1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the PowerPC implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCInstrInfo.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCHazardRecognizers.h" 18 #include "PPCInstrBuilder.h" 19 #include "PPCMachineFunctionInfo.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/ScheduleDAG.h" 31 #include "llvm/CodeGen/SlotIndexes.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCInst.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "ppc-instr-info" 44 45 #define GET_INSTRMAP_INFO 46 #define GET_INSTRINFO_CTOR_DTOR 47 #include "PPCGenInstrInfo.inc" 48 49 STATISTIC(NumStoreSPILLVSRRCAsVec, 50 "Number of spillvsrrc spilled to stack as vec"); 51 STATISTIC(NumStoreSPILLVSRRCAsGpr, 52 "Number of spillvsrrc spilled to stack as gpr"); 53 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 54 55 static cl:: 56 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 57 cl::desc("Disable analysis for CTR loops")); 58 59 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 60 cl::desc("Disable compare instruction optimization"), cl::Hidden); 61 62 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 63 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 64 cl::Hidden); 65 66 static cl::opt<bool> 67 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 68 cl::desc("Use the old (incorrect) instruction latency calculation")); 69 70 // Pin the vtable to this file. 71 void PPCInstrInfo::anchor() {} 72 73 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 74 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 75 /* CatchRetOpcode */ -1, 76 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 77 Subtarget(STI), RI(STI.getTargetMachine()) {} 78 79 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 80 /// this target when scheduling the DAG. 81 ScheduleHazardRecognizer * 82 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 83 const ScheduleDAG *DAG) const { 84 unsigned Directive = 85 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); 86 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 87 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 88 const InstrItineraryData *II = 89 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 90 return new ScoreboardHazardRecognizer(II, DAG); 91 } 92 93 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 94 } 95 96 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 97 /// to use for this target when scheduling the DAG. 98 ScheduleHazardRecognizer * 99 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 100 const ScheduleDAG *DAG) const { 101 unsigned Directive = 102 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective(); 103 104 // FIXME: Leaving this as-is until we have POWER9 scheduling info 105 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 106 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 107 108 // Most subtargets use a PPC970 recognizer. 109 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 110 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 111 assert(DAG->TII && "No InstrInfo?"); 112 113 return new PPCHazardRecognizer970(*DAG); 114 } 115 116 return new ScoreboardHazardRecognizer(II, DAG); 117 } 118 119 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 120 const MachineInstr &MI, 121 unsigned *PredCost) const { 122 if (!ItinData || UseOldLatencyCalc) 123 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 124 125 // The default implementation of getInstrLatency calls getStageLatency, but 126 // getStageLatency does not do the right thing for us. While we have 127 // itinerary, most cores are fully pipelined, and so the itineraries only 128 // express the first part of the pipeline, not every stage. Instead, we need 129 // to use the listed output operand cycle number (using operand 0 here, which 130 // is an output). 131 132 unsigned Latency = 1; 133 unsigned DefClass = MI.getDesc().getSchedClass(); 134 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 135 const MachineOperand &MO = MI.getOperand(i); 136 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 137 continue; 138 139 int Cycle = ItinData->getOperandCycle(DefClass, i); 140 if (Cycle < 0) 141 continue; 142 143 Latency = std::max(Latency, (unsigned) Cycle); 144 } 145 146 return Latency; 147 } 148 149 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 150 const MachineInstr &DefMI, unsigned DefIdx, 151 const MachineInstr &UseMI, 152 unsigned UseIdx) const { 153 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 154 UseMI, UseIdx); 155 156 if (!DefMI.getParent()) 157 return Latency; 158 159 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 160 unsigned Reg = DefMO.getReg(); 161 162 bool IsRegCR; 163 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 164 const MachineRegisterInfo *MRI = 165 &DefMI.getParent()->getParent()->getRegInfo(); 166 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 167 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 168 } else { 169 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 170 PPC::CRBITRCRegClass.contains(Reg); 171 } 172 173 if (UseMI.isBranch() && IsRegCR) { 174 if (Latency < 0) 175 Latency = getInstrLatency(ItinData, DefMI); 176 177 // On some cores, there is an additional delay between writing to a condition 178 // register, and using it from a branch. 179 unsigned Directive = Subtarget.getDarwinDirective(); 180 switch (Directive) { 181 default: break; 182 case PPC::DIR_7400: 183 case PPC::DIR_750: 184 case PPC::DIR_970: 185 case PPC::DIR_E5500: 186 case PPC::DIR_PWR4: 187 case PPC::DIR_PWR5: 188 case PPC::DIR_PWR5X: 189 case PPC::DIR_PWR6: 190 case PPC::DIR_PWR6X: 191 case PPC::DIR_PWR7: 192 case PPC::DIR_PWR8: 193 // FIXME: Is this needed for POWER9? 194 Latency += 2; 195 break; 196 } 197 } 198 199 return Latency; 200 } 201 202 // This function does not list all associative and commutative operations, but 203 // only those worth feeding through the machine combiner in an attempt to 204 // reduce the critical path. Mostly, this means floating-point operations, 205 // because they have high latencies (compared to other operations, such and 206 // and/or, which are also associative and commutative, but have low latencies). 207 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 208 switch (Inst.getOpcode()) { 209 // FP Add: 210 case PPC::FADD: 211 case PPC::FADDS: 212 // FP Multiply: 213 case PPC::FMUL: 214 case PPC::FMULS: 215 // Altivec Add: 216 case PPC::VADDFP: 217 // VSX Add: 218 case PPC::XSADDDP: 219 case PPC::XVADDDP: 220 case PPC::XVADDSP: 221 case PPC::XSADDSP: 222 // VSX Multiply: 223 case PPC::XSMULDP: 224 case PPC::XVMULDP: 225 case PPC::XVMULSP: 226 case PPC::XSMULSP: 227 // QPX Add: 228 case PPC::QVFADD: 229 case PPC::QVFADDS: 230 case PPC::QVFADDSs: 231 // QPX Multiply: 232 case PPC::QVFMUL: 233 case PPC::QVFMULS: 234 case PPC::QVFMULSs: 235 return true; 236 default: 237 return false; 238 } 239 } 240 241 bool PPCInstrInfo::getMachineCombinerPatterns( 242 MachineInstr &Root, 243 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 244 // Using the machine combiner in this way is potentially expensive, so 245 // restrict to when aggressive optimizations are desired. 246 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 247 return false; 248 249 // FP reassociation is only legal when we don't need strict IEEE semantics. 250 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) 251 return false; 252 253 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 254 } 255 256 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 257 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 258 unsigned &SrcReg, unsigned &DstReg, 259 unsigned &SubIdx) const { 260 switch (MI.getOpcode()) { 261 default: return false; 262 case PPC::EXTSW: 263 case PPC::EXTSW_32: 264 case PPC::EXTSW_32_64: 265 SrcReg = MI.getOperand(1).getReg(); 266 DstReg = MI.getOperand(0).getReg(); 267 SubIdx = PPC::sub_32; 268 return true; 269 } 270 } 271 272 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 273 int &FrameIndex) const { 274 // Note: This list must be kept consistent with LoadRegFromStackSlot. 275 switch (MI.getOpcode()) { 276 default: break; 277 case PPC::LD: 278 case PPC::LWZ: 279 case PPC::LFS: 280 case PPC::LFD: 281 case PPC::RESTORE_CR: 282 case PPC::RESTORE_CRBIT: 283 case PPC::LVX: 284 case PPC::LXVD2X: 285 case PPC::LXV: 286 case PPC::QVLFDX: 287 case PPC::QVLFSXs: 288 case PPC::QVLFDXb: 289 case PPC::RESTORE_VRSAVE: 290 case PPC::SPILLTOVSR_LD: 291 // Check for the operands added by addFrameReference (the immediate is the 292 // offset which defaults to 0). 293 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 294 MI.getOperand(2).isFI()) { 295 FrameIndex = MI.getOperand(2).getIndex(); 296 return MI.getOperand(0).getReg(); 297 } 298 break; 299 } 300 return 0; 301 } 302 303 // For opcodes with the ReMaterializable flag set, this function is called to 304 // verify the instruction is really rematable. 305 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 306 AliasAnalysis *AA) const { 307 switch (MI.getOpcode()) { 308 default: 309 // This function should only be called for opcodes with the ReMaterializable 310 // flag set. 311 llvm_unreachable("Unknown rematerializable operation!"); 312 break; 313 case PPC::LI: 314 case PPC::LI8: 315 case PPC::LIS: 316 case PPC::LIS8: 317 case PPC::QVGPCI: 318 case PPC::ADDIStocHA: 319 case PPC::ADDItocL: 320 case PPC::LOAD_STACK_GUARD: 321 return true; 322 } 323 return false; 324 } 325 326 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 327 int &FrameIndex) const { 328 // Note: This list must be kept consistent with StoreRegToStackSlot. 329 switch (MI.getOpcode()) { 330 default: break; 331 case PPC::STD: 332 case PPC::STW: 333 case PPC::STFS: 334 case PPC::STFD: 335 case PPC::SPILL_CR: 336 case PPC::SPILL_CRBIT: 337 case PPC::STVX: 338 case PPC::STXVD2X: 339 case PPC::STXV: 340 case PPC::QVSTFDX: 341 case PPC::QVSTFSXs: 342 case PPC::QVSTFDXb: 343 case PPC::SPILL_VRSAVE: 344 case PPC::SPILLTOVSR_ST: 345 // Check for the operands added by addFrameReference (the immediate is the 346 // offset which defaults to 0). 