1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/PseudoSourceValue.h"
29 #include "llvm/CodeGen/ScheduleDAG.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/raw_ostream.h"
39 
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "ppc-instr-info"
43 
44 #define GET_INSTRMAP_INFO
45 #define GET_INSTRINFO_CTOR_DTOR
46 #include "PPCGenInstrInfo.inc"
47 
48 STATISTIC(NumStoreSPILLVSRRCAsVec,
49           "Number of spillvsrrc spilled to stack as vec");
50 STATISTIC(NumStoreSPILLVSRRCAsGpr,
51           "Number of spillvsrrc spilled to stack as gpr");
52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
53 STATISTIC(CmpIselsConverted,
54           "Number of ISELs that depend on comparison of constants converted");
55 STATISTIC(MissedConvertibleImmediateInstrs,
56           "Number of compare-immediate instructions fed by constants");
57 STATISTIC(NumRcRotatesConvertedToRcAnd,
58           "Number of record-form rotates converted to record-form andi");
59 
60 static cl::
61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
62             cl::desc("Disable analysis for CTR loops"));
63 
64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
65 cl::desc("Disable compare instruction optimization"), cl::Hidden);
66 
67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
69 cl::Hidden);
70 
71 static cl::opt<bool>
72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
73   cl::desc("Use the old (incorrect) instruction latency calculation"));
74 
75 // Index into the OpcodesForSpill array.
76 enum SpillOpcodeKey {
77   SOK_Int4Spill,
78   SOK_Int8Spill,
79   SOK_Float8Spill,
80   SOK_Float4Spill,
81   SOK_CRSpill,
82   SOK_CRBitSpill,
83   SOK_VRVectorSpill,
84   SOK_VSXVectorSpill,
85   SOK_VectorFloat8Spill,
86   SOK_VectorFloat4Spill,
87   SOK_VRSaveSpill,
88   SOK_QuadFloat8Spill,
89   SOK_QuadFloat4Spill,
90   SOK_QuadBitSpill,
91   SOK_SpillToVSR,
92   SOK_SPESpill,
93   SOK_LastOpcodeSpill  // This must be last on the enum.
94 };
95 
96 // Pin the vtable to this file.
97 void PPCInstrInfo::anchor() {}
98 
99 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
100     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
101                       /* CatchRetOpcode */ -1,
102                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
103       Subtarget(STI), RI(STI.getTargetMachine()) {}
104 
105 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
106 /// this target when scheduling the DAG.
107 ScheduleHazardRecognizer *
108 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
109                                            const ScheduleDAG *DAG) const {
110   unsigned Directive =
111       static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
112   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
113       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
114     const InstrItineraryData *II =
115         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
116     return new ScoreboardHazardRecognizer(II, DAG);
117   }
118 
119   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
120 }
121 
122 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
123 /// to use for this target when scheduling the DAG.
124 ScheduleHazardRecognizer *
125 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
126                                                  const ScheduleDAG *DAG) const {
127   unsigned Directive =
128       DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
129 
130   // FIXME: Leaving this as-is until we have POWER9 scheduling info
131   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
132     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
133 
134   // Most subtargets use a PPC970 recognizer.
135   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
136       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
137     assert(DAG->TII && "No InstrInfo?");
138 
139     return new PPCHazardRecognizer970(*DAG);
140   }
141 
142   return new ScoreboardHazardRecognizer(II, DAG);
143 }
144 
145 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
146                                        const MachineInstr &MI,
147                                        unsigned *PredCost) const {
148   if (!ItinData || UseOldLatencyCalc)
149     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
150 
151   // The default implementation of getInstrLatency calls getStageLatency, but
152   // getStageLatency does not do the right thing for us. While we have
153   // itinerary, most cores are fully pipelined, and so the itineraries only
154   // express the first part of the pipeline, not every stage. Instead, we need
155   // to use the listed output operand cycle number (using operand 0 here, which
156   // is an output).
157 
158   unsigned Latency = 1;
159   unsigned DefClass = MI.getDesc().getSchedClass();
160   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
161     const MachineOperand &MO = MI.getOperand(i);
162     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
163       continue;
164 
165     int Cycle = ItinData->getOperandCycle(DefClass, i);
166     if (Cycle < 0)
167       continue;
168 
169     Latency = std::max(Latency, (unsigned) Cycle);
170   }
171 
172   return Latency;
173 }
174 
175 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
176                                     const MachineInstr &DefMI, unsigned DefIdx,
177                                     const MachineInstr &UseMI,
178                                     unsigned UseIdx) const {
179   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
180                                                    UseMI, UseIdx);
181 
182   if (!DefMI.getParent())
183     return Latency;
184 
185   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
186   Register Reg = DefMO.getReg();
187 
188   bool IsRegCR;
189   if (Register::isVirtualRegister(Reg)) {
190     const MachineRegisterInfo *MRI =
191         &DefMI.getParent()->getParent()->getRegInfo();
192     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
193               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
194   } else {
195     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
196               PPC::CRBITRCRegClass.contains(Reg);
197   }
198 
199   if (UseMI.isBranch() && IsRegCR) {
200     if (Latency < 0)
201       Latency = getInstrLatency(ItinData, DefMI);
202 
203     // On some cores, there is an additional delay between writing to a condition
204     // register, and using it from a branch.
205     unsigned Directive = Subtarget.getDarwinDirective();
206     switch (Directive) {
207     default: break;
208     case PPC::DIR_7400:
209     case PPC::DIR_750:
210     case PPC::DIR_970:
211     case PPC::DIR_E5500:
212     case PPC::DIR_PWR4:
213     case PPC::DIR_PWR5:
214     case PPC::DIR_PWR5X:
215     case PPC::DIR_PWR6:
216     case PPC::DIR_PWR6X:
217     case PPC::DIR_PWR7:
218     case PPC::DIR_PWR8:
219     // FIXME: Is this needed for POWER9?
220       Latency += 2;
221       break;
222     }
223   }
224 
225   return Latency;
226 }
227 
228 // This function does not list all associative and commutative operations, but
229 // only those worth feeding through the machine combiner in an attempt to
230 // reduce the critical path. Mostly, this means floating-point operations,
231 // because they have high latencies (compared to other operations, such and
232 // and/or, which are also associative and commutative, but have low latencies).
233 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
234   switch (Inst.getOpcode()) {
235   // FP Add:
236   case PPC::FADD:
237   case PPC::FADDS:
238   // FP Multiply:
239   case PPC::FMUL:
240   case PPC::FMULS:
241   // Altivec Add:
242   case PPC::VADDFP:
243   // VSX Add:
244   case PPC::XSADDDP:
245   case PPC::XVADDDP:
246   case PPC::XVADDSP:
247   case PPC::XSADDSP:
248   // VSX Multiply:
249   case PPC::XSMULDP:
250   case PPC::XVMULDP:
251   case PPC::XVMULSP:
252   case PPC::XSMULSP:
253   // QPX Add:
254   case PPC::QVFADD:
255   case PPC::QVFADDS:
256   case PPC::QVFADDSs:
257   // QPX Multiply:
258   case PPC::QVFMUL:
259   case PPC::QVFMULS:
260   case PPC::QVFMULSs:
261     return true;
262   default:
263     return false;
264   }
265 }
266 
267 bool PPCInstrInfo::getMachineCombinerPatterns(
268     MachineInstr &Root,
269     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
270   // Using the machine combiner in this way is potentially expensive, so
271   // restrict to when aggressive optimizations are desired.
272   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
273     return false;
274 
275   // FP reassociation is only legal when we don't need strict IEEE semantics.
276   if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
277     return false;
278 
279   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
280 }
281 
282 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
283 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
284                                          unsigned &SrcReg, unsigned &DstReg,
285                                          unsigned &SubIdx) const {
286   switch (MI.getOpcode()) {
287   default: return false;
288   case PPC::EXTSW:
289   case PPC::EXTSW_32:
290   case PPC::EXTSW_32_64:
291     SrcReg = MI.getOperand(1).getReg();
292     DstReg = MI.getOperand(0).getReg();
293     SubIdx = PPC::sub_32;
294     return true;
295   }
296 }
297 
298 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
299                                            int &FrameIndex) const {
300   unsigned Opcode = MI.getOpcode();
301   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
302   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
303 
304   if (End != std::find(OpcodesForSpill, End, Opcode)) {
305     // Check for the operands added by addFrameReference (the immediate is the
306     // offset which defaults to 0).
307     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
308         MI.getOperand(2).isFI()) {
309       FrameIndex = MI.getOperand(2).getIndex();
310       return MI.getOperand(0).getReg();
311     }
312   }
313   return 0;
314 }
315 
316 // For opcodes with the ReMaterializable flag set, this function is called to
317 // verify the instruction is really rematable.
318 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
319                                                      AliasAnalysis *AA) const {
320   switch (MI.getOpcode()) {
321   default:
322     // This function should only be called for opcodes with the ReMaterializable
323     // flag set.
324     llvm_unreachable("Unknown rematerializable operation!");
325     break;
326   case PPC::LI:
327   case PPC::LI8:
328   case PPC::LIS:
329   case PPC::LIS8:
330   case PPC::QVGPCI:
331   case PPC::ADDIStocHA8:
332   case PPC::ADDItocL:
333   case PPC::LOAD_STACK_GUARD:
334   case PPC::XXLXORz:
335   case PPC::XXLXORspz:
336   case PPC::XXLXORdpz:
337   case PPC::XXLEQVOnes:
338   case PPC::V_SET0B:
339   case PPC::V_SET0H:
340   case PPC::V_SET0:
341   case PPC::V_SETALLONESB:
342   case PPC::V_SETALLONESH:
343   case PPC::V_SETALLONES:
344   case PPC::CRSET:
345   case PPC::CRUNSET:
346     return true;
347   }
348   return false;
349 }
350 
351 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
352                                           int &FrameIndex) const {
353   unsigned Opcode = MI.getOpcode();
354   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
355   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
356 
357   if (End != std::find(OpcodesForSpill, End, Opcode)) {
358     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
359         MI.getOperand(2).isFI()) {
360       FrameIndex = MI.getOperand(2).getIndex();
361       return MI.getOperand(0).getReg();
362     }
363   }
364   return 0;
365 }
366 
367 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
368                                                    unsigned OpIdx1,
369                                                    unsigned OpIdx2) const {
370   MachineFunction &MF = *MI.getParent()->getParent();
371 
372   // Normal instructions can be commuted the obvious way.
373   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
374     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
375   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
376   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
377   // changing the relative order of the mask operands might change what happens
378   // to the high-bits of the mask (and, thus, the result).
379 
380   // Cannot commute if it has a non-zero rotate count.
381   if (MI.getOperand(3).getImm() != 0)
382     return nullptr;
383 
384   // If we have a zero rotate count, we have:
385   //   M = mask(MB,ME)
386   //   Op0 = (Op1 & ~M) | (Op2 & M)
387   // Change this to:
388   //   M = mask((ME+1)&31, (MB-1)&31)
389   //   Op0 = (Op2 & ~M) | (Op1 & M)
390 
391   // Swap op1/op2
392   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
393          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
394   Register Reg0 = MI.getOperand(0).getReg();
395   Register Reg1 = MI.getOperand(1).getReg();
396   Register Reg2 = MI.getOperand(2).getReg();
397   unsigned SubReg1 = MI.getOperand(1).getSubReg();
398   unsigned SubReg2 = MI.getOperand(2).getSubReg();
399   bool Reg1IsKill = MI.getOperand(1).isKill();
400   bool Reg2IsKill = MI.getOperand(2).isKill();
401   bool ChangeReg0 = false;
402   // If machine instrs are no longer in two-address forms, update
403   // destination register as well.
404   if (Reg0 == Reg1) {
405     // Must be two address instruction!
406     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
407            "Expecting a two-address instruction!");
408     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
409     Reg2IsKill = false;
410     ChangeReg0 = true;
411   }
412 
413   // Masks.
414   unsigned MB = MI.getOperand(4).getImm();
415   unsigned ME = MI.getOperand(5).getImm();
416 
417   // We can't commute a trivial mask (there is no way to represent an all-zero
418   // mask).
419   if (MB == 0 && ME == 31)
420     return nullptr;
421 
422   if (NewMI) {
423     // Create a new instruction.
424     Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
425     bool Reg0IsDead = MI.getOperand(0).isDead();
426     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
427         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
428         .addReg(Reg2, getKillRegState(Reg2IsKill))
429         .addReg(Reg1, getKillRegState(Reg1IsKill))
430         .addImm((ME + 1) & 31)
431         .addImm((MB - 1) & 31);
432   }
433 
434   if (ChangeReg0) {
435     MI.getOperand(0).setReg(Reg2);
436     MI.getOperand(0).setSubReg(SubReg2);
437   }
438   MI.getOperand(2).setReg(Reg1);
439   MI.getOperand(1).setReg(Reg2);
440   MI.getOperand(2).setSubReg(SubReg1);
441   MI.getOperand(1).setSubReg(SubReg2);
442   MI.getOperand(2).setIsKill(Reg1IsKill);
443   MI.getOperand(1).setIsKill(Reg2IsKill);
444 
445   // Swap the mask around.
446   MI.getOperand(4).setImm((ME + 1) & 31);
447   MI.getOperand(5).setImm((MB - 1) & 31);
448   return &MI;
449 }
450 
451 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
452                                          unsigned &SrcOpIdx1,
453                                          unsigned &SrcOpIdx2) const {
454   // For VSX A-Type FMA instructions, it is the first two operands that can be
455   // commuted, however, because the non-encoded tied input operand is listed
456   // first, the operands to swap are actually the second and third.
457 
458   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
459   if (AltOpc == -1)
460     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
461 
462   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
463   // and SrcOpIdx2.
464   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
465 }
466 
467 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
468                               MachineBasicBlock::iterator MI) const {
469   // This function is used for scheduling, and the nop wanted here is the type
470   // that terminates dispatch groups on the POWER cores.
471   unsigned Directive = Subtarget.getDarwinDirective();
472   unsigned Opcode;
473   switch (Directive) {
474   default:            Opcode = PPC::NOP; break;
475   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
476   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
477   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
478   // FIXME: Update when POWER9 scheduling model is ready.
479   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
480   }
481 
482   DebugLoc DL;
483   BuildMI(MBB, MI, DL, get(Opcode));
484 }
485 
486 /// Return the noop instruction to use for a noop.
487 void PPCInstrInfo::getNoop(MCInst &NopInst) const {
488   NopInst.setOpcode(PPC::NOP);
489 }
490 
491 // Branch analysis.
492 // Note: If the condition register is set to CTR or CTR8 then this is a
493 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
494 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
495                                  MachineBasicBlock *&TBB,
496                                  MachineBasicBlock *&FBB,
497                                  SmallVectorImpl<MachineOperand> &Cond,
498                                  bool AllowModify) const {
499   bool isPPC64 = Subtarget.isPPC64();
500 
501   // If the block has no terminators, it just falls into the block after it.
502   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
503   if (I == MBB.end())
504     return false;
505 
506   if (!isUnpredicatedTerminator(*I))
507     return false;
508 
509   if (AllowModify) {
510     // If the BB ends with an unconditional branch to the fallthrough BB,
511     // we eliminate the branch instruction.
512     if (I->getOpcode() == PPC::B &&
513         MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
514       I->eraseFromParent();
515 
516       // We update iterator after deleting the last branch.
517       I = MBB.getLastNonDebugInstr();
518       if (I == MBB.end() || !isUnpredicatedTerminator(*I))
519         return false;
520     }
521   }
522 
523   // Get the last instruction in the block.
524   MachineInstr &LastInst = *I;
525 
526   // If there is only one terminator instruction, process it.
527   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
528     if (LastInst.getOpcode() == PPC::B) {
529       if (!LastInst.getOperand(0).isMBB())
530         return true;
531       TBB = LastInst.getOperand(0).getMBB();
532       return false;
533     } else if (LastInst.getOpcode() == PPC::BCC) {
534       if (!LastInst.getOperand(2).isMBB())
535         return true;
536       // Block ends with fall-through condbranch.
537       TBB = LastInst.getOperand(2).getMBB();
538       Cond.push_back(LastInst.getOperand(0));
539       Cond.push_back(LastInst.getOperand(1));
540       return false;
541     } else if (LastInst.getOpcode() == PPC::BC) {
542       if (!LastInst.getOperand(1).isMBB())
543         return true;
544       // Block ends with fall-through condbranch.
545       TBB = LastInst.getOperand(1).getMBB();
546       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
547       Cond.push_back(LastInst.getOperand(0));
548       return false;
549     } else if (LastInst.getOpcode() == PPC::BCn) {
550       if (!LastInst.getOperand(1).isMBB())
551         return true;
552       // Block ends with fall-through condbranch.
553       TBB = LastInst.getOperand(1).getMBB();
554       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
555       Cond.push_back(LastInst.getOperand(0));
556       return false;
557     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
558                LastInst.getOpcode() == PPC::BDNZ) {
559       if (!LastInst.getOperand(0).isMBB())
560         return true;
561       if (DisableCTRLoopAnal)
562         return true;
563       TBB = LastInst.getOperand(0).getMBB();
564       Cond.push_back(MachineOperand::CreateImm(1));
565       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
566                                                true));
567       return false;
568     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
569                LastInst.getOpcode() == PPC::BDZ) {
570       if (!LastInst.getOperand(0).isMBB())
571         return true;
572       if (DisableCTRLoopAnal)
573         return true;
574       TBB = LastInst.getOperand(0).getMBB();
575       Cond.push_back(MachineOperand::CreateImm(0));
576       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
577                                                true));
578       return false;
579     }
580 
581     // Otherwise, don't know what this is.
582     return true;
583   }
584 
585   // Get the instruction before it if it's a terminator.
