1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/PseudoSourceValue.h" 29 #include "llvm/CodeGen/ScheduleDAG.h" 30 #include "llvm/CodeGen/SlotIndexes.h" 31 #include "llvm/CodeGen/StackMaps.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "ppc-instr-info" 43 44 #define GET_INSTRMAP_INFO 45 #define GET_INSTRINFO_CTOR_DTOR 46 #include "PPCGenInstrInfo.inc" 47 48 STATISTIC(NumStoreSPILLVSRRCAsVec, 49 "Number of spillvsrrc spilled to stack as vec"); 50 STATISTIC(NumStoreSPILLVSRRCAsGpr, 51 "Number of spillvsrrc spilled to stack as gpr"); 52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 53 STATISTIC(CmpIselsConverted, 54 "Number of ISELs that depend on comparison of constants converted"); 55 STATISTIC(MissedConvertibleImmediateInstrs, 56 "Number of compare-immediate instructions fed by constants"); 57 STATISTIC(NumRcRotatesConvertedToRcAnd, 58 "Number of record-form rotates converted to record-form andi"); 59 60 static cl:: 61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 62 cl::desc("Disable analysis for CTR loops")); 63 64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 65 cl::desc("Disable compare instruction optimization"), cl::Hidden); 66 67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 69 cl::Hidden); 70 71 static cl::opt<bool> 72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 73 cl::desc("Use the old (incorrect) instruction latency calculation")); 74 75 // Index into the OpcodesForSpill array. 76 enum SpillOpcodeKey { 77 SOK_Int4Spill, 78 SOK_Int8Spill, 79 SOK_Float8Spill, 80 SOK_Float4Spill, 81 SOK_CRSpill, 82 SOK_CRBitSpill, 83 SOK_VRVectorSpill, 84 SOK_VSXVectorSpill, 85 SOK_VectorFloat8Spill, 86 SOK_VectorFloat4Spill, 87 SOK_VRSaveSpill, 88 SOK_QuadFloat8Spill, 89 SOK_QuadFloat4Spill, 90 SOK_QuadBitSpill, 91 SOK_SpillToVSR, 92 SOK_SPESpill, 93 SOK_LastOpcodeSpill // This must be last on the enum. 94 }; 95 96 // Pin the vtable to this file. 97 void PPCInstrInfo::anchor() {} 98 99 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 100 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 101 /* CatchRetOpcode */ -1, 102 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 103 Subtarget(STI), RI(STI.getTargetMachine()) {} 104 105 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 106 /// this target when scheduling the DAG. 107 ScheduleHazardRecognizer * 108 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 109 const ScheduleDAG *DAG) const { 110 unsigned Directive = 111 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); 112 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 113 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 114 const InstrItineraryData *II = 115 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 116 return new ScoreboardHazardRecognizer(II, DAG); 117 } 118 119 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 120 } 121 122 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 123 /// to use for this target when scheduling the DAG. 124 ScheduleHazardRecognizer * 125 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 126 const ScheduleDAG *DAG) const { 127 unsigned Directive = 128 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective(); 129 130 // FIXME: Leaving this as-is until we have POWER9 scheduling info 131 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 132 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 133 134 // Most subtargets use a PPC970 recognizer. 135 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 136 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 137 assert(DAG->TII && "No InstrInfo?"); 138 139 return new PPCHazardRecognizer970(*DAG); 140 } 141 142 return new ScoreboardHazardRecognizer(II, DAG); 143 } 144 145 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 146 const MachineInstr &MI, 147 unsigned *PredCost) const { 148 if (!ItinData || UseOldLatencyCalc) 149 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 150 151 // The default implementation of getInstrLatency calls getStageLatency, but 152 // getStageLatency does not do the right thing for us. While we have 153 // itinerary, most cores are fully pipelined, and so the itineraries only 154 // express the first part of the pipeline, not every stage. Instead, we need 155 // to use the listed output operand cycle number (using operand 0 here, which 156 // is an output). 157 158 unsigned Latency = 1; 159 unsigned DefClass = MI.getDesc().getSchedClass(); 160 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 161 const MachineOperand &MO = MI.getOperand(i); 162 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 163 continue; 164 165 int Cycle = ItinData->getOperandCycle(DefClass, i); 166 if (Cycle < 0) 167 continue; 168 169 Latency = std::max(Latency, (unsigned) Cycle); 170 } 171 172 return Latency; 173 } 174 175 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 176 const MachineInstr &DefMI, unsigned DefIdx, 177 const MachineInstr &UseMI, 178 unsigned UseIdx) const { 179 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 180 UseMI, UseIdx); 181 182 if (!DefMI.getParent()) 183 return Latency; 184 185 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 186 Register Reg = DefMO.getReg(); 187 188 bool IsRegCR; 189 if (Register::isVirtualRegister(Reg)) { 190 const MachineRegisterInfo *MRI = 191 &DefMI.getParent()->getParent()->getRegInfo(); 192 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 193 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 194 } else { 195 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 196 PPC::CRBITRCRegClass.contains(Reg); 197 } 198 199 if (UseMI.isBranch() && IsRegCR) { 200 if (Latency < 0) 201 Latency = getInstrLatency(ItinData, DefMI); 202 203 // On some cores, there is an additional delay between writing to a condition 204 // register, and using it from a branch. 205 unsigned Directive = Subtarget.getDarwinDirective(); 206 switch (Directive) { 207 default: break; 208 case PPC::DIR_7400: 209 case PPC::DIR_750: 210 case PPC::DIR_970: 211 case PPC::DIR_E5500: 212 case PPC::DIR_PWR4: 213 case PPC::DIR_PWR5: 214 case PPC::DIR_PWR5X: 215 case PPC::DIR_PWR6: 216 case PPC::DIR_PWR6X: 217 case PPC::DIR_PWR7: 218 case PPC::DIR_PWR8: 219 // FIXME: Is this needed for POWER9? 220 Latency += 2; 221 break; 222 } 223 } 224 225 return Latency; 226 } 227 228 // This function does not list all associative and commutative operations, but 229 // only those worth feeding through the machine combiner in an attempt to 230 // reduce the critical path. Mostly, this means floating-point operations, 231 // because they have high latencies (compared to other operations, such and 232 // and/or, which are also associative and commutative, but have low latencies). 233 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 234 switch (Inst.getOpcode()) { 235 // FP Add: 236 case PPC::FADD: 237 case PPC::FADDS: 238 // FP Multiply: 239 case PPC::FMUL: 240 case PPC::FMULS: 241 // Altivec Add: 242 case PPC::VADDFP: 243 // VSX Add: 244 case PPC::XSADDDP: 245 case PPC::XVADDDP: 246 case PPC::XVADDSP: 247 case PPC::XSADDSP: 248 // VSX Multiply: 249 case PPC::XSMULDP: 250 case PPC::XVMULDP: 251 case PPC::XVMULSP: 252 case PPC::XSMULSP: 253 // QPX Add: 254 case PPC::QVFADD: 255 case PPC::QVFADDS: 256 case PPC::QVFADDSs: 257 // QPX Multiply: 258 case PPC::QVFMUL: 259 case PPC::QVFMULS: 260 case PPC::QVFMULSs: 261 return true; 262 default: 263 return false; 264 } 265 } 266 267 bool PPCInstrInfo::getMachineCombinerPatterns( 268 MachineInstr &Root, 269 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 270 // Using the machine combiner in this way is potentially expensive, so 271 // restrict to when aggressive optimizations are desired. 272 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 273 return false; 274 275 // FP reassociation is only legal when we don't need strict IEEE semantics. 276 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) 277 return false; 278 279 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 280 } 281 282 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 283 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 284 unsigned &SrcReg, unsigned &DstReg, 285 unsigned &SubIdx) const { 286 switch (MI.getOpcode()) { 287 default: return false; 288 case PPC::EXTSW: 289 case PPC::EXTSW_32: 290 case PPC::EXTSW_32_64: 291 SrcReg = MI.getOperand(1).getReg(); 292 DstReg = MI.getOperand(0).getReg(); 293 SubIdx = PPC::sub_32; 294 return true; 295 } 296 } 297 298 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 299 int &FrameIndex) const { 300 unsigned Opcode = MI.getOpcode(); 301 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 302 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 303 304 if (End != std::find(OpcodesForSpill, End, Opcode)) { 305 // Check for the operands added by addFrameReference (the immediate is the 306 // offset which defaults to 0). 307 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 308 MI.getOperand(2).isFI()) { 309 FrameIndex = MI.getOperand(2).getIndex(); 310 return MI.getOperand(0).getReg(); 311 } 312 } 313 return 0; 314 } 315 316 // For opcodes with the ReMaterializable flag set, this function is called to 317 // verify the instruction is really rematable. 318 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 319 AliasAnalysis *AA) const { 320 switch (MI.getOpcode()) { 321 default: 322 // This function should only be called for opcodes with the ReMaterializable 323 // flag set. 324 llvm_unreachable("Unknown rematerializable operation!"); 325 break; 326 case PPC::LI: 327 case PPC::LI8: 328 case PPC::LIS: 329 case PPC::LIS8: 330 case PPC::QVGPCI: 331 case PPC::ADDIStocHA8: 332 case PPC::ADDItocL: 333 case PPC::LOAD_STACK_GUARD: 334 case PPC::XXLXORz: 335 case PPC::XXLXORspz: 336 case PPC::XXLXORdpz: 337 case PPC::XXLEQVOnes: 338 case PPC::V_SET0B: 339 case PPC::V_SET0H: 340 case PPC::V_SET0: 341 case PPC::V_SETALLONESB: 342 case PPC::V_SETALLONESH: 343 case PPC::V_SETALLONES: 344 case PPC::CRSET: 345 case PPC::CRUNSET: 346 return true; 347 } 348 return false; 349 } 350 351 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 352 int &FrameIndex) const { 353 unsigned Opcode = MI.getOpcode(); 354 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 355 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 356 357 if (End != std::find(OpcodesForSpill, End, Opcode)) { 358 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 359 MI.getOperand(2).isFI()) { 360 FrameIndex = MI.getOperand(2).getIndex(); 361 return MI.getOperand(0).getReg(); 362 } 363 } 364 return 0; 365 } 366 367 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 368 unsigned OpIdx1, 369 unsigned OpIdx2) const { 370 MachineFunction &MF = *MI.getParent()->getParent(); 371 372 // Normal instructions can be commuted the obvious way. 373 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo) 374 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 375 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 376 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 377 // changing the relative order of the mask operands might change what happens 378 // to the high-bits of the mask (and, thus, the result). 379 380 // Cannot commute if it has a non-zero rotate count. 381 if (MI.getOperand(3).getImm() != 0) 382 return nullptr; 383 384 // If we have a zero rotate count, we have: 385 // M = mask(MB,ME) 386 // Op0 = (Op1 & ~M) | (Op2 & M) 387 // Change this to: 388 // M = mask((ME+1)&31, (MB-1)&31) 389 // Op0 = (Op2 & ~M) | (Op1 & M) 390 391 // Swap op1/op2 392 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 393 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo."); 394 Register Reg0 = MI.getOperand(0).getReg(); 395 Register Reg1 = MI.getOperand(1).getReg(); 396 Register Reg2 = MI.getOperand(2).getReg(); 397 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 398 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 399 bool Reg1IsKill = MI.getOperand(1).isKill(); 400 bool Reg2IsKill = MI.getOperand(2).isKill(); 401 bool ChangeReg0 = false; 402 // If machine instrs are no longer in two-address forms, update 403 // destination register as well. 404 if (Reg0 == Reg1) { 405 // Must be two address instruction! 406 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 407 "Expecting a two-address instruction!"); 408 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 409 Reg2IsKill = false; 410 ChangeReg0 = true; 411 } 412 413 // Masks. 414 unsigned MB = MI.getOperand(4).getImm(); 415 unsigned ME = MI.getOperand(5).getImm(); 416 417 // We can't commute a trivial mask (there is no way to represent an all-zero 418 // mask). 419 if (MB == 0 && ME == 31) 420 return nullptr; 421 422 if (NewMI) { 423 // Create a new instruction. 424 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 425 bool Reg0IsDead = MI.getOperand(0).isDead(); 426 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 427 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 428 .addReg(Reg2, getKillRegState(Reg2IsKill)) 429 .addReg(Reg1, getKillRegState(Reg1IsKill)) 430 .addImm((ME + 1) & 31) 431 .addImm((MB - 1) & 31); 432 } 433 434 if (ChangeReg0) { 435 MI.getOperand(0).setReg(Reg2); 436 MI.getOperand(0).setSubReg(SubReg2); 437 } 438 MI.getOperand(2).setReg(Reg1); 439 MI.getOperand(1).setReg(Reg2); 440 MI.getOperand(2).setSubReg(SubReg1); 441 MI.getOperand(1).setSubReg(SubReg2); 442 MI.getOperand(2).setIsKill(Reg1IsKill); 443 MI.getOperand(1).setIsKill(Reg2IsKill); 444 445 // Swap the mask around. 446 MI.getOperand(4).setImm((ME + 1) & 31); 447 MI.getOperand(5).setImm((MB - 1) & 31); 448 return &MI; 449 } 450 451 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 452 unsigned &SrcOpIdx1, 453 unsigned &SrcOpIdx2) const { 454 // For VSX A-Type FMA instructions, it is the first two operands that can be 455 // commuted, however, because the non-encoded tied input operand is listed 456 // first, the operands to swap are actually the second and third. 457 458 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 459 if (AltOpc == -1) 460 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 461 462 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 463 // and SrcOpIdx2. 464 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 465 } 466 467 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 468 MachineBasicBlock::iterator MI) const { 469 // This function is used for scheduling, and the nop wanted here is the type 470 // that terminates dispatch groups on the POWER cores. 471 unsigned Directive = Subtarget.getDarwinDirective(); 472 unsigned Opcode; 473 switch (Directive) { 474 default: Opcode = PPC::NOP; break; 475 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 476 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 477 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 478 // FIXME: Update when POWER9 scheduling model is ready. 479 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 480 } 481 482 DebugLoc DL; 483 BuildMI(MBB, MI, DL, get(Opcode)); 484 } 485 486 /// Return the noop instruction to use for a noop. 487 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 488 NopInst.setOpcode(PPC::NOP); 489 } 490 491 // Branch analysis. 492 // Note: If the condition register is set to CTR or CTR8 then this is a 493 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 494 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 495 MachineBasicBlock *&TBB, 496 MachineBasicBlock *&FBB, 497 SmallVectorImpl<MachineOperand> &Cond, 498 bool AllowModify) const { 499 bool isPPC64 = Subtarget.isPPC64(); 500 501 // If the block has no terminators, it just falls into the block after it. 502 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 503 if (I == MBB.end()) 504 return false; 505 506 if (!isUnpredicatedTerminator(*I)) 507 return false; 508 509 if (AllowModify) { 510 // If the BB ends with an unconditional branch to the fallthrough BB, 511 // we eliminate the branch instruction. 512 if (I->getOpcode() == PPC::B && 513 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 514 I->eraseFromParent(); 515 516 // We update iterator after deleting the last branch. 517 I = MBB.getLastNonDebugInstr(); 518 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 519 return false; 520 } 521 } 522 523 // Get the last instruction in the block. 524 MachineInstr &LastInst = *I; 525 526 // If there is only one terminator instruction, process it. 527 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 528 if (LastInst.getOpcode() == PPC::B) { 529 if (!LastInst.getOperand(0).isMBB()) 530 return true; 531 TBB = LastInst.getOperand(0).getMBB(); 532 return false; 533 } else if (LastInst.getOpcode() == PPC::BCC) { 534 if (!LastInst.getOperand(2).isMBB()) 535 return true; 536 // Block ends with fall-through condbranch. 537 TBB = LastInst.getOperand(2).getMBB(); 538 Cond.push_back(LastInst.getOperand(0)); 539 Cond.push_back(LastInst.getOperand(1)); 540 return false; 541 } else if (LastInst.getOpcode() == PPC::BC) { 542 if (!LastInst.getOperand(1).isMBB()) 543 return true; 544 // Block ends with fall-through condbranch. 545 TBB = LastInst.getOperand(1).getMBB(); 546 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 547 Cond.push_back(LastInst.getOperand(0)); 548 return false; 549 } else if (LastInst.getOpcode() == PPC::BCn) { 550 if (!LastInst.getOperand(1).isMBB()) 551 return true; 552 // Block ends with fall-through condbranch. 553 TBB = LastInst.getOperand(1).getMBB(); 554 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 555 Cond.push_back(LastInst.getOperand(0)); 556 return false; 557 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 558 LastInst.getOpcode() == PPC::BDNZ) { 559 if (!LastInst.getOperand(0).isMBB()) 560 return true; 561 if (DisableCTRLoopAnal) 562 return true; 563 TBB = LastInst.getOperand(0).getMBB(); 564 Cond.push_back(MachineOperand::CreateImm(1)); 565 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 566 true)); 567 return false; 568 } else if (LastInst.getOpcode() == PPC::BDZ8 || 569 LastInst.getOpcode() == PPC::BDZ) { 570 if (!LastInst.getOperand(0).isMBB()) 571 return true; 572 if (DisableCTRLoopAnal) 573 return true; 574 TBB = LastInst.getOperand(0).getMBB(); 575 Cond.push_back(MachineOperand::CreateImm(0)); 576 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 577 true)); 578 return false; 579 } 580 581 // Otherwise, don't know what this is. 582 return true; 583 } 584 585 // Get the instruction before it if it's a terminator. 