347 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 348 MI.getOperand(2).isFI()) { 349 FrameIndex = MI.getOperand(2).getIndex(); 350 return MI.getOperand(0).getReg(); 351 } 352 break; 353 } 354 return 0; 355 } 356 357 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 358 unsigned OpIdx1, 359 unsigned OpIdx2) const { 360 MachineFunction &MF = *MI.getParent()->getParent(); 361 362 // Normal instructions can be commuted the obvious way. 363 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo) 364 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 365 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 366 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 367 // changing the relative order of the mask operands might change what happens 368 // to the high-bits of the mask (and, thus, the result). 369 370 // Cannot commute if it has a non-zero rotate count. 371 if (MI.getOperand(3).getImm() != 0) 372 return nullptr; 373 374 // If we have a zero rotate count, we have: 375 // M = mask(MB,ME) 376 // Op0 = (Op1 & ~M) | (Op2 & M) 377 // Change this to: 378 // M = mask((ME+1)&31, (MB-1)&31) 379 // Op0 = (Op2 & ~M) | (Op1 & M) 380 381 // Swap op1/op2 382 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 383 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo."); 384 unsigned Reg0 = MI.getOperand(0).getReg(); 385 unsigned Reg1 = MI.getOperand(1).getReg(); 386 unsigned Reg2 = MI.getOperand(2).getReg(); 387 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 388 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 389 bool Reg1IsKill = MI.getOperand(1).isKill(); 390 bool Reg2IsKill = MI.getOperand(2).isKill(); 391 bool ChangeReg0 = false; 392 // If machine instrs are no longer in two-address forms, update 393 // destination register as well. 394 if (Reg0 == Reg1) { 395 // Must be two address instruction! 396 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 397 "Expecting a two-address instruction!"); 398 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 399 Reg2IsKill = false; 400 ChangeReg0 = true; 401 } 402 403 // Masks. 404 unsigned MB = MI.getOperand(4).getImm(); 405 unsigned ME = MI.getOperand(5).getImm(); 406 407 // We can't commute a trivial mask (there is no way to represent an all-zero 408 // mask). 409 if (MB == 0 && ME == 31) 410 return nullptr; 411 412 if (NewMI) { 413 // Create a new instruction. 414 unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 415 bool Reg0IsDead = MI.getOperand(0).isDead(); 416 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 417 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 418 .addReg(Reg2, getKillRegState(Reg2IsKill)) 419 .addReg(Reg1, getKillRegState(Reg1IsKill)) 420 .addImm((ME + 1) & 31) 421 .addImm((MB - 1) & 31); 422 } 423 424 if (ChangeReg0) { 425 MI.getOperand(0).setReg(Reg2); 426 MI.getOperand(0).setSubReg(SubReg2); 427 } 428 MI.getOperand(2).setReg(Reg1); 429 MI.getOperand(1).setReg(Reg2); 430 MI.getOperand(2).setSubReg(SubReg1); 431 MI.getOperand(1).setSubReg(SubReg2); 432 MI.getOperand(2).setIsKill(Reg1IsKill); 433 MI.getOperand(1).setIsKill(Reg2IsKill); 434 435 // Swap the mask around. 436 MI.getOperand(4).setImm((ME + 1) & 31); 437 MI.getOperand(5).setImm((MB - 1) & 31); 438 return &MI; 439 } 440 441 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, 442 unsigned &SrcOpIdx2) const { 443 // For VSX A-Type FMA instructions, it is the first two operands that can be 444 // commuted, however, because the non-encoded tied input operand is listed 445 // first, the operands to swap are actually the second and third. 446 447 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 448 if (AltOpc == -1) 449 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 450 451 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 452 // and SrcOpIdx2. 453 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 454 } 455 456 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 457 MachineBasicBlock::iterator MI) const { 458 // This function is used for scheduling, and the nop wanted here is the type 459 // that terminates dispatch groups on the POWER cores. 460 unsigned Directive = Subtarget.getDarwinDirective(); 461 unsigned Opcode; 462 switch (Directive) { 463 default: Opcode = PPC::NOP; break; 464 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 465 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 466 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 467 // FIXME: Update when POWER9 scheduling model is ready. 468 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 469 } 470 471 DebugLoc DL; 472 BuildMI(MBB, MI, DL, get(Opcode)); 473 } 474 475 /// Return the noop instruction to use for a noop. 476 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 477 NopInst.setOpcode(PPC::NOP); 478 } 479 480 // Branch analysis. 481 // Note: If the condition register is set to CTR or CTR8 then this is a 482 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 483 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 484 MachineBasicBlock *&TBB, 485 MachineBasicBlock *&FBB, 486 SmallVectorImpl<MachineOperand> &Cond, 487 bool AllowModify) const { 488 bool isPPC64 = Subtarget.isPPC64(); 489 490 // If the block has no terminators, it just falls into the block after it. 491 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 492 if (I == MBB.end()) 493 return false; 494 495 if (!isUnpredicatedTerminator(*I)) 496 return false; 497 498 if (AllowModify) { 499 // If the BB ends with an unconditional branch to the fallthrough BB, 500 // we eliminate the branch instruction. 501 if (I->getOpcode() == PPC::B && 502 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 503 I->eraseFromParent(); 504 505 // We update iterator after deleting the last branch. 506 I = MBB.getLastNonDebugInstr(); 507 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 508 return false; 509 } 510 } 511 512 // Get the last instruction in the block. 513 MachineInstr &LastInst = *I; 514 515 // If there is only one terminator instruction, process it. 516 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 517 if (LastInst.getOpcode() == PPC::B) { 518 if (!LastInst.getOperand(0).isMBB()) 519 return true; 520 TBB = LastInst.getOperand(0).getMBB(); 521 return false; 522 } else if (LastInst.getOpcode() == PPC::BCC) { 523 if (!LastInst.getOperand(2).isMBB()) 524 return true; 525 // Block ends with fall-through condbranch. 526 TBB = LastInst.getOperand(2).getMBB(); 527 Cond.push_back(LastInst.getOperand(0)); 528 Cond.push_back(LastInst.getOperand(1)); 529 return false; 530 } else if (LastInst.getOpcode() == PPC::BC) { 531 if (!LastInst.getOperand(1).isMBB()) 532 return true; 533 // Block ends with fall-through condbranch. 534 TBB = LastInst.getOperand(1).getMBB(); 535 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 536 Cond.push_back(LastInst.getOperand(0)); 537 return false; 538 } else if (LastInst.getOpcode() == PPC::BCn) { 539 if (!LastInst.getOperand(1).isMBB()) 540 return true; 541 // Block ends with fall-through condbranch. 542 TBB = LastInst.getOperand(1).getMBB(); 543 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 544 Cond.push_back(LastInst.getOperand(0)); 545 return false; 546 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 547 LastInst.getOpcode() == PPC::BDNZ) { 548 if (!LastInst.getOperand(0).isMBB()) 549 return true; 550 if (DisableCTRLoopAnal) 551 return true; 552 TBB = LastInst.getOperand(0).getMBB(); 553 Cond.push_back(MachineOperand::CreateImm(1)); 554 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 555 true)); 556 return false; 557 } else if (LastInst.getOpcode() == PPC::BDZ8 || 558 LastInst.getOpcode() == PPC::BDZ) { 559 if (!LastInst.getOperand(0).isMBB()) 560 return true; 561 if (DisableCTRLoopAnal) 562 return true; 563 TBB = LastInst.getOperand(0).getMBB(); 564 Cond.push_back(MachineOperand::CreateImm(0)); 565 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 566 true)); 567 return false; 568 } 569 570 // Otherwise, don't know what this is. 571 return true; 572 } 573 574 // Get the instruction before it if it's a terminator. 575 MachineInstr &SecondLastInst = *I; 576 577 // If there are three terminators, we don't know what sort of block this is. 578 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 579 return true; 580 581 // If the block ends with PPC::B and PPC:BCC, handle it. 582 if (SecondLastInst.getOpcode() == PPC::BCC && 583 LastInst.getOpcode() == PPC::B) { 584 if (!SecondLastInst.getOperand(2).isMBB() || 585 !LastInst.getOperand(0).isMBB()) 586 return true; 587 TBB = SecondLastInst.getOperand(2).getMBB(); 588 Cond.push_back(SecondLastInst.getOperand(0)); 589 Cond.push_back(SecondLastInst.getOperand(1)); 590 FBB = LastInst.getOperand(0).getMBB(); 591 return false; 592 } else if (SecondLastInst.getOpcode() == PPC::BC && 593 LastInst.getOpcode() == PPC::B) { 594 if (!SecondLastInst.getOperand(1).isMBB() || 595 !LastInst.getOperand(0).isMBB()) 596 return true; 597 TBB = SecondLastInst.getOperand(1).getMBB(); 598 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 599 Cond.push_back(SecondLastInst.getOperand(0)); 600 FBB = LastInst.getOperand(0).getMBB(); 601 return false; 602 } else if (SecondLastInst.getOpcode() == PPC::BCn && 603 LastInst.getOpcode() == PPC::B) { 604 if (!SecondLastInst.getOperand(1).isMBB() || 605 !LastInst.getOperand(0).isMBB()) 606 return true; 607 TBB = SecondLastInst.getOperand(1).getMBB(); 608 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 609 Cond.push_back(SecondLastInst.getOperand(0)); 610 FBB = LastInst.getOperand(0).getMBB(); 611 return false; 612 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 613 SecondLastInst.getOpcode() == PPC::BDNZ) && 614 LastInst.getOpcode() == PPC::B) { 615 if (!SecondLastInst.getOperand(0).isMBB() || 616 !LastInst.getOperand(0).isMBB()) 617 return true; 618 if (DisableCTRLoopAnal) 619 return true; 620 TBB = SecondLastInst.getOperand(0).getMBB(); 621 Cond.push_back(MachineOperand::CreateImm(1)); 622 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 623 true)); 624 FBB = LastInst.getOperand(0).getMBB(); 625 return false; 626 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 627 SecondLastInst.getOpcode() == PPC::BDZ) && 628 LastInst.getOpcode() == PPC::B) { 629 if (!SecondLastInst.getOperand(0).isMBB() || 630 !LastInst.getOperand(0).isMBB()) 631 return true; 632 if (DisableCTRLoopAnal) 633 return true; 634 TBB = SecondLastInst.getOperand(0).getMBB(); 635 Cond.push_back(MachineOperand::CreateImm(0)); 636 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 637 true)); 638 FBB = LastInst.getOperand(0).getMBB(); 639 return false; 640 } 641 642 // If the block ends with two PPC:Bs, handle it. The second one is not 643 // executed, so remove it. 644 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 645 if (!SecondLastInst.getOperand(0).isMBB()) 646 return true; 647 TBB = SecondLastInst.getOperand(0).getMBB(); 648 I = LastInst; 649 if (AllowModify) 650 I->eraseFromParent(); 651 return false; 652 } 653 654 // Otherwise, can't handle this. 655 return true; 656 } 657 658 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 659 int *BytesRemoved) const { 660 assert(!BytesRemoved && "code size not handled"); 661 662 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 663 if (I == MBB.end()) 664 return 0; 665 666 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 667 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 668 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 669 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 670 return 0; 671 672 // Remove the branch. 