1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCInst.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/raw_ostream.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "ppc-instr-info"
44 
45 #define GET_INSTRMAP_INFO
46 #define GET_INSTRINFO_CTOR_DTOR
47 #include "PPCGenInstrInfo.inc"
48 
49 STATISTIC(NumStoreSPILLVSRRCAsVec,
50           "Number of spillvsrrc spilled to stack as vec");
51 STATISTIC(NumStoreSPILLVSRRCAsGpr,
52           "Number of spillvsrrc spilled to stack as gpr");
53 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
54 STATISTIC(CmpIselsConverted,
55           "Number of ISELs that depend on comparison of constants converted");
56 STATISTIC(MissedConvertibleImmediateInstrs,
57           "Number of compare-immediate instructions fed by constants");
58 STATISTIC(NumRcRotatesConvertedToRcAnd,
59           "Number of record-form rotates converted to record-form andi");
60 
61 static cl::
62 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
63             cl::desc("Disable analysis for CTR loops"));
64 
65 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
66 cl::desc("Disable compare instruction optimization"), cl::Hidden);
67 
68 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
69 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
70 cl::Hidden);
71 
72 static cl::opt<bool>
73 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
74   cl::desc("Use the old (incorrect) instruction latency calculation"));
75 
76 // Pin the vtable to this file.
77 void PPCInstrInfo::anchor() {}
78 
79 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
80     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
81                       /* CatchRetOpcode */ -1,
82                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
83       Subtarget(STI), RI(STI.getTargetMachine()) {}
84 
85 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
86 /// this target when scheduling the DAG.
87 ScheduleHazardRecognizer *
88 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
89                                            const ScheduleDAG *DAG) const {
90   unsigned Directive =
91       static_cast<const PPCSubtarget *>(STI)->getCPUDirective();
92   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
93       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
94     const InstrItineraryData *II =
95         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
96     return new ScoreboardHazardRecognizer(II, DAG);
97   }
98 
99   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
100 }
101 
102 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
103 /// to use for this target when scheduling the DAG.
104 ScheduleHazardRecognizer *
105 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
106                                                  const ScheduleDAG *DAG) const {
107   unsigned Directive =
108       DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective();
109 
110   // FIXME: Leaving this as-is until we have POWER9 scheduling info
111   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
112     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
113 
114   // Most subtargets use a PPC970 recognizer.
115   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
116       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
117     assert(DAG->TII && "No InstrInfo?");
118 
119     return new PPCHazardRecognizer970(*DAG);
120   }
121 
122   return new ScoreboardHazardRecognizer(II, DAG);
123 }
124 
125 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
126                                        const MachineInstr &MI,
127                                        unsigned *PredCost) const {
128   if (!ItinData || UseOldLatencyCalc)
129     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
130 
131   // The default implementation of getInstrLatency calls getStageLatency, but
132   // getStageLatency does not do the right thing for us. While we have
133   // itinerary, most cores are fully pipelined, and so the itineraries only
134   // express the first part of the pipeline, not every stage. Instead, we need
135   // to use the listed output operand cycle number (using operand 0 here, which
136   // is an output).
137 
138   unsigned Latency = 1;
139   unsigned DefClass = MI.getDesc().getSchedClass();
140   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
141     const MachineOperand &MO = MI.getOperand(i);
142     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
143       continue;
144 
145     int Cycle = ItinData->getOperandCycle(DefClass, i);
146     if (Cycle < 0)
147       continue;
148 
149     Latency = std::max(Latency, (unsigned) Cycle);
150   }
151 
152   return Latency;
153 }
154 
155 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
156                                     const MachineInstr &DefMI, unsigned DefIdx,
157                                     const MachineInstr &UseMI,
158                                     unsigned UseIdx) const {
159   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
160                                                    UseMI, UseIdx);
161 
162   if (!DefMI.getParent())
163     return Latency;
164 
165   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
166   Register Reg = DefMO.getReg();
167 
168   bool IsRegCR;
169   if (Register::isVirtualRegister(Reg)) {
170     const MachineRegisterInfo *MRI =
171         &DefMI.getParent()->getParent()->getRegInfo();
172     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
173               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
174   } else {
175     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
176               PPC::CRBITRCRegClass.contains(Reg);
177   }
178 
179   if (UseMI.isBranch() && IsRegCR) {
180     if (Latency < 0)
181       Latency = getInstrLatency(ItinData, DefMI);
182 
183     // On some cores, there is an additional delay between writing to a condition
184     // register, and using it from a branch.
185     unsigned Directive = Subtarget.getCPUDirective();
186     switch (Directive) {
187     default: break;
188     case PPC::DIR_7400:
189     case PPC::DIR_750:
190     case PPC::DIR_970:
191     case PPC::DIR_E5500:
192     case PPC::DIR_PWR4:
193     case PPC::DIR_PWR5:
194     case PPC::DIR_PWR5X:
195     case PPC::DIR_PWR6:
196     case PPC::DIR_PWR6X:
197     case PPC::DIR_PWR7:
198     case PPC::DIR_PWR8:
199     // FIXME: Is this needed for POWER9?
200       Latency += 2;
201       break;
202     }
203   }
204 
205   return Latency;
206 }
207 
208 /// This is an architecture-specific helper function of reassociateOps.
209 /// Set special operand attributes for new instructions after reassociation.
210 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
211                                          MachineInstr &OldMI2,
212                                          MachineInstr &NewMI1,
213                                          MachineInstr &NewMI2) const {
214   // Propagate FP flags from the original instructions.
215   // But clear poison-generating flags because those may not be valid now.
216   uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
217   NewMI1.setFlags(IntersectedFlags);
218   NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
219   NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
220   NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
221 
222   NewMI2.setFlags(IntersectedFlags);
223   NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
224   NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
225   NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
226 }
227 
228 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI,
229                                          uint16_t Flags) const {
230   MI.setFlags(Flags);
231   MI.clearFlag(MachineInstr::MIFlag::NoSWrap);
232   MI.clearFlag(MachineInstr::MIFlag::NoUWrap);
233   MI.clearFlag(MachineInstr::MIFlag::IsExact);
234 }
235 
236 // This function does not list all associative and commutative operations, but
237 // only those worth feeding through the machine combiner in an attempt to
238 // reduce the critical path. Mostly, this means floating-point operations,
239 // because they have high latencies(>=5) (compared to other operations, such as
240 // and/or, which are also associative and commutative, but have low latencies).
241 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
242   switch (Inst.getOpcode()) {
243   // Floating point:
244   // FP Add:
245   case PPC::FADD:
246   case PPC::FADDS:
247   // FP Multiply:
248   case PPC::FMUL:
249   case PPC::FMULS:
250   // Altivec Add:
251   case PPC::VADDFP:
252   // VSX Add:
253   case PPC::XSADDDP:
254   case PPC::XVADDDP:
255   case PPC::XVADDSP:
256   case PPC::XSADDSP:
257   // VSX Multiply:
258   case PPC::XSMULDP:
259   case PPC::XVMULDP:
260   case PPC::XVMULSP:
261   case PPC::XSMULSP:
262     return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
263            Inst.getFlag(MachineInstr::MIFlag::FmNsz);
264   // Fixed point:
265   // Multiply:
266   case PPC::MULHD:
267   case PPC::MULLD:
268   case PPC::MULHW:
269   case PPC::MULLW:
270     return true;
271   default:
272     return false;
273   }
274 }
275 
276 #define InfoArrayIdxFMAInst 0
277 #define InfoArrayIdxFAddInst 1
278 #define InfoArrayIdxFMULInst 2
279 #define InfoArrayIdxAddOpIdx 3
280 #define InfoArrayIdxMULOpIdx 4
281 // Array keeps info for FMA instructions:
282 // Index 0(InfoArrayIdxFMAInst): FMA instruction;
283 // Index 1(InfoArrayIdxFAddInst): ADD instruction assoaicted with FMA;
284 // Index 2(InfoArrayIdxFMULInst): MUL instruction assoaicted with FMA;
285 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands;
286 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands;
287 //                                second MUL operand index is plus 1.
288 static const uint16_t FMAOpIdxInfo[][5] = {
289     // FIXME: Add more FMA instructions like XSNMADDADP and so on.
290     {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2},
291     {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2},
292     {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2},
293     {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2},
294     {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1},
295     {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1}};
296 
297 // Check if an opcode is a FMA instruction. If it is, return the index in array
298 // FMAOpIdxInfo. Otherwise, return -1.
299 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const {
300   for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++)
301     if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode)
302       return I;
303   return -1;
304 }
305 
306 // Try to reassociate FMA chains like below:
307 //
308 // Pattern 1:
309 //   A =  FADD X,  Y          (Leaf)
310 //   B =  FMA  A,  M21,  M22  (Prev)
311 //   C =  FMA  B,  M31,  M32  (Root)
312 // -->
313 //   A =  FMA  X,  M21,  M22
314 //   B =  FMA  Y,  M31,  M32
315 //   C =  FADD A,  B
316 //
317 // Pattern 2:
318 //   A =  FMA  X,  M11,  M12  (Leaf)
319 //   B =  FMA  A,  M21,  M22  (Prev)
320 //   C =  FMA  B,  M31,  M32  (Root)
321 // -->
322 //   A =  FMUL M11,  M12
323 //   B =  FMA  X,  M21,  M22
324 //   D =  FMA  A,  M31,  M32
325 //   C =  FADD B,  D
326 //
327 // breaking the dependency between A and B, allowing FMA to be executed in
328 // parallel (or back-to-back in a pipeline) instead of depending on each other.
329 bool PPCInstrInfo::getFMAPatterns(
330     MachineInstr &Root,
331     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
332   MachineBasicBlock *MBB = Root.getParent();
333   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
334 
335   auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) {
336     for (const auto &MO : Instr.explicit_operands())
337       if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
338         return false;
339     return true;
340   };
341 
342   auto IsReassociable = [&](const MachineInstr &Instr, int16_t &AddOpIdx,
343                             bool IsLeaf, bool IsAdd) {
344     int16_t Idx = -1;
345     if (!IsAdd) {
346       Idx = getFMAOpIdxInfo(Instr.getOpcode());
347       if (Idx < 0)
348         return false;
349     } else if (Instr.getOpcode() !=
350                FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())]
351                            [InfoArrayIdxFAddInst])
352       return false;
353 
354     // Instruction can be reassociated.
355     // fast math flags may prohibit reassociation.
356     if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
357           Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
358       return false;
359 
360     // Instruction operands are virtual registers for reassociation.
361     if (!IsAllOpsVirtualReg(Instr))
362       return false;
363 
364     if (IsAdd && IsLeaf)
365       return true;
366 
367     AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
368 
369     const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx);
370     MachineInstr *MIAdd = MRI.getUniqueVRegDef(OpAdd.getReg());
371     // If 'add' operand's def is not in current block, don't do ILP related opt.
372     if (!MIAdd || MIAdd->getParent() != MBB)
373       return false;
374 
375     // If this is not Leaf FMA Instr, its 'add' operand should only have one use
376     // as this fma will be changed later.
377     return IsLeaf ? true : MRI.hasOneNonDBGUse(OpAdd.getReg());
378   };
379 
380   int16_t AddOpIdx = -1;
381   // Root must be a valid FMA like instruction.
382   if (!IsReassociable(Root, AddOpIdx, false, false))
383     return false;
384 
385   assert((AddOpIdx >= 0) && "add operand index not right!");
386 
387   Register RegB = Root.getOperand(AddOpIdx).getReg();
388   MachineInstr *Prev = MRI.getUniqueVRegDef(RegB);
389 
390   // Prev must be a valid FMA like instruction.
391   AddOpIdx = -1;
392   if (!IsReassociable(*Prev, AddOpIdx, false, false))
393     return false;
394 
395   assert((AddOpIdx >= 0) && "add operand index not right!");
396 
397   Register RegA = Prev->getOperand(AddOpIdx).getReg();
398   MachineInstr *Leaf = MRI.getUniqueVRegDef(RegA);
399   AddOpIdx = -1;
400   if (IsReassociable(*Leaf, AddOpIdx, true, false)) {
401     Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM);
402     return true;
403   }
404   if (IsReassociable(*Leaf, AddOpIdx, true, true)) {
405     Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM);
406     return true;
407   }
408   return false;
409 }
410 
411 bool PPCInstrInfo::getMachineCombinerPatterns(
412     MachineInstr &Root,
413     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
414   // Using the machine combiner in this way is potentially expensive, so
415   // restrict to when aggressive optimizations are desired.
416   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
417     return false;
418 
419   if (getFMAPatterns(Root, Patterns))
420     return true;
421 
422   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
423 }
424 
425 void PPCInstrInfo::genAlternativeCodeSequence(
426     MachineInstr &Root, MachineCombinerPattern Pattern,
427     SmallVectorImpl<MachineInstr *> &InsInstrs,
428     SmallVectorImpl<MachineInstr *> &DelInstrs,
429     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
430   switch (Pattern) {
431   case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
432   case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
433     reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg);
434     break;
435   default:
436     // Reassociate default patterns.
437     TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
438                                                 DelInstrs, InstrIdxForVirtReg);
439     break;
440   }
441 }
442 
443 // Currently, only handle two patterns REASSOC_XY_AMM_BMM and
444 // REASSOC_XMM_AMM_BMM. See comments for getFMAPatterns.
445 void PPCInstrInfo::reassociateFMA(
446     MachineInstr &Root, MachineCombinerPattern Pattern,
447     SmallVectorImpl<MachineInstr *> &InsInstrs,
448     SmallVectorImpl<MachineInstr *> &DelInstrs,
449     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
450   MachineFunction *MF = Root.getMF();
451   MachineRegisterInfo &MRI = MF->getRegInfo();
452   MachineOperand &OpC = Root.getOperand(0);
453   Register RegC = OpC.getReg();
454   const TargetRegisterClass *RC = MRI.getRegClass(RegC);
455   MRI.constrainRegClass(RegC, RC);
456 
457   unsigned FmaOp = Root.getOpcode();
458   int16_t Idx = getFMAOpIdxInfo(FmaOp);
459   assert(Idx >= 0 && "Root must be a FMA instruction");
460 
461   uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
462   uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
463   MachineInstr *Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg());
464   MachineInstr *Leaf =
465       MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg());
466   uint16_t IntersectedFlags =
467       Root.getFlags() & Prev->getFlags() & Leaf->getFlags();
468 
469   auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg,
470                             bool &KillFlag) {
471     Reg = Operand.getReg();
472     MRI.constrainRegClass(Reg, RC);
473     KillFlag = Operand.isKill();
474   };
475 
476   auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1,
477                              Register &MulOp2, bool &MulOp1KillFlag,
478                              bool &MulOp2KillFlag) {
479     GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag);
480     GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag);
481   };
482 
483   Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32;
484   bool KillX = false, KillY = false, KillM11 = false, KillM12 = false,
485        KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false;
486 
487   GetFMAInstrInfo(Root, RegM31, RegM32, KillM31, KillM32);
488   GetFMAInstrInfo(*Prev, RegM21, RegM22, KillM21, KillM22);
489 
490   if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
491     GetFMAInstrInfo(*Leaf, RegM11, RegM12, KillM11, KillM12);
492     GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX);
493   } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) {
494     GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
495     GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
496   }
497 
498   // Create new virtual registers for the new results instead of
499   // recycling legacy ones because the MachineCombiner's computation of the
500   // critical path requires a new register definition rather than an existing
501   // one.
502   Register NewVRA = MRI.createVirtualRegister(RC);
503   InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0));
504 
505   Register NewVRB = MRI.createVirtualRegister(RC);
506   InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1));
507 
508   Register NewVRD = 0;
509   if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
510     NewVRD = MRI.createVirtualRegister(RC);
511     InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2));
512   }
513 
514   auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd,
515                                 Register RegMul1, bool KillRegMul1,
516                                 Register RegMul2, bool KillRegMul2) {
517     MI->getOperand(AddOpIdx).setReg(RegAdd);
518     MI->getOperand(AddOpIdx).setIsKill(KillAdd);
519     MI->getOperand(FirstMulOpIdx).setReg(RegMul1);
520     MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1);
521     MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2);
522     MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2);
523   };
524 
525   if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) {
526     // Create new instructions for insertion.
527     MachineInstrBuilder MINewB =
528         BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
529             .addReg(RegX, getKillRegState(KillX))
530             .addReg(RegM21, getKillRegState(KillM21))
531             .addReg(RegM22, getKillRegState(KillM22));
532     MachineInstrBuilder MINewA =
533         BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
534             .addReg(RegY, getKillRegState(KillY))
535             .addReg(RegM31, getKillRegState(KillM31))
536             .addReg(RegM32, getKillRegState(KillM32));
537     // If AddOpIdx is not 1, adjust the order.
538     if (AddOpIdx != 1) {
539       AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
540       AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32);
541     }
542 
543     MachineInstrBuilder MINewC =
544         BuildMI(*MF, Root.getDebugLoc(),
545                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
546             .addReg(NewVRB, getKillRegState(true))
547             .addReg(NewVRA, getKillRegState(true));
548 
549     // Update flags for newly created instructions.
550     setSpecialOperandAttr(*MINewA, IntersectedFlags);
551     setSpecialOperandAttr(*MINewB, IntersectedFlags);
552     setSpecialOperandAttr(*MINewC, IntersectedFlags);
553 
554     // Record new instructions for insertion.
555     InsInstrs.push_back(MINewA);
556     InsInstrs.push_back(MINewB);
557     InsInstrs.push_back(MINewC);
558   } else if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
559     assert(NewVRD && "new FMA register not created!");
560     // Create new instructions for insertion.
561     MachineInstrBuilder MINewA =
562         BuildMI(*MF, Leaf->getDebugLoc(),
563                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA)
564             .addReg(RegM11, getKillRegState(KillM11))
565             .addReg(RegM12, getKillRegState(KillM12));
566     MachineInstrBuilder MINewB =
567         BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
568             .addReg(RegX, getKillRegState(KillX))
569             .addReg(RegM21, getKillRegState(KillM21))
570             .addReg(RegM22, getKillRegState(KillM22));
571     MachineInstrBuilder MINewD =
572         BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD)
573             .addReg(NewVRA, getKillRegState(true))
574             .addReg(RegM31, getKillRegState(KillM31))
575             .addReg(RegM32, getKillRegState(KillM32));
576     // If AddOpIdx is not 1, adjust the order.
577     if (AddOpIdx != 1) {
578       AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
579       AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32,
580                          KillM32);
581     }
582 
583     MachineInstrBuilder MINewC =
584         BuildMI(*MF, Root.getDebugLoc(),
585                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
586             .addReg(NewVRB, getKillRegState(true))
587             .addReg(NewVRD, getKillRegState(true));
588 
589     // Update flags for newly created instructions.
590     setSpecialOperandAttr(*MINewA, IntersectedFlags);
591     setSpecialOperandAttr(*MINewB, IntersectedFlags);
592     setSpecialOperandAttr(*MINewD, IntersectedFlags);
593     setSpecialOperandAttr(*MINewC, IntersectedFlags);
594 
595     // Record new instructions for insertion.
596     InsInstrs.push_back(MINewA);
597     InsInstrs.push_back(MINewB);
598     InsInstrs.push_back(MINewD);
599     InsInstrs.push_back(MINewC);
600   }
601 
602   assert(!InsInstrs.empty() &&
603          "Insertion instructions set should not be empty!");
604 
605   // Record old instructions for deletion.
606   DelInstrs.push_back(Leaf);
607   DelInstrs.push_back(Prev);
608   DelInstrs.push_back(&Root);
609 }
610 
611 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
612 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
613                                          Register &SrcReg, Register &DstReg,
614                                          unsigned &SubIdx) const {
615   switch (MI.getOpcode()) {
616   default: return false;
617   case PPC::EXTSW:
618   case PPC::EXTSW_32:
619   case PPC::EXTSW_32_64:
620     SrcReg = MI.getOperand(1).getReg();
621     DstReg = MI.getOperand(0).getReg();
622     SubIdx = PPC::sub_32;
623     return true;
624   }
625 }
626 
627 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
628                                            int &FrameIndex) const {
629   unsigned Opcode = MI.getOpcode();
630   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
631   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
632 
633   if (End != std::find(OpcodesForSpill, End, Opcode)) {
634     // Check for the operands added by addFrameReference (the immediate is the
635     // offset which defaults to 0).
636     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
637         MI.getOperand(2).isFI()) {
638       FrameIndex = MI.getOperand(2).getIndex();
639       return MI.getOperand(0).getReg();
640     }
641   }
642   return 0;
643 }
644 
645 // For opcodes with the ReMaterializable flag set, this function is called to
646 // verify the instruction is really rematable.
