1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/ScheduleDAG.h" 31 #include "llvm/CodeGen/SlotIndexes.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCInst.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "ppc-instr-info" 44 45 #define GET_INSTRMAP_INFO 46 #define GET_INSTRINFO_CTOR_DTOR 47 #include "PPCGenInstrInfo.inc" 48 49 STATISTIC(NumStoreSPILLVSRRCAsVec, 50 "Number of spillvsrrc spilled to stack as vec"); 51 STATISTIC(NumStoreSPILLVSRRCAsGpr, 52 "Number of spillvsrrc spilled to stack as gpr"); 53 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 54 STATISTIC(CmpIselsConverted, 55 "Number of ISELs that depend on comparison of constants converted"); 56 STATISTIC(MissedConvertibleImmediateInstrs, 57 "Number of compare-immediate instructions fed by constants"); 58 STATISTIC(NumRcRotatesConvertedToRcAnd, 59 "Number of record-form rotates converted to record-form andi"); 60 61 static cl:: 62 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 63 cl::desc("Disable analysis for CTR loops")); 64 65 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 66 cl::desc("Disable compare instruction optimization"), cl::Hidden); 67 68 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 69 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 70 cl::Hidden); 71 72 static cl::opt<bool> 73 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 74 cl::desc("Use the old (incorrect) instruction latency calculation")); 75 76 // Pin the vtable to this file. 77 void PPCInstrInfo::anchor() {} 78 79 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 80 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 81 /* CatchRetOpcode */ -1, 82 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 83 Subtarget(STI), RI(STI.getTargetMachine()) {} 84 85 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 86 /// this target when scheduling the DAG. 87 ScheduleHazardRecognizer * 88 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 89 const ScheduleDAG *DAG) const { 90 unsigned Directive = 91 static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); 92 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 93 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 94 const InstrItineraryData *II = 95 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 96 return new ScoreboardHazardRecognizer(II, DAG); 97 } 98 99 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 100 } 101 102 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 103 /// to use for this target when scheduling the DAG. 104 ScheduleHazardRecognizer * 105 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 106 const ScheduleDAG *DAG) const { 107 unsigned Directive = 108 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); 109 110 // FIXME: Leaving this as-is until we have POWER9 scheduling info 111 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 112 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 113 114 // Most subtargets use a PPC970 recognizer. 115 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 116 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 117 assert(DAG->TII && "No InstrInfo?"); 118 119 return new PPCHazardRecognizer970(*DAG); 120 } 121 122 return new ScoreboardHazardRecognizer(II, DAG); 123 } 124 125 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 126 const MachineInstr &MI, 127 unsigned *PredCost) const { 128 if (!ItinData || UseOldLatencyCalc) 129 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 130 131 // The default implementation of getInstrLatency calls getStageLatency, but 132 // getStageLatency does not do the right thing for us. While we have 133 // itinerary, most cores are fully pipelined, and so the itineraries only 134 // express the first part of the pipeline, not every stage. Instead, we need 135 // to use the listed output operand cycle number (using operand 0 here, which 136 // is an output). 137 138 unsigned Latency = 1; 139 unsigned DefClass = MI.getDesc().getSchedClass(); 140 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 141 const MachineOperand &MO = MI.getOperand(i); 142 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 143 continue; 144 145 int Cycle = ItinData->getOperandCycle(DefClass, i); 146 if (Cycle < 0) 147 continue; 148 149 Latency = std::max(Latency, (unsigned) Cycle); 150 } 151 152 return Latency; 153 } 154 155 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 156 const MachineInstr &DefMI, unsigned DefIdx, 157 const MachineInstr &UseMI, 158 unsigned UseIdx) const { 159 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 160 UseMI, UseIdx); 161 162 if (!DefMI.getParent()) 163 return Latency; 164 165 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 166 Register Reg = DefMO.getReg(); 167 168 bool IsRegCR; 169 if (Register::isVirtualRegister(Reg)) { 170 const MachineRegisterInfo *MRI = 171 &DefMI.getParent()->getParent()->getRegInfo(); 172 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 173 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 174 } else { 175 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 176 PPC::CRBITRCRegClass.contains(Reg); 177 } 178 179 if (UseMI.isBranch() && IsRegCR) { 180 if (Latency < 0) 181 Latency = getInstrLatency(ItinData, DefMI); 182 183 // On some cores, there is an additional delay between writing to a condition 184 // register, and using it from a branch. 185 unsigned Directive = Subtarget.getCPUDirective(); 186 switch (Directive) { 187 default: break; 188 case PPC::DIR_7400: 189 case PPC::DIR_750: 190 case PPC::DIR_970: 191 case PPC::DIR_E5500: 192 case PPC::DIR_PWR4: 193 case PPC::DIR_PWR5: 194 case PPC::DIR_PWR5X: 195 case PPC::DIR_PWR6: 196 case PPC::DIR_PWR6X: 197 case PPC::DIR_PWR7: 198 case PPC::DIR_PWR8: 199 // FIXME: Is this needed for POWER9? 200 Latency += 2; 201 break; 202 } 203 } 204 205 return Latency; 206 } 207 208 /// This is an architecture-specific helper function of reassociateOps. 209 /// Set special operand attributes for new instructions after reassociation. 210 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, 211 MachineInstr &OldMI2, 212 MachineInstr &NewMI1, 213 MachineInstr &NewMI2) const { 214 // Propagate FP flags from the original instructions. 215 // But clear poison-generating flags because those may not be valid now. 216 uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags(); 217 NewMI1.setFlags(IntersectedFlags); 218 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap); 219 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap); 220 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact); 221 222 NewMI2.setFlags(IntersectedFlags); 223 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap); 224 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap); 225 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact); 226 } 227 228 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI, 229 uint16_t Flags) const { 230 MI.setFlags(Flags); 231 MI.clearFlag(MachineInstr::MIFlag::NoSWrap); 232 MI.clearFlag(MachineInstr::MIFlag::NoUWrap); 233 MI.clearFlag(MachineInstr::MIFlag::IsExact); 234 } 235 236 // This function does not list all associative and commutative operations, but 237 // only those worth feeding through the machine combiner in an attempt to 238 // reduce the critical path. Mostly, this means floating-point operations, 239 // because they have high latencies(>=5) (compared to other operations, such as 240 // and/or, which are also associative and commutative, but have low latencies). 241 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 242 switch (Inst.getOpcode()) { 243 // Floating point: 244 // FP Add: 245 case PPC::FADD: 246 case PPC::FADDS: 247 // FP Multiply: 248 case PPC::FMUL: 249 case PPC::FMULS: 250 // Altivec Add: 251 case PPC::VADDFP: 252 // VSX Add: 253 case PPC::XSADDDP: 254 case PPC::XVADDDP: 255 case PPC::XVADDSP: 256 case PPC::XSADDSP: 257 // VSX Multiply: 258 case PPC::XSMULDP: 259 case PPC::XVMULDP: 260 case PPC::XVMULSP: 261 case PPC::XSMULSP: 262 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && 263 Inst.getFlag(MachineInstr::MIFlag::FmNsz); 264 // Fixed point: 265 // Multiply: 266 case PPC::MULHD: 267 case PPC::MULLD: 268 case PPC::MULHW: 269 case PPC::MULLW: 270 return true; 271 default: 272 return false; 273 } 274 } 275 276 #define InfoArrayIdxFMAInst 0 277 #define InfoArrayIdxFAddInst 1 278 #define InfoArrayIdxFMULInst 2 279 #define InfoArrayIdxAddOpIdx 3 280 #define InfoArrayIdxMULOpIdx 4 281 // Array keeps info for FMA instructions: 282 // Index 0(InfoArrayIdxFMAInst): FMA instruction; 283 // Index 1(InfoArrayIdxFAddInst): ADD instruction assoaicted with FMA; 284 // Index 2(InfoArrayIdxFMULInst): MUL instruction assoaicted with FMA; 285 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands; 286 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands; 287 // second MUL operand index is plus 1. 288 static const uint16_t FMAOpIdxInfo[][5] = { 289 // FIXME: Add more FMA instructions like XSNMADDADP and so on. 290 {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2}, 291 {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2}, 292 {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2}, 293 {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2}, 294 {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1}, 295 {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1}}; 296 297 // Check if an opcode is a FMA instruction. If it is, return the index in array 298 // FMAOpIdxInfo. Otherwise, return -1. 299 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const { 300 for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++) 301 if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode) 302 return I; 303 return -1; 304 } 305 306 // Try to reassociate FMA chains like below: 307 // 308 // Pattern 1: 309 // A = FADD X, Y (Leaf) 310 // B = FMA A, M21, M22 (Prev) 311 // C = FMA B, M31, M32 (Root) 312 // --> 313 // A = FMA X, M21, M22 314 // B = FMA Y, M31, M32 315 // C = FADD A, B 316 // 317 // Pattern 2: 318 // A = FMA X, M11, M12 (Leaf) 319 // B = FMA A, M21, M22 (Prev) 320 // C = FMA B, M31, M32 (Root) 321 // --> 322 // A = FMUL M11, M12 323 // B = FMA X, M21, M22 324 // D = FMA A, M31, M32 325 // C = FADD B, D 326 // 327 // breaking the dependency between A and B, allowing FMA to be executed in 328 // parallel (or back-to-back in a pipeline) instead of depending on each other. 329 bool PPCInstrInfo::getFMAPatterns( 330 MachineInstr &Root, 331 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 332 MachineBasicBlock *MBB = Root.getParent(); 333 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 334 335 auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) { 336 for (const auto &MO : Instr.explicit_operands()) 337 if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg()))) 338 return false; 339 return true; 340 }; 341 342 auto IsReassociable = [&](const MachineInstr &Instr, int16_t &AddOpIdx, 343 bool IsLeaf, bool IsAdd) { 344 int16_t Idx = -1; 345 if (!IsAdd) { 346 Idx = getFMAOpIdxInfo(Instr.getOpcode()); 347 if (Idx < 0) 348 return false; 349 } else if (Instr.getOpcode() != 350 FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())] 351 [InfoArrayIdxFAddInst]) 352 return false; 353 354 // Instruction can be reassociated. 355 // fast math flags may prohibit reassociation. 356 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 357 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 358 return false; 359 360 // Instruction operands are virtual registers for reassociation. 361 if (!IsAllOpsVirtualReg(Instr)) 362 return false; 363 364 if (IsAdd && IsLeaf) 365 return true; 366 367 AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 368 369 const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx); 370 MachineInstr *MIAdd = MRI.getUniqueVRegDef(OpAdd.getReg()); 371 // If 'add' operand's def is not in current block, don't do ILP related opt. 372 if (!MIAdd || MIAdd->getParent() != MBB) 373 return false; 374 375 // If this is not Leaf FMA Instr, its 'add' operand should only have one use 376 // as this fma will be changed later. 377 return IsLeaf ? true : MRI.hasOneNonDBGUse(OpAdd.getReg()); 378 }; 379 380 int16_t AddOpIdx = -1; 381 // Root must be a valid FMA like instruction. 382 if (!IsReassociable(Root, AddOpIdx, false, false)) 383 return false; 384 385 assert((AddOpIdx >= 0) && "add operand index not right!"); 386 387 Register RegB = Root.getOperand(AddOpIdx).getReg(); 388 MachineInstr *Prev = MRI.getUniqueVRegDef(RegB); 389 390 // Prev must be a valid FMA like instruction. 391 AddOpIdx = -1; 392 if (!IsReassociable(*Prev, AddOpIdx, false, false)) 393 return false; 394 395 assert((AddOpIdx >= 0) && "add operand index not right!"); 396 397 Register RegA = Prev->getOperand(AddOpIdx).getReg(); 398 MachineInstr *Leaf = MRI.getUniqueVRegDef(RegA); 399 AddOpIdx = -1; 400 if (IsReassociable(*Leaf, AddOpIdx, true, false)) { 401 Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 402 return true; 403 } 404 if (IsReassociable(*Leaf, AddOpIdx, true, true)) { 405 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM); 406 return true; 407 } 408 return false; 409 } 410 411 bool PPCInstrInfo::getMachineCombinerPatterns( 412 MachineInstr &Root, 413 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 414 // Using the machine combiner in this way is potentially expensive, so 415 // restrict to when aggressive optimizations are desired. 416 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 417 return false; 418 419 if (getFMAPatterns(Root, Patterns)) 420 return true; 421 422 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 423 } 424 425 void PPCInstrInfo::genAlternativeCodeSequence( 426 MachineInstr &Root, MachineCombinerPattern Pattern, 427 SmallVectorImpl<MachineInstr *> &InsInstrs, 428 SmallVectorImpl<MachineInstr *> &DelInstrs, 429 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 430 switch (Pattern) { 431 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 432 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 433 reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg); 434 break; 435 default: 436 // Reassociate default patterns. 437 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, 438 DelInstrs, InstrIdxForVirtReg); 439 break; 440 } 441 } 442 443 // Currently, only handle two patterns REASSOC_XY_AMM_BMM and 444 // REASSOC_XMM_AMM_BMM. See comments for getFMAPatterns. 445 void PPCInstrInfo::reassociateFMA( 446 MachineInstr &Root, MachineCombinerPattern Pattern, 447 SmallVectorImpl<MachineInstr *> &InsInstrs, 448 SmallVectorImpl<MachineInstr *> &DelInstrs, 449 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 450 MachineFunction *MF = Root.getMF(); 451 MachineRegisterInfo &MRI = MF->getRegInfo(); 452 MachineOperand &OpC = Root.getOperand(0); 453 Register RegC = OpC.getReg(); 454 const TargetRegisterClass *RC = MRI.getRegClass(RegC); 455 MRI.constrainRegClass(RegC, RC); 456 457 unsigned FmaOp = Root.getOpcode(); 458 int16_t Idx = getFMAOpIdxInfo(FmaOp); 459 assert(Idx >= 0 && "Root must be a FMA instruction"); 460 461 uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 462 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 463 MachineInstr *Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg()); 464 MachineInstr *Leaf = 465 MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg()); 466 uint16_t IntersectedFlags = 467 Root.getFlags() & Prev->getFlags() & Leaf->getFlags(); 468 469 auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg, 470 bool &KillFlag) { 471 Reg = Operand.getReg(); 472 MRI.constrainRegClass(Reg, RC); 473 KillFlag = Operand.isKill(); 474 }; 475 476 auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1, 477 Register &MulOp2, bool &MulOp1KillFlag, 478 bool &MulOp2KillFlag) { 479 GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag); 480 GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag); 481 }; 482 483 Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32; 484 bool KillX = false, KillY = false, KillM11 = false, KillM12 = false, 485 KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false; 486 487 GetFMAInstrInfo(Root, RegM31, RegM32, KillM31, KillM32); 488 GetFMAInstrInfo(*Prev, RegM21, RegM22, KillM21, KillM22); 489 490 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 491 GetFMAInstrInfo(*Leaf, RegM11, RegM12, KillM11, KillM12); 492 GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX); 493 } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) { 494 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 495 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 496 } 497 498 // Create new virtual registers for the new results instead of 499 // recycling legacy ones because the MachineCombiner's computation of the 500 // critical path requires a new register definition rather than an existing 501 // one. 502 Register NewVRA = MRI.createVirtualRegister(RC); 503 InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0)); 504 505 Register NewVRB = MRI.createVirtualRegister(RC); 506 InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1)); 507 508 Register NewVRD = 0; 509 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 510 NewVRD = MRI.createVirtualRegister(RC); 511 InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2)); 512 } 513 514 auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd, 515 Register RegMul1, bool KillRegMul1, 516 Register RegMul2, bool KillRegMul2) { 517 MI->getOperand(AddOpIdx).setReg(RegAdd); 518 MI->getOperand(AddOpIdx).setIsKill(KillAdd); 519 MI->getOperand(FirstMulOpIdx).setReg(RegMul1); 520 MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1); 521 MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2); 522 MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2); 523 }; 524 525 if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) { 526 // Create new instructions for insertion. 527 MachineInstrBuilder MINewB = 528 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 529 .addReg(RegX, getKillRegState(KillX)) 530 .addReg(RegM21, getKillRegState(KillM21)) 531 .addReg(RegM22, getKillRegState(KillM22)); 532 MachineInstrBuilder MINewA = 533 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 534 .addReg(RegY, getKillRegState(KillY)) 535 .addReg(RegM31, getKillRegState(KillM31)) 536 .addReg(RegM32, getKillRegState(KillM32)); 537 // If AddOpIdx is not 1, adjust the order. 538 if (AddOpIdx != 1) { 539 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 540 AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32); 541 } 542 543 MachineInstrBuilder MINewC = 544 BuildMI(*MF, Root.getDebugLoc(), 545 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 546 .addReg(NewVRB, getKillRegState(true)) 547 .addReg(NewVRA, getKillRegState(true)); 548 549 // Update flags for newly created instructions. 550 setSpecialOperandAttr(*MINewA, IntersectedFlags); 551 setSpecialOperandAttr(*MINewB, IntersectedFlags); 552 setSpecialOperandAttr(*MINewC, IntersectedFlags); 553 554 // Record new instructions for insertion. 555 InsInstrs.push_back(MINewA); 556 InsInstrs.push_back(MINewB); 557 InsInstrs.push_back(MINewC); 558 } else if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 559 assert(NewVRD && "new FMA register not created!"); 560 // Create new instructions for insertion. 561 MachineInstrBuilder MINewA = 562 BuildMI(*MF, Leaf->getDebugLoc(), 563 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA) 564 .addReg(RegM11, getKillRegState(KillM11)) 565 .addReg(RegM12, getKillRegState(KillM12)); 566 MachineInstrBuilder MINewB = 567 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 568 .addReg(RegX, getKillRegState(KillX)) 569 .addReg(RegM21, getKillRegState(KillM21)) 570 .addReg(RegM22, getKillRegState(KillM22)); 571 MachineInstrBuilder MINewD = 572 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD) 573 .addReg(NewVRA, getKillRegState(true)) 574 .addReg(RegM31, getKillRegState(KillM31)) 575 .addReg(RegM32, getKillRegState(KillM32)); 576 // If AddOpIdx is not 1, adjust the order. 577 if (AddOpIdx != 1) { 578 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 579 AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32, 580 KillM32); 581 } 582 583 MachineInstrBuilder MINewC = 584 BuildMI(*MF, Root.getDebugLoc(), 585 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 586 .addReg(NewVRB, getKillRegState(true)) 587 .addReg(NewVRD, getKillRegState(true)); 588 589 // Update flags for newly created instructions. 590 setSpecialOperandAttr(*MINewA, IntersectedFlags); 591 setSpecialOperandAttr(*MINewB, IntersectedFlags); 592 setSpecialOperandAttr(*MINewD, IntersectedFlags); 593 setSpecialOperandAttr(*MINewC, IntersectedFlags); 594 595 // Record new instructions for insertion. 596 InsInstrs.push_back(MINewA); 597 InsInstrs.push_back(MINewB); 598 InsInstrs.push_back(MINewD); 599 InsInstrs.push_back(MINewC); 600 } 601 602 assert(!InsInstrs.empty() && 603 "Insertion instructions set should not be empty!"); 604 605 // Record old instructions for deletion. 606 DelInstrs.push_back(Leaf); 607 DelInstrs.push_back(Prev); 608 DelInstrs.push_back(&Root); 609 } 610 611 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 612 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 613 Register &SrcReg, Register &DstReg, 614 unsigned &SubIdx) const { 615 switch (MI.getOpcode()) { 616 default: return false; 617 case PPC::EXTSW: 618 case PPC::EXTSW_32: 619 case PPC::EXTSW_32_64: 620 SrcReg = MI.getOperand(1).getReg(); 621 DstReg = MI.getOperand(0).getReg(); 622 SubIdx = PPC::sub_32; 623 return true; 624 } 625 } 626 627 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 628 int &FrameIndex) const { 629 unsigned Opcode = MI.getOpcode(); 630 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 631 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 632 633 if (End != std::find(OpcodesForSpill, End, Opcode)) { 634 // Check for the operands added by addFrameReference (the immediate is the 635 // offset which defaults to 0). 636 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 637 MI.getOperand(2).isFI()) { 638 FrameIndex = MI.getOperand(2).getIndex(); 639 return MI.getOperand(0).getReg(); 640 } 641 } 642 return 0; 643 } 644 645 // For opcodes with the ReMaterializable flag set, this function is called to 646 // verify the instruction is really rematable. 