1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCInstrInfo.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCHazardRecognizers.h"
18 #include "PPCInstrBuilder.h"
19 #include "PPCMachineFunctionInfo.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCInst.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/raw_ostream.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "ppc-instr-info"
44 
45 #define GET_INSTRMAP_INFO
46 #define GET_INSTRINFO_CTOR_DTOR
47 #include "PPCGenInstrInfo.inc"
48 
49 STATISTIC(NumStoreSPILLVSRRCAsVec,
50           "Number of spillvsrrc spilled to stack as vec");
51 STATISTIC(NumStoreSPILLVSRRCAsGpr,
52           "Number of spillvsrrc spilled to stack as gpr");
53 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
54 
55 static cl::
56 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
57             cl::desc("Disable analysis for CTR loops"));
58 
59 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
60 cl::desc("Disable compare instruction optimization"), cl::Hidden);
61 
62 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
63 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
64 cl::Hidden);
65 
66 static cl::opt<bool>
67 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
68   cl::desc("Use the old (incorrect) instruction latency calculation"));
69 
70 // Pin the vtable to this file.
71 void PPCInstrInfo::anchor() {}
72 
73 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
74     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
75                       /* CatchRetOpcode */ -1,
76                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
77       Subtarget(STI), RI(STI.getTargetMachine()) {}
78 
79 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
80 /// this target when scheduling the DAG.
81 ScheduleHazardRecognizer *
82 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
83                                            const ScheduleDAG *DAG) const {
84   unsigned Directive =
85       static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
86   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
87       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
88     const InstrItineraryData *II =
89         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
90     return new ScoreboardHazardRecognizer(II, DAG);
91   }
92 
93   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
94 }
95 
96 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
97 /// to use for this target when scheduling the DAG.
98 ScheduleHazardRecognizer *
99 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
100                                                  const ScheduleDAG *DAG) const {
101   unsigned Directive =
102       DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
103 
104   // FIXME: Leaving this as-is until we have POWER9 scheduling info
105   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
106     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
107 
108   // Most subtargets use a PPC970 recognizer.
109   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
110       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
111     assert(DAG->TII && "No InstrInfo?");
112 
113     return new PPCHazardRecognizer970(*DAG);
114   }
115 
116   return new ScoreboardHazardRecognizer(II, DAG);
117 }
118 
119 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
120                                        const MachineInstr &MI,
121                                        unsigned *PredCost) const {
122   if (!ItinData || UseOldLatencyCalc)
123     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
124 
125   // The default implementation of getInstrLatency calls getStageLatency, but
126   // getStageLatency does not do the right thing for us. While we have
127   // itinerary, most cores are fully pipelined, and so the itineraries only
128   // express the first part of the pipeline, not every stage. Instead, we need
129   // to use the listed output operand cycle number (using operand 0 here, which
130   // is an output).
131 
132   unsigned Latency = 1;
133   unsigned DefClass = MI.getDesc().getSchedClass();
134   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
135     const MachineOperand &MO = MI.getOperand(i);
136     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
137       continue;
138 
139     int Cycle = ItinData->getOperandCycle(DefClass, i);
140     if (Cycle < 0)
141       continue;
142 
143     Latency = std::max(Latency, (unsigned) Cycle);
144   }
145 
146   return Latency;
147 }
148 
149 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
150                                     const MachineInstr &DefMI, unsigned DefIdx,
151                                     const MachineInstr &UseMI,
152                                     unsigned UseIdx) const {
153   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
154                                                    UseMI, UseIdx);
155 
156   if (!DefMI.getParent())
157     return Latency;
158 
159   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
160   unsigned Reg = DefMO.getReg();
161 
162   bool IsRegCR;
163   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
164     const MachineRegisterInfo *MRI =
165         &DefMI.getParent()->getParent()->getRegInfo();
166     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
167               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
168   } else {
169     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
170               PPC::CRBITRCRegClass.contains(Reg);
171   }
172 
173   if (UseMI.isBranch() && IsRegCR) {
174     if (Latency < 0)
175       Latency = getInstrLatency(ItinData, DefMI);
176 
177     // On some cores, there is an additional delay between writing to a condition
178     // register, and using it from a branch.
179     unsigned Directive = Subtarget.getDarwinDirective();
180     switch (Directive) {
181     default: break;
182     case PPC::DIR_7400:
183     case PPC::DIR_750:
184     case PPC::DIR_970:
185     case PPC::DIR_E5500:
186     case PPC::DIR_PWR4:
187     case PPC::DIR_PWR5:
188     case PPC::DIR_PWR5X:
189     case PPC::DIR_PWR6:
190     case PPC::DIR_PWR6X:
191     case PPC::DIR_PWR7:
192     case PPC::DIR_PWR8:
193     // FIXME: Is this needed for POWER9?
194       Latency += 2;
195       break;
196     }
197   }
198 
199   return Latency;
200 }
201 
202 // This function does not list all associative and commutative operations, but
203 // only those worth feeding through the machine combiner in an attempt to
204 // reduce the critical path. Mostly, this means floating-point operations,
205 // because they have high latencies (compared to other operations, such and
206 // and/or, which are also associative and commutative, but have low latencies).
207 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
208   switch (Inst.getOpcode()) {
209   // FP Add:
210   case PPC::FADD:
211   case PPC::FADDS:
212   // FP Multiply:
213   case PPC::FMUL:
214   case PPC::FMULS:
215   // Altivec Add:
216   case PPC::VADDFP:
217   // VSX Add:
218   case PPC::XSADDDP:
219   case PPC::XVADDDP:
220   case PPC::XVADDSP:
221   case PPC::XSADDSP:
222   // VSX Multiply:
223   case PPC::XSMULDP:
224   case PPC::XVMULDP:
225   case PPC::XVMULSP:
226   case PPC::XSMULSP:
227   // QPX Add:
228   case PPC::QVFADD:
229   case PPC::QVFADDS:
230   case PPC::QVFADDSs:
231   // QPX Multiply:
232   case PPC::QVFMUL:
233   case PPC::QVFMULS:
234   case PPC::QVFMULSs:
235     return true;
236   default:
237     return false;
238   }
239 }
240 
241 bool PPCInstrInfo::getMachineCombinerPatterns(
242     MachineInstr &Root,
243     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
244   // Using the machine combiner in this way is potentially expensive, so
245   // restrict to when aggressive optimizations are desired.
246   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
247     return false;
248 
249   // FP reassociation is only legal when we don't need strict IEEE semantics.
250   if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
251     return false;
252 
253   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
254 }
255 
256 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
257 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
258                                          unsigned &SrcReg, unsigned &DstReg,
259                                          unsigned &SubIdx) const {
260   switch (MI.getOpcode()) {
261   default: return false;
262   case PPC::EXTSW:
263   case PPC::EXTSW_32:
264   case PPC::EXTSW_32_64:
265     SrcReg = MI.getOperand(1).getReg();
266     DstReg = MI.getOperand(0).getReg();
267     SubIdx = PPC::sub_32;
268     return true;
269   }
270 }
271 
272 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
273                                            int &FrameIndex) const {
274   // Note: This list must be kept consistent with LoadRegFromStackSlot.
275   switch (MI.getOpcode()) {
276   default: break;
277   case PPC::LD:
278   case PPC::LWZ:
279   case PPC::LFS:
280   case PPC::LFD:
281   case PPC::RESTORE_CR:
282   case PPC::RESTORE_CRBIT:
283   case PPC::LVX:
284   case PPC::LXVD2X:
285   case PPC::LXV:
286   case PPC::QVLFDX:
287   case PPC::QVLFSXs:
288   case PPC::QVLFDXb:
289   case PPC::RESTORE_VRSAVE:
290   case PPC::SPILLTOVSR_LD:
291     // Check for the operands added by addFrameReference (the immediate is the
292     // offset which defaults to 0).
293     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
294         MI.getOperand(2).isFI()) {
295       FrameIndex = MI.getOperand(2).getIndex();
296       return MI.getOperand(0).getReg();
297     }
298     break;
299   }
300   return 0;
301 }
302 
303 // For opcodes with the ReMaterializable flag set, this function is called to
304 // verify the instruction is really rematable.
305 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
306                                                      AliasAnalysis *AA) const {
307   switch (MI.getOpcode()) {
308   default:
309     // This function should only be called for opcodes with the ReMaterializable
310     // flag set.
311     llvm_unreachable("Unknown rematerializable operation!");
312     break;
313   case PPC::LI:
314   case PPC::LI8:
315   case PPC::LIS:
316   case PPC::LIS8:
317   case PPC::QVGPCI:
318   case PPC::ADDIStocHA:
319   case PPC::ADDItocL:
320   case PPC::LOAD_STACK_GUARD:
321     return true;
322   }
323   return false;
324 }
325 
326 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
327                                           int &FrameIndex) const {
328   // Note: This list must be kept consistent with StoreRegToStackSlot.
329   switch (MI.getOpcode()) {
330   default: break;
331   case PPC::STD:
332   case PPC::STW:
333   case PPC::STFS:
334   case PPC::STFD:
335   case PPC::SPILL_CR:
336   case PPC::SPILL_CRBIT:
337   case PPC::STVX:
338   case PPC::STXVD2X:
339   case PPC::STXV:
340   case PPC::QVSTFDX:
341   case PPC::QVSTFSXs:
342   case PPC::QVSTFDXb:
343   case PPC::SPILL_VRSAVE:
344   case PPC::SPILLTOVSR_ST:
345     // Check for the operands added by addFrameReference (the immediate is the
346     // offset which defaults to 0).
