1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the PowerPC implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCInstrInfo.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCHazardRecognizers.h" 18 #include "PPCInstrBuilder.h" 19 #include "PPCMachineFunctionInfo.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/ScheduleDAG.h" 31 #include "llvm/CodeGen/SlotIndexes.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "ppc-instr-info" 43 44 #define GET_INSTRMAP_INFO 45 #define GET_INSTRINFO_CTOR_DTOR 46 #include "PPCGenInstrInfo.inc" 47 48 static cl:: 49 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 50 cl::desc("Disable analysis for CTR loops")); 51 52 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 53 cl::desc("Disable compare instruction optimization"), cl::Hidden); 54 55 static cl::opt<bool> DisableVSXFMAMutate("disable-ppc-vsx-fma-mutation", 56 cl::desc("Disable VSX FMA instruction mutation"), cl::Hidden); 57 58 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 59 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 60 cl::Hidden); 61 62 // Pin the vtable to this file. 63 void PPCInstrInfo::anchor() {} 64 65 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 66 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP), 67 Subtarget(STI), RI(STI) {} 68 69 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 70 /// this target when scheduling the DAG. 71 ScheduleHazardRecognizer * 72 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 73 const ScheduleDAG *DAG) const { 74 unsigned Directive = 75 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); 76 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 77 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 78 const InstrItineraryData *II = 79 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 80 return new ScoreboardHazardRecognizer(II, DAG); 81 } 82 83 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 84 } 85 86 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 87 /// to use for this target when scheduling the DAG. 88 ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetPostRAHazardRecognizer( 89 const InstrItineraryData *II, 90 const ScheduleDAG *DAG) const { 91 unsigned Directive = 92 DAG->TM.getSubtarget<PPCSubtarget>().getDarwinDirective(); 93 94 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 95 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 96 97 // Most subtargets use a PPC970 recognizer. 98 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 99 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 100 assert(DAG->TII && "No InstrInfo?"); 101 102 return new PPCHazardRecognizer970(*DAG); 103 } 104 105 return new ScoreboardHazardRecognizer(II, DAG); 106 } 107 108 109 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 110 const MachineInstr *DefMI, unsigned DefIdx, 111 const MachineInstr *UseMI, 112 unsigned UseIdx) const { 113 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 114 UseMI, UseIdx); 115 116 const MachineOperand &DefMO = DefMI->getOperand(DefIdx); 117 unsigned Reg = DefMO.getReg(); 118 119 const TargetRegisterInfo *TRI = &getRegisterInfo(); 120 bool IsRegCR; 121 if (TRI->isVirtualRegister(Reg)) { 122 const MachineRegisterInfo *MRI = 123 &DefMI->getParent()->getParent()->getRegInfo(); 124 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 125 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 126 } else { 127 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 128 PPC::CRBITRCRegClass.contains(Reg); 129 } 130 131 if (UseMI->isBranch() && IsRegCR) { 132 if (Latency < 0) 133 Latency = getInstrLatency(ItinData, DefMI); 134 135 // On some cores, there is an additional delay between writing to a condition 136 // register, and using it from a branch. 137 unsigned Directive = Subtarget.getDarwinDirective(); 138 switch (Directive) { 139 default: break; 140 case PPC::DIR_7400: 141 case PPC::DIR_750: 142 case PPC::DIR_970: 143 case PPC::DIR_E5500: 144 case PPC::DIR_PWR4: 145 case PPC::DIR_PWR5: 146 case PPC::DIR_PWR5X: 147 case PPC::DIR_PWR6: 148 case PPC::DIR_PWR6X: 149 case PPC::DIR_PWR7: 150 case PPC::DIR_PWR8: 151 Latency += 2; 152 break; 153 } 154 } 155 156 return Latency; 157 } 158 159 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 160 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 161 unsigned &SrcReg, unsigned &DstReg, 162 unsigned &SubIdx) const { 163 switch (MI.getOpcode()) { 164 default: return false; 165 case PPC::EXTSW: 166 case PPC::EXTSW_32_64: 167 SrcReg = MI.getOperand(1).getReg(); 168 DstReg = MI.getOperand(0).getReg(); 169 SubIdx = PPC::sub_32; 170 return true; 171 } 172 } 173 174 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 175 int &FrameIndex) const { 176 // Note: This list must be kept consistent with LoadRegFromStackSlot. 177 switch (MI->getOpcode()) { 178 default: break; 179 case PPC::LD: 180 case PPC::LWZ: 181 case PPC::LFS: 182 case PPC::LFD: 183 case PPC::RESTORE_CR: 184 case PPC::RESTORE_CRBIT: 185 case PPC::LVX: 186 case PPC::LXVD2X: 187 case PPC::RESTORE_VRSAVE: 188 // Check for the operands added by addFrameReference (the immediate is the 189 // offset which defaults to 0). 190 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 191 MI->getOperand(2).isFI()) { 192 FrameIndex = MI->getOperand(2).getIndex(); 193 return MI->getOperand(0).getReg(); 194 } 195 break; 196 } 197 return 0; 198 } 199 200 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI, 201 int &FrameIndex) const { 202 // Note: This list must be kept consistent with StoreRegToStackSlot. 203 switch (MI->getOpcode()) { 204 default: break; 205 case PPC::STD: 206 case PPC::STW: 207 case PPC::STFS: 208 case PPC::STFD: 209 case PPC::SPILL_CR: 210 case PPC::SPILL_CRBIT: 211 case PPC::STVX: 212 case PPC::STXVD2X: 213 case PPC::SPILL_VRSAVE: 214 // Check for the operands added by addFrameReference (the immediate is the 215 // offset which defaults to 0). 216 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 217 MI->getOperand(2).isFI()) { 218 FrameIndex = MI->getOperand(2).getIndex(); 219 return MI->getOperand(0).getReg(); 220 } 221 break; 222 } 223 return 0; 224 } 225 226 // commuteInstruction - We can commute rlwimi instructions, but only if the 227 // rotate amt is zero. We also have to munge the immediates a bit. 228 MachineInstr * 229 PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { 230 MachineFunction &MF = *MI->getParent()->getParent(); 231 232 // Normal instructions can be commuted the obvious way. 233 if (MI->getOpcode() != PPC::RLWIMI && 234 MI->getOpcode() != PPC::RLWIMIo) 235 return TargetInstrInfo::commuteInstruction(MI, NewMI); 236 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 237 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 238 // changing the relative order of the mask operands might change what happens 239 // to the high-bits of the mask (and, thus, the result). 240 241 // Cannot commute if it has a non-zero rotate count. 242 if (MI->getOperand(3).getImm() != 0) 243 return nullptr; 244 245 // If we have a zero rotate count, we have: 246 // M = mask(MB,ME) 247 // Op0 = (Op1 & ~M) | (Op2 & M) 248 // Change this to: 249 // M = mask((ME+1)&31, (MB-1)&31) 250 // Op0 = (Op2 & ~M) | (Op1 & M) 251 252 // Swap op1/op2 253 unsigned Reg0 = MI->getOperand(0).getReg(); 254 unsigned Reg1 = MI->getOperand(1).getReg(); 255 unsigned Reg2 = MI->getOperand(2).getReg(); 256 unsigned SubReg1 = MI->getOperand(1).getSubReg(); 257 unsigned SubReg2 = MI->getOperand(2).getSubReg(); 258 bool Reg1IsKill = MI->getOperand(1).isKill(); 259 bool Reg2IsKill = MI->getOperand(2).isKill(); 260 bool ChangeReg0 = false; 261 // If machine instrs are no longer in two-address forms, update 262 // destination register as well. 263 if (Reg0 == Reg1) { 264 // Must be two address instruction! 265 assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 266 "Expecting a two-address instruction!"); 267 assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 268 Reg2IsKill = false; 269 ChangeReg0 = true; 270 } 271 272 // Masks. 273 unsigned MB = MI->getOperand(4).getImm(); 274 unsigned ME = MI->getOperand(5).getImm(); 275 276 if (NewMI) { 277 // Create a new instruction. 278 unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg(); 279 bool Reg0IsDead = MI->getOperand(0).isDead(); 280 return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) 281 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 282 .addReg(Reg2, getKillRegState(Reg2IsKill)) 283 .addReg(Reg1, getKillRegState(Reg1IsKill)) 284 .addImm((ME+1) & 31) 285 .addImm((MB-1) & 31); 286 } 287 288 if (ChangeReg0) { 289 MI->getOperand(0).setReg(Reg2); 290 MI->getOperand(0).setSubReg(SubReg2); 291 } 292 MI->getOperand(2).setReg(Reg1); 293 MI->getOperand(1).setReg(Reg2); 294 MI->getOperand(2).setSubReg(SubReg1); 295 MI->getOperand(1).setSubReg(SubReg2); 296 MI->getOperand(2).setIsKill(Reg1IsKill); 297 MI->getOperand(1).setIsKill(Reg2IsKill); 298 299 // Swap the mask around. 300 MI->getOperand(4).setImm((ME+1) & 31); 301 MI->getOperand(5).setImm((MB-1) & 31); 302 return MI; 303 } 304 305 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1, 306 unsigned &SrcOpIdx2) const { 307 // For VSX A-Type FMA instructions, it is the first two operands that can be 308 // commuted, however, because the non-encoded tied input operand is listed 309 // first, the operands to swap are actually the second and third. 310 311 int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode()); 312 if (AltOpc == -1) 313 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 314 315 SrcOpIdx1 = 2; 316 SrcOpIdx2 = 3; 317 return true; 318 } 319 320 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 321 MachineBasicBlock::iterator MI) const { 322 // This function is used for scheduling, and the nop wanted here is the type 323 // that terminates dispatch groups on the POWER cores. 