1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the PowerPC implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCInstrInfo.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCHazardRecognizers.h" 18 #include "PPCInstrBuilder.h" 19 #include "PPCMachineFunctionInfo.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/ScheduleDAG.h" 31 #include "llvm/CodeGen/SlotIndexes.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCInst.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "ppc-instr-info" 44 45 #define GET_INSTRMAP_INFO 46 #define GET_INSTRINFO_CTOR_DTOR 47 #include "PPCGenInstrInfo.inc" 48 49 static cl:: 50 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 51 cl::desc("Disable analysis for CTR loops")); 52 53 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 54 cl::desc("Disable compare instruction optimization"), cl::Hidden); 55 56 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 57 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 58 cl::Hidden); 59 60 static cl::opt<bool> 61 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 62 cl::desc("Use the old (incorrect) instruction latency calculation")); 63 64 // Pin the vtable to this file. 65 void PPCInstrInfo::anchor() {} 66 67 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 68 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP), 69 Subtarget(STI), RI(STI.getTargetMachine()) {} 70 71 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 72 /// this target when scheduling the DAG. 73 ScheduleHazardRecognizer * 74 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 75 const ScheduleDAG *DAG) const { 76 unsigned Directive = 77 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); 78 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 79 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 80 const InstrItineraryData *II = 81 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 82 return new ScoreboardHazardRecognizer(II, DAG); 83 } 84 85 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 86 } 87 88 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 89 /// to use for this target when scheduling the DAG. 90 ScheduleHazardRecognizer * 91 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 92 const ScheduleDAG *DAG) const { 93 unsigned Directive = 94 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective(); 95 96 // FIXME: Leaving this as-is until we have POWER9 scheduling info 97 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 98 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 99 100 // Most subtargets use a PPC970 recognizer. 101 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 102 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 103 assert(DAG->TII && "No InstrInfo?"); 104 105 return new PPCHazardRecognizer970(*DAG); 106 } 107 108 return new ScoreboardHazardRecognizer(II, DAG); 109 } 110 111 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 112 const MachineInstr &MI, 113 unsigned *PredCost) const { 114 if (!ItinData || UseOldLatencyCalc) 115 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 116 117 // The default implementation of getInstrLatency calls getStageLatency, but 118 // getStageLatency does not do the right thing for us. While we have 119 // itinerary, most cores are fully pipelined, and so the itineraries only 120 // express the first part of the pipeline, not every stage. Instead, we need 121 // to use the listed output operand cycle number (using operand 0 here, which 122 // is an output). 123 124 unsigned Latency = 1; 125 unsigned DefClass = MI.getDesc().getSchedClass(); 126 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 127 const MachineOperand &MO = MI.getOperand(i); 128 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 129 continue; 130 131 int Cycle = ItinData->getOperandCycle(DefClass, i); 132 if (Cycle < 0) 133 continue; 134 135 Latency = std::max(Latency, (unsigned) Cycle); 136 } 137 138 return Latency; 139 } 140 141 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 142 const MachineInstr &DefMI, unsigned DefIdx, 143 const MachineInstr &UseMI, 144 unsigned UseIdx) const { 145 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 146 UseMI, UseIdx); 147 148 if (!DefMI.getParent()) 149 return Latency; 150 151 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 152 unsigned Reg = DefMO.getReg(); 153 154 bool IsRegCR; 155 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 156 const MachineRegisterInfo *MRI = 157 &DefMI.getParent()->getParent()->getRegInfo(); 158 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 159 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 160 } else { 161 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 162 PPC::CRBITRCRegClass.contains(Reg); 163 } 164 165 if (UseMI.isBranch() && IsRegCR) { 166 if (Latency < 0) 167 Latency = getInstrLatency(ItinData, DefMI); 168 169 // On some cores, there is an additional delay between writing to a condition 170 // register, and using it from a branch. 171 unsigned Directive = Subtarget.getDarwinDirective(); 172 switch (Directive) { 173 default: break; 174 case PPC::DIR_7400: 175 case PPC::DIR_750: 176 case PPC::DIR_970: 177 case PPC::DIR_E5500: 178 case PPC::DIR_PWR4: 179 case PPC::DIR_PWR5: 180 case PPC::DIR_PWR5X: 181 case PPC::DIR_PWR6: 182 case PPC::DIR_PWR6X: 183 case PPC::DIR_PWR7: 184 case PPC::DIR_PWR8: 185 // FIXME: Is this needed for POWER9? 186 Latency += 2; 187 break; 188 } 189 } 190 191 return Latency; 192 } 193 194 // This function does not list all associative and commutative operations, but 195 // only those worth feeding through the machine combiner in an attempt to 196 // reduce the critical path. Mostly, this means floating-point operations, 197 // because they have high latencies (compared to other operations, such and 198 // and/or, which are also associative and commutative, but have low latencies). 199 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 200 switch (Inst.getOpcode()) { 201 // FP Add: 202 case PPC::FADD: 203 case PPC::FADDS: 204 // FP Multiply: 205 case PPC::FMUL: 206 case PPC::FMULS: 207 // Altivec Add: 208 case PPC::VADDFP: 209 // VSX Add: 210 case PPC::XSADDDP: 211 case PPC::XVADDDP: 212 case PPC::XVADDSP: 213 case PPC::XSADDSP: 214 // VSX Multiply: 215 case PPC::XSMULDP: 216 case PPC::XVMULDP: 217 case PPC::XVMULSP: 218 case PPC::XSMULSP: 219 // QPX Add: 220 case PPC::QVFADD: 221 case PPC::QVFADDS: 222 case PPC::QVFADDSs: 223 // QPX Multiply: 224 case PPC::QVFMUL: 225 case PPC::QVFMULS: 226 case PPC::QVFMULSs: 227 return true; 228 default: 229 return false; 230 } 231 } 232 233 bool PPCInstrInfo::getMachineCombinerPatterns( 234 MachineInstr &Root, 235 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 236 // Using the machine combiner in this way is potentially expensive, so 237 // restrict to when aggressive optimizations are desired. 238 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 239 return false; 240 241 // FP reassociation is only legal when we don't need strict IEEE semantics. 242 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) 243 return false; 244 245 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 246 } 247 248 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 249 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 250 unsigned &SrcReg, unsigned &DstReg, 251 unsigned &SubIdx) const { 252 switch (MI.getOpcode()) { 253 default: return false; 254 case PPC::EXTSW: 255 case PPC::EXTSW_32_64: 256 SrcReg = MI.getOperand(1).getReg(); 257 DstReg = MI.getOperand(0).getReg(); 258 SubIdx = PPC::sub_32; 259 return true; 260 } 261 } 262 263 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 264 int &FrameIndex) const { 265 // Note: This list must be kept consistent with LoadRegFromStackSlot. 266 switch (MI.getOpcode()) { 267 default: break; 268 case PPC::LD: 269 case PPC::LWZ: 270 case PPC::LFS: 271 case PPC::LFD: 272 case PPC::RESTORE_CR: 273 case PPC::RESTORE_CRBIT: 274 case PPC::LVX: 275 case PPC::LXVD2X: 276 case PPC::LXVX: 277 case PPC::QVLFDX: 278 case PPC::QVLFSXs: 279 case PPC::QVLFDXb: 280 case PPC::RESTORE_VRSAVE: 281 // Check for the operands added by addFrameReference (the immediate is the 282 // offset which defaults to 0). 283 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 284 MI.getOperand(2).isFI()) { 285 FrameIndex = MI.getOperand(2).getIndex(); 286 return MI.getOperand(0).getReg(); 287 } 288 break; 289 } 290 return 0; 291 } 292 293 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 294 int &FrameIndex) const { 295 // Note: This list must be kept consistent with StoreRegToStackSlot. 