 2907 uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2908 InVal &= Mask; 2909 // Can't replace negative values with an LI as that will sign-extend 2910 // and not clear the left bits. If we're setting the CR bit, we will use 2911 // ANDI_rec which won't sign extend, so that's safe. 2912 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 2913 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && 2914 isUInt<16>(InVal.getSExtValue())); 2915 if (ValueFits) { 2916 ReplaceWithLI = true; 2917 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; 2918 NewImm = InVal.getSExtValue(); 2919 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; 2920 break; 2921 } 2922 return false; 2923 } 2924 case PPC::ORI: 2925 case PPC::ORI8: 2926 case PPC::XORI: 2927 case PPC::XORI8: { 2928 int64_t LogicalImm = MI.getOperand(2).getImm(); 2929 int64_t Result = 0; 2930 if (Opc == PPC::ORI || Opc == PPC::ORI8) 2931 Result = LogicalImm | SExtImm; 2932 else 2933 Result = LogicalImm ^ SExtImm; 2934 if (isInt<16>(Result)) { 2935 ReplaceWithLI = true; 2936 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 2937 NewImm = Result; 2938 break; 2939 } 2940 return false; 2941 } 2942 } 2943 2944 if (ReplaceWithLI) { 2945 // We need to be careful with CR-setting instructions we're replacing. 2946 if (SetCR) { 2947 // We don't know anything about uses when we're out of SSA, so only 2948 // replace if the new immediate will be reproduced. 2949 bool ImmChanged = (SExtImm & NewImm) != NewImm; 2950 if (PostRA && ImmChanged) 2951 return false; 2952 2953 if (!PostRA) { 2954 // If the defining load-immediate has no other uses, we can just replace 2955 // the immediate with the new immediate. 2956 if (MRI->hasOneUse(DefMI->getOperand(0).getReg())) 2957 DefMI->getOperand(1).setImm(NewImm); 2958 2959 // If we're not using the GPR result of the CR-setting instruction, we 2960 // just need to and with zero/non-zero depending on the new immediate. 2961 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 2962 if (NewImm) { 2963 assert(Immediate && "Transformation converted zero to non-zero?"); 2964 NewImm = Immediate; 2965 } 2966 } 2967 else if (ImmChanged) 2968 return false; 2969 } 2970 } 2971 2972 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 2973 LLVM_DEBUG(MI.dump()); 2974 LLVM_DEBUG(dbgs() << "Fed by:\n"); 2975 LLVM_DEBUG(DefMI->dump()); 2976 LoadImmediateInfo LII; 2977 LII.Imm = NewImm; 2978 LII.Is64Bit = Is64BitLI; 2979 LII.SetCR = SetCR; 2980 // If we're setting the CR, the original load-immediate must be kept (as an 2981 // operand to ANDI_rec/ANDI8_rec). 2982 if (KilledDef && SetCR) 2983 *KilledDef = nullptr; 2984 replaceInstrWithLI(MI, LII); 2985 2986 // Fixup killed/dead flag after transformation. 2987 // Pattern: 2988 // ForwardingOperandReg = LI imm1 2989 // y = op2 imm2, ForwardingOperandReg(killed) 2990 if (IsForwardingOperandKilled) 2991 fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg); 2992 2993 LLVM_DEBUG(dbgs() << "With:\n"); 2994 LLVM_DEBUG(MI.dump()); 2995 return true; 2996 } 2997 return false; 2998 } 2999 3000 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 3001 ImmInstrInfo &III, bool PostRA) const { 3002 // The vast majority of the instructions would need their operand 2 replaced 3003 // with an immediate when switching to the reg+imm form. A marked exception 3004 // are the update form loads/stores for which a constant operand 2 would need 3005 // to turn into a displacement and move operand 1 to the operand 2 position. 3006 III.ImmOpNo = 2; 3007 III.OpNoForForwarding = 2; 3008 III.ImmWidth = 16; 3009 III.ImmMustBeMultipleOf = 1; 3010 III.TruncateImmTo = 0; 3011 III.IsSummingOperands = false; 3012 switch (Opc) { 3013 default: return false; 3014 case PPC::ADD4: 3015 case PPC::ADD8: 3016 III.SignedImm = true; 3017 III.ZeroIsSpecialOrig = 0; 3018 III.ZeroIsSpecialNew = 1; 3019 III.IsCommutative = true; 3020 III.IsSummingOperands = true; 3021 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 3022 break; 3023 case PPC::ADDC: 3024 case PPC::ADDC8: 3025 III.SignedImm = true; 3026 III.ZeroIsSpecialOrig = 0; 3027 III.ZeroIsSpecialNew = 0; 3028 III.IsCommutative = true; 3029 III.IsSummingOperands = true; 3030 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 3031 break; 3032 case PPC::ADDC_rec: 3033 III.SignedImm = true; 3034 III.ZeroIsSpecialOrig = 0; 3035 III.ZeroIsSpecialNew = 0; 3036 III.IsCommutative = true; 3037 III.IsSummingOperands = true; 3038 III.ImmOpcode = PPC::ADDIC_rec; 3039 break; 3040 case PPC::SUBFC: 3041 case PPC::SUBFC8: 3042 III.SignedImm = true; 3043 III.ZeroIsSpecialOrig = 0; 3044 III.ZeroIsSpecialNew = 0; 3045 III.IsCommutative = false; 3046 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 3047 break; 3048 case PPC::CMPW: 3049 case PPC::CMPD: 3050 III.SignedImm = true; 3051 III.ZeroIsSpecialOrig = 0; 3052 III.ZeroIsSpecialNew = 0; 3053 III.IsCommutative = false; 3054 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 3055 break; 3056 case PPC::CMPLW: 3057 case PPC::CMPLD: 3058 III.SignedImm = false; 3059 III.ZeroIsSpecialOrig = 0; 3060 III.ZeroIsSpecialNew = 0; 3061 III.IsCommutative = false; 3062 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 3063 break; 3064 case PPC::AND_rec: 3065 case PPC::AND8_rec: 3066 case PPC::OR: 3067 case PPC::OR8: 3068 case PPC::XOR: 3069 case PPC::XOR8: 3070 III.SignedImm = false; 3071 III.ZeroIsSpecialOrig = 0; 3072 III.ZeroIsSpecialNew = 0; 3073 III.IsCommutative = true; 3074 switch(Opc) { 3075 default: llvm_unreachable("Unknown opcode"); 3076 case PPC::AND_rec: 3077 III.ImmOpcode = PPC::ANDI_rec; 3078 break; 3079 case PPC::AND8_rec: 3080 III.ImmOpcode = PPC::ANDI8_rec; 3081 break; 3082 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 3083 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 3084 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 3085 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 3086 } 3087 break; 3088 case PPC::RLWNM: 3089 case PPC::RLWNM8: 3090 case PPC::RLWNM_rec: 3091 case PPC::RLWNM8_rec: 3092 case PPC::SLW: 3093 case PPC::SLW8: 3094 case PPC::SLW_rec: 3095 case PPC::SLW8_rec: 3096 case PPC::SRW: 3097 case PPC::SRW8: 3098 case PPC::SRW_rec: 3099 case PPC::SRW8_rec: 3100 case PPC::SRAW: 3101 case PPC::SRAW_rec: 3102 III.SignedImm = false; 3103 III.ZeroIsSpecialOrig = 0; 3104 III.ZeroIsSpecialNew = 0; 3105 III.IsCommutative = false; 3106 // This isn't actually true, but the instructions ignore any of the 3107 // upper bits, so any immediate loaded with an LI is acceptable. 