673 I->eraseFromParent(); 674 675 I = MBB.end(); 676 677 if (I == MBB.begin()) return 1; 678 --I; 679 if (I->getOpcode() != PPC::BCC && 680 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 681 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 682 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 683 return 1; 684 685 // Remove the branch. 686 I->eraseFromParent(); 687 return 2; 688 } 689 690 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 691 MachineBasicBlock *TBB, 692 MachineBasicBlock *FBB, 693 ArrayRef<MachineOperand> Cond, 694 const DebugLoc &DL, 695 int *BytesAdded) const { 696 // Shouldn't be a fall through. 697 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 698 assert((Cond.size() == 2 || Cond.size() == 0) && 699 "PPC branch conditions have two components!"); 700 assert(!BytesAdded && "code size not handled"); 701 702 bool isPPC64 = Subtarget.isPPC64(); 703 704 // One-way branch. 705 if (!FBB) { 706 if (Cond.empty()) // Unconditional branch 707 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 708 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 709 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 710 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 711 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 712 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 713 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 714 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 715 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 716 else // Conditional branch 717 BuildMI(&MBB, DL, get(PPC::BCC)) 718 .addImm(Cond[0].getImm()) 719 .add(Cond[1]) 720 .addMBB(TBB); 721 return 1; 722 } 723 724 // Two-way Conditional Branch. 725 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 726 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 727 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 728 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 729 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 730 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 731 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 732 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 733 else 734 BuildMI(&MBB, DL, get(PPC::BCC)) 735 .addImm(Cond[0].getImm()) 736 .add(Cond[1]) 737 .addMBB(TBB); 738 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 739 return 2; 740 } 741 742 // Select analysis. 743 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 744 ArrayRef<MachineOperand> Cond, 745 unsigned TrueReg, unsigned FalseReg, 746 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 747 if (Cond.size() != 2) 748 return false; 749 750 // If this is really a bdnz-like condition, then it cannot be turned into a 751 // select. 752 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 753 return false; 754 755 // Check register classes. 756 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 757 const TargetRegisterClass *RC = 758 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 759 if (!RC) 760 return false; 761 762 // isel is for regular integer GPRs only. 763 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 764 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 765 !PPC::G8RCRegClass.hasSubClassEq(RC) && 766 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 767 return false; 768 769 // FIXME: These numbers are for the A2, how well they work for other cores is 770 // an open question. On the A2, the isel instruction has a 2-cycle latency 771 // but single-cycle throughput. These numbers are used in combination with 772 // the MispredictPenalty setting from the active SchedMachineModel. 773 CondCycles = 1; 774 TrueCycles = 1; 775 FalseCycles = 1; 776 777 return true; 778 } 779 780 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 781 MachineBasicBlock::iterator MI, 782 const DebugLoc &dl, unsigned DestReg, 783 ArrayRef<MachineOperand> Cond, unsigned TrueReg, 784 unsigned FalseReg) const { 785 assert(Cond.size() == 2 && 786 "PPC branch conditions have two components!"); 787 788 // Get the register classes. 789 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 790 const TargetRegisterClass *RC = 791 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 792 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 793 794 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 795 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 796 assert((Is64Bit || 797 PPC::GPRCRegClass.hasSubClassEq(RC) || 798 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 799 "isel is for regular integer GPRs only"); 800 801 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 802 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 803 804 unsigned SubIdx = 0; 805 bool SwapOps = false; 806 switch (SelectPred) { 807 case PPC::PRED_EQ: 808 case PPC::PRED_EQ_MINUS: 809 case PPC::PRED_EQ_PLUS: 810 SubIdx = PPC::sub_eq; SwapOps = false; break; 811 case PPC::PRED_NE: 812 case PPC::PRED_NE_MINUS: 813 case PPC::PRED_NE_PLUS: 814 SubIdx = PPC::sub_eq; SwapOps = true; break; 815 case PPC::PRED_LT: 816 case PPC::PRED_LT_MINUS: 817 case PPC::PRED_LT_PLUS: 818 SubIdx = PPC::sub_lt; SwapOps = false; break; 819 case PPC::PRED_GE: 820 case PPC::PRED_GE_MINUS: 821 case PPC::PRED_GE_PLUS: 822 SubIdx = PPC::sub_lt; SwapOps = true; break; 823 case PPC::PRED_GT: 824 case PPC::PRED_GT_MINUS: 825 case PPC::PRED_GT_PLUS: 826 SubIdx = PPC::sub_gt; SwapOps = false; break; 827 case PPC::PRED_LE: 828 case PPC::PRED_LE_MINUS: 829 case PPC::PRED_LE_PLUS: 830 SubIdx = PPC::sub_gt; SwapOps = true; break; 831 case PPC::PRED_UN: 832 case PPC::PRED_UN_MINUS: 833 case PPC::PRED_UN_PLUS: 834 SubIdx = PPC::sub_un; SwapOps = false; break; 835 case PPC::PRED_NU: 836 case PPC::PRED_NU_MINUS: 837 case PPC::PRED_NU_PLUS: 838 SubIdx = PPC::sub_un; SwapOps = true; break; 839 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 840 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 841 } 842 843 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 844 SecondReg = SwapOps ? TrueReg : FalseReg; 845 846 // The first input register of isel cannot be r0. If it is a member 847 // of a register class that can be r0, then copy it first (the 848 // register allocator should eliminate the copy). 849 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 850 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 851 const TargetRegisterClass *FirstRC = 852 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 853 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 854 unsigned OldFirstReg = FirstReg; 855 FirstReg = MRI.createVirtualRegister(FirstRC); 856 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 857 .addReg(OldFirstReg); 858 } 859 860 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 861 .addReg(FirstReg).addReg(SecondReg) 862 .addReg(Cond[1].getReg(), 0, SubIdx); 863 } 864 865 static unsigned getCRBitValue(unsigned CRBit) { 866 unsigned Ret = 4; 867 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 868 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 869 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 870 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 871 Ret = 3; 872 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 873 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 874 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 875 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 876 Ret = 2; 877 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 878 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 879 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 880 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 881 Ret = 1; 882 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 883 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 884 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 885 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 886 Ret = 0; 887 888 assert(Ret != 4 && "Invalid CR bit register"); 889 return Ret; 890 } 891 892 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 893 MachineBasicBlock::iterator I, 894 const DebugLoc &DL, unsigned DestReg, 895 unsigned SrcReg, bool KillSrc) const { 896 // We can end up with self copies and similar things as a result of VSX copy 897 // legalization. Promote them here. 898 const TargetRegisterInfo *TRI = &getRegisterInfo(); 899 if (PPC::F8RCRegClass.contains(DestReg) && 900 PPC::VSRCRegClass.contains(SrcReg)) { 901 unsigned SuperReg = 902 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 903 904 if (VSXSelfCopyCrash && SrcReg == SuperReg) 905 llvm_unreachable("nop VSX copy"); 906 907 DestReg = SuperReg; 908 } else if (PPC::F8RCRegClass.contains(SrcReg) && 909 PPC::VSRCRegClass.contains(DestReg)) { 910 unsigned SuperReg = 911 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 912 913 if (VSXSelfCopyCrash && DestReg == SuperReg) 914 llvm_unreachable("nop VSX copy"); 915 916 SrcReg = SuperReg; 917 } 918 919 // Different class register copy 920 if (PPC::CRBITRCRegClass.contains(SrcReg) && 921 PPC::GPRCRegClass.contains(DestReg)) { 922 unsigned CRReg = getCRFromCRBit(SrcReg); 923 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 924 getKillRegState(KillSrc); 925 // Rotate the CR bit in the CR fields to be the least significant bit and 926 // then mask with 0x1 (MB = ME = 31). 