1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the PowerPC implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCInstrInfo.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCHazardRecognizers.h" 18 #include "PPCInstrBuilder.h" 19 #include "PPCMachineFunctionInfo.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/ScheduleDAG.h" 31 #include "llvm/CodeGen/SlotIndexes.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCInst.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "ppc-instr-info" 44 45 #define GET_INSTRMAP_INFO 46 #define GET_INSTRINFO_CTOR_DTOR 47 #include "PPCGenInstrInfo.inc" 48 49 static cl:: 50 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 51 cl::desc("Disable analysis for CTR loops")); 52 53 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 54 cl::desc("Disable compare instruction optimization"), cl::Hidden); 55 56 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 57 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 58 cl::Hidden); 59 60 static cl::opt<bool> 61 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 62 cl::desc("Use the old (incorrect) instruction latency calculation")); 63 64 // Pin the vtable to this file. 65 void PPCInstrInfo::anchor() {} 66 67 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 68 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP), 69 Subtarget(STI), RI(STI.getTargetMachine()) {} 70 71 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 72 /// this target when scheduling the DAG. 73 ScheduleHazardRecognizer * 74 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 75 const ScheduleDAG *DAG) const { 76 unsigned Directive = 77 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); 78 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 79 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 80 const InstrItineraryData *II = 81 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 82 return new ScoreboardHazardRecognizer(II, DAG); 83 } 84 85 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 86 } 87 88 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 89 /// to use for this target when scheduling the DAG. 90 ScheduleHazardRecognizer * 91 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 92 const ScheduleDAG *DAG) const { 93 unsigned Directive = 94 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective(); 95 96 // FIXME: Leaving this as-is until we have POWER9 scheduling info 97 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 98 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 99 100 // Most subtargets use a PPC970 recognizer. 101 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 102 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 103 assert(DAG->TII && "No InstrInfo?"); 104 105 return new PPCHazardRecognizer970(*DAG); 106 } 107 108 return new ScoreboardHazardRecognizer(II, DAG); 109 } 110 111 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 112 const MachineInstr &MI, 113 unsigned *PredCost) const { 114 if (!ItinData || UseOldLatencyCalc) 115 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 116 117 // The default implementation of getInstrLatency calls getStageLatency, but 118 // getStageLatency does not do the right thing for us. While we have 119 // itinerary, most cores are fully pipelined, and so the itineraries only 120 // express the first part of the pipeline, not every stage. Instead, we need 121 // to use the listed output operand cycle number (using operand 0 here, which 122 // is an output). 123 124 unsigned Latency = 1; 125 unsigned DefClass = MI.getDesc().getSchedClass(); 126 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 127 const MachineOperand &MO = MI.getOperand(i); 128 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 129 continue; 130 131 int Cycle = ItinData->getOperandCycle(DefClass, i); 132 if (Cycle < 0) 133 continue; 134 135 Latency = std::max(Latency, (unsigned) Cycle); 136 } 137 138 return Latency; 139 } 140 141 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 142 const MachineInstr &DefMI, unsigned DefIdx, 143 const MachineInstr &UseMI, 144 unsigned UseIdx) const { 145 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 146 UseMI, UseIdx); 147 148 if (!DefMI.getParent()) 149 return Latency; 150 151 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 152 unsigned Reg = DefMO.getReg(); 153 154 bool IsRegCR; 155 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 156 const MachineRegisterInfo *MRI = 157 &DefMI.getParent()->getParent()->getRegInfo(); 158 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 159 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 160 } else { 161 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 162 PPC::CRBITRCRegClass.contains(Reg); 163 } 164 165 if (UseMI.isBranch() && IsRegCR) { 166 if (Latency < 0) 167 Latency = getInstrLatency(ItinData, DefMI); 168 169 // On some cores, there is an additional delay between writing to a condition 170 // register, and using it from a branch. 171 unsigned Directive = Subtarget.getDarwinDirective(); 172 switch (Directive) { 173 default: break; 174 case PPC::DIR_7400: 175 case PPC::DIR_750: 176 case PPC::DIR_970: 177 case PPC::DIR_E5500: 178 case PPC::DIR_PWR4: 179 case PPC::DIR_PWR5: 180 case PPC::DIR_PWR5X: 181 case PPC::DIR_PWR6: 182 case PPC::DIR_PWR6X: 183 case PPC::DIR_PWR7: 184 case PPC::DIR_PWR8: 185 // FIXME: Is this needed for POWER9? 186 Latency += 2; 187 break; 188 } 189 } 190 191 return Latency; 192 } 193 194 // This function does not list all associative and commutative operations, but 195 // only those worth feeding through the machine combiner in an attempt to 196 // reduce the critical path. Mostly, this means floating-point operations, 197 // because they have high latencies (compared to other operations, such and 198 // and/or, which are also associative and commutative, but have low latencies). 199 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 200 switch (Inst.getOpcode()) { 201 // FP Add: 202 case PPC::FADD: 203 case PPC::FADDS: 204 // FP Multiply: 205 case PPC::FMUL: 206 case PPC::FMULS: 207 // Altivec Add: 208 case PPC::VADDFP: 209 // VSX Add: 210 case PPC::XSADDDP: 211 case PPC::XVADDDP: 212 case PPC::XVADDSP: 213 case PPC::XSADDSP: 214 // VSX Multiply: 215 case PPC::XSMULDP: 216 case PPC::XVMULDP: 217 case PPC::XVMULSP: 218 case PPC::XSMULSP: 219 // QPX Add: 220 case PPC::QVFADD: 221 case PPC::QVFADDS: 222 case PPC::QVFADDSs: 223 // QPX Multiply: 224 case PPC::QVFMUL: 225 case PPC::QVFMULS: 226 case PPC::QVFMULSs: 227 return true; 228 default: 229 return false; 230 } 231 } 232 233 bool PPCInstrInfo::getMachineCombinerPatterns( 234 MachineInstr &Root, 235 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 236 // Using the machine combiner in this way is potentially expensive, so 237 // restrict to when aggressive optimizations are desired. 238 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 239 return false; 240 241 // FP reassociation is only legal when we don't need strict IEEE semantics. 242 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) 243 return false; 244 245 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 246 } 247 248 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 249 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 250 unsigned &SrcReg, unsigned &DstReg, 251 unsigned &SubIdx) const { 252 switch (MI.getOpcode()) { 253 default: return false; 254 case PPC::EXTSW: 255 case PPC::EXTSW_32_64: 256 SrcReg = MI.getOperand(1).getReg(); 257 DstReg = MI.getOperand(0).getReg(); 258 SubIdx = PPC::sub_32; 259 return true; 260 } 261 } 262 263 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 264 int &FrameIndex) const { 265 // Note: This list must be kept consistent with LoadRegFromStackSlot. 266 switch (MI.getOpcode()) { 267 default: break; 268 case PPC::LD: 269 case PPC::LWZ: 270 case PPC::LFS: 271 case PPC::LFD: 272 case PPC::RESTORE_CR: 273 case PPC::RESTORE_CRBIT: 274 case PPC::LVX: 275 case PPC::LXVD2X: 276 case PPC::QVLFDX: 277 case PPC::QVLFSXs: 278 case PPC::QVLFDXb: 279 case PPC::RESTORE_VRSAVE: 280 // Check for the operands added by addFrameReference (the immediate is the 281 // offset which defaults to 0). 