647 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
648                                                      AliasAnalysis *AA) const {
649   switch (MI.getOpcode()) {
650   default:
651     // This function should only be called for opcodes with the ReMaterializable
652     // flag set.
653     llvm_unreachable("Unknown rematerializable operation!");
654     break;
655   case PPC::LI:
656   case PPC::LI8:
657   case PPC::LIS:
658   case PPC::LIS8:
659   case PPC::ADDIStocHA:
660   case PPC::ADDIStocHA8:
661   case PPC::ADDItocL:
662   case PPC::LOAD_STACK_GUARD:
663   case PPC::XXLXORz:
664   case PPC::XXLXORspz:
665   case PPC::XXLXORdpz:
666   case PPC::XXLEQVOnes:
667   case PPC::V_SET0B:
668   case PPC::V_SET0H:
669   case PPC::V_SET0:
670   case PPC::V_SETALLONESB:
671   case PPC::V_SETALLONESH:
672   case PPC::V_SETALLONES:
673   case PPC::CRSET:
674   case PPC::CRUNSET:
675     return true;
676   }
677   return false;
678 }
679 
680 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
681                                           int &FrameIndex) const {
682   unsigned Opcode = MI.getOpcode();
683   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
684   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
685 
686   if (End != std::find(OpcodesForSpill, End, Opcode)) {
687     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
688         MI.getOperand(2).isFI()) {
689       FrameIndex = MI.getOperand(2).getIndex();
690       return MI.getOperand(0).getReg();
691     }
692   }
693   return 0;
694 }
695 
696 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
697                                                    unsigned OpIdx1,
698                                                    unsigned OpIdx2) const {
699   MachineFunction &MF = *MI.getParent()->getParent();
700 
701   // Normal instructions can be commuted the obvious way.
702   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec)
703     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
704   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
705   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
706   // changing the relative order of the mask operands might change what happens
707   // to the high-bits of the mask (and, thus, the result).
708 
709   // Cannot commute if it has a non-zero rotate count.
710   if (MI.getOperand(3).getImm() != 0)
711     return nullptr;
712 
713   // If we have a zero rotate count, we have:
714   //   M = mask(MB,ME)
715   //   Op0 = (Op1 & ~M) | (Op2 & M)
716   // Change this to:
717   //   M = mask((ME+1)&31, (MB-1)&31)
718   //   Op0 = (Op2 & ~M) | (Op1 & M)
719 
720   // Swap op1/op2
721   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
722          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec.");
723   Register Reg0 = MI.getOperand(0).getReg();
724   Register Reg1 = MI.getOperand(1).getReg();
725   Register Reg2 = MI.getOperand(2).getReg();
726   unsigned SubReg1 = MI.getOperand(1).getSubReg();
727   unsigned SubReg2 = MI.getOperand(2).getSubReg();
728   bool Reg1IsKill = MI.getOperand(1).isKill();
729   bool Reg2IsKill = MI.getOperand(2).isKill();
730   bool ChangeReg0 = false;
731   // If machine instrs are no longer in two-address forms, update
732   // destination register as well.
733   if (Reg0 == Reg1) {
734     // Must be two address instruction!
735     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
736            "Expecting a two-address instruction!");
737     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
738     Reg2IsKill = false;
739     ChangeReg0 = true;
740   }
741 
742   // Masks.
743   unsigned MB = MI.getOperand(4).getImm();
744   unsigned ME = MI.getOperand(5).getImm();
745 
746   // We can't commute a trivial mask (there is no way to represent an all-zero
747   // mask).
748   if (MB == 0 && ME == 31)
749     return nullptr;
750 
751   if (NewMI) {
752     // Create a new instruction.
753     Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
754     bool Reg0IsDead = MI.getOperand(0).isDead();
755     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
756         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
757         .addReg(Reg2, getKillRegState(Reg2IsKill))
758         .addReg(Reg1, getKillRegState(Reg1IsKill))
759         .addImm((ME + 1) & 31)
760         .addImm((MB - 1) & 31);
761   }
762 
763   if (ChangeReg0) {
764     MI.getOperand(0).setReg(Reg2);
765     MI.getOperand(0).setSubReg(SubReg2);
766   }
767   MI.getOperand(2).setReg(Reg1);
768   MI.getOperand(1).setReg(Reg2);
769   MI.getOperand(2).setSubReg(SubReg1);
770   MI.getOperand(1).setSubReg(SubReg2);
771   MI.getOperand(2).setIsKill(Reg1IsKill);
772   MI.getOperand(1).setIsKill(Reg2IsKill);
773 
774   // Swap the mask around.
775   MI.getOperand(4).setImm((ME + 1) & 31);
776   MI.getOperand(5).setImm((MB - 1) & 31);
777   return &MI;
778 }
779 
780 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
781                                          unsigned &SrcOpIdx1,
782                                          unsigned &SrcOpIdx2) const {
783   // For VSX A-Type FMA instructions, it is the first two operands that can be
784   // commuted, however, because the non-encoded tied input operand is listed
785   // first, the operands to swap are actually the second and third.
786 
787   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
788   if (AltOpc == -1)
789     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
790 
791   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
792   // and SrcOpIdx2.
793   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
794 }
795 
796 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
797                               MachineBasicBlock::iterator MI) const {
798   // This function is used for scheduling, and the nop wanted here is the type
799   // that terminates dispatch groups on the POWER cores.
800   unsigned Directive = Subtarget.getCPUDirective();
801   unsigned Opcode;
802   switch (Directive) {
803   default:            Opcode = PPC::NOP; break;
804   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
805   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
806   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
807   // FIXME: Update when POWER9 scheduling model is ready.
808   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
809   }
810 
811   DebugLoc DL;
812   BuildMI(MBB, MI, DL, get(Opcode));
813 }
814 
815 /// Return the noop instruction to use for a noop.
816 void PPCInstrInfo::getNoop(MCInst &NopInst) const {
817   NopInst.setOpcode(PPC::NOP);
818 }
819 
820 // Branch analysis.
821 // Note: If the condition register is set to CTR or CTR8 then this is a
822 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
823 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
824                                  MachineBasicBlock *&TBB,
825                                  MachineBasicBlock *&FBB,
826                                  SmallVectorImpl<MachineOperand> &Cond,
827                                  bool AllowModify) const {
828   bool isPPC64 = Subtarget.isPPC64();
829 
830   // If the block has no terminators, it just falls into the block after it.
831   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
832   if (I == MBB.end())
833     return false;
834 
835   if (!isUnpredicatedTerminator(*I))
836     return false;
837 
838   if (AllowModify) {
839     // If the BB ends with an unconditional branch to the fallthrough BB,
840     // we eliminate the branch instruction.
841     if (I->getOpcode() == PPC::B &&
842         MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
843       I->eraseFromParent();
844 
845       // We update iterator after deleting the last branch.
846       I = MBB.getLastNonDebugInstr();
847       if (I == MBB.end() || !isUnpredicatedTerminator(*I))
848         return false;
849     }
850   }
851 
852   // Get the last instruction in the block.
853   MachineInstr &LastInst = *I;
854 
855   // If there is only one terminator instruction, process it.
856   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
857     if (LastInst.getOpcode() == PPC::B) {
858       if (!LastInst.getOperand(0).isMBB())
859         return true;
860       TBB = LastInst.getOperand(0).getMBB();
861       return false;
862     } else if (LastInst.getOpcode() == PPC::BCC) {
863       if (!LastInst.getOperand(2).isMBB())
864         return true;
865       // Block ends with fall-through condbranch.
866       TBB = LastInst.getOperand(2).getMBB();
867       Cond.push_back(LastInst.getOperand(0));
868       Cond.push_back(LastInst.getOperand(1));
869       return false;
870     } else if (LastInst.getOpcode() == PPC::BC) {
871       if (!LastInst.getOperand(1).isMBB())
872         return true;
873       // Block ends with fall-through condbranch.
874       TBB = LastInst.getOperand(1).getMBB();
875       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
876       Cond.push_back(LastInst.getOperand(0));
877       return false;
878     } else if (LastInst.getOpcode() == PPC::BCn) {
879       if (!LastInst.getOperand(1).isMBB())
880         return true;
881       // Block ends with fall-through condbranch.
882       TBB = LastInst.getOperand(1).getMBB();
883       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
884       Cond.push_back(LastInst.getOperand(0));
885       return false;
886     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
887                LastInst.getOpcode() == PPC::BDNZ) {
888       if (!LastInst.getOperand(0).isMBB())
889         return true;
890       if (DisableCTRLoopAnal)
891         return true;
892       TBB = LastInst.getOperand(0).getMBB();
893       Cond.push_back(MachineOperand::CreateImm(1));
894       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
895                                                true));
896       return false;
897     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
898                LastInst.getOpcode() == PPC::BDZ) {
899       if (!LastInst.getOperand(0).isMBB())
900         return true;
901       if (DisableCTRLoopAnal)
902         return true;
903       TBB = LastInst.getOperand(0).getMBB();
904       Cond.push_back(MachineOperand::CreateImm(0));
905       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
906                                                true));
907       return false;
908     }
909 
910     // Otherwise, don't know what this is.
911     return true;
912   }
913 
914   // Get the instruction before it if it's a terminator.
915   MachineInstr &SecondLastInst = *I;
916 
917   // If there are three terminators, we don't know what sort of block this is.
918   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
919     return true;
920 
921   // If the block ends with PPC::B and PPC:BCC, handle it.
922   if (SecondLastInst.getOpcode() == PPC::BCC &&
923       LastInst.getOpcode() == PPC::B) {
924     if (!SecondLastInst.getOperand(2).isMBB() ||
925         !LastInst.getOperand(0).isMBB())
926       return true;
927     TBB = SecondLastInst.getOperand(2).getMBB();
928     Cond.push_back(SecondLastInst.getOperand(0));
929     Cond.push_back(SecondLastInst.getOperand(1));
930     FBB = LastInst.getOperand(0).getMBB();
931     return false;
932   } else if (SecondLastInst.getOpcode() == PPC::BC &&
933              LastInst.getOpcode() == PPC::B) {
934     if (!SecondLastInst.getOperand(1).isMBB() ||
935         !LastInst.getOperand(0).isMBB())
936       return true;
937     TBB = SecondLastInst.getOperand(1).getMBB();
938     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
939     Cond.push_back(SecondLastInst.getOperand(0));
940     FBB = LastInst.getOperand(0).getMBB();
941     return false;
942   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
943              LastInst.getOpcode() == PPC::B) {
944     if (!SecondLastInst.getOperand(1).isMBB() ||
945         !LastInst.getOperand(0).isMBB())
946       return true;
947     TBB = SecondLastInst.getOperand(1).getMBB();
948     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
949     Cond.push_back(SecondLastInst.getOperand(0));
950     FBB = LastInst.getOperand(0).getMBB();
951     return false;
952   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
953               SecondLastInst.getOpcode() == PPC::BDNZ) &&
954              LastInst.getOpcode() == PPC::B) {
955     if (!SecondLastInst.getOperand(0).isMBB() ||
956         !LastInst.getOperand(0).isMBB())
957       return true;
958     if (DisableCTRLoopAnal)
959       return true;
960     TBB = SecondLastInst.getOperand(0).getMBB();
961     Cond.push_back(MachineOperand::CreateImm(1));
962     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
963                                              true));
964     FBB = LastInst.getOperand(0).getMBB();
965     return false;
966   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
967               SecondLastInst.getOpcode() == PPC::BDZ) &&
968              LastInst.getOpcode() == PPC::B) {
969     if (!SecondLastInst.getOperand(0).isMBB() ||
970         !LastInst.getOperand(0).isMBB())
971       return true;
972     if (DisableCTRLoopAnal)
973       return true;
974     TBB = SecondLastInst.getOperand(0).getMBB();
975     Cond.push_back(MachineOperand::CreateImm(0));
976     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
977                                              true));
978     FBB = LastInst.getOperand(0).getMBB();
979     return false;
980   }
981 
982   // If the block ends with two PPC:Bs, handle it.  The second one is not
983   // executed, so remove it.
984   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
985     if (!SecondLastInst.getOperand(0).isMBB())
986       return true;
987     TBB = SecondLastInst.getOperand(0).getMBB();
988     I = LastInst;
989     if (AllowModify)
990       I->eraseFromParent();
991     return false;
992   }
993 
994   // Otherwise, can't handle this.
995   return true;
996 }
997 
998 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
999                                     int *BytesRemoved) const {
1000   assert(!BytesRemoved && "code size not handled");
1001 
1002   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1003   if (I == MBB.end())
1004     return 0;
1005 
1006   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
1007       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1008       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1009       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
1010     return 0;
1011 
1012   // Remove the branch.
1013   I->eraseFromParent();
1014 
1015   I = MBB.end();
1016 
1017   if (I == MBB.begin()) return 1;
1018   --I;
1019   if (I->getOpcode() != PPC::BCC &&
1020       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1021       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1022       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
1023     return 1;
1024 
1025   // Remove the branch.
1026   I->eraseFromParent();
1027   return 2;
1028 }
1029 
1030 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
1031                                     MachineBasicBlock *TBB,
1032                                     MachineBasicBlock *FBB,
1033                                     ArrayRef<MachineOperand> Cond,
1034                                     const DebugLoc &DL,
1035                                     int *BytesAdded) const {
1036   // Shouldn't be a fall through.
1037   assert(TBB && "insertBranch must not be told to insert a fallthrough");
1038   assert((Cond.size() == 2 || Cond.size() == 0) &&
1039          "PPC branch conditions have two components!");
1040   assert(!BytesAdded && "code size not handled");
1041 
1042   bool isPPC64 = Subtarget.isPPC64();
1043 
1044   // One-way branch.
1045   if (!FBB) {
1046     if (Cond.empty())   // Unconditional branch
1047       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
1048     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1049       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1050                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1051                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
1052     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1053       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1054     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1055       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1056     else                // Conditional branch
1057       BuildMI(&MBB, DL, get(PPC::BCC))
1058           .addImm(Cond[0].getImm())
1059           .add(Cond[1])
1060           .addMBB(TBB);
1061     return 1;
1062   }
1063 
1064   // Two-way Conditional Branch.
1065   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1066     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1067                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1068                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
1069   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1070     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1071   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1072     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1073   else
1074     BuildMI(&MBB, DL, get(PPC::BCC))
1075         .addImm(Cond[0].getImm())
1076         .add(Cond[1])
1077         .addMBB(TBB);
1078   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
1079   return 2;
1080 }
1081 
1082 // Select analysis.
1083 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
1084                                    ArrayRef<MachineOperand> Cond,
1085                                    Register DstReg, Register TrueReg,
1086                                    Register FalseReg, int &CondCycles,
1087                                    int &TrueCycles, int &FalseCycles) const {
1088   if (Cond.size() != 2)
1089     return false;
1090 
1091   // If this is really a bdnz-like condition, then it cannot be turned into a
1092   // select.
1093   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1094     return false;
1095 
1096   // Check register classes.
1097   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1098   const TargetRegisterClass *RC =
1099     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1100   if (!RC)
1101     return false;
1102 
1103   // isel is for regular integer GPRs only.
1104   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
1105       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
1106       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
1107       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
1108     return false;
1109 
1110   // FIXME: These numbers are for the A2, how well they work for other cores is
1111   // an open question. On the A2, the isel instruction has a 2-cycle latency
1112   // but single-cycle throughput. These numbers are used in combination with
1113   // the MispredictPenalty setting from the active SchedMachineModel.
1114   CondCycles = 1;
1115   TrueCycles = 1;
1116   FalseCycles = 1;
1117 
1118   return true;
1119 }
1120 
1121 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
1122                                 MachineBasicBlock::iterator MI,
1123                                 const DebugLoc &dl, Register DestReg,
1124                                 ArrayRef<MachineOperand> Cond, Register TrueReg,
1125                                 Register FalseReg) const {
1126   assert(Cond.size() == 2 &&
1127          "PPC branch conditions have two components!");
1128 
1129   // Get the register classes.
1130   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1131   const TargetRegisterClass *RC =
1132     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1133   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
1134 
1135   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
1136                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
1137   assert((Is64Bit ||
1138           PPC::GPRCRegClass.hasSubClassEq(RC) ||
1139           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
1140          "isel is for regular integer GPRs only");
1141 
1142   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
1143   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
1144 
1145   unsigned SubIdx = 0;
1146   bool SwapOps = false;
1147   switch (SelectPred) {
1148   case PPC::PRED_EQ:
1149   case PPC::PRED_EQ_MINUS:
1150   case PPC::PRED_EQ_PLUS:
1151       SubIdx = PPC::sub_eq; SwapOps = false; break;
1152   case PPC::PRED_NE:
1153   case PPC::PRED_NE_MINUS:
1154   case PPC::PRED_NE_PLUS:
1155       SubIdx = PPC::sub_eq; SwapOps = true; break;
1156   case PPC::PRED_LT:
1157   case PPC::PRED_LT_MINUS:
1158   case PPC::PRED_LT_PLUS:
1159       SubIdx = PPC::sub_lt; SwapOps = false; break;
1160   case PPC::PRED_GE:
1161   case PPC::PRED_GE_MINUS:
1162   case PPC::PRED_GE_PLUS:
1163       SubIdx = PPC::sub_lt; SwapOps = true; break;
1164   case PPC::PRED_GT:
1165   case PPC::PRED_GT_MINUS:
1166   case PPC::PRED_GT_PLUS:
1167       SubIdx = PPC::sub_gt; SwapOps = false; break;
1168   case PPC::PRED_LE:
1169   case PPC::PRED_LE_MINUS:
1170   case PPC::PRED_LE_PLUS:
1171       SubIdx = PPC::sub_gt; SwapOps = true; break;
1172   case PPC::PRED_UN:
1173   case PPC::PRED_UN_MINUS:
1174   case PPC::PRED_UN_PLUS:
1175       SubIdx = PPC::sub_un; SwapOps = false; break;
1176   case PPC::PRED_NU:
1177   case PPC::PRED_NU_MINUS:
1178   case PPC::PRED_NU_PLUS:
1179       SubIdx = PPC::sub_un; SwapOps = true; break;
1180   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
1181   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
1182   }
1183 
1184   Register FirstReg =  SwapOps ? FalseReg : TrueReg,
1185            SecondReg = SwapOps ? TrueReg  : FalseReg;
1186 
1187   // The first input register of isel cannot be r0. If it is a member
1188   // of a register class that can be r0, then copy it first (the
1189   // register allocator should eliminate the copy).
1190   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
1191       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
1192     const TargetRegisterClass *FirstRC =
1193       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
1194         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
1195     Register OldFirstReg = FirstReg;
1196     FirstReg = MRI.createVirtualRegister(FirstRC);
1197     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
1198       .addReg(OldFirstReg);
1199   }
1200 
1201   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
1202     .addReg(FirstReg).addReg(SecondReg)
1203     .addReg(Cond[1].getReg(), 0, SubIdx);
1204 }
1205 
1206 static unsigned getCRBitValue(unsigned CRBit) {
1207   unsigned Ret = 4;
1208   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
1209       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
1210       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
1211       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
1212     Ret = 3;
1213   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
1214       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
1215       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
1216       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
1217     Ret = 2;
1218   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
1219       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
1220       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
1221       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
1222     Ret = 1;
1223   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
1224       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
1225       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
1226       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
1227     Ret = 0;
1228 
1229   assert(Ret != 4 && "Invalid CR bit register");
1230   return Ret;
1231 }
1232 
1233 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1234                                MachineBasicBlock::iterator I,
1235                                const DebugLoc &DL, MCRegister DestReg,
1236                                MCRegister SrcReg, bool KillSrc) const {
1237   // We can end up with self copies and similar things as a result of VSX copy
1238   // legalization. Promote them here.
1239   const TargetRegisterInfo *TRI = &getRegisterInfo();
1240   if (PPC::F8RCRegClass.contains(DestReg) &&
1241       PPC::VSRCRegClass.contains(SrcReg)) {
1242     MCRegister SuperReg =
1243         TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
1244 
1245     if (VSXSelfCopyCrash && SrcReg == SuperReg)
1246       llvm_unreachable("nop VSX copy");
1247 
1248     DestReg = SuperReg;
1249   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
1250              PPC::VSRCRegClass.contains(DestReg)) {
1251     MCRegister SuperReg =
1252         TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
1253 
1254     if (VSXSelfCopyCrash && DestReg == SuperReg)
1255       llvm_unreachable("nop VSX copy");
1256 
1257     SrcReg = SuperReg;
1258   }
1259 
1260   // Different class register copy
1261   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
1262       PPC::GPRCRegClass.contains(DestReg)) {
1263     MCRegister CRReg = getCRFromCRBit(SrcReg);
1264     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
1265     getKillRegState(KillSrc);
1266     // Rotate the CR bit in the CR fields to be the least significant bit and
1267     // then mask with 0x1 (MB = ME = 31).