586 MachineInstr &SecondLastInst = *I; 587 588 // If there are three terminators, we don't know what sort of block this is. 589 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 590 return true; 591 592 // If the block ends with PPC::B and PPC:BCC, handle it. 593 if (SecondLastInst.getOpcode() == PPC::BCC && 594 LastInst.getOpcode() == PPC::B) { 595 if (!SecondLastInst.getOperand(2).isMBB() || 596 !LastInst.getOperand(0).isMBB()) 597 return true; 598 TBB = SecondLastInst.getOperand(2).getMBB(); 599 Cond.push_back(SecondLastInst.getOperand(0)); 600 Cond.push_back(SecondLastInst.getOperand(1)); 601 FBB = LastInst.getOperand(0).getMBB(); 602 return false; 603 } else if (SecondLastInst.getOpcode() == PPC::BC && 604 LastInst.getOpcode() == PPC::B) { 605 if (!SecondLastInst.getOperand(1).isMBB() || 606 !LastInst.getOperand(0).isMBB()) 607 return true; 608 TBB = SecondLastInst.getOperand(1).getMBB(); 609 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 610 Cond.push_back(SecondLastInst.getOperand(0)); 611 FBB = LastInst.getOperand(0).getMBB(); 612 return false; 613 } else if (SecondLastInst.getOpcode() == PPC::BCn && 614 LastInst.getOpcode() == PPC::B) { 615 if (!SecondLastInst.getOperand(1).isMBB() || 616 !LastInst.getOperand(0).isMBB()) 617 return true; 618 TBB = SecondLastInst.getOperand(1).getMBB(); 619 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 620 Cond.push_back(SecondLastInst.getOperand(0)); 621 FBB = LastInst.getOperand(0).getMBB(); 622 return false; 623 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 624 SecondLastInst.getOpcode() == PPC::BDNZ) && 625 LastInst.getOpcode() == PPC::B) { 626 if (!SecondLastInst.getOperand(0).isMBB() || 627 !LastInst.getOperand(0).isMBB()) 628 return true; 629 if (DisableCTRLoopAnal) 630 return true; 631 TBB = SecondLastInst.getOperand(0).getMBB(); 632 Cond.push_back(MachineOperand::CreateImm(1)); 633 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 634 true)); 635 FBB = LastInst.getOperand(0).getMBB(); 636 return false; 637 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 638 SecondLastInst.getOpcode() == PPC::BDZ) && 639 LastInst.getOpcode() == PPC::B) { 640 if (!SecondLastInst.getOperand(0).isMBB() || 641 !LastInst.getOperand(0).isMBB()) 642 return true; 643 if (DisableCTRLoopAnal) 644 return true; 645 TBB = SecondLastInst.getOperand(0).getMBB(); 646 Cond.push_back(MachineOperand::CreateImm(0)); 647 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 648 true)); 649 FBB = LastInst.getOperand(0).getMBB(); 650 return false; 651 } 652 653 // If the block ends with two PPC:Bs, handle it. The second one is not 654 // executed, so remove it. 655 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 656 if (!SecondLastInst.getOperand(0).isMBB()) 657 return true; 658 TBB = SecondLastInst.getOperand(0).getMBB(); 659 I = LastInst; 660 if (AllowModify) 661 I->eraseFromParent(); 662 return false; 663 } 664 665 // Otherwise, can't handle this. 666 return true; 667 } 668 669 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 670 int *BytesRemoved) const { 671 assert(!BytesRemoved && "code size not handled"); 672 673 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 674 if (I == MBB.end()) 675 return 0; 676 677 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 678 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 679 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 680 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 681 return 0; 682 683 // Remove the branch. 684 I->eraseFromParent(); 685 686 I = MBB.end(); 687 688 if (I == MBB.begin()) return 1; 689 --I; 690 if (I->getOpcode() != PPC::BCC && 691 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 692 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 693 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 694 return 1; 695 696 // Remove the branch. 697 I->eraseFromParent(); 698 return 2; 699 } 700 701 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 702 MachineBasicBlock *TBB, 703 MachineBasicBlock *FBB, 704 ArrayRef<MachineOperand> Cond, 705 const DebugLoc &DL, 706 int *BytesAdded) const { 707 // Shouldn't be a fall through. 708 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 709 assert((Cond.size() == 2 || Cond.size() == 0) && 710 "PPC branch conditions have two components!"); 711 assert(!BytesAdded && "code size not handled"); 712 713 bool isPPC64 = Subtarget.isPPC64(); 714 715 // One-way branch. 716 if (!FBB) { 717 if (Cond.empty()) // Unconditional branch 718 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 719 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 720 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 721 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 722 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 723 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 724 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 725 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 726 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 727 else // Conditional branch 728 BuildMI(&MBB, DL, get(PPC::BCC)) 729 .addImm(Cond[0].getImm()) 730 .add(Cond[1]) 731 .addMBB(TBB); 732 return 1; 733 } 734 735 // Two-way Conditional Branch. 736 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 737 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 738 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 739 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 740 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 741 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 742 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 743 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 744 else 745 BuildMI(&MBB, DL, get(PPC::BCC)) 746 .addImm(Cond[0].getImm()) 747 .add(Cond[1]) 748 .addMBB(TBB); 749 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 750 return 2; 751 } 752 753 // Select analysis. 754 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 755 ArrayRef<MachineOperand> Cond, 756 unsigned TrueReg, unsigned FalseReg, 757 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 758 if (Cond.size() != 2) 759 return false; 760 761 // If this is really a bdnz-like condition, then it cannot be turned into a 762 // select. 763 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 764 return false; 765 766 // Check register classes. 767 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 768 const TargetRegisterClass *RC = 769 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 770 if (!RC) 771 return false; 772 773 // isel is for regular integer GPRs only. 774 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 775 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 776 !PPC::G8RCRegClass.hasSubClassEq(RC) && 777 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 778 return false; 779 780 // FIXME: These numbers are for the A2, how well they work for other cores is 781 // an open question. On the A2, the isel instruction has a 2-cycle latency 782 // but single-cycle throughput. These numbers are used in combination with 783 // the MispredictPenalty setting from the active SchedMachineModel. 784 CondCycles = 1; 785 TrueCycles = 1; 786 FalseCycles = 1; 787 788 return true; 789 } 790 791 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 792 MachineBasicBlock::iterator MI, 793 const DebugLoc &dl, unsigned DestReg, 794 ArrayRef<MachineOperand> Cond, unsigned TrueReg, 795 unsigned FalseReg) const { 796 assert(Cond.size() == 2 && 797 "PPC branch conditions have two components!"); 798 799 // Get the register classes. 800 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 801 const TargetRegisterClass *RC = 802 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 803 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 804 805 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 806 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 807 assert((Is64Bit || 808 PPC::GPRCRegClass.hasSubClassEq(RC) || 809 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 810 "isel is for regular integer GPRs only"); 811 812 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 813 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 814 815 unsigned SubIdx = 0; 816 bool SwapOps = false; 817 switch (SelectPred) { 818 case PPC::PRED_EQ: 819 case PPC::PRED_EQ_MINUS: 820 case PPC::PRED_EQ_PLUS: 821 SubIdx = PPC::sub_eq; SwapOps = false; break; 822 case PPC::PRED_NE: 823 case PPC::PRED_NE_MINUS: 824 case PPC::PRED_NE_PLUS: 825 SubIdx = PPC::sub_eq; SwapOps = true; break; 826 case PPC::PRED_LT: 827 case PPC::PRED_LT_MINUS: 828 case PPC::PRED_LT_PLUS: 829 SubIdx = PPC::sub_lt; SwapOps = false; break; 830 case PPC::PRED_GE: 831 case PPC::PRED_GE_MINUS: 832 case PPC::PRED_GE_PLUS: 833 SubIdx = PPC::sub_lt; SwapOps = true; break; 834 case PPC::PRED_GT: 835 case PPC::PRED_GT_MINUS: 836 case PPC::PRED_GT_PLUS: 837 SubIdx = PPC::sub_gt; SwapOps = false; break; 838 case PPC::PRED_LE: 839 case PPC::PRED_LE_MINUS: 840 case PPC::PRED_LE_PLUS: 841 SubIdx = PPC::sub_gt; SwapOps = true; break; 842 case PPC::PRED_UN: 843 case PPC::PRED_UN_MINUS: 844 case PPC::PRED_UN_PLUS: 845 SubIdx = PPC::sub_un; SwapOps = false; break; 846 case PPC::PRED_NU: 847 case PPC::PRED_NU_MINUS: 848 case PPC::PRED_NU_PLUS: 849 SubIdx = PPC::sub_un; SwapOps = true; break; 850 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 851 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 852 } 853 854 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 855 SecondReg = SwapOps ? TrueReg : FalseReg; 856 857 // The first input register of isel cannot be r0. If it is a member 858 // of a register class that can be r0, then copy it first (the 859 // register allocator should eliminate the copy). 860 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 861 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 862 const TargetRegisterClass *FirstRC = 863 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 864 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 865 unsigned OldFirstReg = FirstReg; 866 FirstReg = MRI.createVirtualRegister(FirstRC); 867 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 868 .addReg(OldFirstReg); 869 } 870 871 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 872 .addReg(FirstReg).addReg(SecondReg) 873 .addReg(Cond[1].getReg(), 0, SubIdx); 874 } 875 876 static unsigned getCRBitValue(unsigned CRBit) { 877 unsigned Ret = 4; 878 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 879 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 880 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 881 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 882 Ret = 3; 883 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 884 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 885 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 886 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 887 Ret = 2; 888 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 889 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 890 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 891 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 892 Ret = 1; 893 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 894 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 895 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 896 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 897 Ret = 0; 898 899 assert(Ret != 4 && "Invalid CR bit register"); 900 return Ret; 901 } 902 903 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 904 MachineBasicBlock::iterator I, 905 const DebugLoc &DL, unsigned DestReg, 906 unsigned SrcReg, bool KillSrc) const { 907 // We can end up with self copies and similar things as a result of VSX copy 908 // legalization. Promote them here. 909 const TargetRegisterInfo *TRI = &getRegisterInfo(); 910 if (PPC::F8RCRegClass.contains(DestReg) && 911 PPC::VSRCRegClass.contains(SrcReg)) { 912 unsigned SuperReg = 913 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 914 915 if (VSXSelfCopyCrash && SrcReg == SuperReg) 916 llvm_unreachable("nop VSX copy"); 917 918 DestReg = SuperReg; 919 } else if (PPC::F8RCRegClass.contains(SrcReg) && 920 PPC::VSRCRegClass.contains(DestReg)) { 921 unsigned SuperReg = 922 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 923 924 if (VSXSelfCopyCrash && DestReg == SuperReg) 925 llvm_unreachable("nop VSX copy"); 926 927 SrcReg = SuperReg; 928 } 929 930 // Different class register copy 931 if (PPC::CRBITRCRegClass.contains(SrcReg) && 932 PPC::GPRCRegClass.contains(DestReg)) { 933 unsigned CRReg = getCRFromCRBit(SrcReg); 934 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 935 getKillRegState(KillSrc); 936 // Rotate the CR bit in the CR fields to be the least significant bit and 937 // then mask with 0x1 (MB = ME = 31). 938 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 939 .addReg(DestReg, RegState::Kill) 940 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 941 .addImm(31) 942 .addImm(31); 943 return; 944 } else if (PPC::CRRCRegClass.contains(SrcReg) && 945 PPC::G8RCRegClass.contains(DestReg)) { 946 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 947 getKillRegState(KillSrc); 948 return; 949 } else if (PPC::CRRCRegClass.contains(SrcReg) && 950 PPC::GPRCRegClass.contains(DestReg)) { 951 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 952 getKillRegState(KillSrc); 953 return; 954 } else if (PPC::G8RCRegClass.contains(SrcReg) && 955 PPC::VSFRCRegClass.contains(DestReg)) { 956 assert(Subtarget.hasDirectMove() && 957 "Subtarget doesn't support directmove, don't know how to copy."); 958 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 959 NumGPRtoVSRSpill++; 960 getKillRegState(KillSrc); 961 return; 962 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 963 PPC::G8RCRegClass.contains(DestReg)) { 964 assert(Subtarget.hasDirectMove() && 965 "Subtarget doesn't support directmove, don't know how to copy."); 966 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 967 getKillRegState(KillSrc); 968 return; 969 } else if (PPC::SPERCRegClass.contains(SrcReg) && 970 PPC::GPRCRegClass.contains(DestReg)) { 971 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 972 getKillRegState(KillSrc); 973 return; 974 } else if (PPC::GPRCRegClass.contains(SrcReg) && 975 PPC::SPERCRegClass.contains(DestReg)) { 976 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 977 getKillRegState(KillSrc); 978 return; 979 } 980 981 unsigned Opc; 982 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 983 Opc = PPC::OR; 984 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 985 Opc = PPC::OR8; 986 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 987 Opc = PPC::FMR; 988 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 989 Opc = PPC::MCRF; 990 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 991 Opc = PPC::VOR; 992 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 993 // There are two different ways this can be done: 994 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 995 // issue in VSU pipeline 0. 996 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 997 // can go to either pipeline. 998 // We'll always use xxlor here, because in practically all cases where 999 // copies are generated, they are close enough to some use that the 1000 // lower-latency form is preferable. 1001 Opc = PPC::XXLOR; 1002 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1003 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1004 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1005 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 1006 Opc = PPC::QVFMR; 1007 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 1008 Opc = PPC::QVFMRs; 1009 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 1010 Opc = PPC::QVFMRb; 1011 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1012 Opc = PPC::CROR; 1013 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1014 Opc = PPC::EVOR; 1015 else 1016 llvm_unreachable("Impossible reg-to-reg copy"); 1017 1018 const MCInstrDesc &MCID = get(Opc); 1019 if (MCID.getNumOperands() == 3) 1020 BuildMI(MBB, I, DL, MCID, DestReg) 1021 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1022 else 1023 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1024 } 1025 1026 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg, 1027 const TargetRegisterClass *RC) 1028 const { 1029 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1030 int OpcodeIndex = 0; 1031 1032 if (RC != nullptr) { 1033 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1034 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1035 OpcodeIndex = SOK_Int4Spill; 1036 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1037 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1038 OpcodeIndex = SOK_Int8Spill; 1039 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1040 OpcodeIndex = SOK_Float8Spill; 1041 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1042 OpcodeIndex = SOK_Float4Spill; 1043 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1044 OpcodeIndex = SOK_SPESpill; 1045 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1046 OpcodeIndex = SOK_CRSpill; 1047 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1048 OpcodeIndex = SOK_CRBitSpill; 1049 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1050 OpcodeIndex = SOK_VRVectorSpill; 1051 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1052 OpcodeIndex = SOK_VSXVectorSpill; 1053 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1054 OpcodeIndex = SOK_VectorFloat8Spill; 1055 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1056 OpcodeIndex = SOK_VectorFloat4Spill; 1057 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1058 OpcodeIndex = SOK_VRSaveSpill; 1059 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1060 OpcodeIndex = SOK_QuadFloat8Spill; 1061 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1062 OpcodeIndex = SOK_QuadFloat4Spill; 1063 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1064 OpcodeIndex = SOK_QuadBitSpill; 1065 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1066 OpcodeIndex = SOK_SpillToVSR; 1067 } else { 1068 llvm_unreachable("Unknown regclass!"); 1069 } 1070 } else { 1071 if (PPC::GPRCRegClass.contains(Reg) || 1072 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1073 OpcodeIndex = SOK_Int4Spill; 1074 } else if (PPC::G8RCRegClass.contains(Reg) || 1075 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1076 