347     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
348         MI.getOperand(2).isFI()) {
349       FrameIndex = MI.getOperand(2).getIndex();
350       return MI.getOperand(0).getReg();
351     }
352     break;
353   }
354   return 0;
355 }
356 
357 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
358                                                    unsigned OpIdx1,
359                                                    unsigned OpIdx2) const {
360   MachineFunction &MF = *MI.getParent()->getParent();
361 
362   // Normal instructions can be commuted the obvious way.
363   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
364     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
365   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
366   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
367   // changing the relative order of the mask operands might change what happens
368   // to the high-bits of the mask (and, thus, the result).
369 
370   // Cannot commute if it has a non-zero rotate count.
371   if (MI.getOperand(3).getImm() != 0)
372     return nullptr;
373 
374   // If we have a zero rotate count, we have:
375   //   M = mask(MB,ME)
376   //   Op0 = (Op1 & ~M) | (Op2 & M)
377   // Change this to:
378   //   M = mask((ME+1)&31, (MB-1)&31)
379   //   Op0 = (Op2 & ~M) | (Op1 & M)
380 
381   // Swap op1/op2
382   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
383          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
384   unsigned Reg0 = MI.getOperand(0).getReg();
385   unsigned Reg1 = MI.getOperand(1).getReg();
386   unsigned Reg2 = MI.getOperand(2).getReg();
387   unsigned SubReg1 = MI.getOperand(1).getSubReg();
388   unsigned SubReg2 = MI.getOperand(2).getSubReg();
389   bool Reg1IsKill = MI.getOperand(1).isKill();
390   bool Reg2IsKill = MI.getOperand(2).isKill();
391   bool ChangeReg0 = false;
392   // If machine instrs are no longer in two-address forms, update
393   // destination register as well.
394   if (Reg0 == Reg1) {
395     // Must be two address instruction!
396     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
397            "Expecting a two-address instruction!");
398     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
399     Reg2IsKill = false;
400     ChangeReg0 = true;
401   }
402 
403   // Masks.
404   unsigned MB = MI.getOperand(4).getImm();
405   unsigned ME = MI.getOperand(5).getImm();
406 
407   // We can't commute a trivial mask (there is no way to represent an all-zero
408   // mask).
409   if (MB == 0 && ME == 31)
410     return nullptr;
411 
412   if (NewMI) {
413     // Create a new instruction.
414     unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
415     bool Reg0IsDead = MI.getOperand(0).isDead();
416     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
417         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
418         .addReg(Reg2, getKillRegState(Reg2IsKill))
419         .addReg(Reg1, getKillRegState(Reg1IsKill))
420         .addImm((ME + 1) & 31)
421         .addImm((MB - 1) & 31);
422   }
423 
424   if (ChangeReg0) {
425     MI.getOperand(0).setReg(Reg2);
426     MI.getOperand(0).setSubReg(SubReg2);
427   }
428   MI.getOperand(2).setReg(Reg1);
429   MI.getOperand(1).setReg(Reg2);
430   MI.getOperand(2).setSubReg(SubReg1);
431   MI.getOperand(1).setSubReg(SubReg2);
432   MI.getOperand(2).setIsKill(Reg1IsKill);
433   MI.getOperand(1).setIsKill(Reg2IsKill);
434 
435   // Swap the mask around.
436   MI.getOperand(4).setImm((ME + 1) & 31);
437   MI.getOperand(5).setImm((MB - 1) & 31);
438   return &MI;
439 }
440 
441 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
442                                          unsigned &SrcOpIdx2) const {
443   // For VSX A-Type FMA instructions, it is the first two operands that can be
444   // commuted, however, because the non-encoded tied input operand is listed
445   // first, the operands to swap are actually the second and third.
446 
447   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
448   if (AltOpc == -1)
449     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
450 
451   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
452   // and SrcOpIdx2.
453   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
454 }
455 
456 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
457                               MachineBasicBlock::iterator MI) const {
458   // This function is used for scheduling, and the nop wanted here is the type
459   // that terminates dispatch groups on the POWER cores.
460   unsigned Directive = Subtarget.getDarwinDirective();
461   unsigned Opcode;
462   switch (Directive) {
463   default:            Opcode = PPC::NOP; break;
464   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
465   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
466   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
467   // FIXME: Update when POWER9 scheduling model is ready.
468   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
469   }
470 
471   DebugLoc DL;
472   BuildMI(MBB, MI, DL, get(Opcode));
473 }
474 
475 /// Return the noop instruction to use for a noop.
476 void PPCInstrInfo::getNoop(MCInst &NopInst) const {
477   NopInst.setOpcode(PPC::NOP);
478 }
479 
480 // Branch analysis.
481 // Note: If the condition register is set to CTR or CTR8 then this is a
482 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
483 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
484                                  MachineBasicBlock *&TBB,
485                                  MachineBasicBlock *&FBB,
486                                  SmallVectorImpl<MachineOperand> &Cond,
487                                  bool AllowModify) const {
488   bool isPPC64 = Subtarget.isPPC64();
489 
490   // If the block has no terminators, it just falls into the block after it.
491   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
492   if (I == MBB.end())
493     return false;
494 
495   if (!isUnpredicatedTerminator(*I))
496     return false;
497 
498   if (AllowModify) {
499     // If the BB ends with an unconditional branch to the fallthrough BB,
500     // we eliminate the branch instruction.
501     if (I->getOpcode() == PPC::B &&
502         MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
503       I->eraseFromParent();
504 
505       // We update iterator after deleting the last branch.
506       I = MBB.getLastNonDebugInstr();
507       if (I == MBB.end() || !isUnpredicatedTerminator(*I))
508         return false;
509     }
510   }
511 
512   // Get the last instruction in the block.
513   MachineInstr &LastInst = *I;
514 
515   // If there is only one terminator instruction, process it.
516   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
517     if (LastInst.getOpcode() == PPC::B) {
518       if (!LastInst.getOperand(0).isMBB())
519         return true;
520       TBB = LastInst.getOperand(0).getMBB();
521       return false;
522     } else if (LastInst.getOpcode() == PPC::BCC) {
523       if (!LastInst.getOperand(2).isMBB())
524         return true;
525       // Block ends with fall-through condbranch.
526       TBB = LastInst.getOperand(2).getMBB();
527       Cond.push_back(LastInst.getOperand(0));
528       Cond.push_back(LastInst.getOperand(1));
529       return false;
530     } else if (LastInst.getOpcode() == PPC::BC) {
531       if (!LastInst.getOperand(1).isMBB())
532         return true;
533       // Block ends with fall-through condbranch.
534       TBB = LastInst.getOperand(1).getMBB();
535       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
536       Cond.push_back(LastInst.getOperand(0));
537       return false;
538     } else if (LastInst.getOpcode() == PPC::BCn) {
539       if (!LastInst.getOperand(1).isMBB())
540         return true;
541       // Block ends with fall-through condbranch.
542       TBB = LastInst.getOperand(1).getMBB();
543       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
544       Cond.push_back(LastInst.getOperand(0));
545       return false;
546     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
547                LastInst.getOpcode() == PPC::BDNZ) {
548       if (!LastInst.getOperand(0).isMBB())
549         return true;
550       if (DisableCTRLoopAnal)
551         return true;
552       TBB = LastInst.getOperand(0).getMBB();
553       Cond.push_back(MachineOperand::CreateImm(1));
554       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
555                                                true));
556       return false;
557     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
558                LastInst.getOpcode() == PPC::BDZ) {
559       if (!LastInst.getOperand(0).isMBB())
560         return true;
561       if (DisableCTRLoopAnal)
562         return true;
563       TBB = LastInst.getOperand(0).getMBB();
564       Cond.push_back(MachineOperand::CreateImm(0));
565       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
566                                                true));
567       return false;
568     }
569 
570     // Otherwise, don't know what this is.
571     return true;
572   }
573 
574   // Get the instruction before it if it's a terminator.
575   MachineInstr &SecondLastInst = *I;
576 
577   // If there are three terminators, we don't know what sort of block this is.
578   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
579     return true;
580 
581   // If the block ends with PPC::B and PPC:BCC, handle it.
582   if (SecondLastInst.getOpcode() == PPC::BCC &&
583       LastInst.getOpcode() == PPC::B) {
584     if (!SecondLastInst.getOperand(2).isMBB() ||
585         !LastInst.getOperand(0).isMBB())
586       return true;
587     TBB = SecondLastInst.getOperand(2).getMBB();
588     Cond.push_back(SecondLastInst.getOperand(0));
589     Cond.push_back(SecondLastInst.getOperand(1));
590     FBB = LastInst.getOperand(0).getMBB();
591     return false;
592   } else if (SecondLastInst.getOpcode() == PPC::BC &&
593              LastInst.getOpcode() == PPC::B) {
594     if (!SecondLastInst.getOperand(1).isMBB() ||
595         !LastInst.getOperand(0).isMBB())
596       return true;
597     TBB = SecondLastInst.getOperand(1).getMBB();
598     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
599     Cond.push_back(SecondLastInst.getOperand(0));
600     FBB = LastInst.getOperand(0).getMBB();
601     return false;
602   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
603              LastInst.getOpcode() == PPC::B) {
604     if (!SecondLastInst.getOperand(1).isMBB() ||
605         !LastInst.getOperand(0).isMBB())
606       return true;
607     TBB = SecondLastInst.getOperand(1).getMBB();
608     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
609     Cond.push_back(SecondLastInst.getOperand(0));
610     FBB = LastInst.getOperand(0).getMBB();
611     return false;
612   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
613               SecondLastInst.getOpcode() == PPC::BDNZ) &&
614              LastInst.getOpcode() == PPC::B) {
615     if (!SecondLastInst.getOperand(0).isMBB() ||
616         !LastInst.getOperand(0).isMBB())
617       return true;
618     if (DisableCTRLoopAnal)
619       return true;
620     TBB = SecondLastInst.getOperand(0).getMBB();
621     Cond.push_back(MachineOperand::CreateImm(1));
622     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
623                                              true));
624     FBB = LastInst.getOperand(0).getMBB();
625     return false;
626   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
627               SecondLastInst.getOpcode() == PPC::BDZ) &&
628              LastInst.getOpcode() == PPC::B) {
629     if (!SecondLastInst.getOperand(0).isMBB() ||
630         !LastInst.getOperand(0).isMBB())
631       return true;
632     if (DisableCTRLoopAnal)
633       return true;
634     TBB = SecondLastInst.getOperand(0).getMBB();
635     Cond.push_back(MachineOperand::CreateImm(0));
636     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
637                                              true));
638     FBB = LastInst.getOperand(0).getMBB();
639     return false;
640   }
641 
642   // If the block ends with two PPC:Bs, handle it.  The second one is not
643   // executed, so remove it.