1268     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
1269        .addReg(DestReg, RegState::Kill)
1270        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
1271        .addImm(31)
1272        .addImm(31);
1273     return;
1274   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
1275       PPC::G8RCRegClass.contains(DestReg)) {
1276     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
1277     getKillRegState(KillSrc);
1278     return;
1279   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
1280       PPC::GPRCRegClass.contains(DestReg)) {
1281     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
1282     getKillRegState(KillSrc);
1283     return;
1284   } else if (PPC::G8RCRegClass.contains(SrcReg) &&
1285              PPC::VSFRCRegClass.contains(DestReg)) {
1286     assert(Subtarget.hasDirectMove() &&
1287            "Subtarget doesn't support directmove, don't know how to copy.");
1288     BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
1289     NumGPRtoVSRSpill++;
1290     getKillRegState(KillSrc);
1291     return;
1292   } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
1293              PPC::G8RCRegClass.contains(DestReg)) {
1294     assert(Subtarget.hasDirectMove() &&
1295            "Subtarget doesn't support directmove, don't know how to copy.");
1296     BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
1297     getKillRegState(KillSrc);
1298     return;
1299   } else if (PPC::SPERCRegClass.contains(SrcReg) &&
1300              PPC::GPRCRegClass.contains(DestReg)) {
1301     BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
1302     getKillRegState(KillSrc);
1303     return;
1304   } else if (PPC::GPRCRegClass.contains(SrcReg) &&
1305              PPC::SPERCRegClass.contains(DestReg)) {
1306     BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
1307     getKillRegState(KillSrc);
1308     return;
1309   }
1310 
1311   unsigned Opc;
1312   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
1313     Opc = PPC::OR;
1314   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
1315     Opc = PPC::OR8;
1316   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
1317     Opc = PPC::FMR;
1318   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
1319     Opc = PPC::MCRF;
1320   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
1321     Opc = PPC::VOR;
1322   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
1323     // There are two different ways this can be done:
1324     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
1325     //      issue in VSU pipeline 0.
1326     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
1327     //      can go to either pipeline.
1328     // We'll always use xxlor here, because in practically all cases where
1329     // copies are generated, they are close enough to some use that the
1330     // lower-latency form is preferable.
1331     Opc = PPC::XXLOR;
1332   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1333            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1334     Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1335   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1336     Opc = PPC::CROR;
1337   else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1338     Opc = PPC::EVOR;
1339   else
1340     llvm_unreachable("Impossible reg-to-reg copy");
1341 
1342   const MCInstrDesc &MCID = get(Opc);
1343   if (MCID.getNumOperands() == 3)
1344     BuildMI(MBB, I, DL, MCID, DestReg)
1345       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1346   else
1347     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1348 }
1349 
1350 static unsigned getSpillIndex(const TargetRegisterClass *RC) {
1351   int OpcodeIndex = 0;
1352 
1353   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1354       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1355     OpcodeIndex = SOK_Int4Spill;
1356   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1357              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1358     OpcodeIndex = SOK_Int8Spill;
1359   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1360     OpcodeIndex = SOK_Float8Spill;
1361   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1362     OpcodeIndex = SOK_Float4Spill;
1363   } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1364     OpcodeIndex = SOK_SPESpill;
1365   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1366     OpcodeIndex = SOK_CRSpill;
1367   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1368     OpcodeIndex = SOK_CRBitSpill;
1369   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1370     OpcodeIndex = SOK_VRVectorSpill;
1371   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1372     OpcodeIndex = SOK_VSXVectorSpill;
1373   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1374     OpcodeIndex = SOK_VectorFloat8Spill;
1375   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1376     OpcodeIndex = SOK_VectorFloat4Spill;
1377   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1378     OpcodeIndex = SOK_VRSaveSpill;
1379   } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1380     OpcodeIndex = SOK_SpillToVSR;
1381   } else {
1382     llvm_unreachable("Unknown regclass!");
1383   }
1384   return OpcodeIndex;
1385 }
1386 
1387 unsigned
1388 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const {
1389   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1390   return OpcodesForSpill[getSpillIndex(RC)];
1391 }
1392 
1393 unsigned
1394 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const {
1395   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1396   return OpcodesForSpill[getSpillIndex(RC)];
1397 }
1398 
1399 void PPCInstrInfo::StoreRegToStackSlot(
1400     MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1401     const TargetRegisterClass *RC,
1402     SmallVectorImpl<MachineInstr *> &NewMIs) const {
1403   unsigned Opcode = getStoreOpcodeForSpill(RC);
1404   DebugLoc DL;
1405 
1406   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1407   FuncInfo->setHasSpills();
1408 
1409   NewMIs.push_back(addFrameReference(
1410       BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1411       FrameIdx));
1412 
1413   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1414       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1415     FuncInfo->setSpillsCR();
1416 
1417   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1418     FuncInfo->setSpillsVRSAVE();
1419 
1420   if (isXFormMemOp(Opcode))
1421     FuncInfo->setHasNonRISpills();
1422 }
1423 
1424 void PPCInstrInfo::storeRegToStackSlotNoUpd(
1425     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg,
1426     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
1427     const TargetRegisterInfo *TRI) const {
1428   MachineFunction &MF = *MBB.getParent();
1429   SmallVector<MachineInstr *, 4> NewMIs;
1430 
1431   StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1432 
1433   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1434     MBB.insert(MI, NewMIs[i]);
1435 
1436   const MachineFrameInfo &MFI = MF.getFrameInfo();
1437   MachineMemOperand *MMO = MF.getMachineMemOperand(
1438       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1439       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1440       MFI.getObjectAlign(FrameIdx));
1441   NewMIs.back()->addMemOperand(MF, MMO);
1442 }
1443 
1444 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1445                                        MachineBasicBlock::iterator MI,
1446                                        Register SrcReg, bool isKill,
1447                                        int FrameIdx,
1448                                        const TargetRegisterClass *RC,
1449                                        const TargetRegisterInfo *TRI) const {
1450   // We need to avoid a situation in which the value from a VRRC register is
1451   // spilled using an Altivec instruction and reloaded into a VSRC register
1452   // using a VSX instruction. The issue with this is that the VSX
1453   // load/store instructions swap the doublewords in the vector and the Altivec
1454   // ones don't. The register classes on the spill/reload may be different if
1455   // the register is defined using an Altivec instruction and is then used by a
1456   // VSX instruction.
1457   RC = updatedRC(RC);
1458   storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI);
1459 }
1460 
1461 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1462                                         unsigned DestReg, int FrameIdx,
1463                                         const TargetRegisterClass *RC,
1464                                         SmallVectorImpl<MachineInstr *> &NewMIs)
1465                                         const {
1466   unsigned Opcode = getLoadOpcodeForSpill(RC);
1467   NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1468                                      FrameIdx));
1469   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1470 
1471   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1472       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1473     FuncInfo->setSpillsCR();
1474 
1475   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1476     FuncInfo->setSpillsVRSAVE();
1477 
1478   if (isXFormMemOp(Opcode))
1479     FuncInfo->setHasNonRISpills();
1480 }
1481 
1482 void PPCInstrInfo::loadRegFromStackSlotNoUpd(
1483     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg,
1484     int FrameIdx, const TargetRegisterClass *RC,
1485     const TargetRegisterInfo *TRI) const {
1486   MachineFunction &MF = *MBB.getParent();
1487   SmallVector<MachineInstr*, 4> NewMIs;
1488   DebugLoc DL;
1489   if (MI != MBB.end()) DL = MI->getDebugLoc();
1490 
1491   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1492   FuncInfo->setHasSpills();
1493 
1494   LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
1495 
1496   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1497     MBB.insert(MI, NewMIs[i]);
1498 
1499   const MachineFrameInfo &MFI = MF.getFrameInfo();
1500   MachineMemOperand *MMO = MF.getMachineMemOperand(
1501       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1502       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1503       MFI.getObjectAlign(FrameIdx));
1504   NewMIs.back()->addMemOperand(MF, MMO);
1505 }
1506 
1507 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1508                                         MachineBasicBlock::iterator MI,
1509                                         Register DestReg, int FrameIdx,
1510                                         const TargetRegisterClass *RC,
1511                                         const TargetRegisterInfo *TRI) const {
1512   // We need to avoid a situation in which the value from a VRRC register is
1513   // spilled using an Altivec instruction and reloaded into a VSRC register
1514   // using a VSX instruction. The issue with this is that the VSX
1515   // load/store instructions swap the doublewords in the vector and the Altivec
1516   // ones don't. The register classes on the spill/reload may be different if
1517   // the register is defined using an Altivec instruction and is then used by a
1518   // VSX instruction.
1519   RC = updatedRC(RC);
1520 
1521   loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI);
1522 }
1523 
1524 bool PPCInstrInfo::
1525 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1526   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1527   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1528     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1529   else
1530     // Leave the CR# the same, but invert the condition.
1531     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1532   return false;
1533 }
1534 
1535 // For some instructions, it is legal to fold ZERO into the RA register field.
1536 // This function performs that fold by replacing the operand with PPC::ZERO,
1537 // it does not consider whether the load immediate zero is no longer in use.
1538 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1539                                      Register Reg) const {
1540   // A zero immediate should always be loaded with a single li.
1541   unsigned DefOpc = DefMI.getOpcode();
1542   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1543     return false;
1544   if (!DefMI.getOperand(1).isImm())
1545     return false;
1546   if (DefMI.getOperand(1).getImm() != 0)
1547     return false;
1548 
1549   // Note that we cannot here invert the arguments of an isel in order to fold
1550   // a ZERO into what is presented as the second argument. All we have here
1551   // is the condition bit, and that might come from a CR-logical bit operation.
1552 
1553   const MCInstrDesc &UseMCID = UseMI.getDesc();
1554 
1555   // Only fold into real machine instructions.
1556   if (UseMCID.isPseudo())
1557     return false;
1558 
1559   // We need to find which of the User's operands is to be folded, that will be
1560   // the operand that matches the given register ID.
1561   unsigned UseIdx;
1562   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1563     if (UseMI.getOperand(UseIdx).isReg() &&
1564         UseMI.getOperand(UseIdx).getReg() == Reg)
1565       break;
1566 
1567   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1568   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1569 
1570   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1571 
1572   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1573   // register (which might also be specified as a pointer class kind).
1574   if (UseInfo->isLookupPtrRegClass()) {
1575     if (UseInfo->RegClass /* Kind */ != 1)
1576       return false;
1577   } else {
1578     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1579         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1580       return false;
1581   }
1582 
1583   // Make sure this is not tied to an output register (or otherwise
1584   // constrained). This is true for ST?UX registers, for example, which
1585   // are tied to their output registers.
1586   if (UseInfo->Constraints != 0)
1587     return false;
1588 
1589   MCRegister ZeroReg;
1590   if (UseInfo->isLookupPtrRegClass()) {
1591     bool isPPC64 = Subtarget.isPPC64();
1592     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1593   } else {
1594     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1595               PPC::ZERO8 : PPC::ZERO;
1596   }
1597 
1598   UseMI.getOperand(UseIdx).setReg(ZeroReg);
1599   return true;
1600 }
1601 
1602 // Folds zero into instructions which have a load immediate zero as an operand
1603 // but also recognize zero as immediate zero. If the definition of the load
1604 // has no more users it is deleted.
1605 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1606                                  Register Reg, MachineRegisterInfo *MRI) const {
1607   bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg);
1608   if (MRI->use_nodbg_empty(Reg))
1609     DefMI.eraseFromParent();
1610   return Changed;
1611 }
1612 
1613 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1614   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1615        I != IE; ++I)
1616     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1617       return true;
1618   return false;
1619 }
1620 
1621 // We should make sure that, if we're going to predicate both sides of a
1622 // condition (a diamond), that both sides don't define the counter register. We
1623 // can predicate counter-decrement-based branches, but while that predicates
1624 // the branching, it does not predicate the counter decrement. If we tried to
1625 // merge the triangle into one predicated block, we'd decrement the counter
1626 // twice.
1627 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1628                      unsigned NumT, unsigned ExtraT,
1629                      MachineBasicBlock &FMBB,
1630                      unsigned NumF, unsigned ExtraF,
1631                      BranchProbability Probability) const {
1632   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1633 }
1634 
1635 
1636 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1637   // The predicated branches are identified by their type, not really by the
1638   // explicit presence of a predicate. Furthermore, some of them can be
1639   // predicated more than once. Because if conversion won't try to predicate
1640   // any instruction which already claims to be predicated (by returning true
1641   // here), always return false. In doing so, we let isPredicable() be the
1642   // final word on whether not the instruction can be (further) predicated.
1643 
1644   return false;
1645 }
1646 
1647 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1648                                         const MachineBasicBlock *MBB,
1649                                         const MachineFunction &MF) const {
1650   // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion
1651   // across them, since some FP operations may change content of FPSCR.
1652   // TODO: Model FPSCR in PPC instruction definitions and remove the workaround
1653   if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF)
1654     return true;
1655   return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
1656 }
1657 
1658 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1659                                         ArrayRef<MachineOperand> Pred) const {
1660   unsigned OpC = MI.getOpcode();
1661   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1662     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1663       bool isPPC64 = Subtarget.isPPC64();
1664       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1665                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1666       // Need add Def and Use for CTR implicit operand.
1667       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1668           .addReg(Pred[1].getReg(), RegState::Implicit)
1669           .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
1670     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1671       MI.setDesc(get(PPC::BCLR));
1672       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1673     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1674       MI.setDesc(get(PPC::BCLRn));
1675       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1676     } else {
1677       MI.setDesc(get(PPC::BCCLR));
1678       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1679           .addImm(Pred[0].getImm())
1680           .add(Pred[1]);
1681     }
1682 
1683     return true;
1684   } else if (OpC == PPC::B) {
1685     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1686       bool isPPC64 = Subtarget.isPPC64();
1687       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1688                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1689       // Need add Def and Use for CTR implicit operand.
1690       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1691           .addReg(Pred[1].getReg(), RegState::Implicit)
1692           .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
1693     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1694       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1695       MI.RemoveOperand(0);
1696 
1697       MI.setDesc(get(PPC::BC));
1698       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1699           .add(Pred[1])
1700           .addMBB(MBB);
1701     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1702       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1703       MI.RemoveOperand(0);
1704 
1705       MI.setDesc(get(PPC::BCn));
1706       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1707           .add(Pred[1])
1708           .addMBB(MBB);
1709     } else {
1710       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1711       MI.RemoveOperand(0);
1712 
1713       MI.setDesc(get(PPC::BCC));
1714       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1715           .addImm(Pred[0].getImm())
1716           .add(Pred[1])
1717           .addMBB(MBB);
1718     }
1719 
1720     return true;
1721   } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
1722              OpC == PPC::BCTRL8) {
1723     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1724       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1725 
1726     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1727     bool isPPC64 = Subtarget.isPPC64();
1728 
1729     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1730       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1731                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1732       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1733     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1734       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1735                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1736       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1737     } else {
1738       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1739                              : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1740       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1741           .addImm(Pred[0].getImm())
1742           .add(Pred[1]);
1743     }
1744 
1745     // Need add Def and Use for LR implicit operand.
1746     if (setLR)
1747       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1748           .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit)
1749           .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine);
1750 
1751     return true;
1752   }
1753 
1754   return false;
1755 }
1756 
1757 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1758                                      ArrayRef<MachineOperand> Pred2) const {
1759   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1760   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1761 
1762   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1763     return false;
1764   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1765     return false;
1766 
1767   // P1 can only subsume P2 if they test the same condition register.
1768   if (Pred1[1].getReg() != Pred2[1].getReg())
1769     return false;
1770 
1771   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1772   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1773 
1774   if (P1 == P2)
1775     return true;
1776 
1777   // Does P1 subsume P2, e.g. GE subsumes GT.
1778   if (P1 == PPC::PRED_LE &&
1779       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1780     return true;
1781   if (P1 == PPC::PRED_GE &&
1782       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1783     return true;
1784 
1785   return false;
1786 }
1787 
1788 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1789                                     std::vector<MachineOperand> &Pred) const {
1790   // Note: At the present time, the contents of Pred from this function is
1791   // unused by IfConversion. This implementation follows ARM by pushing the
1792   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1793   // predicate, instructions defining CTR or CTR8 are also included as
1794   // predicate-defining instructions.
1795 
1796   const TargetRegisterClass *RCs[] =
1797     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1798       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1799 
1800   bool Found = false;
1801   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1802     const MachineOperand &MO = MI.getOperand(i);
1803     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1804       const TargetRegisterClass *RC = RCs[c];
1805       if (MO.isReg()) {
1806         if (MO.isDef() && RC->contains(MO.getReg())) {
1807           Pred.push_back(MO);
1808           Found = true;
1809         }
1810       } else if (MO.isRegMask()) {
1811         for (TargetRegisterClass::iterator I = RC->begin(),
1812              IE = RC->end(); I != IE; ++I)
1813           if (MO.clobbersPhysReg(*I)) {
1814             Pred.push_back(MO);
1815             Found = true;
1816           }
1817       }
1818     }
1819   }
1820 
1821   return Found;
1822 }
1823 
1824 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1825                                   Register &SrcReg2, int &Mask,
1826                                   int &Value) const {
1827   unsigned Opc = MI.getOpcode();
1828 
1829   switch (Opc) {
1830   default: return false;
1831   case PPC::CMPWI:
1832   case PPC::CMPLWI:
1833   case PPC::CMPDI:
1834   case PPC::CMPLDI:
1835     SrcReg = MI.getOperand(1).getReg();
1836     SrcReg2 = 0;
1837     Value = MI.getOperand(2).getImm();
1838     Mask = 0xFFFF;
1839     return true;
1840   case PPC::CMPW:
1841   case PPC::CMPLW:
1842   case PPC::CMPD:
1843   case PPC::CMPLD:
1844   case PPC::FCMPUS:
1845   case PPC::FCMPUD:
1846     SrcReg = MI.getOperand(1).getReg();
1847     SrcReg2 = MI.getOperand(2).getReg();
1848     Value = 0;
1849     Mask = 0;
1850     return true;
1851   }
1852 }
1853 
1854 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
1855                                         Register SrcReg2, int Mask, int Value,
1856                                         const MachineRegisterInfo *MRI) const {
1857   if (DisableCmpOpt)
1858     return false;
1859 
1860   int OpC = CmpInstr.getOpcode();
1861   Register CRReg = CmpInstr.getOperand(0).getReg();
1862 
1863   // FP record forms set CR1 based on the exception status bits, not a
1864   // comparison with zero.
1865   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1866     return false;
1867 
1868   const TargetRegisterInfo *TRI = &getRegisterInfo();
1869   // The record forms set the condition register based on a signed comparison
1870   // with zero (so says the ISA manual). This is not as straightforward as it
1871   // seems, however, because this is always a 64-bit comparison on PPC64, even
1872   // for instructions that are 32-bit in nature (like slw for example).
1873   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1874   // for equality checks (as those don't depend on the sign). On PPC64,
1875   // we are restricted to equality for unsigned 64-bit comparisons and for
1876   // signed 32-bit comparisons the applicability is more restricted.
1877   bool isPPC64 = Subtarget.isPPC64();
1878   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1879   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1880   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1881 
1882   // Look through copies unless that gets us to a physical register.
1883   Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
1884   if (ActualSrc.isVirtual())
1885     SrcReg = ActualSrc;
1886 
1887   // Get the unique definition of SrcReg.
1888   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1889   if (!MI) return false;
1890 
1891   bool equalityOnly = false;
1892   bool noSub = false;
1893   if (isPPC64) {
1894     if (is32BitSignedCompare) {
1895       // We can perform this optimization only if MI is sign-extending.
1896       if (isSignExtended(*MI))
1897         noSub = true;
1898       else
1899         return false;
1900     } else if (is32BitUnsignedCompare) {
1901       // We can perform this optimization, equality only, if MI is
1902       // zero-extending.
1903       if (isZeroExtended(*MI)) {
1904         noSub = true;
1905         equalityOnly = true;
1906       } else
1907         return false;
1908     } else
1909       equalityOnly = is64BitUnsignedCompare;
1910   } else
1911     equalityOnly = is32BitUnsignedCompare;
1912 
1913   if (equalityOnly) {
1914     // We need to check the uses of the condition register in order to reject
1915     // non-equality comparisons.