296 switch (MI.getOpcode()) { 297 default: break; 298 case PPC::STD: 299 case PPC::STW: 300 case PPC::STFS: 301 case PPC::STFD: 302 case PPC::SPILL_CR: 303 case PPC::SPILL_CRBIT: 304 case PPC::STVX: 305 case PPC::STXVD2X: 306 case PPC::STXVX: 307 case PPC::QVSTFDX: 308 case PPC::QVSTFSXs: 309 case PPC::QVSTFDXb: 310 case PPC::SPILL_VRSAVE: 311 // Check for the operands added by addFrameReference (the immediate is the 312 // offset which defaults to 0). 313 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 314 MI.getOperand(2).isFI()) { 315 FrameIndex = MI.getOperand(2).getIndex(); 316 return MI.getOperand(0).getReg(); 317 } 318 break; 319 } 320 return 0; 321 } 322 323 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 324 unsigned OpIdx1, 325 unsigned OpIdx2) const { 326 MachineFunction &MF = *MI.getParent()->getParent(); 327 328 // Normal instructions can be commuted the obvious way. 329 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo) 330 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 331 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 332 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 333 // changing the relative order of the mask operands might change what happens 334 // to the high-bits of the mask (and, thus, the result). 335 336 // Cannot commute if it has a non-zero rotate count. 337 if (MI.getOperand(3).getImm() != 0) 338 return nullptr; 339 340 // If we have a zero rotate count, we have: 341 // M = mask(MB,ME) 342 // Op0 = (Op1 & ~M) | (Op2 & M) 343 // Change this to: 344 // M = mask((ME+1)&31, (MB-1)&31) 345 // Op0 = (Op2 & ~M) | (Op1 & M) 346 347 // Swap op1/op2 348 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 349 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo."); 350 unsigned Reg0 = MI.getOperand(0).getReg(); 351 unsigned Reg1 = MI.getOperand(1).getReg(); 352 unsigned Reg2 = MI.getOperand(2).getReg(); 353 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 354 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 355 bool Reg1IsKill = MI.getOperand(1).isKill(); 356 bool Reg2IsKill = MI.getOperand(2).isKill(); 357 bool ChangeReg0 = false; 358 // If machine instrs are no longer in two-address forms, update 359 // destination register as well. 360 if (Reg0 == Reg1) { 361 // Must be two address instruction! 362 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 363 "Expecting a two-address instruction!"); 364 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 365 Reg2IsKill = false; 366 ChangeReg0 = true; 367 } 368 369 // Masks. 370 unsigned MB = MI.getOperand(4).getImm(); 371 unsigned ME = MI.getOperand(5).getImm(); 372 373 // We can't commute a trivial mask (there is no way to represent an all-zero 374 // mask). 375 if (MB == 0 && ME == 31) 376 return nullptr; 377 378 if (NewMI) { 379 // Create a new instruction. 380 unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 381 bool Reg0IsDead = MI.getOperand(0).isDead(); 382 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 383 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 384 .addReg(Reg2, getKillRegState(Reg2IsKill)) 385 .addReg(Reg1, getKillRegState(Reg1IsKill)) 386 .addImm((ME + 1) & 31) 387 .addImm((MB - 1) & 31); 388 } 389 390 if (ChangeReg0) { 391 MI.getOperand(0).setReg(Reg2); 392 MI.getOperand(0).setSubReg(SubReg2); 393 } 394 MI.getOperand(2).setReg(Reg1); 395 MI.getOperand(1).setReg(Reg2); 396 MI.getOperand(2).setSubReg(SubReg1); 397 MI.getOperand(1).setSubReg(SubReg2); 398 MI.getOperand(2).setIsKill(Reg1IsKill); 399 MI.getOperand(1).setIsKill(Reg2IsKill); 400 401 // Swap the mask around. 402 MI.getOperand(4).setImm((ME + 1) & 31); 403 MI.getOperand(5).setImm((MB - 1) & 31); 404 return &MI; 405 } 406 407 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, 408 unsigned &SrcOpIdx2) const { 409 // For VSX A-Type FMA instructions, it is the first two operands that can be 410 // commuted, however, because the non-encoded tied input operand is listed 411 // first, the operands to swap are actually the second and third. 412 413 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 414 if (AltOpc == -1) 415 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 416 417 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 418 // and SrcOpIdx2. 419 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 420 } 421 422 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 423 MachineBasicBlock::iterator MI) const { 424 // This function is used for scheduling, and the nop wanted here is the type 425 // that terminates dispatch groups on the POWER cores. 426 unsigned Directive = Subtarget.getDarwinDirective(); 427 unsigned Opcode; 428 switch (Directive) { 429 default: Opcode = PPC::NOP; break; 430 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 431 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 432 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 433 // FIXME: Update when POWER9 scheduling model is ready. 434 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 435 } 436 437 DebugLoc DL; 438 BuildMI(MBB, MI, DL, get(Opcode)); 439 } 440 441 /// getNoopForMachoTarget - Return the noop instruction to use for a noop. 442 void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { 443 NopInst.setOpcode(PPC::NOP); 444 } 445 446 // Branch analysis. 447 // Note: If the condition register is set to CTR or CTR8 then this is a 448 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 449 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 450 MachineBasicBlock *&TBB, 451 MachineBasicBlock *&FBB, 452 SmallVectorImpl<MachineOperand> &Cond, 453 bool AllowModify) const { 454 bool isPPC64 = Subtarget.isPPC64(); 455 456 // If the block has no terminators, it just falls into the block after it. 457 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 458 if (I == MBB.end()) 459 return false; 460 461 if (!isUnpredicatedTerminator(*I)) 462 return false; 463 464 // Get the last instruction in the block. 465 MachineInstr &LastInst = *I; 466 467 // If there is only one terminator instruction, process it. 468 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 469 if (LastInst.getOpcode() == PPC::B) { 470 if (!LastInst.getOperand(0).isMBB()) 471 return true; 472 TBB = LastInst.getOperand(0).getMBB(); 473 return false; 474 } else if (LastInst.getOpcode() == PPC::BCC) { 475 if (!LastInst.getOperand(2).isMBB()) 476 return true; 477 // Block ends with fall-through condbranch. 478 TBB = LastInst.getOperand(2).getMBB(); 479 Cond.push_back(LastInst.getOperand(0)); 480 Cond.push_back(LastInst.getOperand(1)); 481 return false; 482 } else if (LastInst.getOpcode() == PPC::BC) { 483 if (!LastInst.getOperand(1).isMBB()) 484 return true; 485 // Block ends with fall-through condbranch. 486 TBB = LastInst.getOperand(1).getMBB(); 487 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 488 Cond.push_back(LastInst.getOperand(0)); 489 return false; 490 } else if (LastInst.getOpcode() == PPC::BCn) { 491 if (!LastInst.getOperand(1).isMBB()) 492 return true; 493 // Block ends with fall-through condbranch. 494 TBB = LastInst.getOperand(1).getMBB(); 495 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 496 Cond.push_back(LastInst.getOperand(0)); 497 return false; 498 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 499 LastInst.getOpcode() == PPC::BDNZ) { 500 if (!LastInst.getOperand(0).isMBB()) 501 return true; 502 if (DisableCTRLoopAnal) 503 return true; 504 TBB = LastInst.getOperand(0).getMBB(); 505 Cond.push_back(MachineOperand::CreateImm(1)); 506 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 507 true)); 508 return false; 509 } else if (LastInst.getOpcode() == PPC::BDZ8 || 510 LastInst.getOpcode() == PPC::BDZ) { 511 if (!LastInst.getOperand(0).isMBB()) 512 return true; 513 if (DisableCTRLoopAnal) 514 return true; 515 TBB = LastInst.getOperand(0).getMBB(); 516 Cond.push_back(MachineOperand::CreateImm(0)); 517 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 518 true)); 519 return false; 520 } 521 522 // Otherwise, don't know what this is. 523 return true; 524 } 525 526 // Get the instruction before it if it's a terminator. 