282 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 283 MI.getOperand(2).isFI()) { 284 FrameIndex = MI.getOperand(2).getIndex(); 285 return MI.getOperand(0).getReg(); 286 } 287 break; 288 } 289 return 0; 290 } 291 292 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 293 int &FrameIndex) const { 294 // Note: This list must be kept consistent with StoreRegToStackSlot. 295 switch (MI.getOpcode()) { 296 default: break; 297 case PPC::STD: 298 case PPC::STW: 299 case PPC::STFS: 300 case PPC::STFD: 301 case PPC::SPILL_CR: 302 case PPC::SPILL_CRBIT: 303 case PPC::STVX: 304 case PPC::STXVD2X: 305 case PPC::QVSTFDX: 306 case PPC::QVSTFSXs: 307 case PPC::QVSTFDXb: 308 case PPC::SPILL_VRSAVE: 309 // Check for the operands added by addFrameReference (the immediate is the 310 // offset which defaults to 0). 311 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 312 MI.getOperand(2).isFI()) { 313 FrameIndex = MI.getOperand(2).getIndex(); 314 return MI.getOperand(0).getReg(); 315 } 316 break; 317 } 318 return 0; 319 } 320 321 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 322 unsigned OpIdx1, 323 unsigned OpIdx2) const { 324 MachineFunction &MF = *MI.getParent()->getParent(); 325 326 // Normal instructions can be commuted the obvious way. 327 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo) 328 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 329 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 330 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 331 // changing the relative order of the mask operands might change what happens 332 // to the high-bits of the mask (and, thus, the result). 333 334 // Cannot commute if it has a non-zero rotate count. 335 if (MI.getOperand(3).getImm() != 0) 336 return nullptr; 337 338 // If we have a zero rotate count, we have: 339 // M = mask(MB,ME) 340 // Op0 = (Op1 & ~M) | (Op2 & M) 341 // Change this to: 342 // M = mask((ME+1)&31, (MB-1)&31) 343 // Op0 = (Op2 & ~M) | (Op1 & M) 344 345 // Swap op1/op2 346 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 347 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo."); 348 unsigned Reg0 = MI.getOperand(0).getReg(); 349 unsigned Reg1 = MI.getOperand(1).getReg(); 350 unsigned Reg2 = MI.getOperand(2).getReg(); 351 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 352 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 353 bool Reg1IsKill = MI.getOperand(1).isKill(); 354 bool Reg2IsKill = MI.getOperand(2).isKill(); 355 bool ChangeReg0 = false; 356 // If machine instrs are no longer in two-address forms, update 357 // destination register as well. 358 if (Reg0 == Reg1) { 359 // Must be two address instruction! 360 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 361 "Expecting a two-address instruction!"); 362 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 363 Reg2IsKill = false; 364 ChangeReg0 = true; 365 } 366 367 // Masks. 368 unsigned MB = MI.getOperand(4).getImm(); 369 unsigned ME = MI.getOperand(5).getImm(); 370 371 // We can't commute a trivial mask (there is no way to represent an all-zero 372 // mask). 373 if (MB == 0 && ME == 31) 374 return nullptr; 375 376 if (NewMI) { 377 // Create a new instruction. 378 unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 379 bool Reg0IsDead = MI.getOperand(0).isDead(); 380 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 381 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 382 .addReg(Reg2, getKillRegState(Reg2IsKill)) 383 .addReg(Reg1, getKillRegState(Reg1IsKill)) 384 .addImm((ME + 1) & 31) 385 .addImm((MB - 1) & 31); 386 } 387 388 if (ChangeReg0) { 389 MI.getOperand(0).setReg(Reg2); 390 MI.getOperand(0).setSubReg(SubReg2); 391 } 392 MI.getOperand(2).setReg(Reg1); 393 MI.getOperand(1).setReg(Reg2); 394 MI.getOperand(2).setSubReg(SubReg1); 395 MI.getOperand(1).setSubReg(SubReg2); 396 MI.getOperand(2).setIsKill(Reg1IsKill); 397 MI.getOperand(1).setIsKill(Reg2IsKill); 398 399 // Swap the mask around. 400 MI.getOperand(4).setImm((ME + 1) & 31); 401 MI.getOperand(5).setImm((MB - 1) & 31); 402 return &MI; 403 } 404 405 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, 406 unsigned &SrcOpIdx2) const { 407 // For VSX A-Type FMA instructions, it is the first two operands that can be 408 // commuted, however, because the non-encoded tied input operand is listed 409 // first, the operands to swap are actually the second and third. 410 411 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 412 if (AltOpc == -1) 413 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 414 415 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 416 // and SrcOpIdx2. 417 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 418 } 419 420 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 421 MachineBasicBlock::iterator MI) const { 422 // This function is used for scheduling, and the nop wanted here is the type 423 // that terminates dispatch groups on the POWER cores. 424 unsigned Directive = Subtarget.getDarwinDirective(); 425 unsigned Opcode; 426 switch (Directive) { 427 default: Opcode = PPC::NOP; break; 428 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 429 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 430 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 431 // FIXME: Update when POWER9 scheduling model is ready. 432 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 433 } 434 435 DebugLoc DL; 436 BuildMI(MBB, MI, DL, get(Opcode)); 437 } 438 439 /// getNoopForMachoTarget - Return the noop instruction to use for a noop. 440 void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { 441 NopInst.setOpcode(PPC::NOP); 442 } 443 444 // Branch analysis. 445 // Note: If the condition register is set to CTR or CTR8 then this is a 446 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 447 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 448 MachineBasicBlock *&TBB, 449 MachineBasicBlock *&FBB, 450 SmallVectorImpl<MachineOperand> &Cond, 451 bool AllowModify) const { 452 bool isPPC64 = Subtarget.isPPC64(); 453 454 // If the block has no terminators, it just falls into the block after it. 455 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 456 if (I == MBB.end()) 457 return false; 458 459 if (!isUnpredicatedTerminator(*I)) 460 return false; 461 462 // Get the last instruction in the block. 463 MachineInstr &LastInst = *I; 464 465 // If there is only one terminator instruction, process it. 466 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 467 if (LastInst.getOpcode() == PPC::B) { 468 if (!LastInst.getOperand(0).isMBB()) 469 return true; 470 TBB = LastInst.getOperand(0).getMBB(); 471 return false; 472 } else if (LastInst.getOpcode() == PPC::BCC) { 473 if (!LastInst.getOperand(2).isMBB()) 474 return true; 475 // Block ends with fall-through condbranch. 476 TBB = LastInst.getOperand(2).getMBB(); 477 Cond.push_back(LastInst.getOperand(0)); 478 Cond.push_back(LastInst.getOperand(1)); 479 return false; 480 } else if (LastInst.getOpcode() == PPC::BC) { 481 if (!LastInst.getOperand(1).isMBB()) 482 return true; 483 // Block ends with fall-through condbranch. 484 TBB = LastInst.getOperand(1).getMBB(); 485 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 486 Cond.push_back(LastInst.getOperand(0)); 487 return false; 488 } else if (LastInst.getOpcode() == PPC::BCn) { 489 if (!LastInst.getOperand(1).isMBB()) 490 return true; 491 // Block ends with fall-through condbranch. 492 TBB = LastInst.getOperand(1).getMBB(); 493 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 494 Cond.push_back(LastInst.getOperand(0)); 495 return false; 496 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 497 LastInst.getOpcode() == PPC::BDNZ) { 498 if (!LastInst.getOperand(0).isMBB()) 499 return true; 500 if (DisableCTRLoopAnal) 501 return true; 502 TBB = LastInst.getOperand(0).getMBB(); 503 Cond.push_back(MachineOperand::CreateImm(1)); 504 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 505 true)); 506 return false; 507 } else if (LastInst.getOpcode() == PPC::BDZ8 || 508 LastInst.getOpcode() == PPC::BDZ) { 509 if (!LastInst.getOperand(0).isMBB()) 510 return true; 511 if (DisableCTRLoopAnal) 512 return true; 513 TBB = LastInst.getOperand(0).getMBB(); 514 Cond.push_back(MachineOperand::CreateImm(0)); 515 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 516 true)); 517 return false; 518 } 519 520 // Otherwise, don't know what this is. 521 return true; 522 } 523 524 // Get the instruction before it if it's a terminator. 