586   MachineInstr &SecondLastInst = *I;
587 
588   // If there are three terminators, we don't know what sort of block this is.
589   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
590     return true;
591 
592   // If the block ends with PPC::B and PPC:BCC, handle it.
593   if (SecondLastInst.getOpcode() == PPC::BCC &&
594       LastInst.getOpcode() == PPC::B) {
595     if (!SecondLastInst.getOperand(2).isMBB() ||
596         !LastInst.getOperand(0).isMBB())
597       return true;
598     TBB = SecondLastInst.getOperand(2).getMBB();
599     Cond.push_back(SecondLastInst.getOperand(0));
600     Cond.push_back(SecondLastInst.getOperand(1));
601     FBB = LastInst.getOperand(0).getMBB();
602     return false;
603   } else if (SecondLastInst.getOpcode() == PPC::BC &&
604              LastInst.getOpcode() == PPC::B) {
605     if (!SecondLastInst.getOperand(1).isMBB() ||
606         !LastInst.getOperand(0).isMBB())
607       return true;
608     TBB = SecondLastInst.getOperand(1).getMBB();
609     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
610     Cond.push_back(SecondLastInst.getOperand(0));
611     FBB = LastInst.getOperand(0).getMBB();
612     return false;
613   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
614              LastInst.getOpcode() == PPC::B) {
615     if (!SecondLastInst.getOperand(1).isMBB() ||
616         !LastInst.getOperand(0).isMBB())
617       return true;
618     TBB = SecondLastInst.getOperand(1).getMBB();
619     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
620     Cond.push_back(SecondLastInst.getOperand(0));
621     FBB = LastInst.getOperand(0).getMBB();
622     return false;
623   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
624               SecondLastInst.getOpcode() == PPC::BDNZ) &&
625              LastInst.getOpcode() == PPC::B) {
626     if (!SecondLastInst.getOperand(0).isMBB() ||
627         !LastInst.getOperand(0).isMBB())
628       return true;
629     if (DisableCTRLoopAnal)
630       return true;
631     TBB = SecondLastInst.getOperand(0).getMBB();
632     Cond.push_back(MachineOperand::CreateImm(1));
633     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
634                                              true));
635     FBB = LastInst.getOperand(0).getMBB();
636     return false;
637   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
638               SecondLastInst.getOpcode() == PPC::BDZ) &&
639              LastInst.getOpcode() == PPC::B) {
640     if (!SecondLastInst.getOperand(0).isMBB() ||
641         !LastInst.getOperand(0).isMBB())
642       return true;
643     if (DisableCTRLoopAnal)
644       return true;
645     TBB = SecondLastInst.getOperand(0).getMBB();
646     Cond.push_back(MachineOperand::CreateImm(0));
647     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
648                                              true));
649     FBB = LastInst.getOperand(0).getMBB();
650     return false;
651   }
652 
653   // If the block ends with two PPC:Bs, handle it.  The second one is not
654   // executed, so remove it.
655   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
656     if (!SecondLastInst.getOperand(0).isMBB())
657       return true;
658     TBB = SecondLastInst.getOperand(0).getMBB();
659     I = LastInst;
660     if (AllowModify)
661       I->eraseFromParent();
662     return false;
663   }
664 
665   // Otherwise, can't handle this.
666   return true;
667 }
668 
669 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
670                                     int *BytesRemoved) const {
671   assert(!BytesRemoved && "code size not handled");
672 
673   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
674   if (I == MBB.end())
675     return 0;
676 
677   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
678       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
679       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
680       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
681     return 0;
682 
683   // Remove the branch.
684   I->eraseFromParent();
685 
686   I = MBB.end();
687 
688   if (I == MBB.begin()) return 1;
689   --I;
690   if (I->getOpcode() != PPC::BCC &&
691       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
692       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
693       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
694     return 1;
695 
696   // Remove the branch.
697   I->eraseFromParent();
698   return 2;
699 }
700 
701 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
702                                     MachineBasicBlock *TBB,
703                                     MachineBasicBlock *FBB,
704                                     ArrayRef<MachineOperand> Cond,
705                                     const DebugLoc &DL,
706                                     int *BytesAdded) const {
707   // Shouldn't be a fall through.
708   assert(TBB && "insertBranch must not be told to insert a fallthrough");
709   assert((Cond.size() == 2 || Cond.size() == 0) &&
710          "PPC branch conditions have two components!");
711   assert(!BytesAdded && "code size not handled");
712 
713   bool isPPC64 = Subtarget.isPPC64();
714 
715   // One-way branch.
716   if (!FBB) {
717     if (Cond.empty())   // Unconditional branch
718       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
719     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
720       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
721                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
722                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
723     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
724       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
725     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
726       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
727     else                // Conditional branch
728       BuildMI(&MBB, DL, get(PPC::BCC))
729           .addImm(Cond[0].getImm())
730           .add(Cond[1])
731           .addMBB(TBB);
732     return 1;
733   }
734 
735   // Two-way Conditional Branch.
736   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
737     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
738                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
739                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
740   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
741     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
742   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
743     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
744   else
745     BuildMI(&MBB, DL, get(PPC::BCC))
746         .addImm(Cond[0].getImm())
747         .add(Cond[1])
748         .addMBB(TBB);
749   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
750   return 2;
751 }
752 
753 // Select analysis.
754 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
755                 ArrayRef<MachineOperand> Cond,
756                 unsigned TrueReg, unsigned FalseReg,
757                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
758   if (Cond.size() != 2)
759     return false;
760 
761   // If this is really a bdnz-like condition, then it cannot be turned into a
762   // select.
763   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
764     return false;
765 
766   // Check register classes.
767   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
768   const TargetRegisterClass *RC =
769     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
770   if (!RC)
771     return false;
772 
773   // isel is for regular integer GPRs only.
774   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
775       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
776       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
777       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
778     return false;
779 
780   // FIXME: These numbers are for the A2, how well they work for other cores is
781   // an open question. On the A2, the isel instruction has a 2-cycle latency
782   // but single-cycle throughput. These numbers are used in combination with
783   // the MispredictPenalty setting from the active SchedMachineModel.
784   CondCycles = 1;
785   TrueCycles = 1;
786   FalseCycles = 1;
787 
788   return true;
789 }
790 
791 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
792                                 MachineBasicBlock::iterator MI,
793                                 const DebugLoc &dl, unsigned DestReg,
794                                 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
795                                 unsigned FalseReg) const {
796   assert(Cond.size() == 2 &&
797          "PPC branch conditions have two components!");
798 
799   // Get the register classes.
800   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
801   const TargetRegisterClass *RC =
802     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
803   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
804 
805   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
806                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
807   assert((Is64Bit ||
808           PPC::GPRCRegClass.hasSubClassEq(RC) ||
809           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
810          "isel is for regular integer GPRs only");
811 
812   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
813   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
814 
815   unsigned SubIdx = 0;
816   bool SwapOps = false;
817   switch (SelectPred) {
818   case PPC::PRED_EQ:
819   case PPC::PRED_EQ_MINUS:
820   case PPC::PRED_EQ_PLUS:
821       SubIdx = PPC::sub_eq; SwapOps = false; break;
822   case PPC::PRED_NE:
823   case PPC::PRED_NE_MINUS:
824   case PPC::PRED_NE_PLUS:
825       SubIdx = PPC::sub_eq; SwapOps = true; break;
826   case PPC::PRED_LT:
827   case PPC::PRED_LT_MINUS:
828   case PPC::PRED_LT_PLUS:
829       SubIdx = PPC::sub_lt; SwapOps = false; break;
830   case PPC::PRED_GE:
831   case PPC::PRED_GE_MINUS:
832   case PPC::PRED_GE_PLUS:
833       SubIdx = PPC::sub_lt; SwapOps = true; break;
834   case PPC::PRED_GT:
835   case PPC::PRED_GT_MINUS:
836   case PPC::PRED_GT_PLUS:
837       SubIdx = PPC::sub_gt; SwapOps = false; break;
838   case PPC::PRED_LE:
839   case PPC::PRED_LE_MINUS:
840   case PPC::PRED_LE_PLUS:
841       SubIdx = PPC::sub_gt; SwapOps = true; break;
842   case PPC::PRED_UN:
843   case PPC::PRED_UN_MINUS:
844   case PPC::PRED_UN_PLUS:
845       SubIdx = PPC::sub_un; SwapOps = false; break;
846   case PPC::PRED_NU:
847   case PPC::PRED_NU_MINUS:
848   case PPC::PRED_NU_PLUS:
849       SubIdx = PPC::sub_un; SwapOps = true; break;
850   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
851   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
852   }
853 
854   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
855            SecondReg = SwapOps ? TrueReg  : FalseReg;
856 
857   // The first input register of isel cannot be r0. If it is a member
858   // of a register class that can be r0, then copy it first (the
859   // register allocator should eliminate the copy).
860   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
861       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
862     const TargetRegisterClass *FirstRC =
863       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
864         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
865     unsigned OldFirstReg = FirstReg;
866     FirstReg = MRI.createVirtualRegister(FirstRC);
867     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
868       .addReg(OldFirstReg);
869   }
870 
871   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
872     .addReg(FirstReg).addReg(SecondReg)
873     .addReg(Cond[1].getReg(), 0, SubIdx);
874 }
875 
876 static unsigned getCRBitValue(unsigned CRBit) {
877   unsigned Ret = 4;
878   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
879       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
880       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
881       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
882     Ret = 3;
883   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
884       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
885       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
886       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
887     Ret = 2;
888   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
889       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
890       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
891       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
892     Ret = 1;
893   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
894       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
895       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
896       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
897     Ret = 0;
898 
899   assert(Ret != 4 && "Invalid CR bit register");
900   return Ret;
901 }
902 
903 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
904                                MachineBasicBlock::iterator I,
905                                const DebugLoc &DL, unsigned DestReg,
906                                unsigned SrcReg, bool KillSrc) const {
907   // We can end up with self copies and similar things as a result of VSX copy
908   // legalization. Promote them here.
909   const TargetRegisterInfo *TRI = &getRegisterInfo();
910   if (PPC::F8RCRegClass.contains(DestReg) &&
911       PPC::VSRCRegClass.contains(SrcReg)) {
912     unsigned SuperReg =
913       TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
914 
915     if (VSXSelfCopyCrash && SrcReg == SuperReg)
916       llvm_unreachable("nop VSX copy");
917 
918     DestReg = SuperReg;
919   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
920              PPC::VSRCRegClass.contains(DestReg)) {
921     unsigned SuperReg =
922       TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
923 
924     if (VSXSelfCopyCrash && DestReg == SuperReg)
925       llvm_unreachable("nop VSX copy");
926 
927     SrcReg = SuperReg;
928   }
929 
930   // Different class register copy
931   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
932       PPC::GPRCRegClass.contains(DestReg)) {
933     unsigned CRReg = getCRFromCRBit(SrcReg);
934     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
935     getKillRegState(KillSrc);
936     // Rotate the CR bit in the CR fields to be the least significant bit and
937     // then mask with 0x1 (MB = ME = 31).
938     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
939        .addReg(DestReg, RegState::Kill)
940        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
941        .addImm(31)
942        .addImm(31);
943     return;
944   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
945       PPC::G8RCRegClass.contains(DestReg)) {
946     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
947     getKillRegState(KillSrc);
948     return;
949   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
950       PPC::GPRCRegClass.contains(DestReg)) {
951     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
952     getKillRegState(KillSrc);
953     return;
954   } else if (PPC::G8RCRegClass.contains(SrcReg) &&
955              PPC::VSFRCRegClass.contains(DestReg)) {
956     assert(Subtarget.hasDirectMove() &&
957            "Subtarget doesn't support directmove, don't know how to copy.");
958     BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
959     NumGPRtoVSRSpill++;
960     getKillRegState(KillSrc);
961     return;
962   } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
963              PPC::G8RCRegClass.contains(DestReg)) {
964     assert(Subtarget.hasDirectMove() &&
965            "Subtarget doesn't support directmove, don't know how to copy.");
966     BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
967     getKillRegState(KillSrc);
968     return;
969   } else if (PPC::SPERCRegClass.contains(SrcReg) &&
970              PPC::GPRCRegClass.contains(DestReg)) {
971     BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
972     getKillRegState(KillSrc);
973     return;
974   } else if (PPC::GPRCRegClass.contains(SrcReg) &&
975              PPC::SPERCRegClass.contains(DestReg)) {
976     BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
977     getKillRegState(KillSrc);
978     return;
979   }
980 
981   unsigned Opc;
982   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
983     Opc = PPC::OR;
984   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
985     Opc = PPC::OR8;
986   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
987     Opc = PPC::FMR;
988   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
989     Opc = PPC::MCRF;
990   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
991     Opc = PPC::VOR;
992   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
993     // There are two different ways this can be done:
994     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
995     //      issue in VSU pipeline 0.
996     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
997     //      can go to either pipeline.
998     // We'll always use xxlor here, because in practically all cases where
999     // copies are generated, they are close enough to some use that the
1000     // lower-latency form is preferable.