527 MachineInstr &SecondLastInst = *I; 528 529 // If there are three terminators, we don't know what sort of block this is. 530 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 531 return true; 532 533 // If the block ends with PPC::B and PPC:BCC, handle it. 534 if (SecondLastInst.getOpcode() == PPC::BCC && 535 LastInst.getOpcode() == PPC::B) { 536 if (!SecondLastInst.getOperand(2).isMBB() || 537 !LastInst.getOperand(0).isMBB()) 538 return true; 539 TBB = SecondLastInst.getOperand(2).getMBB(); 540 Cond.push_back(SecondLastInst.getOperand(0)); 541 Cond.push_back(SecondLastInst.getOperand(1)); 542 FBB = LastInst.getOperand(0).getMBB(); 543 return false; 544 } else if (SecondLastInst.getOpcode() == PPC::BC && 545 LastInst.getOpcode() == PPC::B) { 546 if (!SecondLastInst.getOperand(1).isMBB() || 547 !LastInst.getOperand(0).isMBB()) 548 return true; 549 TBB = SecondLastInst.getOperand(1).getMBB(); 550 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 551 Cond.push_back(SecondLastInst.getOperand(0)); 552 FBB = LastInst.getOperand(0).getMBB(); 553 return false; 554 } else if (SecondLastInst.getOpcode() == PPC::BCn && 555 LastInst.getOpcode() == PPC::B) { 556 if (!SecondLastInst.getOperand(1).isMBB() || 557 !LastInst.getOperand(0).isMBB()) 558 return true; 559 TBB = SecondLastInst.getOperand(1).getMBB(); 560 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 561 Cond.push_back(SecondLastInst.getOperand(0)); 562 FBB = LastInst.getOperand(0).getMBB(); 563 return false; 564 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 565 SecondLastInst.getOpcode() == PPC::BDNZ) && 566 LastInst.getOpcode() == PPC::B) { 567 if (!SecondLastInst.getOperand(0).isMBB() || 568 !LastInst.getOperand(0).isMBB()) 569 return true; 570 if (DisableCTRLoopAnal) 571 return true; 572 TBB = SecondLastInst.getOperand(0).getMBB(); 573 Cond.push_back(MachineOperand::CreateImm(1)); 574 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 575 true)); 576 FBB = LastInst.getOperand(0).getMBB(); 577 return false; 578 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 579 SecondLastInst.getOpcode() == PPC::BDZ) && 580 LastInst.getOpcode() == PPC::B) { 581 if (!SecondLastInst.getOperand(0).isMBB() || 582 !LastInst.getOperand(0).isMBB()) 583 return true; 584 if (DisableCTRLoopAnal) 585 return true; 586 TBB = SecondLastInst.getOperand(0).getMBB(); 587 Cond.push_back(MachineOperand::CreateImm(0)); 588 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 589 true)); 590 FBB = LastInst.getOperand(0).getMBB(); 591 return false; 592 } 593 594 // If the block ends with two PPC:Bs, handle it. The second one is not 595 // executed, so remove it. 596 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 597 if (!SecondLastInst.getOperand(0).isMBB()) 598 return true; 599 TBB = SecondLastInst.getOperand(0).getMBB(); 600 I = LastInst; 601 if (AllowModify) 602 I->eraseFromParent(); 603 return false; 604 } 605 606 // Otherwise, can't handle this. 607 return true; 608 } 609 610 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 611 int *BytesRemoved) const { 612 assert(!BytesRemoved && "code size not handled"); 613 614 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 615 if (I == MBB.end()) 616 return 0; 617 618 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 619 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 620 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 621 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 622 return 0; 623 624 // Remove the branch. 625 I->eraseFromParent(); 626 627 I = MBB.end(); 628 629 if (I == MBB.begin()) return 1; 630 --I; 631 if (I->getOpcode() != PPC::BCC && 632 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 633 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 634 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 635 return 1; 636 637 // Remove the branch. 638 I->eraseFromParent(); 639 return 2; 640 } 641 642 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 643 MachineBasicBlock *TBB, 644 MachineBasicBlock *FBB, 645 ArrayRef<MachineOperand> Cond, 646 const DebugLoc &DL, 647 int *BytesAdded) const { 648 // Shouldn't be a fall through. 649 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 650 assert((Cond.size() == 2 || Cond.size() == 0) && 651 "PPC branch conditions have two components!"); 652 assert(!BytesAdded && "code size not handled"); 653 654 bool isPPC64 = Subtarget.isPPC64(); 655 656 // One-way branch. 657 if (!FBB) { 658 if (Cond.empty()) // Unconditional branch 659 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 660 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 661 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 662 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 663 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 664 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 665 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 666 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 667 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 668 else // Conditional branch 669 BuildMI(&MBB, DL, get(PPC::BCC)) 670 .addImm(Cond[0].getImm()) 671 .add(Cond[1]) 672 .addMBB(TBB); 673 return 1; 674 } 675 676 // Two-way Conditional Branch. 677 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 678 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 679 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 680 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 681 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 682 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 683 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 684 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 685 else 686 BuildMI(&MBB, DL, get(PPC::BCC)) 687 .addImm(Cond[0].getImm()) 688 .add(Cond[1]) 689 .addMBB(TBB); 690 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 691 return 2; 692 } 693 694 // Select analysis. 695 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 696 ArrayRef<MachineOperand> Cond, 697 unsigned TrueReg, unsigned FalseReg, 698 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 699 if (Cond.size() != 2) 700 return false; 701 702 // If this is really a bdnz-like condition, then it cannot be turned into a 703 // select. 704 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 705 return false; 706 707 // Check register classes. 708 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 709 const TargetRegisterClass *RC = 710 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 711 if (!RC) 712 return false; 713 714 // isel is for regular integer GPRs only. 715 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 716 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 717 !PPC::G8RCRegClass.hasSubClassEq(RC) && 718 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 719 return false; 720 721 // FIXME: These numbers are for the A2, how well they work for other cores is 722 // an open question. On the A2, the isel instruction has a 2-cycle latency 723 // but single-cycle throughput. These numbers are used in combination with 724 // the MispredictPenalty setting from the active SchedMachineModel. 725 CondCycles = 1; 726 TrueCycles = 1; 727 FalseCycles = 1; 728 729 return true; 730 } 731 732 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 733 MachineBasicBlock::iterator MI, 734 const DebugLoc &dl, unsigned DestReg, 735 ArrayRef<MachineOperand> Cond, unsigned TrueReg, 736 unsigned FalseReg) const { 737 assert(Cond.size() == 2 && 738 "PPC branch conditions have two components!"); 739 740 // Get the register classes. 741 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 742 const TargetRegisterClass *RC = 743 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 744 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 745 746 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 747 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 748 assert((Is64Bit || 749 PPC::GPRCRegClass.hasSubClassEq(RC) || 750 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 751 "isel is for regular integer GPRs only"); 752 753 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 754 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 755 756 unsigned SubIdx = 0; 757 bool SwapOps = false; 758 switch (SelectPred) { 759 case PPC::PRED_EQ: 760 case PPC::PRED_EQ_MINUS: 761 case PPC::PRED_EQ_PLUS: 762 SubIdx = PPC::sub_eq; SwapOps = false; break; 763 case PPC::PRED_NE: 764 case PPC::PRED_NE_MINUS: 765 case PPC::PRED_NE_PLUS: 766 SubIdx = PPC::sub_eq; SwapOps = true; break; 767 case PPC::PRED_LT: 768 case PPC::PRED_LT_MINUS: 769 case PPC::PRED_LT_PLUS: 770 SubIdx = PPC::sub_lt; SwapOps = false; break; 771 case PPC::PRED_GE: 772 case PPC::PRED_GE_MINUS: 773 case PPC::PRED_GE_PLUS: 774 SubIdx = PPC::sub_lt; SwapOps = true; break; 775 case PPC::PRED_GT: 776 case PPC::PRED_GT_MINUS: 777 case PPC::PRED_GT_PLUS: 778 SubIdx = PPC::sub_gt; SwapOps = false; break; 779 case PPC::PRED_LE: 780 case PPC::PRED_LE_MINUS: 781 case PPC::PRED_LE_PLUS: 782 SubIdx = PPC::sub_gt; SwapOps = true; break; 783 case PPC::PRED_UN: 784 case PPC::PRED_UN_MINUS: 785 case PPC::PRED_UN_PLUS: 786 SubIdx = PPC::sub_un; SwapOps = false; break; 787 case PPC::PRED_NU: 788 case PPC::PRED_NU_MINUS: 789 case PPC::PRED_NU_PLUS: 790 SubIdx = PPC::sub_un; SwapOps = true; break; 791 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 792 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 793 } 794 795 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 796 SecondReg = SwapOps ? TrueReg : FalseReg; 797 798 // The first input register of isel cannot be r0. If it is a member 799 // of a register class that can be r0, then copy it first (the 800 // register allocator should eliminate the copy). 