3108 // This does not apply to shift right algebraic because a value 3109 // out of range will produce a -1/0. 3110 III.ImmWidth = 16; 3111 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || 3112 Opc == PPC::RLWNM8_rec) 3113 III.TruncateImmTo = 5; 3114 else 3115 III.TruncateImmTo = 6; 3116 switch(Opc) { 3117 default: llvm_unreachable("Unknown opcode"); 3118 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 3119 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 3120 case PPC::RLWNM_rec: 3121 III.ImmOpcode = PPC::RLWINM_rec; 3122 break; 3123 case PPC::RLWNM8_rec: 3124 III.ImmOpcode = PPC::RLWINM8_rec; 3125 break; 3126 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 3127 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 3128 case PPC::SLW_rec: 3129 III.ImmOpcode = PPC::RLWINM_rec; 3130 break; 3131 case PPC::SLW8_rec: 3132 III.ImmOpcode = PPC::RLWINM8_rec; 3133 break; 3134 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 3135 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 3136 case PPC::SRW_rec: 3137 III.ImmOpcode = PPC::RLWINM_rec; 3138 break; 3139 case PPC::SRW8_rec: 3140 III.ImmOpcode = PPC::RLWINM8_rec; 3141 break; 3142 case PPC::SRAW: 3143 III.ImmWidth = 5; 3144 III.TruncateImmTo = 0; 3145 III.ImmOpcode = PPC::SRAWI; 3146 break; 3147 case PPC::SRAW_rec: 3148 III.ImmWidth = 5; 3149 III.TruncateImmTo = 0; 3150 III.ImmOpcode = PPC::SRAWI_rec; 3151 break; 3152 } 3153 break; 3154 case PPC::RLDCL: 3155 case PPC::RLDCL_rec: 3156 case PPC::RLDCR: 3157 case PPC::RLDCR_rec: 3158 case PPC::SLD: 3159 case PPC::SLD_rec: 3160 case PPC::SRD: 3161 case PPC::SRD_rec: 3162 case PPC::SRAD: 3163 case PPC::SRAD_rec: 3164 III.SignedImm = false; 3165 III.ZeroIsSpecialOrig = 0; 3166 III.ZeroIsSpecialNew = 0; 3167 III.IsCommutative = false; 3168 // This isn't actually true, but the instructions ignore any of the 3169 // upper bits, so any immediate loaded with an LI is acceptable. 3170 // This does not apply to shift right algebraic because a value 3171 // out of range will produce a -1/0. 3172 III.ImmWidth = 16; 3173 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || 3174 Opc == PPC::RLDCR_rec) 3175 III.TruncateImmTo = 6; 3176 else 3177 III.TruncateImmTo = 7; 3178 switch(Opc) { 3179 default: llvm_unreachable("Unknown opcode"); 3180 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 3181 case PPC::RLDCL_rec: 3182 III.ImmOpcode = PPC::RLDICL_rec; 3183 break; 3184 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 3185 case PPC::RLDCR_rec: 3186 III.ImmOpcode = PPC::RLDICR_rec; 3187 break; 3188 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 3189 case PPC::SLD_rec: 3190 III.ImmOpcode = PPC::RLDICR_rec; 3191 break; 3192 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 3193 case PPC::SRD_rec: 3194 III.ImmOpcode = PPC::RLDICL_rec; 3195 break; 3196 case PPC::SRAD: 3197 III.ImmWidth = 6; 3198 III.TruncateImmTo = 0; 3199 III.ImmOpcode = PPC::SRADI; 3200 break; 3201 case PPC::SRAD_rec: 3202 III.ImmWidth = 6; 3203 III.TruncateImmTo = 0; 3204 III.ImmOpcode = PPC::SRADI_rec; 3205 break; 3206 } 3207 break; 3208 // Loads and stores: 3209 case PPC::LBZX: 3210 case PPC::LBZX8: 3211 case PPC::LHZX: 3212 case PPC::LHZX8: 3213 case PPC::LHAX: 3214 case PPC::LHAX8: 3215 case PPC::LWZX: 3216 case PPC::LWZX8: 3217 case PPC::LWAX: 3218 case PPC::LDX: 3219 case PPC::LFSX: 3220 case PPC::LFDX: 3221 case PPC::STBX: 3222 case PPC::STBX8: 3223 case PPC::STHX: 3224 case PPC::STHX8: 3225 case PPC::STWX: 3226 case PPC::STWX8: 3227 case PPC::STDX: 3228 case PPC::STFSX: 3229 case PPC::STFDX: 3230 III.SignedImm = true; 3231 III.ZeroIsSpecialOrig = 1; 3232 III.ZeroIsSpecialNew = 2; 3233 III.IsCommutative = true; 3234 III.IsSummingOperands = true; 3235 III.ImmOpNo = 1; 3236 III.OpNoForForwarding = 2; 3237 switch(Opc) { 3238 default: llvm_unreachable("Unknown opcode"); 3239 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 3240 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 3241 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 3242 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 3243 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 3244 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 3245 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 3246 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 3247 case PPC::LWAX: 3248 III.ImmOpcode = PPC::LWA; 3249 III.ImmMustBeMultipleOf = 4; 3250 break; 3251 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 3252 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 3253 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 3254 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 3255 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 3256 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 3257 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 3258 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 3259 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 3260 case PPC::STDX: 3261 III.ImmOpcode = PPC::STD; 3262 III.ImmMustBeMultipleOf = 4; 3263 break; 3264 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 3265 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 3266 } 3267 break; 3268 case PPC::LBZUX: 3269 case PPC::LBZUX8: 3270 case PPC::LHZUX: 3271 case PPC::LHZUX8: 3272 case PPC::LHAUX: 3273 case PPC::LHAUX8: 3274 case PPC::LWZUX: 3275 case PPC::LWZUX8: 3276 case PPC::LDUX: 3277 case PPC::LFSUX: 3278 case PPC::LFDUX: 3279 case PPC::STBUX: 3280 case PPC::STBUX8: 3281 case PPC::STHUX: 3282 case PPC::STHUX8: 3283 case PPC::STWUX: 3284 case PPC::STWUX8: 3285 case PPC::STDUX: 3286 case PPC::STFSUX: 3287 case PPC::STFDUX: 3288 III.SignedImm = true; 3289 III.ZeroIsSpecialOrig = 2; 3290 III.ZeroIsSpecialNew = 3; 3291 III.IsCommutative = false; 3292 III.IsSummingOperands = true; 3293 III.ImmOpNo = 2; 3294 III.OpNoForForwarding = 3; 3295 switch(Opc) { 3296 default: llvm_unreachable("Unknown opcode"); 3297 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 3298 