1001     Opc = PPC::XXLOR;
1002   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1003            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1004     Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1005   else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
1006     Opc = PPC::QVFMR;
1007   else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
1008     Opc = PPC::QVFMRs;
1009   else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
1010     Opc = PPC::QVFMRb;
1011   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1012     Opc = PPC::CROR;
1013   else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1014     Opc = PPC::EVOR;
1015   else
1016     llvm_unreachable("Impossible reg-to-reg copy");
1017 
1018   const MCInstrDesc &MCID = get(Opc);
1019   if (MCID.getNumOperands() == 3)
1020     BuildMI(MBB, I, DL, MCID, DestReg)
1021       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1022   else
1023     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1024 }
1025 
1026 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg,
1027                                               const TargetRegisterClass *RC)
1028                                               const {
1029   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1030   int OpcodeIndex = 0;
1031 
1032   if (RC != nullptr) {
1033     if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1034         PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1035       OpcodeIndex = SOK_Int4Spill;
1036     } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1037                PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1038       OpcodeIndex = SOK_Int8Spill;
1039     } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1040       OpcodeIndex = SOK_Float8Spill;
1041     } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1042       OpcodeIndex = SOK_Float4Spill;
1043     } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1044       OpcodeIndex = SOK_SPESpill;
1045     } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1046       OpcodeIndex = SOK_CRSpill;
1047     } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1048       OpcodeIndex = SOK_CRBitSpill;
1049     } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1050       OpcodeIndex = SOK_VRVectorSpill;
1051     } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1052       OpcodeIndex = SOK_VSXVectorSpill;
1053     } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1054       OpcodeIndex = SOK_VectorFloat8Spill;
1055     } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1056       OpcodeIndex = SOK_VectorFloat4Spill;
1057     } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1058       OpcodeIndex = SOK_VRSaveSpill;
1059     } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1060       OpcodeIndex = SOK_QuadFloat8Spill;
1061     } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1062       OpcodeIndex = SOK_QuadFloat4Spill;
1063     } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1064       OpcodeIndex = SOK_QuadBitSpill;
1065     } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1066       OpcodeIndex = SOK_SpillToVSR;
1067     } else {
1068       llvm_unreachable("Unknown regclass!");
1069     }
1070   } else {
1071     if (PPC::GPRCRegClass.contains(Reg) ||
1072         PPC::GPRC_NOR0RegClass.contains(Reg)) {
1073       OpcodeIndex = SOK_Int4Spill;
1074     } else if (PPC::G8RCRegClass.contains(Reg) ||
1075                PPC::G8RC_NOX0RegClass.contains(Reg)) {
1076       OpcodeIndex = SOK_Int8Spill;
1077     } else if (PPC::F8RCRegClass.contains(Reg)) {
1078       OpcodeIndex = SOK_Float8Spill;
1079     } else if (PPC::F4RCRegClass.contains(Reg)) {
1080       OpcodeIndex = SOK_Float4Spill;
1081     } else if (PPC::SPERCRegClass.contains(Reg)) {
1082       OpcodeIndex = SOK_SPESpill;
1083     } else if (PPC::CRRCRegClass.contains(Reg)) {
1084       OpcodeIndex = SOK_CRSpill;
1085     } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1086       OpcodeIndex = SOK_CRBitSpill;
1087     } else if (PPC::VRRCRegClass.contains(Reg)) {
1088       OpcodeIndex = SOK_VRVectorSpill;
1089     } else if (PPC::VSRCRegClass.contains(Reg)) {
1090       OpcodeIndex = SOK_VSXVectorSpill;
1091     } else if (PPC::VSFRCRegClass.contains(Reg)) {
1092       OpcodeIndex = SOK_VectorFloat8Spill;
1093     } else if (PPC::VSSRCRegClass.contains(Reg)) {
1094       OpcodeIndex = SOK_VectorFloat4Spill;
1095     } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1096       OpcodeIndex = SOK_VRSaveSpill;
1097     } else if (PPC::QFRCRegClass.contains(Reg)) {
1098       OpcodeIndex = SOK_QuadFloat8Spill;
1099     } else if (PPC::QSRCRegClass.contains(Reg)) {
1100       OpcodeIndex = SOK_QuadFloat4Spill;
1101     } else if (PPC::QBRCRegClass.contains(Reg)) {
1102       OpcodeIndex = SOK_QuadBitSpill;
1103     } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1104       OpcodeIndex = SOK_SpillToVSR;
1105     } else {
1106       llvm_unreachable("Unknown regclass!");
1107     }
1108   }
1109   return OpcodesForSpill[OpcodeIndex];
1110 }
1111 
1112 unsigned
1113 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg,
1114                                     const TargetRegisterClass *RC) const {
1115   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1116   int OpcodeIndex = 0;
1117 
1118   if (RC != nullptr) {
1119     if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1120         PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1121       OpcodeIndex = SOK_Int4Spill;
1122     } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1123                PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1124       OpcodeIndex = SOK_Int8Spill;
1125     } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1126       OpcodeIndex = SOK_Float8Spill;
1127     } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1128       OpcodeIndex = SOK_Float4Spill;
1129     } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1130       OpcodeIndex = SOK_SPESpill;
1131     } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1132       OpcodeIndex = SOK_CRSpill;
1133     } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1134       OpcodeIndex = SOK_CRBitSpill;
1135     } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1136       OpcodeIndex = SOK_VRVectorSpill;
1137     } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1138       OpcodeIndex = SOK_VSXVectorSpill;
1139     } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1140       OpcodeIndex = SOK_VectorFloat8Spill;
1141     } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1142       OpcodeIndex = SOK_VectorFloat4Spill;
1143     } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1144       OpcodeIndex = SOK_VRSaveSpill;
1145     } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1146       OpcodeIndex = SOK_QuadFloat8Spill;
1147     } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1148       OpcodeIndex = SOK_QuadFloat4Spill;
1149     } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1150       OpcodeIndex = SOK_QuadBitSpill;
1151     } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1152       OpcodeIndex = SOK_SpillToVSR;
1153     } else {
1154       llvm_unreachable("Unknown regclass!");
1155     }
1156   } else {
1157     if (PPC::GPRCRegClass.contains(Reg) ||
1158         PPC::GPRC_NOR0RegClass.contains(Reg)) {
1159       OpcodeIndex = SOK_Int4Spill;
1160     } else if (PPC::G8RCRegClass.contains(Reg) ||
1161                PPC::G8RC_NOX0RegClass.contains(Reg)) {
1162       OpcodeIndex = SOK_Int8Spill;
1163     } else if (PPC::F8RCRegClass.contains(Reg)) {
1164       OpcodeIndex = SOK_Float8Spill;
1165     } else if (PPC::F4RCRegClass.contains(Reg)) {
1166       OpcodeIndex = SOK_Float4Spill;
1167     } else if (PPC::SPERCRegClass.contains(Reg)) {
1168       OpcodeIndex = SOK_SPESpill;
1169     } else if (PPC::CRRCRegClass.contains(Reg)) {
1170       OpcodeIndex = SOK_CRSpill;
1171     } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1172       OpcodeIndex = SOK_CRBitSpill;
1173     } else if (PPC::VRRCRegClass.contains(Reg)) {
1174       OpcodeIndex = SOK_VRVectorSpill;
1175     } else if (PPC::VSRCRegClass.contains(Reg)) {
1176       OpcodeIndex = SOK_VSXVectorSpill;
1177     } else if (PPC::VSFRCRegClass.contains(Reg)) {
1178       OpcodeIndex = SOK_VectorFloat8Spill;
1179     } else if (PPC::VSSRCRegClass.contains(Reg)) {
1180       OpcodeIndex = SOK_VectorFloat4Spill;
1181     } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1182       OpcodeIndex = SOK_VRSaveSpill;
1183     } else if (PPC::QFRCRegClass.contains(Reg)) {
1184       OpcodeIndex = SOK_QuadFloat8Spill;
1185     } else if (PPC::QSRCRegClass.contains(Reg)) {
1186       OpcodeIndex = SOK_QuadFloat4Spill;
1187     } else if (PPC::QBRCRegClass.contains(Reg)) {
1188       OpcodeIndex = SOK_QuadBitSpill;
1189     } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1190       OpcodeIndex = SOK_SpillToVSR;
1191     } else {
1192       llvm_unreachable("Unknown regclass!");
1193     }
1194   }
1195   return OpcodesForSpill[OpcodeIndex];
1196 }
1197 
1198 void PPCInstrInfo::StoreRegToStackSlot(
1199     MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1200     const TargetRegisterClass *RC,
1201     SmallVectorImpl<MachineInstr *> &NewMIs) const {
1202   unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC);
1203   DebugLoc DL;
1204 
1205   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1206   FuncInfo->setHasSpills();
1207 
1208   NewMIs.push_back(addFrameReference(
1209       BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1210       FrameIdx));
1211 
1212   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1213       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1214     FuncInfo->setSpillsCR();
1215 
1216   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1217     FuncInfo->setSpillsVRSAVE();
1218 
1219   if (isXFormMemOp(Opcode))
1220     FuncInfo->setHasNonRISpills();
1221 }
1222 
1223 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1224                                        MachineBasicBlock::iterator MI,
1225                                        unsigned SrcReg, bool isKill,
1226                                        int FrameIdx,
1227                                        const TargetRegisterClass *RC,
1228                                        const TargetRegisterInfo *TRI) const {
1229   MachineFunction &MF = *MBB.getParent();
1230   SmallVector<MachineInstr *, 4> NewMIs;
1231 
1232   // We need to avoid a situation in which the value from a VRRC register is
1233   // spilled using an Altivec instruction and reloaded into a VSRC register
1234   // using a VSX instruction. The issue with this is that the VSX
1235   // load/store instructions swap the doublewords in the vector and the Altivec
1236   // ones don't. The register classes on the spill/reload may be different if
1237   // the register is defined using an Altivec instruction and is then used by a
1238   // VSX instruction.
1239   RC = updatedRC(RC);
1240 
1241   StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1242 
1243   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1244     MBB.insert(MI, NewMIs[i]);
1245 
1246   const MachineFrameInfo &MFI = MF.getFrameInfo();
1247   MachineMemOperand *MMO = MF.getMachineMemOperand(
1248       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1249       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1250       MFI.getObjectAlignment(FrameIdx));
1251   NewMIs.back()->addMemOperand(MF, MMO);
1252 }
1253 
1254 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1255                                         unsigned DestReg, int FrameIdx,
1256                                         const TargetRegisterClass *RC,
1257                                         SmallVectorImpl<MachineInstr *> &NewMIs)
1258                                         const {
1259   unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC);
1260   NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1261                                      FrameIdx));
1262   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1263 
1264   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1265       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1266     FuncInfo->setSpillsCR();
1267 
1268   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1269     FuncInfo->setSpillsVRSAVE();
1270 
1271   if (isXFormMemOp(Opcode))
1272     FuncInfo->setHasNonRISpills();
1273 }
1274 
1275 void
1276 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1277                                    MachineBasicBlock::iterator MI,
1278                                    unsigned DestReg, int FrameIdx,
1279                                    const TargetRegisterClass *RC,
1280                                    const TargetRegisterInfo *TRI) const {
1281   MachineFunction &MF = *MBB.getParent();
1282   SmallVector<MachineInstr*, 4> NewMIs;
1283   DebugLoc DL;
1284   if (MI != MBB.end()) DL = MI->getDebugLoc();
1285 
1286   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1287   FuncInfo->setHasSpills();
1288 
1289   // We need to avoid a situation in which the value from a VRRC register is
1290   // spilled using an Altivec instruction and reloaded into a VSRC register
1291   // using a VSX instruction. The issue with this is that the VSX
1292   // load/store instructions swap the doublewords in the vector and the Altivec
1293   // ones don't. The register classes on the spill/reload may be different if
1294   // the register is defined using an Altivec instruction and is then used by a
1295   // VSX instruction.
1296   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
1297     RC = &PPC::VSRCRegClass;
1298 
1299   LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
1300 
1301   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1302     MBB.insert(MI, NewMIs[i]);
1303 
1304   const MachineFrameInfo &MFI = MF.getFrameInfo();
1305   MachineMemOperand *MMO = MF.getMachineMemOperand(
1306       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1307       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1308       MFI.getObjectAlignment(FrameIdx));
1309   NewMIs.back()->addMemOperand(MF, MMO);
1310 }
1311 
1312 bool PPCInstrInfo::
1313 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1314   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1315   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1316     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1317   else
1318     // Leave the CR# the same, but invert the condition.
1319     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1320   return false;
1321 }
1322 
1323 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1324                                  unsigned Reg, MachineRegisterInfo *MRI) const {
1325   // For some instructions, it is legal to fold ZERO into the RA register field.
1326   // A zero immediate should always be loaded with a single li.
1327   unsigned DefOpc = DefMI.getOpcode();
1328   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1329     return false;
1330   if (!DefMI.getOperand(1).isImm())
1331     return false;
1332   if (DefMI.getOperand(1).getImm() != 0)
1333     return false;
1334 
1335   // Note that we cannot here invert the arguments of an isel in order to fold
1336   // a ZERO into what is presented as the second argument. All we have here
1337   // is the condition bit, and that might come from a CR-logical bit operation.
1338 
1339   const MCInstrDesc &UseMCID = UseMI.getDesc();
1340 
1341   // Only fold into real machine instructions.
1342   if (UseMCID.isPseudo())
1343     return false;
1344 
1345   unsigned UseIdx;
1346   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1347     if (UseMI.getOperand(UseIdx).isReg() &&
1348         UseMI.getOperand(UseIdx).getReg() == Reg)
1349       break;
1350 
1351   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1352   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1353 
1354   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1355 
1356   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1357   // register (which might also be specified as a pointer class kind).
1358   if (UseInfo->isLookupPtrRegClass()) {
1359     if (UseInfo->RegClass /* Kind */ != 1)
1360       return false;
1361   } else {
1362     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1363         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1364       return false;
1365   }
1366 
1367   // Make sure this is not tied to an output register (or otherwise
1368   // constrained). This is true for ST?UX registers, for example, which
1369   // are tied to their output registers.
1370   if (UseInfo->Constraints != 0)
1371     return false;
1372 
1373   unsigned ZeroReg;
1374   if (UseInfo->isLookupPtrRegClass()) {
1375     bool isPPC64 = Subtarget.isPPC64();
1376     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1377   } else {
1378     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1379               PPC::ZERO8 : PPC::ZERO;
1380   }
1381 
1382   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1383   UseMI.getOperand(UseIdx).setReg(ZeroReg);
1384 
1385   if (DeleteDef)
1386     DefMI.eraseFromParent();
1387 
1388   return true;
1389 }
1390 
1391 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1392   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1393        I != IE; ++I)
1394     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1395       return true;
1396   return false;
1397 }
1398 
1399 // We should make sure that, if we're going to predicate both sides of a
1400 // condition (a diamond), that both sides don't define the counter register. We
1401 // can predicate counter-decrement-based branches, but while that predicates
1402 // the branching, it does not predicate the counter decrement. If we tried to
1403 // merge the triangle into one predicated block, we'd decrement the counter
1404 // twice.
1405 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1406                      unsigned NumT, unsigned ExtraT,
1407                      MachineBasicBlock &FMBB,
1408                      unsigned NumF, unsigned ExtraF,
1409                      BranchProbability Probability) const {
1410   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1411 }
1412 
1413 
1414 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1415   // The predicated branches are identified by their type, not really by the
1416   // explicit presence of a predicate. Furthermore, some of them can be
1417   // predicated more than once. Because if conversion won't try to predicate
1418   // any instruction which already claims to be predicated (by returning true
1419   // here), always return false. In doing so, we let isPredicable() be the
1420   // final word on whether not the instruction can be (further) predicated.
1421 
1422   return false;
1423 }
1424 
1425 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1426   if (!MI.isTerminator())
1427     return false;
1428 
1429   // Conditional branch is a special case.
1430   if (MI.isBranch() && !MI.isBarrier())
1431     return true;
1432 
1433   return !isPredicated(MI);
1434 }
1435 
1436 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1437                                         ArrayRef<MachineOperand> Pred) const {
1438   unsigned OpC = MI.getOpcode();
1439   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1440     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1441       bool isPPC64 = Subtarget.isPPC64();
1442       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1443                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1444     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1445       MI.setDesc(get(PPC::BCLR));
1446       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1447     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1448       MI.setDesc(get(PPC::BCLRn));
1449       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1450     } else {
1451       MI.setDesc(get(PPC::BCCLR));
1452       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1453           .addImm(Pred[0].getImm())
1454           .add(Pred[1]);
1455     }
1456 
1457     return true;
1458   } else if (OpC == PPC::B) {
1459     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1460       bool isPPC64 = Subtarget.isPPC64();
1461       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1462                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1463     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1464       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1465       MI.RemoveOperand(0);
1466 
1467       MI.setDesc(get(PPC::BC));
1468       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1469           .add(Pred[1])
1470           .addMBB(MBB);
1471     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1472       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1473       MI.RemoveOperand(0);
1474 
1475       MI.setDesc(get(PPC::BCn));
1476       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1477           .add(Pred[1])
1478           .addMBB(MBB);
1479     } else {
1480       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1481       MI.RemoveOperand(0);
1482 
1483       MI.setDesc(get(PPC::BCC));
1484       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1485           .addImm(Pred[0].getImm())
1486           .add(Pred[1])
1487           .addMBB(MBB);
1488     }
1489 
1490     return true;
1491   } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
1492              OpC == PPC::BCTRL8) {
1493     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1494       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1495 
1496     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1497     bool isPPC64 = Subtarget.isPPC64();
1498 
1499     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1500       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1501                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1502       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1503       return true;
1504     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1505       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1506                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1507       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1508       return true;
1509     }
1510 
1511     MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1512                            : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1513     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1514         .addImm(Pred[0].getImm())
1515         .add(Pred[1]);
1516     return true;
1517   }
1518 
1519   return false;
1520 }
1521 
1522 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1523                                      ArrayRef<MachineOperand> Pred2) const {
1524   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1525   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1526 
1527   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1528     return false;
1529   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1530     return false;
1531 
1532   // P1 can only subsume P2 if they test the same condition register.
1533   if (Pred1[1].getReg() != Pred2[1].getReg())
1534     return false;
1535 
1536   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1537   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1538 
1539   if (P1 == P2)
1540     return true;
1541 
1542   // Does P1 subsume P2, e.g. GE subsumes GT.
1543   if (P1 == PPC::PRED_LE &&
1544       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1545     return true;
1546   if (P1 == PPC::PRED_GE &&
1547       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1548     return true;
1549 
1550   return false;
1551 }
1552 
1553 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1554                                     std::vector<MachineOperand> &Pred) const {
1555   // Note: At the present time, the contents of Pred from this function is
1556   // unused by IfConversion. This implementation follows ARM by pushing the
1557   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1558   // predicate, instructions defining CTR or CTR8 are also included as
1559   // predicate-defining instructions.
1560 
1561   const TargetRegisterClass *RCs[] =
1562     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1563       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1564 
1565   bool Found = false;
1566   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1567     const MachineOperand &MO = MI.getOperand(i);
1568     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1569       const TargetRegisterClass *RC = RCs[c];
1570       if (MO.isReg()) {
1571         if (MO.isDef() && RC->contains(MO.getReg())) {
1572           Pred.push_back(MO);
1573           Found = true;
1574         }
1575       } else if (MO.isRegMask()) {
1576         for (TargetRegisterClass::iterator I = RC->begin(),
1577              IE = RC->end(); I != IE; ++I)
1578           if (MO.clobbersPhysReg(*I)) {
1579             Pred.push_back(MO);
1580             Found = true;
1581           }
1582       }
1583     }
1584   }
1585 
1586   return Found;
1587 }
1588 
1589 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const {
1590   unsigned OpC = MI.getOpcode();
1591   switch (OpC) {
1592   default:
1593     return false;
1594   case PPC::B:
1595   case PPC::BLR:
1596   case PPC::BLR8:
1597   case PPC::BCTR:
1598   case PPC::BCTR8:
1599   case PPC::BCTRL:
1600   case PPC::BCTRL8:
1601     return true;
1602   }
1603 }
1604 
1605 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1606                                   unsigned &SrcReg2, int &Mask,
1607                                   int &Value) const {
1608   unsigned Opc = MI.getOpcode();
1609 
1610   switch (Opc) {
1611   default: return false;
1612   case PPC::CMPWI:
1613   case PPC::CMPLWI:
1614   case PPC::CMPDI:
1615   case PPC::CMPLDI:
1616     SrcReg = MI.getOperand(1).getReg();
1617     SrcReg2 = 0;
1618     Value = MI.getOperand(2).getImm();
1619     Mask = 0xFFFF;
1620     return true;
1621   case PPC::CMPW:
1622   case PPC::CMPLW:
1623   case PPC::CMPD:
1624   case PPC::CMPLD:
1625   case PPC::FCMPUS:
1626   case PPC::FCMPUD:
1627     SrcReg = MI.getOperand(1).getReg();
1628     SrcReg2 = MI.getOperand(2).getReg();
1629     Value = 0;
1630     Mask = 0;
1631     return true;
1632   }
1633 }
1634 
1635 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1636                                         unsigned SrcReg2, int Mask, int Value,
1637                                         const MachineRegisterInfo *MRI) const {
1638   if (DisableCmpOpt)
1639     return false;
1640 
1641   int OpC = CmpInstr.getOpcode();
1642   Register CRReg = CmpInstr.getOperand(0).getReg();
1643 
1644   // FP record forms set CR1 based on the exception status bits, not a
1645   // comparison with zero.
1646   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1647     return false;
1648 
1649   const TargetRegisterInfo *TRI = &getRegisterInfo();
1650   // The record forms set the condition register based on a signed comparison
1651   // with zero (so says the ISA manual). This is not as straightforward as it
1652   // seems, however, because this is always a 64-bit comparison on PPC64, even
1653   // for instructions that are 32-bit in nature (like slw for example).
1654   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1655   // for equality checks (as those don't depend on the sign). On PPC64,
1656   // we are restricted to equality for unsigned 64-bit comparisons and for
1657   // signed 32-bit comparisons the applicability is more restricted.
1658   bool isPPC64 = Subtarget.isPPC64();
1659   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1660   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1661   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1662 
1663   // Look through copies unless that gets us to a physical register.
1664   unsigned ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
1665   if (Register::isVirtualRegister(ActualSrc))
1666     SrcReg = ActualSrc;
1667 
1668   // Get the unique definition of SrcReg.
