1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/PseudoSourceValue.h" 29 #include "llvm/CodeGen/ScheduleDAG.h" 30 #include "llvm/CodeGen/SlotIndexes.h" 31 #include "llvm/CodeGen/StackMaps.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "ppc-instr-info" 43 44 #define GET_INSTRMAP_INFO 45 #define GET_INSTRINFO_CTOR_DTOR 46 #include "PPCGenInstrInfo.inc" 47 48 STATISTIC(NumStoreSPILLVSRRCAsVec, 49 "Number of spillvsrrc spilled to stack as vec"); 50 STATISTIC(NumStoreSPILLVSRRCAsGpr, 51 "Number of spillvsrrc spilled to stack as gpr"); 52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 53 STATISTIC(CmpIselsConverted, 54 "Number of ISELs that depend on comparison of constants converted"); 55 STATISTIC(MissedConvertibleImmediateInstrs, 56 "Number of compare-immediate instructions fed by constants"); 57 STATISTIC(NumRcRotatesConvertedToRcAnd, 58 "Number of record-form rotates converted to record-form andi"); 59 60 static cl:: 61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 62 cl::desc("Disable analysis for CTR loops")); 63 64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 65 cl::desc("Disable compare instruction optimization"), cl::Hidden); 66 67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 69 cl::Hidden); 70 71 static cl::opt<bool> 72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 73 cl::desc("Use the old (incorrect) instruction latency calculation")); 74 75 // Pin the vtable to this file. 76 void PPCInstrInfo::anchor() {} 77 78 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 79 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 80 /* CatchRetOpcode */ -1, 81 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 82 Subtarget(STI), RI(STI.getTargetMachine()) {} 83 84 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 85 /// this target when scheduling the DAG. 86 ScheduleHazardRecognizer * 87 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 88 const ScheduleDAG *DAG) const { 89 unsigned Directive = 90 static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); 91 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 92 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 93 const InstrItineraryData *II = 94 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 95 return new ScoreboardHazardRecognizer(II, DAG); 96 } 97 98 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 99 } 100 101 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 102 /// to use for this target when scheduling the DAG. 103 ScheduleHazardRecognizer * 104 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 105 const ScheduleDAG *DAG) const { 106 unsigned Directive = 107 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); 108 109 // FIXME: Leaving this as-is until we have POWER9 scheduling info 110 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 111 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 112 113 // Most subtargets use a PPC970 recognizer. 114 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 115 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 116 assert(DAG->TII && "No InstrInfo?"); 117 118 return new PPCHazardRecognizer970(*DAG); 119 } 120 121 return new ScoreboardHazardRecognizer(II, DAG); 122 } 123 124 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 125 const MachineInstr &MI, 126 unsigned *PredCost) const { 127 if (!ItinData || UseOldLatencyCalc) 128 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 129 130 // The default implementation of getInstrLatency calls getStageLatency, but 131 // getStageLatency does not do the right thing for us. While we have 132 // itinerary, most cores are fully pipelined, and so the itineraries only 133 // express the first part of the pipeline, not every stage. Instead, we need 134 // to use the listed output operand cycle number (using operand 0 here, which 135 // is an output). 136 137 unsigned Latency = 1; 138 unsigned DefClass = MI.getDesc().getSchedClass(); 139 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 140 const MachineOperand &MO = MI.getOperand(i); 141 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 142 continue; 143 144 int Cycle = ItinData->getOperandCycle(DefClass, i); 145 if (Cycle < 0) 146 continue; 147 148 Latency = std::max(Latency, (unsigned) Cycle); 149 } 150 151 return Latency; 152 } 153 154 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 155 const MachineInstr &DefMI, unsigned DefIdx, 156 const MachineInstr &UseMI, 157 unsigned UseIdx) const { 158 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 159 UseMI, UseIdx); 160 161 if (!DefMI.getParent()) 162 return Latency; 163 164 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 165 Register Reg = DefMO.getReg(); 166 167 bool IsRegCR; 168 if (Register::isVirtualRegister(Reg)) { 169 const MachineRegisterInfo *MRI = 170 &DefMI.getParent()->getParent()->getRegInfo(); 171 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 172 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 173 } else { 174 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 175 PPC::CRBITRCRegClass.contains(Reg); 176 } 177 178 if (UseMI.isBranch() && IsRegCR) { 179 if (Latency < 0) 180 Latency = getInstrLatency(ItinData, DefMI); 181 182 // On some cores, there is an additional delay between writing to a condition 183 // register, and using it from a branch. 184 unsigned Directive = Subtarget.getCPUDirective(); 185 switch (Directive) { 186 default: break; 187 case PPC::DIR_7400: 188 case PPC::DIR_750: 189 case PPC::DIR_970: 190 case PPC::DIR_E5500: 191 case PPC::DIR_PWR4: 192 case PPC::DIR_PWR5: 193 case PPC::DIR_PWR5X: 194 case PPC::DIR_PWR6: 195 case PPC::DIR_PWR6X: 196 case PPC::DIR_PWR7: 197 case PPC::DIR_PWR8: 198 // FIXME: Is this needed for POWER9? 199 Latency += 2; 200 break; 201 } 202 } 203 204 return Latency; 205 } 206 207 /// This is an architecture-specific helper function of reassociateOps. 208 /// Set special operand attributes for new instructions after reassociation. 209 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, 210 MachineInstr &OldMI2, 211 MachineInstr &NewMI1, 212 MachineInstr &NewMI2) const { 213 // Propagate FP flags from the original instructions. 214 // But clear poison-generating flags because those may not be valid now. 215 uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags(); 216 NewMI1.setFlags(IntersectedFlags); 217 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap); 218 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap); 219 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact); 220 221 NewMI2.setFlags(IntersectedFlags); 222 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap); 223 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap); 224 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact); 225 } 226 227 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI, 228 uint16_t Flags) const { 229 MI.setFlags(Flags); 230 MI.clearFlag(MachineInstr::MIFlag::NoSWrap); 231 MI.clearFlag(MachineInstr::MIFlag::NoUWrap); 232 MI.clearFlag(MachineInstr::MIFlag::IsExact); 233 } 234 235 // This function does not list all associative and commutative operations, but 236 // only those worth feeding through the machine combiner in an attempt to 237 // reduce the critical path. Mostly, this means floating-point operations, 238 // because they have high latencies(>=5) (compared to other operations, such as 239 // and/or, which are also associative and commutative, but have low latencies). 240 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 241 switch (Inst.getOpcode()) { 242 // Floating point: 243 // FP Add: 244 case PPC::FADD: 245 case PPC::FADDS: 246 // FP Multiply: 247 case PPC::FMUL: 248 case PPC::FMULS: 249 // Altivec Add: 250 case PPC::VADDFP: 251 // VSX Add: 252 case PPC::XSADDDP: 253 case PPC::XVADDDP: 254 case PPC::XVADDSP: 255 case PPC::XSADDSP: 256 // VSX Multiply: 257 case PPC::XSMULDP: 258 case PPC::XVMULDP: 259 case PPC::XVMULSP: 260 case PPC::XSMULSP: 261 // QPX Add: 262 case PPC::QVFADD: 263 case PPC::QVFADDS: 264 case PPC::QVFADDSs: 265 // QPX Multiply: 266 case PPC::QVFMUL: 267 case PPC::QVFMULS: 268 case PPC::QVFMULSs: 269 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && 270 Inst.getFlag(MachineInstr::MIFlag::FmNsz); 271 // Fixed point: 272 // Multiply: 273 case PPC::MULHD: 274 case PPC::MULLD: 275 case PPC::MULHW: 276 case PPC::MULLW: 277 return true; 278 default: 279 return false; 280 } 281 } 282 283 #define InfoArrayIdxFMAInst 0 284 #define InfoArrayIdxFAddInst 1 285 #define InfoArrayIdxFMULInst 2 286 #define InfoArrayIdxAddOpIdx 3 287 #define InfoArrayIdxMULOpIdx 4 288 // Array keeps info for FMA instructions: 289 // Index 0(InfoArrayIdxFMAInst): FMA instruction; 290 // Index 1(InfoArrayIdxFAddInst): ADD instruction assoaicted with FMA; 291 // Index 2(InfoArrayIdxFMULInst): MUL instruction assoaicted with FMA; 292 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands; 293 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands; 294 // second MUL operand index is plus 1. 295 static const uint16_t FMAOpIdxInfo[][5] = { 296 // FIXME: Add more FMA instructions like XSNMADDADP and so on. 297 {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2}, 298 {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2}, 299 {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2}, 300 {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2}, 301 {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1}, 302 {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1}, 303 {PPC::QVFMADDSs, PPC::QVFADDSs, PPC::QVFMULSs, 3, 1}, 304 {PPC::QVFMADD, PPC::QVFADD, PPC::QVFMUL, 3, 1}}; 305 306 // Check if an opcode is a FMA instruction. If it is, return the index in array 307 // FMAOpIdxInfo. Otherwise, return -1. 308 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const { 309 for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++) 310 if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode) 311 return I; 312 return -1; 313 } 314 315 // Try to reassociate FMA chains like below: 316 // 317 // Pattern 1: 318 // A = FADD X, Y (Leaf) 319 // B = FMA A, M21, M22 (Prev) 320 // C = FMA B, M31, M32 (Root) 321 // --> 322 // A = FMA X, M21, M22 323 // B = FMA Y, M31, M32 324 // C = FADD A, B 325 // 326 // Pattern 2: 327 // A = FMA X, M11, M12 (Leaf) 328 // B = FMA A, M21, M22 (Prev) 329 // C = FMA B, M31, M32 (Root) 330 // --> 331 // A = FMUL M11, M12 332 // B = FMA X, M21, M22 333 // D = FMA A, M31, M32 334 // C = FADD B, D 335 // 336 // breaking the dependency between A and B, allowing FMA to be executed in 337 // parallel (or back-to-back in a pipeline) instead of depending on each other. 338 bool PPCInstrInfo::getFMAPatterns( 339 MachineInstr &Root, 340 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 341 MachineBasicBlock *MBB = Root.getParent(); 342 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 343 344 auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) { 345 for (const auto &MO : Instr.explicit_operands()) 346 if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg()))) 347 return false; 348 return true; 349 }; 350 351 auto IsReassociable = [&](const MachineInstr &Instr, int16_t &AddOpIdx, 352 bool IsLeaf, bool IsAdd) { 353 int16_t Idx = -1; 354 if (!IsAdd) { 355 Idx = getFMAOpIdxInfo(Instr.getOpcode()); 356 if (Idx < 0) 357 return false; 358 } else if (Instr.getOpcode() != 359 FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())] 360 [InfoArrayIdxFAddInst]) 361 return false; 362 363 // Instruction can be reassociated. 364 // fast math flags may prohibit reassociation. 365 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 366 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 367 return false; 368 369 // Instruction operands are virtual registers for reassociation. 370 if (!IsAllOpsVirtualReg(Instr)) 371 return false; 372 373 if (IsAdd && IsLeaf) 374 return true; 375 376 AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 377 378 const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx); 379 MachineInstr *MIAdd = MRI.getUniqueVRegDef(OpAdd.getReg()); 380 // If 'add' operand's def is not in current block, don't do ILP related opt. 381 if (!MIAdd || MIAdd->getParent() != MBB) 382 return false; 383 384 // If this is not Leaf FMA Instr, its 'add' operand should only have one use 385 // as this fma will be changed later. 386 return IsLeaf ? true : MRI.hasOneNonDBGUse(OpAdd.getReg()); 387 }; 388 389 int16_t AddOpIdx = -1; 390 // Root must be a valid FMA like instruction. 391 if (!IsReassociable(Root, AddOpIdx, false, false)) 392 return false; 393 394 assert((AddOpIdx >= 0) && "add operand index not right!"); 395 396 Register RegB = Root.getOperand(AddOpIdx).getReg(); 397 MachineInstr *Prev = MRI.getUniqueVRegDef(RegB); 398 399 // Prev must be a valid FMA like instruction. 400 AddOpIdx = -1; 401 if (!IsReassociable(*Prev, AddOpIdx, false, false)) 402 return false; 403 404 assert((AddOpIdx >= 0) && "add operand index not right!"); 405 406 Register RegA = Prev->getOperand(AddOpIdx).getReg(); 407 MachineInstr *Leaf = MRI.getUniqueVRegDef(RegA); 408 AddOpIdx = -1; 409 if (IsReassociable(*Leaf, AddOpIdx, true, false)) { 410 Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 411 return true; 412 } 413 if (IsReassociable(*Leaf, AddOpIdx, true, true)) { 414 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM); 415 return true; 416 } 417 return false; 418 } 419 420 bool PPCInstrInfo::getMachineCombinerPatterns( 421 MachineInstr &Root, 422 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 423 // Using the machine combiner in this way is potentially expensive, so 424 // restrict to when aggressive optimizations are desired. 425 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 426 return false; 427 428 if (getFMAPatterns(Root, Patterns)) 429 return true; 430 431 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 432 } 433 434 void PPCInstrInfo::genAlternativeCodeSequence( 435 MachineInstr &Root, MachineCombinerPattern Pattern, 436 SmallVectorImpl<MachineInstr *> &InsInstrs, 437 SmallVectorImpl<MachineInstr *> &DelInstrs, 438 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 439 switch (Pattern) { 440 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 441 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 442 reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg); 443 break; 444 default: 445 // Reassociate default patterns. 446 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, 447 DelInstrs, InstrIdxForVirtReg); 448 break; 449 } 450 } 451 452 // Currently, only handle two patterns REASSOC_XY_AMM_BMM and 453 // REASSOC_XMM_AMM_BMM. See comments for getFMAPatterns. 454 void PPCInstrInfo::reassociateFMA( 455 MachineInstr &Root, MachineCombinerPattern Pattern, 456 SmallVectorImpl<MachineInstr *> &InsInstrs, 457 SmallVectorImpl<MachineInstr *> &DelInstrs, 458 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 459 MachineFunction *MF = Root.getMF(); 460 MachineRegisterInfo &MRI = MF->getRegInfo(); 461 MachineOperand &OpC = Root.getOperand(0); 462 Register RegC = OpC.getReg(); 463 const TargetRegisterClass *RC = MRI.getRegClass(RegC); 464 MRI.constrainRegClass(RegC, RC); 465 466 unsigned FmaOp = Root.getOpcode(); 467 int16_t Idx = getFMAOpIdxInfo(FmaOp); 468 assert(Idx >= 0 && "Root must be a FMA instruction"); 469 470 uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 471 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 472 MachineInstr *Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg()); 473 MachineInstr *Leaf = 474 MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg()); 475 uint16_t IntersectedFlags = 476 Root.getFlags() & Prev->getFlags() & Leaf->getFlags(); 477 478 auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg, 479 bool &KillFlag) { 480 Reg = Operand.getReg(); 481 MRI.constrainRegClass(Reg, RC); 482 KillFlag = Operand.isKill(); 483 }; 484 485 auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1, 486 Register &MulOp2, bool &MulOp1KillFlag, 487 bool &MulOp2KillFlag) { 488 GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag); 489 GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag); 490 }; 491 492 Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32; 493 bool KillX = false, KillY = false, KillM11 = false, KillM12 = false, 494 KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false; 495 496 GetFMAInstrInfo(Root, RegM31, RegM32, KillM31, KillM32); 497 GetFMAInstrInfo(*Prev, RegM21, RegM22, KillM21, KillM22); 498 499 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 500 GetFMAInstrInfo(*Leaf, RegM11, RegM12, KillM11, KillM12); 501 GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX); 502 } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) { 503 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 504 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 505 } 506 507 // Create new virtual registers for the new results instead of 508 // recycling legacy ones because the MachineCombiner's computation of the 509 // critical path requires a new register definition rather than an existing 510 // one. 511 Register NewVRA = MRI.createVirtualRegister(RC); 512 InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0)); 513 514 Register NewVRB = MRI.createVirtualRegister(RC); 515 InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1)); 516 517 Register NewVRD = 0; 518 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 519 NewVRD = MRI.createVirtualRegister(RC); 520 InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2)); 521 } 522 523 auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd, 524 Register RegMul1, bool KillRegMul1, 525 Register RegMul2, bool KillRegMul2) { 526 MI->getOperand(AddOpIdx).setReg(RegAdd); 527 MI->getOperand(AddOpIdx).setIsKill(KillAdd); 528 MI->getOperand(FirstMulOpIdx).setReg(RegMul1); 529 MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1); 530 MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2); 531 MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2); 532 }; 533 534 if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) { 535 // Create new instructions for insertion. 536 MachineInstrBuilder MINewB = 537 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 538 .addReg(RegX, getKillRegState(KillX)) 539 .addReg(RegM21, getKillRegState(KillM21)) 540 .addReg(RegM22, getKillRegState(KillM22)); 541 MachineInstrBuilder MINewA = 542 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 543 .addReg(RegY, getKillRegState(KillY)) 544 .addReg(RegM31, getKillRegState(KillM31)) 545 .addReg(RegM32, getKillRegState(KillM32)); 546 // If AddOpIdx is not 1, adjust the order. 547 if (AddOpIdx != 1) { 548 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 549 AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32); 550 } 551 552 MachineInstrBuilder MINewC = 553 BuildMI(*MF, Root.getDebugLoc(), 554 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 555 .addReg(NewVRB, getKillRegState(true)) 556 .addReg(NewVRA, getKillRegState(true)); 557 558 // Update flags for newly created instructions. 559 setSpecialOperandAttr(*MINewA, IntersectedFlags); 560 setSpecialOperandAttr(*MINewB, IntersectedFlags); 561 setSpecialOperandAttr(*MINewC, IntersectedFlags); 562 563 // Record new instructions for insertion. 564 InsInstrs.push_back(MINewA); 565 InsInstrs.push_back(MINewB); 566 InsInstrs.push_back(MINewC); 567 } else if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 568 assert(NewVRD && "new FMA register not created!"); 569 // Create new instructions for insertion. 