324 unsigned Directive = Subtarget.getDarwinDirective(); 325 unsigned Opcode; 326 switch (Directive) { 327 default: Opcode = PPC::NOP; break; 328 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 329 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 330 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 331 } 332 333 DebugLoc DL; 334 BuildMI(MBB, MI, DL, get(Opcode)); 335 } 336 337 /// getNoopForMachoTarget - Return the noop instruction to use for a noop. 338 void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { 339 NopInst.setOpcode(PPC::NOP); 340 } 341 342 // Branch analysis. 343 // Note: If the condition register is set to CTR or CTR8 then this is a 344 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 345 bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, 346 MachineBasicBlock *&FBB, 347 SmallVectorImpl<MachineOperand> &Cond, 348 bool AllowModify) const { 349 bool isPPC64 = Subtarget.isPPC64(); 350 351 // If the block has no terminators, it just falls into the block after it. 352 MachineBasicBlock::iterator I = MBB.end(); 353 if (I == MBB.begin()) 354 return false; 355 --I; 356 while (I->isDebugValue()) { 357 if (I == MBB.begin()) 358 return false; 359 --I; 360 } 361 if (!isUnpredicatedTerminator(I)) 362 return false; 363 364 // Get the last instruction in the block. 365 MachineInstr *LastInst = I; 366 367 // If there is only one terminator instruction, process it. 368 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { 369 if (LastInst->getOpcode() == PPC::B) { 370 if (!LastInst->getOperand(0).isMBB()) 371 return true; 372 TBB = LastInst->getOperand(0).getMBB(); 373 return false; 374 } else if (LastInst->getOpcode() == PPC::BCC) { 375 if (!LastInst->getOperand(2).isMBB()) 376 return true; 377 // Block ends with fall-through condbranch. 378 TBB = LastInst->getOperand(2).getMBB(); 379 Cond.push_back(LastInst->getOperand(0)); 380 Cond.push_back(LastInst->getOperand(1)); 381 return false; 382 } else if (LastInst->getOpcode() == PPC::BC) { 383 if (!LastInst->getOperand(1).isMBB()) 384 return true; 385 // Block ends with fall-through condbranch. 386 TBB = LastInst->getOperand(1).getMBB(); 387 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 388 Cond.push_back(LastInst->getOperand(0)); 389 return false; 390 } else if (LastInst->getOpcode() == PPC::BCn) { 391 if (!LastInst->getOperand(1).isMBB()) 392 return true; 393 // Block ends with fall-through condbranch. 394 TBB = LastInst->getOperand(1).getMBB(); 395 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 396 Cond.push_back(LastInst->getOperand(0)); 397 return false; 398 } else if (LastInst->getOpcode() == PPC::BDNZ8 || 399 LastInst->getOpcode() == PPC::BDNZ) { 400 if (!LastInst->getOperand(0).isMBB()) 401 return true; 402 if (DisableCTRLoopAnal) 403 return true; 404 TBB = LastInst->getOperand(0).getMBB(); 405 Cond.push_back(MachineOperand::CreateImm(1)); 406 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 407 true)); 408 return false; 409 } else if (LastInst->getOpcode() == PPC::BDZ8 || 410 LastInst->getOpcode() == PPC::BDZ) { 411 if (!LastInst->getOperand(0).isMBB()) 412 return true; 413 if (DisableCTRLoopAnal) 414 return true; 415 TBB = LastInst->getOperand(0).getMBB(); 416 Cond.push_back(MachineOperand::CreateImm(0)); 417 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 418 true)); 419 return false; 420 } 421 422 // Otherwise, don't know what this is. 423 return true; 424 } 425 426 // Get the instruction before it if it's a terminator. 427 MachineInstr *SecondLastInst = I; 428 429 // If there are three terminators, we don't know what sort of block this is. 430 if (SecondLastInst && I != MBB.begin() && 431 isUnpredicatedTerminator(--I)) 432 return true; 433 434 // If the block ends with PPC::B and PPC:BCC, handle it. 435 if (SecondLastInst->getOpcode() == PPC::BCC && 436 LastInst->getOpcode() == PPC::B) { 437 if (!SecondLastInst->getOperand(2).isMBB() || 438 !LastInst->getOperand(0).isMBB()) 439 return true; 440 TBB = SecondLastInst->getOperand(2).getMBB(); 441 Cond.push_back(SecondLastInst->getOperand(0)); 442 Cond.push_back(SecondLastInst->getOperand(1)); 443 FBB = LastInst->getOperand(0).getMBB(); 444 return false; 445 } else if (SecondLastInst->getOpcode() == PPC::BC && 446 LastInst->getOpcode() == PPC::B) { 447 if (!SecondLastInst->getOperand(1).isMBB() || 448 !LastInst->getOperand(0).isMBB()) 449 return true; 450 TBB = SecondLastInst->getOperand(1).getMBB(); 451 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 452 Cond.push_back(SecondLastInst->getOperand(0)); 453 FBB = LastInst->getOperand(0).getMBB(); 454 return false; 455 } else if (SecondLastInst->getOpcode() == PPC::BCn && 456 LastInst->getOpcode() == PPC::B) { 457 if (!SecondLastInst->getOperand(1).isMBB() || 458 !LastInst->getOperand(0).isMBB()) 459 return true; 460 TBB = SecondLastInst->getOperand(1).getMBB(); 461 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 462 Cond.push_back(SecondLastInst->getOperand(0)); 463 FBB = LastInst->getOperand(0).getMBB(); 464 return false; 465 } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 || 466 SecondLastInst->getOpcode() == PPC::BDNZ) && 467 LastInst->getOpcode() == PPC::B) { 468 if (!SecondLastInst->getOperand(0).isMBB() || 469 !LastInst->getOperand(0).isMBB()) 470 return true; 471 if (DisableCTRLoopAnal) 472 return true; 473 TBB = SecondLastInst->getOperand(0).getMBB(); 474 Cond.push_back(MachineOperand::CreateImm(1)); 475 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 476 true)); 477 FBB = LastInst->getOperand(0).getMBB(); 478 return false; 479 } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 || 480 SecondLastInst->getOpcode() == PPC::BDZ) && 481 LastInst->getOpcode() == PPC::B) { 482 if (!SecondLastInst->getOperand(0).isMBB() || 483 !LastInst->getOperand(0).isMBB()) 484 return true; 485 if (DisableCTRLoopAnal) 486 return true; 487 TBB = SecondLastInst->getOperand(0).getMBB(); 488 Cond.push_back(MachineOperand::CreateImm(0)); 489 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 490 true)); 491 FBB = LastInst->getOperand(0).getMBB(); 492 return false; 493 } 494 495 // If the block ends with two PPC:Bs, handle it. The second one is not 496 // executed, so remove it. 497 if (SecondLastInst->getOpcode() == PPC::B && 498 LastInst->getOpcode() == PPC::B) { 499 if (!SecondLastInst->getOperand(0).isMBB()) 500 return true; 501 TBB = SecondLastInst->getOperand(0).getMBB(); 502 I = LastInst; 503 if (AllowModify) 504 I->eraseFromParent(); 505 return false; 506 } 507 508 // Otherwise, can't handle this. 509 return true; 510 } 511 512 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 513 MachineBasicBlock::iterator I = MBB.end(); 514 if (I == MBB.begin()) return 0; 515 --I; 516 while (I->isDebugValue()) { 517 if (I == MBB.begin()) 518 return 0; 519 --I; 520 } 521 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 522 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 523 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 524 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 525 return 0; 526 527 // Remove the branch. 528 I->eraseFromParent(); 529 530 I = MBB.end(); 531 532 if (I == MBB.begin()) return 1; 533 --I; 534 if (I->getOpcode() != PPC::BCC && 535 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 536 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 537 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 538 return 1; 539 540 // Remove the branch. 541 I->eraseFromParent(); 542 return 2; 543 } 544 545 unsigned 546 PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 547 MachineBasicBlock *FBB, 548 const SmallVectorImpl<MachineOperand> &Cond, 549 DebugLoc DL) const { 550 // Shouldn't be a fall through. 551 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 552 assert((Cond.size() == 2 || Cond.size() == 0) && 553 "PPC branch conditions have two components!"); 554 555 bool isPPC64 = Subtarget.isPPC64(); 556 557 // One-way branch. 558 if (!FBB) { 559 if (Cond.empty()) // Unconditional branch 560 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 561 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 562 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 563 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 564 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 565 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 566 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); 567 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 568 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); 569 else // Conditional branch 570 BuildMI(&MBB, DL, get(PPC::BCC)) 571 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); 572 return 1; 573 } 574 575 // Two-way Conditional Branch. 576 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 577 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 578 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 579 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 580 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 581 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); 582 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 583 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); 584 else 585 BuildMI(&MBB, DL, get(PPC::BCC)) 586 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); 587 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 588 return 2; 589 } 590 591 // Select analysis. 592 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 593 const SmallVectorImpl<MachineOperand> &Cond, 594 unsigned TrueReg, unsigned FalseReg, 595 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 596 if (!Subtarget.hasISEL()) 597 return false; 598 599 if (Cond.size() != 2) 600 return false; 601 602 // If this is really a bdnz-like condition, then it cannot be turned into a 603 // select. 