1669   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1670   if (!MI) return false;
1671 
1672   bool equalityOnly = false;
1673   bool noSub = false;
1674   if (isPPC64) {
1675     if (is32BitSignedCompare) {
1676       // We can perform this optimization only if MI is sign-extending.
1677       if (isSignExtended(*MI))
1678         noSub = true;
1679       else
1680         return false;
1681     } else if (is32BitUnsignedCompare) {
1682       // We can perform this optimization, equality only, if MI is
1683       // zero-extending.
1684       if (isZeroExtended(*MI)) {
1685         noSub = true;
1686         equalityOnly = true;
1687       } else
1688         return false;
1689     } else
1690       equalityOnly = is64BitUnsignedCompare;
1691   } else
1692     equalityOnly = is32BitUnsignedCompare;
1693 
1694   if (equalityOnly) {
1695     // We need to check the uses of the condition register in order to reject
1696     // non-equality comparisons.
1697     for (MachineRegisterInfo::use_instr_iterator
1698          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1699          I != IE; ++I) {
1700       MachineInstr *UseMI = &*I;
1701       if (UseMI->getOpcode() == PPC::BCC) {
1702         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1703         unsigned PredCond = PPC::getPredicateCondition(Pred);
1704         // We ignore hint bits when checking for non-equality comparisons.
1705         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
1706           return false;
1707       } else if (UseMI->getOpcode() == PPC::ISEL ||
1708                  UseMI->getOpcode() == PPC::ISEL8) {
1709         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1710         if (SubIdx != PPC::sub_eq)
1711           return false;
1712       } else
1713         return false;
1714     }
1715   }
1716 
1717   MachineBasicBlock::iterator I = CmpInstr;
1718 
1719   // Scan forward to find the first use of the compare.
1720   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1721        ++I) {
1722     bool FoundUse = false;
1723     for (MachineRegisterInfo::use_instr_iterator
1724          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
1725          J != JE; ++J)
1726       if (&*J == &*I) {
1727         FoundUse = true;
1728         break;
1729       }
1730 
1731     if (FoundUse)
1732       break;
1733   }
1734 
1735   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1736   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1737 
1738   // There are two possible candidates which can be changed to set CR[01].
1739   // One is MI, the other is a SUB instruction.
1740   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1741   MachineInstr *Sub = nullptr;
1742   if (SrcReg2 != 0)
1743     // MI is not a candidate for CMPrr.
1744     MI = nullptr;
1745   // FIXME: Conservatively refuse to convert an instruction which isn't in the
1746   // same BB as the comparison. This is to allow the check below to avoid calls
1747   // (and other explicit clobbers); instead we should really check for these
1748   // more explicitly (in at least a few predecessors).
1749   else if (MI->getParent() != CmpInstr.getParent())
1750     return false;
1751   else if (Value != 0) {
1752     // The record-form instructions set CR bit based on signed comparison
1753     // against 0. We try to convert a compare against 1 or -1 into a compare
1754     // against 0 to exploit record-form instructions. For example, we change
1755     // the condition "greater than -1" into "greater than or equal to 0"
1756     // and "less than 1" into "less than or equal to 0".
1757 
1758     // Since we optimize comparison based on a specific branch condition,
1759     // we don't optimize if condition code is used by more than once.
1760     if (equalityOnly || !MRI->hasOneUse(CRReg))
1761       return false;
1762 
1763     MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
1764     if (UseMI->getOpcode() != PPC::BCC)
1765       return false;
1766 
1767     PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1768     unsigned PredCond = PPC::getPredicateCondition(Pred);
1769     unsigned PredHint = PPC::getPredicateHint(Pred);
1770     int16_t Immed = (int16_t)Value;
1771 
1772     // When modifying the condition in the predicate, we propagate hint bits
1773     // from the original predicate to the new one.
1774     if (Immed == -1 && PredCond == PPC::PRED_GT)
1775       // We convert "greater than -1" into "greater than or equal to 0",
1776       // since we are assuming signed comparison by !equalityOnly
1777       Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
1778     else if (Immed == -1 && PredCond == PPC::PRED_LE)
1779       // We convert "less than or equal to -1" into "less than 0".
1780       Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
1781     else if (Immed == 1 && PredCond == PPC::PRED_LT)
1782       // We convert "less than 1" into "less than or equal to 0".
1783       Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
1784     else if (Immed == 1 && PredCond == PPC::PRED_GE)
1785       // We convert "greater than or equal to 1" into "greater than 0".
1786       Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
1787     else
1788       return false;
1789 
1790     PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
1791   }
1792 
1793   // Search for Sub.
1794   --I;
1795 
1796   // Get ready to iterate backward from CmpInstr.
1797   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
1798 
1799   for (; I != E && !noSub; --I) {
1800     const MachineInstr &Instr = *I;
1801     unsigned IOpC = Instr.getOpcode();
1802 
1803     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
1804                              Instr.readsRegister(PPC::CR0, TRI)))
1805       // This instruction modifies or uses the record condition register after
1806       // the one we want to change. While we could do this transformation, it
1807       // would likely not be profitable. This transformation removes one
1808       // instruction, and so even forcing RA to generate one move probably
1809       // makes it unprofitable.
1810       return false;
1811 
1812     // Check whether CmpInstr can be made redundant by the current instruction.
1813     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1814          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1815         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1816         ((Instr.getOperand(1).getReg() == SrcReg &&
1817           Instr.getOperand(2).getReg() == SrcReg2) ||
1818         (Instr.getOperand(1).getReg() == SrcReg2 &&
1819          Instr.getOperand(2).getReg() == SrcReg))) {
1820       Sub = &*I;
1821       break;
1822     }
1823 
1824     if (I == B)
1825       // The 'and' is below the comparison instruction.
1826       return false;
1827   }
1828 
1829   // Return false if no candidates exist.
1830   if (!MI && !Sub)
1831     return false;
1832 
1833   // The single candidate is called MI.
1834   if (!MI) MI = Sub;
1835 
1836   int NewOpC = -1;
1837   int MIOpC = MI->getOpcode();
1838   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 ||
1839       MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8)
1840     NewOpC = MIOpC;
1841   else {
1842     NewOpC = PPC::getRecordFormOpcode(MIOpC);
1843     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1844       NewOpC = MIOpC;
1845   }
1846 
1847   // FIXME: On the non-embedded POWER architectures, only some of the record
1848   // forms are fast, and we should use only the fast ones.
1849 
1850   // The defining instruction has a record form (or is already a record
1851   // form). It is possible, however, that we'll need to reverse the condition
1852   // code of the users.
1853   if (NewOpC == -1)
1854     return false;
1855 
1856   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1857   // needs to be updated to be based on SUB.  Push the condition code
1858   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1859   // condition code of these operands will be modified.
1860   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
1861   // comparison against 0, which may modify predicate.
1862   bool ShouldSwap = false;
1863   if (Sub && Value == 0) {
1864     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1865       Sub->getOperand(2).getReg() == SrcReg;
1866 
1867     // The operands to subf are the opposite of sub, so only in the fixed-point
1868     // case, invert the order.
1869     ShouldSwap = !ShouldSwap;
1870   }
1871 
1872   if (ShouldSwap)
1873     for (MachineRegisterInfo::use_instr_iterator
1874          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1875          I != IE; ++I) {
1876       MachineInstr *UseMI = &*I;
1877       if (UseMI->getOpcode() == PPC::BCC) {
1878         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1879         unsigned PredCond = PPC::getPredicateCondition(Pred);
1880         assert((!equalityOnly ||
1881                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
1882                "Invalid predicate for equality-only optimization");
1883         (void)PredCond; // To suppress warning in release build.
1884         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1885                                 PPC::getSwappedPredicate(Pred)));
1886       } else if (UseMI->getOpcode() == PPC::ISEL ||
1887                  UseMI->getOpcode() == PPC::ISEL8) {
1888         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1889         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1890                "Invalid CR bit for equality-only optimization");
1891 
1892         if (NewSubReg == PPC::sub_lt)
1893           NewSubReg = PPC::sub_gt;
1894         else if (NewSubReg == PPC::sub_gt)
1895           NewSubReg = PPC::sub_lt;
1896 
1897         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1898                                                  NewSubReg));
1899       } else // We need to abort on a user we don't understand.
1900         return false;
1901     }
1902   assert(!(Value != 0 && ShouldSwap) &&
1903          "Non-zero immediate support and ShouldSwap"
1904          "may conflict in updating predicate");
1905 
1906   // Create a new virtual register to hold the value of the CR set by the
1907   // record-form instruction. If the instruction was not previously in
1908   // record form, then set the kill flag on the CR.
1909   CmpInstr.eraseFromParent();
1910 
1911   MachineBasicBlock::iterator MII = MI;
1912   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1913           get(TargetOpcode::COPY), CRReg)
1914     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1915 
1916   // Even if CR0 register were dead before, it is alive now since the
1917   // instruction we just built uses it.
1918   MI->clearRegisterDeads(PPC::CR0);
1919 
1920   if (MIOpC != NewOpC) {
1921     // We need to be careful here: we're replacing one instruction with
1922     // another, and we need to make sure that we get all of the right
1923     // implicit uses and defs. On the other hand, the caller may be holding
1924     // an iterator to this instruction, and so we can't delete it (this is
1925     // specifically the case if this is the instruction directly after the
1926     // compare).
1927 
1928     // Rotates are expensive instructions. If we're emitting a record-form
1929     // rotate that can just be an andi/andis, we should just emit that.
1930     if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
1931       Register GPRRes = MI->getOperand(0).getReg();
1932       int64_t SH = MI->getOperand(2).getImm();
1933       int64_t MB = MI->getOperand(3).getImm();
1934       int64_t ME = MI->getOperand(4).getImm();
1935       // We can only do this if both the start and end of the mask are in the
1936       // same halfword.
1937       bool MBInLoHWord = MB >= 16;
1938       bool MEInLoHWord = ME >= 16;
1939       uint64_t Mask = ~0LLU;
1940 
1941       if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
1942         Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
1943         // The mask value needs to shift right 16 if we're emitting andis.
1944         Mask >>= MBInLoHWord ? 0 : 16;
1945         NewOpC = MIOpC == PPC::RLWINM ?
1946           (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) :
1947           (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8);
1948       } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
1949                  (ME - MB + 1 == SH) && (MB >= 16)) {
1950         // If we are rotating by the exact number of bits as are in the mask
1951         // and the mask is in the least significant bits of the register,
1952         // that's just an andis. (as long as the GPR result has no uses).
1953         Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
1954         Mask >>= 16;
1955         NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8;
1956       }
1957       // If we've set the mask, we can transform.
1958       if (Mask != ~0LLU) {
1959         MI->RemoveOperand(4);
1960         MI->RemoveOperand(3);
1961         MI->getOperand(2).setImm(Mask);
1962         NumRcRotatesConvertedToRcAnd++;
1963       }
1964     } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
1965       int64_t MB = MI->getOperand(3).getImm();
1966       if (MB >= 48) {
1967         uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
1968         NewOpC = PPC::ANDIo8;
1969         MI->RemoveOperand(3);
1970         MI->getOperand(2).setImm(Mask);
1971         NumRcRotatesConvertedToRcAnd++;
1972       }
1973     }
1974 
1975     const MCInstrDesc &NewDesc = get(NewOpC);
1976     MI->setDesc(NewDesc);
1977 
1978     if (NewDesc.ImplicitDefs)
1979       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1980            *ImpDefs; ++ImpDefs)
1981         if (!MI->definesRegister(*ImpDefs))
1982           MI->addOperand(*MI->getParent()->getParent(),
1983                          MachineOperand::CreateReg(*ImpDefs, true, true));
1984     if (NewDesc.ImplicitUses)
1985       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1986            *ImpUses; ++ImpUses)
1987         if (!MI->readsRegister(*ImpUses))
1988           MI->addOperand(*MI->getParent()->getParent(),
1989                          MachineOperand::CreateReg(*ImpUses, false, true));
1990   }
1991   assert(MI->definesRegister(PPC::CR0) &&
1992          "Record-form instruction does not define cr0?");
1993 
1994   // Modify the condition code of operands in OperandsToUpdate.
1995   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1996   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1997   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1998     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1999 
2000   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2001     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2002 
2003   return true;
2004 }
2005 
2006 /// GetInstSize - Return the number of bytes of code the specified
2007 /// instruction may be.  This returns the maximum number of bytes.
2008 ///
2009 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2010   unsigned Opcode = MI.getOpcode();
2011 
2012   if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
2013     const MachineFunction *MF = MI.getParent()->getParent();
2014     const char *AsmStr = MI.getOperand(0).getSymbolName();
2015     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2016   } else if (Opcode == TargetOpcode::STACKMAP) {
2017     StackMapOpers Opers(&MI);
2018     return Opers.getNumPatchBytes();
2019   } else if (Opcode == TargetOpcode::PATCHPOINT) {
2020     PatchPointOpers Opers(&MI);
2021     return Opers.getNumPatchBytes();
2022   } else {
2023     return get(Opcode).getSize();
2024   }
2025 }
2026 
2027 std::pair<unsigned, unsigned>
2028 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2029   const unsigned Mask = PPCII::MO_ACCESS_MASK;
2030   return std::make_pair(TF & Mask, TF & ~Mask);
2031 }
2032 
2033 ArrayRef<std::pair<unsigned, const char *>>
2034 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2035   using namespace PPCII;
2036   static const std::pair<unsigned, const char *> TargetFlags[] = {
2037       {MO_LO, "ppc-lo"},
2038       {MO_HA, "ppc-ha"},
2039       {MO_TPREL_LO, "ppc-tprel-lo"},
2040       {MO_TPREL_HA, "ppc-tprel-ha"},
2041       {MO_DTPREL_LO, "ppc-dtprel-lo"},
2042       {MO_TLSLD_LO, "ppc-tlsld-lo"},
2043       {MO_TOC_LO, "ppc-toc-lo"},
2044       {MO_TLS, "ppc-tls"}};
2045   return makeArrayRef(TargetFlags);
2046 }
2047 
2048 ArrayRef<std::pair<unsigned, const char *>>
2049 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2050   using namespace PPCII;
2051   static const std::pair<unsigned, const char *> TargetFlags[] = {
2052       {MO_PLT, "ppc-plt"},
2053       {MO_PIC_FLAG, "ppc-pic"},
2054       {MO_NLP_FLAG, "ppc-nlp"},
2055       {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
2056   return makeArrayRef(TargetFlags);
2057 }
2058 
2059 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2060 // The VSX versions have the advantage of a full 64-register target whereas
2061 // the FP ones have the advantage of lower latency and higher throughput. So
2062 // what we are after is using the faster instructions in low register pressure
2063 // situations and using the larger register file in high register pressure
2064 // situations.