570 MachineInstrBuilder MINewA = 571 BuildMI(*MF, Leaf->getDebugLoc(), 572 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA) 573 .addReg(RegM11, getKillRegState(KillM11)) 574 .addReg(RegM12, getKillRegState(KillM12)); 575 MachineInstrBuilder MINewB = 576 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 577 .addReg(RegX, getKillRegState(KillX)) 578 .addReg(RegM21, getKillRegState(KillM21)) 579 .addReg(RegM22, getKillRegState(KillM22)); 580 MachineInstrBuilder MINewD = 581 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD) 582 .addReg(NewVRA, getKillRegState(true)) 583 .addReg(RegM31, getKillRegState(KillM31)) 584 .addReg(RegM32, getKillRegState(KillM32)); 585 // If AddOpIdx is not 1, adjust the order. 586 if (AddOpIdx != 1) { 587 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 588 AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32, 589 KillM32); 590 } 591 592 MachineInstrBuilder MINewC = 593 BuildMI(*MF, Root.getDebugLoc(), 594 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 595 .addReg(NewVRB, getKillRegState(true)) 596 .addReg(NewVRD, getKillRegState(true)); 597 598 // Update flags for newly created instructions. 599 setSpecialOperandAttr(*MINewA, IntersectedFlags); 600 setSpecialOperandAttr(*MINewB, IntersectedFlags); 601 setSpecialOperandAttr(*MINewD, IntersectedFlags); 602 setSpecialOperandAttr(*MINewC, IntersectedFlags); 603 604 // Record new instructions for insertion. 605 InsInstrs.push_back(MINewA); 606 InsInstrs.push_back(MINewB); 607 InsInstrs.push_back(MINewD); 608 InsInstrs.push_back(MINewC); 609 } 610 611 assert(!InsInstrs.empty() && 612 "Insertion instructions set should not be empty!"); 613 614 // Record old instructions for deletion. 615 DelInstrs.push_back(Leaf); 616 DelInstrs.push_back(Prev); 617 DelInstrs.push_back(&Root); 618 } 619 620 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 621 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 622 Register &SrcReg, Register &DstReg, 623 unsigned &SubIdx) const { 624 switch (MI.getOpcode()) { 625 default: return false; 626 case PPC::EXTSW: 627 case PPC::EXTSW_32: 628 case PPC::EXTSW_32_64: 629 SrcReg = MI.getOperand(1).getReg(); 630 DstReg = MI.getOperand(0).getReg(); 631 SubIdx = PPC::sub_32; 632 return true; 633 } 634 } 635 636 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 637 int &FrameIndex) const { 638 unsigned Opcode = MI.getOpcode(); 639 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 640 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 641 642 if (End != std::find(OpcodesForSpill, End, Opcode)) { 643 // Check for the operands added by addFrameReference (the immediate is the 644 // offset which defaults to 0). 645 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 646 MI.getOperand(2).isFI()) { 647 FrameIndex = MI.getOperand(2).getIndex(); 648 return MI.getOperand(0).getReg(); 649 } 650 } 651 return 0; 652 } 653 654 // For opcodes with the ReMaterializable flag set, this function is called to 655 // verify the instruction is really rematable. 656 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 657 AliasAnalysis *AA) const { 658 switch (MI.getOpcode()) { 659 default: 660 // This function should only be called for opcodes with the ReMaterializable 661 // flag set. 662 llvm_unreachable("Unknown rematerializable operation!"); 663 break; 664 case PPC::LI: 665 case PPC::LI8: 666 case PPC::LIS: 667 case PPC::LIS8: 668 case PPC::QVGPCI: 669 case PPC::ADDIStocHA: 670 case PPC::ADDIStocHA8: 671 case PPC::ADDItocL: 672 case PPC::LOAD_STACK_GUARD: 673 case PPC::XXLXORz: 674 case PPC::XXLXORspz: 675 case PPC::XXLXORdpz: 676 case PPC::XXLEQVOnes: 677 case PPC::V_SET0B: 678 case PPC::V_SET0H: 679 case PPC::V_SET0: 680 case PPC::V_SETALLONESB: 681 case PPC::V_SETALLONESH: 682 case PPC::V_SETALLONES: 683 case PPC::CRSET: 684 case PPC::CRUNSET: 685 return true; 686 } 687 return false; 688 } 689 690 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 691 int &FrameIndex) const { 692 unsigned Opcode = MI.getOpcode(); 693 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 694 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 695 696 if (End != std::find(OpcodesForSpill, End, Opcode)) { 697 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 698 MI.getOperand(2).isFI()) { 699 FrameIndex = MI.getOperand(2).getIndex(); 700 return MI.getOperand(0).getReg(); 701 } 702 } 703 return 0; 704 } 705 706 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 707 unsigned OpIdx1, 708 unsigned OpIdx2) const { 709 MachineFunction &MF = *MI.getParent()->getParent(); 710 711 // Normal instructions can be commuted the obvious way. 712 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) 713 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 714 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 715 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 716 // changing the relative order of the mask operands might change what happens 717 // to the high-bits of the mask (and, thus, the result). 718 719 // Cannot commute if it has a non-zero rotate count. 720 if (MI.getOperand(3).getImm() != 0) 721 return nullptr; 722 723 // If we have a zero rotate count, we have: 724 // M = mask(MB,ME) 725 // Op0 = (Op1 & ~M) | (Op2 & M) 726 // Change this to: 727 // M = mask((ME+1)&31, (MB-1)&31) 728 // Op0 = (Op2 & ~M) | (Op1 & M) 729 730 // Swap op1/op2 731 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 732 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); 733 Register Reg0 = MI.getOperand(0).getReg(); 734 Register Reg1 = MI.getOperand(1).getReg(); 735 Register Reg2 = MI.getOperand(2).getReg(); 736 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 737 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 738 bool Reg1IsKill = MI.getOperand(1).isKill(); 739 bool Reg2IsKill = MI.getOperand(2).isKill(); 740 bool ChangeReg0 = false; 741 // If machine instrs are no longer in two-address forms, update 742 // destination register as well. 743 if (Reg0 == Reg1) { 744 // Must be two address instruction! 745 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 746 "Expecting a two-address instruction!"); 747 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 748 Reg2IsKill = false; 749 ChangeReg0 = true; 750 } 751 752 // Masks. 753 unsigned MB = MI.getOperand(4).getImm(); 754 unsigned ME = MI.getOperand(5).getImm(); 755 756 // We can't commute a trivial mask (there is no way to represent an all-zero 757 // mask). 758 if (MB == 0 && ME == 31) 759 return nullptr; 760 761 if (NewMI) { 762 // Create a new instruction. 763 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 764 bool Reg0IsDead = MI.getOperand(0).isDead(); 765 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 766 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 767 .addReg(Reg2, getKillRegState(Reg2IsKill)) 768 .addReg(Reg1, getKillRegState(Reg1IsKill)) 769 .addImm((ME + 1) & 31) 770 .addImm((MB - 1) & 31); 771 } 772 773 if (ChangeReg0) { 774 MI.getOperand(0).setReg(Reg2); 775 MI.getOperand(0).setSubReg(SubReg2); 776 } 777 MI.getOperand(2).setReg(Reg1); 778 MI.getOperand(1).setReg(Reg2); 779 MI.getOperand(2).setSubReg(SubReg1); 780 MI.getOperand(1).setSubReg(SubReg2); 781 MI.getOperand(2).setIsKill(Reg1IsKill); 782 MI.getOperand(1).setIsKill(Reg2IsKill); 783 784 // Swap the mask around. 785 MI.getOperand(4).setImm((ME + 1) & 31); 786 MI.getOperand(5).setImm((MB - 1) & 31); 787 return &MI; 788 } 789 790 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 791 unsigned &SrcOpIdx1, 792 unsigned &SrcOpIdx2) const { 793 // For VSX A-Type FMA instructions, it is the first two operands that can be 794 // commuted, however, because the non-encoded tied input operand is listed 795 // first, the operands to swap are actually the second and third. 796 797 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 798 if (AltOpc == -1) 799 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 800 801 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 802 // and SrcOpIdx2. 803 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 804 } 805 806 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 807 MachineBasicBlock::iterator MI) const { 808 // This function is used for scheduling, and the nop wanted here is the type 809 // that terminates dispatch groups on the POWER cores. 810 unsigned Directive = Subtarget.getCPUDirective(); 811 unsigned Opcode; 812 switch (Directive) { 813 default: Opcode = PPC::NOP; break; 814 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 815 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 816 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 817 // FIXME: Update when POWER9 scheduling model is ready. 818 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 819 } 820 821 DebugLoc DL; 822 BuildMI(MBB, MI, DL, get(Opcode)); 823 } 824 825 /// Return the noop instruction to use for a noop. 826 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 827 NopInst.setOpcode(PPC::NOP); 828 } 829 830 // Branch analysis. 831 // Note: If the condition register is set to CTR or CTR8 then this is a 832 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 833 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 834 MachineBasicBlock *&TBB, 835 MachineBasicBlock *&FBB, 836 SmallVectorImpl<MachineOperand> &Cond, 837 bool AllowModify) const { 838 bool isPPC64 = Subtarget.isPPC64(); 839 840 // If the block has no terminators, it just falls into the block after it. 841 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 842 if (I == MBB.end()) 843 return false; 844 845 if (!isUnpredicatedTerminator(*I)) 846 return false; 847 848 if (AllowModify) { 849 // If the BB ends with an unconditional branch to the fallthrough BB, 850 // we eliminate the branch instruction. 851 if (I->getOpcode() == PPC::B && 852 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 853 I->eraseFromParent(); 854 855 // We update iterator after deleting the last branch. 856 I = MBB.getLastNonDebugInstr(); 857 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 858 return false; 859 } 860 } 861 862 // Get the last instruction in the block. 863 MachineInstr &LastInst = *I; 864 865 // If there is only one terminator instruction, process it. 866 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 867 if (LastInst.getOpcode() == PPC::B) { 868 if (!LastInst.getOperand(0).isMBB()) 869 return true; 870 TBB = LastInst.getOperand(0).getMBB(); 871 return false; 872 } else if (LastInst.getOpcode() == PPC::BCC) { 873 if (!LastInst.getOperand(2).isMBB()) 874 return true; 875 // Block ends with fall-through condbranch. 876 TBB = LastInst.getOperand(2).getMBB(); 877 Cond.push_back(LastInst.getOperand(0)); 878 Cond.push_back(LastInst.getOperand(1)); 879 return false; 880 } else if (LastInst.getOpcode() == PPC::BC) { 881 if (!LastInst.getOperand(1).isMBB()) 882 return true; 883 // Block ends with fall-through condbranch. 884 TBB = LastInst.getOperand(1).getMBB(); 885 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 886 Cond.push_back(LastInst.getOperand(0)); 887 return false; 888 } else if (LastInst.getOpcode() == PPC::BCn) { 889 if (!LastInst.getOperand(1).isMBB()) 890 return true; 891 // Block ends with fall-through condbranch. 892 TBB = LastInst.getOperand(1).getMBB(); 893 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 894 Cond.push_back(LastInst.getOperand(0)); 895 return false; 896 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 897 LastInst.getOpcode() == PPC::BDNZ) { 898 if (!LastInst.getOperand(0).isMBB()) 899 return true; 900 if (DisableCTRLoopAnal) 901 return true; 902 TBB = LastInst.getOperand(0).getMBB(); 903 Cond.push_back(MachineOperand::CreateImm(1)); 904 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 905 true)); 906 return false; 907 } else if (LastInst.getOpcode() == PPC::BDZ8 || 908 LastInst.getOpcode() == PPC::BDZ) { 909 if (!LastInst.getOperand(0).isMBB()) 910 return true; 911 if (DisableCTRLoopAnal) 912 return true; 913 TBB = LastInst.getOperand(0).getMBB(); 914 Cond.push_back(MachineOperand::CreateImm(0)); 915 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 916 true)); 917 return false; 918 } 919 920 // Otherwise, don't know what this is. 921 return true; 922 } 923 924 // Get the instruction before it if it's a terminator. 925 MachineInstr &SecondLastInst = *I; 926 927 // If there are three terminators, we don't know what sort of block this is. 928 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 929 return true; 930 931 // If the block ends with PPC::B and PPC:BCC, handle it. 932 if (SecondLastInst.getOpcode() == PPC::BCC && 933 LastInst.getOpcode() == PPC::B) { 934 if (!SecondLastInst.getOperand(2).isMBB() || 935 !LastInst.getOperand(0).isMBB()) 936 return true; 937 TBB = SecondLastInst.getOperand(2).getMBB(); 938 Cond.push_back(SecondLastInst.getOperand(0)); 939 Cond.push_back(SecondLastInst.getOperand(1)); 940 FBB = LastInst.getOperand(0).getMBB(); 941 return false; 942 } else if (SecondLastInst.getOpcode() == PPC::BC && 943 LastInst.getOpcode() == PPC::B) { 944 if (!SecondLastInst.getOperand(1).isMBB() || 945 !LastInst.getOperand(0).isMBB()) 946 return true; 947 TBB = SecondLastInst.getOperand(1).getMBB(); 948 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 949 Cond.push_back(SecondLastInst.getOperand(0)); 950 FBB = LastInst.getOperand(0).getMBB(); 951 return false; 952 } else if (SecondLastInst.getOpcode() == PPC::BCn && 953 LastInst.getOpcode() == PPC::B) { 954 if (!SecondLastInst.getOperand(1).isMBB() || 955 !LastInst.getOperand(0).isMBB()) 956 return true; 957 TBB = SecondLastInst.getOperand(1).getMBB(); 958 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 959 Cond.push_back(SecondLastInst.getOperand(0)); 960 FBB = LastInst.getOperand(0).getMBB(); 961 return false; 962 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 963 SecondLastInst.getOpcode() == PPC::BDNZ) && 964 LastInst.getOpcode() == PPC::B) { 965 if (!SecondLastInst.getOperand(0).isMBB() || 966 !LastInst.getOperand(0).isMBB()) 967 return true; 968 if (DisableCTRLoopAnal) 969 return true; 970 TBB = SecondLastInst.getOperand(0).getMBB(); 971 Cond.push_back(MachineOperand::CreateImm(1)); 972 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 973 true)); 974 FBB = LastInst.getOperand(0).getMBB(); 975 return false; 976 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 977 SecondLastInst.getOpcode() == PPC::BDZ) && 978 LastInst.getOpcode() == PPC::B) { 979 if (!SecondLastInst.getOperand(0).isMBB() || 980 !LastInst.getOperand(0).isMBB()) 981 return true; 982 if (DisableCTRLoopAnal) 983 return true; 984 TBB = SecondLastInst.getOperand(0).getMBB(); 985 Cond.push_back(MachineOperand::CreateImm(0)); 986 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 987 true)); 988 FBB = LastInst.getOperand(0).getMBB(); 989 return false; 990 } 991 992 // If the block ends with two PPC:Bs, handle it. The second one is not 993 // executed, so remove it. 994 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 995 if (!SecondLastInst.getOperand(0).isMBB()) 996 return true; 997 TBB = SecondLastInst.getOperand(0).getMBB(); 998 I = LastInst; 999 if (AllowModify) 1000 I->eraseFromParent(); 1001 return false; 1002 } 1003 1004 // Otherwise, can't handle this. 1005 return true; 1006 } 1007 1008 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 1009 int *BytesRemoved) const { 1010 assert(!BytesRemoved && "code size not handled"); 1011 1012 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1013 if (I == MBB.end()) 1014 return 0; 1015 1016 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 1017 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1018 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1019 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1020 return 0; 1021 1022 // Remove the branch. 1023 I->eraseFromParent(); 1024 1025 I = MBB.end(); 1026 1027 if (I == MBB.begin()) return 1; 1028 --I; 1029 if (I->getOpcode() != PPC::BCC && 1030 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1031 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1032 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1033 return 1; 1034 1035 // Remove the branch. 1036 I->eraseFromParent(); 1037 return 2; 1038 } 1039 1040 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 1041 MachineBasicBlock *TBB, 1042 MachineBasicBlock *FBB, 1043 ArrayRef<MachineOperand> Cond, 1044 const DebugLoc &DL, 1045 int *BytesAdded) const { 1046 // Shouldn't be a fall through. 1047 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 1048 assert((Cond.size() == 2 || Cond.size() == 0) && 1049 "PPC branch conditions have two components!"); 1050 assert(!BytesAdded && "code size not handled"); 1051 1052 bool isPPC64 = Subtarget.isPPC64(); 1053 1054 // One-way branch. 1055 if (!FBB) { 1056 if (Cond.empty()) // Unconditional branch 1057 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 1058 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1059 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1060 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1061 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1062 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1063 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1064 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1065 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1066 else // Conditional branch 1067 BuildMI(&MBB, DL, get(PPC::BCC)) 1068 .addImm(Cond[0].getImm()) 1069 .add(Cond[1]) 1070 .addMBB(TBB); 1071 return 1; 1072 } 1073 1074 // Two-way Conditional Branch. 1075 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1076 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1077 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1078 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1079 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1080 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1081 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1082 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1083 else 1084 BuildMI(&MBB, DL, get(PPC::BCC)) 1085 .addImm(Cond[0].getImm()) 1086 .add(Cond[1]) 1087 .addMBB(TBB); 1088 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 1089 return 2; 1090 } 1091 1092 // Select analysis. 1093 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 1094 ArrayRef<MachineOperand> Cond, 1095 Register DstReg, Register TrueReg, 1096 Register FalseReg, int &CondCycles, 1097 int &TrueCycles, int &FalseCycles) const { 1098 if (Cond.size() != 2) 1099 return false; 1100 1101 // If this is really a bdnz-like condition, then it cannot be turned into a 1102 // select. 1103 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1104 return false; 1105 1106 // Check register classes. 1107 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1108 const TargetRegisterClass *RC = 1109 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1110 if (!RC) 1111 return false; 1112 1113 // isel is for regular integer GPRs only. 1114 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 1115 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 1116 !PPC::G8RCRegClass.hasSubClassEq(RC) && 1117 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 1118 return false; 1119 1120 // FIXME: These numbers are for the A2, how well they work for other cores is 1121 // an open question. On the A2, the isel instruction has a 2-cycle latency 1122 // but single-cycle throughput. These numbers are used in combination with 1123 // the MispredictPenalty setting from the active SchedMachineModel. 