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 3299 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 3300 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 3301 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 3302 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 3303 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 3304 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 3305 case PPC::LDUX: 3306 III.ImmOpcode = PPC::LDU; 3307 III.ImmMustBeMultipleOf = 4; 3308 break; 3309 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 3310 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 3311 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 3312 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 3313 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 3314 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 3315 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 3316 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 3317 case PPC::STDUX: 3318 III.ImmOpcode = PPC::STDU; 3319 III.ImmMustBeMultipleOf = 4; 3320 break; 3321 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 3322 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 3323 } 3324 break; 3325 // Power9 and up only. For some of these, the X-Form version has access to all 3326 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 3327 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 3328 // into or stored from is one of the VR registers. 3329 case PPC::LXVX: 3330 case PPC::LXSSPX: 3331 case PPC::LXSDX: 3332 case PPC::STXVX: 3333 case PPC::STXSSPX: 3334 case PPC::STXSDX: 3335 case PPC::XFLOADf32: 3336 case PPC::XFLOADf64: 3337 case PPC::XFSTOREf32: 3338 case PPC::XFSTOREf64: 3339 if (!Subtarget.hasP9Vector()) 3340 return false; 3341 III.SignedImm = true; 3342 III.ZeroIsSpecialOrig = 1; 3343 III.ZeroIsSpecialNew = 2; 3344 III.IsCommutative = true; 3345 III.IsSummingOperands = true; 3346 III.ImmOpNo = 1; 3347 III.OpNoForForwarding = 2; 3348 III.ImmMustBeMultipleOf = 4; 3349 switch(Opc) { 3350 default: llvm_unreachable("Unknown opcode"); 3351 case PPC::LXVX: 3352 III.ImmOpcode = PPC::LXV; 3353 III.ImmMustBeMultipleOf = 16; 3354 break; 3355 case PPC::LXSSPX: 3356 if (PostRA) { 3357 if (IsVFReg) 3358 III.ImmOpcode = PPC::LXSSP; 3359 else { 3360 III.ImmOpcode = PPC::LFS; 3361 III.ImmMustBeMultipleOf = 1; 3362 } 3363 break; 3364 } 3365 LLVM_FALLTHROUGH; 3366 case PPC::XFLOADf32: 3367 III.ImmOpcode = PPC::DFLOADf32; 3368 break; 3369 case PPC::LXSDX: 3370 if (PostRA) { 3371 if (IsVFReg) 3372 III.ImmOpcode = PPC::LXSD; 3373 else { 3374 III.ImmOpcode = PPC::LFD; 3375 III.ImmMustBeMultipleOf = 1; 3376 } 3377 break; 3378 } 3379 LLVM_FALLTHROUGH; 3380 case PPC::XFLOADf64: 3381 III.ImmOpcode = PPC::DFLOADf64; 3382 break; 3383 case PPC::STXVX: 3384 III.ImmOpcode = PPC::STXV; 3385 III.ImmMustBeMultipleOf = 16; 3386 break; 3387 case PPC::STXSSPX: 3388 if (PostRA) { 3389 if (IsVFReg) 3390 III.ImmOpcode = PPC::STXSSP; 3391 else { 3392 III.ImmOpcode = PPC::STFS; 3393 III.ImmMustBeMultipleOf = 1; 3394 } 3395 break; 3396 } 3397 LLVM_FALLTHROUGH; 3398 case PPC::XFSTOREf32: 3399 III.ImmOpcode = PPC::DFSTOREf32; 3400 break; 3401 case PPC::STXSDX: 3402 if (PostRA) { 3403 if (IsVFReg) 3404 III.ImmOpcode = PPC::STXSD; 3405 else { 3406 III.ImmOpcode = PPC::STFD; 3407 III.ImmMustBeMultipleOf = 1; 3408 } 3409 break; 3410 } 3411 LLVM_FALLTHROUGH; 3412 case PPC::XFSTOREf64: 3413 III.ImmOpcode = PPC::DFSTOREf64; 3414 break; 3415 } 3416 break; 3417 } 3418 return true; 3419 } 3420 3421 // Utility function for swaping two arbitrary operands of an instruction. 3422 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 3423 assert(Op1 != Op2 && "Cannot swap operand with itself."); 3424 3425 unsigned MaxOp = std::max(Op1, Op2); 3426 unsigned MinOp = std::min(Op1, Op2); 3427 MachineOperand MOp1 = MI.getOperand(MinOp); 3428 MachineOperand MOp2 = MI.getOperand(MaxOp); 3429 MI.RemoveOperand(std::max(Op1, Op2)); 3430 MI.RemoveOperand(std::min(Op1, Op2)); 3431 3432 // If the operands we are swapping are the two at the end (the common case) 3433 // we can just remove both and add them in the opposite order. 3434 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 3435 MI.addOperand(MOp2); 3436 MI.addOperand(MOp1); 3437 } else { 3438 // Store all operands in a temporary vector, remove them and re-add in the 3439 // right order. 3440 SmallVector<MachineOperand, 2> MOps; 3441 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 3442 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 3443 MOps.push_back(MI.getOperand(i)); 3444 MI.RemoveOperand(i); 3445 } 3446 // MOp2 needs to be added next. 3447 MI.addOperand(MOp2); 3448 // Now add the rest. 3449 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 3450 if (i == MaxOp) 3451 MI.addOperand(MOp1); 3452 else { 3453 MI.addOperand(MOps.back()); 3454 MOps.pop_back(); 3455 } 3456 } 3457 } 3458 } 3459 3460 // Check if the 'MI' that has the index OpNoForForwarding 3461 // meets the requirement described in the ImmInstrInfo. 3462 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 3463 const ImmInstrInfo &III, 3464 unsigned OpNoForForwarding 3465 ) const { 3466 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 3467 // would not work pre-RA, we can only do the check post RA. 3468 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3469 if (MRI.isSSA()) 3470 return false; 3471 3472 // Cannot do the transform if MI isn't summing the operands. 3473 if (!III.IsSummingOperands) 3474 return false; 3475 3476 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 3477 if (!III.ZeroIsSpecialOrig) 3478 return false; 3479 3480 // We cannot do the transform if the operand we are trying to replace 3481 // isn't the same as the operand the instruction allows. 3482 if (OpNoForForwarding != III.OpNoForForwarding) 3483 return false; 3484 3485 // Check if the instruction we are trying to transform really has 3486 // the special zero register as its operand. 3487 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 3488 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 3489 return false; 3490 3491 // This machine instruction is convertible if it is, 3492 // 1. summing the operands. 3493 // 2. one of the operands is special zero register. 