2065 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2066     unsigned UpperOpcode, LowerOpcode;
2067     switch (MI.getOpcode()) {
2068     case PPC::DFLOADf32:
2069       UpperOpcode = PPC::LXSSP;
2070       LowerOpcode = PPC::LFS;
2071       break;
2072     case PPC::DFLOADf64:
2073       UpperOpcode = PPC::LXSD;
2074       LowerOpcode = PPC::LFD;
2075       break;
2076     case PPC::DFSTOREf32:
2077       UpperOpcode = PPC::STXSSP;
2078       LowerOpcode = PPC::STFS;
2079       break;
2080     case PPC::DFSTOREf64:
2081       UpperOpcode = PPC::STXSD;
2082       LowerOpcode = PPC::STFD;
2083       break;
2084     case PPC::XFLOADf32:
2085       UpperOpcode = PPC::LXSSPX;
2086       LowerOpcode = PPC::LFSX;
2087       break;
2088     case PPC::XFLOADf64:
2089       UpperOpcode = PPC::LXSDX;
2090       LowerOpcode = PPC::LFDX;
2091       break;
2092     case PPC::XFSTOREf32:
2093       UpperOpcode = PPC::STXSSPX;
2094       LowerOpcode = PPC::STFSX;
2095       break;
2096     case PPC::XFSTOREf64:
2097       UpperOpcode = PPC::STXSDX;
2098       LowerOpcode = PPC::STFDX;
2099       break;
2100     case PPC::LIWAX:
2101       UpperOpcode = PPC::LXSIWAX;
2102       LowerOpcode = PPC::LFIWAX;
2103       break;
2104     case PPC::LIWZX:
2105       UpperOpcode = PPC::LXSIWZX;
2106       LowerOpcode = PPC::LFIWZX;
2107       break;
2108     case PPC::STIWX:
2109       UpperOpcode = PPC::STXSIWX;
2110       LowerOpcode = PPC::STFIWX;
2111       break;
2112     default:
2113       llvm_unreachable("Unknown Operation!");
2114     }
2115 
2116     Register TargetReg = MI.getOperand(0).getReg();
2117     unsigned Opcode;
2118     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2119         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2120       Opcode = LowerOpcode;
2121     else
2122       Opcode = UpperOpcode;
2123     MI.setDesc(get(Opcode));
2124     return true;
2125 }
2126 
2127 static bool isAnImmediateOperand(const MachineOperand &MO) {
2128   return MO.isCPI() || MO.isGlobal() || MO.isImm();
2129 }
2130 
2131 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2132   auto &MBB = *MI.getParent();
2133   auto DL = MI.getDebugLoc();
2134 
2135   switch (MI.getOpcode()) {
2136   case TargetOpcode::LOAD_STACK_GUARD: {
2137     assert(Subtarget.isTargetLinux() &&
2138            "Only Linux target is expected to contain LOAD_STACK_GUARD");
2139     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
2140     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
2141     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
2142     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2143         .addImm(Offset)
2144         .addReg(Reg);
2145     return true;
2146   }
2147   case PPC::DFLOADf32:
2148   case PPC::DFLOADf64:
2149   case PPC::DFSTOREf32:
2150   case PPC::DFSTOREf64: {
2151     assert(Subtarget.hasP9Vector() &&
2152            "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2153     assert(MI.getOperand(2).isReg() &&
2154            isAnImmediateOperand(MI.getOperand(1)) &&
2155            "D-form op must have register and immediate operands");
2156     return expandVSXMemPseudo(MI);
2157   }
2158   case PPC::XFLOADf32:
2159   case PPC::XFSTOREf32:
2160   case PPC::LIWAX:
2161   case PPC::LIWZX:
2162   case PPC::STIWX: {
2163     assert(Subtarget.hasP8Vector() &&
2164            "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2165     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2166            "X-form op must have register and register operands");
2167     return expandVSXMemPseudo(MI);
2168   }
2169   case PPC::XFLOADf64:
2170   case PPC::XFSTOREf64: {
2171     assert(Subtarget.hasVSX() &&
2172            "Invalid X-Form Pseudo-ops on target that has no VSX.");
2173     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2174            "X-form op must have register and register operands");
2175     return expandVSXMemPseudo(MI);
2176   }
2177   case PPC::SPILLTOVSR_LD: {
2178     Register TargetReg = MI.getOperand(0).getReg();
2179     if (PPC::VSFRCRegClass.contains(TargetReg)) {
2180       MI.setDesc(get(PPC::DFLOADf64));
2181       return expandPostRAPseudo(MI);
2182     }
2183     else
2184       MI.setDesc(get(PPC::LD));
2185     return true;
2186   }
2187   case PPC::SPILLTOVSR_ST: {
2188     Register SrcReg = MI.getOperand(0).getReg();
2189     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2190       NumStoreSPILLVSRRCAsVec++;
2191       MI.setDesc(get(PPC::DFSTOREf64));
2192       return expandPostRAPseudo(MI);
2193     } else {
2194       NumStoreSPILLVSRRCAsGpr++;
2195       MI.setDesc(get(PPC::STD));
2196     }
2197     return true;
2198   }
2199   case PPC::SPILLTOVSR_LDX: {
2200     Register TargetReg = MI.getOperand(0).getReg();
2201     if (PPC::VSFRCRegClass.contains(TargetReg))
2202       MI.setDesc(get(PPC::LXSDX));
2203     else
2204       MI.setDesc(get(PPC::LDX));
2205     return true;
2206   }
2207   case PPC::SPILLTOVSR_STX: {
2208     Register SrcReg = MI.getOperand(0).getReg();
2209     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2210       NumStoreSPILLVSRRCAsVec++;
2211       MI.setDesc(get(PPC::STXSDX));
2212     } else {
2213       NumStoreSPILLVSRRCAsGpr++;
2214       MI.setDesc(get(PPC::STDX));
2215     }
2216     return true;
2217   }
2218 
2219   case PPC::CFENCE8: {
2220     auto Val = MI.getOperand(0).getReg();
2221     BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
2222     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
2223         .addImm(PPC::PRED_NE_MINUS)
2224         .addReg(PPC::CR7)
2225         .addImm(1);
2226     MI.setDesc(get(PPC::ISYNC));
2227     MI.RemoveOperand(0);
2228     return true;
2229   }
2230   }
2231   return false;
2232 }
2233 
2234 // Essentially a compile-time implementation of a compare->isel sequence.
2235 // It takes two constants to compare, along with the true/false registers
2236 // and the comparison type (as a subreg to a CR field) and returns one
2237 // of the true/false registers, depending on the comparison results.
2238 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
2239                           unsigned TrueReg, unsigned FalseReg,
2240                           unsigned CRSubReg) {
2241   // Signed comparisons. The immediates are assumed to be sign-extended.
2242   if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
2243     switch (CRSubReg) {
2244     default: llvm_unreachable("Unknown integer comparison type.");
2245     case PPC::sub_lt:
2246       return Imm1 < Imm2 ? TrueReg : FalseReg;
2247     case PPC::sub_gt:
2248       return Imm1 > Imm2 ? TrueReg : FalseReg;
2249     case PPC::sub_eq:
2250       return Imm1 == Imm2 ? TrueReg : FalseReg;
2251     }
2252   }
2253   // Unsigned comparisons.
2254   else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
2255     switch (CRSubReg) {
2256     default: llvm_unreachable("Unknown integer comparison type.");
2257     case PPC::sub_lt:
2258       return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
2259     case PPC::sub_gt:
2260       return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
2261     case PPC::sub_eq:
2262       return Imm1 == Imm2 ? TrueReg : FalseReg;
2263     }
2264   }
2265   return PPC::NoRegister;
2266 }
2267 
2268 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
2269                                               unsigned OpNo,
2270                                               int64_t Imm) const {
2271   assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
2272   // Replace the REG with the Immediate.
2273   Register InUseReg = MI.getOperand(OpNo).getReg();
2274   MI.getOperand(OpNo).ChangeToImmediate(Imm);
2275 
2276   if (empty(MI.implicit_operands()))
2277     return;
2278 
2279   // We need to make sure that the MI didn't have any implicit use
2280   // of this REG any more.
2281   const TargetRegisterInfo *TRI = &getRegisterInfo();
2282   int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
2283   if (UseOpIdx >= 0) {
2284     MachineOperand &MO = MI.getOperand(UseOpIdx);
2285     if (MO.isImplicit())
2286       // The operands must always be in the following order:
2287       // - explicit reg defs,
2288       // - other explicit operands (reg uses, immediates, etc.),
2289       // - implicit reg defs
2290       // - implicit reg uses
2291       // Therefore, removing the implicit operand won't change the explicit
2292       // operands layout.
2293       MI.RemoveOperand(UseOpIdx);
2294   }
2295 }
2296 
2297 // Replace an instruction with one that materializes a constant (and sets
2298 // CR0 if the original instruction was a record-form instruction).
2299 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
2300                                       const LoadImmediateInfo &LII) const {
2301   // Remove existing operands.
2302   int OperandToKeep = LII.SetCR ? 1 : 0;
2303   for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
2304     MI.RemoveOperand(i);
2305 
2306   // Replace the instruction.
2307   if (LII.SetCR) {
2308     MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo));
2309     // Set the immediate.
2310     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2311         .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
2312     return;
2313   }
2314   else
2315     MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
2316 
2317   // Set the immediate.
2318   MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2319       .addImm(LII.Imm);
2320 }
2321 
2322 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
2323                                            bool &SeenIntermediateUse) const {
2324   assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
2325          "Should be called after register allocation.");
2326   const TargetRegisterInfo *TRI = &getRegisterInfo();
2327   MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
2328   It++;
2329   SeenIntermediateUse = false;
2330   for (; It != E; ++It) {
2331     if (It->modifiesRegister(Reg, TRI))
2332       return &*It;
2333     if (It->readsRegister(Reg, TRI))
2334       SeenIntermediateUse = true;
2335   }
2336   return nullptr;
2337 }
2338 
2339 MachineInstr *PPCInstrInfo::getForwardingDefMI(
2340   MachineInstr &MI,
2341   unsigned &OpNoForForwarding,
2342   bool &SeenIntermediateUse) const {
2343   OpNoForForwarding = ~0U;
2344   MachineInstr *DefMI = nullptr;
2345   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
2346   const TargetRegisterInfo *TRI = &getRegisterInfo();
2347   // If we're in SSA, get the defs through the MRI. Otherwise, only look
2348   // within the basic block to see if the register is defined using an LI/LI8.
2349   if (MRI->isSSA()) {
2350     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2351       if (!MI.getOperand(i).isReg())
2352         continue;
2353       Register Reg = MI.getOperand(i).getReg();
2354       if (!Register::isVirtualRegister(Reg))
2355         continue;
2356       unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
2357       if (Register::isVirtualRegister(TrueReg)) {
2358         DefMI = MRI->getVRegDef(TrueReg);
2359         if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) {
2360           OpNoForForwarding = i;
2361           break;
2362         }
2363       }
2364     }
2365   } else {
2366     // Looking back through the definition for each operand could be expensive,
2367     // so exit early if this isn't an instruction that either has an immediate
2368     // form or is already an immediate form that we can handle.
2369     ImmInstrInfo III;
2370     unsigned Opc = MI.getOpcode();
2371     bool ConvertibleImmForm =
2372       Opc == PPC::CMPWI || Opc == PPC::CMPLWI ||
2373       Opc == PPC::CMPDI || Opc == PPC::CMPLDI ||
2374       Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
2375       Opc == PPC::ORI || Opc == PPC::ORI8 ||
2376       Opc == PPC::XORI || Opc == PPC::XORI8 ||
2377       Opc == PPC::RLDICL || Opc == PPC::RLDICLo ||
2378       Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
2379       Opc == PPC::RLWINM || Opc == PPC::RLWINMo ||
2380       Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2381     bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
2382                        ? isVFRegister(MI.getOperand(0).getReg())
2383                        : false;
2384     if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
2385       return nullptr;
2386 
2387     // Don't convert or %X, %Y, %Y since that's just a register move.
2388     if ((Opc == PPC::OR || Opc == PPC::OR8) &&
2389         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
2390       return nullptr;
2391     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2392       MachineOperand &MO = MI.getOperand(i);
2393       SeenIntermediateUse = false;
2394       if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
2395         Register Reg = MI.getOperand(i).getReg();
2396         // If we see another use of this reg between the def and the MI,
2397         // we want to flat it so the def isn't deleted.
2398         MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
2399         if (DefMI) {
2400           // Is this register defined by some form of add-immediate (including
2401           // load-immediate) within this basic block?
2402           switch (DefMI->getOpcode()) {
2403           default:
2404             break;
2405           case PPC::LI:
2406           case PPC::LI8:
2407           case PPC::ADDItocL:
2408           case PPC::ADDI:
2409           case PPC::ADDI8:
2410             OpNoForForwarding = i;
2411             return DefMI;
2412           }
2413         }
2414       }
2415     }
2416   }
2417   return OpNoForForwarding == ~0U ? nullptr : DefMI;
2418 }
2419 
2420 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2421   static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2422       // Power 8
2423       {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2424        PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX,
2425        PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2426        PPC::SPILLTOVSR_ST, PPC::EVSTDD},
2427       // Power 9
2428       {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2429        PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32,
2430        PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2431        PPC::SPILLTOVSR_ST}};
2432 
2433   return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2434 }
2435 
2436 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2437   static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2438       // Power 8
2439       {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2440        PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX,
2441        PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2442        PPC::SPILLTOVSR_LD, PPC::EVLDD},
2443       // Power 9
2444       {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2445        PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32,
2446        PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2447        PPC::SPILLTOVSR_LD}};
2448 
2449   return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2450 }
2451 
2452 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI,
2453                                      unsigned RegNo) const {
2454   const MachineRegisterInfo &MRI =
2455       StartMI.getParent()->getParent()->getRegInfo();
2456   if (MRI.isSSA())
2457     return;
2458 
2459   // Instructions between [StartMI, EndMI] should be in same basic block.
2460   assert((StartMI.getParent() == EndMI.getParent()) &&
2461          "Instructions are not in same basic block");
2462 
2463   bool IsKillSet = false;
2464 
2465   auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
2466     MachineOperand &MO = MI.getOperand(Index);
2467     if (MO.isReg() && MO.isUse() && MO.isKill() &&
2468         getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
2469       MO.setIsKill(false);
2470   };
2471 
2472   // Set killed flag for EndMI.
2473   // No need to do anything if EndMI defines RegNo.
2474   int UseIndex =
2475       EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
2476   if (UseIndex != -1) {
2477     EndMI.getOperand(UseIndex).setIsKill(true);
2478     IsKillSet = true;
2479     // Clear killed flag for other EndMI operands related to RegNo. In some
2480     // upexpected cases, killed may be set multiple times for same register
2481     // operand in same MI.
2482     for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i)
2483       if (i != UseIndex)
2484         clearOperandKillInfo(EndMI, i);
2485   }
2486 
2487   // Walking the inst in reverse order (EndMI -> StartMI].
2488   MachineBasicBlock::reverse_iterator It = EndMI;
2489   MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend();
2490   // EndMI has been handled above, skip it here.
2491   It++;
2492   MachineOperand *MO = nullptr;
2493   for (; It != E; ++It) {
2494     // Skip insturctions which could not be a def/use of RegNo.
2495     if (It->isDebugInstr() || It->isPosition())
2496       continue;
2497 
2498     // Clear killed flag for all It operands related to RegNo. In some
2499     // upexpected cases, killed may be set multiple times for same register
2500     // operand in same MI.
2501     for (int i = 0, e = It->getNumOperands(); i != e; ++i)
2502         clearOperandKillInfo(*It, i);
2503 
2504     // If killed is not set, set killed for its last use or set dead for its def
2505     // if no use found.
2506     if (!IsKillSet) {
2507       if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
2508         // Use found, set it killed.
2509         IsKillSet = true;
2510         MO->setIsKill(true);
2511         continue;
2512       } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
2513                                                   &getRegisterInfo()))) {
2514         // No use found, set dead for its def.
2515         assert(&*It == &StartMI && "No new def between StartMI and EndMI.");
2516         MO->setIsDead(true);
2517         break;
2518       }
2519     }
2520 
2521     if ((&*It) == &StartMI)
2522       break;
2523   }
2524   // Ensure RegMo liveness is killed after EndMI.
2525   assert((IsKillSet || (MO && MO->isDead())) &&
2526          "RegNo should be killed or dead");
2527 }
2528 
2529 // If this instruction has an immediate form and one of its operands is a
2530 // result of a load-immediate or an add-immediate, convert it to
2531 // the immediate form if the constant is in range.
2532 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
2533                                           MachineInstr **KilledDef) const {
2534   MachineFunction *MF = MI.getParent()->getParent();
2535   MachineRegisterInfo *MRI = &MF->getRegInfo();
2536   bool PostRA = !MRI->isSSA();
2537   bool SeenIntermediateUse = true;
2538   unsigned ForwardingOperand = ~0U;
2539   MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
2540                                            SeenIntermediateUse);
2541   if (!DefMI)
2542     return false;
2543   assert(ForwardingOperand < MI.getNumOperands() &&
2544          "The forwarding operand needs to be valid at this point");
2545   bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
2546   bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
2547   Register ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg();
2548   if (KilledDef && KillFwdDefMI)
2549     *KilledDef = DefMI;
2550 
2551   ImmInstrInfo III;
2552   bool IsVFReg = MI.getOperand(0).isReg()
2553                      ? isVFRegister(MI.getOperand(0).getReg())
2554                      : false;
2555   bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
2556   // If this is a reg+reg instruction that has a reg+imm form,
2557   // and one of the operands is produced by an add-immediate,
2558   // try to convert it.
2559   if (HasImmForm &&
2560       transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
2561                                  KillFwdDefMI))
2562     return true;
2563 
2564   if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) ||
2565       !DefMI->getOperand(1).isImm())
2566     return false;
2567 
2568   int64_t Immediate = DefMI->getOperand(1).getImm();
2569   // Sign-extend to 64-bits.
2570   int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
2571     (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
2572 
2573   // If this is a reg+reg instruction that has a reg+imm form,
2574   // and one of the operands is produced by LI, convert it now.
2575   if (HasImmForm)
2576     return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm);
2577 
2578   bool ReplaceWithLI = false;
2579   bool Is64BitLI = false;
2580   int64_t NewImm = 0;
2581   bool SetCR = false;
2582   unsigned Opc = MI.getOpcode();
2583   switch (Opc) {
2584   default: return false;
2585 
2586   // FIXME: Any branches conditional on such a comparison can be made
2587   // unconditional. At this time, this happens too infrequently to be worth
2588   // the implementation effort, but if that ever changes, we could convert
2589   // such a pattern here.
2590   case PPC::CMPWI:
2591   case PPC::CMPLWI:
2592   case PPC::CMPDI:
2593   case PPC::CMPLDI: {
2594     // Doing this post-RA would require dataflow analysis to reliably find uses
2595     // of the CR register set by the compare.
2596     // No need to fixup killed/dead flag since this transformation is only valid
2597     // before RA.
2598     if (PostRA)
2599       return false;
2600     // If a compare-immediate is fed by an immediate and is itself an input of
2601     // an ISEL (the most common case) into a COPY of the correct register.
2602     bool Changed = false;
2603     Register DefReg = MI.getOperand(0).getReg();
2604     int64_t Comparand = MI.getOperand(2).getImm();
2605     int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ?
2606       (Comparand | 0xFFFFFFFFFFFF0000) : Comparand;
2607 
2608     for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
2609       unsigned UseOpc = CompareUseMI.getOpcode();
2610       if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
2611         continue;
2612       unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
2613       Register TrueReg = CompareUseMI.getOperand(1).getReg();
2614       Register FalseReg = CompareUseMI.getOperand(2).getReg();
2615       unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg,
2616                                      FalseReg, CRSubReg);
2617       if (RegToCopy == PPC::NoRegister)
2618         continue;
2619       // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
2620       if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
2621         CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
2622         replaceInstrOperandWithImm(CompareUseMI, 1, 0);
2623         CompareUseMI.RemoveOperand(3);
2624         CompareUseMI.RemoveOperand(2);
2625         continue;
2626       }
2627       LLVM_DEBUG(
2628           dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
2629       LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump());
2630       LLVM_DEBUG(dbgs() << "Is converted to:\n");
2631       // Convert to copy and remove unneeded operands.
2632       CompareUseMI.setDesc(get(PPC::COPY));
2633       CompareUseMI.RemoveOperand(3);
2634       CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
2635       CmpIselsConverted++;
2636       Changed = true;
2637       LLVM_DEBUG(CompareUseMI.dump());
2638     }
2639     if (Changed)
2640       return true;
2641     // This may end up incremented multiple times since this function is called
2642     // during a fixed-point transformation, but it is only meant to indicate the
2643     // presence of this opportunity.