927 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 928 .addReg(DestReg, RegState::Kill) 929 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 930 .addImm(31) 931 .addImm(31); 932 return; 933 } else if (PPC::CRRCRegClass.contains(SrcReg) && 934 PPC::G8RCRegClass.contains(DestReg)) { 935 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 936 getKillRegState(KillSrc); 937 return; 938 } else if (PPC::CRRCRegClass.contains(SrcReg) && 939 PPC::GPRCRegClass.contains(DestReg)) { 940 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 941 getKillRegState(KillSrc); 942 return; 943 } else if (PPC::G8RCRegClass.contains(SrcReg) && 944 PPC::VSFRCRegClass.contains(DestReg)) { 945 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 946 NumGPRtoVSRSpill++; 947 getKillRegState(KillSrc); 948 return; 949 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 950 PPC::G8RCRegClass.contains(DestReg)) { 951 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 952 getKillRegState(KillSrc); 953 return; 954 } 955 956 unsigned Opc; 957 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 958 Opc = PPC::OR; 959 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 960 Opc = PPC::OR8; 961 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 962 Opc = PPC::FMR; 963 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 964 Opc = PPC::MCRF; 965 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 966 Opc = PPC::VOR; 967 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 968 // There are two different ways this can be done: 969 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 970 // issue in VSU pipeline 0. 971 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 972 // can go to either pipeline. 973 // We'll always use xxlor here, because in practically all cases where 974 // copies are generated, they are close enough to some use that the 975 // lower-latency form is preferable. 976 Opc = PPC::XXLOR; 977 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 978 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 979 Opc = PPC::XXLORf; 980 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 981 Opc = PPC::QVFMR; 982 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 983 Opc = PPC::QVFMRs; 984 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 985 Opc = PPC::QVFMRb; 986 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 987 Opc = PPC::CROR; 988 else 989 llvm_unreachable("Impossible reg-to-reg copy"); 990 991 const MCInstrDesc &MCID = get(Opc); 992 if (MCID.getNumOperands() == 3) 993 BuildMI(MBB, I, DL, MCID, DestReg) 994 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 995 else 996 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 997 } 998 999 // This function returns true if a CR spill is necessary and false otherwise. 1000 bool 1001 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, 1002 unsigned SrcReg, bool isKill, 1003 int FrameIdx, 1004 const TargetRegisterClass *RC, 1005 SmallVectorImpl<MachineInstr*> &NewMIs, 1006 bool &NonRI, bool &SpillsVRS) const{ 1007 // Note: If additional store instructions are added here, 1008 // update isStoreToStackSlot. 1009 1010 DebugLoc DL; 1011 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1012 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1013 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) 1014 .addReg(SrcReg, 1015 getKillRegState(isKill)), 1016 FrameIdx)); 1017 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1018 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1019 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) 1020 .addReg(SrcReg, 1021 getKillRegState(isKill)), 1022 FrameIdx)); 1023 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1024 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) 1025 .addReg(SrcReg, 1026 getKillRegState(isKill)), 1027 FrameIdx)); 1028 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1029 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) 1030 .addReg(SrcReg, 1031 getKillRegState(isKill)), 1032 FrameIdx)); 1033 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1034 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) 1035 .addReg(SrcReg, 1036 getKillRegState(isKill)), 1037 FrameIdx)); 1038 return true; 1039 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1040 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT)) 1041 .addReg(SrcReg, 1042 getKillRegState(isKill)), 1043 FrameIdx)); 1044 return true; 1045 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1046 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX)) 1047 .addReg(SrcReg, 1048 getKillRegState(isKill)), 1049 FrameIdx)); 1050 NonRI = true; 1051 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1052 unsigned Op = Subtarget.hasP9Vector() ? PPC::STXV : PPC::STXVD2X; 1053 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Op)) 1054 .addReg(SrcReg, 1055 getKillRegState(isKill)), 1056 FrameIdx)); 1057 NonRI = true; 1058 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1059 unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFSTOREf64 : PPC::STXSDX; 1060 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc)) 1061 .addReg(SrcReg, 1062 getKillRegState(isKill)), 1063 FrameIdx)); 1064 NonRI = true; 1065 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1066 unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFSTOREf32 : PPC::STXSSPX; 1067 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc)) 1068 .addReg(SrcReg, 1069 getKillRegState(isKill)), 1070 FrameIdx)); 1071 NonRI = true; 1072 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1073 assert(Subtarget.isDarwin() && 1074 "VRSAVE only needs spill/restore on Darwin"); 1075 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE)) 1076 .addReg(SrcReg, 1077 getKillRegState(isKill)), 1078 FrameIdx)); 1079 SpillsVRS = true; 1080 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1081 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX)) 1082 .addReg(SrcReg, 1083 getKillRegState(isKill)), 1084 FrameIdx)); 1085 NonRI = true; 1086 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1087 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs)) 1088 .addReg(SrcReg, 1089 getKillRegState(isKill)), 1090 FrameIdx)); 1091 NonRI = true; 1092 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1093 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb)) 1094 .addReg(SrcReg, 1095 getKillRegState(isKill)), 1096 FrameIdx)); 1097 NonRI = true; 1098 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1099 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILLTOVSR_ST)) 1100 .addReg(SrcReg, 1101 getKillRegState(isKill)), 1102 FrameIdx)); 1103 } else { 1104 llvm_unreachable("Unknown regclass!"); 1105 } 1106 1107 return false; 1108 } 1109 1110 void 1111 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1112 MachineBasicBlock::iterator MI, 1113 unsigned SrcReg, bool isKill, int FrameIdx, 1114 const TargetRegisterClass *RC, 1115 const TargetRegisterInfo *TRI) const { 1116 MachineFunction &MF = *MBB.getParent(); 1117 SmallVector<MachineInstr*, 4> NewMIs; 1118 1119 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1120 FuncInfo->setHasSpills(); 1121 1122 // We need to avoid a situation in which the value from a VRRC register is 1123 // spilled using an Altivec instruction and reloaded into a VSRC register 1124 // using a VSX instruction. The issue with this is that the VSX 1125 // load/store instructions swap the doublewords in the vector and the Altivec 1126 // ones don't. The register classes on the spill/reload may be different if 1127 // the register is defined using an Altivec instruction and is then used by a 1128 // VSX instruction. 1129 RC = updatedRC(RC); 1130 1131 bool NonRI = false, SpillsVRS = false; 1132 if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs, 1133 NonRI, SpillsVRS)) 1134 FuncInfo->setSpillsCR(); 1135 1136 if (SpillsVRS) 1137 FuncInfo->setSpillsVRSAVE(); 1138 1139 if (NonRI) 1140 FuncInfo->setHasNonRISpills(); 1141 1142 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1143 MBB.insert(MI, NewMIs[i]); 1144 1145 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1146 MachineMemOperand *MMO = MF.getMachineMemOperand( 1147 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1148 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1149 MFI.getObjectAlignment(FrameIdx)); 1150 NewMIs.back()->addMemOperand(MF, MMO); 1151 } 1152 1153 bool PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1154 unsigned DestReg, int FrameIdx, 1155 const TargetRegisterClass *RC, 1156 SmallVectorImpl<MachineInstr *> &NewMIs, 1157 bool &NonRI, bool &SpillsVRS) const { 1158 // Note: If additional load instructions are added here, 1159 // update isLoadFromStackSlot. 1160 1161 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1162 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1163 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), 1164 DestReg), FrameIdx)); 1165 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1166 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1167 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), 1168 FrameIdx)); 1169 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1170 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), 1171 FrameIdx)); 1172 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1173 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), 1174 FrameIdx)); 1175 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1176 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1177 get(PPC::RESTORE_CR), DestReg), 1178 FrameIdx)); 1179 return true; 1180 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1181 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1182 get(PPC::RESTORE_CRBIT), DestReg), 1183 FrameIdx)); 1184 return true; 1185 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1186 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg), 1187 FrameIdx)); 1188 NonRI = true; 1189 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1190 unsigned Op = Subtarget.hasP9Vector() ? PPC::LXV : PPC::LXVD2X; 1191 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Op), DestReg), 1192 FrameIdx)); 1193 NonRI = true; 1194 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1195 unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFLOADf64 : PPC::LXSDX; 1196 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc), 1197 DestReg), FrameIdx)); 1198 NonRI = true; 