644   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
645     if (!SecondLastInst.getOperand(0).isMBB())
646       return true;
647     TBB = SecondLastInst.getOperand(0).getMBB();
648     I = LastInst;
649     if (AllowModify)
650       I->eraseFromParent();
651     return false;
652   }
653 
654   // Otherwise, can't handle this.
655   return true;
656 }
657 
658 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
659                                     int *BytesRemoved) const {
660   assert(!BytesRemoved && "code size not handled");
661 
662   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
663   if (I == MBB.end())
664     return 0;
665 
666   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
667       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
668       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
669       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
670     return 0;
671 
672   // Remove the branch.
673   I->eraseFromParent();
674 
675   I = MBB.end();
676 
677   if (I == MBB.begin()) return 1;
678   --I;
679   if (I->getOpcode() != PPC::BCC &&
680       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
681       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
682       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
683     return 1;
684 
685   // Remove the branch.
686   I->eraseFromParent();
687   return 2;
688 }
689 
690 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
691                                     MachineBasicBlock *TBB,
692                                     MachineBasicBlock *FBB,
693                                     ArrayRef<MachineOperand> Cond,
694                                     const DebugLoc &DL,
695                                     int *BytesAdded) const {
696   // Shouldn't be a fall through.
697   assert(TBB && "insertBranch must not be told to insert a fallthrough");
698   assert((Cond.size() == 2 || Cond.size() == 0) &&
699          "PPC branch conditions have two components!");
700   assert(!BytesAdded && "code size not handled");
701 
702   bool isPPC64 = Subtarget.isPPC64();
703 
704   // One-way branch.
705   if (!FBB) {
706     if (Cond.empty())   // Unconditional branch
707       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
708     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
709       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
710                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
711                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
712     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
713       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
714     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
715       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
716     else                // Conditional branch
717       BuildMI(&MBB, DL, get(PPC::BCC))
718           .addImm(Cond[0].getImm())
719           .add(Cond[1])
720           .addMBB(TBB);
721     return 1;
722   }
723 
724   // Two-way Conditional Branch.
725   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
726     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
727                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
728                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
729   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
730     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
731   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
732     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
733   else
734     BuildMI(&MBB, DL, get(PPC::BCC))
735         .addImm(Cond[0].getImm())
736         .add(Cond[1])
737         .addMBB(TBB);
738   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
739   return 2;
740 }
741 
742 // Select analysis.
743 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
744                 ArrayRef<MachineOperand> Cond,
745                 unsigned TrueReg, unsigned FalseReg,
746                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
747   if (Cond.size() != 2)
748     return false;
749 
750   // If this is really a bdnz-like condition, then it cannot be turned into a
751   // select.
752   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
753     return false;
754 
755   // Check register classes.
756   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
757   const TargetRegisterClass *RC =
758     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
759   if (!RC)
760     return false;
761 
762   // isel is for regular integer GPRs only.
763   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
764       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
765       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
766       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
767     return false;
768 
769   // FIXME: These numbers are for the A2, how well they work for other cores is
770   // an open question. On the A2, the isel instruction has a 2-cycle latency
771   // but single-cycle throughput. These numbers are used in combination with
772   // the MispredictPenalty setting from the active SchedMachineModel.
773   CondCycles = 1;
774   TrueCycles = 1;
775   FalseCycles = 1;
776 
777   return true;
778 }
779 
780 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
781                                 MachineBasicBlock::iterator MI,
782                                 const DebugLoc &dl, unsigned DestReg,
783                                 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
784                                 unsigned FalseReg) const {
785   assert(Cond.size() == 2 &&
786          "PPC branch conditions have two components!");
787 
788   // Get the register classes.
789   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
790   const TargetRegisterClass *RC =
791     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
792   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
793 
794   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
795                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
796   assert((Is64Bit ||
797           PPC::GPRCRegClass.hasSubClassEq(RC) ||
798           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
799          "isel is for regular integer GPRs only");
800 
801   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
802   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
803 
804   unsigned SubIdx = 0;
805   bool SwapOps = false;
806   switch (SelectPred) {
807   case PPC::PRED_EQ:
808   case PPC::PRED_EQ_MINUS:
809   case PPC::PRED_EQ_PLUS:
810       SubIdx = PPC::sub_eq; SwapOps = false; break;
811   case PPC::PRED_NE:
812   case PPC::PRED_NE_MINUS:
813   case PPC::PRED_NE_PLUS:
814       SubIdx = PPC::sub_eq; SwapOps = true; break;
815   case PPC::PRED_LT:
816   case PPC::PRED_LT_MINUS:
817   case PPC::PRED_LT_PLUS:
818       SubIdx = PPC::sub_lt; SwapOps = false; break;
819   case PPC::PRED_GE:
820   case PPC::PRED_GE_MINUS:
821   case PPC::PRED_GE_PLUS:
822       SubIdx = PPC::sub_lt; SwapOps = true; break;
823   case PPC::PRED_GT:
824   case PPC::PRED_GT_MINUS:
825   case PPC::PRED_GT_PLUS:
826       SubIdx = PPC::sub_gt; SwapOps = false; break;
827   case PPC::PRED_LE:
828   case PPC::PRED_LE_MINUS:
829   case PPC::PRED_LE_PLUS:
830       SubIdx = PPC::sub_gt; SwapOps = true; break;
831   case PPC::PRED_UN:
832   case PPC::PRED_UN_MINUS:
833   case PPC::PRED_UN_PLUS:
834       SubIdx = PPC::sub_un; SwapOps = false; break;
835   case PPC::PRED_NU:
836   case PPC::PRED_NU_MINUS:
837   case PPC::PRED_NU_PLUS:
838       SubIdx = PPC::sub_un; SwapOps = true; break;
839   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
840   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
841   }
842 
843   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
844            SecondReg = SwapOps ? TrueReg  : FalseReg;
845 
846   // The first input register of isel cannot be r0. If it is a member
847   // of a register class that can be r0, then copy it first (the
848   // register allocator should eliminate the copy).
849   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
850       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
851     const TargetRegisterClass *FirstRC =
852       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
853         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
854     unsigned OldFirstReg = FirstReg;
855     FirstReg = MRI.createVirtualRegister(FirstRC);
856     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
857       .addReg(OldFirstReg);
858   }
859 
860   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
861     .addReg(FirstReg).addReg(SecondReg)
862     .addReg(Cond[1].getReg(), 0, SubIdx);
863 }
864 
865 static unsigned getCRBitValue(unsigned CRBit) {
866   unsigned Ret = 4;
867   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
868       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
869       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
870       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
871     Ret = 3;
872   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
873       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
874       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
875       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
876     Ret = 2;
877   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
878       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
879       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
880       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
881     Ret = 1;
882   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
883       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
884       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
885       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
886     Ret = 0;
887 
888   assert(Ret != 4 && "Invalid CR bit register");
889   return Ret;
890 }
891 
892 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
893                                MachineBasicBlock::iterator I,
894                                const DebugLoc &DL, unsigned DestReg,
895                                unsigned SrcReg, bool KillSrc) const {
896   // We can end up with self copies and similar things as a result of VSX copy
897   // legalization. Promote them here.
898   const TargetRegisterInfo *TRI = &getRegisterInfo();
899   if (PPC::F8RCRegClass.contains(DestReg) &&
900       PPC::VSRCRegClass.contains(SrcReg)) {
901     unsigned SuperReg =
902       TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
903 
904     if (VSXSelfCopyCrash && SrcReg == SuperReg)
905       llvm_unreachable("nop VSX copy");
906 
907     DestReg = SuperReg;
908   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
909              PPC::VSRCRegClass.contains(DestReg)) {
910     unsigned SuperReg =
911       TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
912 
913     if (VSXSelfCopyCrash && DestReg == SuperReg)
914       llvm_unreachable("nop VSX copy");
915 
916     SrcReg = SuperReg;
917   }
918 
919   // Different class register copy
920   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
921       PPC::GPRCRegClass.contains(DestReg)) {
922     unsigned CRReg = getCRFromCRBit(SrcReg);
923     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
924     getKillRegState(KillSrc);
925     // Rotate the CR bit in the CR fields to be the least significant bit and
926     // then mask with 0x1 (MB = ME = 31).
927     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
928        .addReg(DestReg, RegState::Kill)
929        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
930        .addImm(31)
931        .addImm(31);
932     return;
933   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
934       PPC::G8RCRegClass.contains(DestReg)) {
935     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
936     getKillRegState(KillSrc);
937     return;
938   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
939       PPC::GPRCRegClass.contains(DestReg)) {
940     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
941     getKillRegState(KillSrc);
942     return;
943   } else if (PPC::G8RCRegClass.contains(SrcReg) &&
944              PPC::VSFRCRegClass.contains(DestReg)) {
945     BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
946     NumGPRtoVSRSpill++;
947     getKillRegState(KillSrc);
948     return;
949   } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
950              PPC::G8RCRegClass.contains(DestReg)) {
951     BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
952     getKillRegState(KillSrc);
953     return;
954   }
955 
956   unsigned Opc;
957   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
958     Opc = PPC::OR;
959   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
960     Opc = PPC::OR8;
961   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
962     Opc = PPC::FMR;
963   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
964     Opc = PPC::MCRF;
965   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
966     Opc = PPC::VOR;
967   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
968     // There are two different ways this can be done:
969     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
970     //      issue in VSU pipeline 0.