604 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 605 return false; 606 607 // Check register classes. 608 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 609 const TargetRegisterClass *RC = 610 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 611 if (!RC) 612 return false; 613 614 // isel is for regular integer GPRs only. 615 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 616 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 617 !PPC::G8RCRegClass.hasSubClassEq(RC) && 618 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 619 return false; 620 621 // FIXME: These numbers are for the A2, how well they work for other cores is 622 // an open question. On the A2, the isel instruction has a 2-cycle latency 623 // but single-cycle throughput. These numbers are used in combination with 624 // the MispredictPenalty setting from the active SchedMachineModel. 625 CondCycles = 1; 626 TrueCycles = 1; 627 FalseCycles = 1; 628 629 return true; 630 } 631 632 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 633 MachineBasicBlock::iterator MI, DebugLoc dl, 634 unsigned DestReg, 635 const SmallVectorImpl<MachineOperand> &Cond, 636 unsigned TrueReg, unsigned FalseReg) const { 637 assert(Cond.size() == 2 && 638 "PPC branch conditions have two components!"); 639 640 assert(Subtarget.hasISEL() && 641 "Cannot insert select on target without ISEL support"); 642 643 // Get the register classes. 644 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 645 const TargetRegisterClass *RC = 646 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 647 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 648 649 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 650 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 651 assert((Is64Bit || 652 PPC::GPRCRegClass.hasSubClassEq(RC) || 653 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 654 "isel is for regular integer GPRs only"); 655 656 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 657 unsigned SelectPred = Cond[0].getImm(); 658 659 unsigned SubIdx; 660 bool SwapOps; 661 switch (SelectPred) { 662 default: llvm_unreachable("invalid predicate for isel"); 663 case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break; 664 case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break; 665 case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break; 666 case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break; 667 case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break; 668 case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break; 669 case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break; 670 case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break; 671 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 672 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 673 } 674 675 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 676 SecondReg = SwapOps ? TrueReg : FalseReg; 677 678 // The first input register of isel cannot be r0. If it is a member 679 // of a register class that can be r0, then copy it first (the 680 // register allocator should eliminate the copy). 681 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 682 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 683 const TargetRegisterClass *FirstRC = 684 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 685 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 686 unsigned OldFirstReg = FirstReg; 687 FirstReg = MRI.createVirtualRegister(FirstRC); 688 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 689 .addReg(OldFirstReg); 690 } 691 692 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 693 .addReg(FirstReg).addReg(SecondReg) 694 .addReg(Cond[1].getReg(), 0, SubIdx); 695 } 696 697 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 698 MachineBasicBlock::iterator I, DebugLoc DL, 699 unsigned DestReg, unsigned SrcReg, 700 bool KillSrc) const { 701 // We can end up with self copies and similar things as a result of VSX copy 702 // legalization. Promote them here. 703 const TargetRegisterInfo *TRI = &getRegisterInfo(); 704 if (PPC::F8RCRegClass.contains(DestReg) && 705 PPC::VSLRCRegClass.contains(SrcReg)) { 706 unsigned SuperReg = 707 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 708 709 if (VSXSelfCopyCrash && SrcReg == SuperReg) 710 llvm_unreachable("nop VSX copy"); 711 712 DestReg = SuperReg; 713 } else if (PPC::VRRCRegClass.contains(DestReg) && 714 PPC::VSHRCRegClass.contains(SrcReg)) { 715 unsigned SuperReg = 716 TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass); 717 718 if (VSXSelfCopyCrash && SrcReg == SuperReg) 719 llvm_unreachable("nop VSX copy"); 720 721 DestReg = SuperReg; 722 } else if (PPC::F8RCRegClass.contains(SrcReg) && 723 PPC::VSLRCRegClass.contains(DestReg)) { 724 unsigned SuperReg = 725 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 726 727 if (VSXSelfCopyCrash && DestReg == SuperReg) 728 llvm_unreachable("nop VSX copy"); 729 730 SrcReg = SuperReg; 731 } else if (PPC::VRRCRegClass.contains(SrcReg) && 732 PPC::VSHRCRegClass.contains(DestReg)) { 733 unsigned SuperReg = 734 TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass); 735 736 if (VSXSelfCopyCrash && DestReg == SuperReg) 737 llvm_unreachable("nop VSX copy"); 738 739 SrcReg = SuperReg; 740 } 741 742 unsigned Opc; 743 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 744 Opc = PPC::OR; 745 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 746 Opc = PPC::OR8; 747 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 748 Opc = PPC::FMR; 749 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 750 Opc = PPC::MCRF; 751 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 752 Opc = PPC::VOR; 753 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 754 // There are two different ways this can be done: 755 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 756 // issue in VSU pipeline 0. 757 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 758 // can go to either pipeline. 759 // We'll always use xxlor here, because in practically all cases where 760 // copies are generated, they are close enough to some use that the 761 // lower-latency form is preferable. 762 Opc = PPC::XXLOR; 763 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg)) 764 Opc = PPC::XXLORf; 765 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 766 Opc = PPC::CROR; 767 else 768 llvm_unreachable("Impossible reg-to-reg copy"); 769 770 const MCInstrDesc &MCID = get(Opc); 771 if (MCID.getNumOperands() == 3) 772 BuildMI(MBB, I, DL, MCID, DestReg) 773 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 774 else 775 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 776 } 777 778 // This function returns true if a CR spill is necessary and false otherwise. 779 bool 780 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, 781 unsigned SrcReg, bool isKill, 782 int FrameIdx, 783 const TargetRegisterClass *RC, 784 SmallVectorImpl<MachineInstr*> &NewMIs, 785 bool &NonRI, bool &SpillsVRS) const{ 786 // Note: If additional store instructions are added here, 787 // update isStoreToStackSlot. 788 789 DebugLoc DL; 790 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 791 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 792 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) 793 .addReg(SrcReg, 794 getKillRegState(isKill)), 795 FrameIdx)); 796 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 797 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 798 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) 799 .addReg(SrcReg, 800 getKillRegState(isKill)), 801 FrameIdx)); 802 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 803 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) 804 .addReg(SrcReg, 805 getKillRegState(isKill)), 806 FrameIdx)); 807 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 808 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) 809 .addReg(SrcReg, 810 getKillRegState(isKill)), 811 FrameIdx)); 812 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 813 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) 814 .addReg(SrcReg, 815 getKillRegState(isKill)), 816 FrameIdx)); 817 return true; 818 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 819 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT)) 820 .addReg(SrcReg, 821 getKillRegState(isKill)), 822 FrameIdx)); 823 return true; 824 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 825 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX)) 826 .addReg(SrcReg, 827 getKillRegState(isKill)), 828 FrameIdx)); 829 NonRI = true; 830 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 831 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X)) 832 .addReg(SrcReg, 833 getKillRegState(isKill)), 834 FrameIdx)); 835 NonRI = true; 836 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 837 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX)) 838 .addReg(SrcReg, 839 getKillRegState(isKill)), 840 FrameIdx)); 841 NonRI = true; 842 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 843 assert(Subtarget.isDarwin() && 844 "VRSAVE only needs spill/restore on Darwin"); 845 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE)) 846 .addReg(SrcReg, 847 getKillRegState(isKill)), 848 FrameIdx)); 849 SpillsVRS = true; 850 } else { 851 llvm_unreachable("Unknown regclass!"); 852 } 853 854 return false; 855 } 856 857 void 858 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 859 MachineBasicBlock::iterator MI, 860 unsigned SrcReg, bool isKill, int FrameIdx, 861 const TargetRegisterClass *RC, 862 const TargetRegisterInfo *TRI) const { 863 MachineFunction &MF = *MBB.getParent(); 864 SmallVector<MachineInstr*, 4> NewMIs; 865 866 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 867 FuncInfo->setHasSpills(); 868 869 bool NonRI = false, SpillsVRS = false; 870 if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs, 871 NonRI, SpillsVRS)) 872 FuncInfo->setSpillsCR(); 873 874 if (SpillsVRS) 875 FuncInfo->setSpillsVRSAVE(); 876 877 if (NonRI) 878 FuncInfo->setHasNonRISpills(); 879 880 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 881 MBB.insert(MI, NewMIs[i]); 882 883 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 884 MachineMemOperand *MMO = 885 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 886 MachineMemOperand::MOStore, 887 MFI.getObjectSize(FrameIdx), 888 MFI.getObjectAlignment(FrameIdx)); 889 NewMIs.back()->addMemOperand(MF, MMO); 890 } 891 892 bool 893 PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL, 894 unsigned DestReg, int FrameIdx, 895 const TargetRegisterClass *RC, 896 SmallVectorImpl<MachineInstr*> &NewMIs, 897 bool &NonRI, bool &SpillsVRS) const{ 898 // Note: If additional load instructions are added here, 899 // update isLoadFromStackSlot. 