1916     for (MachineRegisterInfo::use_instr_iterator
1917          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1918          I != IE; ++I) {
1919       MachineInstr *UseMI = &*I;
1920       if (UseMI->getOpcode() == PPC::BCC) {
1921         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1922         unsigned PredCond = PPC::getPredicateCondition(Pred);
1923         // We ignore hint bits when checking for non-equality comparisons.
1924         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
1925           return false;
1926       } else if (UseMI->getOpcode() == PPC::ISEL ||
1927                  UseMI->getOpcode() == PPC::ISEL8) {
1928         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1929         if (SubIdx != PPC::sub_eq)
1930           return false;
1931       } else
1932         return false;
1933     }
1934   }
1935 
1936   MachineBasicBlock::iterator I = CmpInstr;
1937 
1938   // Scan forward to find the first use of the compare.
1939   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1940        ++I) {
1941     bool FoundUse = false;
1942     for (MachineRegisterInfo::use_instr_iterator
1943          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
1944          J != JE; ++J)
1945       if (&*J == &*I) {
1946         FoundUse = true;
1947         break;
1948       }
1949 
1950     if (FoundUse)
1951       break;
1952   }
1953 
1954   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1955   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1956 
1957   // There are two possible candidates which can be changed to set CR[01].
1958   // One is MI, the other is a SUB instruction.
1959   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1960   MachineInstr *Sub = nullptr;
1961   if (SrcReg2 != 0)
1962     // MI is not a candidate for CMPrr.
1963     MI = nullptr;
1964   // FIXME: Conservatively refuse to convert an instruction which isn't in the
1965   // same BB as the comparison. This is to allow the check below to avoid calls
1966   // (and other explicit clobbers); instead we should really check for these
1967   // more explicitly (in at least a few predecessors).
1968   else if (MI->getParent() != CmpInstr.getParent())
1969     return false;
1970   else if (Value != 0) {
1971     // The record-form instructions set CR bit based on signed comparison
1972     // against 0. We try to convert a compare against 1 or -1 into a compare
1973     // against 0 to exploit record-form instructions. For example, we change
1974     // the condition "greater than -1" into "greater than or equal to 0"
1975     // and "less than 1" into "less than or equal to 0".
1976 
1977     // Since we optimize comparison based on a specific branch condition,
1978     // we don't optimize if condition code is used by more than once.
1979     if (equalityOnly || !MRI->hasOneUse(CRReg))
1980       return false;
1981 
1982     MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
1983     if (UseMI->getOpcode() != PPC::BCC)
1984       return false;
1985 
1986     PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1987     unsigned PredCond = PPC::getPredicateCondition(Pred);
1988     unsigned PredHint = PPC::getPredicateHint(Pred);
1989     int16_t Immed = (int16_t)Value;
1990 
1991     // When modifying the condition in the predicate, we propagate hint bits
1992     // from the original predicate to the new one.
1993     if (Immed == -1 && PredCond == PPC::PRED_GT)
1994       // We convert "greater than -1" into "greater than or equal to 0",
1995       // since we are assuming signed comparison by !equalityOnly
1996       Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
1997     else if (Immed == -1 && PredCond == PPC::PRED_LE)
1998       // We convert "less than or equal to -1" into "less than 0".
1999       Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
2000     else if (Immed == 1 && PredCond == PPC::PRED_LT)
2001       // We convert "less than 1" into "less than or equal to 0".
2002       Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
2003     else if (Immed == 1 && PredCond == PPC::PRED_GE)
2004       // We convert "greater than or equal to 1" into "greater than 0".
2005       Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
2006     else
2007       return false;
2008 
2009     PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
2010   }
2011 
2012   // Search for Sub.
2013   --I;
2014 
2015   // Get ready to iterate backward from CmpInstr.
2016   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
2017 
2018   for (; I != E && !noSub; --I) {
2019     const MachineInstr &Instr = *I;
2020     unsigned IOpC = Instr.getOpcode();
2021 
2022     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
2023                              Instr.readsRegister(PPC::CR0, TRI)))
2024       // This instruction modifies or uses the record condition register after
2025       // the one we want to change. While we could do this transformation, it
2026       // would likely not be profitable. This transformation removes one
2027       // instruction, and so even forcing RA to generate one move probably
2028       // makes it unprofitable.
2029       return false;
2030 
2031     // Check whether CmpInstr can be made redundant by the current instruction.
2032     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
2033          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
2034         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
2035         ((Instr.getOperand(1).getReg() == SrcReg &&
2036           Instr.getOperand(2).getReg() == SrcReg2) ||
2037         (Instr.getOperand(1).getReg() == SrcReg2 &&
2038          Instr.getOperand(2).getReg() == SrcReg))) {
2039       Sub = &*I;
2040       break;
2041     }
2042 
2043     if (I == B)
2044       // The 'and' is below the comparison instruction.
2045       return false;
2046   }
2047 
2048   // Return false if no candidates exist.
2049   if (!MI && !Sub)
2050     return false;
2051 
2052   // The single candidate is called MI.
2053   if (!MI) MI = Sub;
2054 
2055   int NewOpC = -1;
2056   int MIOpC = MI->getOpcode();
2057   if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec ||
2058       MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec)
2059     NewOpC = MIOpC;
2060   else {
2061     NewOpC = PPC::getRecordFormOpcode(MIOpC);
2062     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
2063       NewOpC = MIOpC;
2064   }
2065 
2066   // FIXME: On the non-embedded POWER architectures, only some of the record
2067   // forms are fast, and we should use only the fast ones.
2068 
2069   // The defining instruction has a record form (or is already a record
2070   // form). It is possible, however, that we'll need to reverse the condition
2071   // code of the users.
2072   if (NewOpC == -1)
2073     return false;
2074 
2075   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
2076   // needs to be updated to be based on SUB.  Push the condition code
2077   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
2078   // condition code of these operands will be modified.
2079   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
2080   // comparison against 0, which may modify predicate.
2081   bool ShouldSwap = false;
2082   if (Sub && Value == 0) {
2083     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2084       Sub->getOperand(2).getReg() == SrcReg;
2085 
2086     // The operands to subf are the opposite of sub, so only in the fixed-point
2087     // case, invert the order.
2088     ShouldSwap = !ShouldSwap;
2089   }
2090 
2091   if (ShouldSwap)
2092     for (MachineRegisterInfo::use_instr_iterator
2093          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
2094          I != IE; ++I) {
2095       MachineInstr *UseMI = &*I;
2096       if (UseMI->getOpcode() == PPC::BCC) {
2097         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
2098         unsigned PredCond = PPC::getPredicateCondition(Pred);
2099         assert((!equalityOnly ||
2100                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
2101                "Invalid predicate for equality-only optimization");
2102         (void)PredCond; // To suppress warning in release build.
2103         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
2104                                 PPC::getSwappedPredicate(Pred)));
2105       } else if (UseMI->getOpcode() == PPC::ISEL ||
2106                  UseMI->getOpcode() == PPC::ISEL8) {
2107         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
2108         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
2109                "Invalid CR bit for equality-only optimization");
2110 
2111         if (NewSubReg == PPC::sub_lt)
2112           NewSubReg = PPC::sub_gt;
2113         else if (NewSubReg == PPC::sub_gt)
2114           NewSubReg = PPC::sub_lt;
2115 
2116         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
2117                                                  NewSubReg));
2118       } else // We need to abort on a user we don't understand.
2119         return false;
2120     }
2121   assert(!(Value != 0 && ShouldSwap) &&
2122          "Non-zero immediate support and ShouldSwap"
2123          "may conflict in updating predicate");
2124 
2125   // Create a new virtual register to hold the value of the CR set by the
2126   // record-form instruction. If the instruction was not previously in
2127   // record form, then set the kill flag on the CR.
2128   CmpInstr.eraseFromParent();
2129 
2130   MachineBasicBlock::iterator MII = MI;
2131   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
2132           get(TargetOpcode::COPY), CRReg)
2133     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
2134 
2135   // Even if CR0 register were dead before, it is alive now since the
2136   // instruction we just built uses it.
2137   MI->clearRegisterDeads(PPC::CR0);
2138 
2139   if (MIOpC != NewOpC) {
2140     // We need to be careful here: we're replacing one instruction with
2141     // another, and we need to make sure that we get all of the right
2142     // implicit uses and defs. On the other hand, the caller may be holding
2143     // an iterator to this instruction, and so we can't delete it (this is
2144     // specifically the case if this is the instruction directly after the
2145     // compare).
2146 
2147     // Rotates are expensive instructions. If we're emitting a record-form
2148     // rotate that can just be an andi/andis, we should just emit that.
2149     if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
2150       Register GPRRes = MI->getOperand(0).getReg();
2151       int64_t SH = MI->getOperand(2).getImm();
2152       int64_t MB = MI->getOperand(3).getImm();
2153       int64_t ME = MI->getOperand(4).getImm();
2154       // We can only do this if both the start and end of the mask are in the
2155       // same halfword.
2156       bool MBInLoHWord = MB >= 16;
2157       bool MEInLoHWord = ME >= 16;
2158       uint64_t Mask = ~0LLU;
2159 
2160       if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
2161         Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2162         // The mask value needs to shift right 16 if we're emitting andis.
2163         Mask >>= MBInLoHWord ? 0 : 16;
2164         NewOpC = MIOpC == PPC::RLWINM
2165                      ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec)
2166                      : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec);
2167       } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
2168                  (ME - MB + 1 == SH) && (MB >= 16)) {
2169         // If we are rotating by the exact number of bits as are in the mask
2170         // and the mask is in the least significant bits of the register,
2171         // that's just an andis. (as long as the GPR result has no uses).
2172         Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
2173         Mask >>= 16;
2174         NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec;
2175       }
2176       // If we've set the mask, we can transform.
2177       if (Mask != ~0LLU) {
2178         MI->RemoveOperand(4);
2179         MI->RemoveOperand(3);
2180         MI->getOperand(2).setImm(Mask);
2181         NumRcRotatesConvertedToRcAnd++;
2182       }
2183     } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
2184       int64_t MB = MI->getOperand(3).getImm();
2185       if (MB >= 48) {
2186         uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2187         NewOpC = PPC::ANDI8_rec;
2188         MI->RemoveOperand(3);
2189         MI->getOperand(2).setImm(Mask);
2190         NumRcRotatesConvertedToRcAnd++;
2191       }
2192     }
2193 
2194     const MCInstrDesc &NewDesc = get(NewOpC);
2195     MI->setDesc(NewDesc);
2196 
2197     if (NewDesc.ImplicitDefs)
2198       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
2199            *ImpDefs; ++ImpDefs)
2200         if (!MI->definesRegister(*ImpDefs))
2201           MI->addOperand(*MI->getParent()->getParent(),
2202                          MachineOperand::CreateReg(*ImpDefs, true, true));
2203     if (NewDesc.ImplicitUses)
2204       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
2205            *ImpUses; ++ImpUses)
2206         if (!MI->readsRegister(*ImpUses))
2207           MI->addOperand(*MI->getParent()->getParent(),
2208                          MachineOperand::CreateReg(*ImpUses, false, true));
2209   }
2210   assert(MI->definesRegister(PPC::CR0) &&
2211          "Record-form instruction does not define cr0?");
2212 
2213   // Modify the condition code of operands in OperandsToUpdate.
2214   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2215   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2216   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
2217     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
2218 
2219   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2220     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2221 
2222   return true;
2223 }
2224 
2225 bool PPCInstrInfo::getMemOperandsWithOffsetWidth(
2226     const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
2227     int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
2228     const TargetRegisterInfo *TRI) const {
2229   const MachineOperand *BaseOp;
2230   OffsetIsScalable = false;
2231   if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI))
2232     return false;
2233   BaseOps.push_back(BaseOp);
2234   return true;
2235 }
2236 
2237 static bool isLdStSafeToCluster(const MachineInstr &LdSt,
2238                                 const TargetRegisterInfo *TRI) {
2239   // If this is a volatile load/store, don't mess with it.
2240   if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3)
2241     return false;
2242 
2243   if (LdSt.getOperand(2).isFI())
2244     return true;
2245 
2246   assert(LdSt.getOperand(2).isReg() && "Expected a reg operand.");
2247   // Can't cluster if the instruction modifies the base register
2248   // or it is update form. e.g. ld r2,3(r2)
2249   if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI))
2250     return false;
2251 
2252   return true;
2253 }
2254 
2255 // Only cluster instruction pair that have the same opcode, and they are
2256 // clusterable according to PowerPC specification.
2257 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc,
2258                                      const PPCSubtarget &Subtarget) {
2259   switch (FirstOpc) {
2260   default:
2261     return false;
2262   case PPC::STD:
2263   case PPC::STFD:
2264   case PPC::STXSD:
2265   case PPC::DFSTOREf64:
2266     return FirstOpc == SecondOpc;
2267   // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with
2268   // 32bit and 64bit instruction selection. They are clusterable pair though
2269   // they are different opcode.
2270   case PPC::STW:
2271   case PPC::STW8:
2272     return SecondOpc == PPC::STW || SecondOpc == PPC::STW8;
2273   }
2274 }
2275 
2276 bool PPCInstrInfo::shouldClusterMemOps(
2277     ArrayRef<const MachineOperand *> BaseOps1,
2278     ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads,
2279     unsigned NumBytes) const {
2280 
2281   assert(BaseOps1.size() == 1 && BaseOps2.size() == 1);
2282   const MachineOperand &BaseOp1 = *BaseOps1.front();
2283   const MachineOperand &BaseOp2 = *BaseOps2.front();
2284   assert((BaseOp1.isReg() || BaseOp1.isFI()) &&
2285          "Only base registers and frame indices are supported.");
2286 
2287   // The NumLoads means the number of loads that has been clustered.
2288   // Don't cluster memory op if there are already two ops clustered at least.
2289   if (NumLoads > 2)
2290     return false;
2291 
2292   // Cluster the load/store only when they have the same base
2293   // register or FI.
2294   if ((BaseOp1.isReg() != BaseOp2.isReg()) ||
2295       (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) ||
2296       (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex()))
2297     return false;
2298 
2299   // Check if the load/store are clusterable according to the PowerPC
2300   // specification.
2301   const MachineInstr &FirstLdSt = *BaseOp1.getParent();
2302   const MachineInstr &SecondLdSt = *BaseOp2.getParent();
2303   unsigned FirstOpc = FirstLdSt.getOpcode();
2304   unsigned SecondOpc = SecondLdSt.getOpcode();
2305   const TargetRegisterInfo *TRI = &getRegisterInfo();
2306   // Cluster the load/store only when they have the same opcode, and they are
2307   // clusterable opcode according to PowerPC specification.
2308   if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget))
2309     return false;
2310 
2311   // Can't cluster load/store that have ordered or volatile memory reference.
2312   if (!isLdStSafeToCluster(FirstLdSt, TRI) ||
2313       !isLdStSafeToCluster(SecondLdSt, TRI))
2314     return false;
2315 
2316   int64_t Offset1 = 0, Offset2 = 0;
2317   unsigned Width1 = 0, Width2 = 0;
2318   const MachineOperand *Base1 = nullptr, *Base2 = nullptr;
2319   if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) ||
2320       !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) ||
2321       Width1 != Width2)
2322     return false;
2323 
2324   assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 &&
2325          "getMemOperandWithOffsetWidth return incorrect base op");
2326   // The caller should already have ordered FirstMemOp/SecondMemOp by offset.
2327   assert(Offset1 <= Offset2 && "Caller should have ordered offsets.");
2328   return Offset1 + Width1 == Offset2;
2329 }
2330 
2331 /// GetInstSize - Return the number of bytes of code the specified
2332 /// instruction may be.  This returns the maximum number of bytes.
2333 ///
2334 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2335   unsigned Opcode = MI.getOpcode();
2336 
2337   if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
2338     const MachineFunction *MF = MI.getParent()->getParent();
2339     const char *AsmStr = MI.getOperand(0).getSymbolName();
2340     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2341   } else if (Opcode == TargetOpcode::STACKMAP) {
2342     StackMapOpers Opers(&MI);
2343     return Opers.getNumPatchBytes();
2344   } else if (Opcode == TargetOpcode::PATCHPOINT) {
2345     PatchPointOpers Opers(&MI);
2346     return Opers.getNumPatchBytes();
2347   } else {
2348     return get(Opcode).getSize();
2349   }
2350 }
2351 
2352 std::pair<unsigned, unsigned>
2353 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2354   const unsigned Mask = PPCII::MO_ACCESS_MASK;
2355   return std::make_pair(TF & Mask, TF & ~Mask);
2356 }
2357 
2358 ArrayRef<std::pair<unsigned, const char *>>
2359 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2360   using namespace PPCII;
2361   static const std::pair<unsigned, const char *> TargetFlags[] = {
2362       {MO_LO, "ppc-lo"},
2363       {MO_HA, "ppc-ha"},
2364       {MO_TPREL_LO, "ppc-tprel-lo"},
2365       {MO_TPREL_HA, "ppc-tprel-ha"},
2366       {MO_DTPREL_LO, "ppc-dtprel-lo"},
2367       {MO_TLSLD_LO, "ppc-tlsld-lo"},
2368       {MO_TOC_LO, "ppc-toc-lo"},
2369       {MO_TLS, "ppc-tls"}};
2370   return makeArrayRef(TargetFlags);
2371 }
2372 
2373 ArrayRef<std::pair<unsigned, const char *>>
2374 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2375   using namespace PPCII;
2376   static const std::pair<unsigned, const char *> TargetFlags[] = {
2377       {MO_PLT, "ppc-plt"},
2378       {MO_PIC_FLAG, "ppc-pic"},
2379       {MO_PCREL_FLAG, "ppc-pcrel"},
2380       {MO_GOT_FLAG, "ppc-got"},
2381       {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"},
2382       {MO_TLSGD_FLAG, "ppc-tlsgd"},
2383       {MO_TPREL_FLAG, "ppc-tprel"},
2384       {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"},
2385       {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}};
2386   return makeArrayRef(TargetFlags);
2387 }
2388 
2389 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2390 // The VSX versions have the advantage of a full 64-register target whereas
2391 // the FP ones have the advantage of lower latency and higher throughput. So
2392 // what we are after is using the faster instructions in low register pressure
2393 // situations and using the larger register file in high register pressure
2394 // situations.