971     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
972     //      can go to either pipeline.
973     // We'll always use xxlor here, because in practically all cases where
974     // copies are generated, they are close enough to some use that the
975     // lower-latency form is preferable.
976     Opc = PPC::XXLOR;
977   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
978            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
979     Opc = PPC::XXLORf;
980   else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
981     Opc = PPC::QVFMR;
982   else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
983     Opc = PPC::QVFMRs;
984   else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
985     Opc = PPC::QVFMRb;
986   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
987     Opc = PPC::CROR;
988   else
989     llvm_unreachable("Impossible reg-to-reg copy");
990 
991   const MCInstrDesc &MCID = get(Opc);
992   if (MCID.getNumOperands() == 3)
993     BuildMI(MBB, I, DL, MCID, DestReg)
994       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
995   else
996     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
997 }
998 
999 // This function returns true if a CR spill is necessary and false otherwise.
1000 bool
1001 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
1002                                   unsigned SrcReg, bool isKill,
1003                                   int FrameIdx,
1004                                   const TargetRegisterClass *RC,
1005                                   SmallVectorImpl<MachineInstr*> &NewMIs,
1006                                   bool &NonRI, bool &SpillsVRS) const{
1007   // Note: If additional store instructions are added here,
1008   // update isStoreToStackSlot.
1009 
1010   DebugLoc DL;
1011   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1012       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1013     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
1014                                        .addReg(SrcReg,
1015                                                getKillRegState(isKill)),
1016                                        FrameIdx));
1017   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1018              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1019     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
1020                                        .addReg(SrcReg,
1021                                                getKillRegState(isKill)),
1022                                        FrameIdx));
1023   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1024     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
1025                                        .addReg(SrcReg,
1026                                                getKillRegState(isKill)),
1027                                        FrameIdx));
1028   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1029     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
1030                                        .addReg(SrcReg,
1031                                                getKillRegState(isKill)),
1032                                        FrameIdx));
1033   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1034     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
1035                                        .addReg(SrcReg,
1036                                                getKillRegState(isKill)),
1037                                        FrameIdx));
1038     return true;
1039   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1040     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
1041                                        .addReg(SrcReg,
1042                                                getKillRegState(isKill)),
1043                                        FrameIdx));
1044     return true;
1045   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1046     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
1047                                        .addReg(SrcReg,
1048                                                getKillRegState(isKill)),
1049                                        FrameIdx));
1050     NonRI = true;
1051   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1052     unsigned Op = Subtarget.hasP9Vector() ? PPC::STXV : PPC::STXVD2X;
1053     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Op))
1054                                        .addReg(SrcReg,
1055                                                getKillRegState(isKill)),
1056                                        FrameIdx));
1057     NonRI = true;
1058   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1059     unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFSTOREf64 : PPC::STXSDX;
1060     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc))
1061                                        .addReg(SrcReg,
1062                                                getKillRegState(isKill)),
1063                                        FrameIdx));
1064     NonRI = true;
1065   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1066     unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFSTOREf32 : PPC::STXSSPX;
1067     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc))
1068                                        .addReg(SrcReg,
1069                                                getKillRegState(isKill)),
1070                                        FrameIdx));
1071     NonRI = true;
1072   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1073     assert(Subtarget.isDarwin() &&
1074            "VRSAVE only needs spill/restore on Darwin");
1075     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
1076                                        .addReg(SrcReg,
1077                                                getKillRegState(isKill)),
1078                                        FrameIdx));
1079     SpillsVRS = true;
1080   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1081     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX))
1082                                        .addReg(SrcReg,
1083                                                getKillRegState(isKill)),
1084                                        FrameIdx));
1085     NonRI = true;
1086   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1087     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs))
1088                                        .addReg(SrcReg,
1089                                                getKillRegState(isKill)),
1090                                        FrameIdx));
1091     NonRI = true;
1092   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1093     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb))
1094                                        .addReg(SrcReg,
1095                                                getKillRegState(isKill)),
1096                                        FrameIdx));
1097     NonRI = true;
1098   } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1099     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILLTOVSR_ST))
1100                                        .addReg(SrcReg,
1101                                                getKillRegState(isKill)),
1102                                        FrameIdx));
1103   } else {
1104     llvm_unreachable("Unknown regclass!");
1105   }
1106 
1107   return false;
1108 }
1109 
1110 void
1111 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1112                                   MachineBasicBlock::iterator MI,
1113                                   unsigned SrcReg, bool isKill, int FrameIdx,
1114                                   const TargetRegisterClass *RC,
1115                                   const TargetRegisterInfo *TRI) const {
1116   MachineFunction &MF = *MBB.getParent();
1117   SmallVector<MachineInstr*, 4> NewMIs;
1118 
1119   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1120   FuncInfo->setHasSpills();
1121 
1122   // We need to avoid a situation in which the value from a VRRC register is
1123   // spilled using an Altivec instruction and reloaded into a VSRC register
1124   // using a VSX instruction. The issue with this is that the VSX
1125   // load/store instructions swap the doublewords in the vector and the Altivec
1126   // ones don't. The register classes on the spill/reload may be different if
1127   // the register is defined using an Altivec instruction and is then used by a
1128   // VSX instruction.
1129   RC = updatedRC(RC);
1130 
1131   bool NonRI = false, SpillsVRS = false;
1132   if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
1133                           NonRI, SpillsVRS))
1134     FuncInfo->setSpillsCR();
1135 
1136   if (SpillsVRS)
1137     FuncInfo->setSpillsVRSAVE();
1138 
1139   if (NonRI)
1140     FuncInfo->setHasNonRISpills();
1141 
1142   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1143     MBB.insert(MI, NewMIs[i]);
1144 
1145   const MachineFrameInfo &MFI = MF.getFrameInfo();
1146   MachineMemOperand *MMO = MF.getMachineMemOperand(
1147       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1148       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1149       MFI.getObjectAlignment(FrameIdx));
1150   NewMIs.back()->addMemOperand(MF, MMO);
1151 }
1152 
1153 bool PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1154                                         unsigned DestReg, int FrameIdx,
1155                                         const TargetRegisterClass *RC,
1156                                         SmallVectorImpl<MachineInstr *> &NewMIs,
1157                                         bool &NonRI, bool &SpillsVRS) const {
1158   // Note: If additional load instructions are added here,
1159   // update isLoadFromStackSlot.
1160 
1161   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1162       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1163     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
1164                                                DestReg), FrameIdx));
1165   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1166              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1167     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
1168                                        FrameIdx));
1169   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1170     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
1171                                        FrameIdx));
1172   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1173     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
1174                                        FrameIdx));
1175   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1176     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1177                                                get(PPC::RESTORE_CR), DestReg),
1178                                        FrameIdx));
1179     return true;
1180   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1181     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1182                                                get(PPC::RESTORE_CRBIT), DestReg),
1183                                        FrameIdx));
1184     return true;
1185   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1186     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
1187                                        FrameIdx));
1188     NonRI = true;
1189   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1190     unsigned Op = Subtarget.hasP9Vector() ? PPC::LXV : PPC::LXVD2X;
1191     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Op), DestReg),
1192                                        FrameIdx));
1193     NonRI = true;
1194   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1195     unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFLOADf64 : PPC::LXSDX;
1196     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc),
1197                                                DestReg), FrameIdx));
1198     NonRI = true;
1199   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1200     unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFLOADf32 : PPC::LXSSPX;
1201     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc),
1202                                                DestReg), FrameIdx));
1203     NonRI = true;
1204   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1205     assert(Subtarget.isDarwin() &&
1206            "VRSAVE only needs spill/restore on Darwin");
1207     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1208                                                get(PPC::RESTORE_VRSAVE),
1209                                                DestReg),
1210                                        FrameIdx));
1211     SpillsVRS = true;
1212   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1213     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg),
1214                                        FrameIdx));
1215     NonRI = true;
1216   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1217     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg),
1218                                        FrameIdx));
1219     NonRI = true;
1220   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1221     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg),
1222                                        FrameIdx));
1223     NonRI = true;
1224   } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1225     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILLTOVSR_LD),
1226                                                DestReg), FrameIdx));
1227   } else {
1228     llvm_unreachable("Unknown regclass!");
1229   }
1230 
1231   return false;
1232 }
1233 
1234 void
1235 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1236                                    MachineBasicBlock::iterator MI,
1237                                    unsigned DestReg, int FrameIdx,
1238                                    const TargetRegisterClass *RC,
1239                                    const TargetRegisterInfo *TRI) const {
1240   MachineFunction &MF = *MBB.getParent();
1241   SmallVector<MachineInstr*, 4> NewMIs;
1242   DebugLoc DL;
1243   if (MI != MBB.end()) DL = MI->getDebugLoc();
1244 
1245   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1246   FuncInfo->setHasSpills();
1247 
1248   // We need to avoid a situation in which the value from a VRRC register is
1249   // spilled using an Altivec instruction and reloaded into a VSRC register
1250   // using a VSX instruction. The issue with this is that the VSX
1251   // load/store instructions swap the doublewords in the vector and the Altivec
1252   // ones don't. The register classes on the spill/reload may be different if
1253   // the register is defined using an Altivec instruction and is then used by a
1254   // VSX instruction.