525 MachineInstr &SecondLastInst = *I; 526 527 // If there are three terminators, we don't know what sort of block this is. 528 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 529 return true; 530 531 // If the block ends with PPC::B and PPC:BCC, handle it. 532 if (SecondLastInst.getOpcode() == PPC::BCC && 533 LastInst.getOpcode() == PPC::B) { 534 if (!SecondLastInst.getOperand(2).isMBB() || 535 !LastInst.getOperand(0).isMBB()) 536 return true; 537 TBB = SecondLastInst.getOperand(2).getMBB(); 538 Cond.push_back(SecondLastInst.getOperand(0)); 539 Cond.push_back(SecondLastInst.getOperand(1)); 540 FBB = LastInst.getOperand(0).getMBB(); 541 return false; 542 } else if (SecondLastInst.getOpcode() == PPC::BC && 543 LastInst.getOpcode() == PPC::B) { 544 if (!SecondLastInst.getOperand(1).isMBB() || 545 !LastInst.getOperand(0).isMBB()) 546 return true; 547 TBB = SecondLastInst.getOperand(1).getMBB(); 548 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 549 Cond.push_back(SecondLastInst.getOperand(0)); 550 FBB = LastInst.getOperand(0).getMBB(); 551 return false; 552 } else if (SecondLastInst.getOpcode() == PPC::BCn && 553 LastInst.getOpcode() == PPC::B) { 554 if (!SecondLastInst.getOperand(1).isMBB() || 555 !LastInst.getOperand(0).isMBB()) 556 return true; 557 TBB = SecondLastInst.getOperand(1).getMBB(); 558 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 559 Cond.push_back(SecondLastInst.getOperand(0)); 560 FBB = LastInst.getOperand(0).getMBB(); 561 return false; 562 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 563 SecondLastInst.getOpcode() == PPC::BDNZ) && 564 LastInst.getOpcode() == PPC::B) { 565 if (!SecondLastInst.getOperand(0).isMBB() || 566 !LastInst.getOperand(0).isMBB()) 567 return true; 568 if (DisableCTRLoopAnal) 569 return true; 570 TBB = SecondLastInst.getOperand(0).getMBB(); 571 Cond.push_back(MachineOperand::CreateImm(1)); 572 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 573 true)); 574 FBB = LastInst.getOperand(0).getMBB(); 575 return false; 576 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 577 SecondLastInst.getOpcode() == PPC::BDZ) && 578 LastInst.getOpcode() == PPC::B) { 579 if (!SecondLastInst.getOperand(0).isMBB() || 580 !LastInst.getOperand(0).isMBB()) 581 return true; 582 if (DisableCTRLoopAnal) 583 return true; 584 TBB = SecondLastInst.getOperand(0).getMBB(); 585 Cond.push_back(MachineOperand::CreateImm(0)); 586 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 587 true)); 588 FBB = LastInst.getOperand(0).getMBB(); 589 return false; 590 } 591 592 // If the block ends with two PPC:Bs, handle it. The second one is not 593 // executed, so remove it. 594 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 595 if (!SecondLastInst.getOperand(0).isMBB()) 596 return true; 597 TBB = SecondLastInst.getOperand(0).getMBB(); 598 I = LastInst; 599 if (AllowModify) 600 I->eraseFromParent(); 601 return false; 602 } 603 604 // Otherwise, can't handle this. 605 return true; 606 } 607 608 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 609 int *BytesRemoved) const { 610 assert(!BytesRemoved && "code size not handled"); 611 612 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 613 if (I == MBB.end()) 614 return 0; 615 616 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 617 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 618 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 619 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 620 return 0; 621 622 // Remove the branch. 623 I->eraseFromParent(); 624 625 I = MBB.end(); 626 627 if (I == MBB.begin()) return 1; 628 --I; 629 if (I->getOpcode() != PPC::BCC && 630 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 631 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 632 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 633 return 1; 634 635 // Remove the branch. 636 I->eraseFromParent(); 637 return 2; 638 } 639 640 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 641 MachineBasicBlock *TBB, 642 MachineBasicBlock *FBB, 643 ArrayRef<MachineOperand> Cond, 644 const DebugLoc &DL, 645 int *BytesAdded) const { 646 // Shouldn't be a fall through. 647 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 648 assert((Cond.size() == 2 || Cond.size() == 0) && 649 "PPC branch conditions have two components!"); 650 assert(!BytesAdded && "code size not handled"); 651 652 bool isPPC64 = Subtarget.isPPC64(); 653 654 // One-way branch. 655 if (!FBB) { 656 if (Cond.empty()) // Unconditional branch 657 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 658 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 659 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 660 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 661 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 662 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 663 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); 664 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 665 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); 666 else // Conditional branch 667 BuildMI(&MBB, DL, get(PPC::BCC)) 668 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); 669 return 1; 670 } 671 672 // Two-way Conditional Branch. 673 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 674 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 675 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 676 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 677 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 678 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); 679 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 680 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); 681 else 682 BuildMI(&MBB, DL, get(PPC::BCC)) 683 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); 684 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 685 return 2; 686 } 687 688 // Select analysis. 689 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 690 ArrayRef<MachineOperand> Cond, 691 unsigned TrueReg, unsigned FalseReg, 692 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 693 if (!Subtarget.hasISEL()) 694 return false; 695 696 if (Cond.size() != 2) 697 return false; 698 699 // If this is really a bdnz-like condition, then it cannot be turned into a 700 // select. 701 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 702 return false; 703 704 // Check register classes. 705 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 706 const TargetRegisterClass *RC = 707 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 708 if (!RC) 709 return false; 710 711 // isel is for regular integer GPRs only. 712 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 713 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 714 !PPC::G8RCRegClass.hasSubClassEq(RC) && 715 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 716 return false; 717 718 // FIXME: These numbers are for the A2, how well they work for other cores is 719 // an open question. On the A2, the isel instruction has a 2-cycle latency 720 // but single-cycle throughput. These numbers are used in combination with 721 // the MispredictPenalty setting from the active SchedMachineModel. 722 CondCycles = 1; 723 TrueCycles = 1; 724 FalseCycles = 1; 725 726 return true; 727 } 728 729 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 730 MachineBasicBlock::iterator MI, 731 const DebugLoc &dl, unsigned DestReg, 732 ArrayRef<MachineOperand> Cond, unsigned TrueReg, 733 unsigned FalseReg) const { 734 assert(Cond.size() == 2 && 735 "PPC branch conditions have two components!"); 736 737 assert(Subtarget.hasISEL() && 738 "Cannot insert select on target without ISEL support"); 739 740 // Get the register classes. 