3494 // 3. the operand we are trying to replace is allowed by the MI. 3495 return true; 3496 } 3497 3498 // Check if the DefMI is the add inst and set the ImmMO and RegMO 3499 // accordingly. 3500 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 3501 const ImmInstrInfo &III, 3502 MachineOperand *&ImmMO, 3503 MachineOperand *&RegMO) const { 3504 unsigned Opc = DefMI.getOpcode(); 3505 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 3506 return false; 3507 3508 assert(DefMI.getNumOperands() >= 3 && 3509 "Add inst must have at least three operands"); 3510 RegMO = &DefMI.getOperand(1); 3511 ImmMO = &DefMI.getOperand(2); 3512 3513 // This DefMI is elgible for forwarding if it is: 3514 // 1. add inst 3515 // 2. one of the operands is Imm/CPI/Global. 3516 return isAnImmediateOperand(*ImmMO); 3517 } 3518 3519 bool PPCInstrInfo::isRegElgibleForForwarding( 3520 const MachineOperand &RegMO, const MachineInstr &DefMI, 3521 const MachineInstr &MI, bool KillDefMI, 3522 bool &IsFwdFeederRegKilled) const { 3523 // x = addi y, imm 3524 // ... 3525 // z = lfdx 0, x -> z = lfd imm(y) 3526 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 3527 // of "y" between the DEF of "x" and "z". 3528 // The query is only valid post RA. 3529 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3530 if (MRI.isSSA()) 3531 return false; 3532 3533 Register Reg = RegMO.getReg(); 3534 3535 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 3536 MachineBasicBlock::const_reverse_iterator It = MI; 3537 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 3538 It++; 3539 for (; It != E; ++It) { 3540 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3541 return false; 3542 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3543 IsFwdFeederRegKilled = true; 3544 // Made it to DefMI without encountering a clobber. 3545 if ((&*It) == &DefMI) 3546 break; 3547 } 3548 assert((&*It) == &DefMI && "DefMI is missing"); 3549 3550 // If DefMI also defines the register to be forwarded, we can only forward it 3551 // if DefMI is being erased. 3552 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 3553 return KillDefMI; 3554 3555 return true; 3556 } 3557 3558 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 3559 const MachineInstr &DefMI, 3560 const ImmInstrInfo &III, 3561 int64_t &Imm) const { 3562 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 3563 if (DefMI.getOpcode() == PPC::ADDItocL) { 3564 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 3565 // However, we know that, it is 16-bit width, and has the alignment of 4. 3566 // Check if the instruction met the requirement. 3567 if (III.ImmMustBeMultipleOf > 4 || 3568 III.TruncateImmTo || III.ImmWidth != 16) 3569 return false; 3570 3571 // Going from XForm to DForm loads means that the displacement needs to be 3572 // not just an immediate but also a multiple of 4, or 16 depending on the 3573 // load. A DForm load cannot be represented if it is a multiple of say 2. 3574 // XForm loads do not have this restriction. 3575 if (ImmMO.isGlobal() && 3576 ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf) 3577 return false; 3578 3579 return true; 3580 } 3581 3582 if (ImmMO.isImm()) { 3583 // It is Imm, we need to check if the Imm fit the range. 3584 int64_t Immediate = ImmMO.getImm(); 3585 // Sign-extend to 64-bits. 3586 Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 3587 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 3588 3589 if (Imm % III.ImmMustBeMultipleOf) 3590 return false; 3591 if (III.TruncateImmTo) 3592 Imm &= ((1 << III.TruncateImmTo) - 1); 3593 if (III.SignedImm) { 3594 APInt ActualValue(64, Imm, true); 3595 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3596 return false; 3597 } else { 3598 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3599 if ((uint64_t)Imm > UnsignedMax) 3600 return false; 3601 } 3602 } 3603 else 3604 return false; 3605 3606 // This ImmMO is forwarded if it meets the requriement describle 3607 // in ImmInstrInfo 3608 return true; 3609 } 3610 3611 // If an X-Form instruction is fed by an add-immediate and one of its operands 3612 // is the literal zero, attempt to forward the source of the add-immediate to 3613 // the corresponding D-Form instruction with the displacement coming from 3614 // the immediate being added. 3615 bool PPCInstrInfo::transformToImmFormFedByAdd( 3616 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 3617 MachineInstr &DefMI, bool KillDefMI) const { 3618 // RegMO ImmMO 3619 // | | 3620 // x = addi reg, imm <----- DefMI 3621 // y = op 0 , x <----- MI 3622 // | 3623 // OpNoForForwarding 3624 // Check if the MI meet the requirement described in the III. 3625 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 3626 return false; 3627 3628 // Check if the DefMI meet the requirement 3629 // described in the III. If yes, set the ImmMO and RegMO accordingly. 3630 MachineOperand *ImmMO = nullptr; 3631 MachineOperand *RegMO = nullptr; 3632 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 3633 return false; 3634 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 3635 3636 // As we get the Imm operand now, we need to check if the ImmMO meet 3637 // the requirement described in the III. If yes set the Imm. 3638 int64_t Imm = 0; 3639 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 3640 return false; 3641 3642 bool IsFwdFeederRegKilled = false; 3643 // Check if the RegMO can be forwarded to MI. 3644 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 3645 IsFwdFeederRegKilled)) 3646 return false; 3647 3648 // Get killed info in case fixup needed after transformation. 3649 unsigned ForwardKilledOperandReg = ~0U; 3650 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3651 bool PostRA = !MRI.isSSA(); 3652 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 3653 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 3654 3655 // We know that, the MI and DefMI both meet the pattern, and 3656 // the Imm also meet the requirement with the new Imm-form. 3657 // It is safe to do the transformation now. 3658 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 3659 LLVM_DEBUG(MI.dump()); 3660 LLVM_DEBUG(dbgs() << "Fed by:\n"); 3661 LLVM_DEBUG(DefMI.dump()); 3662 3663 // Update the base reg first. 