1255   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
1256     RC = &PPC::VSRCRegClass;
1257 
1258   bool NonRI = false, SpillsVRS = false;
1259   if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
1260                            NonRI, SpillsVRS))
1261     FuncInfo->setSpillsCR();
1262 
1263   if (SpillsVRS)
1264     FuncInfo->setSpillsVRSAVE();
1265 
1266   if (NonRI)
1267     FuncInfo->setHasNonRISpills();
1268 
1269   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1270     MBB.insert(MI, NewMIs[i]);
1271 
1272   const MachineFrameInfo &MFI = MF.getFrameInfo();
1273   MachineMemOperand *MMO = MF.getMachineMemOperand(
1274       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1275       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1276       MFI.getObjectAlignment(FrameIdx));
1277   NewMIs.back()->addMemOperand(MF, MMO);
1278 }
1279 
1280 bool PPCInstrInfo::
1281 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1282   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1283   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1284     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1285   else
1286     // Leave the CR# the same, but invert the condition.
1287     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1288   return false;
1289 }
1290 
1291 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1292                                  unsigned Reg, MachineRegisterInfo *MRI) const {
1293   // For some instructions, it is legal to fold ZERO into the RA register field.
1294   // A zero immediate should always be loaded with a single li.
1295   unsigned DefOpc = DefMI.getOpcode();
1296   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1297     return false;
1298   if (!DefMI.getOperand(1).isImm())
1299     return false;
1300   if (DefMI.getOperand(1).getImm() != 0)
1301     return false;
1302 
1303   // Note that we cannot here invert the arguments of an isel in order to fold
1304   // a ZERO into what is presented as the second argument. All we have here
1305   // is the condition bit, and that might come from a CR-logical bit operation.
1306 
1307   const MCInstrDesc &UseMCID = UseMI.getDesc();
1308 
1309   // Only fold into real machine instructions.
1310   if (UseMCID.isPseudo())
1311     return false;
1312 
1313   unsigned UseIdx;
1314   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1315     if (UseMI.getOperand(UseIdx).isReg() &&
1316         UseMI.getOperand(UseIdx).getReg() == Reg)
1317       break;
1318 
1319   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1320   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1321 
1322   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1323 
1324   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1325   // register (which might also be specified as a pointer class kind).
1326   if (UseInfo->isLookupPtrRegClass()) {
1327     if (UseInfo->RegClass /* Kind */ != 1)
1328       return false;
1329   } else {
1330     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1331         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1332       return false;
1333   }
1334 
1335   // Make sure this is not tied to an output register (or otherwise
1336   // constrained). This is true for ST?UX registers, for example, which
1337   // are tied to their output registers.
1338   if (UseInfo->Constraints != 0)
1339     return false;
1340 
1341   unsigned ZeroReg;
1342   if (UseInfo->isLookupPtrRegClass()) {
1343     bool isPPC64 = Subtarget.isPPC64();
1344     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1345   } else {
1346     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1347               PPC::ZERO8 : PPC::ZERO;
1348   }
1349 
1350   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1351   UseMI.getOperand(UseIdx).setReg(ZeroReg);
1352 
1353   if (DeleteDef)
1354     DefMI.eraseFromParent();
1355 
1356   return true;
1357 }
1358 
1359 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1360   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1361        I != IE; ++I)
1362     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1363       return true;
1364   return false;
1365 }
1366 
1367 // We should make sure that, if we're going to predicate both sides of a
1368 // condition (a diamond), that both sides don't define the counter register. We
1369 // can predicate counter-decrement-based branches, but while that predicates
1370 // the branching, it does not predicate the counter decrement. If we tried to
1371 // merge the triangle into one predicated block, we'd decrement the counter
1372 // twice.
1373 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1374                      unsigned NumT, unsigned ExtraT,
1375                      MachineBasicBlock &FMBB,
1376                      unsigned NumF, unsigned ExtraF,
1377                      BranchProbability Probability) const {
1378   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1379 }
1380 
1381 
1382 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1383   // The predicated branches are identified by their type, not really by the
1384   // explicit presence of a predicate. Furthermore, some of them can be
1385   // predicated more than once. Because if conversion won't try to predicate
1386   // any instruction which already claims to be predicated (by returning true
1387   // here), always return false. In doing so, we let isPredicable() be the
1388   // final word on whether not the instruction can be (further) predicated.
1389 
1390   return false;
1391 }
1392 
1393 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1394   if (!MI.isTerminator())
1395     return false;
1396 
1397   // Conditional branch is a special case.
1398   if (MI.isBranch() && !MI.isBarrier())
1399     return true;
1400 
1401   return !isPredicated(MI);
1402 }
1403 
1404 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1405                                         ArrayRef<MachineOperand> Pred) const {
1406   unsigned OpC = MI.getOpcode();
1407   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1408     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1409       bool isPPC64 = Subtarget.isPPC64();
1410       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1411                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1412     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1413       MI.setDesc(get(PPC::BCLR));
1414       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1415           .addReg(Pred[1].getReg());
1416     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1417       MI.setDesc(get(PPC::BCLRn));
1418       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1419           .addReg(Pred[1].getReg());
1420     } else {
1421       MI.setDesc(get(PPC::BCCLR));
1422       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1423           .addImm(Pred[0].getImm())
1424           .addReg(Pred[1].getReg());
1425     }
1426 
1427     return true;
1428   } else if (OpC == PPC::B) {
1429     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1430       bool isPPC64 = Subtarget.isPPC64();
1431       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1432                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1433     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1434       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1435       MI.RemoveOperand(0);
1436 
1437       MI.setDesc(get(PPC::BC));
1438       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1439           .addReg(Pred[1].getReg())
1440           .addMBB(MBB);
1441     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1442       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1443       MI.RemoveOperand(0);
1444 
1445       MI.setDesc(get(PPC::BCn));
1446       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1447           .addReg(Pred[1].getReg())
1448           .addMBB(MBB);
1449     } else {
1450       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1451       MI.RemoveOperand(0);
1452 
1453       MI.setDesc(get(PPC::BCC));
1454       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1455           .addImm(Pred[0].getImm())
1456           .addReg(Pred[1].getReg())
1457           .addMBB(MBB);
1458     }
1459 
1460     return true;
1461   } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
1462              OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
1463     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1464       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1465 
1466     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1467     bool isPPC64 = Subtarget.isPPC64();
1468 
1469     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1470       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1471                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1472       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1473           .addReg(Pred[1].getReg());
1474       return true;
1475     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1476       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1477                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1478       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1479           .addReg(Pred[1].getReg());
1480       return true;
1481     }
1482 
1483     MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1484                            : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1485     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1486         .addImm(Pred[0].getImm())
1487         .addReg(Pred[1].getReg());
1488     return true;
1489   }
1490 
1491   return false;
1492 }
1493 
1494 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1495                                      ArrayRef<MachineOperand> Pred2) const {
1496   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1497   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1498 
1499   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1500     return false;
1501   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1502     return false;
1503 
1504   // P1 can only subsume P2 if they test the same condition register.
1505   if (Pred1[1].getReg() != Pred2[1].getReg())
1506     return false;
1507 
1508   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1509   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1510 
1511   if (P1 == P2)
1512     return true;
1513 
1514   // Does P1 subsume P2, e.g. GE subsumes GT.
1515   if (P1 == PPC::PRED_LE &&
1516       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1517     return true;
1518   if (P1 == PPC::PRED_GE &&
1519       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1520     return true;
1521 
1522   return false;
1523 }
1524 
1525 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1526                                     std::vector<MachineOperand> &Pred) const {
1527   // Note: At the present time, the contents of Pred from this function is
1528   // unused by IfConversion. This implementation follows ARM by pushing the
1529   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1530   // predicate, instructions defining CTR or CTR8 are also included as
1531   // predicate-defining instructions.
1532 
1533   const TargetRegisterClass *RCs[] =
1534     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1535       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1536 
1537   bool Found = false;
1538   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1539     const MachineOperand &MO = MI.getOperand(i);
1540     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1541       const TargetRegisterClass *RC = RCs[c];
1542       if (MO.isReg()) {
1543         if (MO.isDef() && RC->contains(MO.getReg())) {
1544           Pred.push_back(MO);
1545           Found = true;
1546         }
1547       } else if (MO.isRegMask()) {
1548         for (TargetRegisterClass::iterator I = RC->begin(),
1549              IE = RC->end(); I != IE; ++I)
1550           if (MO.clobbersPhysReg(*I)) {
1551             Pred.push_back(MO);
1552             Found = true;
1553           }
1554       }
1555     }
1556   }
1557 
1558   return Found;
1559 }
1560 
1561 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const {
1562   unsigned OpC = MI.getOpcode();
1563   switch (OpC) {
1564   default:
1565     return false;
1566   case PPC::B:
1567   case PPC::BLR:
1568   case PPC::BLR8:
1569   case PPC::BCTR:
1570   case PPC::BCTR8:
1571   case PPC::BCTRL:
1572   case PPC::BCTRL8:
1573     return true;
1574   }
1575 }
1576 
1577 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1578                                   unsigned &SrcReg2, int &Mask,
1579                                   int &Value) const {
1580   unsigned Opc = MI.getOpcode();
1581 
1582   switch (Opc) {
1583   default: return false;
1584   case PPC::CMPWI:
1585   case PPC::CMPLWI:
1586   case PPC::CMPDI:
1587   case PPC::CMPLDI:
1588     SrcReg = MI.getOperand(1).getReg();
1589     SrcReg2 = 0;
1590     Value = MI.getOperand(2).getImm();
1591     Mask = 0xFFFF;
1592     return true;
1593   case PPC::CMPW:
1594   case PPC::CMPLW:
1595   case PPC::CMPD:
1596   case PPC::CMPLD:
1597   case PPC::FCMPUS:
1598   case PPC::FCMPUD:
1599     SrcReg = MI.getOperand(1).getReg();
1600     SrcReg2 = MI.getOperand(2).getReg();
1601     Value = 0;
1602     Mask = 0;
1603     return true;
1604   }
1605 }
1606 
1607 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1608                                         unsigned SrcReg2, int Mask, int Value,
1609                                         const MachineRegisterInfo *MRI) const {
1610   if (DisableCmpOpt)
1611     return false;
1612 
1613   int OpC = CmpInstr.getOpcode();
1614   unsigned CRReg = CmpInstr.getOperand(0).getReg();
1615 
1616   // FP record forms set CR1 based on the execption status bits, not a
1617   // comparison with zero.