647 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 648 AliasAnalysis *AA) const { 649 switch (MI.getOpcode()) { 650 default: 651 // This function should only be called for opcodes with the ReMaterializable 652 // flag set. 653 llvm_unreachable("Unknown rematerializable operation!"); 654 break; 655 case PPC::LI: 656 case PPC::LI8: 657 case PPC::LIS: 658 case PPC::LIS8: 659 case PPC::ADDIStocHA: 660 case PPC::ADDIStocHA8: 661 case PPC::ADDItocL: 662 case PPC::LOAD_STACK_GUARD: 663 case PPC::XXLXORz: 664 case PPC::XXLXORspz: 665 case PPC::XXLXORdpz: 666 case PPC::XXLEQVOnes: 667 case PPC::V_SET0B: 668 case PPC::V_SET0H: 669 case PPC::V_SET0: 670 case PPC::V_SETALLONESB: 671 case PPC::V_SETALLONESH: 672 case PPC::V_SETALLONES: 673 case PPC::CRSET: 674 case PPC::CRUNSET: 675 case PPC::XXSETACCZ: 676 return true; 677 } 678 return false; 679 } 680 681 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 682 int &FrameIndex) const { 683 unsigned Opcode = MI.getOpcode(); 684 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 685 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 686 687 if (End != std::find(OpcodesForSpill, End, Opcode)) { 688 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 689 MI.getOperand(2).isFI()) { 690 FrameIndex = MI.getOperand(2).getIndex(); 691 return MI.getOperand(0).getReg(); 692 } 693 } 694 return 0; 695 } 696 697 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 698 unsigned OpIdx1, 699 unsigned OpIdx2) const { 700 MachineFunction &MF = *MI.getParent()->getParent(); 701 702 // Normal instructions can be commuted the obvious way. 703 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) 704 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 705 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 706 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 707 // changing the relative order of the mask operands might change what happens 708 // to the high-bits of the mask (and, thus, the result). 709 710 // Cannot commute if it has a non-zero rotate count. 711 if (MI.getOperand(3).getImm() != 0) 712 return nullptr; 713 714 // If we have a zero rotate count, we have: 715 // M = mask(MB,ME) 716 // Op0 = (Op1 & ~M) | (Op2 & M) 717 // Change this to: 718 // M = mask((ME+1)&31, (MB-1)&31) 719 // Op0 = (Op2 & ~M) | (Op1 & M) 720 721 // Swap op1/op2 722 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 723 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); 724 Register Reg0 = MI.getOperand(0).getReg(); 725 Register Reg1 = MI.getOperand(1).getReg(); 726 Register Reg2 = MI.getOperand(2).getReg(); 727 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 728 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 729 bool Reg1IsKill = MI.getOperand(1).isKill(); 730 bool Reg2IsKill = MI.getOperand(2).isKill(); 731 bool ChangeReg0 = false; 732 // If machine instrs are no longer in two-address forms, update 733 // destination register as well. 734 if (Reg0 == Reg1) { 735 // Must be two address instruction! 736 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 737 "Expecting a two-address instruction!"); 738 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 739 Reg2IsKill = false; 740 ChangeReg0 = true; 741 } 742 743 // Masks. 744 unsigned MB = MI.getOperand(4).getImm(); 745 unsigned ME = MI.getOperand(5).getImm(); 746 747 // We can't commute a trivial mask (there is no way to represent an all-zero 748 // mask). 749 if (MB == 0 && ME == 31) 750 return nullptr; 751 752 if (NewMI) { 753 // Create a new instruction. 754 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 755 bool Reg0IsDead = MI.getOperand(0).isDead(); 756 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 757 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 758 .addReg(Reg2, getKillRegState(Reg2IsKill)) 759 .addReg(Reg1, getKillRegState(Reg1IsKill)) 760 .addImm((ME + 1) & 31) 761 .addImm((MB - 1) & 31); 762 } 763 764 if (ChangeReg0) { 765 MI.getOperand(0).setReg(Reg2); 766 MI.getOperand(0).setSubReg(SubReg2); 767 } 768 MI.getOperand(2).setReg(Reg1); 769 MI.getOperand(1).setReg(Reg2); 770 MI.getOperand(2).setSubReg(SubReg1); 771 MI.getOperand(1).setSubReg(SubReg2); 772 MI.getOperand(2).setIsKill(Reg1IsKill); 773 MI.getOperand(1).setIsKill(Reg2IsKill); 774 775 // Swap the mask around. 776 MI.getOperand(4).setImm((ME + 1) & 31); 777 MI.getOperand(5).setImm((MB - 1) & 31); 778 return &MI; 779 } 780 781 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 782 unsigned &SrcOpIdx1, 783 unsigned &SrcOpIdx2) const { 784 // For VSX A-Type FMA instructions, it is the first two operands that can be 785 // commuted, however, because the non-encoded tied input operand is listed 786 // first, the operands to swap are actually the second and third. 787 788 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 789 if (AltOpc == -1) 790 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 791 792 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 793 // and SrcOpIdx2. 794 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 795 } 796 797 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 798 MachineBasicBlock::iterator MI) const { 799 // This function is used for scheduling, and the nop wanted here is the type 800 // that terminates dispatch groups on the POWER cores. 801 unsigned Directive = Subtarget.getCPUDirective(); 802 unsigned Opcode; 803 switch (Directive) { 804 default: Opcode = PPC::NOP; break; 805 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 806 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 807 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 808 // FIXME: Update when POWER9 scheduling model is ready. 809 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 810 } 811 812 DebugLoc DL; 813 BuildMI(MBB, MI, DL, get(Opcode)); 814 } 815 816 /// Return the noop instruction to use for a noop. 817 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 818 NopInst.setOpcode(PPC::NOP); 819 } 820 821 // Branch analysis. 822 // Note: If the condition register is set to CTR or CTR8 then this is a 823 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 824 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 825 MachineBasicBlock *&TBB, 826 MachineBasicBlock *&FBB, 827 SmallVectorImpl<MachineOperand> &Cond, 828 bool AllowModify) const { 829 bool isPPC64 = Subtarget.isPPC64(); 830 831 // If the block has no terminators, it just falls into the block after it. 832 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 833 if (I == MBB.end()) 834 return false; 835 836 if (!isUnpredicatedTerminator(*I)) 837 return false; 838 839 if (AllowModify) { 840 // If the BB ends with an unconditional branch to the fallthrough BB, 841 // we eliminate the branch instruction. 842 if (I->getOpcode() == PPC::B && 843 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 844 I->eraseFromParent(); 845 846 // We update iterator after deleting the last branch. 847 I = MBB.getLastNonDebugInstr(); 848 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 849 return false; 850 } 851 } 852 853 // Get the last instruction in the block. 854 MachineInstr &LastInst = *I; 855 856 // If there is only one terminator instruction, process it. 857 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 858 if (LastInst.getOpcode() == PPC::B) { 859 if (!LastInst.getOperand(0).isMBB()) 860 return true; 861 TBB = LastInst.getOperand(0).getMBB(); 862 return false; 863 } else if (LastInst.getOpcode() == PPC::BCC) { 864 if (!LastInst.getOperand(2).isMBB()) 865 return true; 866 // Block ends with fall-through condbranch. 867 TBB = LastInst.getOperand(2).getMBB(); 868 Cond.push_back(LastInst.getOperand(0)); 869 Cond.push_back(LastInst.getOperand(1)); 870 return false; 871 } else if (LastInst.getOpcode() == PPC::BC) { 872 if (!LastInst.getOperand(1).isMBB()) 873 return true; 874 // Block ends with fall-through condbranch. 875 TBB = LastInst.getOperand(1).getMBB(); 876 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 877 Cond.push_back(LastInst.getOperand(0)); 878 return false; 879 } else if (LastInst.getOpcode() == PPC::BCn) { 880 if (!LastInst.getOperand(1).isMBB()) 881 return true; 882 // Block ends with fall-through condbranch. 883 TBB = LastInst.getOperand(1).getMBB(); 884 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 885 Cond.push_back(LastInst.getOperand(0)); 886 return false; 887 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 888 LastInst.getOpcode() == PPC::BDNZ) { 889 if (!LastInst.getOperand(0).isMBB()) 890 return true; 891 if (DisableCTRLoopAnal) 892 return true; 893 TBB = LastInst.getOperand(0).getMBB(); 894 Cond.push_back(MachineOperand::CreateImm(1)); 895 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 896 true)); 897 return false; 898 } else if (LastInst.getOpcode() == PPC::BDZ8 || 899 LastInst.getOpcode() == PPC::BDZ) { 900 if (!LastInst.getOperand(0).isMBB()) 901 return true; 902 if (DisableCTRLoopAnal) 903 return true; 904 TBB = LastInst.getOperand(0).getMBB(); 905 Cond.push_back(MachineOperand::CreateImm(0)); 906 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 907 true)); 908 return false; 909 } 910 911 // Otherwise, don't know what this is. 912 return true; 913 } 914 915 // Get the instruction before it if it's a terminator. 916 MachineInstr &SecondLastInst = *I; 917 918 // If there are three terminators, we don't know what sort of block this is. 919 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 920 return true; 921 922 // If the block ends with PPC::B and PPC:BCC, handle it. 923 if (SecondLastInst.getOpcode() == PPC::BCC && 924 LastInst.getOpcode() == PPC::B) { 925 if (!SecondLastInst.getOperand(2).isMBB() || 926 !LastInst.getOperand(0).isMBB()) 927 return true; 928 TBB = SecondLastInst.getOperand(2).getMBB(); 929 Cond.push_back(SecondLastInst.getOperand(0)); 930 Cond.push_back(SecondLastInst.getOperand(1)); 931 FBB = LastInst.getOperand(0).getMBB(); 932 return false; 933 } else if (SecondLastInst.getOpcode() == PPC::BC && 934 LastInst.getOpcode() == PPC::B) { 935 if (!SecondLastInst.getOperand(1).isMBB() || 936 !LastInst.getOperand(0).isMBB()) 937 return true; 938 TBB = SecondLastInst.getOperand(1).getMBB(); 939 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 940 Cond.push_back(SecondLastInst.getOperand(0)); 941 FBB = LastInst.getOperand(0).getMBB(); 942 return false; 943 } else if (SecondLastInst.getOpcode() == PPC::BCn && 944 LastInst.getOpcode() == PPC::B) { 945 if (!SecondLastInst.getOperand(1).isMBB() || 946 !LastInst.getOperand(0).isMBB()) 947 return true; 948 TBB = SecondLastInst.getOperand(1).getMBB(); 949 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 950 Cond.push_back(SecondLastInst.getOperand(0)); 951 FBB = LastInst.getOperand(0).getMBB(); 952 return false; 953 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 954 SecondLastInst.getOpcode() == PPC::BDNZ) && 955 LastInst.getOpcode() == PPC::B) { 956 if (!SecondLastInst.getOperand(0).isMBB() || 957 !LastInst.getOperand(0).isMBB()) 958 return true; 959 if (DisableCTRLoopAnal) 960 return true; 961 TBB = SecondLastInst.getOperand(0).getMBB(); 962 Cond.push_back(MachineOperand::CreateImm(1)); 963 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 964 true)); 965 FBB = LastInst.getOperand(0).getMBB(); 966 return false; 967 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 968 SecondLastInst.getOpcode() == PPC::BDZ) && 969 LastInst.getOpcode() == PPC::B) { 970 if (!SecondLastInst.getOperand(0).isMBB() || 971 !LastInst.getOperand(0).isMBB()) 972 return true; 973 if (DisableCTRLoopAnal) 974 return true; 975 TBB = SecondLastInst.getOperand(0).getMBB(); 976 Cond.push_back(MachineOperand::CreateImm(0)); 977 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 978 true)); 979 FBB = LastInst.getOperand(0).getMBB(); 980 return false; 981 } 982 983 // If the block ends with two PPC:Bs, handle it. The second one is not 984 // executed, so remove it. 985 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 986 if (!SecondLastInst.getOperand(0).isMBB()) 987 return true; 988 TBB = SecondLastInst.getOperand(0).getMBB(); 989 I = LastInst; 990 if (AllowModify) 991 I->eraseFromParent(); 992 return false; 993 } 994 995 // Otherwise, can't handle this. 996 return true; 997 } 998 999 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 1000 int *BytesRemoved) const { 1001 assert(!BytesRemoved && "code size not handled"); 1002 1003 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1004 if (I == MBB.end()) 1005 return 0; 1006 1007 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 1008 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1009 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1010 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1011 return 0; 1012 1013 // Remove the branch. 1014 I->eraseFromParent(); 1015 1016 I = MBB.end(); 1017 1018 if (I == MBB.begin()) return 1; 1019 --I; 1020 if (I->getOpcode() != PPC::BCC && 1021 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1022 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1023 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1024 return 1; 1025 1026 // Remove the branch. 1027 I->eraseFromParent(); 1028 return 2; 1029 } 1030 1031 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 1032 MachineBasicBlock *TBB, 1033 MachineBasicBlock *FBB, 1034 ArrayRef<MachineOperand> Cond, 1035 const DebugLoc &DL, 1036 int *BytesAdded) const { 1037 // Shouldn't be a fall through. 1038 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 1039 assert((Cond.size() == 2 || Cond.size() == 0) && 1040 "PPC branch conditions have two components!"); 1041 assert(!BytesAdded && "code size not handled"); 1042 1043 bool isPPC64 = Subtarget.isPPC64(); 1044 1045 // One-way branch. 1046 if (!FBB) { 1047 if (Cond.empty()) // Unconditional branch 1048 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 1049 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1050 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1051 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1052 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1053 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1054 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1055 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1056 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1057 else // Conditional branch 1058 BuildMI(&MBB, DL, get(PPC::BCC)) 1059 .addImm(Cond[0].getImm()) 1060 .add(Cond[1]) 1061 .addMBB(TBB); 1062 return 1; 1063 } 1064 1065 // Two-way Conditional Branch. 1066 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1067 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1068 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1069 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1070 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1071 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1072 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1073 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1074 else 1075 BuildMI(&MBB, DL, get(PPC::BCC)) 1076 .addImm(Cond[0].getImm()) 1077 .add(Cond[1]) 1078 .addMBB(TBB); 1079 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 1080 return 2; 1081 } 1082 1083 // Select analysis. 1084 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 1085 ArrayRef<MachineOperand> Cond, 1086 Register DstReg, Register TrueReg, 1087 Register FalseReg, int &CondCycles, 1088 int &TrueCycles, int &FalseCycles) const { 1089 if (Cond.size() != 2) 1090 return false; 1091 1092 // If this is really a bdnz-like condition, then it cannot be turned into a 1093 // select. 1094 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1095 return false; 1096 1097 // Check register classes. 1098 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1099 const TargetRegisterClass *RC = 1100 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1101 if (!RC) 1102 return false; 1103 1104 // isel is for regular integer GPRs only. 1105 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 1106 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 1107 !PPC::G8RCRegClass.hasSubClassEq(RC) && 1108 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 1109 return false; 1110 1111 // FIXME: These numbers are for the A2, how well they work for other cores is 1112 // an open question. On the A2, the isel instruction has a 2-cycle latency 1113 // but single-cycle throughput. These numbers are used in combination with 1114 // the MispredictPenalty setting from the active SchedMachineModel. 1115 CondCycles = 1; 1116 TrueCycles = 1; 1117 FalseCycles = 1; 1118 1119 return true; 1120 } 1121 1122 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 1123 MachineBasicBlock::iterator MI, 1124 const DebugLoc &dl, Register DestReg, 1125 ArrayRef<MachineOperand> Cond, Register TrueReg, 1126 Register FalseReg) const { 1127 assert(Cond.size() == 2 && 1128 "PPC branch conditions have two components!"); 1129 1130 // Get the register classes. 1131 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1132 const TargetRegisterClass *RC = 1133 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1134 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 1135 1136 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 1137 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 1138 assert((Is64Bit || 1139 PPC::GPRCRegClass.hasSubClassEq(RC) || 1140 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 1141 "isel is for regular integer GPRs only"); 1142 1143 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 1144 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 1145 1146 unsigned SubIdx = 0; 1147 bool SwapOps = false; 1148 switch (SelectPred) { 1149 case PPC::PRED_EQ: 1150 case PPC::PRED_EQ_MINUS: 1151 case PPC::PRED_EQ_PLUS: 1152 SubIdx = PPC::sub_eq; SwapOps = false; break; 1153 case PPC::PRED_NE: 1154 case PPC::PRED_NE_MINUS: 1155 case PPC::PRED_NE_PLUS: 1156 SubIdx = PPC::sub_eq; SwapOps = true; break; 1157 case PPC::PRED_LT: 1158 case PPC::PRED_LT_MINUS: 1159 case PPC::PRED_LT_PLUS: 1160 SubIdx = PPC::sub_lt; SwapOps = false; break; 1161 case PPC::PRED_GE: 1162 case PPC::PRED_GE_MINUS: 1163 case PPC::PRED_GE_PLUS: 1164 SubIdx = PPC::sub_lt; SwapOps = true; break; 1165 case PPC::PRED_GT: 1166 case PPC::PRED_GT_MINUS: 1167 case PPC::PRED_GT_PLUS: 1168 SubIdx = PPC::sub_gt; SwapOps = false; break; 1169 case PPC::PRED_LE: 1170 case PPC::PRED_LE_MINUS: 1171 case PPC::PRED_LE_PLUS: 1172 SubIdx = PPC::sub_gt; SwapOps = true; break; 1173 case PPC::PRED_UN: 1174 case PPC::PRED_UN_MINUS: 1175 case PPC::PRED_UN_PLUS: 1176 SubIdx = PPC::sub_un; SwapOps = false; break; 1177 case PPC::PRED_NU: 1178 case PPC::PRED_NU_MINUS: 1179 case PPC::PRED_NU_PLUS: 1180 SubIdx = PPC::sub_un; SwapOps = true; break; 1181 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 1182 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 1183 } 1184 1185 Register FirstReg = SwapOps ? FalseReg : TrueReg, 1186 SecondReg = SwapOps ? TrueReg : FalseReg; 1187 1188 // The first input register of isel cannot be r0. If it is a member 1189 // of a register class that can be r0, then copy it first (the 1190 // register allocator should eliminate the copy). 1191 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 1192 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 1193 const TargetRegisterClass *FirstRC = 1194 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 1195 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 1196 Register OldFirstReg = FirstReg; 1197 FirstReg = MRI.createVirtualRegister(FirstRC); 1198 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 1199 .addReg(OldFirstReg); 1200 } 1201 1202 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 1203 .addReg(FirstReg).addReg(SecondReg) 1204 .addReg(Cond[1].getReg(), 0, SubIdx); 1205 } 1206 1207 static unsigned getCRBitValue(unsigned CRBit) { 1208 unsigned Ret = 4; 1209 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 1210 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 1211 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 1212 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 1213 Ret = 3; 1214 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 1215 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 1216 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 1217 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 1218 Ret = 2; 1219 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 1220 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 1221 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 1222 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 1223 Ret = 1; 1224 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 1225 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 1226 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 1227 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 1228 Ret = 0; 1229 1230 assert(Ret != 4 && "Invalid CR bit register"); 1231 return Ret; 1232 } 1233 1234 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 1235 MachineBasicBlock::iterator I, 1236 const DebugLoc &DL, MCRegister DestReg, 1237 MCRegister SrcReg, bool KillSrc) const { 1238 // We can end up with self copies and similar things as a result of VSX copy 1239 // legalization. Promote them here. 1240 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1241 if (PPC::F8RCRegClass.contains(DestReg) && 1242 PPC::VSRCRegClass.contains(SrcReg)) { 1243 MCRegister SuperReg = 1244 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 1245 1246 if (VSXSelfCopyCrash && SrcReg == SuperReg) 1247 llvm_unreachable("nop VSX copy"); 1248 1249 DestReg = SuperReg; 1250 } else if (PPC::F8RCRegClass.contains(SrcReg) && 1251 PPC::VSRCRegClass.contains(DestReg)) { 1252 MCRegister SuperReg = 1253 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 1254 1255 if (VSXSelfCopyCrash && DestReg == SuperReg) 1256 llvm_unreachable("nop VSX copy"); 1257 1258 SrcReg = SuperReg; 1259 } 1260 1261 // Different class register copy 1262 if (PPC::CRBITRCRegClass.contains(SrcReg) && 1263 PPC::GPRCRegClass.contains(DestReg)) { 1264 MCRegister CRReg = getCRFromCRBit(SrcReg); 1265 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 1266 getKillRegState(KillSrc); 1267 // Rotate the CR bit in the CR fields to be the least significant bit and 1268 // then mask with 0x1 (MB = ME = 31). 