1124 CondCycles = 1; 1125 TrueCycles = 1; 1126 FalseCycles = 1; 1127 1128 return true; 1129 } 1130 1131 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 1132 MachineBasicBlock::iterator MI, 1133 const DebugLoc &dl, Register DestReg, 1134 ArrayRef<MachineOperand> Cond, Register TrueReg, 1135 Register FalseReg) const { 1136 assert(Cond.size() == 2 && 1137 "PPC branch conditions have two components!"); 1138 1139 // Get the register classes. 1140 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1141 const TargetRegisterClass *RC = 1142 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1143 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 1144 1145 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 1146 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 1147 assert((Is64Bit || 1148 PPC::GPRCRegClass.hasSubClassEq(RC) || 1149 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 1150 "isel is for regular integer GPRs only"); 1151 1152 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 1153 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 1154 1155 unsigned SubIdx = 0; 1156 bool SwapOps = false; 1157 switch (SelectPred) { 1158 case PPC::PRED_EQ: 1159 case PPC::PRED_EQ_MINUS: 1160 case PPC::PRED_EQ_PLUS: 1161 SubIdx = PPC::sub_eq; SwapOps = false; break; 1162 case PPC::PRED_NE: 1163 case PPC::PRED_NE_MINUS: 1164 case PPC::PRED_NE_PLUS: 1165 SubIdx = PPC::sub_eq; SwapOps = true; break; 1166 case PPC::PRED_LT: 1167 case PPC::PRED_LT_MINUS: 1168 case PPC::PRED_LT_PLUS: 1169 SubIdx = PPC::sub_lt; SwapOps = false; break; 1170 case PPC::PRED_GE: 1171 case PPC::PRED_GE_MINUS: 1172 case PPC::PRED_GE_PLUS: 1173 SubIdx = PPC::sub_lt; SwapOps = true; break; 1174 case PPC::PRED_GT: 1175 case PPC::PRED_GT_MINUS: 1176 case PPC::PRED_GT_PLUS: 1177 SubIdx = PPC::sub_gt; SwapOps = false; break; 1178 case PPC::PRED_LE: 1179 case PPC::PRED_LE_MINUS: 1180 case PPC::PRED_LE_PLUS: 1181 SubIdx = PPC::sub_gt; SwapOps = true; break; 1182 case PPC::PRED_UN: 1183 case PPC::PRED_UN_MINUS: 1184 case PPC::PRED_UN_PLUS: 1185 SubIdx = PPC::sub_un; SwapOps = false; break; 1186 case PPC::PRED_NU: 1187 case PPC::PRED_NU_MINUS: 1188 case PPC::PRED_NU_PLUS: 1189 SubIdx = PPC::sub_un; SwapOps = true; break; 1190 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 1191 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 1192 } 1193 1194 Register FirstReg = SwapOps ? FalseReg : TrueReg, 1195 SecondReg = SwapOps ? TrueReg : FalseReg; 1196 1197 // The first input register of isel cannot be r0. If it is a member 1198 // of a register class that can be r0, then copy it first (the 1199 // register allocator should eliminate the copy). 1200 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 1201 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 1202 const TargetRegisterClass *FirstRC = 1203 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 1204 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 1205 Register OldFirstReg = FirstReg; 1206 FirstReg = MRI.createVirtualRegister(FirstRC); 1207 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 1208 .addReg(OldFirstReg); 1209 } 1210 1211 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 1212 .addReg(FirstReg).addReg(SecondReg) 1213 .addReg(Cond[1].getReg(), 0, SubIdx); 1214 } 1215 1216 static unsigned getCRBitValue(unsigned CRBit) { 1217 unsigned Ret = 4; 1218 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 1219 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 1220 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 1221 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 1222 Ret = 3; 1223 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 1224 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 1225 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 1226 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 1227 Ret = 2; 1228 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 1229 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 1230 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 1231 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 1232 Ret = 1; 1233 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 1234 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 1235 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 1236 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 1237 Ret = 0; 1238 1239 assert(Ret != 4 && "Invalid CR bit register"); 1240 return Ret; 1241 } 1242 1243 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 1244 MachineBasicBlock::iterator I, 1245 const DebugLoc &DL, MCRegister DestReg, 1246 MCRegister SrcReg, bool KillSrc) const { 1247 // We can end up with self copies and similar things as a result of VSX copy 1248 // legalization. Promote them here. 1249 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1250 if (PPC::F8RCRegClass.contains(DestReg) && 1251 PPC::VSRCRegClass.contains(SrcReg)) { 1252 MCRegister SuperReg = 1253 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 1254 1255 if (VSXSelfCopyCrash && SrcReg == SuperReg) 1256 llvm_unreachable("nop VSX copy"); 1257 1258 DestReg = SuperReg; 1259 } else if (PPC::F8RCRegClass.contains(SrcReg) && 1260 PPC::VSRCRegClass.contains(DestReg)) { 1261 MCRegister SuperReg = 1262 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 1263 1264 if (VSXSelfCopyCrash && DestReg == SuperReg) 1265 llvm_unreachable("nop VSX copy"); 1266 1267 SrcReg = SuperReg; 1268 } 1269 1270 // Different class register copy 1271 if (PPC::CRBITRCRegClass.contains(SrcReg) && 1272 PPC::GPRCRegClass.contains(DestReg)) { 1273 MCRegister CRReg = getCRFromCRBit(SrcReg); 1274 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 1275 getKillRegState(KillSrc); 1276 // Rotate the CR bit in the CR fields to be the least significant bit and 1277 // then mask with 0x1 (MB = ME = 31). 1278 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 1279 .addReg(DestReg, RegState::Kill) 1280 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 1281 .addImm(31) 1282 .addImm(31); 1283 return; 1284 } else if (PPC::CRRCRegClass.contains(SrcReg) && 1285 PPC::G8RCRegClass.contains(DestReg)) { 1286 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 1287 getKillRegState(KillSrc); 1288 return; 1289 } else if (PPC::CRRCRegClass.contains(SrcReg) && 1290 PPC::GPRCRegClass.contains(DestReg)) { 1291 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 1292 getKillRegState(KillSrc); 1293 return; 1294 } else if (PPC::G8RCRegClass.contains(SrcReg) && 1295 PPC::VSFRCRegClass.contains(DestReg)) { 1296 assert(Subtarget.hasDirectMove() && 1297 "Subtarget doesn't support directmove, don't know how to copy."); 1298 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 1299 NumGPRtoVSRSpill++; 1300 getKillRegState(KillSrc); 1301 return; 1302 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 1303 PPC::G8RCRegClass.contains(DestReg)) { 1304 assert(Subtarget.hasDirectMove() && 1305 "Subtarget doesn't support directmove, don't know how to copy."); 1306 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 1307 getKillRegState(KillSrc); 1308 return; 1309 } else if (PPC::SPERCRegClass.contains(SrcReg) && 1310 PPC::GPRCRegClass.contains(DestReg)) { 1311 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 1312 getKillRegState(KillSrc); 1313 return; 1314 } else if (PPC::GPRCRegClass.contains(SrcReg) && 1315 PPC::SPERCRegClass.contains(DestReg)) { 1316 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 1317 getKillRegState(KillSrc); 1318 return; 1319 } 1320 1321 unsigned Opc; 1322 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 1323 Opc = PPC::OR; 1324 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 1325 Opc = PPC::OR8; 1326 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 1327 Opc = PPC::FMR; 1328 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 1329 Opc = PPC::MCRF; 1330 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 1331 Opc = PPC::VOR; 1332 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 1333 // There are two different ways this can be done: 1334 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 1335 // issue in VSU pipeline 0. 1336 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 1337 // can go to either pipeline. 1338 // We'll always use xxlor here, because in practically all cases where 1339 // copies are generated, they are close enough to some use that the 1340 // lower-latency form is preferable. 1341 Opc = PPC::XXLOR; 1342 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1343 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1344 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1345 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 1346 Opc = PPC::QVFMR; 1347 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 1348 Opc = PPC::QVFMRs; 1349 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 1350 Opc = PPC::QVFMRb; 1351 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1352 Opc = PPC::CROR; 1353 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1354 Opc = PPC::EVOR; 1355 else 1356 llvm_unreachable("Impossible reg-to-reg copy"); 1357 1358 const MCInstrDesc &MCID = get(Opc); 1359 if (MCID.getNumOperands() == 3) 1360 BuildMI(MBB, I, DL, MCID, DestReg) 1361 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1362 else 1363 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1364 } 1365 1366 static unsigned getSpillIndex(const TargetRegisterClass *RC) { 1367 int OpcodeIndex = 0; 1368 1369 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1370 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1371 OpcodeIndex = SOK_Int4Spill; 1372 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1373 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1374 OpcodeIndex = SOK_Int8Spill; 1375 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1376 OpcodeIndex = SOK_Float8Spill; 1377 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1378 OpcodeIndex = SOK_Float4Spill; 1379 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1380 OpcodeIndex = SOK_SPESpill; 1381 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1382 OpcodeIndex = SOK_CRSpill; 1383 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1384 OpcodeIndex = SOK_CRBitSpill; 1385 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1386 OpcodeIndex = SOK_VRVectorSpill; 1387 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1388 OpcodeIndex = SOK_VSXVectorSpill; 1389 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1390 OpcodeIndex = SOK_VectorFloat8Spill; 1391 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1392 OpcodeIndex = SOK_VectorFloat4Spill; 1393 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1394 OpcodeIndex = SOK_VRSaveSpill; 1395 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1396 OpcodeIndex = SOK_QuadFloat8Spill; 1397 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1398 OpcodeIndex = SOK_QuadFloat4Spill; 1399 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1400 OpcodeIndex = SOK_QuadBitSpill; 1401 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1402 OpcodeIndex = SOK_SpillToVSR; 1403 } else { 1404 llvm_unreachable("Unknown regclass!"); 1405 } 1406 return OpcodeIndex; 1407 } 1408 1409 unsigned 1410 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const { 1411 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1412 return OpcodesForSpill[getSpillIndex(RC)]; 1413 } 1414 1415 unsigned 1416 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const { 1417 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1418 return OpcodesForSpill[getSpillIndex(RC)]; 1419 } 1420 1421 void PPCInstrInfo::StoreRegToStackSlot( 1422 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1423 const TargetRegisterClass *RC, 1424 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1425 unsigned Opcode = getStoreOpcodeForSpill(RC); 1426 DebugLoc DL; 1427 1428 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1429 FuncInfo->setHasSpills(); 1430 1431 NewMIs.push_back(addFrameReference( 1432 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1433 FrameIdx)); 1434 1435 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1436 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1437 FuncInfo->setSpillsCR(); 1438 1439 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1440 FuncInfo->setSpillsVRSAVE(); 1441 1442 if (isXFormMemOp(Opcode)) 1443 FuncInfo->setHasNonRISpills(); 1444 } 1445 1446 void PPCInstrInfo::storeRegToStackSlotNoUpd( 1447 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, 1448 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 1449 const TargetRegisterInfo *TRI) const { 1450 MachineFunction &MF = *MBB.getParent(); 1451 SmallVector<MachineInstr *, 4> NewMIs; 1452 1453 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1454 1455 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1456 MBB.insert(MI, NewMIs[i]); 1457 1458 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1459 MachineMemOperand *MMO = MF.getMachineMemOperand( 1460 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1461 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1462 MFI.getObjectAlign(FrameIdx)); 1463 NewMIs.back()->addMemOperand(MF, MMO); 1464 } 1465 1466 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1467 MachineBasicBlock::iterator MI, 1468 Register SrcReg, bool isKill, 1469 int FrameIdx, 1470 const TargetRegisterClass *RC, 1471 const TargetRegisterInfo *TRI) const { 1472 // We need to avoid a situation in which the value from a VRRC register is 1473 // spilled using an Altivec instruction and reloaded into a VSRC register 1474 // using a VSX instruction. The issue with this is that the VSX 1475 // load/store instructions swap the doublewords in the vector and the Altivec 1476 // ones don't. The register classes on the spill/reload may be different if 1477 // the register is defined using an Altivec instruction and is then used by a 1478 // VSX instruction. 1479 RC = updatedRC(RC); 1480 storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI); 1481 } 1482 1483 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1484 unsigned DestReg, int FrameIdx, 1485 const TargetRegisterClass *RC, 1486 SmallVectorImpl<MachineInstr *> &NewMIs) 1487 const { 1488 unsigned Opcode = getLoadOpcodeForSpill(RC); 1489 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1490 FrameIdx)); 1491 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1492 1493 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1494 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1495 FuncInfo->setSpillsCR(); 1496 1497 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1498 FuncInfo->setSpillsVRSAVE(); 1499 1500 if (isXFormMemOp(Opcode)) 1501 FuncInfo->setHasNonRISpills(); 1502 } 1503 1504 void PPCInstrInfo::loadRegFromStackSlotNoUpd( 1505 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, 1506 int FrameIdx, const TargetRegisterClass *RC, 1507 const TargetRegisterInfo *TRI) const { 1508 MachineFunction &MF = *MBB.getParent(); 1509 SmallVector<MachineInstr*, 4> NewMIs; 1510 DebugLoc DL; 1511 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1512 1513 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1514 FuncInfo->setHasSpills(); 1515 1516 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1517 1518 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1519 MBB.insert(MI, NewMIs[i]); 1520 1521 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1522 MachineMemOperand *MMO = MF.getMachineMemOperand( 1523 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1524 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1525 MFI.getObjectAlign(FrameIdx)); 1526 NewMIs.back()->addMemOperand(MF, MMO); 1527 } 1528 1529 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1530 MachineBasicBlock::iterator MI, 1531 Register DestReg, int FrameIdx, 1532 const TargetRegisterClass *RC, 1533 const TargetRegisterInfo *TRI) const { 1534 // We need to avoid a situation in which the value from a VRRC register is 1535 // spilled using an Altivec instruction and reloaded into a VSRC register 1536 // using a VSX instruction. The issue with this is that the VSX 1537 // load/store instructions swap the doublewords in the vector and the Altivec 1538 // ones don't. The register classes on the spill/reload may be different if 1539 // the register is defined using an Altivec instruction and is then used by a 1540 // VSX instruction. 1541 RC = updatedRC(RC); 1542 1543 loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI); 1544 } 1545 1546 bool PPCInstrInfo:: 1547 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1548 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1549 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1550 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1551 else 1552 // Leave the CR# the same, but invert the condition. 1553 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1554 return false; 1555 } 1556 1557 // For some instructions, it is legal to fold ZERO into the RA register field. 1558 // This function performs that fold by replacing the operand with PPC::ZERO, 1559 // it does not consider whether the load immediate zero is no longer in use. 1560 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1561 Register Reg) const { 1562 // A zero immediate should always be loaded with a single li. 1563 unsigned DefOpc = DefMI.getOpcode(); 1564 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1565 return false; 1566 if (!DefMI.getOperand(1).isImm()) 1567 return false; 1568 if (DefMI.getOperand(1).getImm() != 0) 1569 return false; 1570 1571 // Note that we cannot here invert the arguments of an isel in order to fold 1572 // a ZERO into what is presented as the second argument. All we have here 1573 // is the condition bit, and that might come from a CR-logical bit operation. 1574 1575 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1576 1577 // Only fold into real machine instructions. 1578 if (UseMCID.isPseudo()) 1579 return false; 1580 1581 // We need to find which of the User's operands is to be folded, that will be 1582 // the operand that matches the given register ID. 1583 unsigned UseIdx; 1584 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1585 if (UseMI.getOperand(UseIdx).isReg() && 1586 UseMI.getOperand(UseIdx).getReg() == Reg) 1587 break; 1588 1589 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1590 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1591 1592 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1593 1594 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1595 // register (which might also be specified as a pointer class kind). 1596 if (UseInfo->isLookupPtrRegClass()) { 1597 if (UseInfo->RegClass /* Kind */ != 1) 1598 return false; 1599 } else { 1600 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1601 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1602 return false; 1603 } 1604 1605 // Make sure this is not tied to an output register (or otherwise 1606 // constrained). This is true for ST?UX registers, for example, which 1607 // are tied to their output registers. 1608 if (UseInfo->Constraints != 0) 1609 return false; 1610 1611 MCRegister ZeroReg; 1612 if (UseInfo->isLookupPtrRegClass()) { 1613 bool isPPC64 = Subtarget.isPPC64(); 1614 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1615 } else { 1616 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1617 PPC::ZERO8 : PPC::ZERO; 1618 } 1619 1620 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1621 return true; 1622 } 1623 1624 // Folds zero into instructions which have a load immediate zero as an operand 1625 // but also recognize zero as immediate zero. If the definition of the load 1626 // has no more users it is deleted. 