801 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 802 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 803 const TargetRegisterClass *FirstRC = 804 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 805 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 806 unsigned OldFirstReg = FirstReg; 807 FirstReg = MRI.createVirtualRegister(FirstRC); 808 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 809 .addReg(OldFirstReg); 810 } 811 812 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 813 .addReg(FirstReg).addReg(SecondReg) 814 .addReg(Cond[1].getReg(), 0, SubIdx); 815 } 816 817 static unsigned getCRBitValue(unsigned CRBit) { 818 unsigned Ret = 4; 819 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 820 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 821 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 822 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 823 Ret = 3; 824 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 825 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 826 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 827 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 828 Ret = 2; 829 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 830 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 831 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 832 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 833 Ret = 1; 834 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 835 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 836 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 837 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 838 Ret = 0; 839 840 assert(Ret != 4 && "Invalid CR bit register"); 841 return Ret; 842 } 843 844 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 845 MachineBasicBlock::iterator I, 846 const DebugLoc &DL, unsigned DestReg, 847 unsigned SrcReg, bool KillSrc) const { 848 // We can end up with self copies and similar things as a result of VSX copy 849 // legalization. Promote them here. 850 const TargetRegisterInfo *TRI = &getRegisterInfo(); 851 if (PPC::F8RCRegClass.contains(DestReg) && 852 PPC::VSRCRegClass.contains(SrcReg)) { 853 unsigned SuperReg = 854 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 855 856 if (VSXSelfCopyCrash && SrcReg == SuperReg) 857 llvm_unreachable("nop VSX copy"); 858 859 DestReg = SuperReg; 860 } else if (PPC::F8RCRegClass.contains(SrcReg) && 861 PPC::VSRCRegClass.contains(DestReg)) { 862 unsigned SuperReg = 863 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 864 865 if (VSXSelfCopyCrash && DestReg == SuperReg) 866 llvm_unreachable("nop VSX copy"); 867 868 SrcReg = SuperReg; 869 } 870 871 // Different class register copy 872 if (PPC::CRBITRCRegClass.contains(SrcReg) && 873 PPC::GPRCRegClass.contains(DestReg)) { 874 unsigned CRReg = getCRFromCRBit(SrcReg); 875 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 876 getKillRegState(KillSrc); 877 // Rotate the CR bit in the CR fields to be the least significant bit and 878 // then mask with 0x1 (MB = ME = 31). 879 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 880 .addReg(DestReg, RegState::Kill) 881 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 882 .addImm(31) 883 .addImm(31); 884 return; 885 } else if (PPC::CRRCRegClass.contains(SrcReg) && 886 PPC::G8RCRegClass.contains(DestReg)) { 887 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 888 getKillRegState(KillSrc); 889 return; 890 } else if (PPC::CRRCRegClass.contains(SrcReg) && 891 PPC::GPRCRegClass.contains(DestReg)) { 892 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 893 getKillRegState(KillSrc); 894 return; 895 } 896 897 unsigned Opc; 898 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 899 Opc = PPC::OR; 900 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 901 Opc = PPC::OR8; 902 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 903 Opc = PPC::FMR; 904 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 905 Opc = PPC::MCRF; 906 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 907 Opc = PPC::VOR; 908 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 909 // There are two different ways this can be done: 910 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 911 // issue in VSU pipeline 0. 912 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 913 // can go to either pipeline. 914 // We'll always use xxlor here, because in practically all cases where 915 // copies are generated, they are close enough to some use that the 916 // lower-latency form is preferable. 917 Opc = PPC::XXLOR; 918 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 919 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 920 Opc = PPC::XXLORf; 921 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 922 Opc = PPC::QVFMR; 923 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 924 Opc = PPC::QVFMRs; 925 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 926 Opc = PPC::QVFMRb; 927 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 928 Opc = PPC::CROR; 929 else 930 llvm_unreachable("Impossible reg-to-reg copy"); 931 932 const MCInstrDesc &MCID = get(Opc); 933 if (MCID.getNumOperands() == 3) 934 BuildMI(MBB, I, DL, MCID, DestReg) 935 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 936 else 937 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 938 } 939 940 // This function returns true if a CR spill is necessary and false otherwise. 941 bool 942 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, 943 unsigned SrcReg, bool isKill, 944 int FrameIdx, 945 const TargetRegisterClass *RC, 946 SmallVectorImpl<MachineInstr*> &NewMIs, 947 bool &NonRI, bool &SpillsVRS) const{ 948 // Note: If additional store instructions are added here, 949 // update isStoreToStackSlot. 950 951 DebugLoc DL; 952 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 953 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 954 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) 955 .addReg(SrcReg, 956 getKillRegState(isKill)), 957 FrameIdx)); 958 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 959 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 960 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) 961 .addReg(SrcReg, 962 getKillRegState(isKill)), 963 FrameIdx)); 964 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 965 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) 966 .addReg(SrcReg, 967 getKillRegState(isKill)), 968 FrameIdx)); 969 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 970 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) 971 .addReg(SrcReg, 972 getKillRegState(isKill)), 973 FrameIdx)); 974 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 975 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) 976 .addReg(SrcReg, 977 getKillRegState(isKill)), 978 FrameIdx)); 979 return true; 980 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 981 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT)) 982 .addReg(SrcReg, 983 getKillRegState(isKill)), 984 FrameIdx)); 985 return true; 986 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 987 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX)) 988 .addReg(SrcReg, 989 getKillRegState(isKill)), 990 FrameIdx)); 991 NonRI = true; 992 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 993 unsigned Op = Subtarget.hasP9Vector() ? PPC::STXVX : PPC::STXVD2X; 994 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Op)) 995 .addReg(SrcReg, 996 getKillRegState(isKill)), 997 FrameIdx)); 998 NonRI = true; 999 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1000 unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFSTOREf64 : PPC::STXSDX; 1001 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc)) 1002 .addReg(SrcReg, 1003 getKillRegState(isKill)), 1004 FrameIdx)); 1005 NonRI = true; 1006 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1007 unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFSTOREf32 : PPC::STXSSPX; 1008 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc)) 1009 .addReg(SrcReg, 1010 getKillRegState(isKill)), 1011 FrameIdx)); 1012 NonRI = true; 1013 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1014 assert(Subtarget.isDarwin() && 1015 "VRSAVE only needs spill/restore on Darwin"); 1016 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE)) 1017 .addReg(SrcReg, 1018 getKillRegState(isKill)), 1019 FrameIdx)); 1020 SpillsVRS = true; 1021 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1022 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX)) 1023 .addReg(SrcReg, 1024 getKillRegState(isKill)), 1025 FrameIdx)); 1026 NonRI = true; 1027 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1028 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs)) 1029 .addReg(SrcReg, 1030 getKillRegState(isKill)), 1031 FrameIdx)); 1032 NonRI = true; 1033 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1034 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb)) 1035 .addReg(SrcReg, 1036 getKillRegState(isKill)), 1037 FrameIdx)); 1038 NonRI = true; 1039 } else { 1040 llvm_unreachable("Unknown regclass!"); 1041 } 1042 1043 return false; 1044 } 1045 1046 void 1047 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1048 MachineBasicBlock::iterator MI, 1049 unsigned SrcReg, bool isKill, int FrameIdx, 1050 const TargetRegisterClass *RC, 1051 const TargetRegisterInfo *TRI) const { 1052 MachineFunction &MF = *MBB.getParent(); 1053 SmallVector<MachineInstr*, 4> NewMIs; 1054 1055 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1056 FuncInfo->setHasSpills(); 1057 1058 // We need to avoid a situation in which the value from a VRRC register is 1059 // spilled using an Altivec instruction and reloaded into a VSRC register 1060 // using a VSX instruction. The issue with this is that the VSX 1061 // load/store instructions swap the doublewords in the vector and the Altivec 1062 // ones don't. The register classes on the spill/reload may be different if 1063 // the register is defined using an Altivec instruction and is then used by a 1064 // VSX instruction. 1065 RC = updatedRC(RC); 1066 1067 bool NonRI = false, SpillsVRS = false; 1068 if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs, 1069 NonRI, SpillsVRS)) 1070 FuncInfo->setSpillsCR(); 1071 1072 if (SpillsVRS) 1073 FuncInfo->setSpillsVRSAVE(); 1074 1075 if (NonRI) 1076 FuncInfo->setHasNonRISpills(); 1077 1078 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1079 MBB.insert(MI, NewMIs[i]); 1080 1081 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1082 MachineMemOperand *MMO = MF.getMachineMemOperand( 1083 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1084 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1085 MFI.getObjectAlignment(FrameIdx)); 1086 NewMIs.back()->addMemOperand(MF, MMO); 1087 } 1088 1089 bool PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1090 unsigned DestReg, int FrameIdx, 1091 const TargetRegisterClass *RC, 1092 SmallVectorImpl<MachineInstr *> &NewMIs, 1093 bool &NonRI, bool &SpillsVRS) const { 1094 // Note: If additional load instructions are added here, 1095 // update isLoadFromStackSlot. 1096 1097 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1098 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1099 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), 1100 DestReg), FrameIdx)); 1101 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1102 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1103 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), 1104 FrameIdx)); 1105 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1106 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), 1107 FrameIdx)); 1108 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1109 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), 1110 FrameIdx)); 1111 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1112 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1113 get(PPC::RESTORE_CR), DestReg), 1114 FrameIdx)); 1115 return true; 1116 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1117 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1118 get(PPC::RESTORE_CRBIT), DestReg), 1119 FrameIdx)); 1120 return true; 1121 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1122 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg), 1123 FrameIdx)); 1124 NonRI = true; 1125 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1126 unsigned Op = Subtarget.hasP9Vector() ? PPC::LXVX : PPC::LXVD2X; 1127 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Op), DestReg), 1128 FrameIdx)); 1129 NonRI = true; 1130 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1131 unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFLOADf64 : PPC::LXSDX; 1132 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc), 1133 DestReg), FrameIdx)); 1134 NonRI = true; 1135 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1136 unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFLOADf32 : PPC::LXSSPX; 1137 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc), 1138 DestReg), FrameIdx)); 1139 NonRI = true; 1140 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1141 assert(Subtarget.isDarwin() && 1142 "VRSAVE only needs spill/restore on Darwin"); 1143 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1144 get(PPC::RESTORE_VRSAVE), 1145 DestReg), 1146 FrameIdx)); 1147 SpillsVRS = true; 1148 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1149 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg), 1150 FrameIdx)); 1151 NonRI = true; 1152 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1153 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg), 1154 FrameIdx)); 1155 NonRI = true; 1156 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1157 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg), 1158 FrameIdx)); 1159 NonRI = true; 1160 } else { 1161 llvm_unreachable("Unknown regclass!"); 1162 } 1163 1164 return false; 1165 } 1166 1167 void 1168 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1169 MachineBasicBlock::iterator MI, 1170 unsigned DestReg, int FrameIdx, 1171 const TargetRegisterClass *RC, 1172 const TargetRegisterInfo *TRI) const { 1173 MachineFunction &MF = *MBB.getParent(); 1174 SmallVector<MachineInstr*, 4> NewMIs; 1175 DebugLoc DL; 1176 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1177 1178 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1179 FuncInfo->setHasSpills(); 1180 1181 // We need to avoid a situation in which the value from a VRRC register is 1182 // spilled using an Altivec instruction and reloaded into a VSRC register 1183 // using a VSX instruction. The issue with this is that the VSX 1184 // load/store instructions swap the doublewords in the vector and the Altivec 1185 // ones don't. The register classes on the spill/reload may be different if 1186 // the register is defined using an Altivec instruction and is then used by a 1187 // VSX instruction. 1188 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 1189 RC = &PPC::VSRCRegClass; 1190 1191 bool NonRI = false, SpillsVRS = false; 1192 if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs, 1193 NonRI, SpillsVRS)) 1194 FuncInfo->setSpillsCR(); 1195 1196 if (SpillsVRS) 1197 FuncInfo->setSpillsVRSAVE(); 1198 1199 if (NonRI) 1200 FuncInfo->setHasNonRISpills(); 1201 1202 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1203 MBB.insert(MI, NewMIs[i]); 1204 1205 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1206 MachineMemOperand *MMO = MF.getMachineMemOperand( 1207 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1208 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1209 MFI.getObjectAlignment(FrameIdx)); 1210 NewMIs.back()->addMemOperand(MF, MMO); 1211 } 1212 1213 bool PPCInstrInfo:: 1214 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1215 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1216 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1217 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1218 else 1219 // Leave the CR# the same, but invert the condition. 