741 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 742 const TargetRegisterClass *RC = 743 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 744 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 745 746 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 747 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 748 assert((Is64Bit || 749 PPC::GPRCRegClass.hasSubClassEq(RC) || 750 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 751 "isel is for regular integer GPRs only"); 752 753 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 754 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 755 756 unsigned SubIdx = 0; 757 bool SwapOps = false; 758 switch (SelectPred) { 759 case PPC::PRED_EQ: 760 case PPC::PRED_EQ_MINUS: 761 case PPC::PRED_EQ_PLUS: 762 SubIdx = PPC::sub_eq; SwapOps = false; break; 763 case PPC::PRED_NE: 764 case PPC::PRED_NE_MINUS: 765 case PPC::PRED_NE_PLUS: 766 SubIdx = PPC::sub_eq; SwapOps = true; break; 767 case PPC::PRED_LT: 768 case PPC::PRED_LT_MINUS: 769 case PPC::PRED_LT_PLUS: 770 SubIdx = PPC::sub_lt; SwapOps = false; break; 771 case PPC::PRED_GE: 772 case PPC::PRED_GE_MINUS: 773 case PPC::PRED_GE_PLUS: 774 SubIdx = PPC::sub_lt; SwapOps = true; break; 775 case PPC::PRED_GT: 776 case PPC::PRED_GT_MINUS: 777 case PPC::PRED_GT_PLUS: 778 SubIdx = PPC::sub_gt; SwapOps = false; break; 779 case PPC::PRED_LE: 780 case PPC::PRED_LE_MINUS: 781 case PPC::PRED_LE_PLUS: 782 SubIdx = PPC::sub_gt; SwapOps = true; break; 783 case PPC::PRED_UN: 784 case PPC::PRED_UN_MINUS: 785 case PPC::PRED_UN_PLUS: 786 SubIdx = PPC::sub_un; SwapOps = false; break; 787 case PPC::PRED_NU: 788 case PPC::PRED_NU_MINUS: 789 case PPC::PRED_NU_PLUS: 790 SubIdx = PPC::sub_un; SwapOps = true; break; 791 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 792 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 793 } 794 795 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 796 SecondReg = SwapOps ? TrueReg : FalseReg; 797 798 // The first input register of isel cannot be r0. If it is a member 799 // of a register class that can be r0, then copy it first (the 800 // register allocator should eliminate the copy). 801 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 802 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 803 const TargetRegisterClass *FirstRC = 804 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 805 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 806 unsigned OldFirstReg = FirstReg; 807 FirstReg = MRI.createVirtualRegister(FirstRC); 808 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 809 .addReg(OldFirstReg); 810 } 811 812 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 813 .addReg(FirstReg).addReg(SecondReg) 814 .addReg(Cond[1].getReg(), 0, SubIdx); 815 } 816 817 static unsigned getCRBitValue(unsigned CRBit) { 818 unsigned Ret = 4; 819 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 820 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 821 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 822 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 823 Ret = 3; 824 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 825 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 826 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 827 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 828 Ret = 2; 829 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 830 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 831 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 832 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 833 Ret = 1; 834 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 835 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 836 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 837 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 838 Ret = 0; 839 840 assert(Ret != 4 && "Invalid CR bit register"); 841 return Ret; 842 } 843 844 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 845 MachineBasicBlock::iterator I, 846 const DebugLoc &DL, unsigned DestReg, 847 unsigned SrcReg, bool KillSrc) const { 848 // We can end up with self copies and similar things as a result of VSX copy 849 // legalization. Promote them here. 850 const TargetRegisterInfo *TRI = &getRegisterInfo(); 851 if (PPC::F8RCRegClass.contains(DestReg) && 852 PPC::VSRCRegClass.contains(SrcReg)) { 853 unsigned SuperReg = 854 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 855 856 if (VSXSelfCopyCrash && SrcReg == SuperReg) 857 llvm_unreachable("nop VSX copy"); 858 859 DestReg = SuperReg; 860 } else if (PPC::VRRCRegClass.contains(DestReg) && 861 PPC::VSRCRegClass.contains(SrcReg)) { 862 unsigned SuperReg = 863 TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass); 864 865 if (VSXSelfCopyCrash && SrcReg == SuperReg) 866 llvm_unreachable("nop VSX copy"); 867 868 DestReg = SuperReg; 869 } else if (PPC::F8RCRegClass.contains(SrcReg) && 870 PPC::VSRCRegClass.contains(DestReg)) { 871 unsigned SuperReg = 872 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 873 874 if (VSXSelfCopyCrash && DestReg == SuperReg) 875 llvm_unreachable("nop VSX copy"); 876 877 SrcReg = SuperReg; 878 } else if (PPC::VRRCRegClass.contains(SrcReg) && 879 PPC::VSRCRegClass.contains(DestReg)) { 880 unsigned SuperReg = 881 TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass); 882 883 if (VSXSelfCopyCrash && DestReg == SuperReg) 884 llvm_unreachable("nop VSX copy"); 885 886 SrcReg = SuperReg; 887 } 888 889 // Different class register copy 890 if (PPC::CRBITRCRegClass.contains(SrcReg) && 891 PPC::GPRCRegClass.contains(DestReg)) { 892 unsigned CRReg = getCRFromCRBit(SrcReg); 893 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 894 getKillRegState(KillSrc); 895 // Rotate the CR bit in the CR fields to be the least significant bit and 896 // then mask with 0x1 (MB = ME = 31). 897 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 898 .addReg(DestReg, RegState::Kill) 899 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 900 .addImm(31) 901 .addImm(31); 902 return; 903 } else if (PPC::CRRCRegClass.contains(SrcReg) && 904 PPC::G8RCRegClass.contains(DestReg)) { 905 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 906 getKillRegState(KillSrc); 907 return; 908 } else if (PPC::CRRCRegClass.contains(SrcReg) && 909 PPC::GPRCRegClass.contains(DestReg)) { 910 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 911 getKillRegState(KillSrc); 912 return; 913 } 914 915 unsigned Opc; 916 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 917 Opc = PPC::OR; 918 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 919 Opc = PPC::OR8; 920 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 921 Opc = PPC::FMR; 922 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 923 Opc = PPC::MCRF; 924 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 925 Opc = PPC::VOR; 926 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 927 // There are two different ways this can be done: 928 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 929 // issue in VSU pipeline 0. 930 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 931 // can go to either pipeline. 932 // We'll always use xxlor here, because in practically all cases where 933 // copies are generated, they are close enough to some use that the 934 // lower-latency form is preferable. 935 Opc = PPC::XXLOR; 936 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 937 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 938 Opc = PPC::XXLORf; 939 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 940 Opc = PPC::QVFMR; 941 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 942 Opc = PPC::QVFMRs; 943 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 944 Opc = PPC::QVFMRb; 945 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 946 Opc = PPC::CROR; 947 else 948 llvm_unreachable("Impossible reg-to-reg copy"); 949 950 const MCInstrDesc &MCID = get(Opc); 951 if (MCID.getNumOperands() == 3) 952 BuildMI(MBB, I, DL, MCID, DestReg) 953 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 954 else 955 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 956 } 957 958 // This function returns true if a CR spill is necessary and false otherwise. 959 bool 960 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, 961 unsigned SrcReg, bool isKill, 962 int FrameIdx, 963 const TargetRegisterClass *RC, 964 SmallVectorImpl<MachineInstr*> &NewMIs, 965 bool &NonRI, bool &SpillsVRS) const{ 966 // Note: If additional store instructions are added here, 967 // update isStoreToStackSlot. 