1627 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1628 Register Reg, MachineRegisterInfo *MRI) const { 1629 bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg); 1630 if (MRI->use_nodbg_empty(Reg)) 1631 DefMI.eraseFromParent(); 1632 return Changed; 1633 } 1634 1635 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1636 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1637 I != IE; ++I) 1638 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1639 return true; 1640 return false; 1641 } 1642 1643 // We should make sure that, if we're going to predicate both sides of a 1644 // condition (a diamond), that both sides don't define the counter register. We 1645 // can predicate counter-decrement-based branches, but while that predicates 1646 // the branching, it does not predicate the counter decrement. If we tried to 1647 // merge the triangle into one predicated block, we'd decrement the counter 1648 // twice. 1649 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1650 unsigned NumT, unsigned ExtraT, 1651 MachineBasicBlock &FMBB, 1652 unsigned NumF, unsigned ExtraF, 1653 BranchProbability Probability) const { 1654 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1655 } 1656 1657 1658 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1659 // The predicated branches are identified by their type, not really by the 1660 // explicit presence of a predicate. Furthermore, some of them can be 1661 // predicated more than once. Because if conversion won't try to predicate 1662 // any instruction which already claims to be predicated (by returning true 1663 // here), always return false. In doing so, we let isPredicable() be the 1664 // final word on whether not the instruction can be (further) predicated. 1665 1666 return false; 1667 } 1668 1669 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1670 ArrayRef<MachineOperand> Pred) const { 1671 unsigned OpC = MI.getOpcode(); 1672 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1673 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1674 bool isPPC64 = Subtarget.isPPC64(); 1675 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1676 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1677 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1678 MI.setDesc(get(PPC::BCLR)); 1679 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1680 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1681 MI.setDesc(get(PPC::BCLRn)); 1682 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1683 } else { 1684 MI.setDesc(get(PPC::BCCLR)); 1685 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1686 .addImm(Pred[0].getImm()) 1687 .add(Pred[1]); 1688 } 1689 1690 return true; 1691 } else if (OpC == PPC::B) { 1692 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1693 bool isPPC64 = Subtarget.isPPC64(); 1694 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1695 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1696 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1697 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1698 MI.RemoveOperand(0); 1699 1700 MI.setDesc(get(PPC::BC)); 1701 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1702 .add(Pred[1]) 1703 .addMBB(MBB); 1704 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1705 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1706 MI.RemoveOperand(0); 1707 1708 MI.setDesc(get(PPC::BCn)); 1709 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1710 .add(Pred[1]) 1711 .addMBB(MBB); 1712 } else { 1713 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1714 MI.RemoveOperand(0); 1715 1716 MI.setDesc(get(PPC::BCC)); 1717 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1718 .addImm(Pred[0].getImm()) 1719 .add(Pred[1]) 1720 .addMBB(MBB); 1721 } 1722 1723 return true; 1724 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 1725 OpC == PPC::BCTRL8) { 1726 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1727 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1728 1729 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1730 bool isPPC64 = Subtarget.isPPC64(); 1731 1732 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1733 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1734 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1735 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1736 return true; 1737 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1738 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1739 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1740 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1741 return true; 1742 } 1743 1744 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1745 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1746 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1747 .addImm(Pred[0].getImm()) 1748 .add(Pred[1]); 1749 return true; 1750 } 1751 1752 return false; 1753 } 1754 1755 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1756 ArrayRef<MachineOperand> Pred2) const { 1757 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1758 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1759 1760 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1761 return false; 1762 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1763 return false; 1764 1765 // P1 can only subsume P2 if they test the same condition register. 1766 if (Pred1[1].getReg() != Pred2[1].getReg()) 1767 return false; 1768 1769 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1770 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1771 1772 if (P1 == P2) 1773 return true; 1774 1775 // Does P1 subsume P2, e.g. GE subsumes GT. 1776 if (P1 == PPC::PRED_LE && 1777 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1778 return true; 1779 if (P1 == PPC::PRED_GE && 1780 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1781 return true; 1782 1783 return false; 1784 } 1785 1786 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1787 std::vector<MachineOperand> &Pred) const { 1788 // Note: At the present time, the contents of Pred from this function is 1789 // unused by IfConversion. This implementation follows ARM by pushing the 1790 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1791 // predicate, instructions defining CTR or CTR8 are also included as 1792 // predicate-defining instructions. 1793 1794 const TargetRegisterClass *RCs[] = 1795 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1796 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1797 1798 bool Found = false; 1799 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1800 const MachineOperand &MO = MI.getOperand(i); 1801 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1802 const TargetRegisterClass *RC = RCs[c]; 1803 if (MO.isReg()) { 1804 if (MO.isDef() && RC->contains(MO.getReg())) { 1805 Pred.push_back(MO); 1806 Found = true; 1807 } 1808 } else if (MO.isRegMask()) { 1809 for (TargetRegisterClass::iterator I = RC->begin(), 1810 IE = RC->end(); I != IE; ++I) 1811 if (MO.clobbersPhysReg(*I)) { 1812 Pred.push_back(MO); 1813 Found = true; 1814 } 1815 } 1816 } 1817 } 1818 1819 return Found; 1820 } 1821 1822 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 1823 Register &SrcReg2, int &Mask, 1824 int &Value) const { 1825 unsigned Opc = MI.getOpcode(); 1826 1827 switch (Opc) { 1828 default: return false; 1829 case PPC::CMPWI: 1830 case PPC::CMPLWI: 1831 case PPC::CMPDI: 1832 case PPC::CMPLDI: 1833 SrcReg = MI.getOperand(1).getReg(); 1834 SrcReg2 = 0; 1835 Value = MI.getOperand(2).getImm(); 1836 Mask = 0xFFFF; 1837 return true; 1838 case PPC::CMPW: 1839 case PPC::CMPLW: 1840 case PPC::CMPD: 1841 case PPC::CMPLD: 1842 case PPC::FCMPUS: 1843 case PPC::FCMPUD: 1844 SrcReg = MI.getOperand(1).getReg(); 1845 SrcReg2 = MI.getOperand(2).getReg(); 1846 Value = 0; 1847 Mask = 0; 1848 return true; 1849 } 1850 } 1851 1852 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 1853 Register SrcReg2, int Mask, int Value, 1854 const MachineRegisterInfo *MRI) const { 1855 if (DisableCmpOpt) 1856 return false; 1857 1858 int OpC = CmpInstr.getOpcode(); 1859 Register CRReg = CmpInstr.getOperand(0).getReg(); 1860 1861 // FP record forms set CR1 based on the exception status bits, not a 1862 // comparison with zero. 1863 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1864 return false; 1865 1866 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1867 // The record forms set the condition register based on a signed comparison 1868 // with zero (so says the ISA manual). This is not as straightforward as it 1869 // seems, however, because this is always a 64-bit comparison on PPC64, even 1870 // for instructions that are 32-bit in nature (like slw for example). 1871 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1872 // for equality checks (as those don't depend on the sign). On PPC64, 1873 // we are restricted to equality for unsigned 64-bit comparisons and for 1874 // signed 32-bit comparisons the applicability is more restricted. 1875 bool isPPC64 = Subtarget.isPPC64(); 1876 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1877 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1878 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1879 1880 // Look through copies unless that gets us to a physical register. 1881 Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 1882 if (ActualSrc.isVirtual()) 1883 SrcReg = ActualSrc; 1884 1885 // Get the unique definition of SrcReg. 1886 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1887 if (!MI) return false; 1888 1889 bool equalityOnly = false; 1890 bool noSub = false; 1891 if (isPPC64) { 1892 if (is32BitSignedCompare) { 1893 // We can perform this optimization only if MI is sign-extending. 1894 if (isSignExtended(*MI)) 1895 noSub = true; 1896 else 1897 return false; 1898 } else if (is32BitUnsignedCompare) { 1899 // We can perform this optimization, equality only, if MI is 1900 // zero-extending. 1901 if (isZeroExtended(*MI)) { 1902 noSub = true; 1903 equalityOnly = true; 1904 } else 1905 return false; 1906 } else 1907 equalityOnly = is64BitUnsignedCompare; 1908 } else 1909 equalityOnly = is32BitUnsignedCompare; 1910 1911 if (equalityOnly) { 1912 // We need to check the uses of the condition register in order to reject 1913 // non-equality comparisons. 1914 for (MachineRegisterInfo::use_instr_iterator 1915 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1916 I != IE; ++I) { 1917 MachineInstr *UseMI = &*I; 1918 if (UseMI->getOpcode() == PPC::BCC) { 1919 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1920 unsigned PredCond = PPC::getPredicateCondition(Pred); 1921 // We ignore hint bits when checking for non-equality comparisons. 1922 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1923 return false; 1924 } else if (UseMI->getOpcode() == PPC::ISEL || 1925 UseMI->getOpcode() == PPC::ISEL8) { 1926 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1927 if (SubIdx != PPC::sub_eq) 1928 return false; 1929 } else 1930 return false; 1931 } 1932 } 1933 1934 MachineBasicBlock::iterator I = CmpInstr; 1935 1936 // Scan forward to find the first use of the compare. 1937 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1938 ++I) { 1939 bool FoundUse = false; 1940 for (MachineRegisterInfo::use_instr_iterator 1941 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 1942 J != JE; ++J) 1943 if (&*J == &*I) { 1944 FoundUse = true; 1945 break; 1946 } 1947 1948 if (FoundUse) 1949 break; 1950 } 1951 1952 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1953 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1954 1955 // There are two possible candidates which can be changed to set CR[01]. 1956 // One is MI, the other is a SUB instruction. 1957 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1958 MachineInstr *Sub = nullptr; 1959 if (SrcReg2 != 0) 1960 // MI is not a candidate for CMPrr. 1961 MI = nullptr; 1962 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1963 // same BB as the comparison. This is to allow the check below to avoid calls 1964 // (and other explicit clobbers); instead we should really check for these 1965 // more explicitly (in at least a few predecessors). 1966 else if (MI->getParent() != CmpInstr.getParent()) 1967 return false; 1968 else if (Value != 0) { 1969 // The record-form instructions set CR bit based on signed comparison 1970 // against 0. We try to convert a compare against 1 or -1 into a compare 1971 // against 0 to exploit record-form instructions. For example, we change 1972 // the condition "greater than -1" into "greater than or equal to 0" 1973 // and "less than 1" into "less than or equal to 0". 1974 1975 // Since we optimize comparison based on a specific branch condition, 1976 // we don't optimize if condition code is used by more than once. 1977 if (equalityOnly || !MRI->hasOneUse(CRReg)) 1978 return false; 1979 1980 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 1981 if (UseMI->getOpcode() != PPC::BCC) 1982 return false; 1983 1984 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1985 unsigned PredCond = PPC::getPredicateCondition(Pred); 1986 unsigned PredHint = PPC::getPredicateHint(Pred); 1987 int16_t Immed = (int16_t)Value; 1988 1989 // When modifying the condition in the predicate, we propagate hint bits 1990 // from the original predicate to the new one. 1991 if (Immed == -1 && PredCond == PPC::PRED_GT) 1992 // We convert "greater than -1" into "greater than or equal to 0", 1993 // since we are assuming signed comparison by !equalityOnly 1994 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 1995 else if (Immed == -1 && PredCond == PPC::PRED_LE) 1996 // We convert "less than or equal to -1" into "less than 0". 1997 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 1998 else if (Immed == 1 && PredCond == PPC::PRED_LT) 1999 // We convert "less than 1" into "less than or equal to 0". 2000 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 2001 else if (Immed == 1 && PredCond == PPC::PRED_GE) 2002 // We convert "greater than or equal to 1" into "greater than 0". 2003 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 2004 else 2005 return false; 2006 2007 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred)); 2008 } 2009 2010 // Search for Sub. 2011 --I; 2012 2013 // Get ready to iterate backward from CmpInstr. 2014 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 2015 2016 for (; I != E && !noSub; --I) { 2017 const MachineInstr &Instr = *I; 2018 unsigned IOpC = Instr.getOpcode(); 2019 2020 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 2021 Instr.readsRegister(PPC::CR0, TRI))) 2022 // This instruction modifies or uses the record condition register after 2023 // the one we want to change. While we could do this transformation, it 2024 // would likely not be profitable. This transformation removes one 2025 // instruction, and so even forcing RA to generate one move probably 2026 // makes it unprofitable. 2027 return false; 2028 2029 // Check whether CmpInstr can be made redundant by the current instruction. 2030 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 2031 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 2032 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 2033 ((Instr.getOperand(1).getReg() == SrcReg && 2034 Instr.getOperand(2).getReg() == SrcReg2) || 2035 (Instr.getOperand(1).getReg() == SrcReg2 && 2036 Instr.getOperand(2).getReg() == SrcReg))) { 2037 Sub = &*I; 2038 break; 2039 } 2040 2041 if (I == B) 2042 // The 'and' is below the comparison instruction. 2043 return false; 2044 } 2045 2046 // Return false if no candidates exist. 2047 if (!MI && !Sub) 2048 return false; 2049 2050 // The single candidate is called MI. 2051 if (!MI) MI = Sub; 2052 2053 int NewOpC = -1; 2054 int MIOpC = MI->getOpcode(); 2055 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || 2056 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) 2057 NewOpC = MIOpC; 2058 else { 2059 NewOpC = PPC::getRecordFormOpcode(MIOpC); 2060 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 2061 NewOpC = MIOpC; 2062 } 2063 2064 // FIXME: On the non-embedded POWER architectures, only some of the record 2065 // forms are fast, and we should use only the fast ones. 2066 2067 // The defining instruction has a record form (or is already a record 2068 // form). It is possible, however, that we'll need to reverse the condition 2069 // code of the users. 2070 if (NewOpC == -1) 2071 return false; 2072 2073 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 2074 // needs to be updated to be based on SUB. Push the condition code 2075 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 2076 // condition code of these operands will be modified. 2077 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 2078 // comparison against 0, which may modify predicate. 2079 bool ShouldSwap = false; 2080 if (Sub && Value == 0) { 2081 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 2082 Sub->getOperand(2).getReg() == SrcReg; 2083 2084 // The operands to subf are the opposite of sub, so only in the fixed-point 2085 // case, invert the order. 2086 ShouldSwap = !ShouldSwap; 2087 } 2088 2089 if (ShouldSwap) 2090 for (MachineRegisterInfo::use_instr_iterator 2091 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2092 I != IE; ++I) { 2093 MachineInstr *UseMI = &*I; 2094 if (UseMI->getOpcode() == PPC::BCC) { 2095 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 2096 unsigned PredCond = PPC::getPredicateCondition(Pred); 2097 assert((!equalityOnly || 2098 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 2099 "Invalid predicate for equality-only optimization"); 2100 (void)PredCond; // To suppress warning in release build. 2101 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 2102 PPC::getSwappedPredicate(Pred))); 2103 } else if (UseMI->getOpcode() == PPC::ISEL || 2104 UseMI->getOpcode() == PPC::ISEL8) { 2105 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 2106 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 2107 "Invalid CR bit for equality-only optimization"); 2108 2109 if (NewSubReg == PPC::sub_lt) 2110 NewSubReg = PPC::sub_gt; 2111 else if (NewSubReg == PPC::sub_gt) 2112 NewSubReg = PPC::sub_lt; 2113 2114 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 2115 NewSubReg)); 2116 } else // We need to abort on a user we don't understand. 2117 return false; 2118 } 2119 assert(!(Value != 0 && ShouldSwap) && 2120 "Non-zero immediate support and ShouldSwap" 2121 "may conflict in updating predicate"); 2122 2123 // Create a new virtual register to hold the value of the CR set by the 2124 // record-form instruction. If the instruction was not previously in 2125 // record form, then set the kill flag on the CR. 2126 CmpInstr.eraseFromParent(); 2127 2128 MachineBasicBlock::iterator MII = MI; 2129 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 2130 get(TargetOpcode::COPY), CRReg) 2131 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 2132 2133 // Even if CR0 register were dead before, it is alive now since the 2134 // instruction we just built uses it. 2135 MI->clearRegisterDeads(PPC::CR0); 2136 2137 if (MIOpC != NewOpC) { 2138 // We need to be careful here: we're replacing one instruction with 2139 // another, and we need to make sure that we get all of the right 2140 // implicit uses and defs. On the other hand, the caller may be holding 2141 // an iterator to this instruction, and so we can't delete it (this is 2142 // specifically the case if this is the instruction directly after the 2143 // compare). 