2644     MissedConvertibleImmediateInstrs++;
2645     return false;
2646   }
2647 
2648   // Immediate forms - may simply be convertable to an LI.
2649   case PPC::ADDI:
2650   case PPC::ADDI8: {
2651     // Does the sum fit in a 16-bit signed field?
2652     int64_t Addend = MI.getOperand(2).getImm();
2653     if (isInt<16>(Addend + SExtImm)) {
2654       ReplaceWithLI = true;
2655       Is64BitLI = Opc == PPC::ADDI8;
2656       NewImm = Addend + SExtImm;
2657       break;
2658     }
2659     return false;
2660   }
2661   case PPC::RLDICL:
2662   case PPC::RLDICLo:
2663   case PPC::RLDICL_32:
2664   case PPC::RLDICL_32_64: {
2665     // Use APInt's rotate function.
2666     int64_t SH = MI.getOperand(2).getImm();
2667     int64_t MB = MI.getOperand(3).getImm();
2668     APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ?
2669                 64 : 32, SExtImm, true);
2670     InVal = InVal.rotl(SH);
2671     uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2672     InVal &= Mask;
2673     // Can't replace negative values with an LI as that will sign-extend
2674     // and not clear the left bits. If we're setting the CR bit, we will use
2675     // ANDIo which won't sign extend, so that's safe.
2676     if (isUInt<15>(InVal.getSExtValue()) ||
2677         (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) {
2678       ReplaceWithLI = true;
2679       Is64BitLI = Opc != PPC::RLDICL_32;
2680       NewImm = InVal.getSExtValue();
2681       SetCR = Opc == PPC::RLDICLo;
2682       break;
2683     }
2684     return false;
2685   }
2686   case PPC::RLWINM:
2687   case PPC::RLWINM8:
2688   case PPC::RLWINMo:
2689   case PPC::RLWINM8o: {
2690     int64_t SH = MI.getOperand(2).getImm();
2691     int64_t MB = MI.getOperand(3).getImm();
2692     int64_t ME = MI.getOperand(4).getImm();
2693     APInt InVal(32, SExtImm, true);
2694     InVal = InVal.rotl(SH);
2695     // Set the bits (        MB + 32        ) to (        ME + 32        ).
2696     uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2697     InVal &= Mask;
2698     // Can't replace negative values with an LI as that will sign-extend
2699     // and not clear the left bits. If we're setting the CR bit, we will use
2700     // ANDIo which won't sign extend, so that's safe.
2701     bool ValueFits = isUInt<15>(InVal.getSExtValue());
2702     ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) &&
2703                   isUInt<16>(InVal.getSExtValue()));
2704     if (ValueFits) {
2705       ReplaceWithLI = true;
2706       Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2707       NewImm = InVal.getSExtValue();
2708       SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o;
2709       break;
2710     }
2711     return false;
2712   }
2713   case PPC::ORI:
2714   case PPC::ORI8:
2715   case PPC::XORI:
2716   case PPC::XORI8: {
2717     int64_t LogicalImm = MI.getOperand(2).getImm();
2718     int64_t Result = 0;
2719     if (Opc == PPC::ORI || Opc == PPC::ORI8)
2720       Result = LogicalImm | SExtImm;
2721     else
2722       Result = LogicalImm ^ SExtImm;
2723     if (isInt<16>(Result)) {
2724       ReplaceWithLI = true;
2725       Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
2726       NewImm = Result;
2727       break;
2728     }
2729     return false;
2730   }
2731   }
2732 
2733   if (ReplaceWithLI) {
2734     // We need to be careful with CR-setting instructions we're replacing.
2735     if (SetCR) {
2736       // We don't know anything about uses when we're out of SSA, so only
2737       // replace if the new immediate will be reproduced.
2738       bool ImmChanged = (SExtImm & NewImm) != NewImm;
2739       if (PostRA && ImmChanged)
2740         return false;
2741 
2742       if (!PostRA) {
2743         // If the defining load-immediate has no other uses, we can just replace
2744         // the immediate with the new immediate.
2745         if (MRI->hasOneUse(DefMI->getOperand(0).getReg()))
2746           DefMI->getOperand(1).setImm(NewImm);
2747 
2748         // If we're not using the GPR result of the CR-setting instruction, we
2749         // just need to and with zero/non-zero depending on the new immediate.
2750         else if (MRI->use_empty(MI.getOperand(0).getReg())) {
2751           if (NewImm) {
2752             assert(Immediate && "Transformation converted zero to non-zero?");
2753             NewImm = Immediate;
2754           }
2755         }
2756         else if (ImmChanged)
2757           return false;
2758       }
2759     }
2760 
2761     LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
2762     LLVM_DEBUG(MI.dump());
2763     LLVM_DEBUG(dbgs() << "Fed by:\n");
2764     LLVM_DEBUG(DefMI->dump());
2765     LoadImmediateInfo LII;
2766     LII.Imm = NewImm;
2767     LII.Is64Bit = Is64BitLI;
2768     LII.SetCR = SetCR;
2769     // If we're setting the CR, the original load-immediate must be kept (as an
2770     // operand to ANDIo/ANDI8o).
2771     if (KilledDef && SetCR)
2772       *KilledDef = nullptr;
2773     replaceInstrWithLI(MI, LII);
2774 
2775     // Fixup killed/dead flag after transformation.
2776     // Pattern:
2777     // ForwardingOperandReg = LI imm1
2778     // y = op2 imm2, ForwardingOperandReg(killed)
2779     if (IsForwardingOperandKilled)
2780       fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg);
2781 
2782     LLVM_DEBUG(dbgs() << "With:\n");
2783     LLVM_DEBUG(MI.dump());
2784     return true;
2785   }
2786   return false;
2787 }
2788 
2789 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
2790                                    ImmInstrInfo &III, bool PostRA) const {
2791   // The vast majority of the instructions would need their operand 2 replaced
2792   // with an immediate when switching to the reg+imm form. A marked exception
2793   // are the update form loads/stores for which a constant operand 2 would need
2794   // to turn into a displacement and move operand 1 to the operand 2 position.
2795   III.ImmOpNo = 2;
2796   III.OpNoForForwarding = 2;
2797   III.ImmWidth = 16;
2798   III.ImmMustBeMultipleOf = 1;
2799   III.TruncateImmTo = 0;
2800   III.IsSummingOperands = false;
2801   switch (Opc) {
2802   default: return false;
2803   case PPC::ADD4:
2804   case PPC::ADD8:
2805     III.SignedImm = true;
2806     III.ZeroIsSpecialOrig = 0;
2807     III.ZeroIsSpecialNew = 1;
2808     III.IsCommutative = true;
2809     III.IsSummingOperands = true;
2810     III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
2811     break;
2812   case PPC::ADDC:
2813   case PPC::ADDC8:
2814     III.SignedImm = true;
2815     III.ZeroIsSpecialOrig = 0;
2816     III.ZeroIsSpecialNew = 0;
2817     III.IsCommutative = true;
2818     III.IsSummingOperands = true;
2819     III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
2820     break;
2821   case PPC::ADDCo:
2822     III.SignedImm = true;
2823     III.ZeroIsSpecialOrig = 0;
2824     III.ZeroIsSpecialNew = 0;
2825     III.IsCommutative = true;
2826     III.IsSummingOperands = true;
2827     III.ImmOpcode = PPC::ADDICo;
2828     break;
2829   case PPC::SUBFC:
2830   case PPC::SUBFC8:
2831     III.SignedImm = true;
2832     III.ZeroIsSpecialOrig = 0;
2833     III.ZeroIsSpecialNew = 0;
2834     III.IsCommutative = false;
2835     III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
2836     break;
2837   case PPC::CMPW:
2838   case PPC::CMPD:
2839     III.SignedImm = true;
2840     III.ZeroIsSpecialOrig = 0;
2841     III.ZeroIsSpecialNew = 0;
2842     III.IsCommutative = false;
2843     III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
2844     break;
2845   case PPC::CMPLW:
2846   case PPC::CMPLD:
2847     III.SignedImm = false;
2848     III.ZeroIsSpecialOrig = 0;
2849     III.ZeroIsSpecialNew = 0;
2850     III.IsCommutative = false;
2851     III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
2852     break;
2853   case PPC::ANDo:
2854   case PPC::AND8o:
2855   case PPC::OR:
2856   case PPC::OR8:
2857   case PPC::XOR:
2858   case PPC::XOR8:
2859     III.SignedImm = false;
2860     III.ZeroIsSpecialOrig = 0;
2861     III.ZeroIsSpecialNew = 0;
2862     III.IsCommutative = true;
2863     switch(Opc) {
2864     default: llvm_unreachable("Unknown opcode");
2865     case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break;
2866     case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break;
2867     case PPC::OR: III.ImmOpcode = PPC::ORI; break;
2868     case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
2869     case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
2870     case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
2871     }
2872     break;
2873   case PPC::RLWNM:
2874   case PPC::RLWNM8:
2875   case PPC::RLWNMo:
2876   case PPC::RLWNM8o:
2877   case PPC::SLW:
2878   case PPC::SLW8:
2879   case PPC::SLWo:
2880   case PPC::SLW8o:
2881   case PPC::SRW:
2882   case PPC::SRW8:
2883   case PPC::SRWo:
2884   case PPC::SRW8o:
2885   case PPC::SRAW:
2886   case PPC::SRAWo:
2887     III.SignedImm = false;
2888     III.ZeroIsSpecialOrig = 0;
2889     III.ZeroIsSpecialNew = 0;
2890     III.IsCommutative = false;
2891     // This isn't actually true, but the instructions ignore any of the
2892     // upper bits, so any immediate loaded with an LI is acceptable.
2893     // This does not apply to shift right algebraic because a value
2894     // out of range will produce a -1/0.
2895     III.ImmWidth = 16;
2896     if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 ||
2897         Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o)
2898       III.TruncateImmTo = 5;
2899     else
2900       III.TruncateImmTo = 6;
2901     switch(Opc) {
2902     default: llvm_unreachable("Unknown opcode");
2903     case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
2904     case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
2905     case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break;
2906     case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break;
2907     case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
2908     case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
2909     case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break;
2910     case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2911     case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
2912     case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
2913     case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break;
2914     case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2915     case PPC::SRAW:
2916       III.ImmWidth = 5;
2917       III.TruncateImmTo = 0;
2918       III.ImmOpcode = PPC::SRAWI;
2919       break;
2920     case PPC::SRAWo:
2921       III.ImmWidth = 5;
2922       III.TruncateImmTo = 0;
2923       III.ImmOpcode = PPC::SRAWIo;
2924       break;
2925     }
2926     break;
2927   case PPC::RLDCL:
2928   case PPC::RLDCLo:
2929   case PPC::RLDCR:
2930   case PPC::RLDCRo:
2931   case PPC::SLD:
2932   case PPC::SLDo:
2933   case PPC::SRD:
2934   case PPC::SRDo:
2935   case PPC::SRAD:
2936   case PPC::SRADo:
2937     III.SignedImm = false;
2938     III.ZeroIsSpecialOrig = 0;
2939     III.ZeroIsSpecialNew = 0;
2940     III.IsCommutative = false;
2941     // This isn't actually true, but the instructions ignore any of the
2942     // upper bits, so any immediate loaded with an LI is acceptable.
2943     // This does not apply to shift right algebraic because a value
2944     // out of range will produce a -1/0.
2945     III.ImmWidth = 16;
2946     if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo ||
2947         Opc == PPC::RLDCR || Opc == PPC::RLDCRo)
2948       III.TruncateImmTo = 6;
2949     else
2950       III.TruncateImmTo = 7;
2951     switch(Opc) {
2952     default: llvm_unreachable("Unknown opcode");
2953     case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
2954     case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break;
2955     case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
2956     case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break;
2957     case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
2958     case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break;
2959     case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
2960     case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break;
2961     case PPC::SRAD:
2962       III.ImmWidth = 6;
2963       III.TruncateImmTo = 0;
2964       III.ImmOpcode = PPC::SRADI;
2965        break;
2966     case PPC::SRADo:
2967       III.ImmWidth = 6;
2968       III.TruncateImmTo = 0;
2969       III.ImmOpcode = PPC::SRADIo;
2970       break;
2971     }
2972     break;
2973   // Loads and stores:
2974   case PPC::LBZX:
2975   case PPC::LBZX8:
2976   case PPC::LHZX:
2977   case PPC::LHZX8:
2978   case PPC::LHAX:
2979   case PPC::LHAX8:
2980   case PPC::LWZX:
2981   case PPC::LWZX8:
2982   case PPC::LWAX:
2983   case PPC::LDX:
2984   case PPC::LFSX:
2985   case PPC::LFDX:
2986   case PPC::STBX:
2987   case PPC::STBX8:
2988   case PPC::STHX:
2989   case PPC::STHX8:
2990   case PPC::STWX:
2991   case PPC::STWX8:
2992   case PPC::STDX:
2993   case PPC::STFSX:
2994   case PPC::STFDX:
2995     III.SignedImm = true;
2996     III.ZeroIsSpecialOrig = 1;
2997     III.ZeroIsSpecialNew = 2;
2998     III.IsCommutative = true;
2999     III.IsSummingOperands = true;
3000     III.ImmOpNo = 1;
3001     III.OpNoForForwarding = 2;
3002     switch(Opc) {
3003     default: llvm_unreachable("Unknown opcode");
3004     case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
3005     case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
3006     case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
3007     case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
3008     case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
3009     case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
3010     case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
3011     case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
3012     case PPC::LWAX:
3013       III.ImmOpcode = PPC::LWA;
3014       III.ImmMustBeMultipleOf = 4;
3015       break;
3016     case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
3017     case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
3018     case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
3019     case PPC::STBX: III.ImmOpcode = PPC::STB; break;
3020     case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
3021     case PPC::STHX: III.ImmOpcode = PPC::STH; break;
3022     case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
3023     case PPC::STWX: III.ImmOpcode = PPC::STW; break;
3024     case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
3025     case PPC::STDX:
3026       III.ImmOpcode = PPC::STD;
3027       III.ImmMustBeMultipleOf = 4;
3028       break;
3029     case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
3030     case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
3031     }
3032     break;
3033   case PPC::LBZUX:
3034   case PPC::LBZUX8:
3035   case PPC::LHZUX:
3036   case PPC::LHZUX8:
3037   case PPC::LHAUX:
3038   case PPC::LHAUX8:
3039   case PPC::LWZUX:
3040   case PPC::LWZUX8:
3041   case PPC::LDUX:
3042   case PPC::LFSUX:
3043   case PPC::LFDUX:
3044   case PPC::STBUX:
3045   case PPC::STBUX8:
3046   case PPC::STHUX:
3047   case PPC::STHUX8:
3048   case PPC::STWUX:
3049   case PPC::STWUX8:
3050   case PPC::STDUX:
3051   case PPC::STFSUX:
3052   case PPC::STFDUX:
3053     III.SignedImm = true;
3054     III.ZeroIsSpecialOrig = 2;
3055     III.ZeroIsSpecialNew = 3;
3056     III.IsCommutative = false;
3057     III.IsSummingOperands = true;
3058     III.ImmOpNo = 2;
3059     III.OpNoForForwarding = 3;
3060     switch(Opc) {
3061     default: llvm_unreachable("Unknown opcode");
3062     case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
3063     case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
3064     case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
3065     case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
3066     case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
3067     case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
3068     case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
3069     case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
3070     case PPC::LDUX:
3071       III.ImmOpcode = PPC::LDU;
3072       III.ImmMustBeMultipleOf = 4;
3073       break;
3074     case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
3075     case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
3076     case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
3077     case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
3078     case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
3079     case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
3080     case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
3081     case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
3082     case PPC::STDUX:
3083       III.ImmOpcode = PPC::STDU;
3084       III.ImmMustBeMultipleOf = 4;
3085       break;
3086     case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
3087     case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
3088     }
3089     break;
3090   // Power9 and up only. For some of these, the X-Form version has access to all
3091   // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
3092   // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
3093   // into or stored from is one of the VR registers.
3094   case PPC::LXVX:
3095   case PPC::LXSSPX:
3096   case PPC::LXSDX:
3097   case PPC::STXVX:
3098   case PPC::STXSSPX:
3099   case PPC::STXSDX:
3100   case PPC::XFLOADf32:
3101   case PPC::XFLOADf64:
3102   case PPC::XFSTOREf32:
3103   case PPC::XFSTOREf64:
3104     if (!Subtarget.hasP9Vector())
3105       return false;
3106     III.SignedImm = true;
3107     III.ZeroIsSpecialOrig = 1;
3108     III.ZeroIsSpecialNew = 2;
3109     III.IsCommutative = true;
3110     III.IsSummingOperands = true;
3111     III.ImmOpNo = 1;
3112     III.OpNoForForwarding = 2;
3113     III.ImmMustBeMultipleOf = 4;
3114     switch(Opc) {
3115     default: llvm_unreachable("Unknown opcode");
3116     case PPC::LXVX:
3117       III.ImmOpcode = PPC::LXV;
3118       III.ImmMustBeMultipleOf = 16;
3119       break;
3120     case PPC::LXSSPX:
3121       if (PostRA) {
3122         if (IsVFReg)
3123           III.ImmOpcode = PPC::LXSSP;
3124         else {
3125           III.ImmOpcode = PPC::LFS;
3126           III.ImmMustBeMultipleOf = 1;
3127         }
3128         break;
3129       }
3130       LLVM_FALLTHROUGH;
3131     case PPC::XFLOADf32:
3132       III.ImmOpcode = PPC::DFLOADf32;
3133       break;
3134     case PPC::LXSDX:
3135       if (PostRA) {
3136         if (IsVFReg)
3137           III.ImmOpcode = PPC::LXSD;
3138         else {
3139           III.ImmOpcode = PPC::LFD;
3140           III.ImmMustBeMultipleOf = 1;
3141         }
3142         break;
3143       }
3144       LLVM_FALLTHROUGH;
3145     case PPC::XFLOADf64:
3146       III.ImmOpcode = PPC::DFLOADf64;
3147       break;
3148     case PPC::STXVX:
3149       III.ImmOpcode = PPC::STXV;
3150       III.ImmMustBeMultipleOf = 16;
3151       break;
3152     case PPC::STXSSPX:
3153       if (PostRA) {
3154         if (IsVFReg)
3155           III.ImmOpcode = PPC::STXSSP;
3156         else {
3157           III.ImmOpcode = PPC::STFS;
3158           III.ImmMustBeMultipleOf = 1;
3159         }
3160         break;
3161       }
3162       LLVM_FALLTHROUGH;
3163     case PPC::XFSTOREf32:
3164       III.ImmOpcode = PPC::DFSTOREf32;
3165       break;
3166     case PPC::STXSDX:
3167       if (PostRA) {
3168         if (IsVFReg)
3169           III.ImmOpcode = PPC::STXSD;
3170         else {
3171           III.ImmOpcode = PPC::STFD;
3172           III.ImmMustBeMultipleOf = 1;
3173         }
3174         break;
3175       }
3176       LLVM_FALLTHROUGH;
3177     case PPC::XFSTOREf64:
3178       III.ImmOpcode = PPC::DFSTOREf64;
3179       break;
3180     }
3181     break;
3182   }
3183   return true;
3184 }
3185 
3186 // Utility function for swaping two arbitrary operands of an instruction.