1269 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 1270 .addReg(DestReg, RegState::Kill) 1271 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 1272 .addImm(31) 1273 .addImm(31); 1274 return; 1275 } else if (PPC::CRRCRegClass.contains(SrcReg) && 1276 (PPC::G8RCRegClass.contains(DestReg) || 1277 PPC::GPRCRegClass.contains(DestReg))) { 1278 bool Is64Bit = PPC::G8RCRegClass.contains(DestReg); 1279 unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF; 1280 unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM; 1281 unsigned CRNum = TRI->getEncodingValue(SrcReg); 1282 BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg); 1283 getKillRegState(KillSrc); 1284 if (CRNum == 7) 1285 return; 1286 // Shift the CR bits to make the CR field in the lowest 4 bits of GRC. 1287 BuildMI(MBB, I, DL, get(ShCode), DestReg) 1288 .addReg(DestReg, RegState::Kill) 1289 .addImm(CRNum * 4 + 4) 1290 .addImm(28) 1291 .addImm(31); 1292 return; 1293 } else if (PPC::G8RCRegClass.contains(SrcReg) && 1294 PPC::VSFRCRegClass.contains(DestReg)) { 1295 assert(Subtarget.hasDirectMove() && 1296 "Subtarget doesn't support directmove, don't know how to copy."); 1297 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 1298 NumGPRtoVSRSpill++; 1299 getKillRegState(KillSrc); 1300 return; 1301 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 1302 PPC::G8RCRegClass.contains(DestReg)) { 1303 assert(Subtarget.hasDirectMove() && 1304 "Subtarget doesn't support directmove, don't know how to copy."); 1305 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 1306 getKillRegState(KillSrc); 1307 return; 1308 } else if (PPC::SPERCRegClass.contains(SrcReg) && 1309 PPC::GPRCRegClass.contains(DestReg)) { 1310 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 1311 getKillRegState(KillSrc); 1312 return; 1313 } else if (PPC::GPRCRegClass.contains(SrcReg) && 1314 PPC::SPERCRegClass.contains(DestReg)) { 1315 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 1316 getKillRegState(KillSrc); 1317 return; 1318 } 1319 1320 unsigned Opc; 1321 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 1322 Opc = PPC::OR; 1323 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 1324 Opc = PPC::OR8; 1325 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 1326 Opc = PPC::FMR; 1327 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 1328 Opc = PPC::MCRF; 1329 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 1330 Opc = PPC::VOR; 1331 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 1332 // There are two different ways this can be done: 1333 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 1334 // issue in VSU pipeline 0. 1335 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 1336 // can go to either pipeline. 1337 // We'll always use xxlor here, because in practically all cases where 1338 // copies are generated, they are close enough to some use that the 1339 // lower-latency form is preferable. 1340 Opc = PPC::XXLOR; 1341 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1342 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1343 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1344 else if (Subtarget.pairedVectorMemops() && 1345 PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) { 1346 if (SrcReg > PPC::VSRp15) 1347 SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2; 1348 else 1349 SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2; 1350 if (DestReg > PPC::VSRp15) 1351 DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2; 1352 else 1353 DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2; 1354 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg). 1355 addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1356 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1). 1357 addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc)); 1358 return; 1359 } 1360 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1361 Opc = PPC::CROR; 1362 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1363 Opc = PPC::EVOR; 1364 else 1365 llvm_unreachable("Impossible reg-to-reg copy"); 1366 1367 const MCInstrDesc &MCID = get(Opc); 1368 if (MCID.getNumOperands() == 3) 1369 BuildMI(MBB, I, DL, MCID, DestReg) 1370 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1371 else 1372 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1373 } 1374 1375 static unsigned getSpillIndex(const TargetRegisterClass *RC) { 1376 int OpcodeIndex = 0; 1377 1378 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1379 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1380 OpcodeIndex = SOK_Int4Spill; 1381 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1382 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1383 OpcodeIndex = SOK_Int8Spill; 1384 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1385 OpcodeIndex = SOK_Float8Spill; 1386 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1387 OpcodeIndex = SOK_Float4Spill; 1388 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1389 OpcodeIndex = SOK_SPESpill; 1390 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1391 OpcodeIndex = SOK_CRSpill; 1392 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1393 OpcodeIndex = SOK_CRBitSpill; 1394 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1395 OpcodeIndex = SOK_VRVectorSpill; 1396 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1397 OpcodeIndex = SOK_VSXVectorSpill; 1398 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1399 OpcodeIndex = SOK_VectorFloat8Spill; 1400 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1401 OpcodeIndex = SOK_VectorFloat4Spill; 1402 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1403 OpcodeIndex = SOK_SpillToVSR; 1404 } else { 1405 llvm_unreachable("Unknown regclass!"); 1406 } 1407 return OpcodeIndex; 1408 } 1409 1410 unsigned 1411 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const { 1412 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1413 return OpcodesForSpill[getSpillIndex(RC)]; 1414 } 1415 1416 unsigned 1417 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const { 1418 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1419 return OpcodesForSpill[getSpillIndex(RC)]; 1420 } 1421 1422 void PPCInstrInfo::StoreRegToStackSlot( 1423 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1424 const TargetRegisterClass *RC, 1425 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1426 unsigned Opcode = getStoreOpcodeForSpill(RC); 1427 DebugLoc DL; 1428 1429 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1430 FuncInfo->setHasSpills(); 1431 1432 NewMIs.push_back(addFrameReference( 1433 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1434 FrameIdx)); 1435 1436 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1437 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1438 FuncInfo->setSpillsCR(); 1439 1440 if (isXFormMemOp(Opcode)) 1441 FuncInfo->setHasNonRISpills(); 1442 } 1443 1444 void PPCInstrInfo::storeRegToStackSlotNoUpd( 1445 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, 1446 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 1447 const TargetRegisterInfo *TRI) const { 1448 MachineFunction &MF = *MBB.getParent(); 1449 SmallVector<MachineInstr *, 4> NewMIs; 1450 1451 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1452 1453 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1454 MBB.insert(MI, NewMIs[i]); 1455 1456 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1457 MachineMemOperand *MMO = MF.getMachineMemOperand( 1458 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1459 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1460 MFI.getObjectAlign(FrameIdx)); 1461 NewMIs.back()->addMemOperand(MF, MMO); 1462 } 1463 1464 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1465 MachineBasicBlock::iterator MI, 1466 Register SrcReg, bool isKill, 1467 int FrameIdx, 1468 const TargetRegisterClass *RC, 1469 const TargetRegisterInfo *TRI) const { 1470 // We need to avoid a situation in which the value from a VRRC register is 1471 // spilled using an Altivec instruction and reloaded into a VSRC register 1472 // using a VSX instruction. The issue with this is that the VSX 1473 // load/store instructions swap the doublewords in the vector and the Altivec 1474 // ones don't. The register classes on the spill/reload may be different if 1475 // the register is defined using an Altivec instruction and is then used by a 1476 // VSX instruction. 1477 RC = updatedRC(RC); 1478 storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI); 1479 } 1480 1481 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1482 unsigned DestReg, int FrameIdx, 1483 const TargetRegisterClass *RC, 1484 SmallVectorImpl<MachineInstr *> &NewMIs) 1485 const { 1486 unsigned Opcode = getLoadOpcodeForSpill(RC); 1487 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1488 FrameIdx)); 1489 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1490 1491 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1492 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1493 FuncInfo->setSpillsCR(); 1494 1495 if (isXFormMemOp(Opcode)) 1496 FuncInfo->setHasNonRISpills(); 1497 } 1498 1499 void PPCInstrInfo::loadRegFromStackSlotNoUpd( 1500 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, 1501 int FrameIdx, const TargetRegisterClass *RC, 1502 const TargetRegisterInfo *TRI) const { 1503 MachineFunction &MF = *MBB.getParent(); 1504 SmallVector<MachineInstr*, 4> NewMIs; 1505 DebugLoc DL; 1506 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1507 1508 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1509 FuncInfo->setHasSpills(); 1510 1511 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1512 1513 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1514 MBB.insert(MI, NewMIs[i]); 1515 1516 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1517 MachineMemOperand *MMO = MF.getMachineMemOperand( 1518 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1519 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1520 MFI.getObjectAlign(FrameIdx)); 1521 NewMIs.back()->addMemOperand(MF, MMO); 1522 } 1523 1524 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1525 MachineBasicBlock::iterator MI, 1526 Register DestReg, int FrameIdx, 1527 const TargetRegisterClass *RC, 1528 const TargetRegisterInfo *TRI) const { 1529 // We need to avoid a situation in which the value from a VRRC register is 1530 // spilled using an Altivec instruction and reloaded into a VSRC register 1531 // using a VSX instruction. The issue with this is that the VSX 1532 // load/store instructions swap the doublewords in the vector and the Altivec 1533 // ones don't. The register classes on the spill/reload may be different if 1534 // the register is defined using an Altivec instruction and is then used by a 1535 // VSX instruction. 1536 RC = updatedRC(RC); 1537 1538 loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI); 1539 } 1540 1541 bool PPCInstrInfo:: 1542 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1543 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1544 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1545 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1546 else 1547 // Leave the CR# the same, but invert the condition. 1548 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1549 return false; 1550 } 1551 1552 // For some instructions, it is legal to fold ZERO into the RA register field. 1553 // This function performs that fold by replacing the operand with PPC::ZERO, 1554 // it does not consider whether the load immediate zero is no longer in use. 1555 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1556 Register Reg) const { 1557 // A zero immediate should always be loaded with a single li. 1558 unsigned DefOpc = DefMI.getOpcode(); 1559 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1560 return false; 1561 if (!DefMI.getOperand(1).isImm()) 1562 return false; 1563 if (DefMI.getOperand(1).getImm() != 0) 1564 return false; 1565 1566 // Note that we cannot here invert the arguments of an isel in order to fold 1567 // a ZERO into what is presented as the second argument. All we have here 1568 // is the condition bit, and that might come from a CR-logical bit operation. 1569 1570 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1571 1572 // Only fold into real machine instructions. 1573 if (UseMCID.isPseudo()) 1574 return false; 1575 1576 // We need to find which of the User's operands is to be folded, that will be 1577 // the operand that matches the given register ID. 1578 unsigned UseIdx; 1579 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1580 if (UseMI.getOperand(UseIdx).isReg() && 1581 UseMI.getOperand(UseIdx).getReg() == Reg) 1582 break; 1583 1584 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1585 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1586 1587 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1588 1589 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1590 // register (which might also be specified as a pointer class kind). 1591 if (UseInfo->isLookupPtrRegClass()) { 1592 if (UseInfo->RegClass /* Kind */ != 1) 1593 return false; 1594 } else { 1595 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1596 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1597 return false; 1598 } 1599 1600 // Make sure this is not tied to an output register (or otherwise 1601 // constrained). This is true for ST?UX registers, for example, which 1602 // are tied to their output registers. 1603 if (UseInfo->Constraints != 0) 1604 return false; 1605 1606 MCRegister ZeroReg; 1607 if (UseInfo->isLookupPtrRegClass()) { 1608 bool isPPC64 = Subtarget.isPPC64(); 1609 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1610 } else { 1611 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1612 PPC::ZERO8 : PPC::ZERO; 1613 } 1614 1615 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1616 return true; 1617 } 1618 1619 // Folds zero into instructions which have a load immediate zero as an operand 1620 // but also recognize zero as immediate zero. If the definition of the load 1621 // has no more users it is deleted. 1622 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1623 Register Reg, MachineRegisterInfo *MRI) const { 1624 bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg); 1625 if (MRI->use_nodbg_empty(Reg)) 1626 DefMI.eraseFromParent(); 1627 return Changed; 1628 } 1629 1630 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1631 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1632 I != IE; ++I) 1633 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1634 return true; 1635 return false; 1636 } 1637 1638 // We should make sure that, if we're going to predicate both sides of a 1639 // condition (a diamond), that both sides don't define the counter register. We 1640 // can predicate counter-decrement-based branches, but while that predicates 1641 // the branching, it does not predicate the counter decrement. If we tried to 1642 // merge the triangle into one predicated block, we'd decrement the counter 1643 // twice. 1644 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1645 unsigned NumT, unsigned ExtraT, 1646 MachineBasicBlock &FMBB, 1647 unsigned NumF, unsigned ExtraF, 1648 BranchProbability Probability) const { 1649 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1650 } 1651 1652 1653 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1654 // The predicated branches are identified by their type, not really by the 1655 // explicit presence of a predicate. Furthermore, some of them can be 1656 // predicated more than once. Because if conversion won't try to predicate 1657 // any instruction which already claims to be predicated (by returning true 1658 // here), always return false. In doing so, we let isPredicable() be the 1659 // final word on whether not the instruction can be (further) predicated. 1660 1661 return false; 1662 } 1663 1664 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 1665 const MachineBasicBlock *MBB, 1666 const MachineFunction &MF) const { 1667 // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion 1668 // across them, since some FP operations may change content of FPSCR. 1669 // TODO: Model FPSCR in PPC instruction definitions and remove the workaround 1670 if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF) 1671 return true; 1672 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); 1673 } 1674 1675 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1676 ArrayRef<MachineOperand> Pred) const { 1677 unsigned OpC = MI.getOpcode(); 1678 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1679 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1680 bool isPPC64 = Subtarget.isPPC64(); 1681 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1682 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1683 // Need add Def and Use for CTR implicit operand. 1684 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1685 .addReg(Pred[1].getReg(), RegState::Implicit) 1686 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 1687 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1688 MI.setDesc(get(PPC::BCLR)); 1689 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1690 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1691 MI.setDesc(get(PPC::BCLRn)); 1692 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1693 } else { 1694 MI.setDesc(get(PPC::BCCLR)); 1695 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1696 .addImm(Pred[0].getImm()) 1697 .add(Pred[1]); 1698 } 1699 1700 return true; 1701 } else if (OpC == PPC::B) { 1702 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1703 bool isPPC64 = Subtarget.isPPC64(); 1704 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1705 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1706 // Need add Def and Use for CTR implicit operand. 1707 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1708 .addReg(Pred[1].getReg(), RegState::Implicit) 1709 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 1710 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1711 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1712 MI.RemoveOperand(0); 1713 1714 MI.setDesc(get(PPC::BC)); 1715 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1716 .add(Pred[1]) 1717 .addMBB(MBB); 1718 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1719 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1720 MI.RemoveOperand(0); 1721 1722 MI.setDesc(get(PPC::BCn)); 1723 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1724 .add(Pred[1]) 1725 .addMBB(MBB); 1726 } else { 1727 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1728 MI.RemoveOperand(0); 1729 1730 MI.setDesc(get(PPC::BCC)); 1731 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1732 .addImm(Pred[0].getImm()) 1733 .add(Pred[1]) 1734 .addMBB(MBB); 1735 } 1736 1737 return true; 1738 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 1739 OpC == PPC::BCTRL8) { 1740 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1741 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1742 1743 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1744 bool isPPC64 = Subtarget.isPPC64(); 1745 1746 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1747 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1748 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1749 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1750 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1751 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1752 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1753 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1754 } else { 1755 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1756 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1757 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1758 .addImm(Pred[0].getImm()) 1759 .add(Pred[1]); 1760 } 1761 1762 // Need add Def and Use for LR implicit operand. 1763 if (setLR) 1764 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1765 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit) 1766 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine); 1767 1768 return true; 1769 } 1770 1771 return false; 1772 } 1773 1774 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1775 ArrayRef<MachineOperand> Pred2) const { 1776 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1777 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1778 1779 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1780 return false; 1781 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1782 return false; 1783 1784 // P1 can only subsume P2 if they test the same condition register. 1785 if (Pred1[1].getReg() != Pred2[1].getReg()) 1786 return false; 1787 1788 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1789 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1790 1791 if (P1 == P2) 1792 return true; 1793 1794 // Does P1 subsume P2, e.g. GE subsumes GT. 1795 if (P1 == PPC::PRED_LE && 1796 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1797 return true; 1798 if (P1 == PPC::PRED_GE && 1799 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1800 return true; 1801 1802 return false; 1803 } 1804 1805 bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI, 1806 std::vector<MachineOperand> &Pred, 1807 bool SkipDead) const { 1808 // Note: At the present time, the contents of Pred from this function is 1809 // unused by IfConversion. This implementation follows ARM by pushing the 1810 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1811 // predicate, instructions defining CTR or CTR8 are also included as 1812 // predicate-defining instructions. 1813 1814 const TargetRegisterClass *RCs[] = 1815 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1816 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1817 1818 bool Found = false; 1819 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1820 const MachineOperand &MO = MI.getOperand(i); 1821 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1822 const TargetRegisterClass *RC = RCs[c]; 1823 if (MO.isReg()) { 1824 if (MO.isDef() && RC->contains(MO.getReg())) { 1825 Pred.push_back(MO); 1826 Found = true; 1827 } 1828 } else if (MO.isRegMask()) { 1829 for (TargetRegisterClass::iterator I = RC->begin(), 1830 IE = RC->end(); I != IE; ++I) 1831 if (MO.clobbersPhysReg(*I)) { 1832 Pred.push_back(MO); 1833 Found = true; 1834 } 1835 } 1836 } 1837 } 1838 1839 return Found; 1840 } 1841 1842 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 1843 Register &SrcReg2, int &Mask, 1844 int &Value) const { 1845 unsigned Opc = MI.getOpcode(); 1846 1847 switch (Opc) { 1848 default: return false; 1849 case PPC::CMPWI: 1850 case PPC::CMPLWI: 1851 case PPC::CMPDI: 1852 case PPC::CMPLDI: 1853 SrcReg = MI.getOperand(1).getReg(); 1854 SrcReg2 = 0; 1855 Value = MI.getOperand(2).getImm(); 1856 Mask = 0xFFFF; 1857 return true; 1858 case PPC::CMPW: 1859 case PPC::CMPLW: 1860 case PPC::CMPD: 1861 case PPC::CMPLD: 1862 case PPC::FCMPUS: 1863 case PPC::FCMPUD: 1864 SrcReg = MI.getOperand(1).getReg(); 1865 SrcReg2 = MI.getOperand(2).getReg(); 1866 Value = 0; 1867 Mask = 0; 1868 return true; 1869 } 1870 } 1871 1872 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 1873 Register SrcReg2, int Mask, int Value, 1874 const MachineRegisterInfo *MRI) const { 1875 if (DisableCmpOpt) 1876 return false; 1877 1878 int OpC = CmpInstr.getOpcode(); 1879 Register CRReg = CmpInstr.getOperand(0).getReg(); 1880 1881 // FP record forms set CR1 based on the exception status bits, not a 1882 // comparison with zero. 1883 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1884 return false; 1885 1886 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1887 // The record forms set the condition register based on a signed comparison 1888 // with zero (so says the ISA manual). This is not as straightforward as it 1889 // seems, however, because this is always a 64-bit comparison on PPC64, even 1890 // for instructions that are 32-bit in nature (like slw for example). 