900 901 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 902 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 903 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), 904 DestReg), FrameIdx)); 905 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 906 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 907 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), 908 FrameIdx)); 909 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 910 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), 911 FrameIdx)); 912 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 913 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), 914 FrameIdx)); 915 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 916 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 917 get(PPC::RESTORE_CR), DestReg), 918 FrameIdx)); 919 return true; 920 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 921 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 922 get(PPC::RESTORE_CRBIT), DestReg), 923 FrameIdx)); 924 return true; 925 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 926 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg), 927 FrameIdx)); 928 NonRI = true; 929 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 930 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg), 931 FrameIdx)); 932 NonRI = true; 933 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 934 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg), 935 FrameIdx)); 936 NonRI = true; 937 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 938 assert(Subtarget.isDarwin() && 939 "VRSAVE only needs spill/restore on Darwin"); 940 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 941 get(PPC::RESTORE_VRSAVE), 942 DestReg), 943 FrameIdx)); 944 SpillsVRS = true; 945 } else { 946 llvm_unreachable("Unknown regclass!"); 947 } 948 949 return false; 950 } 951 952 void 953 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 954 MachineBasicBlock::iterator MI, 955 unsigned DestReg, int FrameIdx, 956 const TargetRegisterClass *RC, 957 const TargetRegisterInfo *TRI) const { 958 MachineFunction &MF = *MBB.getParent(); 959 SmallVector<MachineInstr*, 4> NewMIs; 960 DebugLoc DL; 961 if (MI != MBB.end()) DL = MI->getDebugLoc(); 962 963 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 964 FuncInfo->setHasSpills(); 965 966 bool NonRI = false, SpillsVRS = false; 967 if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs, 968 NonRI, SpillsVRS)) 969 FuncInfo->setSpillsCR(); 970 971 if (SpillsVRS) 972 FuncInfo->setSpillsVRSAVE(); 973 974 if (NonRI) 975 FuncInfo->setHasNonRISpills(); 976 977 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 978 MBB.insert(MI, NewMIs[i]); 979 980 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 981 MachineMemOperand *MMO = 982 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 983 MachineMemOperand::MOLoad, 984 MFI.getObjectSize(FrameIdx), 985 MFI.getObjectAlignment(FrameIdx)); 986 NewMIs.back()->addMemOperand(MF, MMO); 987 } 988 989 bool PPCInstrInfo:: 990 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 991 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 992 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 993 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 994 else 995 // Leave the CR# the same, but invert the condition. 996 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 997 return false; 998 } 999 1000 bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, 1001 unsigned Reg, MachineRegisterInfo *MRI) const { 1002 // For some instructions, it is legal to fold ZERO into the RA register field. 1003 // A zero immediate should always be loaded with a single li. 1004 unsigned DefOpc = DefMI->getOpcode(); 1005 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1006 return false; 1007 if (!DefMI->getOperand(1).isImm()) 1008 return false; 1009 if (DefMI->getOperand(1).getImm() != 0) 1010 return false; 1011 1012 // Note that we cannot here invert the arguments of an isel in order to fold 1013 // a ZERO into what is presented as the second argument. All we have here 1014 // is the condition bit, and that might come from a CR-logical bit operation. 1015 1016 const MCInstrDesc &UseMCID = UseMI->getDesc(); 1017 1018 // Only fold into real machine instructions. 1019 if (UseMCID.isPseudo()) 1020 return false; 1021 1022 unsigned UseIdx; 1023 for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx) 1024 if (UseMI->getOperand(UseIdx).isReg() && 1025 UseMI->getOperand(UseIdx).getReg() == Reg) 1026 break; 1027 1028 assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI"); 1029 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1030 1031 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1032 1033 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1034 // register (which might also be specified as a pointer class kind). 1035 if (UseInfo->isLookupPtrRegClass()) { 1036 if (UseInfo->RegClass /* Kind */ != 1) 1037 return false; 1038 } else { 1039 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1040 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1041 return false; 1042 } 1043 1044 // Make sure this is not tied to an output register (or otherwise 1045 // constrained). This is true for ST?UX registers, for example, which 1046 // are tied to their output registers. 1047 if (UseInfo->Constraints != 0) 1048 return false; 1049 1050 unsigned ZeroReg; 1051 if (UseInfo->isLookupPtrRegClass()) { 1052 bool isPPC64 = Subtarget.isPPC64(); 1053 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1054 } else { 1055 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1056 PPC::ZERO8 : PPC::ZERO; 1057 } 1058 1059 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1060 UseMI->getOperand(UseIdx).setReg(ZeroReg); 1061 1062 if (DeleteDef) 1063 DefMI->eraseFromParent(); 1064 1065 return true; 1066 } 1067 1068 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1069 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1070 I != IE; ++I) 1071 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1072 return true; 1073 return false; 1074 } 1075 1076 // We should make sure that, if we're going to predicate both sides of a 1077 // condition (a diamond), that both sides don't define the counter register. We 1078 // can predicate counter-decrement-based branches, but while that predicates 1079 // the branching, it does not predicate the counter decrement. If we tried to 1080 // merge the triangle into one predicated block, we'd decrement the counter 1081 // twice. 1082 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1083 unsigned NumT, unsigned ExtraT, 1084 MachineBasicBlock &FMBB, 1085 unsigned NumF, unsigned ExtraF, 1086 const BranchProbability &Probability) const { 1087 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1088 } 1089 1090 1091 bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const { 1092 // The predicated branches are identified by their type, not really by the 1093 // explicit presence of a predicate. Furthermore, some of them can be 1094 // predicated more than once. Because if conversion won't try to predicate 1095 // any instruction which already claims to be predicated (by returning true 1096 // here), always return false. In doing so, we let isPredicable() be the 1097 // final word on whether not the instruction can be (further) predicated. 1098 1099 return false; 1100 } 1101 1102 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 1103 if (!MI->isTerminator()) 1104 return false; 1105 1106 // Conditional branch is a special case. 1107 if (MI->isBranch() && !MI->isBarrier()) 1108 return true; 1109 1110 return !isPredicated(MI); 1111 } 1112 1113 bool PPCInstrInfo::PredicateInstruction( 1114 MachineInstr *MI, 1115 const SmallVectorImpl<MachineOperand> &Pred) const { 1116 unsigned OpC = MI->getOpcode(); 1117 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1118 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1119 bool isPPC64 = Subtarget.isPPC64(); 1120 MI->setDesc(get(Pred[0].getImm() ? 1121 (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) : 1122 (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1123 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1124 MI->setDesc(get(PPC::BCLR)); 1125 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1126 .addReg(Pred[1].getReg()); 1127 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1128 MI->setDesc(get(PPC::BCLRn)); 1129 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1130 .addReg(Pred[1].getReg()); 1131 } else { 1132 MI->setDesc(get(PPC::BCCLR)); 1133 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1134 .addImm(Pred[0].getImm()) 1135 .addReg(Pred[1].getReg()); 1136 } 1137 1138 return true; 1139 } else if (OpC == PPC::B) { 1140 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1141 bool isPPC64 = Subtarget.isPPC64(); 1142 MI->setDesc(get(Pred[0].getImm() ? 