3664 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 3665 false, false, 3666 RegMO->isKill()); 3667 3668 // Then, update the imm. 3669 if (ImmMO->isImm()) { 3670 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 3671 // directly. 3672 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 3673 } 3674 else { 3675 // Otherwise, it is Constant Pool Index(CPI) or Global, 3676 // which is relocation in fact. We need to replace the special zero 3677 // register with ImmMO. 3678 // Before that, we need to fixup the target flags for imm. 3679 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 3680 if (DefMI.getOpcode() == PPC::ADDItocL) 3681 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 3682 3683 // MI didn't have the interface such as MI.setOperand(i) though 3684 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 3685 // ImmMO, we need to remove ZERO operand and all the operands behind it, 3686 // and, add the ImmMO, then, move back all the operands behind ZERO. 3687 SmallVector<MachineOperand, 2> MOps; 3688 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 3689 MOps.push_back(MI.getOperand(i)); 3690 MI.RemoveOperand(i); 3691 } 3692 3693 // Remove the last MO in the list, which is ZERO operand in fact. 3694 MOps.pop_back(); 3695 // Add the imm operand. 3696 MI.addOperand(*ImmMO); 3697 // Now add the rest back. 3698 for (auto &MO : MOps) 3699 MI.addOperand(MO); 3700 } 3701 3702 // Update the opcode. 3703 MI.setDesc(get(III.ImmOpcode)); 3704 3705 // Fix up killed/dead flag after transformation. 3706 // Pattern 1: 3707 // x = ADD KilledFwdFeederReg, imm 3708 // n = opn KilledFwdFeederReg(killed), regn 3709 // y = XOP 0, x 3710 // Pattern 2: 3711 // x = ADD reg(killed), imm 3712 // y = XOP 0, x 3713 if (IsFwdFeederRegKilled || RegMO->isKill()) 3714 fixupIsDeadOrKill(DefMI, MI, RegMO->getReg()); 3715 // Pattern 3: 3716 // ForwardKilledOperandReg = ADD reg, imm 3717 // y = XOP 0, ForwardKilledOperandReg(killed) 3718 if (ForwardKilledOperandReg != ~0U) 3719 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3720 3721 LLVM_DEBUG(dbgs() << "With:\n"); 3722 LLVM_DEBUG(MI.dump()); 3723 3724 return true; 3725 } 3726 3727 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 3728 const ImmInstrInfo &III, 3729 unsigned ConstantOpNo, 3730 MachineInstr &DefMI, 3731 int64_t Imm) const { 3732 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3733 bool PostRA = !MRI.isSSA(); 3734 // Exit early if we can't convert this. 3735 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 3736 return false; 3737 if (Imm % III.ImmMustBeMultipleOf) 3738 return false; 3739 if (III.TruncateImmTo) 3740 Imm &= ((1 << III.TruncateImmTo) - 1); 3741 if (III.SignedImm) { 3742 APInt ActualValue(64, Imm, true); 3743 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3744 return false; 3745 } else { 3746 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3747 if ((uint64_t)Imm > UnsignedMax) 3748 return false; 3749 } 3750 3751 // If we're post-RA, the instructions don't agree on whether register zero is 3752 // special, we can transform this as long as the register operand that will 3753 // end up in the location where zero is special isn't R0. 3754 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3755 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 3756 III.ZeroIsSpecialNew + 1; 3757 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 3758 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3759 // If R0 is in the operand where zero is special for the new instruction, 3760 // it is unsafe to transform if the constant operand isn't that operand. 3761 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 3762 ConstantOpNo != III.ZeroIsSpecialNew) 3763 return false; 3764 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 3765 ConstantOpNo != PosForOrigZero) 3766 return false; 3767 } 3768 3769 // Get killed info in case fixup needed after transformation. 3770 unsigned ForwardKilledOperandReg = ~0U; 3771 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 3772 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 3773 3774 unsigned Opc = MI.getOpcode(); 3775 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || 3776 Opc == PPC::SRW || Opc == PPC::SRW_rec || 3777 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || 3778 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; 3779 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || 3780 Opc == PPC::SRD || Opc == PPC::SRD_rec; 3781 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || 3782 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; 3783 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || 3784 Opc == PPC::SRD_rec; 3785 3786 MI.setDesc(get(III.ImmOpcode)); 3787 if (ConstantOpNo == III.OpNoForForwarding) { 3788 // Converting shifts to immediate form is a bit tricky since they may do 3789 // one of three things: 3790 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 3791 // 2. If the shift amount is zero, the result is unchanged (save for maybe 3792 // setting CR0) 3793 // 3. If the shift amount is in [1, OpSize), it's just a shift 3794 if (SpecialShift32 || SpecialShift64) { 3795 LoadImmediateInfo LII; 3796 LII.Imm = 0; 3797 LII.SetCR = SetCR; 3798 LII.Is64Bit = SpecialShift64; 3799 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 3800 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 3801 replaceInstrWithLI(MI, LII); 3802 // Shifts by zero don't change the value. If we don't need to set CR0, 3803 // just convert this to a COPY. Can't do this post-RA since we've already 3804 // cleaned up the copies. 3805 else if (!SetCR && ShAmt == 0 && !PostRA) { 3806 MI.RemoveOperand(2); 3807 MI.setDesc(get(PPC::COPY)); 3808 } else { 3809 // The 32 bit and 64 bit instructions are quite different. 3810 if (SpecialShift32) { 3811 // Left shifts use (N, 0, 31-N). 3812 // Right shifts use (32-N, N, 31) if 0 < N < 32. 3813 // use (0, 0, 31) if N == 0. 3814 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; 3815 uint64_t MB = RightShift ? ShAmt : 0; 3816 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 3817 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3818 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 3819 .addImm(ME); 3820 } else { 3821 // Left shifts use (N, 63-N). 