1891 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1892 // for equality checks (as those don't depend on the sign). On PPC64, 1893 // we are restricted to equality for unsigned 64-bit comparisons and for 1894 // signed 32-bit comparisons the applicability is more restricted. 1895 bool isPPC64 = Subtarget.isPPC64(); 1896 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1897 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1898 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1899 1900 // Look through copies unless that gets us to a physical register. 1901 Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 1902 if (ActualSrc.isVirtual()) 1903 SrcReg = ActualSrc; 1904 1905 // Get the unique definition of SrcReg. 1906 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1907 if (!MI) return false; 1908 1909 bool equalityOnly = false; 1910 bool noSub = false; 1911 if (isPPC64) { 1912 if (is32BitSignedCompare) { 1913 // We can perform this optimization only if MI is sign-extending. 1914 if (isSignExtended(*MI)) 1915 noSub = true; 1916 else 1917 return false; 1918 } else if (is32BitUnsignedCompare) { 1919 // We can perform this optimization, equality only, if MI is 1920 // zero-extending. 1921 if (isZeroExtended(*MI)) { 1922 noSub = true; 1923 equalityOnly = true; 1924 } else 1925 return false; 1926 } else 1927 equalityOnly = is64BitUnsignedCompare; 1928 } else 1929 equalityOnly = is32BitUnsignedCompare; 1930 1931 if (equalityOnly) { 1932 // We need to check the uses of the condition register in order to reject 1933 // non-equality comparisons. 1934 for (MachineRegisterInfo::use_instr_iterator 1935 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1936 I != IE; ++I) { 1937 MachineInstr *UseMI = &*I; 1938 if (UseMI->getOpcode() == PPC::BCC) { 1939 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1940 unsigned PredCond = PPC::getPredicateCondition(Pred); 1941 // We ignore hint bits when checking for non-equality comparisons. 1942 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1943 return false; 1944 } else if (UseMI->getOpcode() == PPC::ISEL || 1945 UseMI->getOpcode() == PPC::ISEL8) { 1946 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1947 if (SubIdx != PPC::sub_eq) 1948 return false; 1949 } else 1950 return false; 1951 } 1952 } 1953 1954 MachineBasicBlock::iterator I = CmpInstr; 1955 1956 // Scan forward to find the first use of the compare. 1957 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1958 ++I) { 1959 bool FoundUse = false; 1960 for (MachineRegisterInfo::use_instr_iterator 1961 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 1962 J != JE; ++J) 1963 if (&*J == &*I) { 1964 FoundUse = true; 1965 break; 1966 } 1967 1968 if (FoundUse) 1969 break; 1970 } 1971 1972 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1973 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1974 1975 // There are two possible candidates which can be changed to set CR[01]. 1976 // One is MI, the other is a SUB instruction. 1977 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1978 MachineInstr *Sub = nullptr; 1979 if (SrcReg2 != 0) 1980 // MI is not a candidate for CMPrr. 1981 MI = nullptr; 1982 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1983 // same BB as the comparison. This is to allow the check below to avoid calls 1984 // (and other explicit clobbers); instead we should really check for these 1985 // more explicitly (in at least a few predecessors). 1986 else if (MI->getParent() != CmpInstr.getParent()) 1987 return false; 1988 else if (Value != 0) { 1989 // The record-form instructions set CR bit based on signed comparison 1990 // against 0. We try to convert a compare against 1 or -1 into a compare 1991 // against 0 to exploit record-form instructions. For example, we change 1992 // the condition "greater than -1" into "greater than or equal to 0" 1993 // and "less than 1" into "less than or equal to 0". 1994 1995 // Since we optimize comparison based on a specific branch condition, 1996 // we don't optimize if condition code is used by more than once. 1997 if (equalityOnly || !MRI->hasOneUse(CRReg)) 1998 return false; 1999 2000 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 2001 if (UseMI->getOpcode() != PPC::BCC) 2002 return false; 2003 2004 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 2005 unsigned PredCond = PPC::getPredicateCondition(Pred); 2006 unsigned PredHint = PPC::getPredicateHint(Pred); 2007 int16_t Immed = (int16_t)Value; 2008 2009 // When modifying the condition in the predicate, we propagate hint bits 2010 // from the original predicate to the new one. 2011 if (Immed == -1 && PredCond == PPC::PRED_GT) 2012 // We convert "greater than -1" into "greater than or equal to 0", 2013 // since we are assuming signed comparison by !equalityOnly 2014 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 2015 else if (Immed == -1 && PredCond == PPC::PRED_LE) 2016 // We convert "less than or equal to -1" into "less than 0". 2017 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 2018 else if (Immed == 1 && PredCond == PPC::PRED_LT) 2019 // We convert "less than 1" into "less than or equal to 0". 2020 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 2021 else if (Immed == 1 && PredCond == PPC::PRED_GE) 2022 // We convert "greater than or equal to 1" into "greater than 0". 2023 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 2024 else 2025 return false; 2026 2027 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred)); 2028 } 2029 2030 // Search for Sub. 2031 --I; 2032 2033 // Get ready to iterate backward from CmpInstr. 2034 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 2035 2036 for (; I != E && !noSub; --I) { 2037 const MachineInstr &Instr = *I; 2038 unsigned IOpC = Instr.getOpcode(); 2039 2040 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 2041 Instr.readsRegister(PPC::CR0, TRI))) 2042 // This instruction modifies or uses the record condition register after 2043 // the one we want to change. While we could do this transformation, it 2044 // would likely not be profitable. This transformation removes one 2045 // instruction, and so even forcing RA to generate one move probably 2046 // makes it unprofitable. 2047 return false; 2048 2049 // Check whether CmpInstr can be made redundant by the current instruction. 2050 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 2051 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 2052 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 2053 ((Instr.getOperand(1).getReg() == SrcReg && 2054 Instr.getOperand(2).getReg() == SrcReg2) || 2055 (Instr.getOperand(1).getReg() == SrcReg2 && 2056 Instr.getOperand(2).getReg() == SrcReg))) { 2057 Sub = &*I; 2058 break; 2059 } 2060 2061 if (I == B) 2062 // The 'and' is below the comparison instruction. 2063 return false; 2064 } 2065 2066 // Return false if no candidates exist. 2067 if (!MI && !Sub) 2068 return false; 2069 2070 // The single candidate is called MI. 2071 if (!MI) MI = Sub; 2072 2073 int NewOpC = -1; 2074 int MIOpC = MI->getOpcode(); 2075 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || 2076 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) 2077 NewOpC = MIOpC; 2078 else { 2079 NewOpC = PPC::getRecordFormOpcode(MIOpC); 2080 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 2081 NewOpC = MIOpC; 2082 } 2083 2084 // FIXME: On the non-embedded POWER architectures, only some of the record 2085 // forms are fast, and we should use only the fast ones. 2086 2087 // The defining instruction has a record form (or is already a record 2088 // form). It is possible, however, that we'll need to reverse the condition 2089 // code of the users. 2090 if (NewOpC == -1) 2091 return false; 2092 2093 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 2094 // needs to be updated to be based on SUB. Push the condition code 2095 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 2096 // condition code of these operands will be modified. 2097 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 2098 // comparison against 0, which may modify predicate. 2099 bool ShouldSwap = false; 2100 if (Sub && Value == 0) { 2101 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 2102 Sub->getOperand(2).getReg() == SrcReg; 2103 2104 // The operands to subf are the opposite of sub, so only in the fixed-point 2105 // case, invert the order. 2106 ShouldSwap = !ShouldSwap; 2107 } 2108 2109 if (ShouldSwap) 2110 for (MachineRegisterInfo::use_instr_iterator 2111 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2112 I != IE; ++I) { 2113 MachineInstr *UseMI = &*I; 2114 if (UseMI->getOpcode() == PPC::BCC) { 2115 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 2116 unsigned PredCond = PPC::getPredicateCondition(Pred); 2117 assert((!equalityOnly || 2118 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 2119 "Invalid predicate for equality-only optimization"); 2120 (void)PredCond; // To suppress warning in release build. 2121 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 2122 PPC::getSwappedPredicate(Pred))); 2123 } else if (UseMI->getOpcode() == PPC::ISEL || 2124 UseMI->getOpcode() == PPC::ISEL8) { 2125 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 2126 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 2127 "Invalid CR bit for equality-only optimization"); 2128 2129 if (NewSubReg == PPC::sub_lt) 2130 NewSubReg = PPC::sub_gt; 2131 else if (NewSubReg == PPC::sub_gt) 2132 NewSubReg = PPC::sub_lt; 2133 2134 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 2135 NewSubReg)); 2136 } else // We need to abort on a user we don't understand. 2137 return false; 2138 } 2139 assert(!(Value != 0 && ShouldSwap) && 2140 "Non-zero immediate support and ShouldSwap" 2141 "may conflict in updating predicate"); 2142 2143 // Create a new virtual register to hold the value of the CR set by the 2144 // record-form instruction. If the instruction was not previously in 2145 // record form, then set the kill flag on the CR. 2146 CmpInstr.eraseFromParent(); 2147 2148 MachineBasicBlock::iterator MII = MI; 2149 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 2150 get(TargetOpcode::COPY), CRReg) 2151 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 2152 2153 // Even if CR0 register were dead before, it is alive now since the 2154 // instruction we just built uses it. 2155 MI->clearRegisterDeads(PPC::CR0); 2156 2157 if (MIOpC != NewOpC) { 2158 // We need to be careful here: we're replacing one instruction with 2159 // another, and we need to make sure that we get all of the right 2160 // implicit uses and defs. On the other hand, the caller may be holding 2161 // an iterator to this instruction, and so we can't delete it (this is 2162 // specifically the case if this is the instruction directly after the 2163 // compare). 2164 2165 // Rotates are expensive instructions. If we're emitting a record-form 2166 // rotate that can just be an andi/andis, we should just emit that. 2167 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 2168 Register GPRRes = MI->getOperand(0).getReg(); 2169 int64_t SH = MI->getOperand(2).getImm(); 2170 int64_t MB = MI->getOperand(3).getImm(); 2171 int64_t ME = MI->getOperand(4).getImm(); 2172 // We can only do this if both the start and end of the mask are in the 2173 // same halfword. 2174 bool MBInLoHWord = MB >= 16; 2175 bool MEInLoHWord = ME >= 16; 2176 uint64_t Mask = ~0LLU; 2177 2178 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 2179 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2180 // The mask value needs to shift right 16 if we're emitting andis. 2181 Mask >>= MBInLoHWord ? 0 : 16; 2182 NewOpC = MIOpC == PPC::RLWINM 2183 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) 2184 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); 2185 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 2186 (ME - MB + 1 == SH) && (MB >= 16)) { 2187 // If we are rotating by the exact number of bits as are in the mask 2188 // and the mask is in the least significant bits of the register, 2189 // that's just an andis. (as long as the GPR result has no uses). 2190 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 2191 Mask >>= 16; 2192 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; 2193 } 2194 // If we've set the mask, we can transform. 2195 if (Mask != ~0LLU) { 2196 MI->RemoveOperand(4); 2197 MI->RemoveOperand(3); 2198 MI->getOperand(2).setImm(Mask); 2199 NumRcRotatesConvertedToRcAnd++; 2200 } 2201 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 2202 int64_t MB = MI->getOperand(3).getImm(); 2203 if (MB >= 48) { 2204 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2205 NewOpC = PPC::ANDI8_rec; 2206 MI->RemoveOperand(3); 2207 MI->getOperand(2).setImm(Mask); 2208 NumRcRotatesConvertedToRcAnd++; 2209 } 2210 } 2211 2212 const MCInstrDesc &NewDesc = get(NewOpC); 2213 MI->setDesc(NewDesc); 2214 2215 if (NewDesc.ImplicitDefs) 2216 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 2217 *ImpDefs; ++ImpDefs) 2218 if (!MI->definesRegister(*ImpDefs)) 2219 MI->addOperand(*MI->getParent()->getParent(), 2220 MachineOperand::CreateReg(*ImpDefs, true, true)); 2221 if (NewDesc.ImplicitUses) 2222 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 2223 *ImpUses; ++ImpUses) 2224 if (!MI->readsRegister(*ImpUses)) 2225 MI->addOperand(*MI->getParent()->getParent(), 2226 MachineOperand::CreateReg(*ImpUses, false, true)); 2227 } 2228 assert(MI->definesRegister(PPC::CR0) && 2229 "Record-form instruction does not define cr0?"); 2230 2231 // Modify the condition code of operands in OperandsToUpdate. 2232 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 2233 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 2234 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 2235 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 2236 2237 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 2238 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 2239 2240 return true; 2241 } 2242 2243 bool PPCInstrInfo::getMemOperandsWithOffsetWidth( 2244 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, 2245 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, 2246 const TargetRegisterInfo *TRI) const { 2247 const MachineOperand *BaseOp; 2248 OffsetIsScalable = false; 2249 if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI)) 2250 return false; 2251 BaseOps.push_back(BaseOp); 2252 return true; 2253 } 2254 2255 static bool isLdStSafeToCluster(const MachineInstr &LdSt, 2256 const TargetRegisterInfo *TRI) { 2257 // If this is a volatile load/store, don't mess with it. 2258 if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3) 2259 return false; 2260 2261 if (LdSt.getOperand(2).isFI()) 2262 return true; 2263 2264 assert(LdSt.getOperand(2).isReg() && "Expected a reg operand."); 2265 // Can't cluster if the instruction modifies the base register 2266 // or it is update form. e.g. ld r2,3(r2) 2267 if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI)) 2268 return false; 2269 2270 return true; 2271 } 2272 2273 // Only cluster instruction pair that have the same opcode, and they are 2274 // clusterable according to PowerPC specification. 2275 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc, 2276 const PPCSubtarget &Subtarget) { 2277 switch (FirstOpc) { 2278 default: 2279 return false; 2280 case PPC::STD: 2281 case PPC::STFD: 2282 case PPC::STXSD: 2283 case PPC::DFSTOREf64: 2284 return FirstOpc == SecondOpc; 2285 // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with 2286 // 32bit and 64bit instruction selection. They are clusterable pair though 2287 // they are different opcode. 2288 case PPC::STW: 2289 case PPC::STW8: 2290 return SecondOpc == PPC::STW || SecondOpc == PPC::STW8; 2291 } 2292 } 2293 2294 bool PPCInstrInfo::shouldClusterMemOps( 2295 ArrayRef<const MachineOperand *> BaseOps1, 2296 ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads, 2297 unsigned NumBytes) const { 2298 2299 assert(BaseOps1.size() == 1 && BaseOps2.size() == 1); 2300 const MachineOperand &BaseOp1 = *BaseOps1.front(); 2301 const MachineOperand &BaseOp2 = *BaseOps2.front(); 2302 assert((BaseOp1.isReg() || BaseOp1.isFI()) && 2303 "Only base registers and frame indices are supported."); 2304 2305 // The NumLoads means the number of loads that has been clustered. 2306 // Don't cluster memory op if there are already two ops clustered at least. 2307 if (NumLoads > 2) 2308 return false; 2309 2310 // Cluster the load/store only when they have the same base 2311 // register or FI. 2312 if ((BaseOp1.isReg() != BaseOp2.isReg()) || 2313 (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) || 2314 (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex())) 2315 return false; 2316 2317 // Check if the load/store are clusterable according to the PowerPC 2318 // specification. 2319 const MachineInstr &FirstLdSt = *BaseOp1.getParent(); 2320 const MachineInstr &SecondLdSt = *BaseOp2.getParent(); 2321 unsigned FirstOpc = FirstLdSt.getOpcode(); 2322 unsigned SecondOpc = SecondLdSt.getOpcode(); 2323 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2324 // Cluster the load/store only when they have the same opcode, and they are 2325 // clusterable opcode according to PowerPC specification. 2326 if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget)) 2327 return false; 2328 2329 // Can't cluster load/store that have ordered or volatile memory reference. 2330 if (!isLdStSafeToCluster(FirstLdSt, TRI) || 2331 !isLdStSafeToCluster(SecondLdSt, TRI)) 2332 return false; 2333 2334 int64_t Offset1 = 0, Offset2 = 0; 2335 unsigned Width1 = 0, Width2 = 0; 2336 const MachineOperand *Base1 = nullptr, *Base2 = nullptr; 2337 if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) || 2338 !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) || 2339 Width1 != Width2) 2340 return false; 2341 2342 assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 && 2343 "getMemOperandWithOffsetWidth return incorrect base op"); 2344 // The caller should already have ordered FirstMemOp/SecondMemOp by offset. 2345 assert(Offset1 <= Offset2 && "Caller should have ordered offsets."); 2346 return Offset1 + Width1 == Offset2; 2347 } 2348 2349 /// GetInstSize - Return the number of bytes of code the specified 2350 /// instruction may be. This returns the maximum number of bytes. 2351 /// 2352 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2353 unsigned Opcode = MI.getOpcode(); 2354 2355 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 2356 const MachineFunction *MF = MI.getParent()->getParent(); 2357 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2358 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2359 } else if (Opcode == TargetOpcode::STACKMAP) { 2360 StackMapOpers Opers(&MI); 2361 return Opers.getNumPatchBytes(); 2362 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2363 PatchPointOpers Opers(&MI); 2364 return Opers.getNumPatchBytes(); 2365 } else { 2366 return get(Opcode).getSize(); 2367 } 2368 } 2369 2370 std::pair<unsigned, unsigned> 2371 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2372 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2373 return std::make_pair(TF & Mask, TF & ~Mask); 2374 } 2375 2376 ArrayRef<std::pair<unsigned, const char *>> 2377 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2378 using namespace PPCII; 2379 static const std::pair<unsigned, const char *> TargetFlags[] = { 2380 {MO_LO, "ppc-lo"}, 2381 {MO_HA, "ppc-ha"}, 2382 {MO_TPREL_LO, "ppc-tprel-lo"}, 2383 {MO_TPREL_HA, "ppc-tprel-ha"}, 2384 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2385 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2386 {MO_TOC_LO, "ppc-toc-lo"}, 2387 {MO_TLS, "ppc-tls"}}; 2388 return makeArrayRef(TargetFlags); 2389 } 2390 2391 ArrayRef<std::pair<unsigned, const char *>> 2392 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2393 using namespace PPCII; 2394 static const std::pair<unsigned, const char *> TargetFlags[] = { 2395 {MO_PLT, "ppc-plt"}, 2396 {MO_PIC_FLAG, "ppc-pic"}, 2397 {MO_PCREL_FLAG, "ppc-pcrel"}, 2398 {MO_GOT_FLAG, "ppc-got"}, 2399 {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"}, 2400 {MO_TLSGD_FLAG, "ppc-tlsgd"}, 2401 {MO_TLSLD_FLAG, "ppc-tlsld"}, 2402 {MO_TPREL_FLAG, "ppc-tprel"}, 2403 {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"}, 2404 {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"}, 2405 {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}}; 2406 return makeArrayRef(TargetFlags); 2407 } 2408 2409 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2410 // The VSX versions have the advantage of a full 64-register target whereas 2411 // the FP ones have the advantage of lower latency and higher throughput. So 2412 // what we are after is using the faster instructions in low register pressure 2413 // situations and using the larger register file in high register pressure 2414 // situations. 2415 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2416 unsigned UpperOpcode, LowerOpcode; 2417 switch (MI.getOpcode()) { 2418 case PPC::DFLOADf32: 2419 UpperOpcode = PPC::LXSSP; 2420 LowerOpcode = PPC::LFS; 2421 break; 2422 case PPC::DFLOADf64: 2423 UpperOpcode = PPC::LXSD; 2424 LowerOpcode = PPC::LFD; 2425 break; 2426 case PPC::DFSTOREf32: 2427 UpperOpcode = PPC::STXSSP; 2428 LowerOpcode = PPC::STFS; 2429 break; 2430 case PPC::DFSTOREf64: 2431 UpperOpcode = PPC::STXSD; 2432 LowerOpcode = PPC::STFD; 2433 break; 2434 case PPC::XFLOADf32: 2435 UpperOpcode = PPC::LXSSPX; 2436 LowerOpcode = PPC::LFSX; 2437 break; 2438 case PPC::XFLOADf64: 2439 UpperOpcode = PPC::LXSDX; 2440 LowerOpcode = PPC::LFDX; 2441 break; 2442 case PPC::XFSTOREf32: 2443 UpperOpcode = PPC::STXSSPX; 2444 LowerOpcode = PPC::STFSX; 2445 break; 2446 case PPC::XFSTOREf64: 2447 UpperOpcode = PPC::STXSDX; 2448 LowerOpcode = PPC::STFDX; 2449 break; 2450 case PPC::LIWAX: 2451 UpperOpcode = PPC::LXSIWAX; 2452 LowerOpcode = PPC::LFIWAX; 2453 break; 2454 case PPC::LIWZX: 2455 UpperOpcode = PPC::LXSIWZX; 2456 LowerOpcode = PPC::LFIWZX; 2457 break; 2458 case PPC::STIWX: 2459 UpperOpcode = PPC::STXSIWX; 2460 LowerOpcode = PPC::STFIWX; 2461 break; 2462 default: 2463 llvm_unreachable("Unknown Operation!"); 2464 } 2465 2466 Register TargetReg = MI.getOperand(0).getReg(); 2467 unsigned Opcode; 2468 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2469 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2470 Opcode = LowerOpcode; 2471 else 2472 Opcode = UpperOpcode; 2473 MI.setDesc(get(Opcode)); 2474 return true; 2475 } 2476 2477 static bool isAnImmediateOperand(const MachineOperand &MO) { 2478 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2479 } 2480 2481 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2482 auto &MBB = *MI.getParent(); 2483 auto DL = MI.getDebugLoc(); 2484 2485 switch (MI.getOpcode()) { 2486 case PPC::BUILD_UACC: { 2487 MCRegister ACC = MI.getOperand(0).getReg(); 2488 MCRegister UACC = MI.getOperand(1).getReg(); 2489 if (ACC - PPC::ACC0 != UACC - PPC::UACC0) { 2490 MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4; 2491 MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4; 2492 // FIXME: This can easily be improved to look up to the top of the MBB 2493 // to see if the inputs are XXLOR's. If they are and SrcReg is killed, 2494 // we can just re-target any such XXLOR's to DstVSR + offset. 