2395 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2396     unsigned UpperOpcode, LowerOpcode;
2397     switch (MI.getOpcode()) {
2398     case PPC::DFLOADf32:
2399       UpperOpcode = PPC::LXSSP;
2400       LowerOpcode = PPC::LFS;
2401       break;
2402     case PPC::DFLOADf64:
2403       UpperOpcode = PPC::LXSD;
2404       LowerOpcode = PPC::LFD;
2405       break;
2406     case PPC::DFSTOREf32:
2407       UpperOpcode = PPC::STXSSP;
2408       LowerOpcode = PPC::STFS;
2409       break;
2410     case PPC::DFSTOREf64:
2411       UpperOpcode = PPC::STXSD;
2412       LowerOpcode = PPC::STFD;
2413       break;
2414     case PPC::XFLOADf32:
2415       UpperOpcode = PPC::LXSSPX;
2416       LowerOpcode = PPC::LFSX;
2417       break;
2418     case PPC::XFLOADf64:
2419       UpperOpcode = PPC::LXSDX;
2420       LowerOpcode = PPC::LFDX;
2421       break;
2422     case PPC::XFSTOREf32:
2423       UpperOpcode = PPC::STXSSPX;
2424       LowerOpcode = PPC::STFSX;
2425       break;
2426     case PPC::XFSTOREf64:
2427       UpperOpcode = PPC::STXSDX;
2428       LowerOpcode = PPC::STFDX;
2429       break;
2430     case PPC::LIWAX:
2431       UpperOpcode = PPC::LXSIWAX;
2432       LowerOpcode = PPC::LFIWAX;
2433       break;
2434     case PPC::LIWZX:
2435       UpperOpcode = PPC::LXSIWZX;
2436       LowerOpcode = PPC::LFIWZX;
2437       break;
2438     case PPC::STIWX:
2439       UpperOpcode = PPC::STXSIWX;
2440       LowerOpcode = PPC::STFIWX;
2441       break;
2442     default:
2443       llvm_unreachable("Unknown Operation!");
2444     }
2445 
2446     Register TargetReg = MI.getOperand(0).getReg();
2447     unsigned Opcode;
2448     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2449         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2450       Opcode = LowerOpcode;
2451     else
2452       Opcode = UpperOpcode;
2453     MI.setDesc(get(Opcode));
2454     return true;
2455 }
2456 
2457 static bool isAnImmediateOperand(const MachineOperand &MO) {
2458   return MO.isCPI() || MO.isGlobal() || MO.isImm();
2459 }
2460 
2461 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2462   auto &MBB = *MI.getParent();
2463   auto DL = MI.getDebugLoc();
2464 
2465   switch (MI.getOpcode()) {
2466   case TargetOpcode::LOAD_STACK_GUARD: {
2467     assert(Subtarget.isTargetLinux() &&
2468            "Only Linux target is expected to contain LOAD_STACK_GUARD");
2469     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
2470     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
2471     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
2472     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2473         .addImm(Offset)
2474         .addReg(Reg);
2475     return true;
2476   }
2477   case PPC::DFLOADf32:
2478   case PPC::DFLOADf64:
2479   case PPC::DFSTOREf32:
2480   case PPC::DFSTOREf64: {
2481     assert(Subtarget.hasP9Vector() &&
2482            "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2483     assert(MI.getOperand(2).isReg() &&
2484            isAnImmediateOperand(MI.getOperand(1)) &&
2485            "D-form op must have register and immediate operands");
2486     return expandVSXMemPseudo(MI);
2487   }
2488   case PPC::XFLOADf32:
2489   case PPC::XFSTOREf32:
2490   case PPC::LIWAX:
2491   case PPC::LIWZX:
2492   case PPC::STIWX: {
2493     assert(Subtarget.hasP8Vector() &&
2494            "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2495     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2496            "X-form op must have register and register operands");
2497     return expandVSXMemPseudo(MI);
2498   }
2499   case PPC::XFLOADf64:
2500   case PPC::XFSTOREf64: {
2501     assert(Subtarget.hasVSX() &&
2502            "Invalid X-Form Pseudo-ops on target that has no VSX.");
2503     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2504            "X-form op must have register and register operands");
2505     return expandVSXMemPseudo(MI);
2506   }
2507   case PPC::SPILLTOVSR_LD: {
2508     Register TargetReg = MI.getOperand(0).getReg();
2509     if (PPC::VSFRCRegClass.contains(TargetReg)) {
2510       MI.setDesc(get(PPC::DFLOADf64));
2511       return expandPostRAPseudo(MI);
2512     }
2513     else
2514       MI.setDesc(get(PPC::LD));
2515     return true;
2516   }
2517   case PPC::SPILLTOVSR_ST: {
2518     Register SrcReg = MI.getOperand(0).getReg();
2519     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2520       NumStoreSPILLVSRRCAsVec++;
2521       MI.setDesc(get(PPC::DFSTOREf64));
2522       return expandPostRAPseudo(MI);
2523     } else {
2524       NumStoreSPILLVSRRCAsGpr++;
2525       MI.setDesc(get(PPC::STD));
2526     }
2527     return true;
2528   }
2529   case PPC::SPILLTOVSR_LDX: {
2530     Register TargetReg = MI.getOperand(0).getReg();
2531     if (PPC::VSFRCRegClass.contains(TargetReg))
2532       MI.setDesc(get(PPC::LXSDX));
2533     else
2534       MI.setDesc(get(PPC::LDX));
2535     return true;
2536   }
2537   case PPC::SPILLTOVSR_STX: {
2538     Register SrcReg = MI.getOperand(0).getReg();
2539     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2540       NumStoreSPILLVSRRCAsVec++;
2541       MI.setDesc(get(PPC::STXSDX));
2542     } else {
2543       NumStoreSPILLVSRRCAsGpr++;
2544       MI.setDesc(get(PPC::STDX));
2545     }
2546     return true;
2547   }
2548 
2549   case PPC::CFENCE8: {
2550     auto Val = MI.getOperand(0).getReg();
2551     BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
2552     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
2553         .addImm(PPC::PRED_NE_MINUS)
2554         .addReg(PPC::CR7)
2555         .addImm(1);
2556     MI.setDesc(get(PPC::ISYNC));
2557     MI.RemoveOperand(0);
2558     return true;
2559   }
2560   }
2561   return false;
2562 }
2563 
2564 // Essentially a compile-time implementation of a compare->isel sequence.
2565 // It takes two constants to compare, along with the true/false registers
2566 // and the comparison type (as a subreg to a CR field) and returns one
2567 // of the true/false registers, depending on the comparison results.
2568 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
2569                           unsigned TrueReg, unsigned FalseReg,
2570                           unsigned CRSubReg) {
2571   // Signed comparisons. The immediates are assumed to be sign-extended.
2572   if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
2573     switch (CRSubReg) {
2574     default: llvm_unreachable("Unknown integer comparison type.");
2575     case PPC::sub_lt:
2576       return Imm1 < Imm2 ? TrueReg : FalseReg;
2577     case PPC::sub_gt:
2578       return Imm1 > Imm2 ? TrueReg : FalseReg;
2579     case PPC::sub_eq:
2580       return Imm1 == Imm2 ? TrueReg : FalseReg;
2581     }
2582   }
2583   // Unsigned comparisons.
2584   else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
2585     switch (CRSubReg) {
2586     default: llvm_unreachable("Unknown integer comparison type.");
2587     case PPC::sub_lt:
2588       return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
2589     case PPC::sub_gt:
2590       return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
2591     case PPC::sub_eq:
2592       return Imm1 == Imm2 ? TrueReg : FalseReg;
2593     }
2594   }
2595   return PPC::NoRegister;
2596 }
2597 
2598 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
2599                                               unsigned OpNo,
2600                                               int64_t Imm) const {
2601   assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
2602   // Replace the REG with the Immediate.
2603   Register InUseReg = MI.getOperand(OpNo).getReg();
2604   MI.getOperand(OpNo).ChangeToImmediate(Imm);
2605 
2606   if (MI.implicit_operands().empty())
2607     return;
2608 
2609   // We need to make sure that the MI didn't have any implicit use
2610   // of this REG any more.
2611   const TargetRegisterInfo *TRI = &getRegisterInfo();
2612   int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
2613   if (UseOpIdx >= 0) {
2614     MachineOperand &MO = MI.getOperand(UseOpIdx);
2615     if (MO.isImplicit())
2616       // The operands must always be in the following order:
2617       // - explicit reg defs,
2618       // - other explicit operands (reg uses, immediates, etc.),
2619       // - implicit reg defs
2620       // - implicit reg uses
2621       // Therefore, removing the implicit operand won't change the explicit
2622       // operands layout.
2623       MI.RemoveOperand(UseOpIdx);
2624   }
2625 }
2626 
2627 // Replace an instruction with one that materializes a constant (and sets
2628 // CR0 if the original instruction was a record-form instruction).
2629 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
2630                                       const LoadImmediateInfo &LII) const {
2631   // Remove existing operands.
2632   int OperandToKeep = LII.SetCR ? 1 : 0;
2633   for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
2634     MI.RemoveOperand(i);
2635 
2636   // Replace the instruction.
2637   if (LII.SetCR) {
2638     MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
2639     // Set the immediate.
2640     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2641         .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
2642     return;
2643   }
2644   else
2645     MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
2646 
2647   // Set the immediate.
2648   MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2649       .addImm(LII.Imm);
2650 }
2651 
2652 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
2653                                            bool &SeenIntermediateUse) const {
2654   assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
2655          "Should be called after register allocation.");
2656   const TargetRegisterInfo *TRI = &getRegisterInfo();
2657   MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
2658   It++;
2659   SeenIntermediateUse = false;
2660   for (; It != E; ++It) {
2661     if (It->modifiesRegister(Reg, TRI))
2662       return &*It;
2663     if (It->readsRegister(Reg, TRI))
2664       SeenIntermediateUse = true;
2665   }
2666   return nullptr;
2667 }
2668 
2669 MachineInstr *PPCInstrInfo::getForwardingDefMI(
2670   MachineInstr &MI,
2671   unsigned &OpNoForForwarding,
2672   bool &SeenIntermediateUse) const {
2673   OpNoForForwarding = ~0U;
2674   MachineInstr *DefMI = nullptr;
2675   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
2676   const TargetRegisterInfo *TRI = &getRegisterInfo();
2677   // If we're in SSA, get the defs through the MRI. Otherwise, only look
2678   // within the basic block to see if the register is defined using an
2679   // LI/LI8/ADDI/ADDI8.
2680   if (MRI->isSSA()) {
2681     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2682       if (!MI.getOperand(i).isReg())
2683         continue;
2684       Register Reg = MI.getOperand(i).getReg();
2685       if (!Register::isVirtualRegister(Reg))
2686         continue;
2687       unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
2688       if (Register::isVirtualRegister(TrueReg)) {
2689         DefMI = MRI->getVRegDef(TrueReg);
2690         if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 ||
2691             DefMI->getOpcode() == PPC::ADDI ||
2692             DefMI->getOpcode() == PPC::ADDI8) {
2693           OpNoForForwarding = i;
2694           // The ADDI and LI operand maybe exist in one instruction at same
2695           // time. we prefer to fold LI operand as LI only has one Imm operand
2696           // and is more possible to be converted. So if current DefMI is
2697           // ADDI/ADDI8, we continue to find possible LI/LI8.
2698           if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8)
2699             break;
2700         }
2701       }
2702     }
2703   } else {
2704     // Looking back through the definition for each operand could be expensive,
2705     // so exit early if this isn't an instruction that either has an immediate
2706     // form or is already an immediate form that we can handle.
2707     ImmInstrInfo III;
2708     unsigned Opc = MI.getOpcode();
2709     bool ConvertibleImmForm =
2710         Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI ||
2711         Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
2712         Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI ||
2713         Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec ||
2714         Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
2715         Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 ||
2716         Opc == PPC::RLWINM8_rec;
2717     bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
2718                        ? isVFRegister(MI.getOperand(0).getReg())
2719                        : false;
2720     if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
2721       return nullptr;
2722 
2723     // Don't convert or %X, %Y, %Y since that's just a register move.
2724     if ((Opc == PPC::OR || Opc == PPC::OR8) &&
2725         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
2726       return nullptr;
2727     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2728       MachineOperand &MO = MI.getOperand(i);
2729       SeenIntermediateUse = false;
2730       if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
2731         Register Reg = MI.getOperand(i).getReg();
2732         // If we see another use of this reg between the def and the MI,
2733         // we want to flat it so the def isn't deleted.
2734         MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
2735         if (DefMI) {
2736           // Is this register defined by some form of add-immediate (including
2737           // load-immediate) within this basic block?
2738           switch (DefMI->getOpcode()) {
2739           default:
2740             break;
2741           case PPC::LI:
2742           case PPC::LI8:
2743           case PPC::ADDItocL:
2744           case PPC::ADDI:
2745           case PPC::ADDI8:
2746             OpNoForForwarding = i;
2747             return DefMI;
2748           }
2749         }
2750       }
2751     }
2752   }
2753   return OpNoForForwarding == ~0U ? nullptr : DefMI;
2754 }
2755 
2756 unsigned PPCInstrInfo::getSpillTarget() const {
2757   return Subtarget.hasP9Vector() ? 1 : 0;
2758 }
2759 
2760 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2761   return StoreSpillOpcodesArray[getSpillTarget()];
2762 }
2763 
2764 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2765   return LoadSpillOpcodesArray[getSpillTarget()];
2766 }
2767 
2768 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI,
2769                                      unsigned RegNo) const {
2770   // Conservatively clear kill flag for the register if the instructions are in
2771   // different basic blocks and in SSA form, because the kill flag may no longer
2772   // be right. There is no need to bother with dead flags since defs with no
2773   // uses will be handled by DCE.
2774   MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo();
2775   if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) {
2776     MRI.clearKillFlags(RegNo);
2777     return;
2778   }
2779 
2780   // Instructions between [StartMI, EndMI] should be in same basic block.
2781   assert((StartMI->getParent() == EndMI->getParent()) &&
2782          "Instructions are not in same basic block");
2783 
2784   // If before RA, StartMI may be def through COPY, we need to adjust it to the
2785   // real def. See function getForwardingDefMI.
2786   if (MRI.isSSA()) {
2787     bool Reads, Writes;
2788     std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo);
2789     if (!Reads && !Writes) {
2790       assert(Register::isVirtualRegister(RegNo) &&
2791              "Must be a virtual register");
2792       // Get real def and ignore copies.
2793       StartMI = MRI.getVRegDef(RegNo);
2794     }
2795   }
2796 
2797   bool IsKillSet = false;
2798 
2799   auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
2800     MachineOperand &MO = MI.getOperand(Index);
2801     if (MO.isReg() && MO.isUse() && MO.isKill() &&
2802         getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
2803       MO.setIsKill(false);
2804   };
2805 
2806   // Set killed flag for EndMI.
2807   // No need to do anything if EndMI defines RegNo.
2808   int UseIndex =
2809       EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
2810   if (UseIndex != -1) {
2811     EndMI->getOperand(UseIndex).setIsKill(true);
2812     IsKillSet = true;
2813     // Clear killed flag for other EndMI operands related to RegNo. In some
2814     // upexpected cases, killed may be set multiple times for same register
2815     // operand in same MI.
2816     for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i)
2817       if (i != UseIndex)
2818         clearOperandKillInfo(*EndMI, i);
2819   }
2820 
2821   // Walking the inst in reverse order (EndMI -> StartMI].
2822   MachineBasicBlock::reverse_iterator It = *EndMI;
2823   MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend();
2824   // EndMI has been handled above, skip it here.
2825   It++;
2826   MachineOperand *MO = nullptr;
2827   for (; It != E; ++It) {
2828     // Skip insturctions which could not be a def/use of RegNo.
2829     if (It->isDebugInstr() || It->isPosition())
2830       continue;
2831 
2832     // Clear killed flag for all It operands related to RegNo. In some
2833     // upexpected cases, killed may be set multiple times for same register
2834     // operand in same MI.
2835     for (int i = 0, e = It->getNumOperands(); i != e; ++i)
2836         clearOperandKillInfo(*It, i);
2837 
2838     // If killed is not set, set killed for its last use or set dead for its def
2839     // if no use found.
2840     if (!IsKillSet) {
2841       if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
2842         // Use found, set it killed.
2843         IsKillSet = true;
2844         MO->setIsKill(true);
2845         continue;
2846       } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
2847                                                   &getRegisterInfo()))) {
2848         // No use found, set dead for its def.
2849         assert(&*It == StartMI && "No new def between StartMI and EndMI.");
2850         MO->setIsDead(true);
2851         break;
2852       }
2853     }
2854 
2855     if ((&*It) == StartMI)
2856       break;
2857   }
2858   // Ensure RegMo liveness is killed after EndMI.
2859   assert((IsKillSet || (MO && MO->isDead())) &&
2860          "RegNo should be killed or dead");
2861 }
2862 
2863 // This opt tries to convert the following imm form to an index form to save an
2864 // add for stack variables.
2865 // Return false if no such pattern found.
2866 //
2867 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
2868 // ADD instr:  ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg
2869 // Imm instr:  Reg            = op OffsetImm, ToBeDeletedReg(killed)
2870 //
2871 // can be converted to:
2872 //
2873 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm)
2874 // Index instr:    Reg            = opx ScaleReg, ToBeChangedReg(killed)
2875 //
2876 // In order to eliminate ADD instr, make sure that:
2877 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in
2878 //    new ADDI instr and ADDI can only take int16 Imm.
2879 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use
2880 //    between ADDI and ADD instr since its original def in ADDI will be changed
2881 //    in new ADDI instr. And also there should be no new def for it between
2882 //    ADD and Imm instr as ToBeChangedReg will be used in Index instr.
2883 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use
2884 //    between ADD and Imm instr since ADD instr will be eliminated.
2885 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be
2886 //    moved to Index instr.
2887 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const {
2888   MachineFunction *MF = MI.getParent()->getParent();
2889   MachineRegisterInfo *MRI = &MF->getRegInfo();
2890   bool PostRA = !MRI->isSSA();
2891   // Do this opt after PEI which is after RA. The reason is stack slot expansion
2892   // in PEI may expose such opportunities since in PEI, stack slot offsets to
2893   // frame base(OffsetAddi) are determined.
2894   if (!PostRA)
2895     return false;
2896   unsigned ToBeDeletedReg = 0;
2897   int64_t OffsetImm = 0;
2898   unsigned XFormOpcode = 0;
2899   ImmInstrInfo III;
2900 
2901   // Check if Imm instr meets requirement.
2902   if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm,
2903                                     III))
2904     return false;
2905 
2906   bool OtherIntermediateUse = false;
2907   MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse);
2908 
2909   // Exit if there is other use between ADD and Imm instr or no def found.
2910   if (OtherIntermediateUse || !ADDMI)
2911     return false;
2912 
2913   // Check if ADD instr meets requirement.
2914   if (!isADDInstrEligibleForFolding(*ADDMI))
2915     return false;
2916 
2917   unsigned ScaleRegIdx = 0;
2918   int64_t OffsetAddi = 0;
2919   MachineInstr *ADDIMI = nullptr;
2920 
2921   // Check if there is a valid ToBeChangedReg in ADDMI.
2922   // 1: It must be killed.
2923   // 2: Its definition must be a valid ADDIMI.
2924   // 3: It must satify int16 offset requirement.
2925   if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm))
2926     ScaleRegIdx = 2;
2927   else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm))
2928     ScaleRegIdx = 1;
2929   else
2930     return false;
2931 
2932   assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg.");
2933   unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg();
2934   unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg();
2935   auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start,
2936                        MachineBasicBlock::iterator End) {
2937     for (auto It = ++Start; It != End; It++)
2938       if (It->modifiesRegister(Reg, &getRegisterInfo()))
2939         return true;
2940     return false;
2941   };
2942 
2943   // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is
2944   // treated as special zero when ScaleReg is R0/X0 register.
2945   if (III.ZeroIsSpecialOrig == III.ImmOpNo &&
2946       (ScaleReg == PPC::R0 || ScaleReg == PPC::X0))
2947     return false;
2948 
2949   // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr
2950   // and Imm Instr.
2951   if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI))
2952     return false;
2953 
2954   // Now start to do the transformation.
2955   LLVM_DEBUG(dbgs() << "Replace instruction: "
2956                     << "\n");
2957   LLVM_DEBUG(ADDIMI->dump());
2958   LLVM_DEBUG(ADDMI->dump());
2959   LLVM_DEBUG(MI.dump());
2960   LLVM_DEBUG(dbgs() << "with: "
2961                     << "\n");
2962 
2963   // Update ADDI instr.
2964   ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm);
2965 
2966   // Update Imm instr.
2967   MI.setDesc(get(XFormOpcode));
2968   MI.getOperand(III.ImmOpNo)
2969       .ChangeToRegister(ScaleReg, false, false,
2970                         ADDMI->getOperand(ScaleRegIdx).isKill());
2971 
2972   MI.getOperand(III.OpNoForForwarding)
2973       .ChangeToRegister(ToBeChangedReg, false, false, true);
2974 
2975   // Eliminate ADD instr.
2976   ADDMI->eraseFromParent();
2977 
2978   LLVM_DEBUG(ADDIMI->dump());
2979   LLVM_DEBUG(MI.dump());
2980 
2981   return true;
2982 }
2983 
2984 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI,
2985                                                  int64_t &Imm) const {
2986   unsigned Opc = ADDIMI.getOpcode();
2987 
2988   // Exit if the instruction is not ADDI.
2989   if (Opc != PPC::ADDI && Opc != PPC::ADDI8)
2990     return false;
2991 
2992   // The operand may not necessarily be an immediate - it could be a relocation.
2993   if (!ADDIMI.getOperand(2).isImm())
2994     return false;
2995 
2996   Imm = ADDIMI.getOperand(2).getImm();
2997 
2998   return true;
2999 }
3000 
3001 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const {
3002   unsigned Opc = ADDMI.getOpcode();
3003 
3004   // Exit if the instruction is not ADD.
3005   return Opc == PPC::ADD4 || Opc == PPC::ADD8;
3006 }
3007 
3008 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI,
3009                                                 unsigned &ToBeDeletedReg,
3010                                                 unsigned &XFormOpcode,
3011                                                 int64_t &OffsetImm,
3012                                                 ImmInstrInfo &III) const {
3013   // Only handle load/store.
3014   if (!MI.mayLoadOrStore())
3015     return false;
3016 
3017   unsigned Opc = MI.getOpcode();
3018 
3019   XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc);
3020 
3021   // Exit if instruction has no index form.
3022   if (XFormOpcode == PPC::INSTRUCTION_LIST_END)
3023     return false;
3024 
3025   // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap.
3026   if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()),
3027                        III, true))
3028     return false;
3029 
3030   if (!III.IsSummingOperands)
3031     return false;
3032 
3033   MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo);
3034   MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding);
3035   // Only support imm operands, not relocation slots or others.
3036   if (!ImmOperand.isImm())
3037     return false;
3038 
3039   assert(RegOperand.isReg() && "Instruction format is not right");
3040 
3041   // There are other use for ToBeDeletedReg after Imm instr, can not delete it.