3822 // Right shifts use (64-N, N) if 0 < N < 64. 3823 // use (0, 0) if N == 0. 3824 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; 3825 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 3826 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3827 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 3828 } 3829 } 3830 } else 3831 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3832 } 3833 // Convert commutative instructions (switch the operands and convert the 3834 // desired one to an immediate. 3835 else if (III.IsCommutative) { 3836 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3837 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 3838 } else 3839 llvm_unreachable("Should have exited early!"); 3840 3841 // For instructions for which the constant register replaces a different 3842 // operand than where the immediate goes, we need to swap them. 3843 if (III.OpNoForForwarding != III.ImmOpNo) 3844 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 3845 3846 // If the special R0/X0 register index are different for original instruction 3847 // and new instruction, we need to fix up the register class in new 3848 // instruction. 3849 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3850 if (III.ZeroIsSpecialNew) { 3851 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 3852 // need to fix up register class. 3853 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3854 if (Register::isVirtualRegister(RegToModify)) { 3855 const TargetRegisterClass *NewRC = 3856 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 3857 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 3858 MRI.setRegClass(RegToModify, NewRC); 3859 } 3860 } 3861 } 3862 3863 // Fix up killed/dead flag after transformation. 3864 // Pattern: 3865 // ForwardKilledOperandReg = LI imm 3866 // y = XOP reg, ForwardKilledOperandReg(killed) 3867 if (ForwardKilledOperandReg != ~0U) 3868 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3869 return true; 3870 } 3871 3872 const TargetRegisterClass * 3873 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 3874 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 3875 return &PPC::VSRCRegClass; 3876 return RC; 3877 } 3878 3879 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 3880 return PPC::getRecordFormOpcode(Opcode); 3881 } 3882 3883 // This function returns true if the machine instruction 3884 // always outputs a value by sign-extending a 32 bit value, 3885 // i.e. 0 to 31-th bits are same as 32-th bit. 3886 static bool isSignExtendingOp(const MachineInstr &MI) { 3887 int Opcode = MI.getOpcode(); 3888 if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS || 3889 Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec || 3890 Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA || 3891 Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 3892 Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 || 3893 Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3894 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU || 3895 Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3896 Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 || 3897 Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3898 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB || 3899 Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH || 3900 Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 || 3901 Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW || 3902 Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 || 3903 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 3904 Opcode == PPC::EXTSB8_32_64) 3905 return true; 3906 3907 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 3908 return true; 3909 3910 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 3911 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && 3912 MI.getOperand(3).getImm() > 0 && 3913 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3914 return true; 3915 3916 return false; 3917 } 3918 3919 // This function returns true if the machine instruction 3920 // always outputs zeros in higher 32 bits. 3921 static bool isZeroExtendingOp(const MachineInstr &MI) { 3922 int Opcode = MI.getOpcode(); 3923 // The 16-bit immediate is sign-extended in li/lis. 3924 // If the most significant bit is zero, all higher bits are zero. 3925 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3926 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 3927 int64_t Imm = MI.getOperand(1).getImm(); 3928 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 3929 return true; 3930 } 3931 3932 // We have some variations of rotate-and-mask instructions 3933 // that clear higher 32-bits. 3934 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 3935 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || 3936 Opcode == PPC::RLDICL_32_64) && 3937 MI.getOperand(3).getImm() >= 32) 3938 return true; 3939 3940 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 3941 MI.getOperand(3).getImm() >= 32 && 3942 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 3943 return true; 3944 3945 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 3946 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 3947 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 3948 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3949 return true; 3950 3951 // There are other instructions that clear higher 32-bits. 3952 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec || 3953 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec || 3954 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 3955 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec || 3956 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec || 3957 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW || 3958 Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec || 3959 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI || 3960 Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI || 3961 Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX || 3962 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX || 3963 Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3964 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ || 3965 Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 3966 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 || 3967 Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 3968 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 || 3969 Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 3970 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3971 Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec || 3972 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec || 3973 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec || 3974 Opcode == PPC::MFVSRWZ) 3975 return true; 3976 3977 return false; 3978 } 3979 3980 // This function returns true if the input MachineInstr is a TOC save 3981 // instruction. 