2495 for (int VecNo = 0; VecNo < 4; VecNo++) 2496 BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo) 2497 .addReg(SrcVSR + VecNo) 2498 .addReg(SrcVSR + VecNo); 2499 } 2500 // BUILD_UACC is expanded to 4 copies of the underlying vsx regisers. 2501 // So after building the 4 copies, we can replace the BUILD_UACC instruction 2502 // with a NOP. 2503 LLVM_FALLTHROUGH; 2504 } 2505 case PPC::KILL_PAIR: { 2506 MI.setDesc(get(PPC::UNENCODED_NOP)); 2507 MI.RemoveOperand(1); 2508 MI.RemoveOperand(0); 2509 return true; 2510 } 2511 case TargetOpcode::LOAD_STACK_GUARD: { 2512 assert(Subtarget.isTargetLinux() && 2513 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 2514 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 2515 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 2516 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 2517 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2518 .addImm(Offset) 2519 .addReg(Reg); 2520 return true; 2521 } 2522 case PPC::DFLOADf32: 2523 case PPC::DFLOADf64: 2524 case PPC::DFSTOREf32: 2525 case PPC::DFSTOREf64: { 2526 assert(Subtarget.hasP9Vector() && 2527 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 2528 assert(MI.getOperand(2).isReg() && 2529 isAnImmediateOperand(MI.getOperand(1)) && 2530 "D-form op must have register and immediate operands"); 2531 return expandVSXMemPseudo(MI); 2532 } 2533 case PPC::XFLOADf32: 2534 case PPC::XFSTOREf32: 2535 case PPC::LIWAX: 2536 case PPC::LIWZX: 2537 case PPC::STIWX: { 2538 assert(Subtarget.hasP8Vector() && 2539 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 2540 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2541 "X-form op must have register and register operands"); 2542 return expandVSXMemPseudo(MI); 2543 } 2544 case PPC::XFLOADf64: 2545 case PPC::XFSTOREf64: { 2546 assert(Subtarget.hasVSX() && 2547 "Invalid X-Form Pseudo-ops on target that has no VSX."); 2548 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2549 "X-form op must have register and register operands"); 2550 return expandVSXMemPseudo(MI); 2551 } 2552 case PPC::SPILLTOVSR_LD: { 2553 Register TargetReg = MI.getOperand(0).getReg(); 2554 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2555 MI.setDesc(get(PPC::DFLOADf64)); 2556 return expandPostRAPseudo(MI); 2557 } 2558 else 2559 MI.setDesc(get(PPC::LD)); 2560 return true; 2561 } 2562 case PPC::SPILLTOVSR_ST: { 2563 Register SrcReg = MI.getOperand(0).getReg(); 2564 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2565 NumStoreSPILLVSRRCAsVec++; 2566 MI.setDesc(get(PPC::DFSTOREf64)); 2567 return expandPostRAPseudo(MI); 2568 } else { 2569 NumStoreSPILLVSRRCAsGpr++; 2570 MI.setDesc(get(PPC::STD)); 2571 } 2572 return true; 2573 } 2574 case PPC::SPILLTOVSR_LDX: { 2575 Register TargetReg = MI.getOperand(0).getReg(); 2576 if (PPC::VSFRCRegClass.contains(TargetReg)) 2577 MI.setDesc(get(PPC::LXSDX)); 2578 else 2579 MI.setDesc(get(PPC::LDX)); 2580 return true; 2581 } 2582 case PPC::SPILLTOVSR_STX: { 2583 Register SrcReg = MI.getOperand(0).getReg(); 2584 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2585 NumStoreSPILLVSRRCAsVec++; 2586 MI.setDesc(get(PPC::STXSDX)); 2587 } else { 2588 NumStoreSPILLVSRRCAsGpr++; 2589 MI.setDesc(get(PPC::STDX)); 2590 } 2591 return true; 2592 } 2593 2594 case PPC::CFENCE8: { 2595 auto Val = MI.getOperand(0).getReg(); 2596 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2597 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2598 .addImm(PPC::PRED_NE_MINUS) 2599 .addReg(PPC::CR7) 2600 .addImm(1); 2601 MI.setDesc(get(PPC::ISYNC)); 2602 MI.RemoveOperand(0); 2603 return true; 2604 } 2605 } 2606 return false; 2607 } 2608 2609 // Essentially a compile-time implementation of a compare->isel sequence. 2610 // It takes two constants to compare, along with the true/false registers 2611 // and the comparison type (as a subreg to a CR field) and returns one 2612 // of the true/false registers, depending on the comparison results. 2613 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 2614 unsigned TrueReg, unsigned FalseReg, 2615 unsigned CRSubReg) { 2616 // Signed comparisons. The immediates are assumed to be sign-extended. 2617 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 2618 switch (CRSubReg) { 2619 default: llvm_unreachable("Unknown integer comparison type."); 2620 case PPC::sub_lt: 2621 return Imm1 < Imm2 ? TrueReg : FalseReg; 2622 case PPC::sub_gt: 2623 return Imm1 > Imm2 ? TrueReg : FalseReg; 2624 case PPC::sub_eq: 2625 return Imm1 == Imm2 ? TrueReg : FalseReg; 2626 } 2627 } 2628 // Unsigned comparisons. 2629 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 2630 switch (CRSubReg) { 2631 default: llvm_unreachable("Unknown integer comparison type."); 2632 case PPC::sub_lt: 2633 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 2634 case PPC::sub_gt: 2635 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 2636 case PPC::sub_eq: 2637 return Imm1 == Imm2 ? TrueReg : FalseReg; 2638 } 2639 } 2640 return PPC::NoRegister; 2641 } 2642 2643 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 2644 unsigned OpNo, 2645 int64_t Imm) const { 2646 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 2647 // Replace the REG with the Immediate. 2648 Register InUseReg = MI.getOperand(OpNo).getReg(); 2649 MI.getOperand(OpNo).ChangeToImmediate(Imm); 2650 2651 if (MI.implicit_operands().empty()) 2652 return; 2653 2654 // We need to make sure that the MI didn't have any implicit use 2655 // of this REG any more. 2656 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2657 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 2658 if (UseOpIdx >= 0) { 2659 MachineOperand &MO = MI.getOperand(UseOpIdx); 2660 if (MO.isImplicit()) 2661 // The operands must always be in the following order: 2662 // - explicit reg defs, 2663 // - other explicit operands (reg uses, immediates, etc.), 2664 // - implicit reg defs 2665 // - implicit reg uses 2666 // Therefore, removing the implicit operand won't change the explicit 2667 // operands layout. 2668 MI.RemoveOperand(UseOpIdx); 2669 } 2670 } 2671 2672 // Replace an instruction with one that materializes a constant (and sets 2673 // CR0 if the original instruction was a record-form instruction). 2674 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 2675 const LoadImmediateInfo &LII) const { 2676 // Remove existing operands. 2677 int OperandToKeep = LII.SetCR ? 1 : 0; 2678 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 2679 MI.RemoveOperand(i); 2680 2681 // Replace the instruction. 2682 if (LII.SetCR) { 2683 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 2684 // Set the immediate. 2685 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2686 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 2687 return; 2688 } 2689 else 2690 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 2691 2692 // Set the immediate. 2693 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2694 .addImm(LII.Imm); 2695 } 2696 2697 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 2698 bool &SeenIntermediateUse) const { 2699 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 2700 "Should be called after register allocation."); 2701 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2702 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 2703 It++; 2704 SeenIntermediateUse = false; 2705 for (; It != E; ++It) { 2706 if (It->modifiesRegister(Reg, TRI)) 2707 return &*It; 2708 if (It->readsRegister(Reg, TRI)) 2709 SeenIntermediateUse = true; 2710 } 2711 return nullptr; 2712 } 2713 2714 MachineInstr *PPCInstrInfo::getForwardingDefMI( 2715 MachineInstr &MI, 2716 unsigned &OpNoForForwarding, 2717 bool &SeenIntermediateUse) const { 2718 OpNoForForwarding = ~0U; 2719 MachineInstr *DefMI = nullptr; 2720 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 2721 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2722 // If we're in SSA, get the defs through the MRI. Otherwise, only look 2723 // within the basic block to see if the register is defined using an 2724 // LI/LI8/ADDI/ADDI8. 2725 if (MRI->isSSA()) { 2726 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2727 if (!MI.getOperand(i).isReg()) 2728 continue; 2729 Register Reg = MI.getOperand(i).getReg(); 2730 if (!Register::isVirtualRegister(Reg)) 2731 continue; 2732 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 2733 if (Register::isVirtualRegister(TrueReg)) { 2734 DefMI = MRI->getVRegDef(TrueReg); 2735 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 || 2736 DefMI->getOpcode() == PPC::ADDI || 2737 DefMI->getOpcode() == PPC::ADDI8) { 2738 OpNoForForwarding = i; 2739 // The ADDI and LI operand maybe exist in one instruction at same 2740 // time. we prefer to fold LI operand as LI only has one Imm operand 2741 // and is more possible to be converted. So if current DefMI is 2742 // ADDI/ADDI8, we continue to find possible LI/LI8. 2743 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) 2744 break; 2745 } 2746 } 2747 } 2748 } else { 2749 // Looking back through the definition for each operand could be expensive, 2750 // so exit early if this isn't an instruction that either has an immediate 2751 // form or is already an immediate form that we can handle. 2752 ImmInstrInfo III; 2753 unsigned Opc = MI.getOpcode(); 2754 bool ConvertibleImmForm = 2755 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || 2756 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || 2757 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || 2758 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || 2759 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 2760 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || 2761 Opc == PPC::RLWINM8_rec; 2762 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 2763 ? isVFRegister(MI.getOperand(0).getReg()) 2764 : false; 2765 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 2766 return nullptr; 2767 2768 // Don't convert or %X, %Y, %Y since that's just a register move. 2769 if ((Opc == PPC::OR || Opc == PPC::OR8) && 2770 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 2771 return nullptr; 2772 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2773 MachineOperand &MO = MI.getOperand(i); 2774 SeenIntermediateUse = false; 2775 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 2776 Register Reg = MI.getOperand(i).getReg(); 2777 // If we see another use of this reg between the def and the MI, 2778 // we want to flat it so the def isn't deleted. 2779 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 2780 if (DefMI) { 2781 // Is this register defined by some form of add-immediate (including 2782 // load-immediate) within this basic block? 2783 switch (DefMI->getOpcode()) { 2784 default: 2785 break; 2786 case PPC::LI: 2787 case PPC::LI8: 2788 case PPC::ADDItocL: 2789 case PPC::ADDI: 2790 case PPC::ADDI8: 2791 OpNoForForwarding = i; 2792 return DefMI; 2793 } 2794 } 2795 } 2796 } 2797 } 2798 return OpNoForForwarding == ~0U ? nullptr : DefMI; 2799 } 2800 2801 unsigned PPCInstrInfo::getSpillTarget() const { 2802 return Subtarget.hasP9Vector() ? 1 : 0; 2803 } 2804 2805 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 2806 return StoreSpillOpcodesArray[getSpillTarget()]; 2807 } 2808 2809 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 2810 return LoadSpillOpcodesArray[getSpillTarget()]; 2811 } 2812 2813 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI, 2814 unsigned RegNo) const { 2815 // Conservatively clear kill flag for the register if the instructions are in 2816 // different basic blocks and in SSA form, because the kill flag may no longer 2817 // be right. There is no need to bother with dead flags since defs with no 2818 // uses will be handled by DCE. 2819 MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo(); 2820 if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) { 2821 MRI.clearKillFlags(RegNo); 2822 return; 2823 } 2824 2825 // Instructions between [StartMI, EndMI] should be in same basic block. 2826 assert((StartMI->getParent() == EndMI->getParent()) && 2827 "Instructions are not in same basic block"); 2828 2829 // If before RA, StartMI may be def through COPY, we need to adjust it to the 2830 // real def. See function getForwardingDefMI. 2831 if (MRI.isSSA()) { 2832 bool Reads, Writes; 2833 std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo); 2834 if (!Reads && !Writes) { 2835 assert(Register::isVirtualRegister(RegNo) && 2836 "Must be a virtual register"); 2837 // Get real def and ignore copies. 2838 StartMI = MRI.getVRegDef(RegNo); 2839 } 2840 } 2841 2842 bool IsKillSet = false; 2843 2844 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 2845 MachineOperand &MO = MI.getOperand(Index); 2846 if (MO.isReg() && MO.isUse() && MO.isKill() && 2847 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 2848 MO.setIsKill(false); 2849 }; 2850 2851 // Set killed flag for EndMI. 2852 // No need to do anything if EndMI defines RegNo. 2853 int UseIndex = 2854 EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 2855 if (UseIndex != -1) { 2856 EndMI->getOperand(UseIndex).setIsKill(true); 2857 IsKillSet = true; 2858 // Clear killed flag for other EndMI operands related to RegNo. In some 2859 // upexpected cases, killed may be set multiple times for same register 2860 // operand in same MI. 2861 for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i) 2862 if (i != UseIndex) 2863 clearOperandKillInfo(*EndMI, i); 2864 } 2865 2866 // Walking the inst in reverse order (EndMI -> StartMI]. 2867 MachineBasicBlock::reverse_iterator It = *EndMI; 2868 MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend(); 2869 // EndMI has been handled above, skip it here. 2870 It++; 2871 MachineOperand *MO = nullptr; 2872 for (; It != E; ++It) { 2873 // Skip insturctions which could not be a def/use of RegNo. 2874 if (It->isDebugInstr() || It->isPosition()) 2875 continue; 2876 2877 // Clear killed flag for all It operands related to RegNo. In some 2878 // upexpected cases, killed may be set multiple times for same register 2879 // operand in same MI. 2880 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 2881 clearOperandKillInfo(*It, i); 2882 2883 // If killed is not set, set killed for its last use or set dead for its def 2884 // if no use found. 2885 if (!IsKillSet) { 2886 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 2887 // Use found, set it killed. 2888 IsKillSet = true; 2889 MO->setIsKill(true); 2890 continue; 2891 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 2892 &getRegisterInfo()))) { 2893 // No use found, set dead for its def. 2894 assert(&*It == StartMI && "No new def between StartMI and EndMI."); 2895 MO->setIsDead(true); 2896 break; 2897 } 2898 } 2899 2900 if ((&*It) == StartMI) 2901 break; 2902 } 2903 // Ensure RegMo liveness is killed after EndMI. 2904 assert((IsKillSet || (MO && MO->isDead())) && 2905 "RegNo should be killed or dead"); 2906 } 2907 2908 // This opt tries to convert the following imm form to an index form to save an 2909 // add for stack variables. 2910 // Return false if no such pattern found. 2911 // 2912 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 2913 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg 2914 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) 2915 // 2916 // can be converted to: 2917 // 2918 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) 2919 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) 2920 // 2921 // In order to eliminate ADD instr, make sure that: 2922 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in 2923 // new ADDI instr and ADDI can only take int16 Imm. 2924 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use 2925 // between ADDI and ADD instr since its original def in ADDI will be changed 2926 // in new ADDI instr. And also there should be no new def for it between 2927 // ADD and Imm instr as ToBeChangedReg will be used in Index instr. 2928 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use 2929 // between ADD and Imm instr since ADD instr will be eliminated. 2930 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be 2931 // moved to Index instr. 2932 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { 2933 MachineFunction *MF = MI.getParent()->getParent(); 2934 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2935 bool PostRA = !MRI->isSSA(); 2936 // Do this opt after PEI which is after RA. The reason is stack slot expansion 2937 // in PEI may expose such opportunities since in PEI, stack slot offsets to 2938 // frame base(OffsetAddi) are determined. 2939 if (!PostRA) 2940 return false; 2941 unsigned ToBeDeletedReg = 0; 2942 int64_t OffsetImm = 0; 2943 unsigned XFormOpcode = 0; 2944 ImmInstrInfo III; 2945 2946 // Check if Imm instr meets requirement. 2947 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, 2948 III)) 2949 return false; 2950 2951 bool OtherIntermediateUse = false; 2952 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); 2953 2954 // Exit if there is other use between ADD and Imm instr or no def found. 2955 if (OtherIntermediateUse || !ADDMI) 2956 return false; 2957 2958 // Check if ADD instr meets requirement. 2959 if (!isADDInstrEligibleForFolding(*ADDMI)) 2960 return false; 2961 2962 unsigned ScaleRegIdx = 0; 2963 int64_t OffsetAddi = 0; 2964 MachineInstr *ADDIMI = nullptr; 2965 2966 // Check if there is a valid ToBeChangedReg in ADDMI. 2967 // 1: It must be killed. 2968 // 2: Its definition must be a valid ADDIMI. 2969 // 3: It must satify int16 offset requirement. 2970 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) 2971 ScaleRegIdx = 2; 2972 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) 2973 ScaleRegIdx = 1; 2974 else 2975 return false; 2976 2977 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); 2978 unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg(); 2979 unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); 2980 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, 2981 MachineBasicBlock::iterator End) { 2982 for (auto It = ++Start; It != End; It++) 2983 if (It->modifiesRegister(Reg, &getRegisterInfo())) 2984 return true; 2985 return false; 2986 }; 2987 2988 // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is 2989 // treated as special zero when ScaleReg is R0/X0 register. 2990 if (III.ZeroIsSpecialOrig == III.ImmOpNo && 2991 (ScaleReg == PPC::R0 || ScaleReg == PPC::X0)) 2992 return false; 2993 2994 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr 2995 // and Imm Instr. 2996 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) 2997 return false; 2998 2999 // Now start to do the transformation. 3000 LLVM_DEBUG(dbgs() << "Replace instruction: " 3001 << "\n"); 3002 LLVM_DEBUG(ADDIMI->dump()); 3003 LLVM_DEBUG(ADDMI->dump()); 3004 LLVM_DEBUG(MI.dump()); 3005 LLVM_DEBUG(dbgs() << "with: " 3006 << "\n"); 3007 3008 // Update ADDI instr. 3009 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); 3010 3011 // Update Imm instr. 3012 MI.setDesc(get(XFormOpcode)); 3013 MI.getOperand(III.ImmOpNo) 3014 .ChangeToRegister(ScaleReg, false, false, 3015 ADDMI->getOperand(ScaleRegIdx).isKill()); 3016 3017 MI.getOperand(III.OpNoForForwarding) 3018 .ChangeToRegister(ToBeChangedReg, false, false, true); 3019 3020 // Eliminate ADD instr. 3021 ADDMI->eraseFromParent(); 3022 3023 LLVM_DEBUG(ADDIMI->dump()); 3024 LLVM_DEBUG(MI.dump()); 3025 3026 return true; 3027 } 3028 3029 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, 3030 int64_t &Imm) const { 3031 unsigned Opc = ADDIMI.getOpcode(); 3032 3033 // Exit if the instruction is not ADDI. 3034 if (Opc != PPC::ADDI && Opc != PPC::ADDI8) 3035 return false; 3036 3037 // The operand may not necessarily be an immediate - it could be a relocation. 3038 if (!ADDIMI.getOperand(2).isImm()) 3039 return false; 3040 3041 Imm = ADDIMI.getOperand(2).getImm(); 3042 3043 return true; 3044 } 3045 3046 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { 3047 unsigned Opc = ADDMI.getOpcode(); 3048 3049 // Exit if the instruction is not ADD. 3050 return Opc == PPC::ADD4 || Opc == PPC::ADD8; 3051 } 3052 3053 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, 3054 unsigned &ToBeDeletedReg, 3055 unsigned &XFormOpcode, 3056 int64_t &OffsetImm, 3057 ImmInstrInfo &III) const { 3058 // Only handle load/store. 3059 if (!MI.mayLoadOrStore()) 3060 return false; 3061 3062 unsigned Opc = MI.getOpcode(); 3063 3064 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); 3065 3066 // Exit if instruction has no index form. 3067 if (XFormOpcode == PPC::INSTRUCTION_LIST_END) 3068 return false; 3069 3070 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. 3071 if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()), 3072 III, true)) 3073 return false; 3074 3075 if (!III.IsSummingOperands) 3076 return false; 3077 3078 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); 3079 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); 3080 // Only support imm operands, not relocation slots or others. 3081 if (!ImmOperand.isImm()) 3082 return false; 3083 3084 assert(RegOperand.isReg() && "Instruction format is not right"); 3085 3086 // There are other use for ToBeDeletedReg after Imm instr, can not delete it. 3087 if (!RegOperand.isKill()) 3088 return false; 3089 3090 ToBeDeletedReg = RegOperand.getReg(); 3091 OffsetImm = ImmOperand.getImm(); 3092 3093 return true; 3094 } 3095 3096 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, 3097 MachineInstr *&ADDIMI, 3098 int64_t &OffsetAddi, 3099 int64_t OffsetImm) const { 3100 assert((Index == 1 || Index == 2) && "Invalid operand index for add."); 3101 MachineOperand &MO = ADDMI->getOperand(Index); 3102 3103 if (!MO.isKill()) 3104 return false; 3105 3106 bool OtherIntermediateUse = false; 3107 3108 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); 3109 // Currently handle only one "add + Imminstr" pair case, exit if other 3110 // intermediate use for ToBeChangedReg found. 