968 969 DebugLoc DL; 970 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 971 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 972 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) 973 .addReg(SrcReg, 974 getKillRegState(isKill)), 975 FrameIdx)); 976 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 977 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 978 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) 979 .addReg(SrcReg, 980 getKillRegState(isKill)), 981 FrameIdx)); 982 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 983 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) 984 .addReg(SrcReg, 985 getKillRegState(isKill)), 986 FrameIdx)); 987 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 988 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) 989 .addReg(SrcReg, 990 getKillRegState(isKill)), 991 FrameIdx)); 992 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 993 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) 994 .addReg(SrcReg, 995 getKillRegState(isKill)), 996 FrameIdx)); 997 return true; 998 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 999 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT)) 1000 .addReg(SrcReg, 1001 getKillRegState(isKill)), 1002 FrameIdx)); 1003 return true; 1004 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1005 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX)) 1006 .addReg(SrcReg, 1007 getKillRegState(isKill)), 1008 FrameIdx)); 1009 NonRI = true; 1010 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1011 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X)) 1012 .addReg(SrcReg, 1013 getKillRegState(isKill)), 1014 FrameIdx)); 1015 NonRI = true; 1016 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1017 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX)) 1018 .addReg(SrcReg, 1019 getKillRegState(isKill)), 1020 FrameIdx)); 1021 NonRI = true; 1022 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1023 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSSPX)) 1024 .addReg(SrcReg, 1025 getKillRegState(isKill)), 1026 FrameIdx)); 1027 NonRI = true; 1028 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1029 assert(Subtarget.isDarwin() && 1030 "VRSAVE only needs spill/restore on Darwin"); 1031 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE)) 1032 .addReg(SrcReg, 1033 getKillRegState(isKill)), 1034 FrameIdx)); 1035 SpillsVRS = true; 1036 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1037 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX)) 1038 .addReg(SrcReg, 1039 getKillRegState(isKill)), 1040 FrameIdx)); 1041 NonRI = true; 1042 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1043 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs)) 1044 .addReg(SrcReg, 1045 getKillRegState(isKill)), 1046 FrameIdx)); 1047 NonRI = true; 1048 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1049 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb)) 1050 .addReg(SrcReg, 1051 getKillRegState(isKill)), 1052 FrameIdx)); 1053 NonRI = true; 1054 } else { 1055 llvm_unreachable("Unknown regclass!"); 1056 } 1057 1058 return false; 1059 } 1060 1061 void 1062 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1063 MachineBasicBlock::iterator MI, 1064 unsigned SrcReg, bool isKill, int FrameIdx, 1065 const TargetRegisterClass *RC, 1066 const TargetRegisterInfo *TRI) const { 1067 MachineFunction &MF = *MBB.getParent(); 1068 SmallVector<MachineInstr*, 4> NewMIs; 1069 1070 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1071 FuncInfo->setHasSpills(); 1072 1073 bool NonRI = false, SpillsVRS = false; 1074 if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs, 1075 NonRI, SpillsVRS)) 1076 FuncInfo->setSpillsCR(); 1077 1078 if (SpillsVRS) 1079 FuncInfo->setSpillsVRSAVE(); 1080 1081 if (NonRI) 1082 FuncInfo->setHasNonRISpills(); 1083 1084 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1085 MBB.insert(MI, NewMIs[i]); 1086 1087 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1088 MachineMemOperand *MMO = MF.getMachineMemOperand( 1089 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1090 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1091 MFI.getObjectAlignment(FrameIdx)); 1092 NewMIs.back()->addMemOperand(MF, MMO); 1093 } 1094 1095 bool PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1096 unsigned DestReg, int FrameIdx, 1097 const TargetRegisterClass *RC, 1098 SmallVectorImpl<MachineInstr *> &NewMIs, 1099 bool &NonRI, bool &SpillsVRS) const { 1100 // Note: If additional load instructions are added here, 1101 // update isLoadFromStackSlot. 1102 1103 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1104 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1105 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), 1106 DestReg), FrameIdx)); 1107 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1108 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1109 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), 1110 FrameIdx)); 1111 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1112 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), 1113 FrameIdx)); 1114 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1115 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), 1116 FrameIdx)); 1117 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1118 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1119 get(PPC::RESTORE_CR), DestReg), 1120 FrameIdx)); 1121 return true; 1122 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1123 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1124 get(PPC::RESTORE_CRBIT), DestReg), 1125 FrameIdx)); 1126 return true; 1127 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1128 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg), 1129 FrameIdx)); 1130 NonRI = true; 1131 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1132 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg), 1133 FrameIdx)); 1134 NonRI = true; 1135 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1136 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg), 1137 FrameIdx)); 1138 NonRI = true; 1139 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1140 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSSPX), DestReg), 1141 FrameIdx)); 1142 NonRI = true; 1143 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1144 assert(Subtarget.isDarwin() && 1145 "VRSAVE only needs spill/restore on Darwin"); 1146 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1147 get(PPC::RESTORE_VRSAVE), 1148 DestReg), 1149 FrameIdx)); 1150 SpillsVRS = true; 1151 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1152 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg), 1153 FrameIdx)); 1154 NonRI = true; 1155 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1156 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg), 1157 FrameIdx)); 1158 NonRI = true; 1159 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1160 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg), 1161 FrameIdx)); 1162 NonRI = true; 1163 } else { 1164 llvm_unreachable("Unknown regclass!"); 1165 } 1166 1167 return false; 1168 } 1169 1170 void 1171 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1172 MachineBasicBlock::iterator MI, 1173 unsigned DestReg, int FrameIdx, 1174 const TargetRegisterClass *RC, 1175 const TargetRegisterInfo *TRI) const { 1176 MachineFunction &MF = *MBB.getParent(); 1177 SmallVector<MachineInstr*, 4> NewMIs; 1178 DebugLoc DL; 1179 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1180 1181 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1182 FuncInfo->setHasSpills(); 1183 1184 bool NonRI = false, SpillsVRS = false; 1185 if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs, 1186 NonRI, SpillsVRS)) 1187 FuncInfo->setSpillsCR(); 1188 1189 if (SpillsVRS) 1190 FuncInfo->setSpillsVRSAVE(); 1191 1192 if (NonRI) 1193 FuncInfo->setHasNonRISpills(); 1194 1195 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1196 MBB.insert(MI, NewMIs[i]); 1197 1198 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1199 MachineMemOperand *MMO = MF.getMachineMemOperand( 1200 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1201 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1202 MFI.getObjectAlignment(FrameIdx)); 1203 NewMIs.back()->addMemOperand(MF, MMO); 1204 } 1205 1206 bool PPCInstrInfo:: 1207 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1208 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1209 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1210 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1211 else 1212 // Leave the CR# the same, but invert the condition. 