3042   if (!RegOperand.isKill())
3043     return false;
3044 
3045   ToBeDeletedReg = RegOperand.getReg();
3046   OffsetImm = ImmOperand.getImm();
3047 
3048   return true;
3049 }
3050 
3051 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
3052                                          MachineInstr *&ADDIMI,
3053                                          int64_t &OffsetAddi,
3054                                          int64_t OffsetImm) const {
3055   assert((Index == 1 || Index == 2) && "Invalid operand index for add.");
3056   MachineOperand &MO = ADDMI->getOperand(Index);
3057 
3058   if (!MO.isKill())
3059     return false;
3060 
3061   bool OtherIntermediateUse = false;
3062 
3063   ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse);
3064   // Currently handle only one "add + Imminstr" pair case, exit if other
3065   // intermediate use for ToBeChangedReg found.
3066   // TODO: handle the cases where there are other "add + Imminstr" pairs
3067   // with same offset in Imminstr which is like:
3068   //
3069   // ADDI instr: ToBeChangedReg  = ADDI FrameBaseReg, OffsetAddi
3070   // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1
3071   // Imm instr1: Reg1            = op1 OffsetImm, ToBeDeletedReg1(killed)
3072   // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2
3073   // Imm instr2: Reg2            = op2 OffsetImm, ToBeDeletedReg2(killed)
3074   //
3075   // can be converted to:
3076   //
3077   // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg,
3078   //                                       (OffsetAddi + OffsetImm)
3079   // Index instr1:   Reg1           = opx1 ScaleReg1, ToBeChangedReg
3080   // Index instr2:   Reg2           = opx2 ScaleReg2, ToBeChangedReg(killed)
3081 
3082   if (OtherIntermediateUse || !ADDIMI)
3083     return false;
3084   // Check if ADDI instr meets requirement.
3085   if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi))
3086     return false;
3087 
3088   if (isInt<16>(OffsetAddi + OffsetImm))
3089     return true;
3090   return false;
3091 }
3092 
3093 // If this instruction has an immediate form and one of its operands is a
3094 // result of a load-immediate or an add-immediate, convert it to
3095 // the immediate form if the constant is in range.
3096 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
3097                                           MachineInstr **KilledDef) const {
3098   MachineFunction *MF = MI.getParent()->getParent();
3099   MachineRegisterInfo *MRI = &MF->getRegInfo();
3100   bool PostRA = !MRI->isSSA();
3101   bool SeenIntermediateUse = true;
3102   unsigned ForwardingOperand = ~0U;
3103   MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
3104                                            SeenIntermediateUse);
3105   if (!DefMI)
3106     return false;
3107   assert(ForwardingOperand < MI.getNumOperands() &&
3108          "The forwarding operand needs to be valid at this point");
3109   bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
3110   bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
3111   if (KilledDef && KillFwdDefMI)
3112     *KilledDef = DefMI;
3113 
3114   // If this is a imm instruction and its register operands is produced by ADDI,
3115   // put the imm into imm inst directly.
3116   if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) !=
3117           PPC::INSTRUCTION_LIST_END &&
3118       transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand))
3119     return true;
3120 
3121   ImmInstrInfo III;
3122   bool IsVFReg = MI.getOperand(0).isReg()
3123                      ? isVFRegister(MI.getOperand(0).getReg())
3124                      : false;
3125   bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
3126   // If this is a reg+reg instruction that has a reg+imm form,
3127   // and one of the operands is produced by an add-immediate,
3128   // try to convert it.
3129   if (HasImmForm &&
3130       transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
3131                                  KillFwdDefMI))
3132     return true;
3133 
3134   // If this is a reg+reg instruction that has a reg+imm form,
3135   // and one of the operands is produced by LI, convert it now.
3136   if (HasImmForm &&
3137       transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI))
3138     return true;
3139 
3140   // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI
3141   // can be simpified to LI.
3142   if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef))
3143     return true;
3144 
3145   return false;
3146 }
3147 
3148 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
3149                                    ImmInstrInfo &III, bool PostRA) const {
3150   // The vast majority of the instructions would need their operand 2 replaced
3151   // with an immediate when switching to the reg+imm form. A marked exception
3152   // are the update form loads/stores for which a constant operand 2 would need
3153   // to turn into a displacement and move operand 1 to the operand 2 position.
3154   III.ImmOpNo = 2;
3155   III.OpNoForForwarding = 2;
3156   III.ImmWidth = 16;
3157   III.ImmMustBeMultipleOf = 1;
3158   III.TruncateImmTo = 0;
3159   III.IsSummingOperands = false;
3160   switch (Opc) {
3161   default: return false;
3162   case PPC::ADD4:
3163   case PPC::ADD8:
3164     III.SignedImm = true;
3165     III.ZeroIsSpecialOrig = 0;
3166     III.ZeroIsSpecialNew = 1;
3167     III.IsCommutative = true;
3168     III.IsSummingOperands = true;
3169     III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
3170     break;
3171   case PPC::ADDC:
3172   case PPC::ADDC8:
3173     III.SignedImm = true;
3174     III.ZeroIsSpecialOrig = 0;
3175     III.ZeroIsSpecialNew = 0;
3176     III.IsCommutative = true;
3177     III.IsSummingOperands = true;
3178     III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
3179     break;
3180   case PPC::ADDC_rec:
3181     III.SignedImm = true;
3182     III.ZeroIsSpecialOrig = 0;
3183     III.ZeroIsSpecialNew = 0;
3184     III.IsCommutative = true;
3185     III.IsSummingOperands = true;
3186     III.ImmOpcode = PPC::ADDIC_rec;
3187     break;
3188   case PPC::SUBFC:
3189   case PPC::SUBFC8:
3190     III.SignedImm = true;
3191     III.ZeroIsSpecialOrig = 0;
3192     III.ZeroIsSpecialNew = 0;
3193     III.IsCommutative = false;
3194     III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
3195     break;
3196   case PPC::CMPW:
3197   case PPC::CMPD:
3198     III.SignedImm = true;
3199     III.ZeroIsSpecialOrig = 0;
3200     III.ZeroIsSpecialNew = 0;
3201     III.IsCommutative = false;
3202     III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
3203     break;
3204   case PPC::CMPLW:
3205   case PPC::CMPLD:
3206     III.SignedImm = false;
3207     III.ZeroIsSpecialOrig = 0;
3208     III.ZeroIsSpecialNew = 0;
3209     III.IsCommutative = false;
3210     III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
3211     break;
3212   case PPC::AND_rec:
3213   case PPC::AND8_rec:
3214   case PPC::OR:
3215   case PPC::OR8:
3216   case PPC::XOR:
3217   case PPC::XOR8:
3218     III.SignedImm = false;
3219     III.ZeroIsSpecialOrig = 0;
3220     III.ZeroIsSpecialNew = 0;
3221     III.IsCommutative = true;
3222     switch(Opc) {
3223     default: llvm_unreachable("Unknown opcode");
3224     case PPC::AND_rec:
3225       III.ImmOpcode = PPC::ANDI_rec;
3226       break;
3227     case PPC::AND8_rec:
3228       III.ImmOpcode = PPC::ANDI8_rec;
3229       break;
3230     case PPC::OR: III.ImmOpcode = PPC::ORI; break;
3231     case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
3232     case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
3233     case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
3234     }
3235     break;
3236   case PPC::RLWNM:
3237   case PPC::RLWNM8:
3238   case PPC::RLWNM_rec:
3239   case PPC::RLWNM8_rec:
3240   case PPC::SLW:
3241   case PPC::SLW8:
3242   case PPC::SLW_rec:
3243   case PPC::SLW8_rec:
3244   case PPC::SRW:
3245   case PPC::SRW8:
3246   case PPC::SRW_rec:
3247   case PPC::SRW8_rec:
3248   case PPC::SRAW:
3249   case PPC::SRAW_rec:
3250     III.SignedImm = false;
3251     III.ZeroIsSpecialOrig = 0;
3252     III.ZeroIsSpecialNew = 0;
3253     III.IsCommutative = false;
3254     // This isn't actually true, but the instructions ignore any of the
3255     // upper bits, so any immediate loaded with an LI is acceptable.
3256     // This does not apply to shift right algebraic because a value
3257     // out of range will produce a -1/0.
3258     III.ImmWidth = 16;
3259     if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec ||
3260         Opc == PPC::RLWNM8_rec)
3261       III.TruncateImmTo = 5;
3262     else
3263       III.TruncateImmTo = 6;
3264     switch(Opc) {
3265     default: llvm_unreachable("Unknown opcode");
3266     case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
3267     case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
3268     case PPC::RLWNM_rec:
3269       III.ImmOpcode = PPC::RLWINM_rec;
3270       break;
3271     case PPC::RLWNM8_rec:
3272       III.ImmOpcode = PPC::RLWINM8_rec;
3273       break;
3274     case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
3275     case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
3276     case PPC::SLW_rec:
3277       III.ImmOpcode = PPC::RLWINM_rec;
3278       break;
3279     case PPC::SLW8_rec:
3280       III.ImmOpcode = PPC::RLWINM8_rec;
3281       break;
3282     case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
3283     case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
3284     case PPC::SRW_rec:
3285       III.ImmOpcode = PPC::RLWINM_rec;
3286       break;
3287     case PPC::SRW8_rec:
3288       III.ImmOpcode = PPC::RLWINM8_rec;
3289       break;
3290     case PPC::SRAW:
3291       III.ImmWidth = 5;
3292       III.TruncateImmTo = 0;
3293       III.ImmOpcode = PPC::SRAWI;
3294       break;
3295     case PPC::SRAW_rec:
3296       III.ImmWidth = 5;
3297       III.TruncateImmTo = 0;
3298       III.ImmOpcode = PPC::SRAWI_rec;
3299       break;
3300     }
3301     break;
3302   case PPC::RLDCL:
3303   case PPC::RLDCL_rec:
3304   case PPC::RLDCR:
3305   case PPC::RLDCR_rec:
3306   case PPC::SLD:
3307   case PPC::SLD_rec:
3308   case PPC::SRD:
3309   case PPC::SRD_rec:
3310   case PPC::SRAD:
3311   case PPC::SRAD_rec:
3312     III.SignedImm = false;
3313     III.ZeroIsSpecialOrig = 0;
3314     III.ZeroIsSpecialNew = 0;
3315     III.IsCommutative = false;
3316     // This isn't actually true, but the instructions ignore any of the
3317     // upper bits, so any immediate loaded with an LI is acceptable.
3318     // This does not apply to shift right algebraic because a value
3319     // out of range will produce a -1/0.
3320     III.ImmWidth = 16;
3321     if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR ||
3322         Opc == PPC::RLDCR_rec)
3323       III.TruncateImmTo = 6;
3324     else
3325       III.TruncateImmTo = 7;
3326     switch(Opc) {
3327     default: llvm_unreachable("Unknown opcode");
3328     case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
3329     case PPC::RLDCL_rec:
3330       III.ImmOpcode = PPC::RLDICL_rec;
3331       break;
3332     case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
3333     case PPC::RLDCR_rec:
3334       III.ImmOpcode = PPC::RLDICR_rec;
3335       break;
3336     case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
3337     case PPC::SLD_rec:
3338       III.ImmOpcode = PPC::RLDICR_rec;
3339       break;
3340     case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
3341     case PPC::SRD_rec:
3342       III.ImmOpcode = PPC::RLDICL_rec;
3343       break;
3344     case PPC::SRAD:
3345       III.ImmWidth = 6;
3346       III.TruncateImmTo = 0;
3347       III.ImmOpcode = PPC::SRADI;
3348        break;
3349     case PPC::SRAD_rec:
3350       III.ImmWidth = 6;
3351       III.TruncateImmTo = 0;
3352       III.ImmOpcode = PPC::SRADI_rec;
3353       break;
3354     }
3355     break;
3356   // Loads and stores:
3357   case PPC::LBZX:
3358   case PPC::LBZX8:
3359   case PPC::LHZX:
3360   case PPC::LHZX8:
3361   case PPC::LHAX:
3362   case PPC::LHAX8:
3363   case PPC::LWZX:
3364   case PPC::LWZX8:
3365   case PPC::LWAX:
3366   case PPC::LDX:
3367   case PPC::LFSX:
3368   case PPC::LFDX:
3369   case PPC::STBX:
3370   case PPC::STBX8:
3371   case PPC::STHX:
3372   case PPC::STHX8:
3373   case PPC::STWX:
3374   case PPC::STWX8:
3375   case PPC::STDX:
3376   case PPC::STFSX:
3377   case PPC::STFDX:
3378     III.SignedImm = true;
3379     III.ZeroIsSpecialOrig = 1;
3380     III.ZeroIsSpecialNew = 2;
3381     III.IsCommutative = true;
3382     III.IsSummingOperands = true;
3383     III.ImmOpNo = 1;
3384     III.OpNoForForwarding = 2;
3385     switch(Opc) {
3386     default: llvm_unreachable("Unknown opcode");
3387     case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
3388     case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
3389     case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
3390     case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
3391     case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
3392     case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
3393     case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
3394     case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
3395     case PPC::LWAX:
3396       III.ImmOpcode = PPC::LWA;
3397       III.ImmMustBeMultipleOf = 4;
3398       break;
3399     case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
3400     case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
3401     case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
3402     case PPC::STBX: III.ImmOpcode = PPC::STB; break;
3403     case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
3404     case PPC::STHX: III.ImmOpcode = PPC::STH; break;
3405     case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
3406     case PPC::STWX: III.ImmOpcode = PPC::STW; break;
3407     case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
3408     case PPC::STDX:
3409       III.ImmOpcode = PPC::STD;
3410       III.ImmMustBeMultipleOf = 4;
3411       break;
3412     case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
3413     case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
3414     }
3415     break;
3416   case PPC::LBZUX:
3417   case PPC::LBZUX8:
3418   case PPC::LHZUX:
3419   case PPC::LHZUX8:
3420   case PPC::LHAUX:
3421   case PPC::LHAUX8:
3422   case PPC::LWZUX:
3423   case PPC::LWZUX8:
3424   case PPC::LDUX:
3425   case PPC::LFSUX:
3426   case PPC::LFDUX:
3427   case PPC::STBUX:
3428   case PPC::STBUX8:
3429   case PPC::STHUX:
3430   case PPC::STHUX8:
3431   case PPC::STWUX:
3432   case PPC::STWUX8:
3433   case PPC::STDUX:
3434   case PPC::STFSUX:
3435   case PPC::STFDUX:
3436     III.SignedImm = true;
3437     III.ZeroIsSpecialOrig = 2;
3438     III.ZeroIsSpecialNew = 3;
3439     III.IsCommutative = false;
3440     III.IsSummingOperands = true;
3441     III.ImmOpNo = 2;
3442     III.OpNoForForwarding = 3;
3443     switch(Opc) {
3444     default: llvm_unreachable("Unknown opcode");
3445     case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
3446     case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
3447     case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
3448     case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
3449     case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
3450     case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
3451     case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
3452     case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
3453     case PPC::LDUX:
3454       III.ImmOpcode = PPC::LDU;
3455       III.ImmMustBeMultipleOf = 4;
3456       break;
3457     case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
3458     case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
3459     case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
3460     case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
3461     case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
3462     case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
3463     case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
3464     case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
3465     case PPC::STDUX:
3466       III.ImmOpcode = PPC::STDU;
3467       III.ImmMustBeMultipleOf = 4;
3468       break;
3469     case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
3470     case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
3471     }
3472     break;
3473   // Power9 and up only. For some of these, the X-Form version has access to all
3474   // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
3475   // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
3476   // into or stored from is one of the VR registers.
3477   case PPC::LXVX:
3478   case PPC::LXSSPX:
3479   case PPC::LXSDX:
3480   case PPC::STXVX:
3481   case PPC::STXSSPX:
3482   case PPC::STXSDX:
3483   case PPC::XFLOADf32:
3484   case PPC::XFLOADf64:
3485   case PPC::XFSTOREf32:
3486   case PPC::XFSTOREf64:
3487     if (!Subtarget.hasP9Vector())
3488       return false;
3489     III.SignedImm = true;
3490     III.ZeroIsSpecialOrig = 1;
3491     III.ZeroIsSpecialNew = 2;
3492     III.IsCommutative = true;
3493     III.IsSummingOperands = true;
3494     III.ImmOpNo = 1;
3495     III.OpNoForForwarding = 2;
3496     III.ImmMustBeMultipleOf = 4;
3497     switch(Opc) {
3498     default: llvm_unreachable("Unknown opcode");
3499     case PPC::LXVX:
3500       III.ImmOpcode = PPC::LXV;
3501       III.ImmMustBeMultipleOf = 16;
3502       break;
3503     case PPC::LXSSPX:
3504       if (PostRA) {
3505         if (IsVFReg)
3506           III.ImmOpcode = PPC::LXSSP;
3507         else {
3508           III.ImmOpcode = PPC::LFS;
3509           III.ImmMustBeMultipleOf = 1;
3510         }
3511         break;
3512       }
3513       LLVM_FALLTHROUGH;
3514     case PPC::XFLOADf32:
3515       III.ImmOpcode = PPC::DFLOADf32;
3516       break;
3517     case PPC::LXSDX:
3518       if (PostRA) {
3519         if (IsVFReg)
3520           III.ImmOpcode = PPC::LXSD;
3521         else {
3522           III.ImmOpcode = PPC::LFD;
3523           III.ImmMustBeMultipleOf = 1;
3524         }
3525         break;
3526       }
3527       LLVM_FALLTHROUGH;
3528     case PPC::XFLOADf64:
3529       III.ImmOpcode = PPC::DFLOADf64;
3530       break;
3531     case PPC::STXVX:
3532       III.ImmOpcode = PPC::STXV;
3533       III.ImmMustBeMultipleOf = 16;
3534       break;
3535     case PPC::STXSSPX:
3536       if (PostRA) {
3537         if (IsVFReg)
3538           III.ImmOpcode = PPC::STXSSP;
3539         else {
3540           III.ImmOpcode = PPC::STFS;
3541           III.ImmMustBeMultipleOf = 1;
3542         }
3543         break;
3544       }
3545       LLVM_FALLTHROUGH;
3546     case PPC::XFSTOREf32:
3547       III.ImmOpcode = PPC::DFSTOREf32;
3548       break;
3549     case PPC::STXSDX:
3550       if (PostRA) {
3551         if (IsVFReg)
3552           III.ImmOpcode = PPC::STXSD;
3553         else {
3554           III.ImmOpcode = PPC::STFD;
3555           III.ImmMustBeMultipleOf = 1;
3556         }
3557         break;
3558       }
3559       LLVM_FALLTHROUGH;
3560     case PPC::XFSTOREf64:
3561       III.ImmOpcode = PPC::DFSTOREf64;
3562       break;
3563     }
3564     break;
3565   }
3566   return true;
3567 }
3568 
3569 // Utility function for swaping two arbitrary operands of an instruction.
3570 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
3571   assert(Op1 != Op2 && "Cannot swap operand with itself.");
3572 
3573   unsigned MaxOp = std::max(Op1, Op2);
3574   unsigned MinOp = std::min(Op1, Op2);
3575   MachineOperand MOp1 = MI.getOperand(MinOp);
3576   MachineOperand MOp2 = MI.getOperand(MaxOp);
3577   MI.RemoveOperand(std::max(Op1, Op2));
3578   MI.RemoveOperand(std::min(Op1, Op2));
3579 
3580   // If the operands we are swapping are the two at the end (the common case)
3581   // we can just remove both and add them in the opposite order.
3582   if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
3583     MI.addOperand(MOp2);
3584     MI.addOperand(MOp1);
3585   } else {
3586     // Store all operands in a temporary vector, remove them and re-add in the
3587     // right order.
3588     SmallVector<MachineOperand, 2> MOps;
3589     unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
3590     for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
3591       MOps.push_back(MI.getOperand(i));
3592       MI.RemoveOperand(i);
3593     }
3594     // MOp2 needs to be added next.
3595     MI.addOperand(MOp2);
3596     // Now add the rest.
3597     for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
3598       if (i == MaxOp)
3599         MI.addOperand(MOp1);
3600       else {
3601         MI.addOperand(MOps.back());
3602         MOps.pop_back();
3603       }
3604     }
3605   }
3606 }
3607 
3608 // Check if the 'MI' that has the index OpNoForForwarding
3609 // meets the requirement described in the ImmInstrInfo.
3610 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
3611                                                const ImmInstrInfo &III,
3612                                                unsigned OpNoForForwarding
3613                                                ) const {
3614   // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
3615   // would not work pre-RA, we can only do the check post RA.
3616   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3617   if (MRI.isSSA())
3618     return false;
3619 
3620   // Cannot do the transform if MI isn't summing the operands.