3111 // TODO: handle the cases where there are other "add + Imminstr" pairs 3112 // with same offset in Imminstr which is like: 3113 // 3114 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 3115 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 3116 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) 3117 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 3118 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) 3119 // 3120 // can be converted to: 3121 // 3122 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, 3123 // (OffsetAddi + OffsetImm) 3124 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg 3125 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) 3126 3127 if (OtherIntermediateUse || !ADDIMI) 3128 return false; 3129 // Check if ADDI instr meets requirement. 3130 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) 3131 return false; 3132 3133 if (isInt<16>(OffsetAddi + OffsetImm)) 3134 return true; 3135 return false; 3136 } 3137 3138 // If this instruction has an immediate form and one of its operands is a 3139 // result of a load-immediate or an add-immediate, convert it to 3140 // the immediate form if the constant is in range. 3141 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 3142 MachineInstr **KilledDef) const { 3143 MachineFunction *MF = MI.getParent()->getParent(); 3144 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3145 bool PostRA = !MRI->isSSA(); 3146 bool SeenIntermediateUse = true; 3147 unsigned ForwardingOperand = ~0U; 3148 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 3149 SeenIntermediateUse); 3150 if (!DefMI) 3151 return false; 3152 assert(ForwardingOperand < MI.getNumOperands() && 3153 "The forwarding operand needs to be valid at this point"); 3154 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 3155 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 3156 if (KilledDef && KillFwdDefMI) 3157 *KilledDef = DefMI; 3158 3159 // If this is a imm instruction and its register operands is produced by ADDI, 3160 // put the imm into imm inst directly. 3161 if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) != 3162 PPC::INSTRUCTION_LIST_END && 3163 transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand)) 3164 return true; 3165 3166 ImmInstrInfo III; 3167 bool IsVFReg = MI.getOperand(0).isReg() 3168 ? isVFRegister(MI.getOperand(0).getReg()) 3169 : false; 3170 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 3171 // If this is a reg+reg instruction that has a reg+imm form, 3172 // and one of the operands is produced by an add-immediate, 3173 // try to convert it. 3174 if (HasImmForm && 3175 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 3176 KillFwdDefMI)) 3177 return true; 3178 3179 // If this is a reg+reg instruction that has a reg+imm form, 3180 // and one of the operands is produced by LI, convert it now. 3181 if (HasImmForm && 3182 transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI)) 3183 return true; 3184 3185 // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI 3186 // can be simpified to LI. 3187 if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef)) 3188 return true; 3189 3190 return false; 3191 } 3192 3193 bool PPCInstrInfo::combineRLWINM(MachineInstr &MI, 3194 MachineInstr **ToErase) const { 3195 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 3196 unsigned FoldingReg = MI.getOperand(1).getReg(); 3197 if (!Register::isVirtualRegister(FoldingReg)) 3198 return false; 3199 MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg); 3200 if (SrcMI->getOpcode() != PPC::RLWINM && 3201 SrcMI->getOpcode() != PPC::RLWINM_rec && 3202 SrcMI->getOpcode() != PPC::RLWINM8 && 3203 SrcMI->getOpcode() != PPC::RLWINM8_rec) 3204 return false; 3205 assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() && 3206 MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() && 3207 SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) && 3208 "Invalid PPC::RLWINM Instruction!"); 3209 uint64_t SHSrc = SrcMI->getOperand(2).getImm(); 3210 uint64_t SHMI = MI.getOperand(2).getImm(); 3211 uint64_t MBSrc = SrcMI->getOperand(3).getImm(); 3212 uint64_t MBMI = MI.getOperand(3).getImm(); 3213 uint64_t MESrc = SrcMI->getOperand(4).getImm(); 3214 uint64_t MEMI = MI.getOperand(4).getImm(); 3215 3216 assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) && 3217 "Invalid PPC::RLWINM Instruction!"); 3218 // If MBMI is bigger than MEMI, we always can not get run of ones. 3219 // RotatedSrcMask non-wrap: 3220 // 0........31|32........63 3221 // RotatedSrcMask: B---E B---E 3222 // MaskMI: -----------|--E B------ 3223 // Result: ----- --- (Bad candidate) 3224 // 3225 // RotatedSrcMask wrap: 3226 // 0........31|32........63 3227 // RotatedSrcMask: --E B----|--E B---- 3228 // MaskMI: -----------|--E B------ 3229 // Result: --- -----|--- ----- (Bad candidate) 3230 // 3231 // One special case is RotatedSrcMask is a full set mask. 3232 // RotatedSrcMask full: 3233 // 0........31|32........63 3234 // RotatedSrcMask: ------EB---|-------EB--- 3235 // MaskMI: -----------|--E B------ 3236 // Result: -----------|--- ------- (Good candidate) 3237 3238 // Mark special case. 3239 bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31); 3240 3241 // For other MBMI > MEMI cases, just return. 3242 if ((MBMI > MEMI) && !SrcMaskFull) 3243 return false; 3244 3245 // Handle MBMI <= MEMI cases. 3246 APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI); 3247 // In MI, we only need low 32 bits of SrcMI, just consider about low 32 3248 // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0, 3249 // while in PowerPC ISA, lowerest bit is at index 63. 3250 APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc); 3251 3252 APInt RotatedSrcMask = MaskSrc.rotl(SHMI); 3253 APInt FinalMask = RotatedSrcMask & MaskMI; 3254 uint32_t NewMB, NewME; 3255 bool Simplified = false; 3256 3257 // If final mask is 0, MI result should be 0 too. 3258 if (FinalMask.isNullValue()) { 3259 bool Is64Bit = 3260 (MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec); 3261 Simplified = true; 3262 LLVM_DEBUG(dbgs() << "Replace Instr: "); 3263 LLVM_DEBUG(MI.dump()); 3264 3265 if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) { 3266 // Replace MI with "LI 0" 3267 MI.RemoveOperand(4); 3268 MI.RemoveOperand(3); 3269 MI.RemoveOperand(2); 3270 MI.getOperand(1).ChangeToImmediate(0); 3271 MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI)); 3272 } else { 3273 // Replace MI with "ANDI_rec reg, 0" 3274 MI.RemoveOperand(4); 3275 MI.RemoveOperand(3); 3276 MI.getOperand(2).setImm(0); 3277 MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 3278 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 3279 if (SrcMI->getOperand(1).isKill()) { 3280 MI.getOperand(1).setIsKill(true); 3281 SrcMI->getOperand(1).setIsKill(false); 3282 } else 3283 // About to replace MI.getOperand(1), clear its kill flag. 3284 MI.getOperand(1).setIsKill(false); 3285 } 3286 3287 LLVM_DEBUG(dbgs() << "With: "); 3288 LLVM_DEBUG(MI.dump()); 3289 3290 } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) && 3291 NewMB <= NewME) || 3292 SrcMaskFull) { 3293 // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger 3294 // than NewME. Otherwise we get a 64 bit value after folding, but MI 3295 // return a 32 bit value. 3296 Simplified = true; 3297 LLVM_DEBUG(dbgs() << "Converting Instr: "); 3298 LLVM_DEBUG(MI.dump()); 3299 3300 uint16_t NewSH = (SHSrc + SHMI) % 32; 3301 MI.getOperand(2).setImm(NewSH); 3302 // If SrcMI mask is full, no need to update MBMI and MEMI. 3303 if (!SrcMaskFull) { 3304 MI.getOperand(3).setImm(NewMB); 3305 MI.getOperand(4).setImm(NewME); 3306 } 3307 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 3308 if (SrcMI->getOperand(1).isKill()) { 3309 MI.getOperand(1).setIsKill(true); 3310 SrcMI->getOperand(1).setIsKill(false); 3311 } else 3312 // About to replace MI.getOperand(1), clear its kill flag. 3313 MI.getOperand(1).setIsKill(false); 3314 3315 LLVM_DEBUG(dbgs() << "To: "); 3316 LLVM_DEBUG(MI.dump()); 3317 } 3318 if (Simplified & MRI->use_nodbg_empty(FoldingReg) && 3319 !SrcMI->hasImplicitDef()) { 3320 // If FoldingReg has no non-debug use and it has no implicit def (it 3321 // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI. 3322 // Otherwise keep it. 3323 *ToErase = SrcMI; 3324 LLVM_DEBUG(dbgs() << "Delete dead instruction: "); 3325 LLVM_DEBUG(SrcMI->dump()); 3326 } 3327 return Simplified; 3328 } 3329 3330 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 3331 ImmInstrInfo &III, bool PostRA) const { 3332 // The vast majority of the instructions would need their operand 2 replaced 3333 // with an immediate when switching to the reg+imm form. A marked exception 3334 // are the update form loads/stores for which a constant operand 2 would need 3335 // to turn into a displacement and move operand 1 to the operand 2 position. 3336 III.ImmOpNo = 2; 3337 III.OpNoForForwarding = 2; 3338 III.ImmWidth = 16; 3339 III.ImmMustBeMultipleOf = 1; 3340 III.TruncateImmTo = 0; 3341 III.IsSummingOperands = false; 3342 switch (Opc) { 3343 default: return false; 3344 case PPC::ADD4: 3345 case PPC::ADD8: 3346 III.SignedImm = true; 3347 III.ZeroIsSpecialOrig = 0; 3348 III.ZeroIsSpecialNew = 1; 3349 III.IsCommutative = true; 3350 III.IsSummingOperands = true; 3351 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 3352 break; 3353 case PPC::ADDC: 3354 case PPC::ADDC8: 3355 III.SignedImm = true; 3356 III.ZeroIsSpecialOrig = 0; 3357 III.ZeroIsSpecialNew = 0; 3358 III.IsCommutative = true; 3359 III.IsSummingOperands = true; 3360 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 3361 break; 3362 case PPC::ADDC_rec: 3363 III.SignedImm = true; 3364 III.ZeroIsSpecialOrig = 0; 3365 III.ZeroIsSpecialNew = 0; 3366 III.IsCommutative = true; 3367 III.IsSummingOperands = true; 3368 III.ImmOpcode = PPC::ADDIC_rec; 3369 break; 3370 case PPC::SUBFC: 3371 case PPC::SUBFC8: 3372 III.SignedImm = true; 3373 III.ZeroIsSpecialOrig = 0; 3374 III.ZeroIsSpecialNew = 0; 3375 III.IsCommutative = false; 3376 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 3377 break; 3378 case PPC::CMPW: 3379 case PPC::CMPD: 3380 III.SignedImm = true; 3381 III.ZeroIsSpecialOrig = 0; 3382 III.ZeroIsSpecialNew = 0; 3383 III.IsCommutative = false; 3384 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 3385 break; 3386 case PPC::CMPLW: 3387 case PPC::CMPLD: 3388 III.SignedImm = false; 3389 III.ZeroIsSpecialOrig = 0; 3390 III.ZeroIsSpecialNew = 0; 3391 III.IsCommutative = false; 3392 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 3393 break; 3394 case PPC::AND_rec: 3395 case PPC::AND8_rec: 3396 case PPC::OR: 3397 case PPC::OR8: 3398 case PPC::XOR: 3399 case PPC::XOR8: 3400 III.SignedImm = false; 3401 III.ZeroIsSpecialOrig = 0; 3402 III.ZeroIsSpecialNew = 0; 3403 III.IsCommutative = true; 3404 switch(Opc) { 3405 default: llvm_unreachable("Unknown opcode"); 3406 case PPC::AND_rec: 3407 III.ImmOpcode = PPC::ANDI_rec; 3408 break; 3409 case PPC::AND8_rec: 3410 III.ImmOpcode = PPC::ANDI8_rec; 3411 break; 3412 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 3413 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 3414 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 3415 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 3416 } 3417 break; 3418 case PPC::RLWNM: 3419 case PPC::RLWNM8: 3420 case PPC::RLWNM_rec: 3421 case PPC::RLWNM8_rec: 3422 case PPC::SLW: 3423 case PPC::SLW8: 3424 case PPC::SLW_rec: 3425 case PPC::SLW8_rec: 3426 case PPC::SRW: 3427 case PPC::SRW8: 3428 case PPC::SRW_rec: 3429 case PPC::SRW8_rec: 3430 case PPC::SRAW: 3431 case PPC::SRAW_rec: 3432 III.SignedImm = false; 3433 III.ZeroIsSpecialOrig = 0; 3434 III.ZeroIsSpecialNew = 0; 3435 III.IsCommutative = false; 3436 // This isn't actually true, but the instructions ignore any of the 3437 // upper bits, so any immediate loaded with an LI is acceptable. 3438 // This does not apply to shift right algebraic because a value 3439 // out of range will produce a -1/0. 3440 III.ImmWidth = 16; 3441 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || 3442 Opc == PPC::RLWNM8_rec) 3443 III.TruncateImmTo = 5; 3444 else 3445 III.TruncateImmTo = 6; 3446 switch(Opc) { 3447 default: llvm_unreachable("Unknown opcode"); 3448 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 3449 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 3450 case PPC::RLWNM_rec: 3451 III.ImmOpcode = PPC::RLWINM_rec; 3452 break; 3453 case PPC::RLWNM8_rec: 3454 III.ImmOpcode = PPC::RLWINM8_rec; 3455 break; 3456 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 3457 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 3458 case PPC::SLW_rec: 3459 III.ImmOpcode = PPC::RLWINM_rec; 3460 break; 3461 case PPC::SLW8_rec: 3462 III.ImmOpcode = PPC::RLWINM8_rec; 3463 break; 3464 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 3465 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 3466 case PPC::SRW_rec: 3467 III.ImmOpcode = PPC::RLWINM_rec; 3468 break; 3469 case PPC::SRW8_rec: 3470 III.ImmOpcode = PPC::RLWINM8_rec; 3471 break; 3472 case PPC::SRAW: 3473 III.ImmWidth = 5; 3474 III.TruncateImmTo = 0; 3475 III.ImmOpcode = PPC::SRAWI; 3476 break; 3477 case PPC::SRAW_rec: 3478 III.ImmWidth = 5; 3479 III.TruncateImmTo = 0; 3480 III.ImmOpcode = PPC::SRAWI_rec; 3481 break; 3482 } 3483 break; 3484 case PPC::RLDCL: 3485 case PPC::RLDCL_rec: 3486 case PPC::RLDCR: 3487 case PPC::RLDCR_rec: 3488 case PPC::SLD: 3489 case PPC::SLD_rec: 3490 case PPC::SRD: 3491 case PPC::SRD_rec: 3492 case PPC::SRAD: 3493 case PPC::SRAD_rec: 3494 III.SignedImm = false; 3495 III.ZeroIsSpecialOrig = 0; 3496 III.ZeroIsSpecialNew = 0; 3497 III.IsCommutative = false; 3498 // This isn't actually true, but the instructions ignore any of the 3499 // upper bits, so any immediate loaded with an LI is acceptable. 3500 // This does not apply to shift right algebraic because a value 3501 // out of range will produce a -1/0. 3502 III.ImmWidth = 16; 3503 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || 3504 Opc == PPC::RLDCR_rec) 3505 III.TruncateImmTo = 6; 3506 else 3507 III.TruncateImmTo = 7; 3508 switch(Opc) { 3509 default: llvm_unreachable("Unknown opcode"); 3510 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 3511 case PPC::RLDCL_rec: 3512 III.ImmOpcode = PPC::RLDICL_rec; 3513 break; 3514 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 3515 case PPC::RLDCR_rec: 3516 III.ImmOpcode = PPC::RLDICR_rec; 3517 break; 3518 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 3519 case PPC::SLD_rec: 3520 III.ImmOpcode = PPC::RLDICR_rec; 3521 break; 3522 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 3523 case PPC::SRD_rec: 3524 III.ImmOpcode = PPC::RLDICL_rec; 3525 break; 3526 case PPC::SRAD: 3527 III.ImmWidth = 6; 3528 III.TruncateImmTo = 0; 3529 III.ImmOpcode = PPC::SRADI; 3530 break; 3531 case PPC::SRAD_rec: 3532 III.ImmWidth = 6; 3533 III.TruncateImmTo = 0; 3534 III.ImmOpcode = PPC::SRADI_rec; 3535 break; 3536 } 3537 break; 3538 // Loads and stores: 3539 case PPC::LBZX: 3540 case PPC::LBZX8: 3541 case PPC::LHZX: 3542 case PPC::LHZX8: 3543 case PPC::LHAX: 3544 case PPC::LHAX8: 3545 case PPC::LWZX: 3546 case PPC::LWZX8: 3547 case PPC::LWAX: 3548 case PPC::LDX: 3549 case PPC::LFSX: 3550 case PPC::LFDX: 3551 case PPC::STBX: 3552 case PPC::STBX8: 3553 case PPC::STHX: 3554 case PPC::STHX8: 3555 case PPC::STWX: 3556 case PPC::STWX8: 3557 case PPC::STDX: 3558 case PPC::STFSX: 3559 case PPC::STFDX: 3560 III.SignedImm = true; 3561 III.ZeroIsSpecialOrig = 1; 3562 III.ZeroIsSpecialNew = 2; 3563 III.IsCommutative = true; 3564 III.IsSummingOperands = true; 3565 III.ImmOpNo = 1; 3566 III.OpNoForForwarding = 2; 3567 switch(Opc) { 3568 default: llvm_unreachable("Unknown opcode"); 3569 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 3570 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 3571 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 3572 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 3573 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 3574 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 3575 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 3576 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 3577 case PPC::LWAX: 3578 III.ImmOpcode = PPC::LWA; 3579 III.ImmMustBeMultipleOf = 4; 3580 break; 3581 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 3582 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 3583 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 3584 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 3585 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 3586 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 3587 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 3588 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 3589 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 3590 case PPC::STDX: 3591 III.ImmOpcode = PPC::STD; 3592 III.ImmMustBeMultipleOf = 4; 3593 break; 3594 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 3595 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 3596 } 3597 break; 3598 case PPC::LBZUX: 3599 case PPC::LBZUX8: 3600 case PPC::LHZUX: 3601 case PPC::LHZUX8: 3602 case PPC::LHAUX: 3603 case PPC::LHAUX8: 3604 case PPC::LWZUX: 3605 case PPC::LWZUX8: 3606 case PPC::LDUX: 3607 case PPC::LFSUX: 3608 case PPC::LFDUX: 3609 case PPC::STBUX: 3610 case PPC::STBUX8: 3611 case PPC::STHUX: 3612 case PPC::STHUX8: 3613 case PPC::STWUX: 3614 case PPC::STWUX8: 3615 case PPC::STDUX: 3616 case PPC::STFSUX: 3617 case PPC::STFDUX: 3618 III.SignedImm = true; 3619 III.ZeroIsSpecialOrig = 2; 3620 III.ZeroIsSpecialNew = 3; 3621 III.IsCommutative = false; 3622 III.IsSummingOperands = true; 3623 III.ImmOpNo = 2; 3624 III.OpNoForForwarding = 3; 3625 switch(Opc) { 3626 default: llvm_unreachable("Unknown opcode"); 3627 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 3628 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 3629 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 3630 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 3631 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 3632 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 3633 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 3634 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 3635 case PPC::LDUX: 3636 III.ImmOpcode = PPC::LDU; 3637 III.ImmMustBeMultipleOf = 4; 3638 break; 3639 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 3640 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 3641 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 3642 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 3643 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 3644 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 3645 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 3646 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 3647 case PPC::STDUX: 3648 III.ImmOpcode = PPC::STDU; 3649 III.ImmMustBeMultipleOf = 4; 3650 break; 3651 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 3652 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 3653 } 3654 break; 3655 // Power9 and up only. For some of these, the X-Form version has access to all 3656 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 3657 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 3658 // into or stored from is one of the VR registers. 3659 case PPC::LXVX: 3660 case PPC::LXSSPX: 3661 case PPC::LXSDX: 3662 case PPC::STXVX: 3663 case PPC::STXSSPX: 3664 case PPC::STXSDX: 3665 case PPC::XFLOADf32: 3666 case PPC::XFLOADf64: 3667 case PPC::XFSTOREf32: 3668 case PPC::XFSTOREf64: 3669 if (!Subtarget.hasP9Vector()) 3670 return false; 3671 III.SignedImm = true; 3672 III.ZeroIsSpecialOrig = 1; 3673 III.ZeroIsSpecialNew = 2; 3674 III.IsCommutative = true; 3675 III.IsSummingOperands = true; 3676 III.ImmOpNo = 1; 3677 III.OpNoForForwarding = 2; 3678 III.ImmMustBeMultipleOf = 4; 3679 switch(Opc) { 3680 default: llvm_unreachable("Unknown opcode"); 3681 case PPC::LXVX: 3682 III.ImmOpcode = PPC::LXV; 3683 III.ImmMustBeMultipleOf = 16; 3684 break; 3685 case PPC::LXSSPX: 3686 if (PostRA) { 3687 if (IsVFReg) 3688 III.ImmOpcode = PPC::LXSSP; 3689 else { 3690 III.ImmOpcode = PPC::LFS; 3691 III.ImmMustBeMultipleOf = 1; 3692 } 3693 break; 3694 } 3695 LLVM_FALLTHROUGH; 3696 case PPC::XFLOADf32: 3697 III.ImmOpcode = PPC::DFLOADf32; 3698 break; 3699 case PPC::LXSDX: 3700 if (PostRA) { 3701 if (IsVFReg) 3702 III.ImmOpcode = PPC::LXSD; 3703 else { 3704 III.ImmOpcode = PPC::LFD; 3705 III.ImmMustBeMultipleOf = 1; 3706 } 3707 break; 3708 } 3709 LLVM_FALLTHROUGH; 3710 case PPC::XFLOADf64: 3711 III.ImmOpcode = PPC::DFLOADf64; 3712 break; 3713 case PPC::STXVX: 3714 III.ImmOpcode = PPC::STXV; 3715 III.ImmMustBeMultipleOf = 16; 3716 break; 3717 case PPC::STXSSPX: 3718 if (PostRA) { 3719 if (IsVFReg) 3720 III.ImmOpcode = PPC::STXSSP; 3721 else { 3722 III.ImmOpcode = PPC::STFS; 3723 III.ImmMustBeMultipleOf = 1; 3724 } 3725 break; 3726 } 3727 LLVM_FALLTHROUGH; 3728 case PPC::XFSTOREf32: 3729 III.ImmOpcode = PPC::DFSTOREf32; 3730 break; 3731 case PPC::STXSDX: 3732 if (PostRA) { 3733 if (IsVFReg) 3734 III.ImmOpcode = PPC::STXSD; 3735 else { 3736 III.ImmOpcode = PPC::STFD; 3737 III.ImmMustBeMultipleOf = 1; 3738 } 3739 break; 3740 } 3741 LLVM_FALLTHROUGH; 3742 case PPC::XFSTOREf64: 3743 III.ImmOpcode = PPC::DFSTOREf64; 3744 break; 3745 } 3746 break; 3747 } 3748 return true; 3749 } 3750 3751 // Utility function for swaping two arbitrary operands of an instruction. 3752 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 3753 assert(Op1 != Op2 && "Cannot swap operand with itself."); 3754 3755 unsigned MaxOp = std::max(Op1, Op2); 3756 unsigned MinOp = std::min(Op1, Op2); 3757 MachineOperand MOp1 = MI.getOperand(MinOp); 3758 MachineOperand MOp2 = MI.getOperand(MaxOp); 3759 MI.RemoveOperand(std::max(Op1, Op2)); 3760 MI.RemoveOperand(std::min(Op1, Op2)); 3761 3762 // If the operands we are swapping are the two at the end (the common case) 3763 // we can just remove both and add them in the opposite order. 3764 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 3765 MI.addOperand(MOp2); 3766 MI.addOperand(MOp1); 3767 } else { 3768 // Store all operands in a temporary vector, remove them and re-add in the 3769 // right order. 