3187 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
3188   assert(Op1 != Op2 && "Cannot swap operand with itself.");
3189 
3190   unsigned MaxOp = std::max(Op1, Op2);
3191   unsigned MinOp = std::min(Op1, Op2);
3192   MachineOperand MOp1 = MI.getOperand(MinOp);
3193   MachineOperand MOp2 = MI.getOperand(MaxOp);
3194   MI.RemoveOperand(std::max(Op1, Op2));
3195   MI.RemoveOperand(std::min(Op1, Op2));
3196 
3197   // If the operands we are swapping are the two at the end (the common case)
3198   // we can just remove both and add them in the opposite order.
3199   if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
3200     MI.addOperand(MOp2);
3201     MI.addOperand(MOp1);
3202   } else {
3203     // Store all operands in a temporary vector, remove them and re-add in the
3204     // right order.
3205     SmallVector<MachineOperand, 2> MOps;
3206     unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
3207     for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
3208       MOps.push_back(MI.getOperand(i));
3209       MI.RemoveOperand(i);
3210     }
3211     // MOp2 needs to be added next.
3212     MI.addOperand(MOp2);
3213     // Now add the rest.
3214     for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
3215       if (i == MaxOp)
3216         MI.addOperand(MOp1);
3217       else {
3218         MI.addOperand(MOps.back());
3219         MOps.pop_back();
3220       }
3221     }
3222   }
3223 }
3224 
3225 // Check if the 'MI' that has the index OpNoForForwarding
3226 // meets the requirement described in the ImmInstrInfo.
3227 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
3228                                                const ImmInstrInfo &III,
3229                                                unsigned OpNoForForwarding
3230                                                ) const {
3231   // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
3232   // would not work pre-RA, we can only do the check post RA.
3233   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3234   if (MRI.isSSA())
3235     return false;
3236 
3237   // Cannot do the transform if MI isn't summing the operands.
3238   if (!III.IsSummingOperands)
3239     return false;
3240 
3241   // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
3242   if (!III.ZeroIsSpecialOrig)
3243     return false;
3244 
3245   // We cannot do the transform if the operand we are trying to replace
3246   // isn't the same as the operand the instruction allows.
3247   if (OpNoForForwarding != III.OpNoForForwarding)
3248     return false;
3249 
3250   // Check if the instruction we are trying to transform really has
3251   // the special zero register as its operand.
3252   if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
3253       MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
3254     return false;
3255 
3256   // This machine instruction is convertible if it is,
3257   // 1. summing the operands.
3258   // 2. one of the operands is special zero register.
3259   // 3. the operand we are trying to replace is allowed by the MI.
3260   return true;
3261 }
3262 
3263 // Check if the DefMI is the add inst and set the ImmMO and RegMO
3264 // accordingly.
3265 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
3266                                                const ImmInstrInfo &III,
3267                                                MachineOperand *&ImmMO,
3268                                                MachineOperand *&RegMO) const {
3269   unsigned Opc = DefMI.getOpcode();
3270   if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
3271     return false;
3272 
3273   assert(DefMI.getNumOperands() >= 3 &&
3274          "Add inst must have at least three operands");
3275   RegMO = &DefMI.getOperand(1);
3276   ImmMO = &DefMI.getOperand(2);
3277 
3278   // This DefMI is elgible for forwarding if it is:
3279   // 1. add inst
3280   // 2. one of the operands is Imm/CPI/Global.
3281   return isAnImmediateOperand(*ImmMO);
3282 }
3283 
3284 bool PPCInstrInfo::isRegElgibleForForwarding(
3285     const MachineOperand &RegMO, const MachineInstr &DefMI,
3286     const MachineInstr &MI, bool KillDefMI,
3287     bool &IsFwdFeederRegKilled) const {
3288   // x = addi y, imm
3289   // ...
3290   // z = lfdx 0, x   -> z = lfd imm(y)
3291   // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
3292   // of "y" between the DEF of "x" and "z".
3293   // The query is only valid post RA.
3294   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3295   if (MRI.isSSA())
3296     return false;
3297 
3298   Register Reg = RegMO.getReg();
3299 
3300   // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
3301   MachineBasicBlock::const_reverse_iterator It = MI;
3302   MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
3303   It++;
3304   for (; It != E; ++It) {
3305     if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3306       return false;
3307     else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3308       IsFwdFeederRegKilled = true;
3309     // Made it to DefMI without encountering a clobber.
3310     if ((&*It) == &DefMI)
3311       break;
3312   }
3313   assert((&*It) == &DefMI && "DefMI is missing");
3314 
3315   // If DefMI also defines the register to be forwarded, we can only forward it
3316   // if DefMI is being erased.
3317   if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
3318     return KillDefMI;
3319 
3320   return true;
3321 }
3322 
3323 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
3324                                              const MachineInstr &DefMI,
3325                                              const ImmInstrInfo &III,
3326                                              int64_t &Imm) const {
3327   assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
3328   if (DefMI.getOpcode() == PPC::ADDItocL) {
3329     // The operand for ADDItocL is CPI, which isn't imm at compiling time,
3330     // However, we know that, it is 16-bit width, and has the alignment of 4.
3331     // Check if the instruction met the requirement.
3332     if (III.ImmMustBeMultipleOf > 4 ||
3333        III.TruncateImmTo || III.ImmWidth != 16)
3334       return false;
3335 
3336     // Going from XForm to DForm loads means that the displacement needs to be
3337     // not just an immediate but also a multiple of 4, or 16 depending on the
3338     // load. A DForm load cannot be represented if it is a multiple of say 2.
3339     // XForm loads do not have this restriction.
3340     if (ImmMO.isGlobal() &&
3341         ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf)
3342       return false;
3343 
3344     return true;
3345   }
3346 
3347   if (ImmMO.isImm()) {
3348     // It is Imm, we need to check if the Imm fit the range.
3349     int64_t Immediate = ImmMO.getImm();
3350     // Sign-extend to 64-bits.
3351     Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
3352       (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
3353 
3354     if (Imm % III.ImmMustBeMultipleOf)
3355       return false;
3356     if (III.TruncateImmTo)
3357       Imm &= ((1 << III.TruncateImmTo) - 1);
3358     if (III.SignedImm) {
3359       APInt ActualValue(64, Imm, true);
3360       if (!ActualValue.isSignedIntN(III.ImmWidth))
3361         return false;
3362     } else {
3363       uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3364       if ((uint64_t)Imm > UnsignedMax)
3365         return false;
3366     }
3367   }
3368   else
3369     return false;
3370 
3371   // This ImmMO is forwarded if it meets the requriement describle
3372   // in ImmInstrInfo
3373   return true;
3374 }
3375 
3376 // If an X-Form instruction is fed by an add-immediate and one of its operands
3377 // is the literal zero, attempt to forward the source of the add-immediate to
3378 // the corresponding D-Form instruction with the displacement coming from
3379 // the immediate being added.
3380 bool PPCInstrInfo::transformToImmFormFedByAdd(
3381     MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
3382     MachineInstr &DefMI, bool KillDefMI) const {
3383   //         RegMO ImmMO
3384   //           |    |
3385   // x = addi reg, imm  <----- DefMI
3386   // y = op    0 ,  x   <----- MI
3387   //                |
3388   //         OpNoForForwarding
3389   // Check if the MI meet the requirement described in the III.
3390   if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
3391     return false;
3392 
3393   // Check if the DefMI meet the requirement
3394   // described in the III. If yes, set the ImmMO and RegMO accordingly.
3395   MachineOperand *ImmMO = nullptr;
3396   MachineOperand *RegMO = nullptr;
3397   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
3398     return false;
3399   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
3400 
3401   // As we get the Imm operand now, we need to check if the ImmMO meet
3402   // the requirement described in the III. If yes set the Imm.
3403   int64_t Imm = 0;
3404   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
3405     return false;
3406 
3407   bool IsFwdFeederRegKilled = false;
3408   // Check if the RegMO can be forwarded to MI.
3409   if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
3410                                  IsFwdFeederRegKilled))
3411     return false;
3412 
3413   // Get killed info in case fixup needed after transformation.
3414   unsigned ForwardKilledOperandReg = ~0U;
3415   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3416   bool PostRA = !MRI.isSSA();
3417   if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
3418     ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
3419 
3420   // We know that, the MI and DefMI both meet the pattern, and
3421   // the Imm also meet the requirement with the new Imm-form.
3422   // It is safe to do the transformation now.
3423   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
3424   LLVM_DEBUG(MI.dump());
3425   LLVM_DEBUG(dbgs() << "Fed by:\n");
3426   LLVM_DEBUG(DefMI.dump());
3427 
3428   // Update the base reg first.
3429   MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
3430                                                         false, false,
3431                                                         RegMO->isKill());
3432 
3433   // Then, update the imm.
3434   if (ImmMO->isImm()) {
3435     // If the ImmMO is Imm, change the operand that has ZERO to that Imm
3436     // directly.
3437     replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
3438   }
3439   else {
3440     // Otherwise, it is Constant Pool Index(CPI) or Global,
3441     // which is relocation in fact. We need to replace the special zero
3442     // register with ImmMO.
3443     // Before that, we need to fixup the target flags for imm.
3444     // For some reason, we miss to set the flag for the ImmMO if it is CPI.
3445     if (DefMI.getOpcode() == PPC::ADDItocL)
3446       ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
3447 
3448     // MI didn't have the interface such as MI.setOperand(i) though
3449     // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
3450     // ImmMO, we need to remove ZERO operand and all the operands behind it,
3451     // and, add the ImmMO, then, move back all the operands behind ZERO.
3452     SmallVector<MachineOperand, 2> MOps;
3453     for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
3454       MOps.push_back(MI.getOperand(i));
3455       MI.RemoveOperand(i);
3456     }
3457 
3458     // Remove the last MO in the list, which is ZERO operand in fact.
3459     MOps.pop_back();
3460     // Add the imm operand.
3461     MI.addOperand(*ImmMO);
3462     // Now add the rest back.
3463     for (auto &MO : MOps)
3464       MI.addOperand(MO);
3465   }
3466 
3467   // Update the opcode.
3468   MI.setDesc(get(III.ImmOpcode));
3469 
3470   // Fix up killed/dead flag after transformation.
3471   // Pattern 1:
3472   // x = ADD KilledFwdFeederReg, imm
3473   // n = opn KilledFwdFeederReg(killed), regn
3474   // y = XOP 0, x
3475   // Pattern 2:
3476   // x = ADD reg(killed), imm
3477   // y = XOP 0, x
3478   if (IsFwdFeederRegKilled || RegMO->isKill())
3479     fixupIsDeadOrKill(DefMI, MI, RegMO->getReg());
3480   // Pattern 3:
3481   // ForwardKilledOperandReg = ADD reg, imm
3482   // y = XOP 0, ForwardKilledOperandReg(killed)
3483   if (ForwardKilledOperandReg != ~0U)
3484     fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3485 
3486   LLVM_DEBUG(dbgs() << "With:\n");
3487   LLVM_DEBUG(MI.dump());
3488 
3489   return true;
3490 }
3491 
3492 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
3493                                              const ImmInstrInfo &III,
3494                                              unsigned ConstantOpNo,
3495                                              MachineInstr &DefMI,
3496                                              int64_t Imm) const {
3497   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3498   bool PostRA = !MRI.isSSA();
3499   // Exit early if we can't convert this.
3500   if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
3501     return false;
3502   if (Imm % III.ImmMustBeMultipleOf)
3503     return false;
3504   if (III.TruncateImmTo)
3505     Imm &= ((1 << III.TruncateImmTo) - 1);
3506   if (III.SignedImm) {
3507     APInt ActualValue(64, Imm, true);
3508     if (!ActualValue.isSignedIntN(III.ImmWidth))
3509       return false;
3510   } else {
3511     uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3512     if ((uint64_t)Imm > UnsignedMax)
3513       return false;
3514   }
3515 
3516   // If we're post-RA, the instructions don't agree on whether register zero is
3517   // special, we can transform this as long as the register operand that will
3518   // end up in the location where zero is special isn't R0.
3519   if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3520     unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
3521       III.ZeroIsSpecialNew + 1;
3522     Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
3523     Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3524     // If R0 is in the operand where zero is special for the new instruction,
3525     // it is unsafe to transform if the constant operand isn't that operand.
3526     if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
3527         ConstantOpNo != III.ZeroIsSpecialNew)
3528       return false;
3529     if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
3530         ConstantOpNo != PosForOrigZero)
3531       return false;
3532   }
3533 
3534   // Get killed info in case fixup needed after transformation.
3535   unsigned ForwardKilledOperandReg = ~0U;
3536   if (PostRA && MI.getOperand(ConstantOpNo).isKill())
3537     ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
3538 
3539   unsigned Opc = MI.getOpcode();
3540   bool SpecialShift32 =
3541     Opc == PPC::SLW || Opc == PPC::SLWo || Opc == PPC::SRW || Opc == PPC::SRWo;
3542   bool SpecialShift64 =
3543     Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo;
3544   bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo ||
3545     Opc == PPC::SLDo || Opc == PPC::SRDo;
3546   bool RightShift =
3547     Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo;
3548 
3549   MI.setDesc(get(III.ImmOpcode));
3550   if (ConstantOpNo == III.OpNoForForwarding) {
3551     // Converting shifts to immediate form is a bit tricky since they may do
3552     // one of three things:
3553     // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
3554     // 2. If the shift amount is zero, the result is unchanged (save for maybe
3555     //    setting CR0)
3556     // 3. If the shift amount is in [1, OpSize), it's just a shift
3557     if (SpecialShift32 || SpecialShift64) {
3558       LoadImmediateInfo LII;
3559       LII.Imm = 0;
3560       LII.SetCR = SetCR;
3561       LII.Is64Bit = SpecialShift64;
3562       uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
3563       if (Imm & (SpecialShift32 ? 0x20 : 0x40))
3564         replaceInstrWithLI(MI, LII);
3565       // Shifts by zero don't change the value. If we don't need to set CR0,
3566       // just convert this to a COPY. Can't do this post-RA since we've already
3567       // cleaned up the copies.
3568       else if (!SetCR && ShAmt == 0 && !PostRA) {
3569         MI.RemoveOperand(2);
3570         MI.setDesc(get(PPC::COPY));
3571       } else {
3572         // The 32 bit and 64 bit instructions are quite different.
3573         if (SpecialShift32) {
3574           // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31).
3575           uint64_t SH = RightShift ? 32 - ShAmt : ShAmt;
3576           uint64_t MB = RightShift ? ShAmt : 0;
3577           uint64_t ME = RightShift ? 31 : 31 - ShAmt;
3578           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3579           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
3580             .addImm(ME);
3581         } else {
3582           // Left shifts use (N, 63-N), right shifts use (64-N, N).
3583           uint64_t SH = RightShift ? 64 - ShAmt : ShAmt;
3584           uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
3585           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3586           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
3587         }
3588       }
3589     } else
3590       replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3591   }
3592   // Convert commutative instructions (switch the operands and convert the
3593   // desired one to an immediate.
3594   else if (III.IsCommutative) {
3595     replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3596     swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
3597   } else
3598     llvm_unreachable("Should have exited early!");
3599 
3600   // For instructions for which the constant register replaces a different
3601   // operand than where the immediate goes, we need to swap them.
3602   if (III.OpNoForForwarding != III.ImmOpNo)
3603     swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
3604 
3605   // If the special R0/X0 register index are different for original instruction
3606   // and new instruction, we need to fix up the register class in new
3607   // instruction.
3608   if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3609     if (III.ZeroIsSpecialNew) {
3610       // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
3611       // need to fix up register class.
3612       Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3613       if (Register::isVirtualRegister(RegToModify)) {
3614         const TargetRegisterClass *NewRC =
3615           MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
3616           &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
3617         MRI.setRegClass(RegToModify, NewRC);
3618       }
3619     }
3620   }
3621 
3622   // Fix up killed/dead flag after transformation.