1618   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1619     return false;
1620 
1621   // The record forms set the condition register based on a signed comparison
1622   // with zero (so says the ISA manual). This is not as straightforward as it
1623   // seems, however, because this is always a 64-bit comparison on PPC64, even
1624   // for instructions that are 32-bit in nature (like slw for example).
1625   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1626   // for equality checks (as those don't depend on the sign). On PPC64,
1627   // we are restricted to equality for unsigned 64-bit comparisons and for
1628   // signed 32-bit comparisons the applicability is more restricted.
1629   bool isPPC64 = Subtarget.isPPC64();
1630   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1631   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1632   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1633 
1634   // Get the unique definition of SrcReg.
1635   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1636   if (!MI) return false;
1637 
1638   bool equalityOnly = false;
1639   bool noSub = false;
1640   if (isPPC64) {
1641     if (is32BitSignedCompare) {
1642       // We can perform this optimization only if MI is sign-extending.
1643       if (isSignExtended(*MI))
1644         noSub = true;
1645       else
1646         return false;
1647     } else if (is32BitUnsignedCompare) {
1648       // We can perform this optimization, equality only, if MI is
1649       // zero-extending.
1650       if (isZeroExtended(*MI)) {
1651         noSub = true;
1652         equalityOnly = true;
1653       } else
1654         return false;
1655     } else
1656       equalityOnly = is64BitUnsignedCompare;
1657   } else
1658     equalityOnly = is32BitUnsignedCompare;
1659 
1660   if (equalityOnly) {
1661     // We need to check the uses of the condition register in order to reject
1662     // non-equality comparisons.
1663     for (MachineRegisterInfo::use_instr_iterator
1664          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1665          I != IE; ++I) {
1666       MachineInstr *UseMI = &*I;
1667       if (UseMI->getOpcode() == PPC::BCC) {
1668         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1669         unsigned PredCond = PPC::getPredicateCondition(Pred);
1670         // We ignore hint bits when checking for non-equality comparisons.
1671         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
1672           return false;
1673       } else if (UseMI->getOpcode() == PPC::ISEL ||
1674                  UseMI->getOpcode() == PPC::ISEL8) {
1675         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1676         if (SubIdx != PPC::sub_eq)
1677           return false;
1678       } else
1679         return false;
1680     }
1681   }
1682 
1683   MachineBasicBlock::iterator I = CmpInstr;
1684 
1685   // Scan forward to find the first use of the compare.
1686   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1687        ++I) {
1688     bool FoundUse = false;
1689     for (MachineRegisterInfo::use_instr_iterator
1690          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
1691          J != JE; ++J)
1692       if (&*J == &*I) {
1693         FoundUse = true;
1694         break;
1695       }
1696 
1697     if (FoundUse)
1698       break;
1699   }
1700 
1701   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1702   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1703 
1704   // There are two possible candidates which can be changed to set CR[01].
1705   // One is MI, the other is a SUB instruction.
1706   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1707   MachineInstr *Sub = nullptr;
1708   if (SrcReg2 != 0)
1709     // MI is not a candidate for CMPrr.
1710     MI = nullptr;
1711   // FIXME: Conservatively refuse to convert an instruction which isn't in the
1712   // same BB as the comparison. This is to allow the check below to avoid calls
1713   // (and other explicit clobbers); instead we should really check for these
1714   // more explicitly (in at least a few predecessors).
1715   else if (MI->getParent() != CmpInstr.getParent())
1716     return false;
1717   else if (Value != 0) {
1718     // The record-form instructions set CR bit based on signed comparison against 0.
1719     // We try to convert a compare against 1 or -1 into a compare against 0.
1720     bool Success = false;
1721     if (!equalityOnly && MRI->hasOneUse(CRReg)) {
1722       MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
1723       if (UseMI->getOpcode() == PPC::BCC) {
1724         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1725         unsigned PredCond = PPC::getPredicateCondition(Pred);
1726         unsigned PredHint = PPC::getPredicateHint(Pred);
1727         int16_t Immed = (int16_t)Value;
1728 
1729         // When modyfing the condition in the predicate, we propagate hint bits
1730         // from the original predicate to the new one.
1731         if (Immed == -1 && PredCond == PPC::PRED_GT) {
1732           // We convert "greater than -1" into "greater than or equal to 0",
1733           // since we are assuming signed comparison by !equalityOnly
1734           PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1735                                   PPC::getPredicate(PPC::PRED_GE, PredHint)));
1736           Success = true;
1737         }
1738         else if (Immed == 1 && PredCond == PPC::PRED_LT) {
1739           // We convert "less than 1" into "less than or equal to 0".
1740           PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1741                                   PPC::getPredicate(PPC::PRED_LE, PredHint)));
1742           Success = true;
1743         }
1744       }
1745     }
1746 
1747     // PPC does not have a record-form SUBri.
1748     if (!Success)
1749       return false;
1750   }
1751 
1752   // Search for Sub.
1753   const TargetRegisterInfo *TRI = &getRegisterInfo();
1754   --I;
1755 
1756   // Get ready to iterate backward from CmpInstr.
1757   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
1758 
1759   for (; I != E && !noSub; --I) {
1760     const MachineInstr &Instr = *I;
1761     unsigned IOpC = Instr.getOpcode();
1762 
1763     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
1764                              Instr.readsRegister(PPC::CR0, TRI)))
1765       // This instruction modifies or uses the record condition register after
1766       // the one we want to change. While we could do this transformation, it
1767       // would likely not be profitable. This transformation removes one
1768       // instruction, and so even forcing RA to generate one move probably
1769       // makes it unprofitable.
1770       return false;
1771 
1772     // Check whether CmpInstr can be made redundant by the current instruction.
1773     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1774          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1775         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1776         ((Instr.getOperand(1).getReg() == SrcReg &&
1777           Instr.getOperand(2).getReg() == SrcReg2) ||
1778         (Instr.getOperand(1).getReg() == SrcReg2 &&
1779          Instr.getOperand(2).getReg() == SrcReg))) {
1780       Sub = &*I;
1781       break;
1782     }
1783 
1784     if (I == B)
1785       // The 'and' is below the comparison instruction.
1786       return false;
1787   }
1788 
1789   // Return false if no candidates exist.
1790   if (!MI && !Sub)
1791     return false;
1792 
1793   // The single candidate is called MI.
1794   if (!MI) MI = Sub;
1795 
1796   int NewOpC = -1;
1797   int MIOpC = MI->getOpcode();
1798   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
1799     NewOpC = MIOpC;
1800   else {
1801     NewOpC = PPC::getRecordFormOpcode(MIOpC);
1802     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1803       NewOpC = MIOpC;
1804   }
1805 
1806   // FIXME: On the non-embedded POWER architectures, only some of the record
1807   // forms are fast, and we should use only the fast ones.
1808 
1809   // The defining instruction has a record form (or is already a record
1810   // form). It is possible, however, that we'll need to reverse the condition
1811   // code of the users.
1812   if (NewOpC == -1)
1813     return false;
1814 
1815   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1816   // needs to be updated to be based on SUB.  Push the condition code
1817   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1818   // condition code of these operands will be modified.
1819   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
1820   // comparison against 0, which may modify predicate.
1821   bool ShouldSwap = false;
1822   if (Sub && Value == 0) {
1823     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1824       Sub->getOperand(2).getReg() == SrcReg;
1825 
1826     // The operands to subf are the opposite of sub, so only in the fixed-point
1827     // case, invert the order.
1828     ShouldSwap = !ShouldSwap;
1829   }
1830 
1831   if (ShouldSwap)
1832     for (MachineRegisterInfo::use_instr_iterator
1833          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1834          I != IE; ++I) {
1835       MachineInstr *UseMI = &*I;
1836       if (UseMI->getOpcode() == PPC::BCC) {
1837         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1838         unsigned PredCond = PPC::getPredicateCondition(Pred);
1839         assert((!equalityOnly ||
1840                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
1841                "Invalid predicate for equality-only optimization");
1842         (void)PredCond; // To suppress warning in release build.
1843         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1844                                 PPC::getSwappedPredicate(Pred)));
1845       } else if (UseMI->getOpcode() == PPC::ISEL ||
1846                  UseMI->getOpcode() == PPC::ISEL8) {
1847         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1848         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1849                "Invalid CR bit for equality-only optimization");
1850 
1851         if (NewSubReg == PPC::sub_lt)
1852           NewSubReg = PPC::sub_gt;
1853         else if (NewSubReg == PPC::sub_gt)
1854           NewSubReg = PPC::sub_lt;
1855 
1856         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1857                                                  NewSubReg));
1858       } else // We need to abort on a user we don't understand.
1859         return false;
1860     }
1861   assert(!(Value != 0 && ShouldSwap) &&
1862          "Non-zero immediate support and ShouldSwap"
1863          "may conflict in updating predicate");
1864 
1865   // Create a new virtual register to hold the value of the CR set by the
1866   // record-form instruction. If the instruction was not previously in
1867   // record form, then set the kill flag on the CR.