1143 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1144 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1145 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1146 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1147 MI->RemoveOperand(0); 1148 1149 MI->setDesc(get(PPC::BC)); 1150 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1151 .addReg(Pred[1].getReg()) 1152 .addMBB(MBB); 1153 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1154 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1155 MI->RemoveOperand(0); 1156 1157 MI->setDesc(get(PPC::BCn)); 1158 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1159 .addReg(Pred[1].getReg()) 1160 .addMBB(MBB); 1161 } else { 1162 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1163 MI->RemoveOperand(0); 1164 1165 MI->setDesc(get(PPC::BCC)); 1166 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1167 .addImm(Pred[0].getImm()) 1168 .addReg(Pred[1].getReg()) 1169 .addMBB(MBB); 1170 } 1171 1172 return true; 1173 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || 1174 OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { 1175 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1176 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1177 1178 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1179 bool isPPC64 = Subtarget.isPPC64(); 1180 1181 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1182 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) : 1183 (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1184 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1185 .addReg(Pred[1].getReg()); 1186 return true; 1187 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1188 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) : 1189 (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1190 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1191 .addReg(Pred[1].getReg()); 1192 return true; 1193 } 1194 1195 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) : 1196 (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1197 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1198 .addImm(Pred[0].getImm()) 1199 .addReg(Pred[1].getReg()); 1200 return true; 1201 } 1202 1203 return false; 1204 } 1205 1206 bool PPCInstrInfo::SubsumesPredicate( 1207 const SmallVectorImpl<MachineOperand> &Pred1, 1208 const SmallVectorImpl<MachineOperand> &Pred2) const { 1209 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1210 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1211 1212 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1213 return false; 1214 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1215 return false; 1216 1217 // P1 can only subsume P2 if they test the same condition register. 1218 if (Pred1[1].getReg() != Pred2[1].getReg()) 1219 return false; 1220 1221 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1222 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1223 1224 if (P1 == P2) 1225 return true; 1226 1227 // Does P1 subsume P2, e.g. GE subsumes GT. 1228 if (P1 == PPC::PRED_LE && 1229 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1230 return true; 1231 if (P1 == PPC::PRED_GE && 1232 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1233 return true; 1234 1235 return false; 1236 } 1237 1238 bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI, 1239 std::vector<MachineOperand> &Pred) const { 1240 // Note: At the present time, the contents of Pred from this function is 1241 // unused by IfConversion. This implementation follows ARM by pushing the 1242 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1243 // predicate, instructions defining CTR or CTR8 are also included as 1244 // predicate-defining instructions. 1245 1246 const TargetRegisterClass *RCs[] = 1247 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1248 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1249 1250 bool Found = false; 1251 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1252 const MachineOperand &MO = MI->getOperand(i); 1253 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1254 const TargetRegisterClass *RC = RCs[c]; 1255 if (MO.isReg()) { 1256 if (MO.isDef() && RC->contains(MO.getReg())) { 1257 Pred.push_back(MO); 1258 Found = true; 1259 } 1260 } else if (MO.isRegMask()) { 1261 for (TargetRegisterClass::iterator I = RC->begin(), 1262 IE = RC->end(); I != IE; ++I) 1263 if (MO.clobbersPhysReg(*I)) { 1264 Pred.push_back(MO); 1265 Found = true; 1266 } 1267 } 1268 } 1269 } 1270 1271 return Found; 1272 } 1273 1274 bool PPCInstrInfo::isPredicable(MachineInstr *MI) const { 1275 unsigned OpC = MI->getOpcode(); 1276 switch (OpC) { 1277 default: 1278 return false; 1279 case PPC::B: 1280 case PPC::BLR: 1281 case PPC::BLR8: 1282 case PPC::BCTR: 1283 case PPC::BCTR8: 1284 case PPC::BCTRL: 1285 case PPC::BCTRL8: 1286 return true; 1287 } 1288 } 1289 1290 bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI, 1291 unsigned &SrcReg, unsigned &SrcReg2, 1292 int &Mask, int &Value) const { 1293 unsigned Opc = MI->getOpcode(); 1294 1295 switch (Opc) { 1296 default: return false; 1297 case PPC::CMPWI: 1298 case PPC::CMPLWI: 1299 case PPC::CMPDI: 1300 case PPC::CMPLDI: 1301 SrcReg = MI->getOperand(1).getReg(); 1302 SrcReg2 = 0; 1303 Value = MI->getOperand(2).getImm(); 1304 Mask = 0xFFFF; 1305 return true; 1306 case PPC::CMPW: 1307 case PPC::CMPLW: 1308 case PPC::CMPD: 1309 case PPC::CMPLD: 1310 case PPC::FCMPUS: 1311 case PPC::FCMPUD: 1312 SrcReg = MI->getOperand(1).getReg(); 1313 SrcReg2 = MI->getOperand(2).getReg(); 1314 return true; 1315 } 1316 } 1317 1318 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr, 1319 unsigned SrcReg, unsigned SrcReg2, 1320 int Mask, int Value, 1321 const MachineRegisterInfo *MRI) const { 1322 if (DisableCmpOpt) 1323 return false; 1324 1325 int OpC = CmpInstr->getOpcode(); 1326 unsigned CRReg = CmpInstr->getOperand(0).getReg(); 1327 1328 // FP record forms set CR1 based on the execption status bits, not a 1329 // comparison with zero. 1330 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1331 return false; 1332 1333 // The record forms set the condition register based on a signed comparison 1334 // with zero (so says the ISA manual). This is not as straightforward as it 1335 // seems, however, because this is always a 64-bit comparison on PPC64, even 1336 // for instructions that are 32-bit in nature (like slw for example). 1337 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1338 // for equality checks (as those don't depend on the sign). On PPC64, 1339 // we are restricted to equality for unsigned 64-bit comparisons and for 1340 // signed 32-bit comparisons the applicability is more restricted. 1341 bool isPPC64 = Subtarget.isPPC64(); 1342 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1343 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1344 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1345 1346 // Get the unique definition of SrcReg. 1347 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1348 if (!MI) return false; 1349 int MIOpC = MI->getOpcode(); 1350 1351 bool equalityOnly = false; 1352 bool noSub = false; 1353 if (isPPC64) { 1354 if (is32BitSignedCompare) { 1355 // We can perform this optimization only if MI is sign-extending. 1356 if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo || 1357 MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo || 1358 MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo || 1359 MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo || 1360 MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) { 1361 noSub = true; 1362 } else 1363 return false; 1364 } else if (is32BitUnsignedCompare) { 1365 // We can perform this optimization, equality only, if MI is 1366 // zero-extending. 1367 if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo || 1368 MIOpC == PPC::SLW || MIOpC == PPC::SLWo || 1369 MIOpC == PPC::SRW || MIOpC == PPC::SRWo) { 1370 noSub = true; 1371 equalityOnly = true; 1372 } else 1373 return false; 1374 } else 1375 equalityOnly = is64BitUnsignedCompare; 1376 } else 1377 equalityOnly = is32BitUnsignedCompare; 1378 1379 if (equalityOnly) { 1380 // We need to check the uses of the condition register in order to reject 1381 // non-equality comparisons. 1382 for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg), 1383 IE = MRI->use_instr_end(); I != IE; ++I) { 1384 MachineInstr *UseMI = &*I; 1385 if (UseMI->getOpcode() == PPC::BCC) { 1386 unsigned Pred = UseMI->getOperand(0).getImm(); 1387 if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE) 1388 return false; 1389 } else if (UseMI->getOpcode() == PPC::ISEL || 1390 UseMI->getOpcode() == PPC::ISEL8) { 1391 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1392 if (SubIdx != PPC::sub_eq) 1393 return false; 1394 } else 1395 return false; 1396 } 1397 } 1398 1399 MachineBasicBlock::iterator I = CmpInstr; 1400 1401 // Scan forward to find the first use of the compare. 1402 for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end(); 1403 I != EL; ++I) { 1404 bool FoundUse = false; 1405 for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg), 1406 JE = MRI->use_instr_end(); J != JE; ++J) 1407 if (&*J == &*I) { 1408 FoundUse = true; 1409 break; 1410 } 1411 1412 if (FoundUse) 1413 break; 1414 } 1415 1416 // There are two possible candidates which can be changed to set CR[01]. 1417 // One is MI, the other is a SUB instruction. 1418 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1419 MachineInstr *Sub = nullptr; 1420 if (SrcReg2 != 0) 1421 // MI is not a candidate for CMPrr. 1422 MI = nullptr; 1423 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1424 // same BB as the comparison. This is to allow the check below to avoid calls 1425 // (and other explicit clobbers); instead we should really check for these 1426 // more explicitly (in at least a few predecessors). 