1220 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1221 return false; 1222 } 1223 1224 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1225 unsigned Reg, MachineRegisterInfo *MRI) const { 1226 // For some instructions, it is legal to fold ZERO into the RA register field. 1227 // A zero immediate should always be loaded with a single li. 1228 unsigned DefOpc = DefMI.getOpcode(); 1229 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1230 return false; 1231 if (!DefMI.getOperand(1).isImm()) 1232 return false; 1233 if (DefMI.getOperand(1).getImm() != 0) 1234 return false; 1235 1236 // Note that we cannot here invert the arguments of an isel in order to fold 1237 // a ZERO into what is presented as the second argument. All we have here 1238 // is the condition bit, and that might come from a CR-logical bit operation. 1239 1240 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1241 1242 // Only fold into real machine instructions. 1243 if (UseMCID.isPseudo()) 1244 return false; 1245 1246 unsigned UseIdx; 1247 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1248 if (UseMI.getOperand(UseIdx).isReg() && 1249 UseMI.getOperand(UseIdx).getReg() == Reg) 1250 break; 1251 1252 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1253 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1254 1255 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1256 1257 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1258 // register (which might also be specified as a pointer class kind). 1259 if (UseInfo->isLookupPtrRegClass()) { 1260 if (UseInfo->RegClass /* Kind */ != 1) 1261 return false; 1262 } else { 1263 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1264 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1265 return false; 1266 } 1267 1268 // Make sure this is not tied to an output register (or otherwise 1269 // constrained). This is true for ST?UX registers, for example, which 1270 // are tied to their output registers. 1271 if (UseInfo->Constraints != 0) 1272 return false; 1273 1274 unsigned ZeroReg; 1275 if (UseInfo->isLookupPtrRegClass()) { 1276 bool isPPC64 = Subtarget.isPPC64(); 1277 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1278 } else { 1279 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1280 PPC::ZERO8 : PPC::ZERO; 1281 } 1282 1283 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1284 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1285 1286 if (DeleteDef) 1287 DefMI.eraseFromParent(); 1288 1289 return true; 1290 } 1291 1292 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1293 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1294 I != IE; ++I) 1295 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1296 return true; 1297 return false; 1298 } 1299 1300 // We should make sure that, if we're going to predicate both sides of a 1301 // condition (a diamond), that both sides don't define the counter register. We 1302 // can predicate counter-decrement-based branches, but while that predicates 1303 // the branching, it does not predicate the counter decrement. If we tried to 1304 // merge the triangle into one predicated block, we'd decrement the counter 1305 // twice. 1306 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1307 unsigned NumT, unsigned ExtraT, 1308 MachineBasicBlock &FMBB, 1309 unsigned NumF, unsigned ExtraF, 1310 BranchProbability Probability) const { 1311 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1312 } 1313 1314 1315 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1316 // The predicated branches are identified by their type, not really by the 1317 // explicit presence of a predicate. Furthermore, some of them can be 1318 // predicated more than once. Because if conversion won't try to predicate 1319 // any instruction which already claims to be predicated (by returning true 1320 // here), always return false. In doing so, we let isPredicable() be the 1321 // final word on whether not the instruction can be (further) predicated. 1322 1323 return false; 1324 } 1325 1326 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 1327 if (!MI.isTerminator()) 1328 return false; 1329 1330 // Conditional branch is a special case. 1331 if (MI.isBranch() && !MI.isBarrier()) 1332 return true; 1333 1334 return !isPredicated(MI); 1335 } 1336 1337 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1338 ArrayRef<MachineOperand> Pred) const { 1339 unsigned OpC = MI.getOpcode(); 1340 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1341 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1342 bool isPPC64 = Subtarget.isPPC64(); 1343 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1344 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1345 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1346 MI.setDesc(get(PPC::BCLR)); 1347 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1348 .addReg(Pred[1].getReg()); 1349 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1350 MI.setDesc(get(PPC::BCLRn)); 1351 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1352 .addReg(Pred[1].getReg()); 1353 } else { 1354 MI.setDesc(get(PPC::BCCLR)); 1355 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1356 .addImm(Pred[0].getImm()) 1357 .addReg(Pred[1].getReg()); 1358 } 1359 1360 return true; 1361 } else if (OpC == PPC::B) { 1362 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1363 bool isPPC64 = Subtarget.isPPC64(); 1364 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1365 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1366 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1367 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1368 MI.RemoveOperand(0); 1369 1370 MI.setDesc(get(PPC::BC)); 1371 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1372 .addReg(Pred[1].getReg()) 1373 .addMBB(MBB); 1374 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1375 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1376 MI.RemoveOperand(0); 1377 1378 MI.setDesc(get(PPC::BCn)); 1379 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1380 .addReg(Pred[1].getReg()) 1381 .addMBB(MBB); 1382 } else { 1383 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1384 MI.RemoveOperand(0); 1385 1386 MI.setDesc(get(PPC::BCC)); 1387 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1388 .addImm(Pred[0].getImm()) 1389 .addReg(Pred[1].getReg()) 1390 .addMBB(MBB); 1391 } 1392 1393 return true; 1394 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || 1395 OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { 1396 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1397 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1398 1399 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1400 bool isPPC64 = Subtarget.isPPC64(); 1401 1402 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1403 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1404 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1405 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1406 .addReg(Pred[1].getReg()); 1407 return true; 1408 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1409 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1410 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1411 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1412 .addReg(Pred[1].getReg()); 1413 return true; 1414 } 1415 1416 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1417 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1418 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1419 .addImm(Pred[0].getImm()) 1420 .addReg(Pred[1].getReg()); 1421 return true; 1422 } 1423 1424 return false; 1425 } 1426 1427 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1428 ArrayRef<MachineOperand> Pred2) const { 1429 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1430 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1431 1432 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1433 return false; 1434 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1435 return false; 1436 1437 // P1 can only subsume P2 if they test the same condition register. 