1868   CmpInstr.eraseFromParent();
1869 
1870   MachineBasicBlock::iterator MII = MI;
1871   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1872           get(TargetOpcode::COPY), CRReg)
1873     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1874 
1875   // Even if CR0 register were dead before, it is alive now since the
1876   // instruction we just built uses it.
1877   MI->clearRegisterDeads(PPC::CR0);
1878 
1879   if (MIOpC != NewOpC) {
1880     // We need to be careful here: we're replacing one instruction with
1881     // another, and we need to make sure that we get all of the right
1882     // implicit uses and defs. On the other hand, the caller may be holding
1883     // an iterator to this instruction, and so we can't delete it (this is
1884     // specifically the case if this is the instruction directly after the
1885     // compare).
1886 
1887     const MCInstrDesc &NewDesc = get(NewOpC);
1888     MI->setDesc(NewDesc);
1889 
1890     if (NewDesc.ImplicitDefs)
1891       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1892            *ImpDefs; ++ImpDefs)
1893         if (!MI->definesRegister(*ImpDefs))
1894           MI->addOperand(*MI->getParent()->getParent(),
1895                          MachineOperand::CreateReg(*ImpDefs, true, true));
1896     if (NewDesc.ImplicitUses)
1897       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1898            *ImpUses; ++ImpUses)
1899         if (!MI->readsRegister(*ImpUses))
1900           MI->addOperand(*MI->getParent()->getParent(),
1901                          MachineOperand::CreateReg(*ImpUses, false, true));
1902   }
1903   assert(MI->definesRegister(PPC::CR0) &&
1904          "Record-form instruction does not define cr0?");
1905 
1906   // Modify the condition code of operands in OperandsToUpdate.
1907   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1908   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1909   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1910     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1911 
1912   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1913     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1914 
1915   return true;
1916 }
1917 
1918 /// GetInstSize - Return the number of bytes of code the specified
1919 /// instruction may be.  This returns the maximum number of bytes.
1920 ///
1921 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1922   unsigned Opcode = MI.getOpcode();
1923 
1924   if (Opcode == PPC::INLINEASM) {
1925     const MachineFunction *MF = MI.getParent()->getParent();
1926     const char *AsmStr = MI.getOperand(0).getSymbolName();
1927     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1928   } else if (Opcode == TargetOpcode::STACKMAP) {
1929     StackMapOpers Opers(&MI);
1930     return Opers.getNumPatchBytes();
1931   } else if (Opcode == TargetOpcode::PATCHPOINT) {
1932     PatchPointOpers Opers(&MI);
1933     return Opers.getNumPatchBytes();
1934   } else {
1935     return get(Opcode).getSize();
1936   }
1937 }
1938 
1939 std::pair<unsigned, unsigned>
1940 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
1941   const unsigned Mask = PPCII::MO_ACCESS_MASK;
1942   return std::make_pair(TF & Mask, TF & ~Mask);
1943 }
1944 
1945 ArrayRef<std::pair<unsigned, const char *>>
1946 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
1947   using namespace PPCII;
1948   static const std::pair<unsigned, const char *> TargetFlags[] = {
1949       {MO_LO, "ppc-lo"},
1950       {MO_HA, "ppc-ha"},
1951       {MO_TPREL_LO, "ppc-tprel-lo"},
1952       {MO_TPREL_HA, "ppc-tprel-ha"},
1953       {MO_DTPREL_LO, "ppc-dtprel-lo"},
1954       {MO_TLSLD_LO, "ppc-tlsld-lo"},
1955       {MO_TOC_LO, "ppc-toc-lo"},
1956       {MO_TLS, "ppc-tls"}};
1957   return makeArrayRef(TargetFlags);
1958 }
1959 
1960 ArrayRef<std::pair<unsigned, const char *>>
1961 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
1962   using namespace PPCII;
1963   static const std::pair<unsigned, const char *> TargetFlags[] = {
1964       {MO_PLT, "ppc-plt"},
1965       {MO_PIC_FLAG, "ppc-pic"},
1966       {MO_NLP_FLAG, "ppc-nlp"},
1967       {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
1968   return makeArrayRef(TargetFlags);
1969 }
1970 
1971 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1972   auto &MBB = *MI.getParent();
1973   auto DL = MI.getDebugLoc();
1974   switch (MI.getOpcode()) {
1975   case TargetOpcode::LOAD_STACK_GUARD: {
1976     assert(Subtarget.isTargetLinux() &&
1977            "Only Linux target is expected to contain LOAD_STACK_GUARD");
1978     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
1979     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
1980     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
1981     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1982         .addImm(Offset)
1983         .addReg(Reg);
1984     return true;
1985   }
1986   case PPC::DFLOADf32:
1987   case PPC::DFLOADf64:
1988   case PPC::DFSTOREf32:
1989   case PPC::DFSTOREf64: {
1990     assert(Subtarget.hasP9Vector() &&
1991            "Invalid D-Form Pseudo-ops on non-P9 target.");
1992     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isImm() &&
1993            "D-form op must have register and immediate operands");
1994     unsigned UpperOpcode, LowerOpcode;
1995     switch (MI.getOpcode()) {
1996     case PPC::DFLOADf32:
1997       UpperOpcode = PPC::LXSSP;
1998       LowerOpcode = PPC::LFS;
1999       break;
2000     case PPC::DFLOADf64:
2001       UpperOpcode = PPC::LXSD;
2002       LowerOpcode = PPC::LFD;
2003       break;
2004     case PPC::DFSTOREf32:
2005       UpperOpcode = PPC::STXSSP;
2006       LowerOpcode = PPC::STFS;
2007       break;
2008     case PPC::DFSTOREf64:
2009       UpperOpcode = PPC::STXSD;
2010       LowerOpcode = PPC::STFD;
2011       break;
2012     }
2013     unsigned TargetReg = MI.getOperand(0).getReg();
2014     unsigned Opcode;
2015     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2016         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2017       Opcode = LowerOpcode;
2018     else
2019       Opcode = UpperOpcode;
2020     MI.setDesc(get(Opcode));
2021     return true;
2022   }
2023   case PPC::SPILLTOVSR_LD: {
2024     unsigned TargetReg = MI.getOperand(0).getReg();
2025     if (PPC::VSFRCRegClass.contains(TargetReg)) {
2026       MI.setDesc(get(PPC::DFLOADf64));
2027       return expandPostRAPseudo(MI);
2028     }
2029     else
2030       MI.setDesc(get(PPC::LD));
2031     return true;
2032   }
2033   case PPC::SPILLTOVSR_ST: {
2034     unsigned SrcReg = MI.getOperand(0).getReg();
2035     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2036       NumStoreSPILLVSRRCAsVec++;
2037       MI.setDesc(get(PPC::DFSTOREf64));
2038       return expandPostRAPseudo(MI);
2039     } else {
2040       NumStoreSPILLVSRRCAsGpr++;
2041       MI.setDesc(get(PPC::STD));
2042     }
2043     return true;
2044   }
2045   case PPC::SPILLTOVSR_LDX: {
2046     unsigned TargetReg = MI.getOperand(0).getReg();
2047     if (PPC::VSFRCRegClass.contains(TargetReg))
2048       MI.setDesc(get(PPC::LXSDX));
2049     else
2050       MI.setDesc(get(PPC::LDX));
2051     return true;
2052   }
2053   case PPC::SPILLTOVSR_STX: {
2054     unsigned SrcReg = MI.getOperand(0).getReg();
2055     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2056       NumStoreSPILLVSRRCAsVec++;
2057       MI.setDesc(get(PPC::STXSDX));
2058     } else {
2059       NumStoreSPILLVSRRCAsGpr++;
2060       MI.setDesc(get(PPC::STDX));
2061     }
2062     return true;
2063   }
2064 
2065   case PPC::CFENCE8: {
2066     auto Val = MI.getOperand(0).getReg();
2067     BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
2068     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
2069         .addImm(PPC::PRED_NE_MINUS)
2070         .addReg(PPC::CR7)
2071         .addImm(1);
2072     MI.setDesc(get(PPC::ISYNC));
2073     MI.RemoveOperand(0);
2074     return true;
2075   }
2076   }
2077   return false;
2078 }
2079 
2080 const TargetRegisterClass *
2081 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
2082   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
2083     return &PPC::VSRCRegClass;
2084   return RC;
2085 }
2086 
2087 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
2088   return PPC::getRecordFormOpcode(Opcode);
2089 }
2090 
2091 // This function returns true if the machine instruction
2092 // always outputs a value by sign-extending a 32 bit value,
2093 // i.e. 0 to 31-th bits are same as 32-th bit.
2094 static bool isSignExtendingOp(const MachineInstr &MI) {
2095   int Opcode = MI.getOpcode();
2096   if (Opcode == PPC::LI     || Opcode == PPC::LI8     ||
2097       Opcode == PPC::LIS    || Opcode == PPC::LIS8    ||
2098       Opcode == PPC::SRAW   || Opcode == PPC::SRAWo   ||
2099       Opcode == PPC::SRAWI  || Opcode == PPC::SRAWIo  ||
2100       Opcode == PPC::LWA    || Opcode == PPC::LWAX    ||
2101       Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
2102       Opcode == PPC::LHA    || Opcode == PPC::LHAX    ||
2103       Opcode == PPC::LHA8   || Opcode == PPC::LHAX8   ||
2104       Opcode == PPC::LBZ    || Opcode == PPC::LBZX    ||
2105       Opcode == PPC::LBZ8   || Opcode == PPC::LBZX8   ||
2106       Opcode == PPC::LBZU   || Opcode == PPC::LBZUX   ||
2107       Opcode == PPC::LBZU8  || Opcode == PPC::LBZUX8  ||
2108       Opcode == PPC::LHZ    || Opcode == PPC::LHZX    ||
2109       Opcode == PPC::LHZ8   || Opcode == PPC::LHZX8   ||
2110       Opcode == PPC::LHZU   || Opcode == PPC::LHZUX   ||
2111       Opcode == PPC::LHZU8  || Opcode == PPC::LHZUX8  ||
2112       Opcode == PPC::EXTSB  || Opcode == PPC::EXTSBo  ||
2113       Opcode == PPC::EXTSH  || Opcode == PPC::EXTSHo  ||
2114       Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8  ||
2115       Opcode == PPC::EXTSW  || Opcode == PPC::EXTSWo  ||
2116       Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
2117       Opcode == PPC::EXTSB8_32_64)
2118     return true;
2119 
2120   if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
2121     return true;
2122 
2123   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
2124        Opcode == PPC::RLWNM  || Opcode == PPC::RLWNMo) &&
2125       MI.getOperand(3).getImm() > 0 &&
2126       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
2127     return true;
2128 
2129   return false;
2130 }
2131 
2132 // This function returns true if the machine instruction
2133 // always outputs zeros in higher 32 bits.