1427 else if (MI->getParent() != CmpInstr->getParent() || Value != 0) { 1428 // PPC does not have a record-form SUBri. 1429 return false; 1430 } 1431 1432 // Search for Sub. 1433 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1434 --I; 1435 1436 // Get ready to iterate backward from CmpInstr. 1437 MachineBasicBlock::iterator E = MI, 1438 B = CmpInstr->getParent()->begin(); 1439 1440 for (; I != E && !noSub; --I) { 1441 const MachineInstr &Instr = *I; 1442 unsigned IOpC = Instr.getOpcode(); 1443 1444 if (&*I != CmpInstr && ( 1445 Instr.modifiesRegister(PPC::CR0, TRI) || 1446 Instr.readsRegister(PPC::CR0, TRI))) 1447 // This instruction modifies or uses the record condition register after 1448 // the one we want to change. While we could do this transformation, it 1449 // would likely not be profitable. This transformation removes one 1450 // instruction, and so even forcing RA to generate one move probably 1451 // makes it unprofitable. 1452 return false; 1453 1454 // Check whether CmpInstr can be made redundant by the current instruction. 1455 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1456 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1457 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1458 ((Instr.getOperand(1).getReg() == SrcReg && 1459 Instr.getOperand(2).getReg() == SrcReg2) || 1460 (Instr.getOperand(1).getReg() == SrcReg2 && 1461 Instr.getOperand(2).getReg() == SrcReg))) { 1462 Sub = &*I; 1463 break; 1464 } 1465 1466 if (I == B) 1467 // The 'and' is below the comparison instruction. 1468 return false; 1469 } 1470 1471 // Return false if no candidates exist. 1472 if (!MI && !Sub) 1473 return false; 1474 1475 // The single candidate is called MI. 1476 if (!MI) MI = Sub; 1477 1478 int NewOpC = -1; 1479 MIOpC = MI->getOpcode(); 1480 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8) 1481 NewOpC = MIOpC; 1482 else { 1483 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1484 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1485 NewOpC = MIOpC; 1486 } 1487 1488 // FIXME: On the non-embedded POWER architectures, only some of the record 1489 // forms are fast, and we should use only the fast ones. 1490 1491 // The defining instruction has a record form (or is already a record 1492 // form). It is possible, however, that we'll need to reverse the condition 1493 // code of the users. 1494 if (NewOpC == -1) 1495 return false; 1496 1497 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1498 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1499 1500 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1501 // needs to be updated to be based on SUB. Push the condition code 1502 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1503 // condition code of these operands will be modified. 1504 bool ShouldSwap = false; 1505 if (Sub) { 1506 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1507 Sub->getOperand(2).getReg() == SrcReg; 1508 1509 // The operands to subf are the opposite of sub, so only in the fixed-point 1510 // case, invert the order. 1511 ShouldSwap = !ShouldSwap; 1512 } 1513 1514 if (ShouldSwap) 1515 for (MachineRegisterInfo::use_instr_iterator 1516 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1517 I != IE; ++I) { 1518 MachineInstr *UseMI = &*I; 1519 if (UseMI->getOpcode() == PPC::BCC) { 1520 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1521 assert((!equalityOnly || 1522 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) && 1523 "Invalid predicate for equality-only optimization"); 1524 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1525 PPC::getSwappedPredicate(Pred))); 1526 } else if (UseMI->getOpcode() == PPC::ISEL || 1527 UseMI->getOpcode() == PPC::ISEL8) { 1528 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1529 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1530 "Invalid CR bit for equality-only optimization"); 1531 1532 if (NewSubReg == PPC::sub_lt) 1533 NewSubReg = PPC::sub_gt; 1534 else if (NewSubReg == PPC::sub_gt) 1535 NewSubReg = PPC::sub_lt; 1536 1537 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1538 NewSubReg)); 1539 } else // We need to abort on a user we don't understand. 1540 return false; 1541 } 1542 1543 // Create a new virtual register to hold the value of the CR set by the 1544 // record-form instruction. If the instruction was not previously in 1545 // record form, then set the kill flag on the CR. 1546 CmpInstr->eraseFromParent(); 1547 1548 MachineBasicBlock::iterator MII = MI; 1549 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1550 get(TargetOpcode::COPY), CRReg) 1551 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1552 1553 if (MIOpC != NewOpC) { 1554 // We need to be careful here: we're replacing one instruction with 1555 // another, and we need to make sure that we get all of the right 1556 // implicit uses and defs. On the other hand, the caller may be holding 1557 // an iterator to this instruction, and so we can't delete it (this is 1558 // specifically the case if this is the instruction directly after the 1559 // compare). 1560 1561 const MCInstrDesc &NewDesc = get(NewOpC); 1562 MI->setDesc(NewDesc); 1563 1564 if (NewDesc.ImplicitDefs) 1565 for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs(); 1566 *ImpDefs; ++ImpDefs) 1567 if (!MI->definesRegister(*ImpDefs)) 1568 MI->addOperand(*MI->getParent()->getParent(), 1569 MachineOperand::CreateReg(*ImpDefs, true, true)); 1570 if (NewDesc.ImplicitUses) 1571 for (const uint16_t *ImpUses = NewDesc.getImplicitUses(); 1572 *ImpUses; ++ImpUses) 1573 if (!MI->readsRegister(*ImpUses)) 1574 MI->addOperand(*MI->getParent()->getParent(), 1575 MachineOperand::CreateReg(*ImpUses, false, true)); 1576 } 1577 1578 // Modify the condition code of operands in OperandsToUpdate. 1579 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1580 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1581 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1582 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1583 1584 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1585 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1586 1587 return true; 1588 } 1589 1590 /// GetInstSize - Return the number of bytes of code the specified 1591 /// instruction may be. This returns the maximum number of bytes. 1592 /// 1593 unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { 1594 unsigned Opcode = MI->getOpcode(); 1595 1596 if (Opcode == PPC::INLINEASM) { 1597 const MachineFunction *MF = MI->getParent()->getParent(); 1598 const char *AsmStr = MI->getOperand(0).getSymbolName(); 1599 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1600 } else if (Opcode == TargetOpcode::STACKMAP) { 1601 return MI->getOperand(1).getImm(); 1602 } else if (Opcode == TargetOpcode::PATCHPOINT) { 1603 PatchPointOpers Opers(MI); 1604 return Opers.getMetaOper(PatchPointOpers::NBytesPos).getImm(); 1605 } else { 1606 const MCInstrDesc &Desc = get(Opcode); 1607 return Desc.getSize(); 1608 } 1609 } 1610 1611 #undef DEBUG_TYPE 1612 #define DEBUG_TYPE "ppc-vsx-fma-mutate" 1613 1614 namespace { 1615 // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers 1616 // (Altivec and scalar floating-point registers), we need to transform the 1617 // copies into subregister copies with other restrictions. 1618 struct PPCVSXFMAMutate : public MachineFunctionPass { 1619 static char ID; 1620 PPCVSXFMAMutate() : MachineFunctionPass(ID) { 1621 initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry()); 1622 } 1623 1624 LiveIntervals *LIS; 1625 1626 const PPCTargetMachine *TM; 1627 const PPCInstrInfo *TII; 1628 1629 protected: 1630 bool processBlock(MachineBasicBlock &MBB) { 1631 bool Changed = false; 1632 1633 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1634 const TargetRegisterInfo *TRI = &TII->getRegisterInfo(); 1635 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1636 I != IE; ++I) { 1637 MachineInstr *MI = I; 1638 1639 // The default (A-type) VSX FMA form kills the addend (it is taken from 1640 // the target register, which is then updated to reflect the result of 1641 // the FMA). If the instruction, however, kills one of the registers 1642 // used for the product, then we can use the M-form instruction (which 1643 // will take that value from the to-be-defined register). 1644 1645 int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode()); 1646 if (AltOpc == -1) 1647 continue; 1648 1649 // This pass is run after register coalescing, and so we're looking for 1650 // a situation like this: 1651 // ... 1652 // %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9 1653 // %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16, 1654 // %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16 1655 // ... 1656 // %vreg9<def,tied1> = XSMADDADP %vreg9<tied0>, %vreg17, %vreg19, 1657 // %RM<imp-use>; VSLRC:%vreg9,%vreg17,%vreg19 1658 // ... 1659 // Where we can eliminate the copy by changing from the A-type to the 1660 // M-type instruction. Specifically, for this example, this means: 1661 // %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16, 1662 // %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16 1663 // is replaced by: 1664 // %vreg16<def,tied1> = XSMADDMDP %vreg16<tied0>, %vreg18, %vreg9, 1665 // %RM<imp-use>; VSLRC:%vreg16,%vreg18,%vreg9 1666 // and we remove: %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9 1667 1668 SlotIndex FMAIdx = LIS->getInstructionIndex(MI); 1669 1670 VNInfo *AddendValNo = 1671 LIS->getInterval(MI->getOperand(1).getReg()).Query(FMAIdx).valueIn(); 1672 MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def); 1673 1674 // The addend and this instruction must be in the same block. 1675 1676 if (!AddendMI || AddendMI->getParent() != MI->getParent()) 1677 continue; 1678 1679 // The addend must be a full copy within the same register class. 