1438 if (Pred1[1].getReg() != Pred2[1].getReg()) 1439 return false; 1440 1441 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1442 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1443 1444 if (P1 == P2) 1445 return true; 1446 1447 // Does P1 subsume P2, e.g. GE subsumes GT. 1448 if (P1 == PPC::PRED_LE && 1449 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1450 return true; 1451 if (P1 == PPC::PRED_GE && 1452 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1453 return true; 1454 1455 return false; 1456 } 1457 1458 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1459 std::vector<MachineOperand> &Pred) const { 1460 // Note: At the present time, the contents of Pred from this function is 1461 // unused by IfConversion. This implementation follows ARM by pushing the 1462 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1463 // predicate, instructions defining CTR or CTR8 are also included as 1464 // predicate-defining instructions. 1465 1466 const TargetRegisterClass *RCs[] = 1467 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1468 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1469 1470 bool Found = false; 1471 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1472 const MachineOperand &MO = MI.getOperand(i); 1473 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1474 const TargetRegisterClass *RC = RCs[c]; 1475 if (MO.isReg()) { 1476 if (MO.isDef() && RC->contains(MO.getReg())) { 1477 Pred.push_back(MO); 1478 Found = true; 1479 } 1480 } else if (MO.isRegMask()) { 1481 for (TargetRegisterClass::iterator I = RC->begin(), 1482 IE = RC->end(); I != IE; ++I) 1483 if (MO.clobbersPhysReg(*I)) { 1484 Pred.push_back(MO); 1485 Found = true; 1486 } 1487 } 1488 } 1489 } 1490 1491 return Found; 1492 } 1493 1494 bool PPCInstrInfo::isPredicable(MachineInstr &MI) const { 1495 unsigned OpC = MI.getOpcode(); 1496 switch (OpC) { 1497 default: 1498 return false; 1499 case PPC::B: 1500 case PPC::BLR: 1501 case PPC::BLR8: 1502 case PPC::BCTR: 1503 case PPC::BCTR8: 1504 case PPC::BCTRL: 1505 case PPC::BCTRL8: 1506 return true; 1507 } 1508 } 1509 1510 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 1511 unsigned &SrcReg2, int &Mask, 1512 int &Value) const { 1513 unsigned Opc = MI.getOpcode(); 1514 1515 switch (Opc) { 1516 default: return false; 1517 case PPC::CMPWI: 1518 case PPC::CMPLWI: 1519 case PPC::CMPDI: 1520 case PPC::CMPLDI: 1521 SrcReg = MI.getOperand(1).getReg(); 1522 SrcReg2 = 0; 1523 Value = MI.getOperand(2).getImm(); 1524 Mask = 0xFFFF; 1525 return true; 1526 case PPC::CMPW: 1527 case PPC::CMPLW: 1528 case PPC::CMPD: 1529 case PPC::CMPLD: 1530 case PPC::FCMPUS: 1531 case PPC::FCMPUD: 1532 SrcReg = MI.getOperand(1).getReg(); 1533 SrcReg2 = MI.getOperand(2).getReg(); 1534 return true; 1535 } 1536 } 1537 1538 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, 1539 unsigned SrcReg2, int Mask, int Value, 1540 const MachineRegisterInfo *MRI) const { 1541 if (DisableCmpOpt) 1542 return false; 1543 1544 int OpC = CmpInstr.getOpcode(); 1545 unsigned CRReg = CmpInstr.getOperand(0).getReg(); 1546 1547 // FP record forms set CR1 based on the execption status bits, not a 1548 // comparison with zero. 1549 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1550 return false; 1551 1552 // The record forms set the condition register based on a signed comparison 1553 // with zero (so says the ISA manual). This is not as straightforward as it 1554 // seems, however, because this is always a 64-bit comparison on PPC64, even 1555 // for instructions that are 32-bit in nature (like slw for example). 1556 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1557 // for equality checks (as those don't depend on the sign). On PPC64, 1558 // we are restricted to equality for unsigned 64-bit comparisons and for 1559 // signed 32-bit comparisons the applicability is more restricted. 1560 bool isPPC64 = Subtarget.isPPC64(); 1561 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1562 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1563 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1564 1565 // Get the unique definition of SrcReg. 1566 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1567 if (!MI) return false; 1568 int MIOpC = MI->getOpcode(); 1569 1570 bool equalityOnly = false; 1571 bool noSub = false; 1572 if (isPPC64) { 1573 if (is32BitSignedCompare) { 1574 // We can perform this optimization only if MI is sign-extending. 1575 if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo || 1576 MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo || 1577 MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo || 1578 MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo || 1579 MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) { 1580 noSub = true; 1581 } else 1582 return false; 1583 } else if (is32BitUnsignedCompare) { 1584 // 32-bit rotate and mask instructions are zero extending only if MB <= ME 1585 bool isZeroExtendingRotate = 1586 (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINMo || 1587 MIOpC == PPC::RLWNM || MIOpC == PPC::RLWNMo) 1588 && MI->getOperand(3).getImm() <= MI->getOperand(4).getImm(); 1589 1590 // We can perform this optimization, equality only, if MI is 1591 // zero-extending. 1592 if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo || 1593 MIOpC == PPC::SLW || MIOpC == PPC::SLWo || 1594 MIOpC == PPC::SRW || MIOpC == PPC::SRWo || 1595 isZeroExtendingRotate) { 1596 noSub = true; 1597 equalityOnly = true; 1598 } else 1599 return false; 1600 } else 1601 equalityOnly = is64BitUnsignedCompare; 1602 } else 1603 equalityOnly = is32BitUnsignedCompare; 1604 1605 if (equalityOnly) { 1606 // We need to check the uses of the condition register in order to reject 1607 // non-equality comparisons. 1608 for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg), 1609 IE = MRI->use_instr_end(); I != IE; ++I) { 1610 MachineInstr *UseMI = &*I; 1611 if (UseMI->getOpcode() == PPC::BCC) { 1612 unsigned Pred = UseMI->getOperand(0).getImm(); 1613 if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE) 1614 return false; 1615 } else if (UseMI->getOpcode() == PPC::ISEL || 1616 UseMI->getOpcode() == PPC::ISEL8) { 1617 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1618 if (SubIdx != PPC::sub_eq) 1619 return false; 1620 } else 1621 return false; 1622 } 1623 } 1624 1625 MachineBasicBlock::iterator I = CmpInstr; 1626 1627 // Scan forward to find the first use of the compare. 1628 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1629 ++I) { 1630 bool FoundUse = false; 1631 for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg), 1632 JE = MRI->use_instr_end(); J != JE; ++J) 1633 if (&*J == &*I) { 1634 FoundUse = true; 1635 break; 1636 } 1637 1638 if (FoundUse) 1639 break; 1640 } 1641 1642 // There are two possible candidates which can be changed to set CR[01]. 1643 // One is MI, the other is a SUB instruction. 1644 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1645 MachineInstr *Sub = nullptr; 1646 if (SrcReg2 != 0) 1647 // MI is not a candidate for CMPrr. 1648 MI = nullptr; 1649 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1650 // same BB as the comparison. This is to allow the check below to avoid calls 1651 // (and other explicit clobbers); instead we should really check for these 1652 // more explicitly (in at least a few predecessors). 1653 else if (MI->getParent() != CmpInstr.getParent() || Value != 0) { 1654 // PPC does not have a record-form SUBri. 1655 return false; 1656 } 1657 1658 // Search for Sub. 1659 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1660 --I; 1661 1662 // Get ready to iterate backward from CmpInstr. 1663 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 1664 1665 for (; I != E && !noSub; --I) { 1666 const MachineInstr &Instr = *I; 1667 unsigned IOpC = Instr.getOpcode(); 1668 1669 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 1670 Instr.readsRegister(PPC::CR0, TRI))) 1671 // This instruction modifies or uses the record condition register after 1672 // the one we want to change. While we could do this transformation, it 1673 // would likely not be profitable. This transformation removes one 1674 // instruction, and so even forcing RA to generate one move probably 1675 // makes it unprofitable. 1676 return false; 1677 1678 // Check whether CmpInstr can be made redundant by the current instruction. 1679 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1680 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1681 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1682 ((Instr.getOperand(1).getReg() == SrcReg && 1683 Instr.getOperand(2).getReg() == SrcReg2) || 1684 (Instr.getOperand(1).getReg() == SrcReg2 && 1685 Instr.getOperand(2).getReg() == SrcReg))) { 1686 Sub = &*I; 1687 break; 1688 } 1689 1690 if (I == B) 1691 // The 'and' is below the comparison instruction. 1692 return false; 1693 } 1694 1695 // Return false if no candidates exist. 