OpcodeIndex = SOK_Int8Spill; 1077 } else if (PPC::F8RCRegClass.contains(Reg)) { 1078 OpcodeIndex = SOK_Float8Spill; 1079 } else if (PPC::F4RCRegClass.contains(Reg)) { 1080 OpcodeIndex = SOK_Float4Spill; 1081 } else if (PPC::SPERCRegClass.contains(Reg)) { 1082 OpcodeIndex = SOK_SPESpill; 1083 } else if (PPC::CRRCRegClass.contains(Reg)) { 1084 OpcodeIndex = SOK_CRSpill; 1085 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1086 OpcodeIndex = SOK_CRBitSpill; 1087 } else if (PPC::VRRCRegClass.contains(Reg)) { 1088 OpcodeIndex = SOK_VRVectorSpill; 1089 } else if (PPC::VSRCRegClass.contains(Reg)) { 1090 OpcodeIndex = SOK_VSXVectorSpill; 1091 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1092 OpcodeIndex = SOK_VectorFloat8Spill; 1093 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1094 OpcodeIndex = SOK_VectorFloat4Spill; 1095 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1096 OpcodeIndex = SOK_VRSaveSpill; 1097 } else if (PPC::QFRCRegClass.contains(Reg)) { 1098 OpcodeIndex = SOK_QuadFloat8Spill; 1099 } else if (PPC::QSRCRegClass.contains(Reg)) { 1100 OpcodeIndex = SOK_QuadFloat4Spill; 1101 } else if (PPC::QBRCRegClass.contains(Reg)) { 1102 OpcodeIndex = SOK_QuadBitSpill; 1103 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1104 OpcodeIndex = SOK_SpillToVSR; 1105 } else { 1106 llvm_unreachable("Unknown regclass!"); 1107 } 1108 } 1109 return OpcodesForSpill[OpcodeIndex]; 1110 } 1111 1112 unsigned 1113 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg, 1114 const TargetRegisterClass *RC) const { 1115 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1116 int OpcodeIndex = 0; 1117 1118 if (RC != nullptr) { 1119 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1120 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1121 OpcodeIndex = SOK_Int4Spill; 1122 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1123 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1124 OpcodeIndex = SOK_Int8Spill; 1125 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1126 OpcodeIndex = SOK_Float8Spill; 1127 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1128 OpcodeIndex = SOK_Float4Spill; 1129 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1130 OpcodeIndex = SOK_SPESpill; 1131 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1132 OpcodeIndex = SOK_CRSpill; 1133 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1134 OpcodeIndex = SOK_CRBitSpill; 1135 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1136 OpcodeIndex = SOK_VRVectorSpill; 1137 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1138 OpcodeIndex = SOK_VSXVectorSpill; 1139 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1140 OpcodeIndex = SOK_VectorFloat8Spill; 1141 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1142 OpcodeIndex = SOK_VectorFloat4Spill; 1143 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1144 OpcodeIndex = SOK_VRSaveSpill; 1145 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1146 OpcodeIndex = SOK_QuadFloat8Spill; 1147 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1148 OpcodeIndex = SOK_QuadFloat4Spill; 1149 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1150 OpcodeIndex = SOK_QuadBitSpill; 1151 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1152 OpcodeIndex = SOK_SpillToVSR; 1153 } else { 1154 llvm_unreachable("Unknown regclass!"); 1155 } 1156 } else { 1157 if (PPC::GPRCRegClass.contains(Reg) || 1158 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1159 OpcodeIndex = SOK_Int4Spill; 1160 } else if (PPC::G8RCRegClass.contains(Reg) || 1161 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1162 OpcodeIndex = SOK_Int8Spill; 1163 } else if (PPC::F8RCRegClass.contains(Reg)) { 1164 OpcodeIndex = SOK_Float8Spill; 1165 } else if (PPC::F4RCRegClass.contains(Reg)) { 1166 OpcodeIndex = SOK_Float4Spill; 1167 } else if (PPC::SPERCRegClass.contains(Reg)) { 1168 OpcodeIndex = SOK_SPESpill; 1169 } else if (PPC::CRRCRegClass.contains(Reg)) { 1170 OpcodeIndex = SOK_CRSpill; 1171 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1172 OpcodeIndex = SOK_CRBitSpill; 1173 } else if (PPC::VRRCRegClass.contains(Reg)) { 1174 OpcodeIndex = SOK_VRVectorSpill; 1175 } else if (PPC::VSRCRegClass.contains(Reg)) { 1176 OpcodeIndex = SOK_VSXVectorSpill; 1177 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1178 OpcodeIndex = SOK_VectorFloat8Spill; 1179 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1180 OpcodeIndex = SOK_VectorFloat4Spill; 1181 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1182 OpcodeIndex = SOK_VRSaveSpill; 1183 } else if (PPC::QFRCRegClass.contains(Reg)) { 1184 OpcodeIndex = SOK_QuadFloat8Spill; 1185 } else if (PPC::QSRCRegClass.contains(Reg)) { 1186 OpcodeIndex = SOK_QuadFloat4Spill; 1187 } else if (PPC::QBRCRegClass.contains(Reg)) { 1188 OpcodeIndex = SOK_QuadBitSpill; 1189 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1190 OpcodeIndex = SOK_SpillToVSR; 1191 } else { 1192 llvm_unreachable("Unknown regclass!"); 1193 } 1194 } 1195 return OpcodesForSpill[OpcodeIndex]; 1196 } 1197 1198 void PPCInstrInfo::StoreRegToStackSlot( 1199 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1200 const TargetRegisterClass *RC, 1201 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1202 unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC); 1203 DebugLoc DL; 1204 1205 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1206 FuncInfo->setHasSpills(); 1207 1208 NewMIs.push_back(addFrameReference( 1209 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1210 FrameIdx)); 1211 1212 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1213 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1214 FuncInfo->setSpillsCR(); 1215 1216 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1217 FuncInfo->setSpillsVRSAVE(); 1218 1219 if (isXFormMemOp(Opcode)) 1220 FuncInfo->setHasNonRISpills(); 1221 } 1222 1223 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1224 MachineBasicBlock::iterator MI, 1225 unsigned SrcReg, bool isKill, 1226 int FrameIdx, 1227 const TargetRegisterClass *RC, 1228 const TargetRegisterInfo *TRI) const { 1229 MachineFunction &MF = *MBB.getParent(); 1230 SmallVector<MachineInstr *, 4> NewMIs; 1231 1232 // We need to avoid a situation in which the value from a VRRC register is 1233 // spilled using an Altivec instruction and reloaded into a VSRC register 1234 // using a VSX instruction. The issue with this is that the VSX 1235 // load/store instructions swap the doublewords in the vector and the Altivec 1236 // ones don't. The register classes on the spill/reload may be different if 1237 // the register is defined using an Altivec instruction and is then used by a 1238 // VSX instruction. 1239 RC = updatedRC(RC); 1240 1241 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1242 1243 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1244 MBB.insert(MI, NewMIs[i]); 1245 1246 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1247 MachineMemOperand *MMO = MF.getMachineMemOperand( 1248 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1249 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1250 MFI.getObjectAlignment(FrameIdx)); 1251 NewMIs.back()->addMemOperand(MF, MMO); 1252 } 1253 1254 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1255 unsigned DestReg, int FrameIdx, 1256 const TargetRegisterClass *RC, 1257 SmallVectorImpl<MachineInstr *> &NewMIs) 1258 const { 1259 unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC); 1260 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1261 FrameIdx)); 1262 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1263 1264 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1265 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1266 FuncInfo->setSpillsCR(); 1267 1268 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1269 FuncInfo->setSpillsVRSAVE(); 1270 1271 if (isXFormMemOp(Opcode)) 1272 FuncInfo->setHasNonRISpills(); 1273 } 1274 1275 void 1276 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1277 MachineBasicBlock::iterator MI, 1278 unsigned DestReg, int FrameIdx, 1279 const TargetRegisterClass *RC, 1280 const TargetRegisterInfo *TRI) const { 1281 MachineFunction &MF = *MBB.getParent(); 1282 SmallVector<MachineInstr*, 4> NewMIs; 1283 DebugLoc DL; 1284 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1285 1286 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1287 FuncInfo->setHasSpills(); 1288 1289 // We need to avoid a situation in which the value from a VRRC register is 1290 // spilled using an Altivec instruction and reloaded into a VSRC register 1291 // using a VSX instruction. The issue with this is that the VSX 1292 // load/store instructions swap the doublewords in the vector and the Altivec 1293 // ones don't. The register classes on the spill/reload may be different if 1294 // the register is defined using an Altivec instruction and is then used by a 1295 // VSX instruction. 1296 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 1297 RC = &PPC::VSRCRegClass; 1298 1299 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1300 1301 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1302 MBB.insert(MI, NewMIs[i]); 1303 1304 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1305 MachineMemOperand *MMO = MF.getMachineMemOperand( 1306 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1307 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1308 MFI.getObjectAlignment(FrameIdx)); 1309 NewMIs.back()->addMemOperand(MF, MMO); 1310 } 1311 1312 bool PPCInstrInfo:: 1313 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1314 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1315 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1316 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1317 else 1318 // Leave the CR# the same, but invert the condition. 1319 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1320 return false; 1321 } 1322 1323 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1324 unsigned Reg, MachineRegisterInfo *MRI) const { 1325 // For some instructions, it is legal to fold ZERO into the RA register field. 1326 // A zero immediate should always be loaded with a single li. 1327 unsigned DefOpc = DefMI.getOpcode(); 1328 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1329 return false; 1330 if (!DefMI.getOperand(1).isImm()) 1331 return false; 1332 if (DefMI.getOperand(1).getImm() != 0) 1333 return false; 1334 1335 // Note that we cannot here invert the arguments of an isel in order to fold 1336 // a ZERO into what is presented as the second argument. All we have here 1337 // is the condition bit, and that might come from a CR-logical bit operation. 1338 1339 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1340 1341 // Only fold into real machine instructions. 1342 if (UseMCID.isPseudo()) 1343 return false; 1344 1345 unsigned UseIdx; 1346 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1347 if (UseMI.getOperand(UseIdx).isReg() && 1348 UseMI.getOperand(UseIdx).getReg() == Reg) 1349 break; 1350 1351 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1352 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1353 1354 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1355 1356 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1357 // register (which might also be specified as a pointer class kind). 1358 if (UseInfo->isLookupPtrRegClass()) { 1359 if (UseInfo->RegClass /* Kind */ != 1) 1360 return false; 1361 } else { 1362 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1363 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1364 return false; 1365 } 1366 1367 // Make sure this is not tied to an output register (or otherwise 1368 // constrained). This is true for ST?UX registers, for example, which 1369 // are tied to their output registers. 1370 if (UseInfo->Constraints != 0) 1371 return false; 1372 1373 unsigned ZeroReg; 1374 if (UseInfo->isLookupPtrRegClass()) { 1375 bool isPPC64 = Subtarget.isPPC64(); 1376 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1377 } else { 1378 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1379 PPC::ZERO8 : PPC::ZERO; 1380 } 1381 1382 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1383 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1384 1385 if (DeleteDef) 1386 DefMI.eraseFromParent(); 1387 1388 return true; 1389 } 1390 1391 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1392 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1393 I != IE; ++I) 1394 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1395 return true; 1396 return false; 1397 } 1398 1399 // We should make sure that, if we're going to predicate both sides of a 1400 // condition (a diamond), that both sides don't define the counter register. We 1401 // can predicate counter-decrement-based branches, but while that predicates 1402 // the branching, it does not predicate the counter decrement. If we tried to 1403 // merge the triangle into one predicated block, we'd decrement the counter 1404 // twice. 1405 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1406 unsigned NumT, unsigned ExtraT, 1407 MachineBasicBlock &FMBB, 1408 unsigned NumF, unsigned ExtraF, 1409 BranchProbability Probability) const { 1410 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1411 } 1412 1413 1414 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1415 // The predicated branches are identified by their type, not really by the 1416 // explicit presence of a predicate. Furthermore, some of them can be 1417 // predicated more than once. Because if conversion won't try to predicate 1418 // any instruction which already claims to be predicated (by returning true 1419 // here), always return false. In doing so, we let isPredicable() be the 1420 // final word on whether not the instruction can be (further) predicated. 1421 1422 return false; 1423 } 1424 1425 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 1426 if (!MI.isTerminator()) 1427 return false; 1428 1429 // Conditional branch is a special case. 1430 if (MI.isBranch() && !MI.isBarrier()) 1431 return true; 1432 1433 return !isPredicated(MI); 1434 } 1435 1436 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1437 ArrayRef<MachineOperand> Pred) const { 1438 unsigned OpC = MI.getOpcode(); 1439 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1440 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1441 bool isPPC64 = Subtarget.isPPC64(); 1442 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1443 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1444 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1445 MI.setDesc(get(PPC::BCLR)); 1446 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1447 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1448 MI.setDesc(get(PPC::BCLRn)); 1449 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1450 } else { 1451 MI.setDesc(get(PPC::BCCLR)); 1452 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1453 .addImm(Pred[0].getImm()) 1454 .add(Pred[1]); 1455 } 1456 1457 return true; 1458 } else if (OpC == PPC::B) { 1459 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1460 bool isPPC64 = Subtarget.isPPC64(); 1461 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1462 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1463 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1464 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1465 MI.RemoveOperand(0); 1466 1467 MI.setDesc(get(PPC::BC)); 1468 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1469 .add(Pred[1]) 1470 .addMBB(MBB); 1471 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1472 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1473 MI.RemoveOperand(0); 1474 1475 MI.setDesc(get(PPC::BCn)); 1476 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1477 .add(Pred[1]) 1478 .addMBB(MBB); 1479 } else { 1480 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1481 MI.RemoveOperand(0); 1482 1483 MI.setDesc(get(PPC::BCC)); 1484 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1485 .addImm(Pred[0].getImm()) 1486 .add(Pred[1]) 1487 .addMBB(MBB); 1488 } 1489 1490 return true; 1491 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 1492 OpC == PPC::BCTRL8) { 1493 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1494 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1495 1496 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1497 bool isPPC64 = Subtarget.isPPC64(); 1498 1499 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1500 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1501 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1502 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1503 return true; 1504 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1505 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1506 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1507 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1508 return true; 1509 } 1510 1511 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1512 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1513 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1514 .addImm(Pred[0].getImm()) 1515 .add(Pred[1]); 1516 return true; 1517 } 1518 1519 return false; 1520 } 1521 1522 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1523 ArrayRef<MachineOperand> Pred2) const { 1524 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1525 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1526 1527 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1528 return false; 1529 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1530 return false; 1531 1532 // P1 can only subsume P2 if they test the same condition register. 1533 if (Pred1[1].getReg() != Pred2[1].getReg()) 1534 return false; 1535 1536 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1537 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1538 1539 if (P1 == P2) 1540 return true; 1541 1542 // Does P1 subsume P2, e.g. GE subsumes GT. 1543 if (P1 == PPC::PRED_LE && 1544 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1545 return true; 1546 if (P1 == PPC::PRED_GE && 1547 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1548 return true; 1549 1550 return false; 1551 } 1552 1553 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1554 std::vector<MachineOperand> &Pred) const { 1555 // Note: At the present time, the contents of Pred from this function is 1556 // unused by IfConversion. This implementation follows ARM by pushing the 1557 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1558 // predicate, instructions defining CTR or CTR8 are also included as 1559 // predicate-defining instructions. 