2144 2145 // Rotates are expensive instructions. If we're emitting a record-form 2146 // rotate that can just be an andi/andis, we should just emit that. 2147 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 2148 Register GPRRes = MI->getOperand(0).getReg(); 2149 int64_t SH = MI->getOperand(2).getImm(); 2150 int64_t MB = MI->getOperand(3).getImm(); 2151 int64_t ME = MI->getOperand(4).getImm(); 2152 // We can only do this if both the start and end of the mask are in the 2153 // same halfword. 2154 bool MBInLoHWord = MB >= 16; 2155 bool MEInLoHWord = ME >= 16; 2156 uint64_t Mask = ~0LLU; 2157 2158 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 2159 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2160 // The mask value needs to shift right 16 if we're emitting andis. 2161 Mask >>= MBInLoHWord ? 0 : 16; 2162 NewOpC = MIOpC == PPC::RLWINM 2163 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) 2164 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); 2165 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 2166 (ME - MB + 1 == SH) && (MB >= 16)) { 2167 // If we are rotating by the exact number of bits as are in the mask 2168 // and the mask is in the least significant bits of the register, 2169 // that's just an andis. (as long as the GPR result has no uses). 2170 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 2171 Mask >>= 16; 2172 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; 2173 } 2174 // If we've set the mask, we can transform. 2175 if (Mask != ~0LLU) { 2176 MI->RemoveOperand(4); 2177 MI->RemoveOperand(3); 2178 MI->getOperand(2).setImm(Mask); 2179 NumRcRotatesConvertedToRcAnd++; 2180 } 2181 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 2182 int64_t MB = MI->getOperand(3).getImm(); 2183 if (MB >= 48) { 2184 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2185 NewOpC = PPC::ANDI8_rec; 2186 MI->RemoveOperand(3); 2187 MI->getOperand(2).setImm(Mask); 2188 NumRcRotatesConvertedToRcAnd++; 2189 } 2190 } 2191 2192 const MCInstrDesc &NewDesc = get(NewOpC); 2193 MI->setDesc(NewDesc); 2194 2195 if (NewDesc.ImplicitDefs) 2196 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 2197 *ImpDefs; ++ImpDefs) 2198 if (!MI->definesRegister(*ImpDefs)) 2199 MI->addOperand(*MI->getParent()->getParent(), 2200 MachineOperand::CreateReg(*ImpDefs, true, true)); 2201 if (NewDesc.ImplicitUses) 2202 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 2203 *ImpUses; ++ImpUses) 2204 if (!MI->readsRegister(*ImpUses)) 2205 MI->addOperand(*MI->getParent()->getParent(), 2206 MachineOperand::CreateReg(*ImpUses, false, true)); 2207 } 2208 assert(MI->definesRegister(PPC::CR0) && 2209 "Record-form instruction does not define cr0?"); 2210 2211 // Modify the condition code of operands in OperandsToUpdate. 2212 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 2213 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 2214 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 2215 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 2216 2217 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 2218 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 2219 2220 return true; 2221 } 2222 2223 /// GetInstSize - Return the number of bytes of code the specified 2224 /// instruction may be. This returns the maximum number of bytes. 2225 /// 2226 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2227 unsigned Opcode = MI.getOpcode(); 2228 2229 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 2230 const MachineFunction *MF = MI.getParent()->getParent(); 2231 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2232 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2233 } else if (Opcode == TargetOpcode::STACKMAP) { 2234 StackMapOpers Opers(&MI); 2235 return Opers.getNumPatchBytes(); 2236 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2237 PatchPointOpers Opers(&MI); 2238 return Opers.getNumPatchBytes(); 2239 } else { 2240 return get(Opcode).getSize(); 2241 } 2242 } 2243 2244 std::pair<unsigned, unsigned> 2245 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2246 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2247 return std::make_pair(TF & Mask, TF & ~Mask); 2248 } 2249 2250 ArrayRef<std::pair<unsigned, const char *>> 2251 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2252 using namespace PPCII; 2253 static const std::pair<unsigned, const char *> TargetFlags[] = { 2254 {MO_LO, "ppc-lo"}, 2255 {MO_HA, "ppc-ha"}, 2256 {MO_TPREL_LO, "ppc-tprel-lo"}, 2257 {MO_TPREL_HA, "ppc-tprel-ha"}, 2258 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2259 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2260 {MO_TOC_LO, "ppc-toc-lo"}, 2261 {MO_TLS, "ppc-tls"}}; 2262 return makeArrayRef(TargetFlags); 2263 } 2264 2265 ArrayRef<std::pair<unsigned, const char *>> 2266 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2267 using namespace PPCII; 2268 static const std::pair<unsigned, const char *> TargetFlags[] = { 2269 {MO_PLT, "ppc-plt"}, 2270 {MO_PIC_FLAG, "ppc-pic"}, 2271 {MO_PCREL_FLAG, "ppc-pcrel"}, 2272 {MO_GOT_FLAG, "ppc-got"}}; 2273 return makeArrayRef(TargetFlags); 2274 } 2275 2276 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2277 // The VSX versions have the advantage of a full 64-register target whereas 2278 // the FP ones have the advantage of lower latency and higher throughput. So 2279 // what we are after is using the faster instructions in low register pressure 2280 // situations and using the larger register file in high register pressure 2281 // situations. 2282 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2283 unsigned UpperOpcode, LowerOpcode; 2284 switch (MI.getOpcode()) { 2285 case PPC::DFLOADf32: 2286 UpperOpcode = PPC::LXSSP; 2287 LowerOpcode = PPC::LFS; 2288 break; 2289 case PPC::DFLOADf64: 2290 UpperOpcode = PPC::LXSD; 2291 LowerOpcode = PPC::LFD; 2292 break; 2293 case PPC::DFSTOREf32: 2294 UpperOpcode = PPC::STXSSP; 2295 LowerOpcode = PPC::STFS; 2296 break; 2297 case PPC::DFSTOREf64: 2298 UpperOpcode = PPC::STXSD; 2299 LowerOpcode = PPC::STFD; 2300 break; 2301 case PPC::XFLOADf32: 2302 UpperOpcode = PPC::LXSSPX; 2303 LowerOpcode = PPC::LFSX; 2304 break; 2305 case PPC::XFLOADf64: 2306 UpperOpcode = PPC::LXSDX; 2307 LowerOpcode = PPC::LFDX; 2308 break; 2309 case PPC::XFSTOREf32: 2310 UpperOpcode = PPC::STXSSPX; 2311 LowerOpcode = PPC::STFSX; 2312 break; 2313 case PPC::XFSTOREf64: 2314 UpperOpcode = PPC::STXSDX; 2315 LowerOpcode = PPC::STFDX; 2316 break; 2317 case PPC::LIWAX: 2318 UpperOpcode = PPC::LXSIWAX; 2319 LowerOpcode = PPC::LFIWAX; 2320 break; 2321 case PPC::LIWZX: 2322 UpperOpcode = PPC::LXSIWZX; 2323 LowerOpcode = PPC::LFIWZX; 2324 break; 2325 case PPC::STIWX: 2326 UpperOpcode = PPC::STXSIWX; 2327 LowerOpcode = PPC::STFIWX; 2328 break; 2329 default: 2330 llvm_unreachable("Unknown Operation!"); 2331 } 2332 2333 Register TargetReg = MI.getOperand(0).getReg(); 2334 unsigned Opcode; 2335 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2336 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2337 Opcode = LowerOpcode; 2338 else 2339 Opcode = UpperOpcode; 2340 MI.setDesc(get(Opcode)); 2341 return true; 2342 } 2343 2344 static bool isAnImmediateOperand(const MachineOperand &MO) { 2345 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2346 } 2347 2348 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2349 auto &MBB = *MI.getParent(); 2350 auto DL = MI.getDebugLoc(); 2351 2352 switch (MI.getOpcode()) { 2353 case TargetOpcode::LOAD_STACK_GUARD: { 2354 assert(Subtarget.isTargetLinux() && 2355 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 2356 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 2357 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 2358 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 2359 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2360 .addImm(Offset) 2361 .addReg(Reg); 2362 return true; 2363 } 2364 case PPC::DFLOADf32: 2365 case PPC::DFLOADf64: 2366 case PPC::DFSTOREf32: 2367 case PPC::DFSTOREf64: { 2368 assert(Subtarget.hasP9Vector() && 2369 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 2370 assert(MI.getOperand(2).isReg() && 2371 isAnImmediateOperand(MI.getOperand(1)) && 2372 "D-form op must have register and immediate operands"); 2373 return expandVSXMemPseudo(MI); 2374 } 2375 case PPC::XFLOADf32: 2376 case PPC::XFSTOREf32: 2377 case PPC::LIWAX: 2378 case PPC::LIWZX: 2379 case PPC::STIWX: { 2380 assert(Subtarget.hasP8Vector() && 2381 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 2382 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2383 "X-form op must have register and register operands"); 2384 return expandVSXMemPseudo(MI); 2385 } 2386 case PPC::XFLOADf64: 2387 case PPC::XFSTOREf64: { 2388 assert(Subtarget.hasVSX() && 2389 "Invalid X-Form Pseudo-ops on target that has no VSX."); 2390 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2391 "X-form op must have register and register operands"); 2392 return expandVSXMemPseudo(MI); 2393 } 2394 case PPC::SPILLTOVSR_LD: { 2395 Register TargetReg = MI.getOperand(0).getReg(); 2396 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2397 MI.setDesc(get(PPC::DFLOADf64)); 2398 return expandPostRAPseudo(MI); 2399 } 2400 else 2401 MI.setDesc(get(PPC::LD)); 2402 return true; 2403 } 2404 case PPC::SPILLTOVSR_ST: { 2405 Register SrcReg = MI.getOperand(0).getReg(); 2406 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2407 NumStoreSPILLVSRRCAsVec++; 2408 MI.setDesc(get(PPC::DFSTOREf64)); 2409 return expandPostRAPseudo(MI); 2410 } else { 2411 NumStoreSPILLVSRRCAsGpr++; 2412 MI.setDesc(get(PPC::STD)); 2413 } 2414 return true; 2415 } 2416 case PPC::SPILLTOVSR_LDX: { 2417 Register TargetReg = MI.getOperand(0).getReg(); 2418 if (PPC::VSFRCRegClass.contains(TargetReg)) 2419 MI.setDesc(get(PPC::LXSDX)); 2420 else 2421 MI.setDesc(get(PPC::LDX)); 2422 return true; 2423 } 2424 case PPC::SPILLTOVSR_STX: { 2425 Register SrcReg = MI.getOperand(0).getReg(); 2426 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2427 NumStoreSPILLVSRRCAsVec++; 2428 MI.setDesc(get(PPC::STXSDX)); 2429 } else { 2430 NumStoreSPILLVSRRCAsGpr++; 2431 MI.setDesc(get(PPC::STDX)); 2432 } 2433 return true; 2434 } 2435 2436 case PPC::CFENCE8: { 2437 auto Val = MI.getOperand(0).getReg(); 2438 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2439 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2440 .addImm(PPC::PRED_NE_MINUS) 2441 .addReg(PPC::CR7) 2442 .addImm(1); 2443 MI.setDesc(get(PPC::ISYNC)); 2444 MI.RemoveOperand(0); 2445 return true; 2446 } 2447 } 2448 return false; 2449 } 2450 2451 // Essentially a compile-time implementation of a compare->isel sequence. 2452 // It takes two constants to compare, along with the true/false registers 2453 // and the comparison type (as a subreg to a CR field) and returns one 2454 // of the true/false registers, depending on the comparison results. 2455 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 2456 unsigned TrueReg, unsigned FalseReg, 2457 unsigned CRSubReg) { 2458 // Signed comparisons. The immediates are assumed to be sign-extended. 2459 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 2460 switch (CRSubReg) { 2461 default: llvm_unreachable("Unknown integer comparison type."); 2462 case PPC::sub_lt: 2463 return Imm1 < Imm2 ? TrueReg : FalseReg; 2464 case PPC::sub_gt: 2465 return Imm1 > Imm2 ? TrueReg : FalseReg; 2466 case PPC::sub_eq: 2467 return Imm1 == Imm2 ? TrueReg : FalseReg; 2468 } 2469 } 2470 // Unsigned comparisons. 2471 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 2472 switch (CRSubReg) { 2473 default: llvm_unreachable("Unknown integer comparison type."); 2474 case PPC::sub_lt: 2475 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 2476 case PPC::sub_gt: 2477 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 2478 case PPC::sub_eq: 2479 return Imm1 == Imm2 ? TrueReg : FalseReg; 2480 } 2481 } 2482 return PPC::NoRegister; 2483 } 2484 2485 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 2486 unsigned OpNo, 2487 int64_t Imm) const { 2488 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 2489 // Replace the REG with the Immediate. 2490 Register InUseReg = MI.getOperand(OpNo).getReg(); 2491 MI.getOperand(OpNo).ChangeToImmediate(Imm); 2492 2493 if (MI.implicit_operands().empty()) 2494 return; 2495 2496 // We need to make sure that the MI didn't have any implicit use 2497 // of this REG any more. 2498 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2499 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 2500 if (UseOpIdx >= 0) { 2501 MachineOperand &MO = MI.getOperand(UseOpIdx); 2502 if (MO.isImplicit()) 2503 // The operands must always be in the following order: 2504 // - explicit reg defs, 2505 // - other explicit operands (reg uses, immediates, etc.), 2506 // - implicit reg defs 2507 // - implicit reg uses 2508 // Therefore, removing the implicit operand won't change the explicit 2509 // operands layout. 2510 MI.RemoveOperand(UseOpIdx); 2511 } 2512 } 2513 2514 // Replace an instruction with one that materializes a constant (and sets 2515 // CR0 if the original instruction was a record-form instruction). 2516 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 2517 const LoadImmediateInfo &LII) const { 2518 // Remove existing operands. 2519 int OperandToKeep = LII.SetCR ? 1 : 0; 2520 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 2521 MI.RemoveOperand(i); 2522 2523 // Replace the instruction. 2524 if (LII.SetCR) { 2525 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 2526 // Set the immediate. 2527 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2528 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 2529 return; 2530 } 2531 else 2532 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 2533 2534 // Set the immediate. 2535 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2536 .addImm(LII.Imm); 2537 } 2538 2539 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 2540 bool &SeenIntermediateUse) const { 2541 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 2542 "Should be called after register allocation."); 2543 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2544 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 2545 It++; 2546 SeenIntermediateUse = false; 2547 for (; It != E; ++It) { 2548 if (It->modifiesRegister(Reg, TRI)) 2549 return &*It; 2550 if (It->readsRegister(Reg, TRI)) 2551 SeenIntermediateUse = true; 2552 } 2553 return nullptr; 2554 } 2555 2556 MachineInstr *PPCInstrInfo::getForwardingDefMI( 2557 MachineInstr &MI, 2558 unsigned &OpNoForForwarding, 2559 bool &SeenIntermediateUse) const { 2560 OpNoForForwarding = ~0U; 2561 MachineInstr *DefMI = nullptr; 2562 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 2563 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2564 // If we're in SSA, get the defs through the MRI. Otherwise, only look 2565 // within the basic block to see if the register is defined using an 2566 // LI/LI8/ADDI/ADDI8. 2567 if (MRI->isSSA()) { 2568 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2569 if (!MI.getOperand(i).isReg()) 2570 continue; 2571 Register Reg = MI.getOperand(i).getReg(); 2572 if (!Register::isVirtualRegister(Reg)) 2573 continue; 2574 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 2575 if (Register::isVirtualRegister(TrueReg)) { 2576 DefMI = MRI->getVRegDef(TrueReg); 2577 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 || 2578 DefMI->getOpcode() == PPC::ADDI || 2579 DefMI->getOpcode() == PPC::ADDI8) { 2580 OpNoForForwarding = i; 2581 // The ADDI and LI operand maybe exist in one instruction at same 2582 // time. we prefer to fold LI operand as LI only has one Imm operand 2583 // and is more possible to be converted. So if current DefMI is 2584 // ADDI/ADDI8, we continue to find possible LI/LI8. 2585 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) 2586 break; 2587 } 2588 } 2589 } 2590 } else { 2591 // Looking back through the definition for each operand could be expensive, 2592 // so exit early if this isn't an instruction that either has an immediate 2593 // form or is already an immediate form that we can handle. 2594 ImmInstrInfo III; 2595 unsigned Opc = MI.getOpcode(); 2596 bool ConvertibleImmForm = 2597 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || 2598 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || 2599 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || 2600 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || 2601 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 2602 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || 2603 Opc == PPC::RLWINM8_rec; 2604 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 2605 ? isVFRegister(MI.getOperand(0).getReg()) 2606 : false; 2607 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 2608 return nullptr; 2609 2610 // Don't convert or %X, %Y, %Y since that's just a register move. 2611 if ((Opc == PPC::OR || Opc == PPC::OR8) && 2612 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 2613 return nullptr; 2614 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2615 MachineOperand &MO = MI.getOperand(i); 2616 SeenIntermediateUse = false; 2617 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 2618 Register Reg = MI.getOperand(i).getReg(); 2619 // If we see another use of this reg between the def and the MI, 2620 // we want to flat it so the def isn't deleted. 2621 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 2622 if (DefMI) { 2623 // Is this register defined by some form of add-immediate (including 2624 // load-immediate) within this basic block? 2625 switch (DefMI->getOpcode()) { 2626 default: 2627 break; 2628 case PPC::LI: 2629 case PPC::LI8: 2630 case PPC::ADDItocL: 2631 case PPC::ADDI: 2632 case PPC::ADDI8: 2633 OpNoForForwarding = i; 2634 return DefMI; 2635 } 2636 } 2637 } 2638 } 2639 } 2640 return OpNoForForwarding == ~0U ? nullptr : DefMI; 2641 } 2642 2643 unsigned PPCInstrInfo::getSpillTarget() const { 2644 return Subtarget.hasP9Vector() ? 1 : 0; 2645 } 2646 2647 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 2648 return StoreSpillOpcodesArray[getSpillTarget()]; 2649 } 2650 2651 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 2652 return LoadSpillOpcodesArray[getSpillTarget()]; 2653 } 2654 2655 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI, 2656 unsigned RegNo) const { 2657 2658 // Instructions between [StartMI, EndMI] should be in same basic block. 2659 assert((StartMI.getParent() == EndMI.getParent()) && 2660 "Instructions are not in same basic block"); 2661 2662 bool IsKillSet = false; 2663 2664 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 2665 MachineOperand &MO = MI.getOperand(Index); 2666 if (MO.isReg() && MO.isUse() && MO.isKill() && 2667 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 2668 MO.setIsKill(false); 2669 }; 2670 2671 // Set killed flag for EndMI. 2672 // No need to do anything if EndMI defines RegNo. 2673 int UseIndex = 2674 EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 2675 if (UseIndex != -1) { 2676 EndMI.getOperand(UseIndex).setIsKill(true); 2677 IsKillSet = true; 2678 // Clear killed flag for other EndMI operands related to RegNo. In some 2679 // upexpected cases, killed may be set multiple times for same register 2680 // operand in same MI. 2681 for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i) 2682 if (i != UseIndex) 2683 clearOperandKillInfo(EndMI, i); 2684 } 2685 2686 // Walking the inst in reverse order (EndMI -> StartMI]. 2687 MachineBasicBlock::reverse_iterator It = EndMI; 2688 MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend(); 2689 // EndMI has been handled above, skip it here. 2690 It++; 2691 MachineOperand *MO = nullptr; 2692 for (; It != E; ++It) { 2693 // Skip insturctions which could not be a def/use of RegNo. 