3770 SmallVector<MachineOperand, 2> MOps; 3771 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 3772 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 3773 MOps.push_back(MI.getOperand(i)); 3774 MI.RemoveOperand(i); 3775 } 3776 // MOp2 needs to be added next. 3777 MI.addOperand(MOp2); 3778 // Now add the rest. 3779 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 3780 if (i == MaxOp) 3781 MI.addOperand(MOp1); 3782 else { 3783 MI.addOperand(MOps.back()); 3784 MOps.pop_back(); 3785 } 3786 } 3787 } 3788 } 3789 3790 // Check if the 'MI' that has the index OpNoForForwarding 3791 // meets the requirement described in the ImmInstrInfo. 3792 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 3793 const ImmInstrInfo &III, 3794 unsigned OpNoForForwarding 3795 ) const { 3796 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 3797 // would not work pre-RA, we can only do the check post RA. 3798 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3799 if (MRI.isSSA()) 3800 return false; 3801 3802 // Cannot do the transform if MI isn't summing the operands. 3803 if (!III.IsSummingOperands) 3804 return false; 3805 3806 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 3807 if (!III.ZeroIsSpecialOrig) 3808 return false; 3809 3810 // We cannot do the transform if the operand we are trying to replace 3811 // isn't the same as the operand the instruction allows. 3812 if (OpNoForForwarding != III.OpNoForForwarding) 3813 return false; 3814 3815 // Check if the instruction we are trying to transform really has 3816 // the special zero register as its operand. 3817 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 3818 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 3819 return false; 3820 3821 // This machine instruction is convertible if it is, 3822 // 1. summing the operands. 3823 // 2. one of the operands is special zero register. 3824 // 3. the operand we are trying to replace is allowed by the MI. 3825 return true; 3826 } 3827 3828 // Check if the DefMI is the add inst and set the ImmMO and RegMO 3829 // accordingly. 3830 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 3831 const ImmInstrInfo &III, 3832 MachineOperand *&ImmMO, 3833 MachineOperand *&RegMO) const { 3834 unsigned Opc = DefMI.getOpcode(); 3835 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 3836 return false; 3837 3838 assert(DefMI.getNumOperands() >= 3 && 3839 "Add inst must have at least three operands"); 3840 RegMO = &DefMI.getOperand(1); 3841 ImmMO = &DefMI.getOperand(2); 3842 3843 // Before RA, ADDI first operand could be a frame index. 3844 if (!RegMO->isReg()) 3845 return false; 3846 3847 // This DefMI is elgible for forwarding if it is: 3848 // 1. add inst 3849 // 2. one of the operands is Imm/CPI/Global. 3850 return isAnImmediateOperand(*ImmMO); 3851 } 3852 3853 bool PPCInstrInfo::isRegElgibleForForwarding( 3854 const MachineOperand &RegMO, const MachineInstr &DefMI, 3855 const MachineInstr &MI, bool KillDefMI, 3856 bool &IsFwdFeederRegKilled) const { 3857 // x = addi y, imm 3858 // ... 3859 // z = lfdx 0, x -> z = lfd imm(y) 3860 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 3861 // of "y" between the DEF of "x" and "z". 3862 // The query is only valid post RA. 3863 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3864 if (MRI.isSSA()) 3865 return false; 3866 3867 Register Reg = RegMO.getReg(); 3868 3869 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 3870 MachineBasicBlock::const_reverse_iterator It = MI; 3871 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 3872 It++; 3873 for (; It != E; ++It) { 3874 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3875 return false; 3876 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3877 IsFwdFeederRegKilled = true; 3878 // Made it to DefMI without encountering a clobber. 3879 if ((&*It) == &DefMI) 3880 break; 3881 } 3882 assert((&*It) == &DefMI && "DefMI is missing"); 3883 3884 // If DefMI also defines the register to be forwarded, we can only forward it 3885 // if DefMI is being erased. 3886 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 3887 return KillDefMI; 3888 3889 return true; 3890 } 3891 3892 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 3893 const MachineInstr &DefMI, 3894 const ImmInstrInfo &III, 3895 int64_t &Imm, 3896 int64_t BaseImm) const { 3897 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 3898 if (DefMI.getOpcode() == PPC::ADDItocL) { 3899 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 3900 // However, we know that, it is 16-bit width, and has the alignment of 4. 3901 // Check if the instruction met the requirement. 3902 if (III.ImmMustBeMultipleOf > 4 || 3903 III.TruncateImmTo || III.ImmWidth != 16) 3904 return false; 3905 3906 // Going from XForm to DForm loads means that the displacement needs to be 3907 // not just an immediate but also a multiple of 4, or 16 depending on the 3908 // load. A DForm load cannot be represented if it is a multiple of say 2. 3909 // XForm loads do not have this restriction. 3910 if (ImmMO.isGlobal()) { 3911 const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout(); 3912 if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf) 3913 return false; 3914 } 3915 3916 return true; 3917 } 3918 3919 if (ImmMO.isImm()) { 3920 // It is Imm, we need to check if the Imm fit the range. 3921 // Sign-extend to 64-bits. 3922 // DefMI may be folded with another imm form instruction, the result Imm is 3923 // the sum of Imm of DefMI and BaseImm which is from imm form instruction. 3924 Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm); 3925 3926 if (Imm % III.ImmMustBeMultipleOf) 3927 return false; 3928 if (III.TruncateImmTo) 3929 Imm &= ((1 << III.TruncateImmTo) - 1); 3930 if (III.SignedImm) { 3931 APInt ActualValue(64, Imm, true); 3932 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3933 return false; 3934 } else { 3935 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3936 if ((uint64_t)Imm > UnsignedMax) 3937 return false; 3938 } 3939 } 3940 else 3941 return false; 3942 3943 // This ImmMO is forwarded if it meets the requriement describle 3944 // in ImmInstrInfo 3945 return true; 3946 } 3947 3948 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI, 3949 unsigned OpNoForForwarding, 3950 MachineInstr **KilledDef) const { 3951 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 3952 !DefMI.getOperand(1).isImm()) 3953 return false; 3954 3955 MachineFunction *MF = MI.getParent()->getParent(); 3956 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3957 bool PostRA = !MRI->isSSA(); 3958 3959 int64_t Immediate = DefMI.getOperand(1).getImm(); 3960 // Sign-extend to 64-bits. 3961 int64_t SExtImm = SignExtend64<16>(Immediate); 3962 3963 bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill(); 3964 Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 3965 3966 bool ReplaceWithLI = false; 3967 bool Is64BitLI = false; 3968 int64_t NewImm = 0; 3969 bool SetCR = false; 3970 unsigned Opc = MI.getOpcode(); 3971 switch (Opc) { 3972 default: 3973 return false; 3974 3975 // FIXME: Any branches conditional on such a comparison can be made 3976 // unconditional. At this time, this happens too infrequently to be worth 3977 // the implementation effort, but if that ever changes, we could convert 3978 // such a pattern here. 3979 case PPC::CMPWI: 3980 case PPC::CMPLWI: 3981 case PPC::CMPDI: 3982 case PPC::CMPLDI: { 3983 // Doing this post-RA would require dataflow analysis to reliably find uses 3984 // of the CR register set by the compare. 3985 // No need to fixup killed/dead flag since this transformation is only valid 3986 // before RA. 3987 if (PostRA) 3988 return false; 3989 // If a compare-immediate is fed by an immediate and is itself an input of 3990 // an ISEL (the most common case) into a COPY of the correct register. 3991 bool Changed = false; 3992 Register DefReg = MI.getOperand(0).getReg(); 3993 int64_t Comparand = MI.getOperand(2).getImm(); 3994 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 3995 ? (Comparand | 0xFFFFFFFFFFFF0000) 3996 : Comparand; 3997 3998 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 3999 unsigned UseOpc = CompareUseMI.getOpcode(); 4000 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 4001 continue; 4002 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 4003 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 4004 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 4005 unsigned RegToCopy = 4006 selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg); 4007 if (RegToCopy == PPC::NoRegister) 4008 continue; 4009 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 4010 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 4011 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 4012 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 4013 CompareUseMI.RemoveOperand(3); 4014 CompareUseMI.RemoveOperand(2); 4015 continue; 4016 } 4017 LLVM_DEBUG( 4018 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 4019 LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump()); 4020 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 4021 // Convert to copy and remove unneeded operands. 4022 CompareUseMI.setDesc(get(PPC::COPY)); 4023 CompareUseMI.RemoveOperand(3); 4024 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 4025 CmpIselsConverted++; 4026 Changed = true; 4027 LLVM_DEBUG(CompareUseMI.dump()); 4028 } 4029 if (Changed) 4030 return true; 4031 // This may end up incremented multiple times since this function is called 4032 // during a fixed-point transformation, but it is only meant to indicate the 4033 // presence of this opportunity. 4034 MissedConvertibleImmediateInstrs++; 4035 return false; 4036 } 4037 4038 // Immediate forms - may simply be convertable to an LI. 4039 case PPC::ADDI: 4040 case PPC::ADDI8: { 4041 // Does the sum fit in a 16-bit signed field? 4042 int64_t Addend = MI.getOperand(2).getImm(); 4043 if (isInt<16>(Addend + SExtImm)) { 4044 ReplaceWithLI = true; 4045 Is64BitLI = Opc == PPC::ADDI8; 4046 NewImm = Addend + SExtImm; 4047 break; 4048 } 4049 return false; 4050 } 4051 case PPC::SUBFIC: 4052 case PPC::SUBFIC8: { 4053 // Only transform this if the CARRY implicit operand is dead. 4054 if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead()) 4055 return false; 4056 int64_t Minuend = MI.getOperand(2).getImm(); 4057 if (isInt<16>(Minuend - SExtImm)) { 4058 ReplaceWithLI = true; 4059 Is64BitLI = Opc == PPC::SUBFIC8; 4060 NewImm = Minuend - SExtImm; 4061 break; 4062 } 4063 return false; 4064 } 4065 case PPC::RLDICL: 4066 case PPC::RLDICL_rec: 4067 case PPC::RLDICL_32: 4068 case PPC::RLDICL_32_64: { 4069 // Use APInt's rotate function. 4070 int64_t SH = MI.getOperand(2).getImm(); 4071 int64_t MB = MI.getOperand(3).getImm(); 4072 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, 4073 SExtImm, true); 4074 InVal = InVal.rotl(SH); 4075 uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1; 4076 InVal &= Mask; 4077 // Can't replace negative values with an LI as that will sign-extend 4078 // and not clear the left bits. If we're setting the CR bit, we will use 4079 // ANDI_rec which won't sign extend, so that's safe. 4080 if (isUInt<15>(InVal.getSExtValue()) || 4081 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { 4082 ReplaceWithLI = true; 4083 Is64BitLI = Opc != PPC::RLDICL_32; 4084 NewImm = InVal.getSExtValue(); 4085 SetCR = Opc == PPC::RLDICL_rec; 4086 break; 4087 } 4088 return false; 4089 } 4090 case PPC::RLWINM: 4091 case PPC::RLWINM8: 4092 case PPC::RLWINM_rec: 4093 case PPC::RLWINM8_rec: { 4094 int64_t SH = MI.getOperand(2).getImm(); 4095 int64_t MB = MI.getOperand(3).getImm(); 4096 int64_t ME = MI.getOperand(4).getImm(); 4097 APInt InVal(32, SExtImm, true); 4098 InVal = InVal.rotl(SH); 4099 APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB); 4100 InVal &= Mask; 4101 // Can't replace negative values with an LI as that will sign-extend 4102 // and not clear the left bits. If we're setting the CR bit, we will use 4103 // ANDI_rec which won't sign extend, so that's safe. 4104 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 4105 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && 4106 isUInt<16>(InVal.getSExtValue())); 4107 if (ValueFits) { 4108 ReplaceWithLI = true; 4109 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; 4110 NewImm = InVal.getSExtValue(); 4111 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; 4112 break; 4113 } 4114 return false; 4115 } 4116 case PPC::ORI: 4117 case PPC::ORI8: 4118 case PPC::XORI: 4119 case PPC::XORI8: { 4120 int64_t LogicalImm = MI.getOperand(2).getImm(); 4121 int64_t Result = 0; 4122 if (Opc == PPC::ORI || Opc == PPC::ORI8) 4123 Result = LogicalImm | SExtImm; 4124 else 4125 Result = LogicalImm ^ SExtImm; 4126 if (isInt<16>(Result)) { 4127 ReplaceWithLI = true; 4128 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 4129 NewImm = Result; 4130 break; 4131 } 4132 return false; 4133 } 4134 } 4135 4136 if (ReplaceWithLI) { 4137 // We need to be careful with CR-setting instructions we're replacing. 4138 if (SetCR) { 4139 // We don't know anything about uses when we're out of SSA, so only 4140 // replace if the new immediate will be reproduced. 4141 bool ImmChanged = (SExtImm & NewImm) != NewImm; 4142 if (PostRA && ImmChanged) 4143 return false; 4144 4145 if (!PostRA) { 4146 // If the defining load-immediate has no other uses, we can just replace 4147 // the immediate with the new immediate. 4148 if (MRI->hasOneUse(DefMI.getOperand(0).getReg())) 4149 DefMI.getOperand(1).setImm(NewImm); 4150 4151 // If we're not using the GPR result of the CR-setting instruction, we 4152 // just need to and with zero/non-zero depending on the new immediate. 4153 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 4154 if (NewImm) { 4155 assert(Immediate && "Transformation converted zero to non-zero?"); 4156 NewImm = Immediate; 4157 } 4158 } else if (ImmChanged) 4159 return false; 4160 } 4161 } 4162 4163 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4164 LLVM_DEBUG(MI.dump()); 4165 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4166 LLVM_DEBUG(DefMI.dump()); 4167 LoadImmediateInfo LII; 4168 LII.Imm = NewImm; 4169 LII.Is64Bit = Is64BitLI; 4170 LII.SetCR = SetCR; 4171 // If we're setting the CR, the original load-immediate must be kept (as an 4172 // operand to ANDI_rec/ANDI8_rec). 4173 if (KilledDef && SetCR) 4174 *KilledDef = nullptr; 4175 replaceInstrWithLI(MI, LII); 4176 4177 // Fixup killed/dead flag after transformation. 4178 // Pattern: 4179 // ForwardingOperandReg = LI imm1 4180 // y = op2 imm2, ForwardingOperandReg(killed) 4181 if (IsForwardingOperandKilled) 4182 fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg); 4183 4184 LLVM_DEBUG(dbgs() << "With:\n"); 4185 LLVM_DEBUG(MI.dump()); 4186 return true; 4187 } 4188 return false; 4189 } 4190 4191 bool PPCInstrInfo::transformToNewImmFormFedByAdd( 4192 MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const { 4193 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 4194 bool PostRA = !MRI->isSSA(); 4195 // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI 4196 // for post-ra. 4197 if (PostRA) 4198 return false; 4199 4200 // Only handle load/store. 4201 if (!MI.mayLoadOrStore()) 4202 return false; 4203 4204 unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode()); 4205 4206 assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) && 4207 "MI must have x-form opcode"); 4208 4209 // get Imm Form info. 4210 ImmInstrInfo III; 4211 bool IsVFReg = MI.getOperand(0).isReg() 4212 ? isVFRegister(MI.getOperand(0).getReg()) 4213 : false; 4214 4215 if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA)) 4216 return false; 4217 4218 if (!III.IsSummingOperands) 4219 return false; 4220 4221 if (OpNoForForwarding != III.OpNoForForwarding) 4222 return false; 4223 4224 MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo); 4225 if (!ImmOperandMI.isImm()) 4226 return false; 4227 4228 // Check DefMI. 4229 MachineOperand *ImmMO = nullptr; 4230 MachineOperand *RegMO = nullptr; 4231 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4232 return false; 4233 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4234 4235 // Check Imm. 4236 // Set ImmBase from imm instruction as base and get new Imm inside 4237 // isImmElgibleForForwarding. 4238 int64_t ImmBase = ImmOperandMI.getImm(); 4239 int64_t Imm = 0; 4240 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase)) 4241 return false; 4242 4243 // Get killed info in case fixup needed after transformation. 4244 unsigned ForwardKilledOperandReg = ~0U; 4245 if (MI.getOperand(III.OpNoForForwarding).isKill()) 4246 ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg(); 4247 4248 // Do the transform 4249 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4250 LLVM_DEBUG(MI.dump()); 4251 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4252 LLVM_DEBUG(DefMI.dump()); 4253 4254 MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg()); 4255 MI.getOperand(III.OpNoForForwarding).setIsKill(RegMO->isKill()); 4256 MI.getOperand(III.ImmOpNo).setImm(Imm); 4257 4258 // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block. 4259 if (DefMI.getParent() == MI.getParent()) { 4260 // Check if reg is killed between MI and DefMI. 4261 auto IsKilledFor = [&](unsigned Reg) { 4262 MachineBasicBlock::const_reverse_iterator It = MI; 4263 MachineBasicBlock::const_reverse_iterator E = DefMI; 4264 It++; 4265 for (; It != E; ++It) { 4266 if (It->killsRegister(Reg)) 4267 return true; 4268 } 4269 return false; 4270 }; 4271 4272 // Update kill flag 4273 if (RegMO->isKill() || IsKilledFor(RegMO->getReg())) 4274 fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); 4275 if (ForwardKilledOperandReg != ~0U) 4276 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4277 } 4278 4279 LLVM_DEBUG(dbgs() << "With:\n"); 4280 LLVM_DEBUG(MI.dump()); 4281 return true; 4282 } 4283 4284 // If an X-Form instruction is fed by an add-immediate and one of its operands 4285 // is the literal zero, attempt to forward the source of the add-immediate to 4286 // the corresponding D-Form instruction with the displacement coming from 4287 // the immediate being added. 4288 bool PPCInstrInfo::transformToImmFormFedByAdd( 4289 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 4290 MachineInstr &DefMI, bool KillDefMI) const { 4291 // RegMO ImmMO 4292 // | | 4293 // x = addi reg, imm <----- DefMI 4294 // y = op 0 , x <----- MI 4295 // | 4296 // OpNoForForwarding 4297 // Check if the MI meet the requirement described in the III. 4298 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 4299 return false; 4300 4301 // Check if the DefMI meet the requirement 4302 // described in the III. If yes, set the ImmMO and RegMO accordingly. 4303 MachineOperand *ImmMO = nullptr; 4304 MachineOperand *RegMO = nullptr; 4305 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4306 return false; 4307 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4308 4309 // As we get the Imm operand now, we need to check if the ImmMO meet 4310 // the requirement described in the III. If yes set the Imm. 4311 int64_t Imm = 0; 4312 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 4313 return false; 4314 4315 bool IsFwdFeederRegKilled = false; 4316 // Check if the RegMO can be forwarded to MI. 4317 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 4318 IsFwdFeederRegKilled)) 4319 return false; 4320 4321 // Get killed info in case fixup needed after transformation. 4322 unsigned ForwardKilledOperandReg = ~0U; 4323 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4324 bool PostRA = !MRI.isSSA(); 4325 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 4326 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 4327 4328 // We know that, the MI and DefMI both meet the pattern, and 4329 // the Imm also meet the requirement with the new Imm-form. 4330 // It is safe to do the transformation now. 4331 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4332 LLVM_DEBUG(MI.dump()); 4333 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4334 LLVM_DEBUG(DefMI.dump()); 4335 4336 // Update the base reg first. 4337 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 4338 false, false, 4339 RegMO->isKill()); 4340 4341 // Then, update the imm. 4342 if (ImmMO->isImm()) { 4343 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 4344 // directly. 4345 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 4346 } 4347 else { 4348 // Otherwise, it is Constant Pool Index(CPI) or Global, 4349 // which is relocation in fact. We need to replace the special zero 4350 // register with ImmMO. 4351 // Before that, we need to fixup the target flags for imm. 4352 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 4353 if (DefMI.getOpcode() == PPC::ADDItocL) 4354 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 4355 4356 // MI didn't have the interface such as MI.setOperand(i) though 4357 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 4358 // ImmMO, we need to remove ZERO operand and all the operands behind it, 4359 // and, add the ImmMO, then, move back all the operands behind ZERO. 4360 SmallVector<MachineOperand, 2> MOps; 4361 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 4362 MOps.push_back(MI.getOperand(i)); 4363 MI.RemoveOperand(i); 4364 } 4365 4366 // Remove the last MO in the list, which is ZERO operand in fact. 4367 MOps.pop_back(); 4368 // Add the imm operand. 4369 MI.addOperand(*ImmMO); 4370 // Now add the rest back. 4371 for (auto &MO : MOps) 4372 MI.addOperand(MO); 4373 } 4374 4375 // Update the opcode. 4376 MI.setDesc(get(III.ImmOpcode)); 4377 4378 // Fix up killed/dead flag after transformation. 4379 // Pattern 1: 4380 // x = ADD KilledFwdFeederReg, imm 4381 // n = opn KilledFwdFeederReg(killed), regn 4382 // y = XOP 0, x 4383 // Pattern 2: 4384 // x = ADD reg(killed), imm 4385 // y = XOP 0, x 4386 if (IsFwdFeederRegKilled || RegMO->isKill()) 4387 fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); 4388 // Pattern 3: 4389 // ForwardKilledOperandReg = ADD reg, imm 4390 // y = XOP 0, ForwardKilledOperandReg(killed) 4391 if (ForwardKilledOperandReg != ~0U) 4392 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4393 4394 LLVM_DEBUG(dbgs() << "With:\n"); 4395 LLVM_DEBUG(MI.dump()); 4396 4397 return true; 4398 } 4399 4400 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 4401 const ImmInstrInfo &III, 4402 unsigned ConstantOpNo, 4403 MachineInstr &DefMI) const { 4404 // DefMI must be LI or LI8. 