1560 1561 const TargetRegisterClass *RCs[] = 1562 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1563 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1564 1565 bool Found = false; 1566 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1567 const MachineOperand &MO = MI.getOperand(i); 1568 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1569 const TargetRegisterClass *RC = RCs[c]; 1570 if (MO.isReg()) { 1571 if (MO.isDef() && RC->contains(MO.getReg())) { 1572 Pred.push_back(MO); 1573 Found = true; 1574 } 1575 } else if (MO.isRegMask()) { 1576 for (TargetRegisterClass::iterator I = RC->begin(), 1577 IE = RC->end(); I != IE; ++I) 1578 if (MO.clobbersPhysReg(*I)) { 1579 Pred.push_back(MO); 1580 Found = true; 1581 } 1582 } 1583 } 1584 } 1585 1586 return Found; 1587 } 1588 1589 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const { 1590 unsigned OpC = MI.getOpcode(); 1591 switch (OpC) { 1592 default: 1593 return false; 1594 case PPC::B: 1595 case PPC::BLR: 1596 case PPC::BLR8: 1597 case PPC::BCTR: 1598 case PPC::BCTR8: 1599 case PPC::BCTRL: 1600 case PPC::BCTRL8: 1601 return true; 1602 } 1603 } 1604 1605 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 1606 unsigned &SrcReg2, int &Mask, 1607 int &Value) const { 1608 unsigned Opc = MI.getOpcode(); 1609 1610 switch (Opc) { 1611 default: return false; 1612 case PPC::CMPWI: 1613 case PPC::CMPLWI: 1614 case PPC::CMPDI: 1615 case PPC::CMPLDI: 1616 SrcReg = MI.getOperand(1).getReg(); 1617 SrcReg2 = 0; 1618 Value = MI.getOperand(2).getImm(); 1619 Mask = 0xFFFF; 1620 return true; 1621 case PPC::CMPW: 1622 case PPC::CMPLW: 1623 case PPC::CMPD: 1624 case PPC::CMPLD: 1625 case PPC::FCMPUS: 1626 case PPC::FCMPUD: 1627 SrcReg = MI.getOperand(1).getReg(); 1628 SrcReg2 = MI.getOperand(2).getReg(); 1629 Value = 0; 1630 Mask = 0; 1631 return true; 1632 } 1633 } 1634 1635 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, 1636 unsigned SrcReg2, int Mask, int Value, 1637 const MachineRegisterInfo *MRI) const { 1638 if (DisableCmpOpt) 1639 return false; 1640 1641 int OpC = CmpInstr.getOpcode(); 1642 Register CRReg = CmpInstr.getOperand(0).getReg(); 1643 1644 // FP record forms set CR1 based on the exception status bits, not a 1645 // comparison with zero. 1646 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1647 return false; 1648 1649 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1650 // The record forms set the condition register based on a signed comparison 1651 // with zero (so says the ISA manual). This is not as straightforward as it 1652 // seems, however, because this is always a 64-bit comparison on PPC64, even 1653 // for instructions that are 32-bit in nature (like slw for example). 1654 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1655 // for equality checks (as those don't depend on the sign). On PPC64, 1656 // we are restricted to equality for unsigned 64-bit comparisons and for 1657 // signed 32-bit comparisons the applicability is more restricted. 1658 bool isPPC64 = Subtarget.isPPC64(); 1659 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1660 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1661 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1662 1663 // Look through copies unless that gets us to a physical register. 1664 unsigned ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 1665 if (Register::isVirtualRegister(ActualSrc)) 1666 SrcReg = ActualSrc; 1667 1668 // Get the unique definition of SrcReg. 1669 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1670 if (!MI) return false; 1671 1672 bool equalityOnly = false; 1673 bool noSub = false; 1674 if (isPPC64) { 1675 if (is32BitSignedCompare) { 1676 // We can perform this optimization only if MI is sign-extending. 1677 if (isSignExtended(*MI)) 1678 noSub = true; 1679 else 1680 return false; 1681 } else if (is32BitUnsignedCompare) { 1682 // We can perform this optimization, equality only, if MI is 1683 // zero-extending. 1684 if (isZeroExtended(*MI)) { 1685 noSub = true; 1686 equalityOnly = true; 1687 } else 1688 return false; 1689 } else 1690 equalityOnly = is64BitUnsignedCompare; 1691 } else 1692 equalityOnly = is32BitUnsignedCompare; 1693 1694 if (equalityOnly) { 1695 // We need to check the uses of the condition register in order to reject 1696 // non-equality comparisons. 1697 for (MachineRegisterInfo::use_instr_iterator 1698 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1699 I != IE; ++I) { 1700 MachineInstr *UseMI = &*I; 1701 if (UseMI->getOpcode() == PPC::BCC) { 1702 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1703 unsigned PredCond = PPC::getPredicateCondition(Pred); 1704 // We ignore hint bits when checking for non-equality comparisons. 1705 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1706 return false; 1707 } else if (UseMI->getOpcode() == PPC::ISEL || 1708 UseMI->getOpcode() == PPC::ISEL8) { 1709 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1710 if (SubIdx != PPC::sub_eq) 1711 return false; 1712 } else 1713 return false; 1714 } 1715 } 1716 1717 MachineBasicBlock::iterator I = CmpInstr; 1718 1719 // Scan forward to find the first use of the compare. 1720 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1721 ++I) { 1722 bool FoundUse = false; 1723 for (MachineRegisterInfo::use_instr_iterator 1724 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 1725 J != JE; ++J) 1726 if (&*J == &*I) { 1727 FoundUse = true; 1728 break; 1729 } 1730 1731 if (FoundUse) 1732 break; 1733 } 1734 1735 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1736 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1737 1738 // There are two possible candidates which can be changed to set CR[01]. 1739 // One is MI, the other is a SUB instruction. 1740 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1741 MachineInstr *Sub = nullptr; 1742 if (SrcReg2 != 0) 1743 // MI is not a candidate for CMPrr. 1744 MI = nullptr; 1745 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1746 // same BB as the comparison. This is to allow the check below to avoid calls 1747 // (and other explicit clobbers); instead we should really check for these 1748 // more explicitly (in at least a few predecessors). 1749 else if (MI->getParent() != CmpInstr.getParent()) 1750 return false; 1751 else if (Value != 0) { 1752 // The record-form instructions set CR bit based on signed comparison 1753 // against 0. We try to convert a compare against 1 or -1 into a compare 1754 // against 0 to exploit record-form instructions. For example, we change 1755 // the condition "greater than -1" into "greater than or equal to 0" 1756 // and "less than 1" into "less than or equal to 0". 1757 1758 // Since we optimize comparison based on a specific branch condition, 1759 // we don't optimize if condition code is used by more than once. 1760 if (equalityOnly || !MRI->hasOneUse(CRReg)) 1761 return false; 1762 1763 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 1764 if (UseMI->getOpcode() != PPC::BCC) 1765 return false; 1766 1767 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1768 unsigned PredCond = PPC::getPredicateCondition(Pred); 1769 unsigned PredHint = PPC::getPredicateHint(Pred); 1770 int16_t Immed = (int16_t)Value; 1771 1772 // When modifying the condition in the predicate, we propagate hint bits 1773 // from the original predicate to the new one. 1774 if (Immed == -1 && PredCond == PPC::PRED_GT) 1775 // We convert "greater than -1" into "greater than or equal to 0", 1776 // since we are assuming signed comparison by !equalityOnly 1777 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 1778 else if (Immed == -1 && PredCond == PPC::PRED_LE) 1779 // We convert "less than or equal to -1" into "less than 0". 1780 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 1781 else if (Immed == 1 && PredCond == PPC::PRED_LT) 1782 // We convert "less than 1" into "less than or equal to 0". 1783 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 1784 else if (Immed == 1 && PredCond == PPC::PRED_GE) 1785 // We convert "greater than or equal to 1" into "greater than 0". 1786 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 1787 else 1788 return false; 1789 1790 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred)); 1791 } 1792 1793 // Search for Sub. 1794 --I; 1795 1796 // Get ready to iterate backward from CmpInstr. 1797 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 1798 1799 for (; I != E && !noSub; --I) { 1800 const MachineInstr &Instr = *I; 1801 unsigned IOpC = Instr.getOpcode(); 1802 1803 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 1804 Instr.readsRegister(PPC::CR0, TRI))) 1805 // This instruction modifies or uses the record condition register after 1806 // the one we want to change. While we could do this transformation, it 1807 // would likely not be profitable. This transformation removes one 1808 // instruction, and so even forcing RA to generate one move probably 1809 // makes it unprofitable. 1810 return false; 1811 1812 // Check whether CmpInstr can be made redundant by the current instruction. 1813 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1814 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1815 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1816 ((Instr.getOperand(1).getReg() == SrcReg && 1817 Instr.getOperand(2).getReg() == SrcReg2) || 1818 (Instr.getOperand(1).getReg() == SrcReg2 && 1819 Instr.getOperand(2).getReg() == SrcReg))) { 1820 Sub = &*I; 1821 break; 1822 } 1823 1824 if (I == B) 1825 // The 'and' is below the comparison instruction. 1826 return false; 1827 } 1828 1829 // Return false if no candidates exist. 1830 if (!MI && !Sub) 1831 return false; 1832 1833 // The single candidate is called MI. 1834 if (!MI) MI = Sub; 1835 1836 int NewOpC = -1; 1837 int MIOpC = MI->getOpcode(); 1838 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 || 1839 MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8) 1840 NewOpC = MIOpC; 1841 else { 1842 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1843 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1844 NewOpC = MIOpC; 1845 } 1846 1847 // FIXME: On the non-embedded POWER architectures, only some of the record 1848 // forms are fast, and we should use only the fast ones. 1849 1850 // The defining instruction has a record form (or is already a record 1851 // form). It is possible, however, that we'll need to reverse the condition 1852 // code of the users. 1853 if (NewOpC == -1) 1854 return false; 1855 1856 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1857 // needs to be updated to be based on SUB. Push the condition code 1858 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1859 // condition code of these operands will be modified. 1860 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 1861 // comparison against 0, which may modify predicate. 1862 bool ShouldSwap = false; 1863 if (Sub && Value == 0) { 1864 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1865 Sub->getOperand(2).getReg() == SrcReg; 1866 1867 // The operands to subf are the opposite of sub, so only in the fixed-point 1868 // case, invert the order. 1869 ShouldSwap = !ShouldSwap; 1870 } 1871 1872 if (ShouldSwap) 1873 for (MachineRegisterInfo::use_instr_iterator 1874 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1875 I != IE; ++I) { 1876 MachineInstr *UseMI = &*I; 1877 if (UseMI->getOpcode() == PPC::BCC) { 1878 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1879 unsigned PredCond = PPC::getPredicateCondition(Pred); 1880 assert((!equalityOnly || 1881 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 1882 "Invalid predicate for equality-only optimization"); 1883 (void)PredCond; // To suppress warning in release build. 1884 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1885 PPC::getSwappedPredicate(Pred))); 1886 } else if (UseMI->getOpcode() == PPC::ISEL || 1887 UseMI->getOpcode() == PPC::ISEL8) { 1888 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1889 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1890 "Invalid CR bit for equality-only optimization"); 1891 1892 if (NewSubReg == PPC::sub_lt) 1893 NewSubReg = PPC::sub_gt; 1894 else if (NewSubReg == PPC::sub_gt) 1895 NewSubReg = PPC::sub_lt; 1896 1897 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1898 NewSubReg)); 1899 } else // We need to abort on a user we don't understand. 1900 return false; 1901 } 1902 assert(!(Value != 0 && ShouldSwap) && 1903 "Non-zero immediate support and ShouldSwap" 1904 "may conflict in updating predicate"); 1905 1906 // Create a new virtual register to hold the value of the CR set by the 1907 // record-form instruction. If the instruction was not previously in 1908 // record form, then set the kill flag on the CR. 1909 CmpInstr.eraseFromParent(); 1910 1911 MachineBasicBlock::iterator MII = MI; 1912 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1913 get(TargetOpcode::COPY), CRReg) 1914 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1915 1916 // Even if CR0 register were dead before, it is alive now since the 1917 // instruction we just built uses it. 1918 MI->clearRegisterDeads(PPC::CR0); 1919 1920 if (MIOpC != NewOpC) { 1921 // We need to be careful here: we're replacing one instruction with 1922 // another, and we need to make sure that we get all of the right 1923 // implicit uses and defs. On the other hand, the caller may be holding 1924 // an iterator to this instruction, and so we can't delete it (this is 1925 // specifically the case if this is the instruction directly after the 1926 // compare). 1927 1928 // Rotates are expensive instructions. If we're emitting a record-form 1929 // rotate that can just be an andi/andis, we should just emit that. 1930 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 1931 Register GPRRes = MI->getOperand(0).getReg(); 1932 int64_t SH = MI->getOperand(2).getImm(); 1933 int64_t MB = MI->getOperand(3).getImm(); 1934 int64_t ME = MI->getOperand(4).getImm(); 1935 // We can only do this if both the start and end of the mask are in the 1936 // same halfword. 1937 bool MBInLoHWord = MB >= 16; 1938 bool MEInLoHWord = ME >= 16; 1939 uint64_t Mask = ~0LLU; 1940 1941 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 1942 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 1943 // The mask value needs to shift right 16 if we're emitting andis. 1944 Mask >>= MBInLoHWord ? 0 : 16; 1945 NewOpC = MIOpC == PPC::RLWINM ? 1946 (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) : 1947 (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8); 1948 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 1949 (ME - MB + 1 == SH) && (MB >= 16)) { 1950 // If we are rotating by the exact number of bits as are in the mask 1951 // and the mask is in the least significant bits of the register, 1952 // that's just an andis. (as long as the GPR result has no uses). 1953 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 1954 Mask >>= 16; 1955 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8; 1956 } 1957 // If we've set the mask, we can transform. 1958 if (Mask != ~0LLU) { 1959 MI->RemoveOperand(4); 1960 MI->RemoveOperand(3); 1961 MI->getOperand(2).setImm(Mask); 1962 NumRcRotatesConvertedToRcAnd++; 1963 } 1964 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 1965 int64_t MB = MI->getOperand(3).getImm(); 1966 if (MB >= 48) { 1967 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 1968 NewOpC = PPC::ANDIo8; 1969 MI->RemoveOperand(3); 1970 MI->getOperand(2).setImm(Mask); 1971 NumRcRotatesConvertedToRcAnd++; 1972 } 1973 } 1974 1975 const MCInstrDesc &NewDesc = get(NewOpC); 1976 MI->setDesc(NewDesc); 1977 1978 if (NewDesc.ImplicitDefs) 1979 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 1980 *ImpDefs; ++ImpDefs) 1981 if (!MI->definesRegister(*ImpDefs)) 1982 MI->addOperand(*MI->getParent()->getParent(), 1983 MachineOperand::CreateReg(*ImpDefs, true, true)); 1984 if (NewDesc.ImplicitUses) 1985 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 1986 *ImpUses; ++ImpUses) 1987 if (!MI->readsRegister(*ImpUses)) 1988 MI->addOperand(*MI->getParent()->getParent(), 1989 MachineOperand::CreateReg(*ImpUses, false, true)); 1990 } 1991 assert(MI->definesRegister(PPC::CR0) && 1992 "Record-form instruction does not define cr0?"); 1993 1994 // Modify the condition code of operands in OperandsToUpdate. 1995 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1996 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1997 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1998 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1999 2000 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 2001 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 2002 2003 return true; 2004 } 2005 2006 /// GetInstSize - Return the number of bytes of code the specified 2007 /// instruction may be. This returns the maximum number of bytes. 2008 /// 2009 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2010 unsigned Opcode = MI.getOpcode(); 2011 2012 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 2013 const MachineFunction *MF = MI.getParent()->getParent(); 2014 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2015 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2016 } else if (Opcode == TargetOpcode::STACKMAP) { 2017 StackMapOpers Opers(&MI); 2018 return Opers.getNumPatchBytes(); 2019 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2020 PatchPointOpers Opers(&MI); 2021 return Opers.getNumPatchBytes(); 2022 } else { 2023 return get(Opcode).getSize(); 2024 } 2025 } 2026 2027 std::pair<unsigned, unsigned> 2028 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2029 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2030 return std::make_pair(TF & Mask, TF & ~Mask); 2031 } 2032 2033 ArrayRef<std::pair<unsigned, const char *>> 2034 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2035 using namespace PPCII; 2036 static const std::pair<unsigned, const char *> TargetFlags[] = { 2037 {MO_LO, "ppc-lo"}, 2038 {MO_HA, "ppc-ha"}, 2039 {MO_TPREL_LO, "ppc-tprel-lo"}, 2040 {MO_TPREL_HA, "ppc-tprel-ha"}, 2041 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2042 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2043 {MO_TOC_LO, "ppc-toc-lo"}, 2044 {MO_TLS, "ppc-tls"}}; 2045 return makeArrayRef(TargetFlags); 2046 } 2047 2048 ArrayRef<std::pair<unsigned, const char *>> 2049 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2050 using namespace PPCII; 2051 static const std::pair<unsigned, const char *> TargetFlags[] = { 2052 {MO_PLT, "ppc-plt"}, 2053 {MO_PIC_FLAG, "ppc-pic"}, 2054 {MO_NLP_FLAG, "ppc-nlp"}, 2055 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}}; 2056 return makeArrayRef(TargetFlags); 2057 } 2058 2059 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2060 // The VSX versions have the advantage of a full 64-register target whereas 2061 // the FP ones have the advantage of lower latency and higher throughput. So 2062 // what we are after is using the faster instructions in low register pressure 2063 // situations and using the larger register file in high register pressure 2064 // situations. 