2694 if (It->isDebugInstr() || It->isPosition()) 2695 continue; 2696 2697 // Clear killed flag for all It operands related to RegNo. In some 2698 // upexpected cases, killed may be set multiple times for same register 2699 // operand in same MI. 2700 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 2701 clearOperandKillInfo(*It, i); 2702 2703 // If killed is not set, set killed for its last use or set dead for its def 2704 // if no use found. 2705 if (!IsKillSet) { 2706 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 2707 // Use found, set it killed. 2708 IsKillSet = true; 2709 MO->setIsKill(true); 2710 continue; 2711 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 2712 &getRegisterInfo()))) { 2713 // No use found, set dead for its def. 2714 assert(&*It == &StartMI && "No new def between StartMI and EndMI."); 2715 MO->setIsDead(true); 2716 break; 2717 } 2718 } 2719 2720 if ((&*It) == &StartMI) 2721 break; 2722 } 2723 // Ensure RegMo liveness is killed after EndMI. 2724 assert((IsKillSet || (MO && MO->isDead())) && 2725 "RegNo should be killed or dead"); 2726 } 2727 2728 // This opt tries to convert the following imm form to an index form to save an 2729 // add for stack variables. 2730 // Return false if no such pattern found. 2731 // 2732 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 2733 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg 2734 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) 2735 // 2736 // can be converted to: 2737 // 2738 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) 2739 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) 2740 // 2741 // In order to eliminate ADD instr, make sure that: 2742 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in 2743 // new ADDI instr and ADDI can only take int16 Imm. 2744 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use 2745 // between ADDI and ADD instr since its original def in ADDI will be changed 2746 // in new ADDI instr. And also there should be no new def for it between 2747 // ADD and Imm instr as ToBeChangedReg will be used in Index instr. 2748 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use 2749 // between ADD and Imm instr since ADD instr will be eliminated. 2750 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be 2751 // moved to Index instr. 2752 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { 2753 MachineFunction *MF = MI.getParent()->getParent(); 2754 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2755 bool PostRA = !MRI->isSSA(); 2756 // Do this opt after PEI which is after RA. The reason is stack slot expansion 2757 // in PEI may expose such opportunities since in PEI, stack slot offsets to 2758 // frame base(OffsetAddi) are determined. 2759 if (!PostRA) 2760 return false; 2761 unsigned ToBeDeletedReg = 0; 2762 int64_t OffsetImm = 0; 2763 unsigned XFormOpcode = 0; 2764 ImmInstrInfo III; 2765 2766 // Check if Imm instr meets requirement. 2767 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, 2768 III)) 2769 return false; 2770 2771 bool OtherIntermediateUse = false; 2772 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); 2773 2774 // Exit if there is other use between ADD and Imm instr or no def found. 2775 if (OtherIntermediateUse || !ADDMI) 2776 return false; 2777 2778 // Check if ADD instr meets requirement. 2779 if (!isADDInstrEligibleForFolding(*ADDMI)) 2780 return false; 2781 2782 unsigned ScaleRegIdx = 0; 2783 int64_t OffsetAddi = 0; 2784 MachineInstr *ADDIMI = nullptr; 2785 2786 // Check if there is a valid ToBeChangedReg in ADDMI. 2787 // 1: It must be killed. 2788 // 2: Its definition must be a valid ADDIMI. 2789 // 3: It must satify int16 offset requirement. 2790 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) 2791 ScaleRegIdx = 2; 2792 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) 2793 ScaleRegIdx = 1; 2794 else 2795 return false; 2796 2797 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); 2798 unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg(); 2799 unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); 2800 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, 2801 MachineBasicBlock::iterator End) { 2802 for (auto It = ++Start; It != End; It++) 2803 if (It->modifiesRegister(Reg, &getRegisterInfo())) 2804 return true; 2805 return false; 2806 }; 2807 2808 // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is 2809 // treated as special zero when ScaleReg is R0/X0 register. 2810 if (III.ZeroIsSpecialOrig == III.ImmOpNo && 2811 (ScaleReg == PPC::R0 || ScaleReg == PPC::X0)) 2812 return false; 2813 2814 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr 2815 // and Imm Instr. 2816 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) 2817 return false; 2818 2819 // Now start to do the transformation. 2820 LLVM_DEBUG(dbgs() << "Replace instruction: " 2821 << "\n"); 2822 LLVM_DEBUG(ADDIMI->dump()); 2823 LLVM_DEBUG(ADDMI->dump()); 2824 LLVM_DEBUG(MI.dump()); 2825 LLVM_DEBUG(dbgs() << "with: " 2826 << "\n"); 2827 2828 // Update ADDI instr. 2829 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); 2830 2831 // Update Imm instr. 2832 MI.setDesc(get(XFormOpcode)); 2833 MI.getOperand(III.ImmOpNo) 2834 .ChangeToRegister(ScaleReg, false, false, 2835 ADDMI->getOperand(ScaleRegIdx).isKill()); 2836 2837 MI.getOperand(III.OpNoForForwarding) 2838 .ChangeToRegister(ToBeChangedReg, false, false, true); 2839 2840 // Eliminate ADD instr. 2841 ADDMI->eraseFromParent(); 2842 2843 LLVM_DEBUG(ADDIMI->dump()); 2844 LLVM_DEBUG(MI.dump()); 2845 2846 return true; 2847 } 2848 2849 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, 2850 int64_t &Imm) const { 2851 unsigned Opc = ADDIMI.getOpcode(); 2852 2853 // Exit if the instruction is not ADDI. 2854 if (Opc != PPC::ADDI && Opc != PPC::ADDI8) 2855 return false; 2856 2857 // The operand may not necessarily be an immediate - it could be a relocation. 2858 if (!ADDIMI.getOperand(2).isImm()) 2859 return false; 2860 2861 Imm = ADDIMI.getOperand(2).getImm(); 2862 2863 return true; 2864 } 2865 2866 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { 2867 unsigned Opc = ADDMI.getOpcode(); 2868 2869 // Exit if the instruction is not ADD. 2870 return Opc == PPC::ADD4 || Opc == PPC::ADD8; 2871 } 2872 2873 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, 2874 unsigned &ToBeDeletedReg, 2875 unsigned &XFormOpcode, 2876 int64_t &OffsetImm, 2877 ImmInstrInfo &III) const { 2878 // Only handle load/store. 2879 if (!MI.mayLoadOrStore()) 2880 return false; 2881 2882 unsigned Opc = MI.getOpcode(); 2883 2884 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); 2885 2886 // Exit if instruction has no index form. 2887 if (XFormOpcode == PPC::INSTRUCTION_LIST_END) 2888 return false; 2889 2890 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. 2891 if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()), 2892 III, true)) 2893 return false; 2894 2895 if (!III.IsSummingOperands) 2896 return false; 2897 2898 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); 2899 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); 2900 // Only support imm operands, not relocation slots or others. 2901 if (!ImmOperand.isImm()) 2902 return false; 2903 2904 assert(RegOperand.isReg() && "Instruction format is not right"); 2905 2906 // There are other use for ToBeDeletedReg after Imm instr, can not delete it. 2907 if (!RegOperand.isKill()) 2908 return false; 2909 2910 ToBeDeletedReg = RegOperand.getReg(); 2911 OffsetImm = ImmOperand.getImm(); 2912 2913 return true; 2914 } 2915 2916 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, 2917 MachineInstr *&ADDIMI, 2918 int64_t &OffsetAddi, 2919 int64_t OffsetImm) const { 2920 assert((Index == 1 || Index == 2) && "Invalid operand index for add."); 2921 MachineOperand &MO = ADDMI->getOperand(Index); 2922 2923 if (!MO.isKill()) 2924 return false; 2925 2926 bool OtherIntermediateUse = false; 2927 2928 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); 2929 // Currently handle only one "add + Imminstr" pair case, exit if other 2930 // intermediate use for ToBeChangedReg found. 2931 // TODO: handle the cases where there are other "add + Imminstr" pairs 2932 // with same offset in Imminstr which is like: 2933 // 2934 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 2935 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 2936 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) 2937 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 2938 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) 2939 // 2940 // can be converted to: 2941 // 2942 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, 2943 // (OffsetAddi + OffsetImm) 2944 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg 2945 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) 2946 2947 if (OtherIntermediateUse || !ADDIMI) 2948 return false; 2949 // Check if ADDI instr meets requirement. 2950 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) 2951 return false; 2952 2953 if (isInt<16>(OffsetAddi + OffsetImm)) 2954 return true; 2955 return false; 2956 } 2957 2958 // If this instruction has an immediate form and one of its operands is a 2959 // result of a load-immediate or an add-immediate, convert it to 2960 // the immediate form if the constant is in range. 2961 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 2962 MachineInstr **KilledDef) const { 2963 MachineFunction *MF = MI.getParent()->getParent(); 2964 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2965 bool PostRA = !MRI->isSSA(); 2966 bool SeenIntermediateUse = true; 2967 unsigned ForwardingOperand = ~0U; 2968 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 2969 SeenIntermediateUse); 2970 if (!DefMI) 2971 return false; 2972 assert(ForwardingOperand < MI.getNumOperands() && 2973 "The forwarding operand needs to be valid at this point"); 2974 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 2975 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 2976 if (KilledDef && KillFwdDefMI) 2977 *KilledDef = DefMI; 2978 2979 // If this is a imm instruction and its register operands is produced by ADDI, 2980 // put the imm into imm inst directly. 2981 if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) != 2982 PPC::INSTRUCTION_LIST_END && 2983 transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand)) 2984 return true; 2985 2986 ImmInstrInfo III; 2987 bool IsVFReg = MI.getOperand(0).isReg() 2988 ? isVFRegister(MI.getOperand(0).getReg()) 2989 : false; 2990 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 2991 // If this is a reg+reg instruction that has a reg+imm form, 2992 // and one of the operands is produced by an add-immediate, 2993 // try to convert it. 2994 if (HasImmForm && 2995 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 2996 KillFwdDefMI)) 2997 return true; 2998 2999 // If this is a reg+reg instruction that has a reg+imm form, 3000 // and one of the operands is produced by LI, convert it now. 3001 if (HasImmForm && 3002 transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI)) 3003 return true; 3004 3005 // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI 3006 // can be simpified to LI. 3007 if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef)) 3008 return true; 3009 3010 return false; 3011 } 3012 3013 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 3014 ImmInstrInfo &III, bool PostRA) const { 3015 // The vast majority of the instructions would need their operand 2 replaced 3016 // with an immediate when switching to the reg+imm form. A marked exception 3017 // are the update form loads/stores for which a constant operand 2 would need 3018 // to turn into a displacement and move operand 1 to the operand 2 position. 3019 III.ImmOpNo = 2; 3020 III.OpNoForForwarding = 2; 3021 III.ImmWidth = 16; 3022 III.ImmMustBeMultipleOf = 1; 3023 III.TruncateImmTo = 0; 3024 III.IsSummingOperands = false; 3025 switch (Opc) { 3026 default: return false; 3027 case PPC::ADD4: 3028 case PPC::ADD8: 3029 III.SignedImm = true; 3030 III.ZeroIsSpecialOrig = 0; 3031 III.ZeroIsSpecialNew = 1; 3032 III.IsCommutative = true; 3033 III.IsSummingOperands = true; 3034 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 3035 break; 3036 case PPC::ADDC: 3037 case PPC::ADDC8: 3038 III.SignedImm = true; 3039 III.ZeroIsSpecialOrig = 0; 3040 III.ZeroIsSpecialNew = 0; 3041 III.IsCommutative = true; 3042 III.IsSummingOperands = true; 3043 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 3044 break; 3045 case PPC::ADDC_rec: 3046 III.SignedImm = true; 3047 III.ZeroIsSpecialOrig = 0; 3048 III.ZeroIsSpecialNew = 0; 3049 III.IsCommutative = true; 3050 III.IsSummingOperands = true; 3051 III.ImmOpcode = PPC::ADDIC_rec; 3052 break; 3053 case PPC::SUBFC: 3054 case PPC::SUBFC8: 3055 III.SignedImm = true; 3056 III.ZeroIsSpecialOrig = 0; 3057 III.ZeroIsSpecialNew = 0; 3058 III.IsCommutative = false; 3059 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 3060 break; 3061 case PPC::CMPW: 3062 case PPC::CMPD: 3063 III.SignedImm = true; 3064 III.ZeroIsSpecialOrig = 0; 3065 III.ZeroIsSpecialNew = 0; 3066 III.IsCommutative = false; 3067 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 3068 break; 3069 case PPC::CMPLW: 3070 case PPC::CMPLD: 3071 III.SignedImm = false; 3072 III.ZeroIsSpecialOrig = 0; 3073 III.ZeroIsSpecialNew = 0; 3074 III.IsCommutative = false; 3075 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 3076 break; 3077 case PPC::AND_rec: 3078 case PPC::AND8_rec: 3079 case PPC::OR: 3080 case PPC::OR8: 3081 case PPC::XOR: 3082 case PPC::XOR8: 3083 III.SignedImm = false; 3084 III.ZeroIsSpecialOrig = 0; 3085 III.ZeroIsSpecialNew = 0; 3086 III.IsCommutative = true; 3087 switch(Opc) { 3088 default: llvm_unreachable("Unknown opcode"); 3089 case PPC::AND_rec: 3090 III.ImmOpcode = PPC::ANDI_rec; 3091 break; 3092 case PPC::AND8_rec: 3093 III.ImmOpcode = PPC::ANDI8_rec; 3094 break; 3095 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 3096 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 3097 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 3098 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 3099 } 3100 break; 3101 case PPC::RLWNM: 3102 case PPC::RLWNM8: 3103 case PPC::RLWNM_rec: 3104 case PPC::RLWNM8_rec: 3105 case PPC::SLW: 3106 case PPC::SLW8: 3107 case PPC::SLW_rec: 3108 case PPC::SLW8_rec: 3109 case PPC::SRW: 3110 case PPC::SRW8: 3111 case PPC::SRW_rec: 3112 case PPC::SRW8_rec: 3113 case PPC::SRAW: 3114 case PPC::SRAW_rec: 3115 III.SignedImm = false; 3116 III.ZeroIsSpecialOrig = 0; 3117 III.ZeroIsSpecialNew = 0; 3118 III.IsCommutative = false; 3119 // This isn't actually true, but the instructions ignore any of the 3120 // upper bits, so any immediate loaded with an LI is acceptable. 3121 // This does not apply to shift right algebraic because a value 3122 // out of range will produce a -1/0. 3123 III.ImmWidth = 16; 3124 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || 3125 Opc == PPC::RLWNM8_rec) 3126 III.TruncateImmTo = 5; 3127 else 3128 III.TruncateImmTo = 6; 3129 switch(Opc) { 3130 default: llvm_unreachable("Unknown opcode"); 3131 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 3132 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 3133 case PPC::RLWNM_rec: 3134 III.ImmOpcode = PPC::RLWINM_rec; 3135 break; 3136 case PPC::RLWNM8_rec: 3137 III.ImmOpcode = PPC::RLWINM8_rec; 3138 break; 3139 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 3140 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 3141 case PPC::SLW_rec: 3142 III.ImmOpcode = PPC::RLWINM_rec; 3143 break; 3144 case PPC::SLW8_rec: 3145 III.ImmOpcode = PPC::RLWINM8_rec; 3146 break; 3147 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 3148 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 3149 case PPC::SRW_rec: 3150 III.ImmOpcode = PPC::RLWINM_rec; 3151 break; 3152 case PPC::SRW8_rec: 3153 III.ImmOpcode = PPC::RLWINM8_rec; 3154 break; 3155 case PPC::SRAW: 3156 III.ImmWidth = 5; 3157 III.TruncateImmTo = 0; 3158 III.ImmOpcode = PPC::SRAWI; 3159 break; 3160 case PPC::SRAW_rec: 3161 III.ImmWidth = 5; 3162 III.TruncateImmTo = 0; 3163 III.ImmOpcode = PPC::SRAWI_rec; 3164 break; 3165 } 3166 break; 3167 case PPC::RLDCL: 3168 case PPC::RLDCL_rec: 3169 case PPC::RLDCR: 3170 case PPC::RLDCR_rec: 3171 case PPC::SLD: 3172 case PPC::SLD_rec: 3173 case PPC::SRD: 3174 case PPC::SRD_rec: 3175 case PPC::SRAD: 3176 case PPC::SRAD_rec: 3177 III.SignedImm = false; 3178 III.ZeroIsSpecialOrig = 0; 3179 III.ZeroIsSpecialNew = 0; 3180 III.IsCommutative = false; 3181 // This isn't actually true, but the instructions ignore any of the 3182 // upper bits, so any immediate loaded with an LI is acceptable. 3183 // This does not apply to shift right algebraic because a value 3184 // out of range will produce a -1/0. 3185 III.ImmWidth = 16; 3186 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || 3187 Opc == PPC::RLDCR_rec) 3188 III.TruncateImmTo = 6; 3189 else 3190 III.TruncateImmTo = 7; 3191 switch(Opc) { 3192 default: llvm_unreachable("Unknown opcode"); 3193 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 3194 case PPC::RLDCL_rec: 3195 III.ImmOpcode = PPC::RLDICL_rec; 3196 break; 3197 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 3198 case PPC::RLDCR_rec: 3199 III.ImmOpcode = PPC::RLDICR_rec; 3200 break; 3201 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 3202 case PPC::SLD_rec: 3203 III.ImmOpcode = PPC::RLDICR_rec; 3204 break; 3205 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 3206 case PPC::SRD_rec: 3207 III.ImmOpcode = PPC::RLDICL_rec; 3208 break; 3209 case PPC::SRAD: 3210 III.ImmWidth = 6; 3211 III.TruncateImmTo = 0; 3212 III.ImmOpcode = PPC::SRADI; 3213 break; 3214 case PPC::SRAD_rec: 3215 III.ImmWidth = 6; 3216 III.TruncateImmTo = 0; 3217 III.ImmOpcode = PPC::SRADI_rec; 3218 break; 3219 } 3220 break; 3221 // Loads and stores: 3222 case PPC::LBZX: 3223 case PPC::LBZX8: 3224 case PPC::LHZX: 3225 case PPC::LHZX8: 3226 case PPC::LHAX: 3227 case PPC::LHAX8: 3228 case PPC::LWZX: 3229 case PPC::LWZX8: 3230 case PPC::LWAX: 3231 case PPC::LDX: 3232 case PPC::LFSX: 3233 case PPC::LFDX: 3234 case PPC::STBX: 3235 case PPC::STBX8: 3236 case PPC::STHX: 3237 case PPC::STHX8: 3238 case PPC::STWX: 3239 case PPC::STWX8: 3240 case PPC::STDX: 3241 case PPC::STFSX: 3242 case PPC::STFDX: 3243 III.SignedImm = true; 3244 III.ZeroIsSpecialOrig = 1; 3245 III.ZeroIsSpecialNew = 2; 3246 III.IsCommutative = true; 3247 III.IsSummingOperands = true; 3248 III.ImmOpNo = 1; 3249 III.OpNoForForwarding = 2; 3250 switch(Opc) { 3251 default: llvm_unreachable("Unknown opcode"); 3252 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 3253 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 3254 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 3255 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 3256 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 3257 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 3258 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 3259 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 3260 case PPC::LWAX: 3261 III.ImmOpcode = PPC::LWA; 3262 III.ImmMustBeMultipleOf = 4; 3263 break; 3264 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 3265 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 3266 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 3267 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 3268 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 3269 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 3270 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 3271 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 3272 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 3273 case PPC::STDX: 3274 III.ImmOpcode = PPC::STD; 3275 III.ImmMustBeMultipleOf = 4; 3276 break; 3277 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 3278 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 3279 } 3280 break; 3281 case PPC::LBZUX: 3282 case PPC::LBZUX8: 3283 case PPC::LHZUX: 3284 case PPC::LHZUX8: 3285 case PPC::LHAUX: 3286 case PPC::LHAUX8: 3287 case PPC::LWZUX: 3288 case PPC::LWZUX8: 3289 case PPC::LDUX: 3290 case PPC::LFSUX: 3291 case PPC::LFDUX: 3292 case PPC::STBUX: 3293 case PPC::STBUX8: 3294 case PPC::STHUX: 3295 case PPC::STHUX8: 3296 case PPC::STWUX: 3297 case PPC::STWUX8: 3298 case PPC::STDUX: 3299 case PPC::STFSUX: 3300 case PPC::STFDUX: 3301 III.SignedImm = true; 3302 III.ZeroIsSpecialOrig = 2; 3303 III.ZeroIsSpecialNew = 3; 3304 III.IsCommutative = false; 3305 III.IsSummingOperands = true; 3306 III.ImmOpNo = 2; 3307 III.OpNoForForwarding = 3; 3308 switch(Opc) { 3309 default: llvm_unreachable("Unknown opcode"); 3310 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 3311 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 3312 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 3313 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 3314 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 3315 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 3316 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 3317 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 3318 case PPC::LDUX: 3319 III.ImmOpcode = PPC::LDU; 3320 III.ImmMustBeMultipleOf = 4; 3321 break; 3322 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 3323 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 3324 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 3325 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 3326 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 3327 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 3328 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 3329 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 3330 case PPC::STDUX: 3331 III.ImmOpcode = PPC::STDU; 3332 III.ImmMustBeMultipleOf = 4; 3333 break; 3334 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 3335 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 3336 } 3337 break; 3338 // Power9 and up only. For some of these, the X-Form version has access to all 3339 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 3340 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 3341 // into or stored from is one of the VR registers. 