1199 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1200 unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFLOADf32 : PPC::LXSSPX; 1201 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc), 1202 DestReg), FrameIdx)); 1203 NonRI = true; 1204 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1205 assert(Subtarget.isDarwin() && 1206 "VRSAVE only needs spill/restore on Darwin"); 1207 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1208 get(PPC::RESTORE_VRSAVE), 1209 DestReg), 1210 FrameIdx)); 1211 SpillsVRS = true; 1212 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1213 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg), 1214 FrameIdx)); 1215 NonRI = true; 1216 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1217 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg), 1218 FrameIdx)); 1219 NonRI = true; 1220 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1221 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg), 1222 FrameIdx)); 1223 NonRI = true; 1224 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1225 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILLTOVSR_LD), 1226 DestReg), FrameIdx)); 1227 } else { 1228 llvm_unreachable("Unknown regclass!"); 1229 } 1230 1231 return false; 1232 } 1233 1234 void 1235 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1236 MachineBasicBlock::iterator MI, 1237 unsigned DestReg, int FrameIdx, 1238 const TargetRegisterClass *RC, 1239 const TargetRegisterInfo *TRI) const { 1240 MachineFunction &MF = *MBB.getParent(); 1241 SmallVector<MachineInstr*, 4> NewMIs; 1242 DebugLoc DL; 1243 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1244 1245 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1246 FuncInfo->setHasSpills(); 1247 1248 // We need to avoid a situation in which the value from a VRRC register is 1249 // spilled using an Altivec instruction and reloaded into a VSRC register 1250 // using a VSX instruction. The issue with this is that the VSX 1251 // load/store instructions swap the doublewords in the vector and the Altivec 1252 // ones don't. The register classes on the spill/reload may be different if 1253 // the register is defined using an Altivec instruction and is then used by a 1254 // VSX instruction. 1255 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 1256 RC = &PPC::VSRCRegClass; 1257 1258 bool NonRI = false, SpillsVRS = false; 1259 if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs, 1260 NonRI, SpillsVRS)) 1261 FuncInfo->setSpillsCR(); 1262 1263 if (SpillsVRS) 1264 FuncInfo->setSpillsVRSAVE(); 1265 1266 if (NonRI) 1267 FuncInfo->setHasNonRISpills(); 1268 1269 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1270 MBB.insert(MI, NewMIs[i]); 1271 1272 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1273 MachineMemOperand *MMO = MF.getMachineMemOperand( 1274 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1275 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1276 MFI.getObjectAlignment(FrameIdx)); 1277 NewMIs.back()->addMemOperand(MF, MMO); 1278 } 1279 1280 bool PPCInstrInfo:: 1281 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1282 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1283 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1284 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1285 else 1286 // Leave the CR# the same, but invert the condition. 1287 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1288 return false; 1289 } 1290 1291 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1292 unsigned Reg, MachineRegisterInfo *MRI) const { 1293 // For some instructions, it is legal to fold ZERO into the RA register field. 1294 // A zero immediate should always be loaded with a single li. 1295 unsigned DefOpc = DefMI.getOpcode(); 1296 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1297 return false; 1298 if (!DefMI.getOperand(1).isImm()) 1299 return false; 1300 if (DefMI.getOperand(1).getImm() != 0) 1301 return false; 1302 1303 // Note that we cannot here invert the arguments of an isel in order to fold 1304 // a ZERO into what is presented as the second argument. All we have here 1305 // is the condition bit, and that might come from a CR-logical bit operation. 1306 1307 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1308 1309 // Only fold into real machine instructions. 1310 if (UseMCID.isPseudo()) 1311 return false; 1312 1313 unsigned UseIdx; 1314 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1315 if (UseMI.getOperand(UseIdx).isReg() && 1316 UseMI.getOperand(UseIdx).getReg() == Reg) 1317 break; 1318 1319 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1320 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1321 1322 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1323 1324 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1325 // register (which might also be specified as a pointer class kind). 1326 if (UseInfo->isLookupPtrRegClass()) { 1327 if (UseInfo->RegClass /* Kind */ != 1) 1328 return false; 1329 } else { 1330 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1331 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1332 return false; 1333 } 1334 1335 // Make sure this is not tied to an output register (or otherwise 1336 // constrained). This is true for ST?UX registers, for example, which 1337 // are tied to their output registers. 1338 if (UseInfo->Constraints != 0) 1339 return false; 1340 1341 unsigned ZeroReg; 1342 if (UseInfo->isLookupPtrRegClass()) { 1343 bool isPPC64 = Subtarget.isPPC64(); 1344 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1345 } else { 1346 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1347 PPC::ZERO8 : PPC::ZERO; 1348 } 1349 1350 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1351 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1352 1353 if (DeleteDef) 1354 DefMI.eraseFromParent(); 1355 1356 return true; 1357 } 1358 1359 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1360 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1361 I != IE; ++I) 1362 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1363 return true; 1364 return false; 1365 } 1366 1367 // We should make sure that, if we're going to predicate both sides of a 1368 // condition (a diamond), that both sides don't define the counter register. We 1369 // can predicate counter-decrement-based branches, but while that predicates 1370 // the branching, it does not predicate the counter decrement. If we tried to 1371 // merge the triangle into one predicated block, we'd decrement the counter 1372 // twice. 1373 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1374 unsigned NumT, unsigned ExtraT, 1375 MachineBasicBlock &FMBB, 1376 unsigned NumF, unsigned ExtraF, 1377 BranchProbability Probability) const { 1378 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1379 } 1380 1381 1382 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1383 // The predicated branches are identified by their type, not really by the 1384 // explicit presence of a predicate. Furthermore, some of them can be 1385 // predicated more than once. Because if conversion won't try to predicate 1386 // any instruction which already claims to be predicated (by returning true 1387 // here), always return false. In doing so, we let isPredicable() be the 1388 // final word on whether not the instruction can be (further) predicated. 1389 1390 return false; 1391 } 1392 1393 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 1394 if (!MI.isTerminator()) 1395 return false; 1396 1397 // Conditional branch is a special case. 1398 if (MI.isBranch() && !MI.isBarrier()) 1399 return true; 1400 1401 return !isPredicated(MI); 1402 } 1403 1404 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1405 ArrayRef<MachineOperand> Pred) const { 1406 unsigned OpC = MI.getOpcode(); 1407 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1408 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1409 bool isPPC64 = Subtarget.isPPC64(); 1410 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1411 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1412 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1413 MI.setDesc(get(PPC::BCLR)); 1414 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1415 .addReg(Pred[1].getReg()); 1416 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1417 MI.setDesc(get(PPC::BCLRn)); 1418 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1419 .addReg(Pred[1].getReg()); 1420 } else { 1421 MI.setDesc(get(PPC::BCCLR)); 1422 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1423 .addImm(Pred[0].getImm()) 1424 .addReg(Pred[1].getReg()); 1425 } 1426 1427 return true; 1428 } else if (OpC == PPC::B) { 1429 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1430 bool isPPC64 = Subtarget.isPPC64(); 1431 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1432 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1433 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1434 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1435 MI.RemoveOperand(0); 1436 1437 MI.setDesc(get(PPC::BC)); 1438 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1439 .addReg(Pred[1].getReg()) 1440 .addMBB(MBB); 1441 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1442 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1443 MI.RemoveOperand(0); 1444 1445 MI.setDesc(get(PPC::BCn)); 1446 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1447 .addReg(Pred[1].getReg()) 1448 .addMBB(MBB); 1449 } else { 1450 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1451 MI.RemoveOperand(0); 1452 1453 MI.setDesc(get(PPC::BCC)); 1454 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1455 .addImm(Pred[0].getImm()) 1456 .addReg(Pred[1].getReg()) 1457 .addMBB(MBB); 1458 } 1459 1460 return true; 1461 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || 1462 OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { 1463 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1464 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1465 1466 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1467 bool isPPC64 = Subtarget.isPPC64(); 1468 1469 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1470 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1471 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1472 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1473 .addReg(Pred[1].getReg()); 1474 return true; 1475 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1476 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1477 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1478 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1479 .addReg(Pred[1].getReg()); 1480 return true; 1481 } 1482 1483 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1484 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1485 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1486 .addImm(Pred[0].getImm()) 1487 .addReg(Pred[1].getReg()); 1488 return true; 1489 } 1490 1491 return false; 1492 } 1493 1494 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1495 ArrayRef<MachineOperand> Pred2) const { 1496 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1497 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1498 1499 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1500 return false; 1501 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1502 return false; 1503 1504 // P1 can only subsume P2 if they test the same condition register. 