3982 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 3983 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 3984 return false; 3985 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 3986 unsigned StackOffset = MI.getOperand(1).getImm(); 3987 Register StackReg = MI.getOperand(2).getReg(); 3988 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) 3989 return true; 3990 3991 return false; 3992 } 3993 3994 // We limit the max depth to track incoming values of PHIs or binary ops 3995 // (e.g. AND) to avoid excessive cost. 3996 const unsigned MAX_DEPTH = 1; 3997 3998 bool 3999 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 4000 const unsigned Depth) const { 4001 const MachineFunction *MF = MI.getParent()->getParent(); 4002 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 4003 4004 // If we know this instruction returns sign- or zero-extended result, 4005 // return true. 4006 if (SignExt ? isSignExtendingOp(MI): 4007 isZeroExtendingOp(MI)) 4008 return true; 4009 4010 switch (MI.getOpcode()) { 4011 case PPC::COPY: { 4012 Register SrcReg = MI.getOperand(1).getReg(); 4013 4014 // In both ELFv1 and v2 ABI, method parameters and the return value 4015 // are sign- or zero-extended. 4016 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 4017 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 4018 // We check the ZExt/SExt flags for a method parameter. 4019 if (MI.getParent()->getBasicBlock() == 4020 &MF->getFunction().getEntryBlock()) { 4021 Register VReg = MI.getOperand(0).getReg(); 4022 if (MF->getRegInfo().isLiveIn(VReg)) 4023 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 4024 FuncInfo->isLiveInZExt(VReg); 4025 } 4026 4027 // For a method return value, we check the ZExt/SExt flags in attribute. 4028 // We assume the following code sequence for method call. 4029 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 4030 // BL8_NOP @func,... 4031 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 4032 // %5 = COPY %x3; G8RC:%5 4033 if (SrcReg == PPC::X3) { 4034 const MachineBasicBlock *MBB = MI.getParent(); 4035 MachineBasicBlock::const_instr_iterator II = 4036 MachineBasicBlock::const_instr_iterator(&MI); 4037 if (II != MBB->instr_begin() && 4038 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 4039 const MachineInstr &CallMI = *(--II); 4040 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 4041 const Function *CalleeFn = 4042 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 4043 if (!CalleeFn) 4044 return false; 4045 const IntegerType *IntTy = 4046 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 4047 const AttributeSet &Attrs = 4048 CalleeFn->getAttributes().getRetAttributes(); 4049 if (IntTy && IntTy->getBitWidth() <= 32) 4050 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 4051 Attribute::ZExt); 4052 } 4053 } 4054 } 4055 } 4056 4057 // If this is a copy from another register, we recursively check source. 4058 if (!Register::isVirtualRegister(SrcReg)) 4059 return false; 4060 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4061 if (SrcMI != NULL) 4062 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 4063 4064 return false; 4065 } 4066 4067 case PPC::ANDI_rec: 4068 case PPC::ANDIS_rec: 4069 case PPC::ORI: 4070 case PPC::ORIS: 4071 case PPC::XORI: 4072 case PPC::XORIS: 4073 case PPC::ANDI8_rec: 4074 case PPC::ANDIS8_rec: 4075 case PPC::ORI8: 4076 case PPC::ORIS8: 4077 case PPC::XORI8: 4078 case PPC::XORIS8: { 4079 // logical operation with 16-bit immediate does not change the upper bits. 4080 // So, we track the operand register as we do for register copy. 4081 Register SrcReg = MI.getOperand(1).getReg(); 4082 if (!Register::isVirtualRegister(SrcReg)) 4083 return false; 4084 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4085 if (SrcMI != NULL) 4086 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 4087 4088 return false; 4089 } 4090 4091 // If all incoming values are sign-/zero-extended, 4092 // the output of OR, ISEL or PHI is also sign-/zero-extended. 4093 case PPC::OR: 4094 case PPC::OR8: 4095 case PPC::ISEL: 4096 case PPC::PHI: { 4097 if (Depth >= MAX_DEPTH) 4098 return false; 4099 4100 // The input registers for PHI are operand 1, 3, ... 4101 // The input registers for others are operand 1 and 2. 4102 unsigned E = 3, D = 1; 4103 if (MI.getOpcode() == PPC::PHI) { 4104 E = MI.getNumOperands(); 4105 D = 2; 4106 } 4107 4108 for (unsigned I = 1; I != E; I += D) { 4109 if (MI.getOperand(I).isReg()) { 4110 Register SrcReg = MI.getOperand(I).getReg(); 4111 if (!Register::isVirtualRegister(SrcReg)) 4112 return false; 4113 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4114 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 4115 return false; 4116 } 4117 else 4118 return false; 4119 } 4120 return true; 4121 } 4122 4123 // If at least one of the incoming values of an AND is zero extended 4124 // then the output is also zero-extended. If both of the incoming values 4125 // are sign-extended then the output is also sign extended. 