1213 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1214 return false; 1215 } 1216 1217 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1218 unsigned Reg, MachineRegisterInfo *MRI) const { 1219 // For some instructions, it is legal to fold ZERO into the RA register field. 1220 // A zero immediate should always be loaded with a single li. 1221 unsigned DefOpc = DefMI.getOpcode(); 1222 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1223 return false; 1224 if (!DefMI.getOperand(1).isImm()) 1225 return false; 1226 if (DefMI.getOperand(1).getImm() != 0) 1227 return false; 1228 1229 // Note that we cannot here invert the arguments of an isel in order to fold 1230 // a ZERO into what is presented as the second argument. All we have here 1231 // is the condition bit, and that might come from a CR-logical bit operation. 1232 1233 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1234 1235 // Only fold into real machine instructions. 1236 if (UseMCID.isPseudo()) 1237 return false; 1238 1239 unsigned UseIdx; 1240 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1241 if (UseMI.getOperand(UseIdx).isReg() && 1242 UseMI.getOperand(UseIdx).getReg() == Reg) 1243 break; 1244 1245 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1246 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1247 1248 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1249 1250 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1251 // register (which might also be specified as a pointer class kind). 1252 if (UseInfo->isLookupPtrRegClass()) { 1253 if (UseInfo->RegClass /* Kind */ != 1) 1254 return false; 1255 } else { 1256 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1257 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1258 return false; 1259 } 1260 1261 // Make sure this is not tied to an output register (or otherwise 1262 // constrained). This is true for ST?UX registers, for example, which 1263 // are tied to their output registers. 1264 if (UseInfo->Constraints != 0) 1265 return false; 1266 1267 unsigned ZeroReg; 1268 if (UseInfo->isLookupPtrRegClass()) { 1269 bool isPPC64 = Subtarget.isPPC64(); 1270 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1271 } else { 1272 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1273 PPC::ZERO8 : PPC::ZERO; 1274 } 1275 1276 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1277 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1278 1279 if (DeleteDef) 1280 DefMI.eraseFromParent(); 1281 1282 return true; 1283 } 1284 1285 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1286 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1287 I != IE; ++I) 1288 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1289 return true; 1290 return false; 1291 } 1292 1293 // We should make sure that, if we're going to predicate both sides of a 1294 // condition (a diamond), that both sides don't define the counter register. We 1295 // can predicate counter-decrement-based branches, but while that predicates 1296 // the branching, it does not predicate the counter decrement. If we tried to 1297 // merge the triangle into one predicated block, we'd decrement the counter 1298 // twice. 1299 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1300 unsigned NumT, unsigned ExtraT, 1301 MachineBasicBlock &FMBB, 1302 unsigned NumF, unsigned ExtraF, 1303 BranchProbability Probability) const { 1304 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1305 } 1306 1307 1308 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1309 // The predicated branches are identified by their type, not really by the 1310 // explicit presence of a predicate. Furthermore, some of them can be 1311 // predicated more than once. Because if conversion won't try to predicate 1312 // any instruction which already claims to be predicated (by returning true 1313 // here), always return false. In doing so, we let isPredicable() be the 1314 // final word on whether not the instruction can be (further) predicated. 1315 1316 return false; 1317 } 1318 1319 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 1320 if (!MI.isTerminator()) 1321 return false; 1322 1323 // Conditional branch is a special case. 1324 if (MI.isBranch() && !MI.isBarrier()) 1325 return true; 1326 1327 return !isPredicated(MI); 1328 } 1329 1330 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1331 ArrayRef<MachineOperand> Pred) const { 1332 unsigned OpC = MI.getOpcode(); 1333 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1334 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1335 bool isPPC64 = Subtarget.isPPC64(); 1336 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1337 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1338 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1339 MI.setDesc(get(PPC::BCLR)); 1340 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1341 .addReg(Pred[1].getReg()); 1342 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1343 MI.setDesc(get(PPC::BCLRn)); 1344 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1345 .addReg(Pred[1].getReg()); 1346 } else { 1347 MI.setDesc(get(PPC::BCCLR)); 1348 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1349 .addImm(Pred[0].getImm()) 1350 .addReg(Pred[1].getReg()); 1351 } 1352 1353 return true; 1354 } else if (OpC == PPC::B) { 1355 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1356 bool isPPC64 = Subtarget.isPPC64(); 1357 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1358 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1359 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1360 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1361 MI.RemoveOperand(0); 1362 1363 MI.setDesc(get(PPC::BC)); 1364 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1365 .addReg(Pred[1].getReg()) 1366 .addMBB(MBB); 1367 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1368 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1369 MI.RemoveOperand(0); 1370 1371 MI.setDesc(get(PPC::BCn)); 1372 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1373 .addReg(Pred[1].getReg()) 1374 .addMBB(MBB); 1375 } else { 1376 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1377 MI.RemoveOperand(0); 1378 1379 MI.setDesc(get(PPC::BCC)); 1380 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1381 .addImm(Pred[0].getImm()) 1382 .addReg(Pred[1].getReg()) 1383 .addMBB(MBB); 1384 } 1385 1386 return true; 1387 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || 1388 OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { 1389 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1390 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1391 1392 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1393 bool isPPC64 = Subtarget.isPPC64(); 1394 1395 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1396 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1397 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1398 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1399 .addReg(Pred[1].getReg()); 1400 return true; 1401 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1402 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1403 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1404 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1405 .addReg(Pred[1].getReg()); 1406 return true; 1407 } 1408 1409 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1410 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1411 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1412 .addImm(Pred[0].getImm()) 1413 .addReg(Pred[1].getReg()); 1414 return true; 1415 } 1416 1417 return false; 1418 } 1419 1420 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1421 ArrayRef<MachineOperand> Pred2) const { 1422 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1423 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1424 1425 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1426 return false; 1427 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1428 return false; 1429 1430 // P1 can only subsume P2 if they test the same condition register. 