1505 if (Pred1[1].getReg() != Pred2[1].getReg()) 1506 return false; 1507 1508 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1509 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1510 1511 if (P1 == P2) 1512 return true; 1513 1514 // Does P1 subsume P2, e.g. GE subsumes GT. 1515 if (P1 == PPC::PRED_LE && 1516 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1517 return true; 1518 if (P1 == PPC::PRED_GE && 1519 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1520 return true; 1521 1522 return false; 1523 } 1524 1525 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1526 std::vector<MachineOperand> &Pred) const { 1527 // Note: At the present time, the contents of Pred from this function is 1528 // unused by IfConversion. This implementation follows ARM by pushing the 1529 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1530 // predicate, instructions defining CTR or CTR8 are also included as 1531 // predicate-defining instructions. 1532 1533 const TargetRegisterClass *RCs[] = 1534 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1535 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1536 1537 bool Found = false; 1538 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1539 const MachineOperand &MO = MI.getOperand(i); 1540 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1541 const TargetRegisterClass *RC = RCs[c]; 1542 if (MO.isReg()) { 1543 if (MO.isDef() && RC->contains(MO.getReg())) { 1544 Pred.push_back(MO); 1545 Found = true; 1546 } 1547 } else if (MO.isRegMask()) { 1548 for (TargetRegisterClass::iterator I = RC->begin(), 1549 IE = RC->end(); I != IE; ++I) 1550 if (MO.clobbersPhysReg(*I)) { 1551 Pred.push_back(MO); 1552 Found = true; 1553 } 1554 } 1555 } 1556 } 1557 1558 return Found; 1559 } 1560 1561 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const { 1562 unsigned OpC = MI.getOpcode(); 1563 switch (OpC) { 1564 default: 1565 return false; 1566 case PPC::B: 1567 case PPC::BLR: 1568 case PPC::BLR8: 1569 case PPC::BCTR: 1570 case PPC::BCTR8: 1571 case PPC::BCTRL: 1572 case PPC::BCTRL8: 1573 return true; 1574 } 1575 } 1576 1577 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 1578 unsigned &SrcReg2, int &Mask, 1579 int &Value) const { 1580 unsigned Opc = MI.getOpcode(); 1581 1582 switch (Opc) { 1583 default: return false; 1584 case PPC::CMPWI: 1585 case PPC::CMPLWI: 1586 case PPC::CMPDI: 1587 case PPC::CMPLDI: 1588 SrcReg = MI.getOperand(1).getReg(); 1589 SrcReg2 = 0; 1590 Value = MI.getOperand(2).getImm(); 1591 Mask = 0xFFFF; 1592 return true; 1593 case PPC::CMPW: 1594 case PPC::CMPLW: 1595 case PPC::CMPD: 1596 case PPC::CMPLD: 1597 case PPC::FCMPUS: 1598 case PPC::FCMPUD: 1599 SrcReg = MI.getOperand(1).getReg(); 1600 SrcReg2 = MI.getOperand(2).getReg(); 1601 Value = 0; 1602 Mask = 0; 1603 return true; 1604 } 1605 } 1606 1607 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, 1608 unsigned SrcReg2, int Mask, int Value, 1609 const MachineRegisterInfo *MRI) const { 1610 if (DisableCmpOpt) 1611 return false; 1612 1613 int OpC = CmpInstr.getOpcode(); 1614 unsigned CRReg = CmpInstr.getOperand(0).getReg(); 1615 1616 // FP record forms set CR1 based on the execption status bits, not a 1617 // comparison with zero. 1618 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1619 return false; 1620 1621 // The record forms set the condition register based on a signed comparison 1622 // with zero (so says the ISA manual). This is not as straightforward as it 1623 // seems, however, because this is always a 64-bit comparison on PPC64, even 1624 // for instructions that are 32-bit in nature (like slw for example). 1625 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1626 // for equality checks (as those don't depend on the sign). On PPC64, 1627 // we are restricted to equality for unsigned 64-bit comparisons and for 1628 // signed 32-bit comparisons the applicability is more restricted. 1629 bool isPPC64 = Subtarget.isPPC64(); 1630 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1631 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1632 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1633 1634 // Get the unique definition of SrcReg. 1635 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1636 if (!MI) return false; 1637 1638 bool equalityOnly = false; 1639 bool noSub = false; 1640 if (isPPC64) { 1641 if (is32BitSignedCompare) { 1642 // We can perform this optimization only if MI is sign-extending. 1643 if (isSignExtended(*MI)) 1644 noSub = true; 1645 else 1646 return false; 1647 } else if (is32BitUnsignedCompare) { 1648 // We can perform this optimization, equality only, if MI is 1649 // zero-extending. 1650 if (isZeroExtended(*MI)) { 1651 noSub = true; 1652 equalityOnly = true; 1653 } else 1654 return false; 1655 } else 1656 equalityOnly = is64BitUnsignedCompare; 1657 } else 1658 equalityOnly = is32BitUnsignedCompare; 1659 1660 if (equalityOnly) { 1661 // We need to check the uses of the condition register in order to reject 1662 // non-equality comparisons. 1663 for (MachineRegisterInfo::use_instr_iterator 1664 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1665 I != IE; ++I) { 1666 MachineInstr *UseMI = &*I; 1667 if (UseMI->getOpcode() == PPC::BCC) { 1668 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1669 unsigned PredCond = PPC::getPredicateCondition(Pred); 1670 // We ignore hint bits when checking for non-equality comparisons. 1671 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1672 return false; 1673 } else if (UseMI->getOpcode() == PPC::ISEL || 1674 UseMI->getOpcode() == PPC::ISEL8) { 1675 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1676 if (SubIdx != PPC::sub_eq) 1677 return false; 1678 } else 1679 return false; 1680 } 1681 } 1682 1683 MachineBasicBlock::iterator I = CmpInstr; 1684 1685 // Scan forward to find the first use of the compare. 1686 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1687 ++I) { 1688 bool FoundUse = false; 1689 for (MachineRegisterInfo::use_instr_iterator 1690 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 1691 J != JE; ++J) 1692 if (&*J == &*I) { 1693 FoundUse = true; 1694 break; 1695 } 1696 1697 if (FoundUse) 1698 break; 1699 } 1700 1701 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1702 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1703 1704 // There are two possible candidates which can be changed to set CR[01]. 1705 // One is MI, the other is a SUB instruction. 1706 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1707 MachineInstr *Sub = nullptr; 1708 if (SrcReg2 != 0) 1709 // MI is not a candidate for CMPrr. 1710 MI = nullptr; 1711 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1712 // same BB as the comparison. This is to allow the check below to avoid calls 1713 // (and other explicit clobbers); instead we should really check for these 1714 // more explicitly (in at least a few predecessors). 1715 else if (MI->getParent() != CmpInstr.getParent()) 1716 return false; 1717 else if (Value != 0) { 1718 // The record-form instructions set CR bit based on signed comparison against 0. 1719 // We try to convert a compare against 1 or -1 into a compare against 0. 1720 bool Success = false; 1721 if (!equalityOnly && MRI->hasOneUse(CRReg)) { 1722 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 1723 if (UseMI->getOpcode() == PPC::BCC) { 1724 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1725 unsigned PredCond = PPC::getPredicateCondition(Pred); 1726 unsigned PredHint = PPC::getPredicateHint(Pred); 1727 int16_t Immed = (int16_t)Value; 1728 1729 // When modyfing the condition in the predicate, we propagate hint bits 1730 // from the original predicate to the new one. 1731 if (Immed == -1 && PredCond == PPC::PRED_GT) { 1732 // We convert "greater than -1" into "greater than or equal to 0", 1733 // since we are assuming signed comparison by !equalityOnly 1734 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1735 PPC::getPredicate(PPC::PRED_GE, PredHint))); 1736 Success = true; 1737 } 1738 else if (Immed == 1 && PredCond == PPC::PRED_LT) { 1739 // We convert "less than 1" into "less than or equal to 0". 1740 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1741 PPC::getPredicate(PPC::PRED_LE, PredHint))); 1742 Success = true; 1743 } 1744 } 1745 } 1746 1747 // PPC does not have a record-form SUBri. 1748 if (!Success) 1749 return false; 1750 } 1751 1752 // Search for Sub. 1753 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1754 --I; 1755 1756 // Get ready to iterate backward from CmpInstr. 1757 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 1758 1759 for (; I != E && !noSub; --I) { 1760 const MachineInstr &Instr = *I; 1761 unsigned IOpC = Instr.getOpcode(); 1762 1763 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 1764 Instr.readsRegister(PPC::CR0, TRI))) 1765 // This instruction modifies or uses the record condition register after 1766 // the one we want to change. While we could do this transformation, it 1767 // would likely not be profitable. This transformation removes one 1768 // instruction, and so even forcing RA to generate one move probably 1769 // makes it unprofitable. 1770 return false; 1771 1772 // Check whether CmpInstr can be made redundant by the current instruction. 