4405 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4406 !DefMI.getOperand(1).isImm()) 4407 return false; 4408 4409 // Get Imm operand and Sign-extend to 64-bits. 4410 int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm()); 4411 4412 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4413 bool PostRA = !MRI.isSSA(); 4414 // Exit early if we can't convert this. 4415 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 4416 return false; 4417 if (Imm % III.ImmMustBeMultipleOf) 4418 return false; 4419 if (III.TruncateImmTo) 4420 Imm &= ((1 << III.TruncateImmTo) - 1); 4421 if (III.SignedImm) { 4422 APInt ActualValue(64, Imm, true); 4423 if (!ActualValue.isSignedIntN(III.ImmWidth)) 4424 return false; 4425 } else { 4426 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 4427 if ((uint64_t)Imm > UnsignedMax) 4428 return false; 4429 } 4430 4431 // If we're post-RA, the instructions don't agree on whether register zero is 4432 // special, we can transform this as long as the register operand that will 4433 // end up in the location where zero is special isn't R0. 4434 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 4435 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 4436 III.ZeroIsSpecialNew + 1; 4437 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 4438 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 4439 // If R0 is in the operand where zero is special for the new instruction, 4440 // it is unsafe to transform if the constant operand isn't that operand. 4441 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 4442 ConstantOpNo != III.ZeroIsSpecialNew) 4443 return false; 4444 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 4445 ConstantOpNo != PosForOrigZero) 4446 return false; 4447 } 4448 4449 // Get killed info in case fixup needed after transformation. 4450 unsigned ForwardKilledOperandReg = ~0U; 4451 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 4452 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 4453 4454 unsigned Opc = MI.getOpcode(); 4455 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || 4456 Opc == PPC::SRW || Opc == PPC::SRW_rec || 4457 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || 4458 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; 4459 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || 4460 Opc == PPC::SRD || Opc == PPC::SRD_rec; 4461 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || 4462 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; 4463 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || 4464 Opc == PPC::SRD_rec; 4465 4466 MI.setDesc(get(III.ImmOpcode)); 4467 if (ConstantOpNo == III.OpNoForForwarding) { 4468 // Converting shifts to immediate form is a bit tricky since they may do 4469 // one of three things: 4470 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 4471 // 2. If the shift amount is zero, the result is unchanged (save for maybe 4472 // setting CR0) 4473 // 3. If the shift amount is in [1, OpSize), it's just a shift 4474 if (SpecialShift32 || SpecialShift64) { 4475 LoadImmediateInfo LII; 4476 LII.Imm = 0; 4477 LII.SetCR = SetCR; 4478 LII.Is64Bit = SpecialShift64; 4479 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 4480 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 4481 replaceInstrWithLI(MI, LII); 4482 // Shifts by zero don't change the value. If we don't need to set CR0, 4483 // just convert this to a COPY. Can't do this post-RA since we've already 4484 // cleaned up the copies. 4485 else if (!SetCR && ShAmt == 0 && !PostRA) { 4486 MI.RemoveOperand(2); 4487 MI.setDesc(get(PPC::COPY)); 4488 } else { 4489 // The 32 bit and 64 bit instructions are quite different. 4490 if (SpecialShift32) { 4491 // Left shifts use (N, 0, 31-N). 4492 // Right shifts use (32-N, N, 31) if 0 < N < 32. 4493 // use (0, 0, 31) if N == 0. 4494 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; 4495 uint64_t MB = RightShift ? ShAmt : 0; 4496 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 4497 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 4498 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 4499 .addImm(ME); 4500 } else { 4501 // Left shifts use (N, 63-N). 4502 // Right shifts use (64-N, N) if 0 < N < 64. 4503 // use (0, 0) if N == 0. 4504 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; 4505 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 4506 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 4507 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 4508 } 4509 } 4510 } else 4511 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 4512 } 4513 // Convert commutative instructions (switch the operands and convert the 4514 // desired one to an immediate. 4515 else if (III.IsCommutative) { 4516 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 4517 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 4518 } else 4519 llvm_unreachable("Should have exited early!"); 4520 4521 // For instructions for which the constant register replaces a different 4522 // operand than where the immediate goes, we need to swap them. 4523 if (III.OpNoForForwarding != III.ImmOpNo) 4524 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 4525 4526 // If the special R0/X0 register index are different for original instruction 4527 // and new instruction, we need to fix up the register class in new 4528 // instruction. 4529 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 4530 if (III.ZeroIsSpecialNew) { 4531 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 4532 // need to fix up register class. 4533 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 4534 if (Register::isVirtualRegister(RegToModify)) { 4535 const TargetRegisterClass *NewRC = 4536 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 4537 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 4538 MRI.setRegClass(RegToModify, NewRC); 4539 } 4540 } 4541 } 4542 4543 // Fix up killed/dead flag after transformation. 4544 // Pattern: 4545 // ForwardKilledOperandReg = LI imm 4546 // y = XOP reg, ForwardKilledOperandReg(killed) 4547 if (ForwardKilledOperandReg != ~0U) 4548 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4549 return true; 4550 } 4551 4552 const TargetRegisterClass * 4553 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 4554 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 4555 return &PPC::VSRCRegClass; 4556 return RC; 4557 } 4558 4559 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 4560 return PPC::getRecordFormOpcode(Opcode); 4561 } 4562 4563 // This function returns true if the machine instruction 4564 // always outputs a value by sign-extending a 32 bit value, 4565 // i.e. 0 to 31-th bits are same as 32-th bit. 4566 static bool isSignExtendingOp(const MachineInstr &MI) { 4567 int Opcode = MI.getOpcode(); 4568 if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS || 4569 Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec || 4570 Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA || 4571 Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 4572 Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 || 4573 Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX || 4574 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU || 4575 Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 4576 Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 || 4577 Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 4578 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB || 4579 Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH || 4580 Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 || 4581 Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW || 4582 Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 || 4583 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 4584 Opcode == PPC::EXTSB8_32_64) 4585 return true; 4586 4587 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 4588 return true; 4589 4590 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 4591 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && 4592 MI.getOperand(3).getImm() > 0 && 4593 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 4594 return true; 4595 4596 return false; 4597 } 4598 4599 // This function returns true if the machine instruction 4600 // always outputs zeros in higher 32 bits. 4601 static bool isZeroExtendingOp(const MachineInstr &MI) { 4602 int Opcode = MI.getOpcode(); 4603 // The 16-bit immediate is sign-extended in li/lis. 4604 // If the most significant bit is zero, all higher bits are zero. 4605 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 4606 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 4607 int64_t Imm = MI.getOperand(1).getImm(); 4608 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 4609 return true; 4610 } 4611 4612 // We have some variations of rotate-and-mask instructions 4613 // that clear higher 32-bits. 4614 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 4615 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || 4616 Opcode == PPC::RLDICL_32_64) && 4617 MI.getOperand(3).getImm() >= 32) 4618 return true; 4619 4620 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 4621 MI.getOperand(3).getImm() >= 32 && 4622 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 4623 return true; 4624 4625 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 4626 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 4627 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 4628 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 4629 return true; 4630 4631 // There are other instructions that clear higher 32-bits. 4632 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec || 4633 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec || 4634 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 4635 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec || 4636 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec || 4637 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW || 4638 Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec || 4639 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI || 4640 Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI || 4641 Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX || 4642 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX || 4643 Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX || 4644 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ || 4645 Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 4646 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 || 4647 Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 4648 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 || 4649 Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 4650 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 4651 Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec || 4652 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec || 4653 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec || 4654 Opcode == PPC::MFVSRWZ) 4655 return true; 4656 4657 return false; 4658 } 4659 4660 // This function returns true if the input MachineInstr is a TOC save 4661 // instruction. 4662 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 4663 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 4664 return false; 4665 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4666 unsigned StackOffset = MI.getOperand(1).getImm(); 4667 Register StackReg = MI.getOperand(2).getReg(); 4668 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) 4669 return true; 4670 4671 return false; 4672 } 4673 4674 // We limit the max depth to track incoming values of PHIs or binary ops 4675 // (e.g. AND) to avoid excessive cost. 4676 const unsigned MAX_DEPTH = 1; 4677 4678 bool 4679 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 4680 const unsigned Depth) const { 4681 const MachineFunction *MF = MI.getParent()->getParent(); 4682 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 4683 4684 // If we know this instruction returns sign- or zero-extended result, 4685 // return true. 4686 if (SignExt ? isSignExtendingOp(MI): 4687 isZeroExtendingOp(MI)) 4688 return true; 4689 4690 switch (MI.getOpcode()) { 4691 case PPC::COPY: { 4692 Register SrcReg = MI.getOperand(1).getReg(); 4693 4694 // In both ELFv1 and v2 ABI, method parameters and the return value 4695 // are sign- or zero-extended. 4696 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 4697 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 4698 // We check the ZExt/SExt flags for a method parameter. 4699 if (MI.getParent()->getBasicBlock() == 4700 &MF->getFunction().getEntryBlock()) { 4701 Register VReg = MI.getOperand(0).getReg(); 4702 if (MF->getRegInfo().isLiveIn(VReg)) 4703 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 4704 FuncInfo->isLiveInZExt(VReg); 4705 } 4706 4707 // For a method return value, we check the ZExt/SExt flags in attribute. 4708 // We assume the following code sequence for method call. 4709 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 4710 // BL8_NOP @func,... 4711 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 4712 // %5 = COPY %x3; G8RC:%5 4713 if (SrcReg == PPC::X3) { 4714 const MachineBasicBlock *MBB = MI.getParent(); 4715 MachineBasicBlock::const_instr_iterator II = 4716 MachineBasicBlock::const_instr_iterator(&MI); 4717 if (II != MBB->instr_begin() && 4718 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 4719 const MachineInstr &CallMI = *(--II); 4720 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 4721 const Function *CalleeFn = 4722 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 4723 if (!CalleeFn) 4724 return false; 4725 const IntegerType *IntTy = 4726 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 4727 const AttributeSet &Attrs = 4728 CalleeFn->getAttributes().getRetAttributes(); 4729 if (IntTy && IntTy->getBitWidth() <= 32) 4730 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 4731 Attribute::ZExt); 4732 } 4733 } 4734 } 4735 } 4736 4737 // If this is a copy from another register, we recursively check source. 4738 if (!Register::isVirtualRegister(SrcReg)) 4739 return false; 4740 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4741 if (SrcMI != NULL) 4742 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 4743 4744 return false; 4745 } 4746 4747 case PPC::ANDI_rec: 4748 case PPC::ANDIS_rec: 4749 case PPC::ORI: 4750 case PPC::ORIS: 4751 case PPC::XORI: 4752 case PPC::XORIS: 4753 case PPC::ANDI8_rec: 4754 case PPC::ANDIS8_rec: 4755 case PPC::ORI8: 4756 case PPC::ORIS8: 4757 case PPC::XORI8: 4758 case PPC::XORIS8: { 4759 // logical operation with 16-bit immediate does not change the upper bits. 4760 // So, we track the operand register as we do for register copy. 4761 Register SrcReg = MI.getOperand(1).getReg(); 4762 if (!Register::isVirtualRegister(SrcReg)) 4763 return false; 4764 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4765 if (SrcMI != NULL) 4766 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 4767 4768 return false; 4769 } 4770 4771 // If all incoming values are sign-/zero-extended, 4772 // the output of OR, ISEL or PHI is also sign-/zero-extended. 4773 case PPC::OR: 4774 case PPC::OR8: 4775 case PPC::ISEL: 4776 case PPC::PHI: { 4777 if (Depth >= MAX_DEPTH) 4778 return false; 4779 4780 // The input registers for PHI are operand 1, 3, ... 4781 // The input registers for others are operand 1 and 2. 4782 unsigned E = 3, D = 1; 4783 if (MI.getOpcode() == PPC::PHI) { 4784 E = MI.getNumOperands(); 4785 D = 2; 4786 } 4787 4788 for (unsigned I = 1; I != E; I += D) { 4789 if (MI.getOperand(I).isReg()) { 4790 Register SrcReg = MI.getOperand(I).getReg(); 4791 if (!Register::isVirtualRegister(SrcReg)) 4792 return false; 4793 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4794 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 4795 return false; 4796 } 4797 else 4798 return false; 4799 } 4800 return true; 4801 } 4802 4803 // If at least one of the incoming values of an AND is zero extended 4804 // then the output is also zero-extended. If both of the incoming values 4805 // are sign-extended then the output is also sign extended. 4806 case PPC::AND: 4807 case PPC::AND8: { 4808 if (Depth >= MAX_DEPTH) 4809 return false; 4810 4811 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 4812 4813 Register SrcReg1 = MI.getOperand(1).getReg(); 4814 Register SrcReg2 = MI.getOperand(2).getReg(); 4815 4816 if (!Register::isVirtualRegister(SrcReg1) || 4817 !Register::isVirtualRegister(SrcReg2)) 4818 return false; 4819 4820 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 4821 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 4822 if (!MISrc1 || !MISrc2) 4823 return false; 4824 4825 if(SignExt) 4826 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 4827 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4828 else 4829 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 4830 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4831 } 4832 4833 default: 4834 break; 4835 } 4836 return false; 4837 } 4838 4839 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 4840 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 4841 } 4842 4843 namespace { 4844 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 4845 MachineInstr *Loop, *EndLoop, *LoopCount; 4846 MachineFunction *MF; 4847 const TargetInstrInfo *TII; 4848 int64_t TripCount; 4849 4850 public: 4851 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 4852 MachineInstr *LoopCount) 4853 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 4854 MF(Loop->getParent()->getParent()), 4855 TII(MF->getSubtarget().getInstrInfo()) { 4856 // Inspect the Loop instruction up-front, as it may be deleted when we call 4857 // createTripCountGreaterCondition. 4858 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 4859 TripCount = LoopCount->getOperand(1).getImm(); 4860 else 4861 TripCount = -1; 4862 } 4863 4864 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 4865 // Only ignore the terminator. 4866 return MI == EndLoop; 4867 } 4868 4869 Optional<bool> 4870 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 4871 SmallVectorImpl<MachineOperand> &Cond) override { 4872 if (TripCount == -1) { 4873 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4874 // so we don't need to generate any thing here. 4875 Cond.push_back(MachineOperand::CreateImm(0)); 4876 Cond.push_back(MachineOperand::CreateReg( 4877 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 4878 true)); 4879 return {}; 4880 } 4881 4882 return TripCount > TC; 4883 } 4884 4885 void setPreheader(MachineBasicBlock *NewPreheader) override { 4886 // Do nothing. We want the LOOP setup instruction to stay in the *old* 4887 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 4888 } 4889 4890 void adjustTripCount(int TripCountAdjust) override { 4891 // If the loop trip count is a compile-time value, then just change the 4892 // value. 4893 if (LoopCount->getOpcode() == PPC::LI8 || 4894 LoopCount->getOpcode() == PPC::LI) { 4895 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 4896 LoopCount->getOperand(1).setImm(TripCount); 4897 return; 4898 } 4899 4900 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4901 // so we don't need to generate any thing here. 4902 } 4903 4904 void disposed() override { 4905 Loop->eraseFromParent(); 4906 // Ensure the loop setup instruction is deleted too. 4907 LoopCount->eraseFromParent(); 4908 } 4909 }; 4910 } // namespace 4911 4912 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 4913 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 4914 // We really "analyze" only hardware loops right now. 4915 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 4916 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 4917 if (Preheader == LoopBB) 4918 Preheader = *std::next(LoopBB->pred_begin()); 4919 MachineFunction *MF = Preheader->getParent(); 4920 4921 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 4922 SmallPtrSet<MachineBasicBlock *, 8> Visited; 4923 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 4924 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 4925 MachineRegisterInfo &MRI = MF->getRegInfo(); 4926 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 4927 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 4928 } 4929 } 4930 return nullptr; 4931 } 4932 4933 MachineInstr *PPCInstrInfo::findLoopInstr( 4934 MachineBasicBlock &PreHeader, 4935 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 4936 4937 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 4938 4939 // The loop set-up instruction should be in preheader 4940 for (auto &I : PreHeader.instrs()) 4941 if (I.getOpcode() == LOOPi) 4942 return &I; 4943 return nullptr; 4944 } 4945 4946 // Return true if get the base operand, byte offset of an instruction and the 4947 // memory width. Width is the size of memory that is being loaded/stored. 4948 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 4949 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, 4950 unsigned &Width, const TargetRegisterInfo *TRI) const { 4951 if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3) 4952 return false; 4953 4954 // Handle only loads/stores with base register followed by immediate offset. 4955 if (!LdSt.getOperand(1).isImm() || 4956 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 4957 return false; 4958 if (!LdSt.getOperand(1).isImm() || 4959 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 4960 return false; 4961 4962 if (!LdSt.hasOneMemOperand()) 4963 return false; 4964 4965 Width = (*LdSt.memoperands_begin())->getSize(); 4966 Offset = LdSt.getOperand(1).getImm(); 4967 BaseReg = &LdSt.getOperand(2); 4968 return true; 4969 } 4970 4971 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 4972 const MachineInstr &MIa, const MachineInstr &MIb) const { 4973 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 4974 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 4975 4976 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 4977 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 4978 return false; 4979 4980 // Retrieve the base register, offset from the base register and width. Width 4981 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 4982 // base registers are identical, and the offset of a lower memory access + 4983 // the width doesn't overlap the offset of a higher memory access, 4984 // then the memory accesses are different. 4985 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4986 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 4987 int64_t OffsetA = 0, OffsetB = 0; 4988 unsigned int WidthA = 0, WidthB = 0; 4989 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 4990 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 4991 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 4992 int LowOffset = std::min(OffsetA, OffsetB); 4993 int HighOffset = std::max(OffsetA, OffsetB); 4994 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 4995 if (LowOffset + LowWidth <= HighOffset) 4996 return true; 4997 } 4998 } 4999 return false; 5000 } 5001