1431 if (Pred1[1].getReg() != Pred2[1].getReg()) 1432 return false; 1433 1434 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1435 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1436 1437 if (P1 == P2) 1438 return true; 1439 1440 // Does P1 subsume P2, e.g. GE subsumes GT. 1441 if (P1 == PPC::PRED_LE && 1442 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1443 return true; 1444 if (P1 == PPC::PRED_GE && 1445 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1446 return true; 1447 1448 return false; 1449 } 1450 1451 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1452 std::vector<MachineOperand> &Pred) const { 1453 // Note: At the present time, the contents of Pred from this function is 1454 // unused by IfConversion. This implementation follows ARM by pushing the 1455 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1456 // predicate, instructions defining CTR or CTR8 are also included as 1457 // predicate-defining instructions. 1458 1459 const TargetRegisterClass *RCs[] = 1460 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1461 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1462 1463 bool Found = false; 1464 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1465 const MachineOperand &MO = MI.getOperand(i); 1466 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1467 const TargetRegisterClass *RC = RCs[c]; 1468 if (MO.isReg()) { 1469 if (MO.isDef() && RC->contains(MO.getReg())) { 1470 Pred.push_back(MO); 1471 Found = true; 1472 } 1473 } else if (MO.isRegMask()) { 1474 for (TargetRegisterClass::iterator I = RC->begin(), 1475 IE = RC->end(); I != IE; ++I) 1476 if (MO.clobbersPhysReg(*I)) { 1477 Pred.push_back(MO); 1478 Found = true; 1479 } 1480 } 1481 } 1482 } 1483 1484 return Found; 1485 } 1486 1487 bool PPCInstrInfo::isPredicable(MachineInstr &MI) const { 1488 unsigned OpC = MI.getOpcode(); 1489 switch (OpC) { 1490 default: 1491 return false; 1492 case PPC::B: 1493 case PPC::BLR: 1494 case PPC::BLR8: 1495 case PPC::BCTR: 1496 case PPC::BCTR8: 1497 case PPC::BCTRL: 1498 case PPC::BCTRL8: 1499 return true; 1500 } 1501 } 1502 1503 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 1504 unsigned &SrcReg2, int &Mask, 1505 int &Value) const { 1506 unsigned Opc = MI.getOpcode(); 1507 1508 switch (Opc) { 1509 default: return false; 1510 case PPC::CMPWI: 1511 case PPC::CMPLWI: 1512 case PPC::CMPDI: 1513 case PPC::CMPLDI: 1514 SrcReg = MI.getOperand(1).getReg(); 1515 SrcReg2 = 0; 1516 Value = MI.getOperand(2).getImm(); 1517 Mask = 0xFFFF; 1518 return true; 1519 case PPC::CMPW: 1520 case PPC::CMPLW: 1521 case PPC::CMPD: 1522 case PPC::CMPLD: 1523 case PPC::FCMPUS: 1524 case PPC::FCMPUD: 1525 SrcReg = MI.getOperand(1).getReg(); 1526 SrcReg2 = MI.getOperand(2).getReg(); 1527 return true; 1528 } 1529 } 1530 1531 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, 1532 unsigned SrcReg2, int Mask, int Value, 1533 const MachineRegisterInfo *MRI) const { 1534 if (DisableCmpOpt) 1535 return false; 1536 1537 int OpC = CmpInstr.getOpcode(); 1538 unsigned CRReg = CmpInstr.getOperand(0).getReg(); 1539 1540 // FP record forms set CR1 based on the execption status bits, not a 1541 // comparison with zero. 1542 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1543 return false; 1544 1545 // The record forms set the condition register based on a signed comparison 1546 // with zero (so says the ISA manual). This is not as straightforward as it 1547 // seems, however, because this is always a 64-bit comparison on PPC64, even 1548 // for instructions that are 32-bit in nature (like slw for example). 1549 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1550 // for equality checks (as those don't depend on the sign). On PPC64, 1551 // we are restricted to equality for unsigned 64-bit comparisons and for 1552 // signed 32-bit comparisons the applicability is more restricted. 1553 bool isPPC64 = Subtarget.isPPC64(); 1554 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1555 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1556 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1557 1558 // Get the unique definition of SrcReg. 1559 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1560 if (!MI) return false; 1561 int MIOpC = MI->getOpcode(); 1562 1563 bool equalityOnly = false; 1564 bool noSub = false; 1565 if (isPPC64) { 1566 if (is32BitSignedCompare) { 1567 // We can perform this optimization only if MI is sign-extending. 1568 if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo || 1569 MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo || 1570 MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo || 1571 MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo || 1572 MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) { 1573 noSub = true; 1574 } else 1575 return false; 1576 } else if (is32BitUnsignedCompare) { 1577 // 32-bit rotate and mask instructions are zero extending only if MB <= ME 1578 bool isZeroExtendingRotate = 1579 (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINMo || 1580 MIOpC == PPC::RLWNM || MIOpC == PPC::RLWNMo) 1581 && MI->getOperand(3).getImm() <= MI->getOperand(4).getImm(); 1582 1583 // We can perform this optimization, equality only, if MI is 1584 // zero-extending. 1585 if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo || 1586 MIOpC == PPC::SLW || MIOpC == PPC::SLWo || 1587 MIOpC == PPC::SRW || MIOpC == PPC::SRWo || 1588 isZeroExtendingRotate) { 1589 noSub = true; 1590 equalityOnly = true; 1591 } else 1592 return false; 1593 } else 1594 equalityOnly = is64BitUnsignedCompare; 1595 } else 1596 equalityOnly = is32BitUnsignedCompare; 1597 1598 if (equalityOnly) { 1599 // We need to check the uses of the condition register in order to reject 1600 // non-equality comparisons. 1601 for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg), 1602 IE = MRI->use_instr_end(); I != IE; ++I) { 1603 MachineInstr *UseMI = &*I; 1604 if (UseMI->getOpcode() == PPC::BCC) { 1605 unsigned Pred = UseMI->getOperand(0).getImm(); 1606 if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE) 1607 return false; 1608 } else if (UseMI->getOpcode() == PPC::ISEL || 1609 UseMI->getOpcode() == PPC::ISEL8) { 1610 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1611 if (SubIdx != PPC::sub_eq) 1612 return false; 1613 } else 1614 return false; 1615 } 1616 } 1617 1618 MachineBasicBlock::iterator I = CmpInstr; 1619 1620 // Scan forward to find the first use of the compare. 1621 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1622 ++I) { 1623 bool FoundUse = false; 1624 for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg), 1625 JE = MRI->use_instr_end(); J != JE; ++J) 1626 if (&*J == &*I) { 1627 FoundUse = true; 1628 break; 1629 } 1630 1631 if (FoundUse) 1632 break; 1633 } 1634 1635 // There are two possible candidates which can be changed to set CR[01]. 1636 // One is MI, the other is a SUB instruction. 1637 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1638 MachineInstr *Sub = nullptr; 1639 if (SrcReg2 != 0) 1640 // MI is not a candidate for CMPrr. 1641 MI = nullptr; 1642 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1643 // same BB as the comparison. This is to allow the check below to avoid calls 1644 // (and other explicit clobbers); instead we should really check for these 1645 // more explicitly (in at least a few predecessors). 1646 else if (MI->getParent() != CmpInstr.getParent() || Value != 0) { 1647 // PPC does not have a record-form SUBri. 1648 return false; 1649 } 1650 1651 // Search for Sub. 1652 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1653 --I; 1654 1655 // Get ready to iterate backward from CmpInstr. 1656 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 1657 1658 for (; I != E && !noSub; --I) { 1659 const MachineInstr &Instr = *I; 1660 unsigned IOpC = Instr.getOpcode(); 1661 1662 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 1663 Instr.readsRegister(PPC::CR0, TRI))) 1664 // This instruction modifies or uses the record condition register after 1665 // the one we want to change. While we could do this transformation, it 1666 // would likely not be profitable. This transformation removes one 1667 // instruction, and so even forcing RA to generate one move probably 1668 // makes it unprofitable. 