3623   // Pattern:
3624   // ForwardKilledOperandReg = LI imm
3625   // y = XOP reg, ForwardKilledOperandReg(killed)
3626   if (ForwardKilledOperandReg != ~0U)
3627     fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3628   return true;
3629 }
3630 
3631 const TargetRegisterClass *
3632 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
3633   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
3634     return &PPC::VSRCRegClass;
3635   return RC;
3636 }
3637 
3638 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
3639   return PPC::getRecordFormOpcode(Opcode);
3640 }
3641 
3642 // This function returns true if the machine instruction
3643 // always outputs a value by sign-extending a 32 bit value,
3644 // i.e. 0 to 31-th bits are same as 32-th bit.
3645 static bool isSignExtendingOp(const MachineInstr &MI) {
3646   int Opcode = MI.getOpcode();
3647   if (Opcode == PPC::LI     || Opcode == PPC::LI8     ||
3648       Opcode == PPC::LIS    || Opcode == PPC::LIS8    ||
3649       Opcode == PPC::SRAW   || Opcode == PPC::SRAWo   ||
3650       Opcode == PPC::SRAWI  || Opcode == PPC::SRAWIo  ||
3651       Opcode == PPC::LWA    || Opcode == PPC::LWAX    ||
3652       Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
3653       Opcode == PPC::LHA    || Opcode == PPC::LHAX    ||
3654       Opcode == PPC::LHA8   || Opcode == PPC::LHAX8   ||
3655       Opcode == PPC::LBZ    || Opcode == PPC::LBZX    ||
3656       Opcode == PPC::LBZ8   || Opcode == PPC::LBZX8   ||
3657       Opcode == PPC::LBZU   || Opcode == PPC::LBZUX   ||
3658       Opcode == PPC::LBZU8  || Opcode == PPC::LBZUX8  ||
3659       Opcode == PPC::LHZ    || Opcode == PPC::LHZX    ||
3660       Opcode == PPC::LHZ8   || Opcode == PPC::LHZX8   ||
3661       Opcode == PPC::LHZU   || Opcode == PPC::LHZUX   ||
3662       Opcode == PPC::LHZU8  || Opcode == PPC::LHZUX8  ||
3663       Opcode == PPC::EXTSB  || Opcode == PPC::EXTSBo  ||
3664       Opcode == PPC::EXTSH  || Opcode == PPC::EXTSHo  ||
3665       Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8  ||
3666       Opcode == PPC::EXTSW  || Opcode == PPC::EXTSWo  ||
3667       Opcode == PPC::SETB   || Opcode == PPC::SETB8   ||
3668       Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
3669       Opcode == PPC::EXTSB8_32_64)
3670     return true;
3671 
3672   if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
3673     return true;
3674 
3675   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
3676        Opcode == PPC::RLWNM  || Opcode == PPC::RLWNMo) &&
3677       MI.getOperand(3).getImm() > 0 &&
3678       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3679     return true;
3680 
3681   return false;
3682 }
3683 
3684 // This function returns true if the machine instruction
3685 // always outputs zeros in higher 32 bits.
3686 static bool isZeroExtendingOp(const MachineInstr &MI) {
3687   int Opcode = MI.getOpcode();
3688   // The 16-bit immediate is sign-extended in li/lis.
3689   // If the most significant bit is zero, all higher bits are zero.
3690   if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
3691       Opcode == PPC::LIS || Opcode == PPC::LIS8) {
3692     int64_t Imm = MI.getOperand(1).getImm();
3693     if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
3694       return true;
3695   }
3696 
3697   // We have some variations of rotate-and-mask instructions
3698   // that clear higher 32-bits.
3699   if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
3700        Opcode == PPC::RLDCL  || Opcode == PPC::RLDCLo  ||
3701        Opcode == PPC::RLDICL_32_64) &&
3702       MI.getOperand(3).getImm() >= 32)
3703     return true;
3704 
3705   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
3706       MI.getOperand(3).getImm() >= 32 &&
3707       MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
3708     return true;
3709 
3710   if ((Opcode == PPC::RLWINM  || Opcode == PPC::RLWINMo ||
3711        Opcode == PPC::RLWNM   || Opcode == PPC::RLWNMo  ||
3712        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
3713       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3714     return true;
3715 
3716   // There are other instructions that clear higher 32-bits.
3717   if (Opcode == PPC::CNTLZW  || Opcode == PPC::CNTLZWo ||
3718       Opcode == PPC::CNTTZW  || Opcode == PPC::CNTTZWo ||
3719       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
3720       Opcode == PPC::CNTLZD  || Opcode == PPC::CNTLZDo ||
3721       Opcode == PPC::CNTTZD  || Opcode == PPC::CNTTZDo ||
3722       Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW ||
3723       Opcode == PPC::SLW     || Opcode == PPC::SLWo    ||
3724       Opcode == PPC::SRW     || Opcode == PPC::SRWo    ||
3725       Opcode == PPC::SLW8    || Opcode == PPC::SRW8    ||
3726       Opcode == PPC::SLWI    || Opcode == PPC::SLWIo   ||
3727       Opcode == PPC::SRWI    || Opcode == PPC::SRWIo   ||
3728       Opcode == PPC::LWZ     || Opcode == PPC::LWZX    ||
3729       Opcode == PPC::LWZU    || Opcode == PPC::LWZUX   ||
3730       Opcode == PPC::LWBRX   || Opcode == PPC::LHBRX   ||
3731       Opcode == PPC::LHZ     || Opcode == PPC::LHZX    ||
3732       Opcode == PPC::LHZU    || Opcode == PPC::LHZUX   ||
3733       Opcode == PPC::LBZ     || Opcode == PPC::LBZX    ||
3734       Opcode == PPC::LBZU    || Opcode == PPC::LBZUX   ||
3735       Opcode == PPC::LWZ8    || Opcode == PPC::LWZX8   ||
3736       Opcode == PPC::LWZU8   || Opcode == PPC::LWZUX8  ||
3737       Opcode == PPC::LWBRX8  || Opcode == PPC::LHBRX8  ||
3738       Opcode == PPC::LHZ8    || Opcode == PPC::LHZX8   ||
3739       Opcode == PPC::LHZU8   || Opcode == PPC::LHZUX8  ||
3740       Opcode == PPC::LBZ8    || Opcode == PPC::LBZX8   ||
3741       Opcode == PPC::LBZU8   || Opcode == PPC::LBZUX8  ||
3742       Opcode == PPC::ANDIo   || Opcode == PPC::ANDISo  ||
3743       Opcode == PPC::ROTRWI  || Opcode == PPC::ROTRWIo ||
3744       Opcode == PPC::EXTLWI  || Opcode == PPC::EXTLWIo ||
3745       Opcode == PPC::MFVSRWZ)
3746     return true;
3747 
3748   return false;
3749 }
3750 
3751 // This function returns true if the input MachineInstr is a TOC save
3752 // instruction.
3753 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
3754   if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
3755     return false;
3756   unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
3757   unsigned StackOffset = MI.getOperand(1).getImm();
3758   Register StackReg = MI.getOperand(2).getReg();
3759   if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
3760     return true;
3761 
3762   return false;
3763 }
3764 
3765 // We limit the max depth to track incoming values of PHIs or binary ops
3766 // (e.g. AND) to avoid excessive cost.
3767 const unsigned MAX_DEPTH = 1;
3768 
3769 bool
3770 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
3771                                    const unsigned Depth) const {
3772   const MachineFunction *MF = MI.getParent()->getParent();
3773   const MachineRegisterInfo *MRI = &MF->getRegInfo();
3774 
3775   // If we know this instruction returns sign- or zero-extended result,
3776   // return true.
3777   if (SignExt ? isSignExtendingOp(MI):
3778                 isZeroExtendingOp(MI))
3779     return true;
3780 
3781   switch (MI.getOpcode()) {
3782   case PPC::COPY: {
3783     Register SrcReg = MI.getOperand(1).getReg();
3784 
3785     // In both ELFv1 and v2 ABI, method parameters and the return value
3786     // are sign- or zero-extended.
3787     if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
3788       const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
3789       // We check the ZExt/SExt flags for a method parameter.
3790       if (MI.getParent()->getBasicBlock() ==
3791           &MF->getFunction().getEntryBlock()) {
3792         Register VReg = MI.getOperand(0).getReg();
3793         if (MF->getRegInfo().isLiveIn(VReg))
3794           return SignExt ? FuncInfo->isLiveInSExt(VReg) :
3795                            FuncInfo->isLiveInZExt(VReg);
3796       }
3797 
3798       // For a method return value, we check the ZExt/SExt flags in attribute.
3799       // We assume the following code sequence for method call.
3800       //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
3801       //   BL8_NOP @func,...
3802       //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
3803       //   %5 = COPY %x3; G8RC:%5
3804       if (SrcReg == PPC::X3) {
3805         const MachineBasicBlock *MBB = MI.getParent();
3806         MachineBasicBlock::const_instr_iterator II =
3807           MachineBasicBlock::const_instr_iterator(&MI);
3808         if (II != MBB->instr_begin() &&
3809             (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
3810           const MachineInstr &CallMI = *(--II);
3811           if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
3812             const Function *CalleeFn =
3813               dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
3814             if (!CalleeFn)
3815               return false;
3816             const IntegerType *IntTy =
3817               dyn_cast<IntegerType>(CalleeFn->getReturnType());
3818             const AttributeSet &Attrs =
3819               CalleeFn->getAttributes().getRetAttributes();
3820             if (IntTy && IntTy->getBitWidth() <= 32)
3821               return Attrs.hasAttribute(SignExt ? Attribute::SExt :
3822                                                   Attribute::ZExt);
3823           }
3824         }
3825       }
3826     }
3827 
3828     // If this is a copy from another register, we recursively check source.
3829     if (!Register::isVirtualRegister(SrcReg))
3830       return false;
3831     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3832     if (SrcMI != NULL)
3833       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3834 
3835     return false;
3836   }
3837 
3838   case PPC::ANDIo:
3839   case PPC::ANDISo:
3840   case PPC::ORI:
3841   case PPC::ORIS:
3842   case PPC::XORI:
3843   case PPC::XORIS:
3844   case PPC::ANDIo8:
3845   case PPC::ANDISo8:
3846   case PPC::ORI8:
3847   case PPC::ORIS8:
3848   case PPC::XORI8:
3849   case PPC::XORIS8: {
3850     // logical operation with 16-bit immediate does not change the upper bits.
3851     // So, we track the operand register as we do for register copy.
3852     Register SrcReg = MI.getOperand(1).getReg();
3853     if (!Register::isVirtualRegister(SrcReg))
3854       return false;
3855     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3856     if (SrcMI != NULL)
3857       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3858 
3859     return false;
3860   }
3861 
3862   // If all incoming values are sign-/zero-extended,
3863   // the output of OR, ISEL or PHI is also sign-/zero-extended.
3864   case PPC::OR:
3865   case PPC::OR8:
3866   case PPC::ISEL:
3867   case PPC::PHI: {
3868     if (Depth >= MAX_DEPTH)
3869       return false;
3870 
3871     // The input registers for PHI are operand 1, 3, ...
3872     // The input registers for others are operand 1 and 2.
3873     unsigned E = 3, D = 1;
3874     if (MI.getOpcode() == PPC::PHI) {
3875       E = MI.getNumOperands();
3876       D = 2;
3877     }
3878 
3879     for (unsigned I = 1; I != E; I += D) {
3880       if (MI.getOperand(I).isReg()) {
3881         Register SrcReg = MI.getOperand(I).getReg();
3882         if (!Register::isVirtualRegister(SrcReg))
3883           return false;
3884         const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3885         if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
3886           return false;
3887       }
3888       else
3889         return false;
3890     }
3891     return true;
3892   }
3893 
3894   // If at least one of the incoming values of an AND is zero extended
3895   // then the output is also zero-extended. If both of the incoming values
3896   // are sign-extended then the output is also sign extended.
3897   case PPC::AND:
3898   case PPC::AND8: {
3899     if (Depth >= MAX_DEPTH)
3900        return false;
3901 
3902     assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
3903 
3904     Register SrcReg1 = MI.getOperand(1).getReg();
3905     Register SrcReg2 = MI.getOperand(2).getReg();
3906 
3907     if (!Register::isVirtualRegister(SrcReg1) ||
3908         !Register::isVirtualRegister(SrcReg2))
3909       return false;
3910 
3911     const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
3912     const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
3913     if (!MISrc1 || !MISrc2)
3914         return false;
3915 
3916     if(SignExt)
3917         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
3918                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3919     else
3920         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
3921                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3922   }
3923 
3924   default:
3925     break;
3926   }
3927   return false;
3928 }
3929 
3930 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
3931   return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
3932 }
3933 
3934 namespace {
3935 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
3936   MachineInstr *Loop, *EndLoop, *LoopCount;
3937   MachineFunction *MF;
3938   const TargetInstrInfo *TII;
3939   int64_t TripCount;
3940 
3941 public:
3942   PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
3943                        MachineInstr *LoopCount)
3944       : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
3945         MF(Loop->getParent()->getParent()),
3946         TII(MF->getSubtarget().getInstrInfo()) {
3947     // Inspect the Loop instruction up-front, as it may be deleted when we call
3948     // createTripCountGreaterCondition.
3949     if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
3950       TripCount = LoopCount->getOperand(1).getImm();
3951     else
3952       TripCount = -1;
3953   }
3954 
3955   bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
3956     // Only ignore the terminator.
3957     return MI == EndLoop;
3958   }
3959 
3960   Optional<bool>
3961   createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
3962                                   SmallVectorImpl<MachineOperand> &Cond) override {
3963     if (TripCount == -1) {
3964       // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
3965       // so we don't need to generate any thing here.
3966       Cond.push_back(MachineOperand::CreateImm(0));
3967       Cond.push_back(MachineOperand::CreateReg(
3968           MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
3969           true));
3970       return {};
3971     }
3972 
3973     return TripCount > TC;
3974   }
3975 
3976   void setPreheader(MachineBasicBlock *NewPreheader) override {
3977     // Do nothing. We want the LOOP setup instruction to stay in the *old*
3978     // preheader, so we can use BDZ in the prologs to adapt the loop trip count.
3979   }
3980 
3981   void adjustTripCount(int TripCountAdjust) override {
3982     // If the loop trip count is a compile-time value, then just change the
3983     // value.
3984     if (LoopCount->getOpcode() == PPC::LI8 ||
3985         LoopCount->getOpcode() == PPC::LI) {
3986       int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
3987       LoopCount->getOperand(1).setImm(TripCount);
3988       return;
3989     }
3990 
3991     // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
3992     // so we don't need to generate any thing here.
3993   }
3994 
3995   void disposed() override {
3996     Loop->eraseFromParent();
3997     // Ensure the loop setup instruction is deleted too.
3998     LoopCount->eraseFromParent();
3999   }
4000 };
4001 } // namespace
4002 
4003 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
4004 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
4005   // We really "analyze" only hardware loops right now.
4006   MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
4007   MachineBasicBlock *Preheader = *LoopBB->pred_begin();
4008   if (Preheader == LoopBB)
4009     Preheader = *std::next(LoopBB->pred_begin());
4010   MachineFunction *MF = Preheader->getParent();
4011 
4012   if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
4013     SmallPtrSet<MachineBasicBlock *, 8> Visited;
4014     if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
4015       Register LoopCountReg = LoopInst->getOperand(0).getReg();
4016       MachineRegisterInfo &MRI = MF->getRegInfo();
4017       MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
4018       return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
4019     }
4020   }
4021   return nullptr;
4022 }
4023 
4024 MachineInstr *PPCInstrInfo::findLoopInstr(
4025     MachineBasicBlock &PreHeader,
4026     SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
4027 
4028   unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
4029 
4030   // The loop set-up instruction should be in preheader
4031   for (auto &I : PreHeader.instrs())
4032     if (I.getOpcode() == LOOPi)
4033       return &I;
4034   return nullptr;
4035 }
4036 
4037 // Return true if get the base operand, byte offset of an instruction and the
4038 // memory width. Width is the size of memory that is being loaded/stored.
4039 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
4040   const MachineInstr &LdSt,
4041   const MachineOperand *&BaseReg,
4042   int64_t &Offset,
4043   unsigned &Width,
4044   const TargetRegisterInfo *TRI) const {
4045   assert(LdSt.mayLoadOrStore() && "Expected a memory operation.");
4046 
4047   // Handle only loads/stores with base register followed by immediate offset.
4048   if (LdSt.getNumExplicitOperands() != 3)
4049     return false;
4050   if (!LdSt.getOperand(1).isImm() || !LdSt.getOperand(2).isReg())
4051     return false;
4052 
4053   if (!LdSt.hasOneMemOperand())
4054     return false;
4055 
4056   Width = (*LdSt.memoperands_begin())->getSize();
4057   Offset = LdSt.getOperand(1).getImm();
4058   BaseReg = &LdSt.getOperand(2);
4059   return true;
4060 }
4061 
4062 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
4063     const MachineInstr &MIa, const MachineInstr &MIb,
4064     AliasAnalysis * /*AA*/) const {
4065   assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
4066   assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
4067 
4068   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
4069       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
4070     return false;
4071 
4072   // Retrieve the base register, offset from the base register and width. Width
4073   // is the size of memory that is being loaded/stored (e.g. 1, 2, 4).  If
4074   // base registers are identical, and the offset of a lower memory access +
4075   // the width doesn't overlap the offset of a higher memory access,
4076   // then the memory accesses are different.
4077   const TargetRegisterInfo *TRI = &getRegisterInfo();
4078   const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
4079   int64_t OffsetA = 0, OffsetB = 0;
4080   unsigned int WidthA = 0, WidthB = 0;
4081   if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
4082       getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
4083     if (BaseOpA->isIdenticalTo(*BaseOpB)) {
4084       int LowOffset = std::min(OffsetA, OffsetB);
4085       int HighOffset = std::max(OffsetA, OffsetB);
4086       int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
4087       if (LowOffset + LowWidth <= HighOffset)
4088         return true;
4089     }
4090   }
4091   return false;
4092 }
4093