3342 case PPC::LXVX: 3343 case PPC::LXSSPX: 3344 case PPC::LXSDX: 3345 case PPC::STXVX: 3346 case PPC::STXSSPX: 3347 case PPC::STXSDX: 3348 case PPC::XFLOADf32: 3349 case PPC::XFLOADf64: 3350 case PPC::XFSTOREf32: 3351 case PPC::XFSTOREf64: 3352 if (!Subtarget.hasP9Vector()) 3353 return false; 3354 III.SignedImm = true; 3355 III.ZeroIsSpecialOrig = 1; 3356 III.ZeroIsSpecialNew = 2; 3357 III.IsCommutative = true; 3358 III.IsSummingOperands = true; 3359 III.ImmOpNo = 1; 3360 III.OpNoForForwarding = 2; 3361 III.ImmMustBeMultipleOf = 4; 3362 switch(Opc) { 3363 default: llvm_unreachable("Unknown opcode"); 3364 case PPC::LXVX: 3365 III.ImmOpcode = PPC::LXV; 3366 III.ImmMustBeMultipleOf = 16; 3367 break; 3368 case PPC::LXSSPX: 3369 if (PostRA) { 3370 if (IsVFReg) 3371 III.ImmOpcode = PPC::LXSSP; 3372 else { 3373 III.ImmOpcode = PPC::LFS; 3374 III.ImmMustBeMultipleOf = 1; 3375 } 3376 break; 3377 } 3378 LLVM_FALLTHROUGH; 3379 case PPC::XFLOADf32: 3380 III.ImmOpcode = PPC::DFLOADf32; 3381 break; 3382 case PPC::LXSDX: 3383 if (PostRA) { 3384 if (IsVFReg) 3385 III.ImmOpcode = PPC::LXSD; 3386 else { 3387 III.ImmOpcode = PPC::LFD; 3388 III.ImmMustBeMultipleOf = 1; 3389 } 3390 break; 3391 } 3392 LLVM_FALLTHROUGH; 3393 case PPC::XFLOADf64: 3394 III.ImmOpcode = PPC::DFLOADf64; 3395 break; 3396 case PPC::STXVX: 3397 III.ImmOpcode = PPC::STXV; 3398 III.ImmMustBeMultipleOf = 16; 3399 break; 3400 case PPC::STXSSPX: 3401 if (PostRA) { 3402 if (IsVFReg) 3403 III.ImmOpcode = PPC::STXSSP; 3404 else { 3405 III.ImmOpcode = PPC::STFS; 3406 III.ImmMustBeMultipleOf = 1; 3407 } 3408 break; 3409 } 3410 LLVM_FALLTHROUGH; 3411 case PPC::XFSTOREf32: 3412 III.ImmOpcode = PPC::DFSTOREf32; 3413 break; 3414 case PPC::STXSDX: 3415 if (PostRA) { 3416 if (IsVFReg) 3417 III.ImmOpcode = PPC::STXSD; 3418 else { 3419 III.ImmOpcode = PPC::STFD; 3420 III.ImmMustBeMultipleOf = 1; 3421 } 3422 break; 3423 } 3424 LLVM_FALLTHROUGH; 3425 case PPC::XFSTOREf64: 3426 III.ImmOpcode = PPC::DFSTOREf64; 3427 break; 3428 } 3429 break; 3430 } 3431 return true; 3432 } 3433 3434 // Utility function for swaping two arbitrary operands of an instruction. 3435 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 3436 assert(Op1 != Op2 && "Cannot swap operand with itself."); 3437 3438 unsigned MaxOp = std::max(Op1, Op2); 3439 unsigned MinOp = std::min(Op1, Op2); 3440 MachineOperand MOp1 = MI.getOperand(MinOp); 3441 MachineOperand MOp2 = MI.getOperand(MaxOp); 3442 MI.RemoveOperand(std::max(Op1, Op2)); 3443 MI.RemoveOperand(std::min(Op1, Op2)); 3444 3445 // If the operands we are swapping are the two at the end (the common case) 3446 // we can just remove both and add them in the opposite order. 3447 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 3448 MI.addOperand(MOp2); 3449 MI.addOperand(MOp1); 3450 } else { 3451 // Store all operands in a temporary vector, remove them and re-add in the 3452 // right order. 3453 SmallVector<MachineOperand, 2> MOps; 3454 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 3455 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 3456 MOps.push_back(MI.getOperand(i)); 3457 MI.RemoveOperand(i); 3458 } 3459 // MOp2 needs to be added next. 3460 MI.addOperand(MOp2); 3461 // Now add the rest. 3462 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 3463 if (i == MaxOp) 3464 MI.addOperand(MOp1); 3465 else { 3466 MI.addOperand(MOps.back()); 3467 MOps.pop_back(); 3468 } 3469 } 3470 } 3471 } 3472 3473 // Check if the 'MI' that has the index OpNoForForwarding 3474 // meets the requirement described in the ImmInstrInfo. 3475 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 3476 const ImmInstrInfo &III, 3477 unsigned OpNoForForwarding 3478 ) const { 3479 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 3480 // would not work pre-RA, we can only do the check post RA. 3481 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3482 if (MRI.isSSA()) 3483 return false; 3484 3485 // Cannot do the transform if MI isn't summing the operands. 3486 if (!III.IsSummingOperands) 3487 return false; 3488 3489 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 3490 if (!III.ZeroIsSpecialOrig) 3491 return false; 3492 3493 // We cannot do the transform if the operand we are trying to replace 3494 // isn't the same as the operand the instruction allows. 3495 if (OpNoForForwarding != III.OpNoForForwarding) 3496 return false; 3497 3498 // Check if the instruction we are trying to transform really has 3499 // the special zero register as its operand. 3500 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 3501 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 3502 return false; 3503 3504 // This machine instruction is convertible if it is, 3505 // 1. summing the operands. 3506 // 2. one of the operands is special zero register. 3507 // 3. the operand we are trying to replace is allowed by the MI. 3508 return true; 3509 } 3510 3511 // Check if the DefMI is the add inst and set the ImmMO and RegMO 3512 // accordingly. 3513 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 3514 const ImmInstrInfo &III, 3515 MachineOperand *&ImmMO, 3516 MachineOperand *&RegMO) const { 3517 unsigned Opc = DefMI.getOpcode(); 3518 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 3519 return false; 3520 3521 assert(DefMI.getNumOperands() >= 3 && 3522 "Add inst must have at least three operands"); 3523 RegMO = &DefMI.getOperand(1); 3524 ImmMO = &DefMI.getOperand(2); 3525 3526 // Before RA, ADDI first operand could be a frame index. 3527 if (!RegMO->isReg()) 3528 return false; 3529 3530 // This DefMI is elgible for forwarding if it is: 3531 // 1. add inst 3532 // 2. one of the operands is Imm/CPI/Global. 3533 return isAnImmediateOperand(*ImmMO); 3534 } 3535 3536 bool PPCInstrInfo::isRegElgibleForForwarding( 3537 const MachineOperand &RegMO, const MachineInstr &DefMI, 3538 const MachineInstr &MI, bool KillDefMI, 3539 bool &IsFwdFeederRegKilled) const { 3540 // x = addi y, imm 3541 // ... 3542 // z = lfdx 0, x -> z = lfd imm(y) 3543 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 3544 // of "y" between the DEF of "x" and "z". 3545 // The query is only valid post RA. 3546 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3547 if (MRI.isSSA()) 3548 return false; 3549 3550 Register Reg = RegMO.getReg(); 3551 3552 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 3553 MachineBasicBlock::const_reverse_iterator It = MI; 3554 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 3555 It++; 3556 for (; It != E; ++It) { 3557 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3558 return false; 3559 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3560 IsFwdFeederRegKilled = true; 3561 // Made it to DefMI without encountering a clobber. 3562 if ((&*It) == &DefMI) 3563 break; 3564 } 3565 assert((&*It) == &DefMI && "DefMI is missing"); 3566 3567 // If DefMI also defines the register to be forwarded, we can only forward it 3568 // if DefMI is being erased. 3569 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 3570 return KillDefMI; 3571 3572 return true; 3573 } 3574 3575 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 3576 const MachineInstr &DefMI, 3577 const ImmInstrInfo &III, 3578 int64_t &Imm, 3579 int64_t BaseImm) const { 3580 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 3581 if (DefMI.getOpcode() == PPC::ADDItocL) { 3582 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 3583 // However, we know that, it is 16-bit width, and has the alignment of 4. 3584 // Check if the instruction met the requirement. 3585 if (III.ImmMustBeMultipleOf > 4 || 3586 III.TruncateImmTo || III.ImmWidth != 16) 3587 return false; 3588 3589 // Going from XForm to DForm loads means that the displacement needs to be 3590 // not just an immediate but also a multiple of 4, or 16 depending on the 3591 // load. A DForm load cannot be represented if it is a multiple of say 2. 3592 // XForm loads do not have this restriction. 3593 if (ImmMO.isGlobal()) { 3594 const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout(); 3595 if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf) 3596 return false; 3597 } 3598 3599 return true; 3600 } 3601 3602 if (ImmMO.isImm()) { 3603 // It is Imm, we need to check if the Imm fit the range. 3604 // Sign-extend to 64-bits. 3605 // DefMI may be folded with another imm form instruction, the result Imm is 3606 // the sum of Imm of DefMI and BaseImm which is from imm form instruction. 3607 Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm); 3608 3609 if (Imm % III.ImmMustBeMultipleOf) 3610 return false; 3611 if (III.TruncateImmTo) 3612 Imm &= ((1 << III.TruncateImmTo) - 1); 3613 if (III.SignedImm) { 3614 APInt ActualValue(64, Imm, true); 3615 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3616 return false; 3617 } else { 3618 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3619 if ((uint64_t)Imm > UnsignedMax) 3620 return false; 3621 } 3622 } 3623 else 3624 return false; 3625 3626 // This ImmMO is forwarded if it meets the requriement describle 3627 // in ImmInstrInfo 3628 return true; 3629 } 3630 3631 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI, 3632 unsigned OpNoForForwarding, 3633 MachineInstr **KilledDef) const { 3634 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 3635 !DefMI.getOperand(1).isImm()) 3636 return false; 3637 3638 MachineFunction *MF = MI.getParent()->getParent(); 3639 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3640 bool PostRA = !MRI->isSSA(); 3641 3642 int64_t Immediate = DefMI.getOperand(1).getImm(); 3643 // Sign-extend to 64-bits. 3644 int64_t SExtImm = SignExtend64<16>(Immediate); 3645 3646 bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill(); 3647 Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 3648 3649 bool ReplaceWithLI = false; 3650 bool Is64BitLI = false; 3651 int64_t NewImm = 0; 3652 bool SetCR = false; 3653 unsigned Opc = MI.getOpcode(); 3654 switch (Opc) { 3655 default: 3656 return false; 3657 3658 // FIXME: Any branches conditional on such a comparison can be made 3659 // unconditional. At this time, this happens too infrequently to be worth 3660 // the implementation effort, but if that ever changes, we could convert 3661 // such a pattern here. 3662 case PPC::CMPWI: 3663 case PPC::CMPLWI: 3664 case PPC::CMPDI: 3665 case PPC::CMPLDI: { 3666 // Doing this post-RA would require dataflow analysis to reliably find uses 3667 // of the CR register set by the compare. 3668 // No need to fixup killed/dead flag since this transformation is only valid 3669 // before RA. 3670 if (PostRA) 3671 return false; 3672 // If a compare-immediate is fed by an immediate and is itself an input of 3673 // an ISEL (the most common case) into a COPY of the correct register. 3674 bool Changed = false; 3675 Register DefReg = MI.getOperand(0).getReg(); 3676 int64_t Comparand = MI.getOperand(2).getImm(); 3677 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 3678 ? (Comparand | 0xFFFFFFFFFFFF0000) 3679 : Comparand; 3680 3681 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 3682 unsigned UseOpc = CompareUseMI.getOpcode(); 3683 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 3684 continue; 3685 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 3686 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 3687 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 3688 unsigned RegToCopy = 3689 selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg); 3690 if (RegToCopy == PPC::NoRegister) 3691 continue; 3692 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 3693 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 3694 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 3695 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 3696 CompareUseMI.RemoveOperand(3); 3697 CompareUseMI.RemoveOperand(2); 3698 continue; 3699 } 3700 LLVM_DEBUG( 3701 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 3702 LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump()); 3703 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 3704 // Convert to copy and remove unneeded operands. 3705 CompareUseMI.setDesc(get(PPC::COPY)); 3706 CompareUseMI.RemoveOperand(3); 3707 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 3708 CmpIselsConverted++; 3709 Changed = true; 3710 LLVM_DEBUG(CompareUseMI.dump()); 3711 } 3712 if (Changed) 3713 return true; 3714 // This may end up incremented multiple times since this function is called 3715 // during a fixed-point transformation, but it is only meant to indicate the 3716 // presence of this opportunity. 3717 MissedConvertibleImmediateInstrs++; 3718 return false; 3719 } 3720 3721 // Immediate forms - may simply be convertable to an LI. 3722 case PPC::ADDI: 3723 case PPC::ADDI8: { 3724 // Does the sum fit in a 16-bit signed field? 3725 int64_t Addend = MI.getOperand(2).getImm(); 3726 if (isInt<16>(Addend + SExtImm)) { 3727 ReplaceWithLI = true; 3728 Is64BitLI = Opc == PPC::ADDI8; 3729 NewImm = Addend + SExtImm; 3730 break; 3731 } 3732 return false; 3733 } 3734 case PPC::RLDICL: 3735 case PPC::RLDICL_rec: 3736 case PPC::RLDICL_32: 3737 case PPC::RLDICL_32_64: { 3738 // Use APInt's rotate function. 3739 int64_t SH = MI.getOperand(2).getImm(); 3740 int64_t MB = MI.getOperand(3).getImm(); 3741 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, 3742 SExtImm, true); 3743 InVal = InVal.rotl(SH); 3744 uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1; 3745 InVal &= Mask; 3746 // Can't replace negative values with an LI as that will sign-extend 3747 // and not clear the left bits. If we're setting the CR bit, we will use 3748 // ANDI_rec which won't sign extend, so that's safe. 3749 if (isUInt<15>(InVal.getSExtValue()) || 3750 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { 3751 ReplaceWithLI = true; 3752 Is64BitLI = Opc != PPC::RLDICL_32; 3753 NewImm = InVal.getSExtValue(); 3754 SetCR = Opc == PPC::RLDICL_rec; 3755 break; 3756 } 3757 return false; 3758 } 3759 case PPC::RLWINM: 3760 case PPC::RLWINM8: 3761 case PPC::RLWINM_rec: 3762 case PPC::RLWINM8_rec: { 3763 int64_t SH = MI.getOperand(2).getImm(); 3764 int64_t MB = MI.getOperand(3).getImm(); 3765 int64_t ME = MI.getOperand(4).getImm(); 3766 APInt InVal(32, SExtImm, true); 3767 InVal = InVal.rotl(SH); 3768 APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB); 3769 InVal &= Mask; 3770 // Can't replace negative values with an LI as that will sign-extend 3771 // and not clear the left bits. If we're setting the CR bit, we will use 3772 // ANDI_rec which won't sign extend, so that's safe. 3773 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 3774 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && 3775 isUInt<16>(InVal.getSExtValue())); 3776 if (ValueFits) { 3777 ReplaceWithLI = true; 3778 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; 3779 NewImm = InVal.getSExtValue(); 3780 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; 3781 break; 3782 } 3783 return false; 3784 } 3785 case PPC::ORI: 3786 case PPC::ORI8: 3787 case PPC::XORI: 3788 case PPC::XORI8: { 3789 int64_t LogicalImm = MI.getOperand(2).getImm(); 3790 int64_t Result = 0; 3791 if (Opc == PPC::ORI || Opc == PPC::ORI8) 3792 Result = LogicalImm | SExtImm; 3793 else 3794 Result = LogicalImm ^ SExtImm; 3795 if (isInt<16>(Result)) { 3796 ReplaceWithLI = true; 3797 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 3798 NewImm = Result; 3799 break; 3800 } 3801 return false; 3802 } 3803 } 3804 3805 if (ReplaceWithLI) { 3806 // We need to be careful with CR-setting instructions we're replacing. 3807 if (SetCR) { 3808 // We don't know anything about uses when we're out of SSA, so only 3809 // replace if the new immediate will be reproduced. 3810 bool ImmChanged = (SExtImm & NewImm) != NewImm; 3811 if (PostRA && ImmChanged) 3812 return false; 3813 3814 if (!PostRA) { 3815 // If the defining load-immediate has no other uses, we can just replace 3816 // the immediate with the new immediate. 3817 if (MRI->hasOneUse(DefMI.getOperand(0).getReg())) 3818 DefMI.getOperand(1).setImm(NewImm); 3819 3820 // If we're not using the GPR result of the CR-setting instruction, we 3821 // just need to and with zero/non-zero depending on the new immediate. 3822 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 3823 if (NewImm) { 3824 assert(Immediate && "Transformation converted zero to non-zero?"); 3825 NewImm = Immediate; 3826 } 3827 } else if (ImmChanged) 3828 return false; 3829 } 3830 } 3831 3832 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 3833 LLVM_DEBUG(MI.dump()); 3834 LLVM_DEBUG(dbgs() << "Fed by:\n"); 3835 LLVM_DEBUG(DefMI.dump()); 3836 LoadImmediateInfo LII; 3837 LII.Imm = NewImm; 3838 LII.Is64Bit = Is64BitLI; 3839 LII.SetCR = SetCR; 3840 // If we're setting the CR, the original load-immediate must be kept (as an 3841 // operand to ANDI_rec/ANDI8_rec). 3842 if (KilledDef && SetCR) 3843 *KilledDef = nullptr; 3844 replaceInstrWithLI(MI, LII); 3845 3846 // Fixup killed/dead flag after transformation. 