2065 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2066 unsigned UpperOpcode, LowerOpcode; 2067 switch (MI.getOpcode()) { 2068 case PPC::DFLOADf32: 2069 UpperOpcode = PPC::LXSSP; 2070 LowerOpcode = PPC::LFS; 2071 break; 2072 case PPC::DFLOADf64: 2073 UpperOpcode = PPC::LXSD; 2074 LowerOpcode = PPC::LFD; 2075 break; 2076 case PPC::DFSTOREf32: 2077 UpperOpcode = PPC::STXSSP; 2078 LowerOpcode = PPC::STFS; 2079 break; 2080 case PPC::DFSTOREf64: 2081 UpperOpcode = PPC::STXSD; 2082 LowerOpcode = PPC::STFD; 2083 break; 2084 case PPC::XFLOADf32: 2085 UpperOpcode = PPC::LXSSPX; 2086 LowerOpcode = PPC::LFSX; 2087 break; 2088 case PPC::XFLOADf64: 2089 UpperOpcode = PPC::LXSDX; 2090 LowerOpcode = PPC::LFDX; 2091 break; 2092 case PPC::XFSTOREf32: 2093 UpperOpcode = PPC::STXSSPX; 2094 LowerOpcode = PPC::STFSX; 2095 break; 2096 case PPC::XFSTOREf64: 2097 UpperOpcode = PPC::STXSDX; 2098 LowerOpcode = PPC::STFDX; 2099 break; 2100 case PPC::LIWAX: 2101 UpperOpcode = PPC::LXSIWAX; 2102 LowerOpcode = PPC::LFIWAX; 2103 break; 2104 case PPC::LIWZX: 2105 UpperOpcode = PPC::LXSIWZX; 2106 LowerOpcode = PPC::LFIWZX; 2107 break; 2108 case PPC::STIWX: 2109 UpperOpcode = PPC::STXSIWX; 2110 LowerOpcode = PPC::STFIWX; 2111 break; 2112 default: 2113 llvm_unreachable("Unknown Operation!"); 2114 } 2115 2116 Register TargetReg = MI.getOperand(0).getReg(); 2117 unsigned Opcode; 2118 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2119 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2120 Opcode = LowerOpcode; 2121 else 2122 Opcode = UpperOpcode; 2123 MI.setDesc(get(Opcode)); 2124 return true; 2125 } 2126 2127 static bool isAnImmediateOperand(const MachineOperand &MO) { 2128 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2129 } 2130 2131 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2132 auto &MBB = *MI.getParent(); 2133 auto DL = MI.getDebugLoc(); 2134 2135 switch (MI.getOpcode()) { 2136 case TargetOpcode::LOAD_STACK_GUARD: { 2137 assert(Subtarget.isTargetLinux() && 2138 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 2139 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 2140 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 2141 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 2142 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2143 .addImm(Offset) 2144 .addReg(Reg); 2145 return true; 2146 } 2147 case PPC::DFLOADf32: 2148 case PPC::DFLOADf64: 2149 case PPC::DFSTOREf32: 2150 case PPC::DFSTOREf64: { 2151 assert(Subtarget.hasP9Vector() && 2152 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 2153 assert(MI.getOperand(2).isReg() && 2154 isAnImmediateOperand(MI.getOperand(1)) && 2155 "D-form op must have register and immediate operands"); 2156 return expandVSXMemPseudo(MI); 2157 } 2158 case PPC::XFLOADf32: 2159 case PPC::XFSTOREf32: 2160 case PPC::LIWAX: 2161 case PPC::LIWZX: 2162 case PPC::STIWX: { 2163 assert(Subtarget.hasP8Vector() && 2164 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 2165 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2166 "X-form op must have register and register operands"); 2167 return expandVSXMemPseudo(MI); 2168 } 2169 case PPC::XFLOADf64: 2170 case PPC::XFSTOREf64: { 2171 assert(Subtarget.hasVSX() && 2172 "Invalid X-Form Pseudo-ops on target that has no VSX."); 2173 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2174 "X-form op must have register and register operands"); 2175 return expandVSXMemPseudo(MI); 2176 } 2177 case PPC::SPILLTOVSR_LD: { 2178 Register TargetReg = MI.getOperand(0).getReg(); 2179 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2180 MI.setDesc(get(PPC::DFLOADf64)); 2181 return expandPostRAPseudo(MI); 2182 } 2183 else 2184 MI.setDesc(get(PPC::LD)); 2185 return true; 2186 } 2187 case PPC::SPILLTOVSR_ST: { 2188 Register SrcReg = MI.getOperand(0).getReg(); 2189 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2190 NumStoreSPILLVSRRCAsVec++; 2191 MI.setDesc(get(PPC::DFSTOREf64)); 2192 return expandPostRAPseudo(MI); 2193 } else { 2194 NumStoreSPILLVSRRCAsGpr++; 2195 MI.setDesc(get(PPC::STD)); 2196 } 2197 return true; 2198 } 2199 case PPC::SPILLTOVSR_LDX: { 2200 Register TargetReg = MI.getOperand(0).getReg(); 2201 if (PPC::VSFRCRegClass.contains(TargetReg)) 2202 MI.setDesc(get(PPC::LXSDX)); 2203 else 2204 MI.setDesc(get(PPC::LDX)); 2205 return true; 2206 } 2207 case PPC::SPILLTOVSR_STX: { 2208 Register SrcReg = MI.getOperand(0).getReg(); 2209 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2210 NumStoreSPILLVSRRCAsVec++; 2211 MI.setDesc(get(PPC::STXSDX)); 2212 } else { 2213 NumStoreSPILLVSRRCAsGpr++; 2214 MI.setDesc(get(PPC::STDX)); 2215 } 2216 return true; 2217 } 2218 2219 case PPC::CFENCE8: { 2220 auto Val = MI.getOperand(0).getReg(); 2221 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2222 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2223 .addImm(PPC::PRED_NE_MINUS) 2224 .addReg(PPC::CR7) 2225 .addImm(1); 2226 MI.setDesc(get(PPC::ISYNC)); 2227 MI.RemoveOperand(0); 2228 return true; 2229 } 2230 } 2231 return false; 2232 } 2233 2234 // Essentially a compile-time implementation of a compare->isel sequence. 2235 // It takes two constants to compare, along with the true/false registers 2236 // and the comparison type (as a subreg to a CR field) and returns one 2237 // of the true/false registers, depending on the comparison results. 2238 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 2239 unsigned TrueReg, unsigned FalseReg, 2240 unsigned CRSubReg) { 2241 // Signed comparisons. The immediates are assumed to be sign-extended. 2242 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 2243 switch (CRSubReg) { 2244 default: llvm_unreachable("Unknown integer comparison type."); 2245 case PPC::sub_lt: 2246 return Imm1 < Imm2 ? TrueReg : FalseReg; 2247 case PPC::sub_gt: 2248 return Imm1 > Imm2 ? TrueReg : FalseReg; 2249 case PPC::sub_eq: 2250 return Imm1 == Imm2 ? TrueReg : FalseReg; 2251 } 2252 } 2253 // Unsigned comparisons. 2254 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 2255 switch (CRSubReg) { 2256 default: llvm_unreachable("Unknown integer comparison type."); 2257 case PPC::sub_lt: 2258 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 2259 case PPC::sub_gt: 2260 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 2261 case PPC::sub_eq: 2262 return Imm1 == Imm2 ? TrueReg : FalseReg; 2263 } 2264 } 2265 return PPC::NoRegister; 2266 } 2267 2268 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 2269 unsigned OpNo, 2270 int64_t Imm) const { 2271 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 2272 // Replace the REG with the Immediate. 2273 Register InUseReg = MI.getOperand(OpNo).getReg(); 2274 MI.getOperand(OpNo).ChangeToImmediate(Imm); 2275 2276 if (empty(MI.implicit_operands())) 2277 return; 2278 2279 // We need to make sure that the MI didn't have any implicit use 2280 // of this REG any more. 2281 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2282 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 2283 if (UseOpIdx >= 0) { 2284 MachineOperand &MO = MI.getOperand(UseOpIdx); 2285 if (MO.isImplicit()) 2286 // The operands must always be in the following order: 2287 // - explicit reg defs, 2288 // - other explicit operands (reg uses, immediates, etc.), 2289 // - implicit reg defs 2290 // - implicit reg uses 2291 // Therefore, removing the implicit operand won't change the explicit 2292 // operands layout. 2293 MI.RemoveOperand(UseOpIdx); 2294 } 2295 } 2296 2297 // Replace an instruction with one that materializes a constant (and sets 2298 // CR0 if the original instruction was a record-form instruction). 2299 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 2300 const LoadImmediateInfo &LII) const { 2301 // Remove existing operands. 2302 int OperandToKeep = LII.SetCR ? 1 : 0; 2303 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 2304 MI.RemoveOperand(i); 2305 2306 // Replace the instruction. 2307 if (LII.SetCR) { 2308 MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo)); 2309 // Set the immediate. 2310 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2311 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 2312 return; 2313 } 2314 else 2315 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 2316 2317 // Set the immediate. 2318 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2319 .addImm(LII.Imm); 2320 } 2321 2322 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 2323 bool &SeenIntermediateUse) const { 2324 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 2325 "Should be called after register allocation."); 2326 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2327 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 2328 It++; 2329 SeenIntermediateUse = false; 2330 for (; It != E; ++It) { 2331 if (It->modifiesRegister(Reg, TRI)) 2332 return &*It; 2333 if (It->readsRegister(Reg, TRI)) 2334 SeenIntermediateUse = true; 2335 } 2336 return nullptr; 2337 } 2338 2339 MachineInstr *PPCInstrInfo::getForwardingDefMI( 2340 MachineInstr &MI, 2341 unsigned &OpNoForForwarding, 2342 bool &SeenIntermediateUse) const { 2343 OpNoForForwarding = ~0U; 2344 MachineInstr *DefMI = nullptr; 2345 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 2346 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2347 // If we're in SSA, get the defs through the MRI. Otherwise, only look 2348 // within the basic block to see if the register is defined using an LI/LI8. 2349 if (MRI->isSSA()) { 2350 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2351 if (!MI.getOperand(i).isReg()) 2352 continue; 2353 Register Reg = MI.getOperand(i).getReg(); 2354 if (!Register::isVirtualRegister(Reg)) 2355 continue; 2356 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 2357 if (Register::isVirtualRegister(TrueReg)) { 2358 DefMI = MRI->getVRegDef(TrueReg); 2359 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) { 2360 OpNoForForwarding = i; 2361 break; 2362 } 2363 } 2364 } 2365 } else { 2366 // Looking back through the definition for each operand could be expensive, 2367 // so exit early if this isn't an instruction that either has an immediate 2368 // form or is already an immediate form that we can handle. 2369 ImmInstrInfo III; 2370 unsigned Opc = MI.getOpcode(); 2371 bool ConvertibleImmForm = 2372 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || 2373 Opc == PPC::CMPDI || Opc == PPC::CMPLDI || 2374 Opc == PPC::ADDI || Opc == PPC::ADDI8 || 2375 Opc == PPC::ORI || Opc == PPC::ORI8 || 2376 Opc == PPC::XORI || Opc == PPC::XORI8 || 2377 Opc == PPC::RLDICL || Opc == PPC::RLDICLo || 2378 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 2379 Opc == PPC::RLWINM || Opc == PPC::RLWINMo || 2380 Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o; 2381 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 2382 ? isVFRegister(MI.getOperand(0).getReg()) 2383 : false; 2384 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 2385 return nullptr; 2386 2387 // Don't convert or %X, %Y, %Y since that's just a register move. 2388 if ((Opc == PPC::OR || Opc == PPC::OR8) && 2389 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 2390 return nullptr; 2391 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2392 MachineOperand &MO = MI.getOperand(i); 2393 SeenIntermediateUse = false; 2394 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 2395 Register Reg = MI.getOperand(i).getReg(); 2396 // If we see another use of this reg between the def and the MI, 2397 // we want to flat it so the def isn't deleted. 2398 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 2399 if (DefMI) { 2400 // Is this register defined by some form of add-immediate (including 2401 // load-immediate) within this basic block? 2402 switch (DefMI->getOpcode()) { 2403 default: 2404 break; 2405 case PPC::LI: 2406 case PPC::LI8: 2407 case PPC::ADDItocL: 2408 case PPC::ADDI: 2409 case PPC::ADDI8: 2410 OpNoForForwarding = i; 2411 return DefMI; 2412 } 2413 } 2414 } 2415 } 2416 } 2417 return OpNoForForwarding == ~0U ? nullptr : DefMI; 2418 } 2419 2420 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 2421 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2422 // Power 8 2423 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2424 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, 2425 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2426 PPC::SPILLTOVSR_ST, PPC::EVSTDD}, 2427 // Power 9 2428 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2429 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, 2430 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2431 PPC::SPILLTOVSR_ST}}; 2432 2433 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2434 } 2435 2436 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 2437 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2438 // Power 8 2439 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2440 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX, 2441 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2442 PPC::SPILLTOVSR_LD, PPC::EVLDD}, 2443 // Power 9 2444 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2445 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32, 2446 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2447 PPC::SPILLTOVSR_LD}}; 2448 2449 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2450 } 2451 2452 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI, 2453 unsigned RegNo) const { 2454 const MachineRegisterInfo &MRI = 2455 StartMI.getParent()->getParent()->getRegInfo(); 2456 if (MRI.isSSA()) 2457 return; 2458 2459 // Instructions between [StartMI, EndMI] should be in same basic block. 2460 assert((StartMI.getParent() == EndMI.getParent()) && 2461 "Instructions are not in same basic block"); 2462 2463 bool IsKillSet = false; 2464 2465 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 2466 MachineOperand &MO = MI.getOperand(Index); 2467 if (MO.isReg() && MO.isUse() && MO.isKill() && 2468 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 2469 MO.setIsKill(false); 2470 }; 2471 2472 // Set killed flag for EndMI. 2473 // No need to do anything if EndMI defines RegNo. 2474 int UseIndex = 2475 EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 2476 if (UseIndex != -1) { 2477 EndMI.getOperand(UseIndex).setIsKill(true); 2478 IsKillSet = true; 2479 // Clear killed flag for other EndMI operands related to RegNo. In some 2480 // upexpected cases, killed may be set multiple times for same register 2481 // operand in same MI. 2482 for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i) 2483 if (i != UseIndex) 2484 clearOperandKillInfo(EndMI, i); 2485 } 2486 2487 // Walking the inst in reverse order (EndMI -> StartMI]. 2488 MachineBasicBlock::reverse_iterator It = EndMI; 2489 MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend(); 2490 // EndMI has been handled above, skip it here. 2491 It++; 2492 MachineOperand *MO = nullptr; 2493 for (; It != E; ++It) { 2494 // Skip insturctions which could not be a def/use of RegNo. 2495 if (It->isDebugInstr() || It->isPosition()) 2496 continue; 2497 2498 // Clear killed flag for all It operands related to RegNo. In some 2499 // upexpected cases, killed may be set multiple times for same register 2500 // operand in same MI. 2501 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 2502 clearOperandKillInfo(*It, i); 2503 2504 // If killed is not set, set killed for its last use or set dead for its def 2505 // if no use found. 2506 if (!IsKillSet) { 2507 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 2508 // Use found, set it killed. 2509 IsKillSet = true; 2510 MO->setIsKill(true); 2511 continue; 2512 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 2513 &getRegisterInfo()))) { 2514 // No use found, set dead for its def. 2515 assert(&*It == &StartMI && "No new def between StartMI and EndMI."); 2516 MO->setIsDead(true); 2517 break; 2518 } 2519 } 2520 2521 if ((&*It) == &StartMI) 2522 break; 2523 } 2524 // Ensure RegMo liveness is killed after EndMI. 2525 assert((IsKillSet || (MO && MO->isDead())) && 2526 "RegNo should be killed or dead"); 2527 } 2528 2529 // If this instruction has an immediate form and one of its operands is a 2530 // result of a load-immediate or an add-immediate, convert it to 2531 // the immediate form if the constant is in range. 2532 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 2533 MachineInstr **KilledDef) const { 2534 MachineFunction *MF = MI.getParent()->getParent(); 2535 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2536 bool PostRA = !MRI->isSSA(); 2537 bool SeenIntermediateUse = true; 2538 unsigned ForwardingOperand = ~0U; 2539 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 2540 SeenIntermediateUse); 2541 if (!DefMI) 2542 return false; 2543 assert(ForwardingOperand < MI.getNumOperands() && 2544 "The forwarding operand needs to be valid at this point"); 2545 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 2546 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 2547 Register ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg(); 2548 if (KilledDef && KillFwdDefMI) 2549 *KilledDef = DefMI; 2550 2551 ImmInstrInfo III; 2552 bool IsVFReg = MI.getOperand(0).isReg() 2553 ? isVFRegister(MI.getOperand(0).getReg()) 2554 : false; 2555 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 2556 // If this is a reg+reg instruction that has a reg+imm form, 2557 // and one of the operands is produced by an add-immediate, 2558 // try to convert it. 2559 if (HasImmForm && 2560 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 2561 KillFwdDefMI)) 2562 return true; 2563 2564 if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) || 2565 !DefMI->getOperand(1).isImm()) 2566 return false; 2567 2568 int64_t Immediate = DefMI->getOperand(1).getImm(); 2569 // Sign-extend to 64-bits. 2570 int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 2571 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 2572 2573 // If this is a reg+reg instruction that has a reg+imm form, 2574 // and one of the operands is produced by LI, convert it now. 2575 if (HasImmForm) 2576 return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm); 2577 2578 bool ReplaceWithLI = false; 2579 bool Is64BitLI = false; 2580 int64_t NewImm = 0; 2581 bool SetCR = false; 2582 unsigned Opc = MI.getOpcode(); 2583 switch (Opc) { 2584 default: return false; 2585 2586 // FIXME: Any branches conditional on such a comparison can be made 2587 // unconditional. At this time, this happens too infrequently to be worth 2588 // the implementation effort, but if that ever changes, we could convert 2589 // such a pattern here. 2590 case PPC::CMPWI: 2591 case PPC::CMPLWI: 2592 case PPC::CMPDI: 2593 case PPC::CMPLDI: { 2594 // Doing this post-RA would require dataflow analysis to reliably find uses 2595 // of the CR register set by the compare. 