1680 1681 if (!AddendMI->isFullCopy()) 1682 continue; 1683 1684 unsigned AddendSrcReg = AddendMI->getOperand(1).getReg(); 1685 if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg)) { 1686 if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) != 1687 MRI.getRegClass(AddendSrcReg)) 1688 continue; 1689 } else { 1690 // If AddendSrcReg is a physical register, make sure the destination 1691 // register class contains it. 1692 if (!MRI.getRegClass(AddendMI->getOperand(0).getReg()) 1693 ->contains(AddendSrcReg)) 1694 continue; 1695 } 1696 1697 // In theory, there could be other uses of the addend copy before this 1698 // fma. We could deal with this, but that would require additional 1699 // logic below and I suspect it will not occur in any relevant 1700 // situations. Additionally, check whether the copy source is killed 1701 // prior to the fma. In order to replace the addend here with the 1702 // source of the copy, it must still be live here. We can't use 1703 // interval testing for a physical register, so as long as we're 1704 // walking the MIs we may as well test liveness here. 1705 bool OtherUsers = false, KillsAddendSrc = false; 1706 for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI); 1707 J != JE; --J) { 1708 if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) { 1709 OtherUsers = true; 1710 break; 1711 } 1712 if (J->modifiesRegister(AddendSrcReg, TRI) || 1713 J->killsRegister(AddendSrcReg, TRI)) { 1714 KillsAddendSrc = true; 1715 break; 1716 } 1717 } 1718 1719 if (OtherUsers || KillsAddendSrc) 1720 continue; 1721 1722 // Find one of the product operands that is killed by this instruction. 1723 1724 unsigned KilledProdOp = 0, OtherProdOp = 0; 1725 if (LIS->getInterval(MI->getOperand(2).getReg()) 1726 .Query(FMAIdx).isKill()) { 1727 KilledProdOp = 2; 1728 OtherProdOp = 3; 1729 } else if (LIS->getInterval(MI->getOperand(3).getReg()) 1730 .Query(FMAIdx).isKill()) { 1731 KilledProdOp = 3; 1732 OtherProdOp = 2; 1733 } 1734 1735 // If there are no killed product operands, then this transformation is 1736 // likely not profitable. 1737 if (!KilledProdOp) 1738 continue; 1739 1740 // For virtual registers, verify that the addend source register 1741 // is live here (as should have been assured above). 1742 assert((!TargetRegisterInfo::isVirtualRegister(AddendSrcReg) || 1743 LIS->getInterval(AddendSrcReg).liveAt(FMAIdx)) && 1744 "Addend source register is not live!"); 1745 1746 // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3. 1747 1748 unsigned AddReg = AddendMI->getOperand(1).getReg(); 1749 unsigned KilledProdReg = MI->getOperand(KilledProdOp).getReg(); 1750 unsigned OtherProdReg = MI->getOperand(OtherProdOp).getReg(); 1751 1752 unsigned AddSubReg = AddendMI->getOperand(1).getSubReg(); 1753 unsigned KilledProdSubReg = MI->getOperand(KilledProdOp).getSubReg(); 1754 unsigned OtherProdSubReg = MI->getOperand(OtherProdOp).getSubReg(); 1755 1756 bool AddRegKill = AddendMI->getOperand(1).isKill(); 1757 bool KilledProdRegKill = MI->getOperand(KilledProdOp).isKill(); 1758 bool OtherProdRegKill = MI->getOperand(OtherProdOp).isKill(); 1759 1760 bool AddRegUndef = AddendMI->getOperand(1).isUndef(); 1761 bool KilledProdRegUndef = MI->getOperand(KilledProdOp).isUndef(); 1762 bool OtherProdRegUndef = MI->getOperand(OtherProdOp).isUndef(); 1763 1764 unsigned OldFMAReg = MI->getOperand(0).getReg(); 1765 1766 // The transformation doesn't work well with things like: 1767 // %vreg5 = A-form-op %vreg5, %vreg11, %vreg5; 1768 // so leave such things alone. 1769 if (OldFMAReg == KilledProdReg) 1770 continue; 1771 1772 assert(OldFMAReg == AddendMI->getOperand(0).getReg() && 1773 "Addend copy not tied to old FMA output!"); 1774 1775 DEBUG(dbgs() << "VSX FMA Mutation:\n " << *MI;); 1776 1777 MI->getOperand(0).setReg(KilledProdReg); 1778 MI->getOperand(1).setReg(KilledProdReg); 1779 MI->getOperand(3).setReg(AddReg); 1780 MI->getOperand(2).setReg(OtherProdReg); 1781 1782 MI->getOperand(0).setSubReg(KilledProdSubReg); 1783 MI->getOperand(1).setSubReg(KilledProdSubReg); 1784 MI->getOperand(3).setSubReg(AddSubReg); 1785 MI->getOperand(2).setSubReg(OtherProdSubReg); 1786 1787 MI->getOperand(1).setIsKill(KilledProdRegKill); 1788 MI->getOperand(3).setIsKill(AddRegKill); 1789 MI->getOperand(2).setIsKill(OtherProdRegKill); 1790 1791 MI->getOperand(1).setIsUndef(KilledProdRegUndef); 1792 MI->getOperand(3).setIsUndef(AddRegUndef); 1793 MI->getOperand(2).setIsUndef(OtherProdRegUndef); 1794 1795 MI->setDesc(TII->get(AltOpc)); 1796 1797 DEBUG(dbgs() << " -> " << *MI); 1798 1799 // The killed product operand was killed here, so we can reuse it now 1800 // for the result of the fma. 1801 1802 LiveInterval &FMAInt = LIS->getInterval(OldFMAReg); 1803 VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot()); 1804 for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end(); 1805 UI != UE;) { 1806 MachineOperand &UseMO = *UI; 1807 MachineInstr *UseMI = UseMO.getParent(); 1808 ++UI; 1809 1810 // Don't replace the result register of the copy we're about to erase. 1811 if (UseMI == AddendMI) 1812 continue; 1813 1814 UseMO.setReg(KilledProdReg); 1815 UseMO.setSubReg(KilledProdSubReg); 1816 } 1817 1818 // Extend the live intervals of the killed product operand to hold the 1819 // fma result. 1820 1821 LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg); 1822 for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end(); 1823 AI != AE; ++AI) { 1824 // Don't add the segment that corresponds to the original copy. 1825 if (AI->valno == AddendValNo) 1826 continue; 1827 1828 VNInfo *NewFMAValNo = 1829 NewFMAInt.getNextValue(AI->start, 1830 LIS->getVNInfoAllocator()); 1831 1832 NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end, 1833 NewFMAValNo)); 1834 } 1835 DEBUG(dbgs() << " extended: " << NewFMAInt << '\n'); 1836 1837 FMAInt.removeValNo(FMAValNo); 1838 DEBUG(dbgs() << " trimmed: " << FMAInt << '\n'); 1839 1840 // Remove the (now unused) copy. 1841 1842 DEBUG(dbgs() << " removing: " << *AddendMI << '\n'); 1843 LIS->RemoveMachineInstrFromMaps(AddendMI); 1844 AddendMI->eraseFromParent(); 1845 1846 Changed = true; 1847 } 1848 1849 return Changed; 1850 } 1851 1852 public: 1853 bool runOnMachineFunction(MachineFunction &MF) override { 1854 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 1855 // If we don't have VSX then go ahead and return without doing 1856 // anything. 1857 if (!TM->getSubtargetImpl()->hasVSX()) 1858 return false; 1859 1860 LIS = &getAnalysis<LiveIntervals>(); 1861 1862 TII = TM->getSubtargetImpl()->getInstrInfo(); 1863 1864 bool Changed = false; 1865 1866 if (DisableVSXFMAMutate) 1867 return Changed; 1868 1869 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 1870 MachineBasicBlock &B = *I++; 1871 if (processBlock(B)) 1872 Changed = true; 1873 } 1874 1875 return Changed; 1876 } 1877 1878 void getAnalysisUsage(AnalysisUsage &AU) const override { 1879 AU.addRequired<LiveIntervals>(); 1880 AU.addPreserved<LiveIntervals>(); 1881 AU.addRequired<SlotIndexes>(); 1882 AU.addPreserved<SlotIndexes>(); 1883 MachineFunctionPass::getAnalysisUsage(AU); 1884 } 1885 }; 1886 } 1887 1888 INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE, 1889 "PowerPC VSX FMA Mutation", false, false) 1890 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 1891 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 1892 INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE, 1893 "PowerPC VSX FMA Mutation", false, false) 1894 1895 char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID; 1896 1897 char PPCVSXFMAMutate::ID = 0; 1898 FunctionPass* 1899 llvm::createPPCVSXFMAMutatePass() { return new PPCVSXFMAMutate(); } 1900 1901 #undef DEBUG_TYPE 1902 #define DEBUG_TYPE "ppc-vsx-copy" 1903 1904 namespace llvm { 1905 void initializePPCVSXCopyPass(PassRegistry&); 1906 } 1907 1908 namespace { 1909 // PPCVSXCopy pass - For copies between VSX registers and non-VSX registers 1910 // (Altivec and scalar floating-point registers), we need to transform the 1911 // copies into subregister copies with other restrictions. 1912 struct PPCVSXCopy : public MachineFunctionPass { 1913 static char ID; 1914 PPCVSXCopy() : MachineFunctionPass(ID) { 1915 initializePPCVSXCopyPass(*PassRegistry::getPassRegistry()); 1916 } 1917 1918 const PPCTargetMachine *TM; 1919 const PPCInstrInfo *TII; 1920 1921 bool IsRegInClass(unsigned Reg, const TargetRegisterClass *RC, 1922 MachineRegisterInfo &MRI) { 1923 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1924 return RC->hasSubClassEq(MRI.getRegClass(Reg)); 1925 } else if (RC->contains(Reg)) { 1926 return true; 1927 } 1928 1929 return false; 1930 } 1931 1932 bool IsVSReg(unsigned Reg, MachineRegisterInfo &MRI) { 1933 return IsRegInClass(Reg, &PPC::VSRCRegClass, MRI); 1934 } 1935 1936 bool IsVRReg(unsigned Reg, MachineRegisterInfo &MRI) { 1937 return IsRegInClass(Reg, &PPC::VRRCRegClass, MRI); 1938 } 1939 1940 bool IsF8Reg(unsigned Reg, MachineRegisterInfo &MRI) { 1941 return IsRegInClass(Reg, &PPC::F8RCRegClass, MRI); 1942 } 1943 1944 protected: 1945 bool processBlock(MachineBasicBlock &MBB) { 1946 bool Changed = false; 1947 1948 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1949 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1950 I != IE; ++I) { 1951 MachineInstr *MI = I; 1952 if (!MI->isFullCopy()) 1953 continue; 1954 1955 MachineOperand &DstMO = MI->getOperand(0); 1956 MachineOperand &SrcMO = MI->getOperand(1); 1957 1958 if ( IsVSReg(DstMO.getReg(), MRI) && 1959 !IsVSReg(SrcMO.getReg(), MRI)) { 1960 // This is a copy *to* a VSX register from a non-VSX register. 