1669 return false; 1670 1671 // Check whether CmpInstr can be made redundant by the current instruction. 1672 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1673 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1674 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1675 ((Instr.getOperand(1).getReg() == SrcReg && 1676 Instr.getOperand(2).getReg() == SrcReg2) || 1677 (Instr.getOperand(1).getReg() == SrcReg2 && 1678 Instr.getOperand(2).getReg() == SrcReg))) { 1679 Sub = &*I; 1680 break; 1681 } 1682 1683 if (I == B) 1684 // The 'and' is below the comparison instruction. 1685 return false; 1686 } 1687 1688 // Return false if no candidates exist. 1689 if (!MI && !Sub) 1690 return false; 1691 1692 // The single candidate is called MI. 1693 if (!MI) MI = Sub; 1694 1695 int NewOpC = -1; 1696 MIOpC = MI->getOpcode(); 1697 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8) 1698 NewOpC = MIOpC; 1699 else { 1700 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1701 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1702 NewOpC = MIOpC; 1703 } 1704 1705 // FIXME: On the non-embedded POWER architectures, only some of the record 1706 // forms are fast, and we should use only the fast ones. 1707 1708 // The defining instruction has a record form (or is already a record 1709 // form). It is possible, however, that we'll need to reverse the condition 1710 // code of the users. 1711 if (NewOpC == -1) 1712 return false; 1713 1714 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1715 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1716 1717 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1718 // needs to be updated to be based on SUB. Push the condition code 1719 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1720 // condition code of these operands will be modified. 1721 bool ShouldSwap = false; 1722 if (Sub) { 1723 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1724 Sub->getOperand(2).getReg() == SrcReg; 1725 1726 // The operands to subf are the opposite of sub, so only in the fixed-point 1727 // case, invert the order. 1728 ShouldSwap = !ShouldSwap; 1729 } 1730 1731 if (ShouldSwap) 1732 for (MachineRegisterInfo::use_instr_iterator 1733 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1734 I != IE; ++I) { 1735 MachineInstr *UseMI = &*I; 1736 if (UseMI->getOpcode() == PPC::BCC) { 1737 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1738 assert((!equalityOnly || 1739 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) && 1740 "Invalid predicate for equality-only optimization"); 1741 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1742 PPC::getSwappedPredicate(Pred))); 1743 } else if (UseMI->getOpcode() == PPC::ISEL || 1744 UseMI->getOpcode() == PPC::ISEL8) { 1745 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1746 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1747 "Invalid CR bit for equality-only optimization"); 1748 1749 if (NewSubReg == PPC::sub_lt) 1750 NewSubReg = PPC::sub_gt; 1751 else if (NewSubReg == PPC::sub_gt) 1752 NewSubReg = PPC::sub_lt; 1753 1754 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1755 NewSubReg)); 1756 } else // We need to abort on a user we don't understand. 1757 return false; 1758 } 1759 1760 // Create a new virtual register to hold the value of the CR set by the 1761 // record-form instruction. If the instruction was not previously in 1762 // record form, then set the kill flag on the CR. 1763 CmpInstr.eraseFromParent(); 1764 1765 MachineBasicBlock::iterator MII = MI; 1766 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1767 get(TargetOpcode::COPY), CRReg) 1768 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1769 1770 // Even if CR0 register were dead before, it is alive now since the 1771 // instruction we just built uses it. 1772 MI->clearRegisterDeads(PPC::CR0); 1773 1774 if (MIOpC != NewOpC) { 1775 // We need to be careful here: we're replacing one instruction with 1776 // another, and we need to make sure that we get all of the right 1777 // implicit uses and defs. On the other hand, the caller may be holding 1778 // an iterator to this instruction, and so we can't delete it (this is 1779 // specifically the case if this is the instruction directly after the 1780 // compare). 1781 1782 const MCInstrDesc &NewDesc = get(NewOpC); 1783 MI->setDesc(NewDesc); 1784 1785 if (NewDesc.ImplicitDefs) 1786 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 1787 *ImpDefs; ++ImpDefs) 1788 if (!MI->definesRegister(*ImpDefs)) 1789 MI->addOperand(*MI->getParent()->getParent(), 1790 MachineOperand::CreateReg(*ImpDefs, true, true)); 1791 if (NewDesc.ImplicitUses) 1792 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 1793 *ImpUses; ++ImpUses) 1794 if (!MI->readsRegister(*ImpUses)) 1795 MI->addOperand(*MI->getParent()->getParent(), 1796 MachineOperand::CreateReg(*ImpUses, false, true)); 1797 } 1798 assert(MI->definesRegister(PPC::CR0) && 1799 "Record-form instruction does not define cr0?"); 1800 1801 // Modify the condition code of operands in OperandsToUpdate. 1802 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1803 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1804 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1805 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1806 1807 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1808 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1809 1810 return true; 1811 } 1812 1813 /// GetInstSize - Return the number of bytes of code the specified 1814 /// instruction may be. This returns the maximum number of bytes. 1815 /// 1816 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 1817 unsigned Opcode = MI.getOpcode(); 1818 1819 if (Opcode == PPC::INLINEASM) { 1820 const MachineFunction *MF = MI.getParent()->getParent(); 1821 const char *AsmStr = MI.getOperand(0).getSymbolName(); 1822 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1823 } else if (Opcode == TargetOpcode::STACKMAP) { 1824 StackMapOpers Opers(&MI); 1825 return Opers.getNumPatchBytes(); 1826 } else if (Opcode == TargetOpcode::PATCHPOINT) { 1827 PatchPointOpers Opers(&MI); 1828 return Opers.getNumPatchBytes(); 1829 } else { 1830 const MCInstrDesc &Desc = get(Opcode); 1831 return Desc.getSize(); 1832 } 1833 } 1834 1835 std::pair<unsigned, unsigned> 1836 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 1837 const unsigned Mask = PPCII::MO_ACCESS_MASK; 1838 return std::make_pair(TF & Mask, TF & ~Mask); 1839 } 1840 1841 ArrayRef<std::pair<unsigned, const char *>> 1842 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 1843 using namespace PPCII; 1844 static const std::pair<unsigned, const char *> TargetFlags[] = { 1845 {MO_LO, "ppc-lo"}, 1846 {MO_HA, "ppc-ha"}, 1847 {MO_TPREL_LO, "ppc-tprel-lo"}, 1848 {MO_TPREL_HA, "ppc-tprel-ha"}, 1849 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 1850 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 1851 {MO_TOC_LO, "ppc-toc-lo"}, 1852 {MO_TLS, "ppc-tls"}}; 1853 return makeArrayRef(TargetFlags); 1854 } 1855 1856 ArrayRef<std::pair<unsigned, const char *>> 1857 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 1858 using namespace PPCII; 1859 static const std::pair<unsigned, const char *> TargetFlags[] = { 1860 {MO_PLT, "ppc-plt"}, 1861 {MO_PIC_FLAG, "ppc-pic"}, 1862 {MO_NLP_FLAG, "ppc-nlp"}, 1863 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}}; 1864 return makeArrayRef(TargetFlags); 1865 } 1866 1867 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1868 switch (MI.getOpcode()) { 1869 case TargetOpcode::LOAD_STACK_GUARD: { 1870 assert(Subtarget.isTargetLinux() && 1871 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 1872 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 1873 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 1874 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 1875 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1876 .addImm(Offset) 1877 .addReg(Reg); 1878 return true; 1879 } 1880 } 1881 return false; 1882 } 1883