2596 // No need to fixup killed/dead flag since this transformation is only valid 2597 // before RA. 2598 if (PostRA) 2599 return false; 2600 // If a compare-immediate is fed by an immediate and is itself an input of 2601 // an ISEL (the most common case) into a COPY of the correct register. 2602 bool Changed = false; 2603 Register DefReg = MI.getOperand(0).getReg(); 2604 int64_t Comparand = MI.getOperand(2).getImm(); 2605 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ? 2606 (Comparand | 0xFFFFFFFFFFFF0000) : Comparand; 2607 2608 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 2609 unsigned UseOpc = CompareUseMI.getOpcode(); 2610 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 2611 continue; 2612 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 2613 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 2614 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 2615 unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg, 2616 FalseReg, CRSubReg); 2617 if (RegToCopy == PPC::NoRegister) 2618 continue; 2619 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 2620 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 2621 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 2622 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 2623 CompareUseMI.RemoveOperand(3); 2624 CompareUseMI.RemoveOperand(2); 2625 continue; 2626 } 2627 LLVM_DEBUG( 2628 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 2629 LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump()); 2630 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 2631 // Convert to copy and remove unneeded operands. 2632 CompareUseMI.setDesc(get(PPC::COPY)); 2633 CompareUseMI.RemoveOperand(3); 2634 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 2635 CmpIselsConverted++; 2636 Changed = true; 2637 LLVM_DEBUG(CompareUseMI.dump()); 2638 } 2639 if (Changed) 2640 return true; 2641 // This may end up incremented multiple times since this function is called 2642 // during a fixed-point transformation, but it is only meant to indicate the 2643 // presence of this opportunity. 2644 MissedConvertibleImmediateInstrs++; 2645 return false; 2646 } 2647 2648 // Immediate forms - may simply be convertable to an LI. 2649 case PPC::ADDI: 2650 case PPC::ADDI8: { 2651 // Does the sum fit in a 16-bit signed field? 2652 int64_t Addend = MI.getOperand(2).getImm(); 2653 if (isInt<16>(Addend + SExtImm)) { 2654 ReplaceWithLI = true; 2655 Is64BitLI = Opc == PPC::ADDI8; 2656 NewImm = Addend + SExtImm; 2657 break; 2658 } 2659 return false; 2660 } 2661 case PPC::RLDICL: 2662 case PPC::RLDICLo: 2663 case PPC::RLDICL_32: 2664 case PPC::RLDICL_32_64: { 2665 // Use APInt's rotate function. 2666 int64_t SH = MI.getOperand(2).getImm(); 2667 int64_t MB = MI.getOperand(3).getImm(); 2668 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ? 2669 64 : 32, SExtImm, true); 2670 InVal = InVal.rotl(SH); 2671 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2672 InVal &= Mask; 2673 // Can't replace negative values with an LI as that will sign-extend 2674 // and not clear the left bits. If we're setting the CR bit, we will use 2675 // ANDIo which won't sign extend, so that's safe. 2676 if (isUInt<15>(InVal.getSExtValue()) || 2677 (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) { 2678 ReplaceWithLI = true; 2679 Is64BitLI = Opc != PPC::RLDICL_32; 2680 NewImm = InVal.getSExtValue(); 2681 SetCR = Opc == PPC::RLDICLo; 2682 break; 2683 } 2684 return false; 2685 } 2686 case PPC::RLWINM: 2687 case PPC::RLWINM8: 2688 case PPC::RLWINMo: 2689 case PPC::RLWINM8o: { 2690 int64_t SH = MI.getOperand(2).getImm(); 2691 int64_t MB = MI.getOperand(3).getImm(); 2692 int64_t ME = MI.getOperand(4).getImm(); 2693 APInt InVal(32, SExtImm, true); 2694 InVal = InVal.rotl(SH); 2695 // Set the bits ( MB + 32 ) to ( ME + 32 ). 2696 uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2697 InVal &= Mask; 2698 // Can't replace negative values with an LI as that will sign-extend 2699 // and not clear the left bits. If we're setting the CR bit, we will use 2700 // ANDIo which won't sign extend, so that's safe. 2701 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 2702 ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) && 2703 isUInt<16>(InVal.getSExtValue())); 2704 if (ValueFits) { 2705 ReplaceWithLI = true; 2706 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o; 2707 NewImm = InVal.getSExtValue(); 2708 SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o; 2709 break; 2710 } 2711 return false; 2712 } 2713 case PPC::ORI: 2714 case PPC::ORI8: 2715 case PPC::XORI: 2716 case PPC::XORI8: { 2717 int64_t LogicalImm = MI.getOperand(2).getImm(); 2718 int64_t Result = 0; 2719 if (Opc == PPC::ORI || Opc == PPC::ORI8) 2720 Result = LogicalImm | SExtImm; 2721 else 2722 Result = LogicalImm ^ SExtImm; 2723 if (isInt<16>(Result)) { 2724 ReplaceWithLI = true; 2725 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 2726 NewImm = Result; 2727 break; 2728 } 2729 return false; 2730 } 2731 } 2732 2733 if (ReplaceWithLI) { 2734 // We need to be careful with CR-setting instructions we're replacing. 2735 if (SetCR) { 2736 // We don't know anything about uses when we're out of SSA, so only 2737 // replace if the new immediate will be reproduced. 2738 bool ImmChanged = (SExtImm & NewImm) != NewImm; 2739 if (PostRA && ImmChanged) 2740 return false; 2741 2742 if (!PostRA) { 2743 // If the defining load-immediate has no other uses, we can just replace 2744 // the immediate with the new immediate. 2745 if (MRI->hasOneUse(DefMI->getOperand(0).getReg())) 2746 DefMI->getOperand(1).setImm(NewImm); 2747 2748 // If we're not using the GPR result of the CR-setting instruction, we 2749 // just need to and with zero/non-zero depending on the new immediate. 2750 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 2751 if (NewImm) { 2752 assert(Immediate && "Transformation converted zero to non-zero?"); 2753 NewImm = Immediate; 2754 } 2755 } 2756 else if (ImmChanged) 2757 return false; 2758 } 2759 } 2760 2761 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 2762 LLVM_DEBUG(MI.dump()); 2763 LLVM_DEBUG(dbgs() << "Fed by:\n"); 2764 LLVM_DEBUG(DefMI->dump()); 2765 LoadImmediateInfo LII; 2766 LII.Imm = NewImm; 2767 LII.Is64Bit = Is64BitLI; 2768 LII.SetCR = SetCR; 2769 // If we're setting the CR, the original load-immediate must be kept (as an 2770 // operand to ANDIo/ANDI8o). 2771 if (KilledDef && SetCR) 2772 *KilledDef = nullptr; 2773 replaceInstrWithLI(MI, LII); 2774 2775 // Fixup killed/dead flag after transformation. 2776 // Pattern: 2777 // ForwardingOperandReg = LI imm1 2778 // y = op2 imm2, ForwardingOperandReg(killed) 2779 if (IsForwardingOperandKilled) 2780 fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg); 2781 2782 LLVM_DEBUG(dbgs() << "With:\n"); 2783 LLVM_DEBUG(MI.dump()); 2784 return true; 2785 } 2786 return false; 2787 } 2788 2789 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 2790 ImmInstrInfo &III, bool PostRA) const { 2791 // The vast majority of the instructions would need their operand 2 replaced 2792 // with an immediate when switching to the reg+imm form. A marked exception 2793 // are the update form loads/stores for which a constant operand 2 would need 2794 // to turn into a displacement and move operand 1 to the operand 2 position. 2795 III.ImmOpNo = 2; 2796 III.OpNoForForwarding = 2; 2797 III.ImmWidth = 16; 2798 III.ImmMustBeMultipleOf = 1; 2799 III.TruncateImmTo = 0; 2800 III.IsSummingOperands = false; 2801 switch (Opc) { 2802 default: return false; 2803 case PPC::ADD4: 2804 case PPC::ADD8: 2805 III.SignedImm = true; 2806 III.ZeroIsSpecialOrig = 0; 2807 III.ZeroIsSpecialNew = 1; 2808 III.IsCommutative = true; 2809 III.IsSummingOperands = true; 2810 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 2811 break; 2812 case PPC::ADDC: 2813 case PPC::ADDC8: 2814 III.SignedImm = true; 2815 III.ZeroIsSpecialOrig = 0; 2816 III.ZeroIsSpecialNew = 0; 2817 III.IsCommutative = true; 2818 III.IsSummingOperands = true; 2819 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 2820 break; 2821 case PPC::ADDCo: 2822 III.SignedImm = true; 2823 III.ZeroIsSpecialOrig = 0; 2824 III.ZeroIsSpecialNew = 0; 2825 III.IsCommutative = true; 2826 III.IsSummingOperands = true; 2827 III.ImmOpcode = PPC::ADDICo; 2828 break; 2829 case PPC::SUBFC: 2830 case PPC::SUBFC8: 2831 III.SignedImm = true; 2832 III.ZeroIsSpecialOrig = 0; 2833 III.ZeroIsSpecialNew = 0; 2834 III.IsCommutative = false; 2835 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 2836 break; 2837 case PPC::CMPW: 2838 case PPC::CMPD: 2839 III.SignedImm = true; 2840 III.ZeroIsSpecialOrig = 0; 2841 III.ZeroIsSpecialNew = 0; 2842 III.IsCommutative = false; 2843 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 2844 break; 2845 case PPC::CMPLW: 2846 case PPC::CMPLD: 2847 III.SignedImm = false; 2848 III.ZeroIsSpecialOrig = 0; 2849 III.ZeroIsSpecialNew = 0; 2850 III.IsCommutative = false; 2851 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 2852 break; 2853 case PPC::ANDo: 2854 case PPC::AND8o: 2855 case PPC::OR: 2856 case PPC::OR8: 2857 case PPC::XOR: 2858 case PPC::XOR8: 2859 III.SignedImm = false; 2860 III.ZeroIsSpecialOrig = 0; 2861 III.ZeroIsSpecialNew = 0; 2862 III.IsCommutative = true; 2863 switch(Opc) { 2864 default: llvm_unreachable("Unknown opcode"); 2865 case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break; 2866 case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break; 2867 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 2868 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 2869 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 2870 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 2871 } 2872 break; 2873 case PPC::RLWNM: 2874 case PPC::RLWNM8: 2875 case PPC::RLWNMo: 2876 case PPC::RLWNM8o: 2877 case PPC::SLW: 2878 case PPC::SLW8: 2879 case PPC::SLWo: 2880 case PPC::SLW8o: 2881 case PPC::SRW: 2882 case PPC::SRW8: 2883 case PPC::SRWo: 2884 case PPC::SRW8o: 2885 case PPC::SRAW: 2886 case PPC::SRAWo: 2887 III.SignedImm = false; 2888 III.ZeroIsSpecialOrig = 0; 2889 III.ZeroIsSpecialNew = 0; 2890 III.IsCommutative = false; 2891 // This isn't actually true, but the instructions ignore any of the 2892 // upper bits, so any immediate loaded with an LI is acceptable. 2893 // This does not apply to shift right algebraic because a value 2894 // out of range will produce a -1/0. 2895 III.ImmWidth = 16; 2896 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || 2897 Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o) 2898 III.TruncateImmTo = 5; 2899 else 2900 III.TruncateImmTo = 6; 2901 switch(Opc) { 2902 default: llvm_unreachable("Unknown opcode"); 2903 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 2904 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 2905 case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break; 2906 case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break; 2907 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 2908 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 2909 case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break; 2910 case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break; 2911 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 2912 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 2913 case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break; 2914 case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break; 2915 case PPC::SRAW: 2916 III.ImmWidth = 5; 2917 III.TruncateImmTo = 0; 2918 III.ImmOpcode = PPC::SRAWI; 2919 break; 2920 case PPC::SRAWo: 2921 III.ImmWidth = 5; 2922 III.TruncateImmTo = 0; 2923 III.ImmOpcode = PPC::SRAWIo; 2924 break; 2925 } 2926 break; 2927 case PPC::RLDCL: 2928 case PPC::RLDCLo: 2929 case PPC::RLDCR: 2930 case PPC::RLDCRo: 2931 case PPC::SLD: 2932 case PPC::SLDo: 2933 case PPC::SRD: 2934 case PPC::SRDo: 2935 case PPC::SRAD: 2936 case PPC::SRADo: 2937 III.SignedImm = false; 2938 III.ZeroIsSpecialOrig = 0; 2939 III.ZeroIsSpecialNew = 0; 2940 III.IsCommutative = false; 2941 // This isn't actually true, but the instructions ignore any of the 2942 // upper bits, so any immediate loaded with an LI is acceptable. 2943 // This does not apply to shift right algebraic because a value 2944 // out of range will produce a -1/0. 2945 III.ImmWidth = 16; 2946 if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo || 2947 Opc == PPC::RLDCR || Opc == PPC::RLDCRo) 2948 III.TruncateImmTo = 6; 2949 else 2950 III.TruncateImmTo = 7; 2951 switch(Opc) { 2952 default: llvm_unreachable("Unknown opcode"); 2953 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 2954 case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break; 2955 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 2956 case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break; 2957 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 2958 case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break; 2959 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 2960 case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break; 2961 case PPC::SRAD: 2962 III.ImmWidth = 6; 2963 III.TruncateImmTo = 0; 2964 III.ImmOpcode = PPC::SRADI; 2965 break; 2966 case PPC::SRADo: 2967 III.ImmWidth = 6; 2968 III.TruncateImmTo = 0; 2969 III.ImmOpcode = PPC::SRADIo; 2970 break; 2971 } 2972 break; 2973 // Loads and stores: 2974 case PPC::LBZX: 2975 case PPC::LBZX8: 2976 case PPC::LHZX: 2977 case PPC::LHZX8: 2978 case PPC::LHAX: 2979 case PPC::LHAX8: 2980 case PPC::LWZX: 2981 case PPC::LWZX8: 2982 case PPC::LWAX: 2983 case PPC::LDX: 2984 case PPC::LFSX: 2985 case PPC::LFDX: 2986 case PPC::STBX: 2987 case PPC::STBX8: 2988 case PPC::STHX: 2989 case PPC::STHX8: 2990 case PPC::STWX: 2991 case PPC::STWX8: 2992 case PPC::STDX: 2993 case PPC::STFSX: 2994 case PPC::STFDX: 2995 III.SignedImm = true; 2996 III.ZeroIsSpecialOrig = 1; 2997 III.ZeroIsSpecialNew = 2; 2998 III.IsCommutative = true; 2999 III.IsSummingOperands = true; 3000 III.ImmOpNo = 1; 3001 III.OpNoForForwarding = 2; 3002 switch(Opc) { 3003 default: llvm_unreachable("Unknown opcode"); 3004 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 3005 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 3006 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 3007 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 3008 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 3009 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 3010 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 3011 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 3012 case PPC::LWAX: 3013 III.ImmOpcode = PPC::LWA; 3014 III.ImmMustBeMultipleOf = 4; 3015 break; 3016 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 3017 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 3018 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 3019 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 3020 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 3021 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 3022 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 3023 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 3024 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 3025 case PPC::STDX: 3026 III.ImmOpcode = PPC::STD; 3027 III.ImmMustBeMultipleOf = 4; 3028 break; 3029 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 3030 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 3031 } 3032 break; 3033 case PPC::LBZUX: 3034 case PPC::LBZUX8: 3035 case PPC::LHZUX: 3036 case PPC::LHZUX8: 3037 case PPC::LHAUX: 3038 case PPC::LHAUX8: 3039 case PPC::LWZUX: 3040 case PPC::LWZUX8: 3041 case PPC::LDUX: 3042 case PPC::LFSUX: 3043 case PPC::LFDUX: 3044 case PPC::STBUX: 3045 case PPC::STBUX8: 3046 case PPC::STHUX: 3047 case PPC::STHUX8: 3048 case PPC::STWUX: 3049 case PPC::STWUX8: 3050 case PPC::STDUX: 3051 case PPC::STFSUX: 3052 case PPC::STFDUX: 3053 III.SignedImm = true; 3054 III.ZeroIsSpecialOrig = 2; 3055 III.ZeroIsSpecialNew = 3; 3056 III.IsCommutative = false; 3057 III.IsSummingOperands = true; 3058 III.ImmOpNo = 2; 3059 III.OpNoForForwarding = 3; 3060 switch(Opc) { 3061 default: llvm_unreachable("Unknown opcode"); 3062 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 3063 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 3064 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 3065 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 3066 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 3067 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 3068 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 3069 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 3070 case PPC::LDUX: 3071 III.ImmOpcode = PPC::LDU; 3072 III.ImmMustBeMultipleOf = 4; 3073 break; 3074 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 3075 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 3076 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 3077 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 3078 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 3079 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 3080 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 3081 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 3082 case PPC::STDUX: 3083 III.ImmOpcode = PPC::STDU; 3084 III.ImmMustBeMultipleOf = 4; 3085 break; 3086 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 3087 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 3088 } 3089 break; 3090 // Power9 and up only. For some of these, the X-Form version has access to all 3091 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 3092 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 3093 // into or stored from is one of the VR registers. 