1696 if (!MI && !Sub) 1697 return false; 1698 1699 // The single candidate is called MI. 1700 if (!MI) MI = Sub; 1701 1702 int NewOpC = -1; 1703 MIOpC = MI->getOpcode(); 1704 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8) 1705 NewOpC = MIOpC; 1706 else { 1707 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1708 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1709 NewOpC = MIOpC; 1710 } 1711 1712 // FIXME: On the non-embedded POWER architectures, only some of the record 1713 // forms are fast, and we should use only the fast ones. 1714 1715 // The defining instruction has a record form (or is already a record 1716 // form). It is possible, however, that we'll need to reverse the condition 1717 // code of the users. 1718 if (NewOpC == -1) 1719 return false; 1720 1721 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1722 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1723 1724 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1725 // needs to be updated to be based on SUB. Push the condition code 1726 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1727 // condition code of these operands will be modified. 1728 bool ShouldSwap = false; 1729 if (Sub) { 1730 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1731 Sub->getOperand(2).getReg() == SrcReg; 1732 1733 // The operands to subf are the opposite of sub, so only in the fixed-point 1734 // case, invert the order. 1735 ShouldSwap = !ShouldSwap; 1736 } 1737 1738 if (ShouldSwap) 1739 for (MachineRegisterInfo::use_instr_iterator 1740 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1741 I != IE; ++I) { 1742 MachineInstr *UseMI = &*I; 1743 if (UseMI->getOpcode() == PPC::BCC) { 1744 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1745 assert((!equalityOnly || 1746 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) && 1747 "Invalid predicate for equality-only optimization"); 1748 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1749 PPC::getSwappedPredicate(Pred))); 1750 } else if (UseMI->getOpcode() == PPC::ISEL || 1751 UseMI->getOpcode() == PPC::ISEL8) { 1752 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1753 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1754 "Invalid CR bit for equality-only optimization"); 1755 1756 if (NewSubReg == PPC::sub_lt) 1757 NewSubReg = PPC::sub_gt; 1758 else if (NewSubReg == PPC::sub_gt) 1759 NewSubReg = PPC::sub_lt; 1760 1761 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1762 NewSubReg)); 1763 } else // We need to abort on a user we don't understand. 1764 return false; 1765 } 1766 1767 // Create a new virtual register to hold the value of the CR set by the 1768 // record-form instruction. If the instruction was not previously in 1769 // record form, then set the kill flag on the CR. 1770 CmpInstr.eraseFromParent(); 1771 1772 MachineBasicBlock::iterator MII = MI; 1773 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1774 get(TargetOpcode::COPY), CRReg) 1775 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1776 1777 // Even if CR0 register were dead before, it is alive now since the 1778 // instruction we just built uses it. 1779 MI->clearRegisterDeads(PPC::CR0); 1780 1781 if (MIOpC != NewOpC) { 1782 // We need to be careful here: we're replacing one instruction with 1783 // another, and we need to make sure that we get all of the right 1784 // implicit uses and defs. On the other hand, the caller may be holding 1785 // an iterator to this instruction, and so we can't delete it (this is 1786 // specifically the case if this is the instruction directly after the 1787 // compare). 1788 1789 const MCInstrDesc &NewDesc = get(NewOpC); 1790 MI->setDesc(NewDesc); 1791 1792 if (NewDesc.ImplicitDefs) 1793 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 1794 *ImpDefs; ++ImpDefs) 1795 if (!MI->definesRegister(*ImpDefs)) 1796 MI->addOperand(*MI->getParent()->getParent(), 1797 MachineOperand::CreateReg(*ImpDefs, true, true)); 1798 if (NewDesc.ImplicitUses) 1799 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 1800 *ImpUses; ++ImpUses) 1801 if (!MI->readsRegister(*ImpUses)) 1802 MI->addOperand(*MI->getParent()->getParent(), 1803 MachineOperand::CreateReg(*ImpUses, false, true)); 1804 } 1805 assert(MI->definesRegister(PPC::CR0) && 1806 "Record-form instruction does not define cr0?"); 1807 1808 // Modify the condition code of operands in OperandsToUpdate. 1809 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1810 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1811 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1812 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1813 1814 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1815 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1816 1817 return true; 1818 } 1819 1820 /// GetInstSize - Return the number of bytes of code the specified 1821 /// instruction may be. This returns the maximum number of bytes. 1822 /// 1823 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 1824 unsigned Opcode = MI.getOpcode(); 1825 1826 if (Opcode == PPC::INLINEASM) { 1827 const MachineFunction *MF = MI.getParent()->getParent(); 1828 const char *AsmStr = MI.getOperand(0).getSymbolName(); 1829 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1830 } else if (Opcode == TargetOpcode::STACKMAP) { 1831 StackMapOpers Opers(&MI); 1832 return Opers.getNumPatchBytes(); 1833 } else if (Opcode == TargetOpcode::PATCHPOINT) { 1834 PatchPointOpers Opers(&MI); 1835 return Opers.getNumPatchBytes(); 1836 } else { 1837 const MCInstrDesc &Desc = get(Opcode); 1838 return Desc.getSize(); 1839 } 1840 } 1841 1842 std::pair<unsigned, unsigned> 1843 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 1844 const unsigned Mask = PPCII::MO_ACCESS_MASK; 1845 return std::make_pair(TF & Mask, TF & ~Mask); 1846 } 1847 1848 ArrayRef<std::pair<unsigned, const char *>> 1849 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 1850 using namespace PPCII; 1851 static const std::pair<unsigned, const char *> TargetFlags[] = { 1852 {MO_LO, "ppc-lo"}, 1853 {MO_HA, "ppc-ha"}, 1854 {MO_TPREL_LO, "ppc-tprel-lo"}, 1855 {MO_TPREL_HA, "ppc-tprel-ha"}, 1856 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 1857 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 1858 {MO_TOC_LO, "ppc-toc-lo"}, 1859 {MO_TLS, "ppc-tls"}}; 1860 return makeArrayRef(TargetFlags); 1861 } 1862 1863 ArrayRef<std::pair<unsigned, const char *>> 1864 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 1865 using namespace PPCII; 1866 static const std::pair<unsigned, const char *> TargetFlags[] = { 1867 {MO_PLT, "ppc-plt"}, 1868 {MO_PIC_FLAG, "ppc-pic"}, 1869 {MO_NLP_FLAG, "ppc-nlp"}, 1870 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}}; 1871 return makeArrayRef(TargetFlags); 1872 } 1873 1874 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1875 switch (MI.getOpcode()) { 1876 case TargetOpcode::LOAD_STACK_GUARD: { 1877 assert(Subtarget.isTargetLinux() && 1878 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 1879 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 1880 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 1881 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 1882 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1883 .addImm(Offset) 1884 .addReg(Reg); 1885 return true; 1886 } 1887 case PPC::DFLOADf32: 1888 case PPC::DFLOADf64: 1889 case PPC::DFSTOREf32: 1890 case PPC::DFSTOREf64: { 1891 assert(Subtarget.hasP9Vector() && 1892 "Invalid D-Form Pseudo-ops on non-P9 target."); 1893 unsigned UpperOpcode, LowerOpcode; 1894 switch (MI.getOpcode()) { 1895 case PPC::DFLOADf32: 1896 UpperOpcode = PPC::LXSSP; 1897 LowerOpcode = PPC::LFS; 1898 break; 1899 case PPC::DFLOADf64: 1900 UpperOpcode = PPC::LXSD; 1901 LowerOpcode = PPC::LFD; 1902 break; 1903 case PPC::DFSTOREf32: 1904 UpperOpcode = PPC::STXSSP; 1905 LowerOpcode = PPC::STFS; 1906 break; 1907 case PPC::DFSTOREf64: 1908 UpperOpcode = PPC::STXSD; 1909 LowerOpcode = PPC::STFD; 1910 break; 1911 } 1912 unsigned TargetReg = MI.getOperand(0).getReg(); 1913 unsigned Opcode; 1914 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 1915 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 1916 Opcode = LowerOpcode; 1917 else 1918 Opcode = UpperOpcode; 1919 MI.setDesc(get(Opcode)); 1920 return true; 1921 } 1922 } 1923 return false; 1924 } 1925 1926 const TargetRegisterClass * 1927 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 1928 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 1929 return &PPC::VSRCRegClass; 1930 return RC; 1931 } 1932