4126 case PPC::AND: 4127 case PPC::AND8: { 4128 if (Depth >= MAX_DEPTH) 4129 return false; 4130 4131 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 4132 4133 Register SrcReg1 = MI.getOperand(1).getReg(); 4134 Register SrcReg2 = MI.getOperand(2).getReg(); 4135 4136 if (!Register::isVirtualRegister(SrcReg1) || 4137 !Register::isVirtualRegister(SrcReg2)) 4138 return false; 4139 4140 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 4141 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 4142 if (!MISrc1 || !MISrc2) 4143 return false; 4144 4145 if(SignExt) 4146 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 4147 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4148 else 4149 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 4150 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4151 } 4152 4153 default: 4154 break; 4155 } 4156 return false; 4157 } 4158 4159 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 4160 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 4161 } 4162 4163 namespace { 4164 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 4165 MachineInstr *Loop, *EndLoop, *LoopCount; 4166 MachineFunction *MF; 4167 const TargetInstrInfo *TII; 4168 int64_t TripCount; 4169 4170 public: 4171 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 4172 MachineInstr *LoopCount) 4173 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 4174 MF(Loop->getParent()->getParent()), 4175 TII(MF->getSubtarget().getInstrInfo()) { 4176 // Inspect the Loop instruction up-front, as it may be deleted when we call 4177 // createTripCountGreaterCondition. 4178 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 4179 TripCount = LoopCount->getOperand(1).getImm(); 4180 else 4181 TripCount = -1; 4182 } 4183 4184 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 4185 // Only ignore the terminator. 4186 return MI == EndLoop; 4187 } 4188 4189 Optional<bool> 4190 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 4191 SmallVectorImpl<MachineOperand> &Cond) override { 4192 if (TripCount == -1) { 4193 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4194 // so we don't need to generate any thing here. 4195 Cond.push_back(MachineOperand::CreateImm(0)); 4196 Cond.push_back(MachineOperand::CreateReg( 4197 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 4198 true)); 4199 return {}; 4200 } 4201 4202 return TripCount > TC; 4203 } 4204 4205 void setPreheader(MachineBasicBlock *NewPreheader) override { 4206 // Do nothing. We want the LOOP setup instruction to stay in the *old* 4207 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 4208 } 4209 4210 void adjustTripCount(int TripCountAdjust) override { 4211 // If the loop trip count is a compile-time value, then just change the 4212 // value. 4213 if (LoopCount->getOpcode() == PPC::LI8 || 4214 LoopCount->getOpcode() == PPC::LI) { 4215 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 4216 LoopCount->getOperand(1).setImm(TripCount); 4217 return; 4218 } 4219 4220 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4221 // so we don't need to generate any thing here. 4222 } 4223 4224 void disposed() override { 4225 Loop->eraseFromParent(); 4226 // Ensure the loop setup instruction is deleted too. 4227 LoopCount->eraseFromParent(); 4228 } 4229 }; 4230 } // namespace 4231 4232 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 4233 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 4234 // We really "analyze" only hardware loops right now. 4235 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 4236 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 4237 if (Preheader == LoopBB) 4238 Preheader = *std::next(LoopBB->pred_begin()); 4239 MachineFunction *MF = Preheader->getParent(); 4240 4241 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 4242 SmallPtrSet<MachineBasicBlock *, 8> Visited; 4243 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 4244 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 4245 MachineRegisterInfo &MRI = MF->getRegInfo(); 4246 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 4247 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 4248 } 4249 } 4250 return nullptr; 4251 } 4252 4253 MachineInstr *PPCInstrInfo::findLoopInstr( 4254 MachineBasicBlock &PreHeader, 4255 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 4256 4257 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 4258 4259 // The loop set-up instruction should be in preheader 4260 for (auto &I : PreHeader.instrs()) 4261 if (I.getOpcode() == LOOPi) 4262 return &I; 4263 return nullptr; 4264 } 4265 4266 // Return true if get the base operand, byte offset of an instruction and the 4267 // memory width. Width is the size of memory that is being loaded/stored. 4268 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 4269 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, 4270 unsigned &Width, const TargetRegisterInfo *TRI) const { 4271 if (!LdSt.mayLoadOrStore()) 4272 return false; 4273 4274 // Handle only loads/stores with base register followed by immediate offset. 4275 if (LdSt.getNumExplicitOperands() != 3) 4276 return false; 4277 if (!LdSt.getOperand(1).isImm() || !LdSt.getOperand(2).isReg()) 4278 return false; 4279 4280 if (!LdSt.hasOneMemOperand()) 4281 return false; 4282 4283 Width = (*LdSt.memoperands_begin())->getSize(); 4284 Offset = LdSt.getOperand(1).getImm(); 4285 BaseReg = &LdSt.getOperand(2); 4286 return true; 4287 } 4288 4289 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 4290 const MachineInstr &MIa, const MachineInstr &MIb) const { 4291 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 4292 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 4293 4294 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 4295 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 4296 return false; 4297 4298 // Retrieve the base register, offset from the base register and width. Width 4299 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 4300 // base registers are identical, and the offset of a lower memory access + 4301 // the width doesn't overlap the offset of a higher memory access, 4302 // then the memory accesses are different. 4303 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4304 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 4305 int64_t OffsetA = 0, OffsetB = 0; 4306 unsigned int WidthA = 0, WidthB = 0; 4307 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 4308 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 4309 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 4310 int LowOffset = std::min(OffsetA, OffsetB); 4311 int HighOffset = std::max(OffsetA, OffsetB); 4312 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 4313 if (LowOffset + LowWidth <= HighOffset) 4314 return true; 4315 } 4316 } 4317 return false; 4318 } 4319