3094 case PPC::LXVX: 3095 case PPC::LXSSPX: 3096 case PPC::LXSDX: 3097 case PPC::STXVX: 3098 case PPC::STXSSPX: 3099 case PPC::STXSDX: 3100 case PPC::XFLOADf32: 3101 case PPC::XFLOADf64: 3102 case PPC::XFSTOREf32: 3103 case PPC::XFSTOREf64: 3104 if (!Subtarget.hasP9Vector()) 3105 return false; 3106 III.SignedImm = true; 3107 III.ZeroIsSpecialOrig = 1; 3108 III.ZeroIsSpecialNew = 2; 3109 III.IsCommutative = true; 3110 III.IsSummingOperands = true; 3111 III.ImmOpNo = 1; 3112 III.OpNoForForwarding = 2; 3113 III.ImmMustBeMultipleOf = 4; 3114 switch(Opc) { 3115 default: llvm_unreachable("Unknown opcode"); 3116 case PPC::LXVX: 3117 III.ImmOpcode = PPC::LXV; 3118 III.ImmMustBeMultipleOf = 16; 3119 break; 3120 case PPC::LXSSPX: 3121 if (PostRA) { 3122 if (IsVFReg) 3123 III.ImmOpcode = PPC::LXSSP; 3124 else { 3125 III.ImmOpcode = PPC::LFS; 3126 III.ImmMustBeMultipleOf = 1; 3127 } 3128 break; 3129 } 3130 LLVM_FALLTHROUGH; 3131 case PPC::XFLOADf32: 3132 III.ImmOpcode = PPC::DFLOADf32; 3133 break; 3134 case PPC::LXSDX: 3135 if (PostRA) { 3136 if (IsVFReg) 3137 III.ImmOpcode = PPC::LXSD; 3138 else { 3139 III.ImmOpcode = PPC::LFD; 3140 III.ImmMustBeMultipleOf = 1; 3141 } 3142 break; 3143 } 3144 LLVM_FALLTHROUGH; 3145 case PPC::XFLOADf64: 3146 III.ImmOpcode = PPC::DFLOADf64; 3147 break; 3148 case PPC::STXVX: 3149 III.ImmOpcode = PPC::STXV; 3150 III.ImmMustBeMultipleOf = 16; 3151 break; 3152 case PPC::STXSSPX: 3153 if (PostRA) { 3154 if (IsVFReg) 3155 III.ImmOpcode = PPC::STXSSP; 3156 else { 3157 III.ImmOpcode = PPC::STFS; 3158 III.ImmMustBeMultipleOf = 1; 3159 } 3160 break; 3161 } 3162 LLVM_FALLTHROUGH; 3163 case PPC::XFSTOREf32: 3164 III.ImmOpcode = PPC::DFSTOREf32; 3165 break; 3166 case PPC::STXSDX: 3167 if (PostRA) { 3168 if (IsVFReg) 3169 III.ImmOpcode = PPC::STXSD; 3170 else { 3171 III.ImmOpcode = PPC::STFD; 3172 III.ImmMustBeMultipleOf = 1; 3173 } 3174 break; 3175 } 3176 LLVM_FALLTHROUGH; 3177 case PPC::XFSTOREf64: 3178 III.ImmOpcode = PPC::DFSTOREf64; 3179 break; 3180 } 3181 break; 3182 } 3183 return true; 3184 } 3185 3186 // Utility function for swaping two arbitrary operands of an instruction. 3187 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 3188 assert(Op1 != Op2 && "Cannot swap operand with itself."); 3189 3190 unsigned MaxOp = std::max(Op1, Op2); 3191 unsigned MinOp = std::min(Op1, Op2); 3192 MachineOperand MOp1 = MI.getOperand(MinOp); 3193 MachineOperand MOp2 = MI.getOperand(MaxOp); 3194 MI.RemoveOperand(std::max(Op1, Op2)); 3195 MI.RemoveOperand(std::min(Op1, Op2)); 3196 3197 // If the operands we are swapping are the two at the end (the common case) 3198 // we can just remove both and add them in the opposite order. 3199 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 3200 MI.addOperand(MOp2); 3201 MI.addOperand(MOp1); 3202 } else { 3203 // Store all operands in a temporary vector, remove them and re-add in the 3204 // right order. 3205 SmallVector<MachineOperand, 2> MOps; 3206 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 3207 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 3208 MOps.push_back(MI.getOperand(i)); 3209 MI.RemoveOperand(i); 3210 } 3211 // MOp2 needs to be added next. 3212 MI.addOperand(MOp2); 3213 // Now add the rest. 3214 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 3215 if (i == MaxOp) 3216 MI.addOperand(MOp1); 3217 else { 3218 MI.addOperand(MOps.back()); 3219 MOps.pop_back(); 3220 } 3221 } 3222 } 3223 } 3224 3225 // Check if the 'MI' that has the index OpNoForForwarding 3226 // meets the requirement described in the ImmInstrInfo. 3227 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 3228 const ImmInstrInfo &III, 3229 unsigned OpNoForForwarding 3230 ) const { 3231 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 3232 // would not work pre-RA, we can only do the check post RA. 3233 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3234 if (MRI.isSSA()) 3235 return false; 3236 3237 // Cannot do the transform if MI isn't summing the operands. 3238 if (!III.IsSummingOperands) 3239 return false; 3240 3241 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 3242 if (!III.ZeroIsSpecialOrig) 3243 return false; 3244 3245 // We cannot do the transform if the operand we are trying to replace 3246 // isn't the same as the operand the instruction allows. 3247 if (OpNoForForwarding != III.OpNoForForwarding) 3248 return false; 3249 3250 // Check if the instruction we are trying to transform really has 3251 // the special zero register as its operand. 3252 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 3253 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 3254 return false; 3255 3256 // This machine instruction is convertible if it is, 3257 // 1. summing the operands. 3258 // 2. one of the operands is special zero register. 3259 // 3. the operand we are trying to replace is allowed by the MI. 3260 return true; 3261 } 3262 3263 // Check if the DefMI is the add inst and set the ImmMO and RegMO 3264 // accordingly. 3265 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 3266 const ImmInstrInfo &III, 3267 MachineOperand *&ImmMO, 3268 MachineOperand *&RegMO) const { 3269 unsigned Opc = DefMI.getOpcode(); 3270 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 3271 return false; 3272 3273 assert(DefMI.getNumOperands() >= 3 && 3274 "Add inst must have at least three operands"); 3275 RegMO = &DefMI.getOperand(1); 3276 ImmMO = &DefMI.getOperand(2); 3277 3278 // This DefMI is elgible for forwarding if it is: 3279 // 1. add inst 3280 // 2. one of the operands is Imm/CPI/Global. 3281 return isAnImmediateOperand(*ImmMO); 3282 } 3283 3284 bool PPCInstrInfo::isRegElgibleForForwarding( 3285 const MachineOperand &RegMO, const MachineInstr &DefMI, 3286 const MachineInstr &MI, bool KillDefMI, 3287 bool &IsFwdFeederRegKilled) const { 3288 // x = addi y, imm 3289 // ... 3290 // z = lfdx 0, x -> z = lfd imm(y) 3291 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 3292 // of "y" between the DEF of "x" and "z". 3293 // The query is only valid post RA. 3294 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3295 if (MRI.isSSA()) 3296 return false; 3297 3298 Register Reg = RegMO.getReg(); 3299 3300 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 3301 MachineBasicBlock::const_reverse_iterator It = MI; 3302 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 3303 It++; 3304 for (; It != E; ++It) { 3305 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3306 return false; 3307 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3308 IsFwdFeederRegKilled = true; 3309 // Made it to DefMI without encountering a clobber. 3310 if ((&*It) == &DefMI) 3311 break; 3312 } 3313 assert((&*It) == &DefMI && "DefMI is missing"); 3314 3315 // If DefMI also defines the register to be forwarded, we can only forward it 3316 // if DefMI is being erased. 3317 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 3318 return KillDefMI; 3319 3320 return true; 3321 } 3322 3323 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 3324 const MachineInstr &DefMI, 3325 const ImmInstrInfo &III, 3326 int64_t &Imm) const { 3327 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 3328 if (DefMI.getOpcode() == PPC::ADDItocL) { 3329 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 3330 // However, we know that, it is 16-bit width, and has the alignment of 4. 3331 // Check if the instruction met the requirement. 3332 if (III.ImmMustBeMultipleOf > 4 || 3333 III.TruncateImmTo || III.ImmWidth != 16) 3334 return false; 3335 3336 // Going from XForm to DForm loads means that the displacement needs to be 3337 // not just an immediate but also a multiple of 4, or 16 depending on the 3338 // load. A DForm load cannot be represented if it is a multiple of say 2. 3339 // XForm loads do not have this restriction. 3340 if (ImmMO.isGlobal() && 3341 ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf) 3342 return false; 3343 3344 return true; 3345 } 3346 3347 if (ImmMO.isImm()) { 3348 // It is Imm, we need to check if the Imm fit the range. 3349 int64_t Immediate = ImmMO.getImm(); 3350 // Sign-extend to 64-bits. 3351 Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 3352 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 3353 3354 if (Imm % III.ImmMustBeMultipleOf) 3355 return false; 3356 if (III.TruncateImmTo) 3357 Imm &= ((1 << III.TruncateImmTo) - 1); 3358 if (III.SignedImm) { 3359 APInt ActualValue(64, Imm, true); 3360 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3361 return false; 3362 } else { 3363 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3364 if ((uint64_t)Imm > UnsignedMax) 3365 return false; 3366 } 3367 } 3368 else 3369 return false; 3370 3371 // This ImmMO is forwarded if it meets the requriement describle 3372 // in ImmInstrInfo 3373 return true; 3374 } 3375 3376 // If an X-Form instruction is fed by an add-immediate and one of its operands 3377 // is the literal zero, attempt to forward the source of the add-immediate to 3378 // the corresponding D-Form instruction with the displacement coming from 3379 // the immediate being added. 3380 bool PPCInstrInfo::transformToImmFormFedByAdd( 3381 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 3382 MachineInstr &DefMI, bool KillDefMI) const { 3383 // RegMO ImmMO 3384 // | | 3385 // x = addi reg, imm <----- DefMI 3386 // y = op 0 , x <----- MI 3387 // | 3388 // OpNoForForwarding 3389 // Check if the MI meet the requirement described in the III. 3390 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 3391 return false; 3392 3393 // Check if the DefMI meet the requirement 3394 // described in the III. If yes, set the ImmMO and RegMO accordingly. 3395 MachineOperand *ImmMO = nullptr; 3396 MachineOperand *RegMO = nullptr; 3397 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 3398 return false; 3399 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 3400 3401 // As we get the Imm operand now, we need to check if the ImmMO meet 3402 // the requirement described in the III. If yes set the Imm. 3403 int64_t Imm = 0; 3404 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 3405 return false; 3406 3407 bool IsFwdFeederRegKilled = false; 3408 // Check if the RegMO can be forwarded to MI. 3409 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 3410 IsFwdFeederRegKilled)) 3411 return false; 3412 3413 // Get killed info in case fixup needed after transformation. 3414 unsigned ForwardKilledOperandReg = ~0U; 3415 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3416 bool PostRA = !MRI.isSSA(); 3417 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 3418 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 3419 3420 // We know that, the MI and DefMI both meet the pattern, and 3421 // the Imm also meet the requirement with the new Imm-form. 3422 // It is safe to do the transformation now. 3423 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 3424 LLVM_DEBUG(MI.dump()); 3425 LLVM_DEBUG(dbgs() << "Fed by:\n"); 3426 LLVM_DEBUG(DefMI.dump()); 3427 3428 // Update the base reg first. 3429 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 3430 false, false, 3431 RegMO->isKill()); 3432 3433 // Then, update the imm. 3434 if (ImmMO->isImm()) { 3435 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 3436 // directly. 3437 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 3438 } 3439 else { 3440 // Otherwise, it is Constant Pool Index(CPI) or Global, 3441 // which is relocation in fact. We need to replace the special zero 3442 // register with ImmMO. 3443 // Before that, we need to fixup the target flags for imm. 3444 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 3445 if (DefMI.getOpcode() == PPC::ADDItocL) 3446 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 3447 3448 // MI didn't have the interface such as MI.setOperand(i) though 3449 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 3450 // ImmMO, we need to remove ZERO operand and all the operands behind it, 3451 // and, add the ImmMO, then, move back all the operands behind ZERO. 3452 SmallVector<MachineOperand, 2> MOps; 3453 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 3454 MOps.push_back(MI.getOperand(i)); 3455 MI.RemoveOperand(i); 3456 } 3457 3458 // Remove the last MO in the list, which is ZERO operand in fact. 3459 MOps.pop_back(); 3460 // Add the imm operand. 3461 MI.addOperand(*ImmMO); 3462 // Now add the rest back. 3463 for (auto &MO : MOps) 3464 MI.addOperand(MO); 3465 } 3466 3467 // Update the opcode. 3468 MI.setDesc(get(III.ImmOpcode)); 3469 3470 // Fix up killed/dead flag after transformation. 3471 // Pattern 1: 3472 // x = ADD KilledFwdFeederReg, imm 3473 // n = opn KilledFwdFeederReg(killed), regn 3474 // y = XOP 0, x 3475 // Pattern 2: 3476 // x = ADD reg(killed), imm 3477 // y = XOP 0, x 3478 if (IsFwdFeederRegKilled || RegMO->isKill()) 3479 fixupIsDeadOrKill(DefMI, MI, RegMO->getReg()); 3480 // Pattern 3: 3481 // ForwardKilledOperandReg = ADD reg, imm 3482 // y = XOP 0, ForwardKilledOperandReg(killed) 3483 if (ForwardKilledOperandReg != ~0U) 3484 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3485 3486 LLVM_DEBUG(dbgs() << "With:\n"); 3487 LLVM_DEBUG(MI.dump()); 3488 3489 return true; 3490 } 3491 3492 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 3493 const ImmInstrInfo &III, 3494 unsigned ConstantOpNo, 3495 MachineInstr &DefMI, 3496 int64_t Imm) const { 3497 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3498 bool PostRA = !MRI.isSSA(); 3499 // Exit early if we can't convert this. 3500 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 3501 return false; 3502 if (Imm % III.ImmMustBeMultipleOf) 3503 return false; 3504 if (III.TruncateImmTo) 3505 Imm &= ((1 << III.TruncateImmTo) - 1); 3506 if (III.SignedImm) { 3507 APInt ActualValue(64, Imm, true); 3508 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3509 return false; 3510 } else { 3511 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3512 if ((uint64_t)Imm > UnsignedMax) 3513 return false; 3514 } 3515 3516 // If we're post-RA, the instructions don't agree on whether register zero is 3517 // special, we can transform this as long as the register operand that will 3518 // end up in the location where zero is special isn't R0. 3519 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3520 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 3521 III.ZeroIsSpecialNew + 1; 3522 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 3523 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3524 // If R0 is in the operand where zero is special for the new instruction, 3525 // it is unsafe to transform if the constant operand isn't that operand. 3526 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 3527 ConstantOpNo != III.ZeroIsSpecialNew) 3528 return false; 3529 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 3530 ConstantOpNo != PosForOrigZero) 3531 return false; 3532 } 3533 3534 // Get killed info in case fixup needed after transformation. 3535 unsigned ForwardKilledOperandReg = ~0U; 3536 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 3537 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 3538 3539 unsigned Opc = MI.getOpcode(); 3540 bool SpecialShift32 = 3541 Opc == PPC::SLW || Opc == PPC::SLWo || Opc == PPC::SRW || Opc == PPC::SRWo; 3542 bool SpecialShift64 = 3543 Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo; 3544 bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo || 3545 Opc == PPC::SLDo || Opc == PPC::SRDo; 3546 bool RightShift = 3547 Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo; 3548 3549 MI.setDesc(get(III.ImmOpcode)); 3550 if (ConstantOpNo == III.OpNoForForwarding) { 3551 // Converting shifts to immediate form is a bit tricky since they may do 3552 // one of three things: 3553 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 3554 // 2. If the shift amount is zero, the result is unchanged (save for maybe 3555 // setting CR0) 3556 // 3. If the shift amount is in [1, OpSize), it's just a shift 3557 if (SpecialShift32 || SpecialShift64) { 3558 LoadImmediateInfo LII; 3559 LII.Imm = 0; 3560 LII.SetCR = SetCR; 3561 LII.Is64Bit = SpecialShift64; 3562 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 3563 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 3564 replaceInstrWithLI(MI, LII); 3565 // Shifts by zero don't change the value. If we don't need to set CR0, 3566 // just convert this to a COPY. Can't do this post-RA since we've already 3567 // cleaned up the copies. 3568 else if (!SetCR && ShAmt == 0 && !PostRA) { 3569 MI.RemoveOperand(2); 3570 MI.setDesc(get(PPC::COPY)); 3571 } else { 3572 // The 32 bit and 64 bit instructions are quite different. 3573 if (SpecialShift32) { 3574 // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31). 3575 uint64_t SH = RightShift ? 32 - ShAmt : ShAmt; 3576 uint64_t MB = RightShift ? ShAmt : 0; 3577 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 3578 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3579 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 3580 .addImm(ME); 3581 } else { 3582 // Left shifts use (N, 63-N), right shifts use (64-N, N). 3583 uint64_t SH = RightShift ? 64 - ShAmt : ShAmt; 3584 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 3585 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3586 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 3587 } 3588 } 3589 } else 3590 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3591 } 3592 // Convert commutative instructions (switch the operands and convert the 3593 // desired one to an immediate. 3594 else if (III.IsCommutative) { 3595 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3596 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 3597 } else 3598 llvm_unreachable("Should have exited early!"); 3599 3600 // For instructions for which the constant register replaces a different 3601 // operand than where the immediate goes, we need to swap them. 3602 if (III.OpNoForForwarding != III.ImmOpNo) 3603 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 3604 3605 // If the special R0/X0 register index are different for original instruction 3606 // and new instruction, we need to fix up the register class in new 3607 // instruction. 