1961 Changed = true; 1962 1963 const TargetRegisterClass *SrcRC = 1964 IsVRReg(SrcMO.getReg(), MRI) ? &PPC::VSHRCRegClass : 1965 &PPC::VSLRCRegClass; 1966 assert((IsF8Reg(SrcMO.getReg(), MRI) || 1967 IsVRReg(SrcMO.getReg(), MRI)) && 1968 "Unknown source for a VSX copy"); 1969 1970 unsigned NewVReg = MRI.createVirtualRegister(SrcRC); 1971 BuildMI(MBB, MI, MI->getDebugLoc(), 1972 TII->get(TargetOpcode::SUBREG_TO_REG), NewVReg) 1973 .addImm(1) // add 1, not 0, because there is no implicit clearing 1974 // of the high bits. 1975 .addOperand(SrcMO) 1976 .addImm(IsVRReg(SrcMO.getReg(), MRI) ? PPC::sub_128 : 1977 PPC::sub_64); 1978 1979 // The source of the original copy is now the new virtual register. 1980 SrcMO.setReg(NewVReg); 1981 } else if (!IsVSReg(DstMO.getReg(), MRI) && 1982 IsVSReg(SrcMO.getReg(), MRI)) { 1983 // This is a copy *from* a VSX register to a non-VSX register. 1984 Changed = true; 1985 1986 const TargetRegisterClass *DstRC = 1987 IsVRReg(DstMO.getReg(), MRI) ? &PPC::VSHRCRegClass : 1988 &PPC::VSLRCRegClass; 1989 assert((IsF8Reg(DstMO.getReg(), MRI) || 1990 IsVRReg(DstMO.getReg(), MRI)) && 1991 "Unknown destination for a VSX copy"); 1992 1993 // Copy the VSX value into a new VSX register of the correct subclass. 1994 unsigned NewVReg = MRI.createVirtualRegister(DstRC); 1995 BuildMI(MBB, MI, MI->getDebugLoc(), 1996 TII->get(TargetOpcode::COPY), NewVReg) 1997 .addOperand(SrcMO); 1998 1999 // Transform the original copy into a subregister extraction copy. 2000 SrcMO.setReg(NewVReg); 2001 SrcMO.setSubReg(IsVRReg(DstMO.getReg(), MRI) ? PPC::sub_128 : 2002 PPC::sub_64); 2003 } 2004 } 2005 2006 return Changed; 2007 } 2008 2009 public: 2010 bool runOnMachineFunction(MachineFunction &MF) override { 2011 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 2012 // If we don't have VSX on the subtarget, don't do anything. 2013 if (!TM->getSubtargetImpl()->hasVSX()) 2014 return false; 2015 TII = TM->getSubtargetImpl()->getInstrInfo(); 2016 2017 bool Changed = false; 2018 2019 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 2020 MachineBasicBlock &B = *I++; 2021 if (processBlock(B)) 2022 Changed = true; 2023 } 2024 2025 return Changed; 2026 } 2027 2028 void getAnalysisUsage(AnalysisUsage &AU) const override { 2029 MachineFunctionPass::getAnalysisUsage(AU); 2030 } 2031 }; 2032 } 2033 2034 INITIALIZE_PASS(PPCVSXCopy, DEBUG_TYPE, 2035 "PowerPC VSX Copy Legalization", false, false) 2036 2037 char PPCVSXCopy::ID = 0; 2038 FunctionPass* 2039 llvm::createPPCVSXCopyPass() { return new PPCVSXCopy(); } 2040 2041 #undef DEBUG_TYPE 2042 #define DEBUG_TYPE "ppc-vsx-copy-cleanup" 2043 2044 namespace llvm { 2045 void initializePPCVSXCopyCleanupPass(PassRegistry&); 2046 } 2047 2048 namespace { 2049 // PPCVSXCopyCleanup pass - We sometimes end up generating self copies of VSX 2050 // registers (mostly because the ABI code still places all values into the 2051 // "traditional" floating-point and vector registers). Remove them here. 2052 struct PPCVSXCopyCleanup : public MachineFunctionPass { 2053 static char ID; 2054 PPCVSXCopyCleanup() : MachineFunctionPass(ID) { 2055 initializePPCVSXCopyCleanupPass(*PassRegistry::getPassRegistry()); 2056 } 2057 2058 const PPCTargetMachine *TM; 2059 const PPCInstrInfo *TII; 2060 2061 protected: 2062 bool processBlock(MachineBasicBlock &MBB) { 2063 bool Changed = false; 2064 2065 SmallVector<MachineInstr *, 4> ToDelete; 2066 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 2067 I != IE; ++I) { 2068 MachineInstr *MI = I; 2069 if (MI->getOpcode() == PPC::XXLOR && 2070 MI->getOperand(0).getReg() == MI->getOperand(1).getReg() && 2071 MI->getOperand(0).getReg() == MI->getOperand(2).getReg()) 2072 ToDelete.push_back(MI); 2073 } 2074 2075 if (!ToDelete.empty()) 2076 Changed = true; 2077 2078 for (unsigned i = 0, ie = ToDelete.size(); i != ie; ++i) { 2079 DEBUG(dbgs() << "Removing VSX self-copy: " << *ToDelete[i]); 2080 ToDelete[i]->eraseFromParent(); 2081 } 2082 2083 return Changed; 2084 } 2085 2086 public: 2087 bool runOnMachineFunction(MachineFunction &MF) override { 2088 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 2089 // If we don't have VSX don't bother doing anything here. 2090 if (!TM->getSubtargetImpl()->hasVSX()) 2091 return false; 2092 TII = TM->getSubtargetImpl()->getInstrInfo(); 2093 2094 bool Changed = false; 2095 2096 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 2097 MachineBasicBlock &B = *I++; 2098 if (processBlock(B)) 2099 Changed = true; 2100 } 2101 2102 return Changed; 2103 } 2104 2105 void getAnalysisUsage(AnalysisUsage &AU) const override { 2106 MachineFunctionPass::getAnalysisUsage(AU); 2107 } 2108 }; 2109 } 2110 2111 INITIALIZE_PASS(PPCVSXCopyCleanup, DEBUG_TYPE, 2112 "PowerPC VSX Copy Cleanup", false, false) 2113 2114 char PPCVSXCopyCleanup::ID = 0; 2115 FunctionPass* 2116 llvm::createPPCVSXCopyCleanupPass() { return new PPCVSXCopyCleanup(); } 2117 2118 #undef DEBUG_TYPE 2119 #define DEBUG_TYPE "ppc-early-ret" 2120 STATISTIC(NumBCLR, "Number of early conditional returns"); 2121 STATISTIC(NumBLR, "Number of early returns"); 2122 2123 namespace llvm { 2124 void initializePPCEarlyReturnPass(PassRegistry&); 2125 } 2126 2127 namespace { 2128 // PPCEarlyReturn pass - For simple functions without epilogue code, move 2129 // returns up, and create conditional returns, to avoid unnecessary 2130 // branch-to-blr sequences. 2131 struct PPCEarlyReturn : public MachineFunctionPass { 2132 static char ID; 2133 PPCEarlyReturn() : MachineFunctionPass(ID) { 2134 initializePPCEarlyReturnPass(*PassRegistry::getPassRegistry()); 2135 } 2136 2137 const PPCTargetMachine *TM; 2138 const PPCInstrInfo *TII; 2139 2140 protected: 2141 bool processBlock(MachineBasicBlock &ReturnMBB) { 2142 bool Changed = false; 2143 2144 MachineBasicBlock::iterator I = ReturnMBB.begin(); 2145 I = ReturnMBB.SkipPHIsAndLabels(I); 2146 2147 // The block must be essentially empty except for the blr. 2148 if (I == ReturnMBB.end() || 2149 (I->getOpcode() != PPC::BLR && I->getOpcode() != PPC::BLR8) || 2150 I != ReturnMBB.getLastNonDebugInstr()) 2151 return Changed; 2152 2153 SmallVector<MachineBasicBlock*, 8> PredToRemove; 2154 for (MachineBasicBlock::pred_iterator PI = ReturnMBB.pred_begin(), 2155 PIE = ReturnMBB.pred_end(); PI != PIE; ++PI) { 2156 bool OtherReference = false, BlockChanged = false; 2157 for (MachineBasicBlock::iterator J = (*PI)->getLastNonDebugInstr();;) { 2158 if (J->getOpcode() == PPC::B) { 2159 if (J->getOperand(0).getMBB() == &ReturnMBB) { 2160 // This is an unconditional branch to the return. Replace the 2161 // branch with a blr. 2162 BuildMI(**PI, J, J->getDebugLoc(), TII->get(I->getOpcode())); 2163 MachineBasicBlock::iterator K = J--; 2164 K->eraseFromParent(); 2165 BlockChanged = true; 2166 ++NumBLR; 2167 continue; 2168 } 2169 } else if (J->getOpcode() == PPC::BCC) { 2170 if (J->getOperand(2).getMBB() == &ReturnMBB) { 2171 // This is a conditional branch to the return. Replace the branch 2172 // with a bclr. 2173 BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BCCLR)) 2174 .addImm(J->getOperand(0).getImm()) 2175 .addReg(J->getOperand(1).getReg()); 2176 MachineBasicBlock::iterator K = J--; 2177 K->eraseFromParent(); 2178 BlockChanged = true; 2179 ++NumBCLR; 2180 continue; 2181 } 2182 } else if (J->getOpcode() == PPC::BC || J->getOpcode() == PPC::BCn) { 2183 if (J->getOperand(1).getMBB() == &ReturnMBB) { 2184 // This is a conditional branch to the return. Replace the branch 2185 // with a bclr. 2186 BuildMI(**PI, J, J->getDebugLoc(), 2187 TII->get(J->getOpcode() == PPC::BC ? 2188 PPC::BCLR : PPC::BCLRn)) 2189 .addReg(J->getOperand(0).getReg()); 2190 MachineBasicBlock::iterator K = J--; 2191 K->eraseFromParent(); 2192 BlockChanged = true; 2193 ++NumBCLR; 2194 continue; 2195 } 2196 } else if (J->isBranch()) { 2197 if (J->isIndirectBranch()) { 2198 if (ReturnMBB.hasAddressTaken()) 2199 OtherReference = true; 2200 } else 2201 for (unsigned i = 0; i < J->getNumOperands(); ++i) 2202 if (J->getOperand(i).isMBB() && 2203 J->getOperand(i).getMBB() == &ReturnMBB) 2204 OtherReference = true; 2205 } else if (!J->isTerminator() && !J->isDebugValue()) 2206 break; 2207 2208 if (J == (*PI)->begin()) 2209 break; 2210 2211 --J; 2212 } 2213 2214 if ((*PI)->canFallThrough() && (*PI)->isLayoutSuccessor(&ReturnMBB)) 2215 OtherReference = true; 2216 2217 // Predecessors are stored in a vector and can't be removed here. 2218 if (!OtherReference && BlockChanged) { 2219 PredToRemove.push_back(*PI); 2220 } 2221 2222 if (BlockChanged) 2223 Changed = true; 2224 } 2225 2226 for (unsigned i = 0, ie = PredToRemove.size(); i != ie; ++i) 2227 PredToRemove[i]->removeSuccessor(&ReturnMBB); 2228 2229 if (Changed && !ReturnMBB.hasAddressTaken()) { 2230 // We now might be able to merge this blr-only block into its 2231 // by-layout predecessor. 2232 if (ReturnMBB.pred_size() == 1 && 2233 (*ReturnMBB.pred_begin())->isLayoutSuccessor(&ReturnMBB)) { 2234 // Move the blr into the preceding block. 2235 MachineBasicBlock &PrevMBB = **ReturnMBB.pred_begin(); 2236 PrevMBB.splice(PrevMBB.end(), &ReturnMBB, I); 2237 PrevMBB.removeSuccessor(&ReturnMBB); 2238 } 2239 2240 if (ReturnMBB.pred_empty()) 2241 ReturnMBB.eraseFromParent(); 2242 } 2243 2244 return Changed; 2245 } 2246 2247 public: 2248 bool runOnMachineFunction(MachineFunction &MF) override { 2249 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 2250 TII = TM->getSubtargetImpl()->getInstrInfo(); 2251 2252 bool Changed = false; 2253 2254 // If the function does not have at least two blocks, then there is 2255 // nothing to do. 2256 if (MF.size() < 2) 2257 return Changed; 2258 2259 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 2260 MachineBasicBlock &B = *I++; 2261 if (processBlock(B)) 2262 Changed = true; 2263 } 2264 2265 return Changed; 2266 } 2267 2268 void getAnalysisUsage(AnalysisUsage &AU) const override { 2269 MachineFunctionPass::getAnalysisUsage(AU); 2270 } 2271 }; 2272 } 2273 2274 INITIALIZE_PASS(PPCEarlyReturn, DEBUG_TYPE, 2275 "PowerPC Early-Return Creation", false, false) 2276 2277 char PPCEarlyReturn::ID = 0; 2278 FunctionPass* 2279 llvm::createPPCEarlyReturnPass() { return new PPCEarlyReturn(); } 2280