3621   if (!III.IsSummingOperands)
3622     return false;
3623 
3624   // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
3625   if (!III.ZeroIsSpecialOrig)
3626     return false;
3627 
3628   // We cannot do the transform if the operand we are trying to replace
3629   // isn't the same as the operand the instruction allows.
3630   if (OpNoForForwarding != III.OpNoForForwarding)
3631     return false;
3632 
3633   // Check if the instruction we are trying to transform really has
3634   // the special zero register as its operand.
3635   if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
3636       MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
3637     return false;
3638 
3639   // This machine instruction is convertible if it is,
3640   // 1. summing the operands.
3641   // 2. one of the operands is special zero register.
3642   // 3. the operand we are trying to replace is allowed by the MI.
3643   return true;
3644 }
3645 
3646 // Check if the DefMI is the add inst and set the ImmMO and RegMO
3647 // accordingly.
3648 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
3649                                                const ImmInstrInfo &III,
3650                                                MachineOperand *&ImmMO,
3651                                                MachineOperand *&RegMO) const {
3652   unsigned Opc = DefMI.getOpcode();
3653   if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
3654     return false;
3655 
3656   assert(DefMI.getNumOperands() >= 3 &&
3657          "Add inst must have at least three operands");
3658   RegMO = &DefMI.getOperand(1);
3659   ImmMO = &DefMI.getOperand(2);
3660 
3661   // Before RA, ADDI first operand could be a frame index.
3662   if (!RegMO->isReg())
3663     return false;
3664 
3665   // This DefMI is elgible for forwarding if it is:
3666   // 1. add inst
3667   // 2. one of the operands is Imm/CPI/Global.
3668   return isAnImmediateOperand(*ImmMO);
3669 }
3670 
3671 bool PPCInstrInfo::isRegElgibleForForwarding(
3672     const MachineOperand &RegMO, const MachineInstr &DefMI,
3673     const MachineInstr &MI, bool KillDefMI,
3674     bool &IsFwdFeederRegKilled) const {
3675   // x = addi y, imm
3676   // ...
3677   // z = lfdx 0, x   -> z = lfd imm(y)
3678   // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
3679   // of "y" between the DEF of "x" and "z".
3680   // The query is only valid post RA.
3681   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3682   if (MRI.isSSA())
3683     return false;
3684 
3685   Register Reg = RegMO.getReg();
3686 
3687   // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
3688   MachineBasicBlock::const_reverse_iterator It = MI;
3689   MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
3690   It++;
3691   for (; It != E; ++It) {
3692     if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3693       return false;
3694     else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3695       IsFwdFeederRegKilled = true;
3696     // Made it to DefMI without encountering a clobber.
3697     if ((&*It) == &DefMI)
3698       break;
3699   }
3700   assert((&*It) == &DefMI && "DefMI is missing");
3701 
3702   // If DefMI also defines the register to be forwarded, we can only forward it
3703   // if DefMI is being erased.
3704   if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
3705     return KillDefMI;
3706 
3707   return true;
3708 }
3709 
3710 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
3711                                              const MachineInstr &DefMI,
3712                                              const ImmInstrInfo &III,
3713                                              int64_t &Imm,
3714                                              int64_t BaseImm) const {
3715   assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
3716   if (DefMI.getOpcode() == PPC::ADDItocL) {
3717     // The operand for ADDItocL is CPI, which isn't imm at compiling time,
3718     // However, we know that, it is 16-bit width, and has the alignment of 4.
3719     // Check if the instruction met the requirement.
3720     if (III.ImmMustBeMultipleOf > 4 ||
3721        III.TruncateImmTo || III.ImmWidth != 16)
3722       return false;
3723 
3724     // Going from XForm to DForm loads means that the displacement needs to be
3725     // not just an immediate but also a multiple of 4, or 16 depending on the
3726     // load. A DForm load cannot be represented if it is a multiple of say 2.
3727     // XForm loads do not have this restriction.
3728     if (ImmMO.isGlobal()) {
3729       const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout();
3730       if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf)
3731         return false;
3732     }
3733 
3734     return true;
3735   }
3736 
3737   if (ImmMO.isImm()) {
3738     // It is Imm, we need to check if the Imm fit the range.
3739     // Sign-extend to 64-bits.
3740     // DefMI may be folded with another imm form instruction, the result Imm is
3741     // the sum of Imm of DefMI and BaseImm which is from imm form instruction.
3742     Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm);
3743 
3744     if (Imm % III.ImmMustBeMultipleOf)
3745       return false;
3746     if (III.TruncateImmTo)
3747       Imm &= ((1 << III.TruncateImmTo) - 1);
3748     if (III.SignedImm) {
3749       APInt ActualValue(64, Imm, true);
3750       if (!ActualValue.isSignedIntN(III.ImmWidth))
3751         return false;
3752     } else {
3753       uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3754       if ((uint64_t)Imm > UnsignedMax)
3755         return false;
3756     }
3757   }
3758   else
3759     return false;
3760 
3761   // This ImmMO is forwarded if it meets the requriement describle
3762   // in ImmInstrInfo
3763   return true;
3764 }
3765 
3766 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
3767                                 unsigned OpNoForForwarding,
3768                                 MachineInstr **KilledDef) const {
3769   if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
3770       !DefMI.getOperand(1).isImm())
3771     return false;
3772 
3773   MachineFunction *MF = MI.getParent()->getParent();
3774   MachineRegisterInfo *MRI = &MF->getRegInfo();
3775   bool PostRA = !MRI->isSSA();
3776 
3777   int64_t Immediate = DefMI.getOperand(1).getImm();
3778   // Sign-extend to 64-bits.
3779   int64_t SExtImm = SignExtend64<16>(Immediate);
3780 
3781   bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill();
3782   Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg();
3783 
3784   bool ReplaceWithLI = false;
3785   bool Is64BitLI = false;
3786   int64_t NewImm = 0;
3787   bool SetCR = false;
3788   unsigned Opc = MI.getOpcode();
3789   switch (Opc) {
3790   default:
3791     return false;
3792 
3793   // FIXME: Any branches conditional on such a comparison can be made
3794   // unconditional. At this time, this happens too infrequently to be worth
3795   // the implementation effort, but if that ever changes, we could convert
3796   // such a pattern here.
3797   case PPC::CMPWI:
3798   case PPC::CMPLWI:
3799   case PPC::CMPDI:
3800   case PPC::CMPLDI: {
3801     // Doing this post-RA would require dataflow analysis to reliably find uses
3802     // of the CR register set by the compare.
3803     // No need to fixup killed/dead flag since this transformation is only valid
3804     // before RA.
3805     if (PostRA)
3806       return false;
3807     // If a compare-immediate is fed by an immediate and is itself an input of
3808     // an ISEL (the most common case) into a COPY of the correct register.
3809     bool Changed = false;
3810     Register DefReg = MI.getOperand(0).getReg();
3811     int64_t Comparand = MI.getOperand(2).getImm();
3812     int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0
3813                                 ? (Comparand | 0xFFFFFFFFFFFF0000)
3814                                 : Comparand;
3815 
3816     for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
3817       unsigned UseOpc = CompareUseMI.getOpcode();
3818       if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
3819         continue;
3820       unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
3821       Register TrueReg = CompareUseMI.getOperand(1).getReg();
3822       Register FalseReg = CompareUseMI.getOperand(2).getReg();
3823       unsigned RegToCopy =
3824           selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg);
3825       if (RegToCopy == PPC::NoRegister)
3826         continue;
3827       // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
3828       if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
3829         CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
3830         replaceInstrOperandWithImm(CompareUseMI, 1, 0);
3831         CompareUseMI.RemoveOperand(3);
3832         CompareUseMI.RemoveOperand(2);
3833         continue;
3834       }
3835       LLVM_DEBUG(
3836           dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
3837       LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump());
3838       LLVM_DEBUG(dbgs() << "Is converted to:\n");
3839       // Convert to copy and remove unneeded operands.
3840       CompareUseMI.setDesc(get(PPC::COPY));
3841       CompareUseMI.RemoveOperand(3);
3842       CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
3843       CmpIselsConverted++;
3844       Changed = true;
3845       LLVM_DEBUG(CompareUseMI.dump());
3846     }
3847     if (Changed)
3848       return true;
3849     // This may end up incremented multiple times since this function is called
3850     // during a fixed-point transformation, but it is only meant to indicate the
3851     // presence of this opportunity.
3852     MissedConvertibleImmediateInstrs++;
3853     return false;
3854   }
3855 
3856   // Immediate forms - may simply be convertable to an LI.
3857   case PPC::ADDI:
3858   case PPC::ADDI8: {
3859     // Does the sum fit in a 16-bit signed field?
3860     int64_t Addend = MI.getOperand(2).getImm();
3861     if (isInt<16>(Addend + SExtImm)) {
3862       ReplaceWithLI = true;
3863       Is64BitLI = Opc == PPC::ADDI8;
3864       NewImm = Addend + SExtImm;
3865       break;
3866     }
3867     return false;
3868   }
3869   case PPC::SUBFIC:
3870   case PPC::SUBFIC8: {
3871     // Only transform this if the CARRY implicit operand is dead.
3872     if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead())
3873       return false;
3874     int64_t Minuend = MI.getOperand(2).getImm();
3875     if (isInt<16>(Minuend - SExtImm)) {
3876       ReplaceWithLI = true;
3877       Is64BitLI = Opc == PPC::SUBFIC8;
3878       NewImm = Minuend - SExtImm;
3879       break;
3880     }
3881     return false;
3882   }
3883   case PPC::RLDICL:
3884   case PPC::RLDICL_rec:
3885   case PPC::RLDICL_32:
3886   case PPC::RLDICL_32_64: {
3887     // Use APInt's rotate function.
3888     int64_t SH = MI.getOperand(2).getImm();
3889     int64_t MB = MI.getOperand(3).getImm();
3890     APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32,
3891                 SExtImm, true);
3892     InVal = InVal.rotl(SH);
3893     uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1;
3894     InVal &= Mask;
3895     // Can't replace negative values with an LI as that will sign-extend
3896     // and not clear the left bits. If we're setting the CR bit, we will use
3897     // ANDI_rec which won't sign extend, so that's safe.
3898     if (isUInt<15>(InVal.getSExtValue()) ||
3899         (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) {
3900       ReplaceWithLI = true;
3901       Is64BitLI = Opc != PPC::RLDICL_32;
3902       NewImm = InVal.getSExtValue();
3903       SetCR = Opc == PPC::RLDICL_rec;
3904       break;
3905     }
3906     return false;
3907   }
3908   case PPC::RLWINM:
3909   case PPC::RLWINM8:
3910   case PPC::RLWINM_rec:
3911   case PPC::RLWINM8_rec: {
3912     int64_t SH = MI.getOperand(2).getImm();
3913     int64_t MB = MI.getOperand(3).getImm();
3914     int64_t ME = MI.getOperand(4).getImm();
3915     APInt InVal(32, SExtImm, true);
3916     InVal = InVal.rotl(SH);
3917     APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB);
3918     InVal &= Mask;
3919     // Can't replace negative values with an LI as that will sign-extend
3920     // and not clear the left bits. If we're setting the CR bit, we will use
3921     // ANDI_rec which won't sign extend, so that's safe.
3922     bool ValueFits = isUInt<15>(InVal.getSExtValue());
3923     ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) &&
3924                   isUInt<16>(InVal.getSExtValue()));
3925     if (ValueFits) {
3926       ReplaceWithLI = true;
3927       Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec;
3928       NewImm = InVal.getSExtValue();
3929       SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec;
3930       break;
3931     }
3932     return false;
3933   }
3934   case PPC::ORI:
3935   case PPC::ORI8:
3936   case PPC::XORI:
3937   case PPC::XORI8: {
3938     int64_t LogicalImm = MI.getOperand(2).getImm();
3939     int64_t Result = 0;
3940     if (Opc == PPC::ORI || Opc == PPC::ORI8)
3941       Result = LogicalImm | SExtImm;
3942     else
3943       Result = LogicalImm ^ SExtImm;
3944     if (isInt<16>(Result)) {
3945       ReplaceWithLI = true;
3946       Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
3947       NewImm = Result;
3948       break;
3949     }
3950     return false;
3951   }
3952   }
3953 
3954   if (ReplaceWithLI) {
3955     // We need to be careful with CR-setting instructions we're replacing.
3956     if (SetCR) {
3957       // We don't know anything about uses when we're out of SSA, so only
3958       // replace if the new immediate will be reproduced.
3959       bool ImmChanged = (SExtImm & NewImm) != NewImm;
3960       if (PostRA && ImmChanged)
3961         return false;
3962 
3963       if (!PostRA) {
3964         // If the defining load-immediate has no other uses, we can just replace
3965         // the immediate with the new immediate.
3966         if (MRI->hasOneUse(DefMI.getOperand(0).getReg()))
3967           DefMI.getOperand(1).setImm(NewImm);
3968 
3969         // If we're not using the GPR result of the CR-setting instruction, we
3970         // just need to and with zero/non-zero depending on the new immediate.
3971         else if (MRI->use_empty(MI.getOperand(0).getReg())) {
3972           if (NewImm) {
3973             assert(Immediate && "Transformation converted zero to non-zero?");
3974             NewImm = Immediate;
3975           }
3976         } else if (ImmChanged)
3977           return false;
3978       }
3979     }
3980 
3981     LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
3982     LLVM_DEBUG(MI.dump());
3983     LLVM_DEBUG(dbgs() << "Fed by:\n");
3984     LLVM_DEBUG(DefMI.dump());
3985     LoadImmediateInfo LII;
3986     LII.Imm = NewImm;
3987     LII.Is64Bit = Is64BitLI;
3988     LII.SetCR = SetCR;
3989     // If we're setting the CR, the original load-immediate must be kept (as an
3990     // operand to ANDI_rec/ANDI8_rec).
3991     if (KilledDef && SetCR)
3992       *KilledDef = nullptr;
3993     replaceInstrWithLI(MI, LII);
3994 
3995     // Fixup killed/dead flag after transformation.
3996     // Pattern:
3997     // ForwardingOperandReg = LI imm1
3998     // y = op2 imm2, ForwardingOperandReg(killed)
3999     if (IsForwardingOperandKilled)
4000       fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg);
4001 
4002     LLVM_DEBUG(dbgs() << "With:\n");
4003     LLVM_DEBUG(MI.dump());
4004     return true;
4005   }
4006   return false;
4007 }
4008 
4009 bool PPCInstrInfo::transformToNewImmFormFedByAdd(
4010     MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const {
4011   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
4012   bool PostRA = !MRI->isSSA();
4013   // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI
4014   // for post-ra.
4015   if (PostRA)
4016     return false;
4017 
4018   // Only handle load/store.
4019   if (!MI.mayLoadOrStore())
4020     return false;
4021 
4022   unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode());
4023 
4024   assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) &&
4025          "MI must have x-form opcode");
4026 
4027   // get Imm Form info.
4028   ImmInstrInfo III;
4029   bool IsVFReg = MI.getOperand(0).isReg()
4030                      ? isVFRegister(MI.getOperand(0).getReg())
4031                      : false;
4032 
4033   if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA))
4034     return false;
4035 
4036   if (!III.IsSummingOperands)
4037     return false;
4038 
4039   if (OpNoForForwarding != III.OpNoForForwarding)
4040     return false;
4041 
4042   MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo);
4043   if (!ImmOperandMI.isImm())
4044     return false;
4045 
4046   // Check DefMI.
4047   MachineOperand *ImmMO = nullptr;
4048   MachineOperand *RegMO = nullptr;
4049   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
4050     return false;
4051   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
4052 
4053   // Check Imm.
4054   // Set ImmBase from imm instruction as base and get new Imm inside
4055   // isImmElgibleForForwarding.
4056   int64_t ImmBase = ImmOperandMI.getImm();
4057   int64_t Imm = 0;
4058   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase))
4059     return false;
4060 
4061   // Get killed info in case fixup needed after transformation.
4062   unsigned ForwardKilledOperandReg = ~0U;
4063   if (MI.getOperand(III.OpNoForForwarding).isKill())
4064     ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg();
4065 
4066   // Do the transform
4067   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4068   LLVM_DEBUG(MI.dump());
4069   LLVM_DEBUG(dbgs() << "Fed by:\n");
4070   LLVM_DEBUG(DefMI.dump());
4071 
4072   MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg());
4073   MI.getOperand(III.OpNoForForwarding).setIsKill(RegMO->isKill());
4074   MI.getOperand(III.ImmOpNo).setImm(Imm);
4075 
4076   // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block.
4077   if (DefMI.getParent() == MI.getParent()) {
4078     // Check if reg is killed between MI and DefMI.
4079     auto IsKilledFor = [&](unsigned Reg) {
4080       MachineBasicBlock::const_reverse_iterator It = MI;
4081       MachineBasicBlock::const_reverse_iterator E = DefMI;
4082       It++;
4083       for (; It != E; ++It) {
4084         if (It->killsRegister(Reg))
4085           return true;
4086       }
4087       return false;
4088     };
4089 
4090     // Update kill flag
4091     if (RegMO->isKill() || IsKilledFor(RegMO->getReg()))
4092       fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
4093     if (ForwardKilledOperandReg != ~0U)
4094       fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
4095   }
4096 
4097   LLVM_DEBUG(dbgs() << "With:\n");
4098   LLVM_DEBUG(MI.dump());
4099   return true;
4100 }
4101 
4102 // If an X-Form instruction is fed by an add-immediate and one of its operands
4103 // is the literal zero, attempt to forward the source of the add-immediate to
4104 // the corresponding D-Form instruction with the displacement coming from
4105 // the immediate being added.
4106 bool PPCInstrInfo::transformToImmFormFedByAdd(
4107     MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
4108     MachineInstr &DefMI, bool KillDefMI) const {
4109   //         RegMO ImmMO
4110   //           |    |
4111   // x = addi reg, imm  <----- DefMI
4112   // y = op    0 ,  x   <----- MI
4113   //                |
4114   //         OpNoForForwarding
4115   // Check if the MI meet the requirement described in the III.
4116   if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
4117     return false;
4118 
4119   // Check if the DefMI meet the requirement
4120   // described in the III. If yes, set the ImmMO and RegMO accordingly.
4121   MachineOperand *ImmMO = nullptr;
4122   MachineOperand *RegMO = nullptr;
4123   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
4124     return false;
4125   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
4126 
4127   // As we get the Imm operand now, we need to check if the ImmMO meet
4128   // the requirement described in the III. If yes set the Imm.
4129   int64_t Imm = 0;
4130   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
4131     return false;
4132 
4133   bool IsFwdFeederRegKilled = false;
4134   // Check if the RegMO can be forwarded to MI.
4135   if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
4136                                  IsFwdFeederRegKilled))
4137     return false;
4138 
4139   // Get killed info in case fixup needed after transformation.
4140   unsigned ForwardKilledOperandReg = ~0U;
4141   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4142   bool PostRA = !MRI.isSSA();
4143   if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
4144     ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
4145 
4146   // We know that, the MI and DefMI both meet the pattern, and
4147   // the Imm also meet the requirement with the new Imm-form.
4148   // It is safe to do the transformation now.
4149   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4150   LLVM_DEBUG(MI.dump());
4151   LLVM_DEBUG(dbgs() << "Fed by:\n");
4152   LLVM_DEBUG(DefMI.dump());
4153 
4154   // Update the base reg first.
4155   MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
4156                                                         false, false,
4157                                                         RegMO->isKill());
4158 
4159   // Then, update the imm.
4160   if (ImmMO->isImm()) {
4161     // If the ImmMO is Imm, change the operand that has ZERO to that Imm
4162     // directly.
4163     replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
4164   }
4165   else {
4166     // Otherwise, it is Constant Pool Index(CPI) or Global,
4167     // which is relocation in fact. We need to replace the special zero
4168     // register with ImmMO.
4169     // Before that, we need to fixup the target flags for imm.
4170     // For some reason, we miss to set the flag for the ImmMO if it is CPI.
4171     if (DefMI.getOpcode() == PPC::ADDItocL)
4172       ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
4173 
4174     // MI didn't have the interface such as MI.setOperand(i) though
4175     // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
4176     // ImmMO, we need to remove ZERO operand and all the operands behind it,
4177     // and, add the ImmMO, then, move back all the operands behind ZERO.
4178     SmallVector<MachineOperand, 2> MOps;
4179     for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
4180       MOps.push_back(MI.getOperand(i));
4181       MI.RemoveOperand(i);
4182     }
4183 
4184     // Remove the last MO in the list, which is ZERO operand in fact.
4185     MOps.pop_back();
4186     // Add the imm operand.