3608 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3609 if (III.ZeroIsSpecialNew) { 3610 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 3611 // need to fix up register class. 3612 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3613 if (Register::isVirtualRegister(RegToModify)) { 3614 const TargetRegisterClass *NewRC = 3615 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 3616 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 3617 MRI.setRegClass(RegToModify, NewRC); 3618 } 3619 } 3620 } 3621 3622 // Fix up killed/dead flag after transformation. 3623 // Pattern: 3624 // ForwardKilledOperandReg = LI imm 3625 // y = XOP reg, ForwardKilledOperandReg(killed) 3626 if (ForwardKilledOperandReg != ~0U) 3627 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3628 return true; 3629 } 3630 3631 const TargetRegisterClass * 3632 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 3633 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 3634 return &PPC::VSRCRegClass; 3635 return RC; 3636 } 3637 3638 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 3639 return PPC::getRecordFormOpcode(Opcode); 3640 } 3641 3642 // This function returns true if the machine instruction 3643 // always outputs a value by sign-extending a 32 bit value, 3644 // i.e. 0 to 31-th bits are same as 32-th bit. 3645 static bool isSignExtendingOp(const MachineInstr &MI) { 3646 int Opcode = MI.getOpcode(); 3647 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3648 Opcode == PPC::LIS || Opcode == PPC::LIS8 || 3649 Opcode == PPC::SRAW || Opcode == PPC::SRAWo || 3650 Opcode == PPC::SRAWI || Opcode == PPC::SRAWIo || 3651 Opcode == PPC::LWA || Opcode == PPC::LWAX || 3652 Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 3653 Opcode == PPC::LHA || Opcode == PPC::LHAX || 3654 Opcode == PPC::LHA8 || Opcode == PPC::LHAX8 || 3655 Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3656 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 3657 Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 3658 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3659 Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3660 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || 3661 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3662 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || 3663 Opcode == PPC::EXTSB || Opcode == PPC::EXTSBo || 3664 Opcode == PPC::EXTSH || Opcode == PPC::EXTSHo || 3665 Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8 || 3666 Opcode == PPC::EXTSW || Opcode == PPC::EXTSWo || 3667 Opcode == PPC::SETB || Opcode == PPC::SETB8 || 3668 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 3669 Opcode == PPC::EXTSB8_32_64) 3670 return true; 3671 3672 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 3673 return true; 3674 3675 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo || 3676 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo) && 3677 MI.getOperand(3).getImm() > 0 && 3678 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3679 return true; 3680 3681 return false; 3682 } 3683 3684 // This function returns true if the machine instruction 3685 // always outputs zeros in higher 32 bits. 3686 static bool isZeroExtendingOp(const MachineInstr &MI) { 3687 int Opcode = MI.getOpcode(); 3688 // The 16-bit immediate is sign-extended in li/lis. 3689 // If the most significant bit is zero, all higher bits are zero. 3690 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3691 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 3692 int64_t Imm = MI.getOperand(1).getImm(); 3693 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 3694 return true; 3695 } 3696 3697 // We have some variations of rotate-and-mask instructions 3698 // that clear higher 32-bits. 3699 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo || 3700 Opcode == PPC::RLDCL || Opcode == PPC::RLDCLo || 3701 Opcode == PPC::RLDICL_32_64) && 3702 MI.getOperand(3).getImm() >= 32) 3703 return true; 3704 3705 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) && 3706 MI.getOperand(3).getImm() >= 32 && 3707 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 3708 return true; 3709 3710 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo || 3711 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo || 3712 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 3713 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3714 return true; 3715 3716 // There are other instructions that clear higher 32-bits. 3717 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZWo || 3718 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZWo || 3719 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 3720 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZDo || 3721 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZDo || 3722 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || 3723 Opcode == PPC::SLW || Opcode == PPC::SLWo || 3724 Opcode == PPC::SRW || Opcode == PPC::SRWo || 3725 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || 3726 Opcode == PPC::SLWI || Opcode == PPC::SLWIo || 3727 Opcode == PPC::SRWI || Opcode == PPC::SRWIo || 3728 Opcode == PPC::LWZ || Opcode == PPC::LWZX || 3729 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || 3730 Opcode == PPC::LWBRX || Opcode == PPC::LHBRX || 3731 Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3732 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3733 Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3734 Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 3735 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || 3736 Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8 || 3737 Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 3738 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || 3739 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || 3740 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 3741 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3742 Opcode == PPC::ANDIo || Opcode == PPC::ANDISo || 3743 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWIo || 3744 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWIo || 3745 Opcode == PPC::MFVSRWZ) 3746 return true; 3747 3748 return false; 3749 } 3750 3751 // This function returns true if the input MachineInstr is a TOC save 3752 // instruction. 3753 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 3754 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 3755 return false; 3756 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 3757 unsigned StackOffset = MI.getOperand(1).getImm(); 3758 Register StackReg = MI.getOperand(2).getReg(); 3759 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) 3760 return true; 3761 3762 return false; 3763 } 3764 3765 // We limit the max depth to track incoming values of PHIs or binary ops 3766 // (e.g. AND) to avoid excessive cost. 3767 const unsigned MAX_DEPTH = 1; 3768 3769 bool 3770 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 3771 const unsigned Depth) const { 3772 const MachineFunction *MF = MI.getParent()->getParent(); 3773 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 3774 3775 // If we know this instruction returns sign- or zero-extended result, 3776 // return true. 3777 if (SignExt ? isSignExtendingOp(MI): 3778 isZeroExtendingOp(MI)) 3779 return true; 3780 3781 switch (MI.getOpcode()) { 3782 case PPC::COPY: { 3783 Register SrcReg = MI.getOperand(1).getReg(); 3784 3785 // In both ELFv1 and v2 ABI, method parameters and the return value 3786 // are sign- or zero-extended. 3787 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 3788 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 3789 // We check the ZExt/SExt flags for a method parameter. 3790 if (MI.getParent()->getBasicBlock() == 3791 &MF->getFunction().getEntryBlock()) { 3792 Register VReg = MI.getOperand(0).getReg(); 3793 if (MF->getRegInfo().isLiveIn(VReg)) 3794 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 3795 FuncInfo->isLiveInZExt(VReg); 3796 } 3797 3798 // For a method return value, we check the ZExt/SExt flags in attribute. 3799 // We assume the following code sequence for method call. 3800 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 3801 // BL8_NOP @func,... 3802 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 3803 // %5 = COPY %x3; G8RC:%5 3804 if (SrcReg == PPC::X3) { 3805 const MachineBasicBlock *MBB = MI.getParent(); 3806 MachineBasicBlock::const_instr_iterator II = 3807 MachineBasicBlock::const_instr_iterator(&MI); 3808 if (II != MBB->instr_begin() && 3809 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 3810 const MachineInstr &CallMI = *(--II); 3811 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 3812 const Function *CalleeFn = 3813 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 3814 if (!CalleeFn) 3815 return false; 3816 const IntegerType *IntTy = 3817 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 3818 const AttributeSet &Attrs = 3819 CalleeFn->getAttributes().getRetAttributes(); 3820 if (IntTy && IntTy->getBitWidth() <= 32) 3821 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 3822 Attribute::ZExt); 3823 } 3824 } 3825 } 3826 } 3827 3828 // If this is a copy from another register, we recursively check source. 3829 if (!Register::isVirtualRegister(SrcReg)) 3830 return false; 3831 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3832 if (SrcMI != NULL) 3833 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 3834 3835 return false; 3836 } 3837 3838 case PPC::ANDIo: 3839 case PPC::ANDISo: 3840 case PPC::ORI: 3841 case PPC::ORIS: 3842 case PPC::XORI: 3843 case PPC::XORIS: 3844 case PPC::ANDIo8: 3845 case PPC::ANDISo8: 3846 case PPC::ORI8: 3847 case PPC::ORIS8: 3848 case PPC::XORI8: 3849 case PPC::XORIS8: { 3850 // logical operation with 16-bit immediate does not change the upper bits. 3851 // So, we track the operand register as we do for register copy. 3852 Register SrcReg = MI.getOperand(1).getReg(); 3853 if (!Register::isVirtualRegister(SrcReg)) 3854 return false; 3855 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3856 if (SrcMI != NULL) 3857 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 3858 3859 return false; 3860 } 3861 3862 // If all incoming values are sign-/zero-extended, 3863 // the output of OR, ISEL or PHI is also sign-/zero-extended. 3864 case PPC::OR: 3865 case PPC::OR8: 3866 case PPC::ISEL: 3867 case PPC::PHI: { 3868 if (Depth >= MAX_DEPTH) 3869 return false; 3870 3871 // The input registers for PHI are operand 1, 3, ... 3872 // The input registers for others are operand 1 and 2. 3873 unsigned E = 3, D = 1; 3874 if (MI.getOpcode() == PPC::PHI) { 3875 E = MI.getNumOperands(); 3876 D = 2; 3877 } 3878 3879 for (unsigned I = 1; I != E; I += D) { 3880 if (MI.getOperand(I).isReg()) { 3881 Register SrcReg = MI.getOperand(I).getReg(); 3882 if (!Register::isVirtualRegister(SrcReg)) 3883 return false; 3884 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3885 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 3886 return false; 3887 } 3888 else 3889 return false; 3890 } 3891 return true; 3892 } 3893 3894 // If at least one of the incoming values of an AND is zero extended 3895 // then the output is also zero-extended. If both of the incoming values 3896 // are sign-extended then the output is also sign extended. 3897 case PPC::AND: 3898 case PPC::AND8: { 3899 if (Depth >= MAX_DEPTH) 3900 return false; 3901 3902 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 3903 3904 Register SrcReg1 = MI.getOperand(1).getReg(); 3905 Register SrcReg2 = MI.getOperand(2).getReg(); 3906 3907 if (!Register::isVirtualRegister(SrcReg1) || 3908 !Register::isVirtualRegister(SrcReg2)) 3909 return false; 3910 3911 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 3912 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 3913 if (!MISrc1 || !MISrc2) 3914 return false; 3915 3916 if(SignExt) 3917 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 3918 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 3919 else 3920 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 3921 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 3922 } 3923 3924 default: 3925 break; 3926 } 3927 return false; 3928 } 3929 3930 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 3931 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 3932 } 3933 3934 namespace { 3935 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 3936 MachineInstr *Loop, *EndLoop, *LoopCount; 3937 MachineFunction *MF; 3938 const TargetInstrInfo *TII; 3939 int64_t TripCount; 3940 3941 public: 3942 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 3943 MachineInstr *LoopCount) 3944 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 3945 MF(Loop->getParent()->getParent()), 3946 TII(MF->getSubtarget().getInstrInfo()) { 3947 // Inspect the Loop instruction up-front, as it may be deleted when we call 3948 // createTripCountGreaterCondition. 3949 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 3950 TripCount = LoopCount->getOperand(1).getImm(); 3951 else 3952 TripCount = -1; 3953 } 3954 3955 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 3956 // Only ignore the terminator. 3957 return MI == EndLoop; 3958 } 3959 3960 Optional<bool> 3961 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 3962 SmallVectorImpl<MachineOperand> &Cond) override { 3963 if (TripCount == -1) { 3964 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 3965 // so we don't need to generate any thing here. 3966 Cond.push_back(MachineOperand::CreateImm(0)); 3967 Cond.push_back(MachineOperand::CreateReg( 3968 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 3969 true)); 3970 return {}; 3971 } 3972 3973 return TripCount > TC; 3974 } 3975 3976 void setPreheader(MachineBasicBlock *NewPreheader) override { 3977 // Do nothing. We want the LOOP setup instruction to stay in the *old* 3978 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 3979 } 3980 3981 void adjustTripCount(int TripCountAdjust) override { 3982 // If the loop trip count is a compile-time value, then just change the 3983 // value. 3984 if (LoopCount->getOpcode() == PPC::LI8 || 3985 LoopCount->getOpcode() == PPC::LI) { 3986 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 3987 LoopCount->getOperand(1).setImm(TripCount); 3988 return; 3989 } 3990 3991 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 3992 // so we don't need to generate any thing here. 3993 } 3994 3995 void disposed() override { 3996 Loop->eraseFromParent(); 3997 // Ensure the loop setup instruction is deleted too. 3998 LoopCount->eraseFromParent(); 3999 } 4000 }; 4001 } // namespace 4002 4003 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 4004 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 4005 // We really "analyze" only hardware loops right now. 4006 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 4007 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 4008 if (Preheader == LoopBB) 4009 Preheader = *std::next(LoopBB->pred_begin()); 4010 MachineFunction *MF = Preheader->getParent(); 4011 4012 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 4013 SmallPtrSet<MachineBasicBlock *, 8> Visited; 4014 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 4015 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 4016 MachineRegisterInfo &MRI = MF->getRegInfo(); 4017 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 4018 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 4019 } 4020 } 4021 return nullptr; 4022 } 4023 4024 MachineInstr *PPCInstrInfo::findLoopInstr( 4025 MachineBasicBlock &PreHeader, 4026 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 4027 4028 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 4029 4030 // The loop set-up instruction should be in preheader 4031 for (auto &I : PreHeader.instrs()) 4032 if (I.getOpcode() == LOOPi) 4033 return &I; 4034 return nullptr; 4035 } 4036 4037 // Return true if get the base operand, byte offset of an instruction and the 4038 // memory width. Width is the size of memory that is being loaded/stored. 4039 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 4040 const MachineInstr &LdSt, 4041 const MachineOperand *&BaseReg, 4042 int64_t &Offset, 4043 unsigned &Width, 4044 const TargetRegisterInfo *TRI) const { 4045 assert(LdSt.mayLoadOrStore() && "Expected a memory operation."); 4046 4047 // Handle only loads/stores with base register followed by immediate offset. 4048 if (LdSt.getNumExplicitOperands() != 3) 4049 return false; 4050 if (!LdSt.getOperand(1).isImm() || !LdSt.getOperand(2).isReg()) 4051 return false; 4052 4053 if (!LdSt.hasOneMemOperand()) 4054 return false; 4055 4056 Width = (*LdSt.memoperands_begin())->getSize(); 4057 Offset = LdSt.getOperand(1).getImm(); 4058 BaseReg = &LdSt.getOperand(2); 4059 return true; 4060 } 4061 4062 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 4063 const MachineInstr &MIa, const MachineInstr &MIb, 4064 AliasAnalysis * /*AA*/) const { 4065 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 4066 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 4067 4068 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 4069 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 4070 return false; 4071 4072 // Retrieve the base register, offset from the base register and width. Width 4073 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 4074 // base registers are identical, and the offset of a lower memory access + 4075 // the width doesn't overlap the offset of a higher memory access, 4076 // then the memory accesses are different. 4077 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4078 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 4079 int64_t OffsetA = 0, OffsetB = 0; 4080 unsigned int WidthA = 0, WidthB = 0; 4081 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 4082 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 4083 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 4084 int LowOffset = std::min(OffsetA, OffsetB); 4085 int HighOffset = std::max(OffsetA, OffsetB); 4086 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 4087 if (LowOffset + LowWidth <= HighOffset) 4088 return true; 4089 } 4090 } 4091 return false; 4092 } 4093