1773 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1774 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1775 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1776 ((Instr.getOperand(1).getReg() == SrcReg && 1777 Instr.getOperand(2).getReg() == SrcReg2) || 1778 (Instr.getOperand(1).getReg() == SrcReg2 && 1779 Instr.getOperand(2).getReg() == SrcReg))) { 1780 Sub = &*I; 1781 break; 1782 } 1783 1784 if (I == B) 1785 // The 'and' is below the comparison instruction. 1786 return false; 1787 } 1788 1789 // Return false if no candidates exist. 1790 if (!MI && !Sub) 1791 return false; 1792 1793 // The single candidate is called MI. 1794 if (!MI) MI = Sub; 1795 1796 int NewOpC = -1; 1797 int MIOpC = MI->getOpcode(); 1798 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8) 1799 NewOpC = MIOpC; 1800 else { 1801 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1802 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1803 NewOpC = MIOpC; 1804 } 1805 1806 // FIXME: On the non-embedded POWER architectures, only some of the record 1807 // forms are fast, and we should use only the fast ones. 1808 1809 // The defining instruction has a record form (or is already a record 1810 // form). It is possible, however, that we'll need to reverse the condition 1811 // code of the users. 1812 if (NewOpC == -1) 1813 return false; 1814 1815 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1816 // needs to be updated to be based on SUB. Push the condition code 1817 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1818 // condition code of these operands will be modified. 1819 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 1820 // comparison against 0, which may modify predicate. 1821 bool ShouldSwap = false; 1822 if (Sub && Value == 0) { 1823 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1824 Sub->getOperand(2).getReg() == SrcReg; 1825 1826 // The operands to subf are the opposite of sub, so only in the fixed-point 1827 // case, invert the order. 1828 ShouldSwap = !ShouldSwap; 1829 } 1830 1831 if (ShouldSwap) 1832 for (MachineRegisterInfo::use_instr_iterator 1833 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1834 I != IE; ++I) { 1835 MachineInstr *UseMI = &*I; 1836 if (UseMI->getOpcode() == PPC::BCC) { 1837 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1838 unsigned PredCond = PPC::getPredicateCondition(Pred); 1839 assert((!equalityOnly || 1840 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 1841 "Invalid predicate for equality-only optimization"); 1842 (void)PredCond; // To suppress warning in release build. 1843 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1844 PPC::getSwappedPredicate(Pred))); 1845 } else if (UseMI->getOpcode() == PPC::ISEL || 1846 UseMI->getOpcode() == PPC::ISEL8) { 1847 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1848 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1849 "Invalid CR bit for equality-only optimization"); 1850 1851 if (NewSubReg == PPC::sub_lt) 1852 NewSubReg = PPC::sub_gt; 1853 else if (NewSubReg == PPC::sub_gt) 1854 NewSubReg = PPC::sub_lt; 1855 1856 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1857 NewSubReg)); 1858 } else // We need to abort on a user we don't understand. 1859 return false; 1860 } 1861 assert(!(Value != 0 && ShouldSwap) && 1862 "Non-zero immediate support and ShouldSwap" 1863 "may conflict in updating predicate"); 1864 1865 // Create a new virtual register to hold the value of the CR set by the 1866 // record-form instruction. If the instruction was not previously in 1867 // record form, then set the kill flag on the CR. 1868 CmpInstr.eraseFromParent(); 1869 1870 MachineBasicBlock::iterator MII = MI; 1871 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1872 get(TargetOpcode::COPY), CRReg) 1873 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1874 1875 // Even if CR0 register were dead before, it is alive now since the 1876 // instruction we just built uses it. 1877 MI->clearRegisterDeads(PPC::CR0); 1878 1879 if (MIOpC != NewOpC) { 1880 // We need to be careful here: we're replacing one instruction with 1881 // another, and we need to make sure that we get all of the right 1882 // implicit uses and defs. On the other hand, the caller may be holding 1883 // an iterator to this instruction, and so we can't delete it (this is 1884 // specifically the case if this is the instruction directly after the 1885 // compare). 1886 1887 const MCInstrDesc &NewDesc = get(NewOpC); 1888 MI->setDesc(NewDesc); 1889 1890 if (NewDesc.ImplicitDefs) 1891 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 1892 *ImpDefs; ++ImpDefs) 1893 if (!MI->definesRegister(*ImpDefs)) 1894 MI->addOperand(*MI->getParent()->getParent(), 1895 MachineOperand::CreateReg(*ImpDefs, true, true)); 1896 if (NewDesc.ImplicitUses) 1897 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 1898 *ImpUses; ++ImpUses) 1899 if (!MI->readsRegister(*ImpUses)) 1900 MI->addOperand(*MI->getParent()->getParent(), 1901 MachineOperand::CreateReg(*ImpUses, false, true)); 1902 } 1903 assert(MI->definesRegister(PPC::CR0) && 1904 "Record-form instruction does not define cr0?"); 1905 1906 // Modify the condition code of operands in OperandsToUpdate. 1907 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1908 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1909 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1910 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1911 1912 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1913 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1914 1915 return true; 1916 } 1917 1918 /// GetInstSize - Return the number of bytes of code the specified 1919 /// instruction may be. This returns the maximum number of bytes. 1920 /// 1921 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 1922 unsigned Opcode = MI.getOpcode(); 1923 1924 if (Opcode == PPC::INLINEASM) { 1925 const MachineFunction *MF = MI.getParent()->getParent(); 1926 const char *AsmStr = MI.getOperand(0).getSymbolName(); 1927 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1928 } else if (Opcode == TargetOpcode::STACKMAP) { 1929 StackMapOpers Opers(&MI); 1930 return Opers.getNumPatchBytes(); 1931 } else if (Opcode == TargetOpcode::PATCHPOINT) { 1932 PatchPointOpers Opers(&MI); 1933 return Opers.getNumPatchBytes(); 1934 } else { 1935 return get(Opcode).getSize(); 1936 } 1937 } 1938 1939 std::pair<unsigned, unsigned> 1940 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 1941 const unsigned Mask = PPCII::MO_ACCESS_MASK; 1942 return std::make_pair(TF & Mask, TF & ~Mask); 1943 } 1944 1945 ArrayRef<std::pair<unsigned, const char *>> 1946 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 1947 using namespace PPCII; 1948 static const std::pair<unsigned, const char *> TargetFlags[] = { 1949 {MO_LO, "ppc-lo"}, 1950 {MO_HA, "ppc-ha"}, 1951 {MO_TPREL_LO, "ppc-tprel-lo"}, 1952 {MO_TPREL_HA, "ppc-tprel-ha"}, 1953 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 1954 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 1955 {MO_TOC_LO, "ppc-toc-lo"}, 1956 {MO_TLS, "ppc-tls"}}; 1957 return makeArrayRef(TargetFlags); 1958 } 1959 1960 ArrayRef<std::pair<unsigned, const char *>> 1961 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 1962 using namespace PPCII; 1963 static const std::pair<unsigned, const char *> TargetFlags[] = { 1964 {MO_PLT, "ppc-plt"}, 1965 {MO_PIC_FLAG, "ppc-pic"}, 1966 {MO_NLP_FLAG, "ppc-nlp"}, 1967 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}}; 1968 return makeArrayRef(TargetFlags); 1969 } 1970 1971 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1972 auto &MBB = *MI.getParent(); 1973 auto DL = MI.getDebugLoc(); 1974 switch (MI.getOpcode()) { 1975 case TargetOpcode::LOAD_STACK_GUARD: { 1976 assert(Subtarget.isTargetLinux() && 1977 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 1978 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 1979 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 1980 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 1981 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1982 .addImm(Offset) 1983 .addReg(Reg); 1984 return true; 1985 } 1986 case PPC::DFLOADf32: 1987 case PPC::DFLOADf64: 1988 case PPC::DFSTOREf32: 1989 case PPC::DFSTOREf64: { 1990 assert(Subtarget.hasP9Vector() && 1991 "Invalid D-Form Pseudo-ops on non-P9 target."); 1992 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isImm() && 1993 "D-form op must have register and immediate operands"); 1994 unsigned UpperOpcode, LowerOpcode; 1995 switch (MI.getOpcode()) { 1996 case PPC::DFLOADf32: 1997 UpperOpcode = PPC::LXSSP; 1998 LowerOpcode = PPC::LFS; 1999 break; 2000 case PPC::DFLOADf64: 2001 UpperOpcode = PPC::LXSD; 2002 LowerOpcode = PPC::LFD; 2003 break; 2004 case PPC::DFSTOREf32: 2005 UpperOpcode = PPC::STXSSP; 2006 LowerOpcode = PPC::STFS; 2007 break; 2008 case PPC::DFSTOREf64: 2009 UpperOpcode = PPC::STXSD; 2010 LowerOpcode = PPC::STFD; 2011 break; 2012 } 2013 unsigned TargetReg = MI.getOperand(0).getReg(); 2014 unsigned Opcode; 2015 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2016 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2017 Opcode = LowerOpcode; 2018 else 2019 Opcode = UpperOpcode; 2020 MI.setDesc(get(Opcode)); 2021 return true; 2022 } 2023 case PPC::SPILLTOVSR_LD: { 2024 unsigned TargetReg = MI.getOperand(0).getReg(); 2025 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2026 MI.setDesc(get(PPC::DFLOADf64)); 2027 return expandPostRAPseudo(MI); 2028 } 2029 else 2030 MI.setDesc(get(PPC::LD)); 2031 return true; 2032 } 2033 case PPC::SPILLTOVSR_ST: { 2034 unsigned SrcReg = MI.getOperand(0).getReg(); 2035 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2036 NumStoreSPILLVSRRCAsVec++; 2037 MI.setDesc(get(PPC::DFSTOREf64)); 2038 return expandPostRAPseudo(MI); 2039 } else { 2040 NumStoreSPILLVSRRCAsGpr++; 2041 MI.setDesc(get(PPC::STD)); 2042 } 2043 return true; 2044 } 2045 case PPC::SPILLTOVSR_LDX: { 2046 unsigned TargetReg = MI.getOperand(0).getReg(); 2047 if (PPC::VSFRCRegClass.contains(TargetReg)) 2048 MI.setDesc(get(PPC::LXSDX)); 2049 else 2050 MI.setDesc(get(PPC::LDX)); 2051 return true; 2052 } 2053 case PPC::SPILLTOVSR_STX: { 2054 unsigned SrcReg = MI.getOperand(0).getReg(); 2055 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2056 NumStoreSPILLVSRRCAsVec++; 2057 MI.setDesc(get(PPC::STXSDX)); 