2134 static bool isZeroExtendingOp(const MachineInstr &MI) {
2135   int Opcode = MI.getOpcode();
2136   // The 16-bit immediate is sign-extended in li/lis.
2137   // If the most significant bit is zero, all higher bits are zero.
2138   if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
2139       Opcode == PPC::LIS || Opcode == PPC::LIS8) {
2140     int64_t Imm = MI.getOperand(1).getImm();
2141     if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
2142       return true;
2143   }
2144 
2145   // We have some variations of rotate-and-mask instructions
2146   // that clear higher 32-bits.
2147   if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
2148        Opcode == PPC::RLDCL  || Opcode == PPC::RLDCLo  ||
2149        Opcode == PPC::RLDICL_32_64) &&
2150       MI.getOperand(3).getImm() >= 32)
2151     return true;
2152 
2153   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
2154       MI.getOperand(3).getImm() >= 32 &&
2155       MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
2156     return true;
2157 
2158   if ((Opcode == PPC::RLWINM  || Opcode == PPC::RLWINMo ||
2159        Opcode == PPC::RLWNM   || Opcode == PPC::RLWNMo  ||
2160        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
2161       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
2162     return true;
2163 
2164   // There are other instructions that clear higher 32-bits.
2165   if (Opcode == PPC::CNTLZW  || Opcode == PPC::CNTLZWo ||
2166       Opcode == PPC::CNTTZW  || Opcode == PPC::CNTTZWo ||
2167       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
2168       Opcode == PPC::CNTLZD  || Opcode == PPC::CNTLZDo ||
2169       Opcode == PPC::CNTTZD  || Opcode == PPC::CNTTZDo ||
2170       Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW ||
2171       Opcode == PPC::SLW     || Opcode == PPC::SLWo    ||
2172       Opcode == PPC::SRW     || Opcode == PPC::SRWo    ||
2173       Opcode == PPC::SLW8    || Opcode == PPC::SRW8    ||
2174       Opcode == PPC::SLWI    || Opcode == PPC::SLWIo   ||
2175       Opcode == PPC::SRWI    || Opcode == PPC::SRWIo   ||
2176       Opcode == PPC::LWZ     || Opcode == PPC::LWZX    ||
2177       Opcode == PPC::LWZU    || Opcode == PPC::LWZUX   ||
2178       Opcode == PPC::LWBRX   || Opcode == PPC::LHBRX   ||
2179       Opcode == PPC::LHZ     || Opcode == PPC::LHZX    ||
2180       Opcode == PPC::LHZU    || Opcode == PPC::LHZUX   ||
2181       Opcode == PPC::LBZ     || Opcode == PPC::LBZX    ||
2182       Opcode == PPC::LBZU    || Opcode == PPC::LBZUX   ||
2183       Opcode == PPC::LWZ8    || Opcode == PPC::LWZX8   ||
2184       Opcode == PPC::LWZU8   || Opcode == PPC::LWZUX8  ||
2185       Opcode == PPC::LWBRX8  || Opcode == PPC::LHBRX8  ||
2186       Opcode == PPC::LHZ8    || Opcode == PPC::LHZX8   ||
2187       Opcode == PPC::LHZU8   || Opcode == PPC::LHZUX8  ||
2188       Opcode == PPC::LBZ8    || Opcode == PPC::LBZX8   ||
2189       Opcode == PPC::LBZU8   || Opcode == PPC::LBZUX8  ||
2190       Opcode == PPC::ANDIo   || Opcode == PPC::ANDISo  ||
2191       Opcode == PPC::ROTRWI  || Opcode == PPC::ROTRWIo ||
2192       Opcode == PPC::EXTLWI  || Opcode == PPC::EXTLWIo ||
2193       Opcode == PPC::MFVSRWZ)
2194     return true;
2195 
2196   return false;
2197 }
2198 
2199 // We limit the max depth to track incoming values of PHIs or binary ops
2200 // (e.g. AND) to avoid exsessive cost.
2201 const unsigned MAX_DEPTH = 1;
2202 
2203 bool
2204 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
2205                                    const unsigned Depth) const {
2206   const MachineFunction *MF = MI.getParent()->getParent();
2207   const MachineRegisterInfo *MRI = &MF->getRegInfo();
2208 
2209   // If we know this instruction returns sign- or zero-extended result,
2210   // return true.
2211   if (SignExt ? isSignExtendingOp(MI):
2212                 isZeroExtendingOp(MI))
2213     return true;
2214 
2215   switch (MI.getOpcode()) {
2216   case PPC::COPY: {
2217     unsigned SrcReg = MI.getOperand(1).getReg();
2218 
2219     // In both ELFv1 and v2 ABI, method parameters and the return value
2220     // are sign- or zero-extended.
2221     if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
2222       const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
2223       // We check the ZExt/SExt flags for a method parameter.
2224       if (MI.getParent()->getBasicBlock() ==
2225           &MF->getFunction()->getEntryBlock()) {
2226         unsigned VReg = MI.getOperand(0).getReg();
2227         if (MF->getRegInfo().isLiveIn(VReg))
2228           return SignExt ? FuncInfo->isLiveInSExt(VReg) :
2229                            FuncInfo->isLiveInZExt(VReg);
2230       }
2231 
2232       // For a method return value, we check the ZExt/SExt flags in attribute.
2233       // We assume the following code sequence for method call.
2234       //   ADJCALLSTACKDOWN 32, %R1<imp-def,dead>, %R1<imp-use>
2235       //   BL8_NOP <ga:@func>,...
2236       //   ADJCALLSTACKUP 32, 0, %R1<imp-def,dead>, %R1<imp-use>
2237       //   %vreg5<def> = COPY %X3; G8RC:%vreg5
2238       if (SrcReg == PPC::X3) {
2239         const MachineBasicBlock *MBB = MI.getParent();
2240         MachineBasicBlock::const_instr_iterator II =
2241           MachineBasicBlock::const_instr_iterator(&MI);
2242         if (II != MBB->instr_begin() &&
2243             (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
2244           const MachineInstr &CallMI = *(--II);
2245           if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
2246             const Function *CalleeFn =
2247               dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
2248             if (!CalleeFn)
2249               return false;
2250             const IntegerType *IntTy =
2251               dyn_cast<IntegerType>(CalleeFn->getReturnType());
2252             const AttributeSet &Attrs =
2253               CalleeFn->getAttributes().getRetAttributes();
2254             if (IntTy && IntTy->getBitWidth() <= 32)
2255               return Attrs.hasAttribute(SignExt ? Attribute::SExt :
2256                                                   Attribute::ZExt);
2257           }
2258         }
2259       }
2260     }
2261 
2262     // If this is a copy from another register, we recursively check source.
2263     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
2264       return false;
2265     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
2266     if (SrcMI != NULL)
2267       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
2268 
2269     return false;
2270   }
2271 
2272   case PPC::ANDIo:
2273   case PPC::ANDISo:
2274   case PPC::ORI:
2275   case PPC::ORIS:
2276   case PPC::XORI:
2277   case PPC::XORIS:
2278   case PPC::ANDIo8:
2279   case PPC::ANDISo8:
2280   case PPC::ORI8:
2281   case PPC::ORIS8:
2282   case PPC::XORI8:
2283   case PPC::XORIS8: {
2284     // logical operation with 16-bit immediate does not change the upper bits.
2285     // So, we track the operand register as we do for register copy.
2286     unsigned SrcReg = MI.getOperand(1).getReg();
2287     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
2288       return false;
2289     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
2290     if (SrcMI != NULL)
2291       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
2292 
2293     return false;
2294   }
2295 
2296   // If all incoming values are sign-/zero-extended,
2297   // the output of AND, OR, ISEL or PHI is also sign-/zero-extended.
2298   case PPC::AND:
2299   case PPC::AND8:
2300   case PPC::OR:
2301   case PPC::OR8:
2302   case PPC::ISEL:
2303   case PPC::PHI: {
2304     if (Depth >= MAX_DEPTH)
2305       return false;
2306 
2307     // The input registers for PHI are operand 1, 3, ...
2308     // The input registers for others are operand 1 and 2.
2309     unsigned E = 3, D = 1;
2310     if (MI.getOpcode() == PPC::PHI) {
2311       E = MI.getNumOperands();
2312       D = 2;
2313     }
2314 
2315     for (unsigned I = 1; I != E; I += D) {
2316       if (MI.getOperand(I).isReg()) {
2317         unsigned SrcReg = MI.getOperand(I).getReg();
2318         if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
2319           return false;
2320         const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
2321         if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
2322           return false;
2323       }
2324       else
2325         return false;
2326     }
2327     return true;
2328   }
2329 
2330   default:
2331     break;
2332   }
2333   return false;
2334 }
2335