4187     MI.addOperand(*ImmMO);
4188     // Now add the rest back.
4189     for (auto &MO : MOps)
4190       MI.addOperand(MO);
4191   }
4192 
4193   // Update the opcode.
4194   MI.setDesc(get(III.ImmOpcode));
4195 
4196   // Fix up killed/dead flag after transformation.
4197   // Pattern 1:
4198   // x = ADD KilledFwdFeederReg, imm
4199   // n = opn KilledFwdFeederReg(killed), regn
4200   // y = XOP 0, x
4201   // Pattern 2:
4202   // x = ADD reg(killed), imm
4203   // y = XOP 0, x
4204   if (IsFwdFeederRegKilled || RegMO->isKill())
4205     fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
4206   // Pattern 3:
4207   // ForwardKilledOperandReg = ADD reg, imm
4208   // y = XOP 0, ForwardKilledOperandReg(killed)
4209   if (ForwardKilledOperandReg != ~0U)
4210     fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
4211 
4212   LLVM_DEBUG(dbgs() << "With:\n");
4213   LLVM_DEBUG(MI.dump());
4214 
4215   return true;
4216 }
4217 
4218 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
4219                                              const ImmInstrInfo &III,
4220                                              unsigned ConstantOpNo,
4221                                              MachineInstr &DefMI) const {
4222   // DefMI must be LI or LI8.
4223   if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
4224       !DefMI.getOperand(1).isImm())
4225     return false;
4226 
4227   // Get Imm operand and Sign-extend to 64-bits.
4228   int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm());
4229 
4230   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4231   bool PostRA = !MRI.isSSA();
4232   // Exit early if we can't convert this.
4233   if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
4234     return false;
4235   if (Imm % III.ImmMustBeMultipleOf)
4236     return false;
4237   if (III.TruncateImmTo)
4238     Imm &= ((1 << III.TruncateImmTo) - 1);
4239   if (III.SignedImm) {
4240     APInt ActualValue(64, Imm, true);
4241     if (!ActualValue.isSignedIntN(III.ImmWidth))
4242       return false;
4243   } else {
4244     uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
4245     if ((uint64_t)Imm > UnsignedMax)
4246       return false;
4247   }
4248 
4249   // If we're post-RA, the instructions don't agree on whether register zero is
4250   // special, we can transform this as long as the register operand that will
4251   // end up in the location where zero is special isn't R0.
4252   if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
4253     unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
4254       III.ZeroIsSpecialNew + 1;
4255     Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
4256     Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
4257     // If R0 is in the operand where zero is special for the new instruction,
4258     // it is unsafe to transform if the constant operand isn't that operand.
4259     if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
4260         ConstantOpNo != III.ZeroIsSpecialNew)
4261       return false;
4262     if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
4263         ConstantOpNo != PosForOrigZero)
4264       return false;
4265   }
4266 
4267   // Get killed info in case fixup needed after transformation.
4268   unsigned ForwardKilledOperandReg = ~0U;
4269   if (PostRA && MI.getOperand(ConstantOpNo).isKill())
4270     ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
4271 
4272   unsigned Opc = MI.getOpcode();
4273   bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec ||
4274                         Opc == PPC::SRW || Opc == PPC::SRW_rec ||
4275                         Opc == PPC::SLW8 || Opc == PPC::SLW8_rec ||
4276                         Opc == PPC::SRW8 || Opc == PPC::SRW8_rec;
4277   bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec ||
4278                         Opc == PPC::SRD || Opc == PPC::SRD_rec;
4279   bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec ||
4280                Opc == PPC::SLD_rec || Opc == PPC::SRD_rec;
4281   bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD ||
4282                     Opc == PPC::SRD_rec;
4283 
4284   MI.setDesc(get(III.ImmOpcode));
4285   if (ConstantOpNo == III.OpNoForForwarding) {
4286     // Converting shifts to immediate form is a bit tricky since they may do
4287     // one of three things:
4288     // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
4289     // 2. If the shift amount is zero, the result is unchanged (save for maybe
4290     //    setting CR0)
4291     // 3. If the shift amount is in [1, OpSize), it's just a shift
4292     if (SpecialShift32 || SpecialShift64) {
4293       LoadImmediateInfo LII;
4294       LII.Imm = 0;
4295       LII.SetCR = SetCR;
4296       LII.Is64Bit = SpecialShift64;
4297       uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
4298       if (Imm & (SpecialShift32 ? 0x20 : 0x40))
4299         replaceInstrWithLI(MI, LII);
4300       // Shifts by zero don't change the value. If we don't need to set CR0,
4301       // just convert this to a COPY. Can't do this post-RA since we've already
4302       // cleaned up the copies.
4303       else if (!SetCR && ShAmt == 0 && !PostRA) {
4304         MI.RemoveOperand(2);
4305         MI.setDesc(get(PPC::COPY));
4306       } else {
4307         // The 32 bit and 64 bit instructions are quite different.
4308         if (SpecialShift32) {
4309           // Left shifts use (N, 0, 31-N).
4310           // Right shifts use (32-N, N, 31) if 0 < N < 32.
4311           //              use (0, 0, 31)    if N == 0.
4312           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt;
4313           uint64_t MB = RightShift ? ShAmt : 0;
4314           uint64_t ME = RightShift ? 31 : 31 - ShAmt;
4315           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
4316           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
4317             .addImm(ME);
4318         } else {
4319           // Left shifts use (N, 63-N).
4320           // Right shifts use (64-N, N) if 0 < N < 64.
4321           //              use (0, 0)    if N == 0.
4322           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt;
4323           uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
4324           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
4325           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
4326         }
4327       }
4328     } else
4329       replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
4330   }
4331   // Convert commutative instructions (switch the operands and convert the
4332   // desired one to an immediate.
4333   else if (III.IsCommutative) {
4334     replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
4335     swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
4336   } else
4337     llvm_unreachable("Should have exited early!");
4338 
4339   // For instructions for which the constant register replaces a different
4340   // operand than where the immediate goes, we need to swap them.
4341   if (III.OpNoForForwarding != III.ImmOpNo)
4342     swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
4343 
4344   // If the special R0/X0 register index are different for original instruction
4345   // and new instruction, we need to fix up the register class in new
4346   // instruction.
4347   if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
4348     if (III.ZeroIsSpecialNew) {
4349       // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
4350       // need to fix up register class.
4351       Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
4352       if (Register::isVirtualRegister(RegToModify)) {
4353         const TargetRegisterClass *NewRC =
4354           MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
4355           &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
4356         MRI.setRegClass(RegToModify, NewRC);
4357       }
4358     }
4359   }
4360 
4361   // Fix up killed/dead flag after transformation.
4362   // Pattern:
4363   // ForwardKilledOperandReg = LI imm
4364   // y = XOP reg, ForwardKilledOperandReg(killed)
4365   if (ForwardKilledOperandReg != ~0U)
4366     fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
4367   return true;
4368 }
4369 
4370 const TargetRegisterClass *
4371 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
4372   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
4373     return &PPC::VSRCRegClass;
4374   return RC;
4375 }
4376 
4377 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
4378   return PPC::getRecordFormOpcode(Opcode);
4379 }
4380 
4381 // This function returns true if the machine instruction
4382 // always outputs a value by sign-extending a 32 bit value,
4383 // i.e. 0 to 31-th bits are same as 32-th bit.
4384 static bool isSignExtendingOp(const MachineInstr &MI) {
4385   int Opcode = MI.getOpcode();
4386   if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS ||
4387       Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec ||
4388       Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA ||
4389       Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
4390       Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 ||
4391       Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
4392       Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU ||
4393       Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
4394       Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 ||
4395       Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
4396       Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB ||
4397       Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH ||
4398       Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 ||
4399       Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW ||
4400       Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 ||
4401       Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
4402       Opcode == PPC::EXTSB8_32_64)
4403     return true;
4404 
4405   if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
4406     return true;
4407 
4408   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
4409        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) &&
4410       MI.getOperand(3).getImm() > 0 &&
4411       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
4412     return true;
4413 
4414   return false;
4415 }
4416 
4417 // This function returns true if the machine instruction
4418 // always outputs zeros in higher 32 bits.
4419 static bool isZeroExtendingOp(const MachineInstr &MI) {
4420   int Opcode = MI.getOpcode();
4421   // The 16-bit immediate is sign-extended in li/lis.
4422   // If the most significant bit is zero, all higher bits are zero.
4423   if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
4424       Opcode == PPC::LIS || Opcode == PPC::LIS8) {
4425     int64_t Imm = MI.getOperand(1).getImm();
4426     if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
4427       return true;
4428   }
4429 
4430   // We have some variations of rotate-and-mask instructions
4431   // that clear higher 32-bits.
4432   if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
4433        Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec ||
4434        Opcode == PPC::RLDICL_32_64) &&
4435       MI.getOperand(3).getImm() >= 32)
4436     return true;
4437 
4438   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
4439       MI.getOperand(3).getImm() >= 32 &&
4440       MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
4441     return true;
4442 
4443   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
4444        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
4445        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
4446       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
4447     return true;
4448 
4449   // There are other instructions that clear higher 32-bits.
4450   if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
4451       Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
4452       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
4453       Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
4454       Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec ||
4455       Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW ||
4456       Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec ||
4457       Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI ||
4458       Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI ||
4459       Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX ||
4460       Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX ||
4461       Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
4462       Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ ||
4463       Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
4464       Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 ||
4465       Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 ||
4466       Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 ||
4467       Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
4468       Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
4469       Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec ||
4470       Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec ||
4471       Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec ||
4472       Opcode == PPC::MFVSRWZ)
4473     return true;
4474 
4475   return false;
4476 }
4477 
4478 // This function returns true if the input MachineInstr is a TOC save
4479 // instruction.
4480 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
4481   if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
4482     return false;
4483   unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
4484   unsigned StackOffset = MI.getOperand(1).getImm();
4485   Register StackReg = MI.getOperand(2).getReg();
4486   if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
4487     return true;
4488 
4489   return false;
4490 }
4491 
4492 // We limit the max depth to track incoming values of PHIs or binary ops
4493 // (e.g. AND) to avoid excessive cost.
4494 const unsigned MAX_DEPTH = 1;
4495 
4496 bool
4497 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
4498                                    const unsigned Depth) const {
4499   const MachineFunction *MF = MI.getParent()->getParent();
4500   const MachineRegisterInfo *MRI = &MF->getRegInfo();
4501 
4502   // If we know this instruction returns sign- or zero-extended result,
4503   // return true.
4504   if (SignExt ? isSignExtendingOp(MI):
4505                 isZeroExtendingOp(MI))
4506     return true;
4507 
4508   switch (MI.getOpcode()) {
4509   case PPC::COPY: {
4510     Register SrcReg = MI.getOperand(1).getReg();
4511 
4512     // In both ELFv1 and v2 ABI, method parameters and the return value
4513     // are sign- or zero-extended.
4514     if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
4515       const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
4516       // We check the ZExt/SExt flags for a method parameter.
4517       if (MI.getParent()->getBasicBlock() ==
4518           &MF->getFunction().getEntryBlock()) {
4519         Register VReg = MI.getOperand(0).getReg();
4520         if (MF->getRegInfo().isLiveIn(VReg))
4521           return SignExt ? FuncInfo->isLiveInSExt(VReg) :
4522                            FuncInfo->isLiveInZExt(VReg);
4523       }
4524 
4525       // For a method return value, we check the ZExt/SExt flags in attribute.
4526       // We assume the following code sequence for method call.
4527       //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
4528       //   BL8_NOP @func,...
4529       //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
4530       //   %5 = COPY %x3; G8RC:%5
4531       if (SrcReg == PPC::X3) {
4532         const MachineBasicBlock *MBB = MI.getParent();
4533         MachineBasicBlock::const_instr_iterator II =
4534           MachineBasicBlock::const_instr_iterator(&MI);
4535         if (II != MBB->instr_begin() &&
4536             (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
4537           const MachineInstr &CallMI = *(--II);
4538           if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
4539             const Function *CalleeFn =
4540               dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
4541             if (!CalleeFn)
4542               return false;
4543             const IntegerType *IntTy =
4544               dyn_cast<IntegerType>(CalleeFn->getReturnType());
4545             const AttributeSet &Attrs =
4546               CalleeFn->getAttributes().getRetAttributes();
4547             if (IntTy && IntTy->getBitWidth() <= 32)
4548               return Attrs.hasAttribute(SignExt ? Attribute::SExt :
4549                                                   Attribute::ZExt);
4550           }
4551         }
4552       }
4553     }
4554 
4555     // If this is a copy from another register, we recursively check source.
4556     if (!Register::isVirtualRegister(SrcReg))
4557       return false;
4558     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
4559     if (SrcMI != NULL)
4560       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
4561 
4562     return false;
4563   }
4564 
4565   case PPC::ANDI_rec:
4566   case PPC::ANDIS_rec:
4567   case PPC::ORI:
4568   case PPC::ORIS:
4569   case PPC::XORI:
4570   case PPC::XORIS:
4571   case PPC::ANDI8_rec:
4572   case PPC::ANDIS8_rec:
4573   case PPC::ORI8:
4574   case PPC::ORIS8:
4575   case PPC::XORI8:
4576   case PPC::XORIS8: {
4577     // logical operation with 16-bit immediate does not change the upper bits.
4578     // So, we track the operand register as we do for register copy.
4579     Register SrcReg = MI.getOperand(1).getReg();
4580     if (!Register::isVirtualRegister(SrcReg))
4581       return false;
4582     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
4583     if (SrcMI != NULL)
4584       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
4585 
4586     return false;
4587   }
4588 
4589   // If all incoming values are sign-/zero-extended,
4590   // the output of OR, ISEL or PHI is also sign-/zero-extended.
4591   case PPC::OR:
4592   case PPC::OR8:
4593   case PPC::ISEL:
4594   case PPC::PHI: {
4595     if (Depth >= MAX_DEPTH)
4596       return false;
4597 
4598     // The input registers for PHI are operand 1, 3, ...
4599     // The input registers for others are operand 1 and 2.
4600     unsigned E = 3, D = 1;
4601     if (MI.getOpcode() == PPC::PHI) {
4602       E = MI.getNumOperands();
4603       D = 2;
4604     }
4605 
4606     for (unsigned I = 1; I != E; I += D) {
4607       if (MI.getOperand(I).isReg()) {
4608         Register SrcReg = MI.getOperand(I).getReg();
4609         if (!Register::isVirtualRegister(SrcReg))
4610           return false;
4611         const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
4612         if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
4613           return false;
4614       }
4615       else
4616         return false;
4617     }
4618     return true;
4619   }
4620 
4621   // If at least one of the incoming values of an AND is zero extended
4622   // then the output is also zero-extended. If both of the incoming values
4623   // are sign-extended then the output is also sign extended.
4624   case PPC::AND:
4625   case PPC::AND8: {
4626     if (Depth >= MAX_DEPTH)
4627        return false;
4628 
4629     assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
4630 
4631     Register SrcReg1 = MI.getOperand(1).getReg();
4632     Register SrcReg2 = MI.getOperand(2).getReg();
4633 
4634     if (!Register::isVirtualRegister(SrcReg1) ||
4635         !Register::isVirtualRegister(SrcReg2))
4636       return false;
4637 
4638     const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
4639     const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
4640     if (!MISrc1 || !MISrc2)
4641         return false;
4642 
4643     if(SignExt)
4644         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
4645                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
4646     else
4647         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
4648                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
4649   }
4650 
4651   default:
4652     break;
4653   }
4654   return false;
4655 }
4656 
4657 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
4658   return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
4659 }
4660 
4661 namespace {
4662 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
4663   MachineInstr *Loop, *EndLoop, *LoopCount;
4664   MachineFunction *MF;
4665   const TargetInstrInfo *TII;
4666   int64_t TripCount;
4667 
4668 public:
4669   PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
4670                        MachineInstr *LoopCount)
4671       : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
4672         MF(Loop->getParent()->getParent()),
4673         TII(MF->getSubtarget().getInstrInfo()) {
4674     // Inspect the Loop instruction up-front, as it may be deleted when we call
4675     // createTripCountGreaterCondition.
4676     if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
4677       TripCount = LoopCount->getOperand(1).getImm();
4678     else
4679       TripCount = -1;
4680   }
4681 
4682   bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
4683     // Only ignore the terminator.
4684     return MI == EndLoop;
4685   }
4686 
4687   Optional<bool>
4688   createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
4689                                   SmallVectorImpl<MachineOperand> &Cond) override {
4690     if (TripCount == -1) {
4691       // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
4692       // so we don't need to generate any thing here.
4693       Cond.push_back(MachineOperand::CreateImm(0));
4694       Cond.push_back(MachineOperand::CreateReg(
4695           MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
4696           true));
4697       return {};
4698     }
4699 
4700     return TripCount > TC;
4701   }
4702 
4703   void setPreheader(MachineBasicBlock *NewPreheader) override {
4704     // Do nothing. We want the LOOP setup instruction to stay in the *old*
4705     // preheader, so we can use BDZ in the prologs to adapt the loop trip count.
4706   }
4707 
4708   void adjustTripCount(int TripCountAdjust) override {
4709     // If the loop trip count is a compile-time value, then just change the
4710     // value.
4711     if (LoopCount->getOpcode() == PPC::LI8 ||
4712         LoopCount->getOpcode() == PPC::LI) {
4713       int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
4714       LoopCount->getOperand(1).setImm(TripCount);
4715       return;
4716     }
4717 
4718     // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
4719     // so we don't need to generate any thing here.
4720   }
4721 
4722   void disposed() override {
4723     Loop->eraseFromParent();
4724     // Ensure the loop setup instruction is deleted too.
4725     LoopCount->eraseFromParent();
4726   }
4727 };
4728 } // namespace
4729 
4730 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
4731 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
4732   // We really "analyze" only hardware loops right now.
4733   MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
4734   MachineBasicBlock *Preheader = *LoopBB->pred_begin();
4735   if (Preheader == LoopBB)
4736     Preheader = *std::next(LoopBB->pred_begin());
4737   MachineFunction *MF = Preheader->getParent();
4738 
4739   if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
4740     SmallPtrSet<MachineBasicBlock *, 8> Visited;
4741     if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
4742       Register LoopCountReg = LoopInst->getOperand(0).getReg();
4743       MachineRegisterInfo &MRI = MF->getRegInfo();
4744       MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
4745       return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
4746     }
4747   }
4748   return nullptr;
4749 }
4750 
4751 MachineInstr *PPCInstrInfo::findLoopInstr(
4752     MachineBasicBlock &PreHeader,
4753     SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
4754 
4755   unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
4756 
4757   // The loop set-up instruction should be in preheader
4758   for (auto &I : PreHeader.instrs())
4759     if (I.getOpcode() == LOOPi)
4760       return &I;
4761   return nullptr;
4762 }
4763 
4764 // Return true if get the base operand, byte offset of an instruction and the
4765 // memory width. Width is the size of memory that is being loaded/stored.
4766 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
4767     const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
4768     unsigned &Width, const TargetRegisterInfo *TRI) const {
4769   if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3)
4770     return false;
4771 
4772   // Handle only loads/stores with base register followed by immediate offset.
4773   if (!LdSt.getOperand(1).isImm() ||
4774       (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
4775     return false;
4776   if (!LdSt.getOperand(1).isImm() ||
4777       (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
4778     return false;
4779 
4780   if (!LdSt.hasOneMemOperand())
4781     return false;
4782 
4783   Width = (*LdSt.memoperands_begin())->getSize();
4784   Offset = LdSt.getOperand(1).getImm();
4785   BaseReg = &LdSt.getOperand(2);
4786   return true;
4787 }
4788 
4789 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
4790     const MachineInstr &MIa, const MachineInstr &MIb) const {
4791   assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
4792   assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
4793 
4794   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
4795       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
4796     return false;
4797 
4798   // Retrieve the base register, offset from the base register and width. Width
4799   // is the size of memory that is being loaded/stored (e.g. 1, 2, 4).  If
4800   // base registers are identical, and the offset of a lower memory access +
4801   // the width doesn't overlap the offset of a higher memory access,
4802   // then the memory accesses are different.
4803   const TargetRegisterInfo *TRI = &getRegisterInfo();
4804   const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
4805   int64_t OffsetA = 0, OffsetB = 0;
4806   unsigned int WidthA = 0, WidthB = 0;
4807   if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
4808       getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
4809     if (BaseOpA->isIdenticalTo(*BaseOpB)) {
4810       int LowOffset = std::min(OffsetA, OffsetB);
4811       int HighOffset = std::max(OffsetA, OffsetB);
4812       int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
4813       if (LowOffset + LowWidth <= HighOffset)
4814         return true;
4815     }
4816   }
4817   return false;
4818 }
4819