2058 } else { 2059 NumStoreSPILLVSRRCAsGpr++; 2060 MI.setDesc(get(PPC::STDX)); 2061 } 2062 return true; 2063 } 2064 2065 case PPC::CFENCE8: { 2066 auto Val = MI.getOperand(0).getReg(); 2067 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2068 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2069 .addImm(PPC::PRED_NE_MINUS) 2070 .addReg(PPC::CR7) 2071 .addImm(1); 2072 MI.setDesc(get(PPC::ISYNC)); 2073 MI.RemoveOperand(0); 2074 return true; 2075 } 2076 } 2077 return false; 2078 } 2079 2080 const TargetRegisterClass * 2081 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 2082 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 2083 return &PPC::VSRCRegClass; 2084 return RC; 2085 } 2086 2087 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 2088 return PPC::getRecordFormOpcode(Opcode); 2089 } 2090 2091 // This function returns true if the machine instruction 2092 // always outputs a value by sign-extending a 32 bit value, 2093 // i.e. 0 to 31-th bits are same as 32-th bit. 2094 static bool isSignExtendingOp(const MachineInstr &MI) { 2095 int Opcode = MI.getOpcode(); 2096 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 2097 Opcode == PPC::LIS || Opcode == PPC::LIS8 || 2098 Opcode == PPC::SRAW || Opcode == PPC::SRAWo || 2099 Opcode == PPC::SRAWI || Opcode == PPC::SRAWIo || 2100 Opcode == PPC::LWA || Opcode == PPC::LWAX || 2101 Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 2102 Opcode == PPC::LHA || Opcode == PPC::LHAX || 2103 Opcode == PPC::LHA8 || Opcode == PPC::LHAX8 || 2104 Opcode == PPC::LBZ || Opcode == PPC::LBZX || 2105 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 2106 Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 2107 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 2108 Opcode == PPC::LHZ || Opcode == PPC::LHZX || 2109 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || 2110 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 2111 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || 2112 Opcode == PPC::EXTSB || Opcode == PPC::EXTSBo || 2113 Opcode == PPC::EXTSH || Opcode == PPC::EXTSHo || 2114 Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8 || 2115 Opcode == PPC::EXTSW || Opcode == PPC::EXTSWo || 2116 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 2117 Opcode == PPC::EXTSB8_32_64) 2118 return true; 2119 2120 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 2121 return true; 2122 2123 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo || 2124 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo) && 2125 MI.getOperand(3).getImm() > 0 && 2126 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 2127 return true; 2128 2129 return false; 2130 } 2131 2132 // This function returns true if the machine instruction 2133 // always outputs zeros in higher 32 bits. 2134 static bool isZeroExtendingOp(const MachineInstr &MI) { 2135 int Opcode = MI.getOpcode(); 2136 // The 16-bit immediate is sign-extended in li/lis. 2137 // If the most significant bit is zero, all higher bits are zero. 2138 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 2139 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 2140 int64_t Imm = MI.getOperand(1).getImm(); 2141 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 2142 return true; 2143 } 2144 2145 // We have some variations of rotate-and-mask instructions 2146 // that clear higher 32-bits. 2147 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo || 2148 Opcode == PPC::RLDCL || Opcode == PPC::RLDCLo || 2149 Opcode == PPC::RLDICL_32_64) && 2150 MI.getOperand(3).getImm() >= 32) 2151 return true; 2152 2153 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) && 2154 MI.getOperand(3).getImm() >= 32 && 2155 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 2156 return true; 2157 2158 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo || 2159 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo || 2160 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 2161 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 2162 return true; 2163 2164 // There are other instructions that clear higher 32-bits. 2165 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZWo || 2166 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZWo || 2167 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 2168 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZDo || 2169 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZDo || 2170 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || 2171 Opcode == PPC::SLW || Opcode == PPC::SLWo || 2172 Opcode == PPC::SRW || Opcode == PPC::SRWo || 2173 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || 2174 Opcode == PPC::SLWI || Opcode == PPC::SLWIo || 2175 Opcode == PPC::SRWI || Opcode == PPC::SRWIo || 2176 Opcode == PPC::LWZ || Opcode == PPC::LWZX || 2177 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || 2178 Opcode == PPC::LWBRX || Opcode == PPC::LHBRX || 2179 Opcode == PPC::LHZ || Opcode == PPC::LHZX || 2180 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 2181 Opcode == PPC::LBZ || Opcode == PPC::LBZX || 2182 Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 2183 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || 2184 Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8 || 2185 Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 2186 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || 2187 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || 2188 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 2189 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 2190 Opcode == PPC::ANDIo || Opcode == PPC::ANDISo || 2191 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWIo || 2192 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWIo || 2193 Opcode == PPC::MFVSRWZ) 2194 return true; 2195 2196 return false; 2197 } 2198 2199 // We limit the max depth to track incoming values of PHIs or binary ops 2200 // (e.g. AND) to avoid exsessive cost. 2201 const unsigned MAX_DEPTH = 1; 2202 2203 bool 2204 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 2205 const unsigned Depth) const { 2206 const MachineFunction *MF = MI.getParent()->getParent(); 2207 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 2208 2209 // If we know this instruction returns sign- or zero-extended result, 2210 // return true. 2211 if (SignExt ? isSignExtendingOp(MI): 2212 isZeroExtendingOp(MI)) 2213 return true; 2214 2215 switch (MI.getOpcode()) { 2216 case PPC::COPY: { 2217 unsigned SrcReg = MI.getOperand(1).getReg(); 2218 2219 // In both ELFv1 and v2 ABI, method parameters and the return value 2220 // are sign- or zero-extended. 2221 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 2222 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 2223 // We check the ZExt/SExt flags for a method parameter. 2224 if (MI.getParent()->getBasicBlock() == 2225 &MF->getFunction()->getEntryBlock()) { 2226 unsigned VReg = MI.getOperand(0).getReg(); 2227 if (MF->getRegInfo().isLiveIn(VReg)) 2228 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 2229 FuncInfo->isLiveInZExt(VReg); 2230 } 2231 2232 // For a method return value, we check the ZExt/SExt flags in attribute. 2233 // We assume the following code sequence for method call. 2234 // ADJCALLSTACKDOWN 32, %R1<imp-def,dead>, %R1<imp-use> 2235 // BL8_NOP <ga:@func>,... 2236 // ADJCALLSTACKUP 32, 0, %R1<imp-def,dead>, %R1<imp-use> 2237 // %vreg5<def> = COPY %X3; G8RC:%vreg5 2238 if (SrcReg == PPC::X3) { 2239 const MachineBasicBlock *MBB = MI.getParent(); 2240 MachineBasicBlock::const_instr_iterator II = 2241 MachineBasicBlock::const_instr_iterator(&MI); 2242 if (II != MBB->instr_begin() && 2243 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 2244 const MachineInstr &CallMI = *(--II); 2245 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 2246 const Function *CalleeFn = 2247 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 2248 if (!CalleeFn) 2249 return false; 2250 const IntegerType *IntTy = 2251 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 2252 const AttributeSet &Attrs = 2253 CalleeFn->getAttributes().getRetAttributes(); 2254 if (IntTy && IntTy->getBitWidth() <= 32) 2255 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 2256 Attribute::ZExt); 2257 } 2258 } 2259 } 2260 } 2261 2262 // If this is a copy from another register, we recursively check source. 2263 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 2264 return false; 2265 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 2266 if (SrcMI != NULL) 2267 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 2268 2269 return false; 2270 } 2271 2272 case PPC::ANDIo: 2273 case PPC::ANDISo: 2274 case PPC::ORI: 2275 case PPC::ORIS: 2276 case PPC::XORI: 2277 case PPC::XORIS: 2278 case PPC::ANDIo8: 2279 case PPC::ANDISo8: 2280 case PPC::ORI8: 2281 case PPC::ORIS8: 2282 case PPC::XORI8: 2283 case PPC::XORIS8: { 2284 // logical operation with 16-bit immediate does not change the upper bits. 2285 // So, we track the operand register as we do for register copy. 2286 unsigned SrcReg = MI.getOperand(1).getReg(); 2287 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 2288 return false; 2289 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 2290 if (SrcMI != NULL) 2291 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 2292 2293 return false; 2294 } 2295 2296 // If all incoming values are sign-/zero-extended, 2297 // the output of AND, OR, ISEL or PHI is also sign-/zero-extended. 2298 case PPC::AND: 2299 case PPC::AND8: 2300 case PPC::OR: 2301 case PPC::OR8: 2302 case PPC::ISEL: 2303 case PPC::PHI: { 2304 if (Depth >= MAX_DEPTH) 2305 return false; 2306 2307 // The input registers for PHI are operand 1, 3, ... 2308 // The input registers for others are operand 1 and 2. 2309 unsigned E = 3, D = 1; 2310 if (MI.getOpcode() == PPC::PHI) { 2311 E = MI.getNumOperands(); 2312 D = 2; 2313 } 2314 2315 for (unsigned I = 1; I != E; I += D) { 2316 if (MI.getOperand(I).isReg()) { 2317 unsigned SrcReg = MI.getOperand(I).getReg(); 2318 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 2319 return false; 2320 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 2321 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 2322 return false; 2323 } 2324 else 2325 return false; 2326 } 2327 return true; 2328 } 2329 2330 default: 2331 break; 2332 } 2333 return false; 2334 } 2335