3847 // Pattern: 3848 // ForwardingOperandReg = LI imm1 3849 // y = op2 imm2, ForwardingOperandReg(killed) 3850 if (IsForwardingOperandKilled) 3851 fixupIsDeadOrKill(DefMI, MI, ForwardingOperandReg); 3852 3853 LLVM_DEBUG(dbgs() << "With:\n"); 3854 LLVM_DEBUG(MI.dump()); 3855 return true; 3856 } 3857 return false; 3858 } 3859 3860 bool PPCInstrInfo::transformToNewImmFormFedByAdd( 3861 MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const { 3862 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 3863 bool PostRA = !MRI->isSSA(); 3864 // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI 3865 // for post-ra. 3866 if (PostRA) 3867 return false; 3868 3869 // Only handle load/store. 3870 if (!MI.mayLoadOrStore()) 3871 return false; 3872 3873 unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode()); 3874 3875 assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) && 3876 "MI must have x-form opcode"); 3877 3878 // get Imm Form info. 3879 ImmInstrInfo III; 3880 bool IsVFReg = MI.getOperand(0).isReg() 3881 ? isVFRegister(MI.getOperand(0).getReg()) 3882 : false; 3883 3884 if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA)) 3885 return false; 3886 3887 if (!III.IsSummingOperands) 3888 return false; 3889 3890 if (OpNoForForwarding != III.OpNoForForwarding) 3891 return false; 3892 3893 MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo); 3894 if (!ImmOperandMI.isImm()) 3895 return false; 3896 3897 // Check DefMI. 3898 MachineOperand *ImmMO = nullptr; 3899 MachineOperand *RegMO = nullptr; 3900 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 3901 return false; 3902 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 3903 3904 // Check Imm. 3905 // Set ImmBase from imm instruction as base and get new Imm inside 3906 // isImmElgibleForForwarding. 3907 int64_t ImmBase = ImmOperandMI.getImm(); 3908 int64_t Imm = 0; 3909 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase)) 3910 return false; 3911 3912 // Get killed info in case fixup needed after transformation. 3913 unsigned ForwardKilledOperandReg = ~0U; 3914 if (MI.getOperand(III.OpNoForForwarding).isKill()) 3915 ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg(); 3916 3917 // Do the transform 3918 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 3919 LLVM_DEBUG(MI.dump()); 3920 LLVM_DEBUG(dbgs() << "Fed by:\n"); 3921 LLVM_DEBUG(DefMI.dump()); 3922 3923 MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg()); 3924 MI.getOperand(III.OpNoForForwarding).setIsKill(RegMO->isKill()); 3925 MI.getOperand(III.ImmOpNo).setImm(Imm); 3926 3927 // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block. 3928 if (DefMI.getParent() == MI.getParent()) { 3929 // Check if reg is killed between MI and DefMI. 3930 auto IsKilledFor = [&](unsigned Reg) { 3931 MachineBasicBlock::const_reverse_iterator It = MI; 3932 MachineBasicBlock::const_reverse_iterator E = DefMI; 3933 It++; 3934 for (; It != E; ++It) { 3935 if (It->killsRegister(Reg)) 3936 return true; 3937 } 3938 return false; 3939 }; 3940 3941 // Update kill flag 3942 if (RegMO->isKill() || IsKilledFor(RegMO->getReg())) 3943 fixupIsDeadOrKill(DefMI, MI, RegMO->getReg()); 3944 if (ForwardKilledOperandReg != ~0U) 3945 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3946 } 3947 3948 LLVM_DEBUG(dbgs() << "With:\n"); 3949 LLVM_DEBUG(MI.dump()); 3950 return true; 3951 } 3952 3953 // If an X-Form instruction is fed by an add-immediate and one of its operands 3954 // is the literal zero, attempt to forward the source of the add-immediate to 3955 // the corresponding D-Form instruction with the displacement coming from 3956 // the immediate being added. 3957 bool PPCInstrInfo::transformToImmFormFedByAdd( 3958 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 3959 MachineInstr &DefMI, bool KillDefMI) const { 3960 // RegMO ImmMO 3961 // | | 3962 // x = addi reg, imm <----- DefMI 3963 // y = op 0 , x <----- MI 3964 // | 3965 // OpNoForForwarding 3966 // Check if the MI meet the requirement described in the III. 3967 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 3968 return false; 3969 3970 // Check if the DefMI meet the requirement 3971 // described in the III. If yes, set the ImmMO and RegMO accordingly. 3972 MachineOperand *ImmMO = nullptr; 3973 MachineOperand *RegMO = nullptr; 3974 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 3975 return false; 3976 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 3977 3978 // As we get the Imm operand now, we need to check if the ImmMO meet 3979 // the requirement described in the III. If yes set the Imm. 3980 int64_t Imm = 0; 3981 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 3982 return false; 3983 3984 bool IsFwdFeederRegKilled = false; 3985 // Check if the RegMO can be forwarded to MI. 3986 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 3987 IsFwdFeederRegKilled)) 3988 return false; 3989 3990 // Get killed info in case fixup needed after transformation. 3991 unsigned ForwardKilledOperandReg = ~0U; 3992 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3993 bool PostRA = !MRI.isSSA(); 3994 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 3995 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 3996 3997 // We know that, the MI and DefMI both meet the pattern, and 3998 // the Imm also meet the requirement with the new Imm-form. 3999 // It is safe to do the transformation now. 4000 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4001 LLVM_DEBUG(MI.dump()); 4002 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4003 LLVM_DEBUG(DefMI.dump()); 4004 4005 // Update the base reg first. 4006 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 4007 false, false, 4008 RegMO->isKill()); 4009 4010 // Then, update the imm. 4011 if (ImmMO->isImm()) { 4012 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 4013 // directly. 4014 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 4015 } 4016 else { 4017 // Otherwise, it is Constant Pool Index(CPI) or Global, 4018 // which is relocation in fact. We need to replace the special zero 4019 // register with ImmMO. 4020 // Before that, we need to fixup the target flags for imm. 4021 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 4022 if (DefMI.getOpcode() == PPC::ADDItocL) 4023 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 4024 4025 // MI didn't have the interface such as MI.setOperand(i) though 4026 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 4027 // ImmMO, we need to remove ZERO operand and all the operands behind it, 4028 // and, add the ImmMO, then, move back all the operands behind ZERO. 4029 SmallVector<MachineOperand, 2> MOps; 4030 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 4031 MOps.push_back(MI.getOperand(i)); 4032 MI.RemoveOperand(i); 4033 } 4034 4035 // Remove the last MO in the list, which is ZERO operand in fact. 4036 MOps.pop_back(); 4037 // Add the imm operand. 4038 MI.addOperand(*ImmMO); 4039 // Now add the rest back. 4040 for (auto &MO : MOps) 4041 MI.addOperand(MO); 4042 } 4043 4044 // Update the opcode. 4045 MI.setDesc(get(III.ImmOpcode)); 4046 4047 // Fix up killed/dead flag after transformation. 4048 // Pattern 1: 4049 // x = ADD KilledFwdFeederReg, imm 4050 // n = opn KilledFwdFeederReg(killed), regn 4051 // y = XOP 0, x 4052 // Pattern 2: 4053 // x = ADD reg(killed), imm 4054 // y = XOP 0, x 4055 if (IsFwdFeederRegKilled || RegMO->isKill()) 4056 fixupIsDeadOrKill(DefMI, MI, RegMO->getReg()); 4057 // Pattern 3: 4058 // ForwardKilledOperandReg = ADD reg, imm 4059 // y = XOP 0, ForwardKilledOperandReg(killed) 4060 if (ForwardKilledOperandReg != ~0U) 4061 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 4062 4063 LLVM_DEBUG(dbgs() << "With:\n"); 4064 LLVM_DEBUG(MI.dump()); 4065 4066 return true; 4067 } 4068 4069 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 4070 const ImmInstrInfo &III, 4071 unsigned ConstantOpNo, 4072 MachineInstr &DefMI) const { 4073 // DefMI must be LI or LI8. 4074 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4075 !DefMI.getOperand(1).isImm()) 4076 return false; 4077 4078 // Get Imm operand and Sign-extend to 64-bits. 4079 int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm()); 4080 4081 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4082 bool PostRA = !MRI.isSSA(); 4083 // Exit early if we can't convert this. 4084 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 4085 return false; 4086 if (Imm % III.ImmMustBeMultipleOf) 4087 return false; 4088 if (III.TruncateImmTo) 4089 Imm &= ((1 << III.TruncateImmTo) - 1); 4090 if (III.SignedImm) { 4091 APInt ActualValue(64, Imm, true); 4092 if (!ActualValue.isSignedIntN(III.ImmWidth)) 4093 return false; 4094 } else { 4095 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 4096 if ((uint64_t)Imm > UnsignedMax) 4097 return false; 4098 } 4099 4100 // If we're post-RA, the instructions don't agree on whether register zero is 4101 // special, we can transform this as long as the register operand that will 4102 // end up in the location where zero is special isn't R0. 4103 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 4104 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 4105 III.ZeroIsSpecialNew + 1; 4106 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 4107 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 4108 // If R0 is in the operand where zero is special for the new instruction, 4109 // it is unsafe to transform if the constant operand isn't that operand. 4110 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 4111 ConstantOpNo != III.ZeroIsSpecialNew) 4112 return false; 4113 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 4114 ConstantOpNo != PosForOrigZero) 4115 return false; 4116 } 4117 4118 // Get killed info in case fixup needed after transformation. 4119 unsigned ForwardKilledOperandReg = ~0U; 4120 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 4121 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 4122 4123 unsigned Opc = MI.getOpcode(); 4124 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || 4125 Opc == PPC::SRW || Opc == PPC::SRW_rec || 4126 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || 4127 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; 4128 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || 4129 Opc == PPC::SRD || Opc == PPC::SRD_rec; 4130 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || 4131 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; 4132 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || 4133 Opc == PPC::SRD_rec; 4134 4135 MI.setDesc(get(III.ImmOpcode)); 4136 if (ConstantOpNo == III.OpNoForForwarding) { 4137 // Converting shifts to immediate form is a bit tricky since they may do 4138 // one of three things: 4139 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 4140 // 2. If the shift amount is zero, the result is unchanged (save for maybe 4141 // setting CR0) 4142 // 3. If the shift amount is in [1, OpSize), it's just a shift 4143 if (SpecialShift32 || SpecialShift64) { 4144 LoadImmediateInfo LII; 4145 LII.Imm = 0; 4146 LII.SetCR = SetCR; 4147 LII.Is64Bit = SpecialShift64; 4148 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 4149 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 4150 replaceInstrWithLI(MI, LII); 4151 // Shifts by zero don't change the value. If we don't need to set CR0, 4152 // just convert this to a COPY. Can't do this post-RA since we've already 4153 // cleaned up the copies. 4154 else if (!SetCR && ShAmt == 0 && !PostRA) { 4155 MI.RemoveOperand(2); 4156 MI.setDesc(get(PPC::COPY)); 4157 } else { 4158 // The 32 bit and 64 bit instructions are quite different. 4159 if (SpecialShift32) { 4160 // Left shifts use (N, 0, 31-N). 4161 // Right shifts use (32-N, N, 31) if 0 < N < 32. 4162 // use (0, 0, 31) if N == 0. 4163 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; 4164 uint64_t MB = RightShift ? ShAmt : 0; 4165 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 4166 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 4167 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 4168 .addImm(ME); 4169 } else { 4170 // Left shifts use (N, 63-N). 4171 // Right shifts use (64-N, N) if 0 < N < 64. 4172 // use (0, 0) if N == 0. 4173 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; 4174 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 4175 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 4176 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 4177 } 4178 } 4179 } else 4180 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 4181 } 4182 // Convert commutative instructions (switch the operands and convert the 4183 // desired one to an immediate. 4184 else if (III.IsCommutative) { 4185 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 4186 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 4187 } else 4188 llvm_unreachable("Should have exited early!"); 4189 4190 // For instructions for which the constant register replaces a different 4191 // operand than where the immediate goes, we need to swap them. 4192 if (III.OpNoForForwarding != III.ImmOpNo) 4193 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 4194 4195 // If the special R0/X0 register index are different for original instruction 4196 // and new instruction, we need to fix up the register class in new 4197 // instruction. 4198 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 4199 if (III.ZeroIsSpecialNew) { 4200 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 4201 // need to fix up register class. 4202 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 4203 if (Register::isVirtualRegister(RegToModify)) { 4204 const TargetRegisterClass *NewRC = 4205 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 4206 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 4207 MRI.setRegClass(RegToModify, NewRC); 4208 } 4209 } 4210 } 4211 4212 // Fix up killed/dead flag after transformation. 4213 // Pattern: 4214 // ForwardKilledOperandReg = LI imm 4215 // y = XOP reg, ForwardKilledOperandReg(killed) 4216 if (ForwardKilledOperandReg != ~0U) 4217 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 4218 return true; 4219 } 4220 4221 const TargetRegisterClass * 4222 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 4223 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 4224 return &PPC::VSRCRegClass; 4225 return RC; 4226 } 4227 4228 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 4229 return PPC::getRecordFormOpcode(Opcode); 4230 } 4231 4232 // This function returns true if the machine instruction 4233 // always outputs a value by sign-extending a 32 bit value, 4234 // i.e. 0 to 31-th bits are same as 32-th bit. 4235 static bool isSignExtendingOp(const MachineInstr &MI) { 4236 int Opcode = MI.getOpcode(); 4237 if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS || 4238 Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec || 4239 Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA || 4240 Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 4241 Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 || 4242 Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX || 4243 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU || 4244 Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 4245 Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 || 4246 Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 4247 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB || 4248 Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH || 4249 Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 || 4250 Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW || 4251 Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 || 4252 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 4253 Opcode == PPC::EXTSB8_32_64) 4254 return true; 4255 4256 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 4257 return true; 4258 4259 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 4260 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && 4261 MI.getOperand(3).getImm() > 0 && 4262 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 4263 return true; 4264 4265 return false; 4266 } 4267 4268 // This function returns true if the machine instruction 4269 // always outputs zeros in higher 32 bits. 4270 static bool isZeroExtendingOp(const MachineInstr &MI) { 4271 int Opcode = MI.getOpcode(); 4272 // The 16-bit immediate is sign-extended in li/lis. 4273 // If the most significant bit is zero, all higher bits are zero. 4274 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 4275 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 4276 int64_t Imm = MI.getOperand(1).getImm(); 4277 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 4278 return true; 4279 } 4280 4281 // We have some variations of rotate-and-mask instructions 4282 // that clear higher 32-bits. 4283 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 4284 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || 4285 Opcode == PPC::RLDICL_32_64) && 4286 MI.getOperand(3).getImm() >= 32) 4287 return true; 4288 4289 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 4290 MI.getOperand(3).getImm() >= 32 && 4291 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 4292 return true; 4293 4294 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 4295 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 4296 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 4297 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 4298 return true; 4299 4300 // There are other instructions that clear higher 32-bits. 4301 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec || 4302 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec || 4303 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 4304 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec || 4305 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec || 4306 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW || 4307 Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec || 4308 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI || 4309 Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI || 4310 Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX || 4311 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX || 4312 Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX || 4313 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ || 4314 Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 4315 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 || 4316 Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 4317 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 || 4318 Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 4319 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 4320 Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec || 4321 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec || 4322 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec || 4323 Opcode == PPC::MFVSRWZ) 4324 return true; 4325 4326 return false; 4327 } 4328 4329 // This function returns true if the input MachineInstr is a TOC save 4330 // instruction. 4331 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 4332 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 4333 return false; 4334 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4335 unsigned StackOffset = MI.getOperand(1).getImm(); 4336 Register StackReg = MI.getOperand(2).getReg(); 4337 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) 4338 return true; 4339 4340 return false; 4341 } 4342 4343 // We limit the max depth to track incoming values of PHIs or binary ops 4344 // (e.g. AND) to avoid excessive cost. 4345 const unsigned MAX_DEPTH = 1; 4346 4347 bool 4348 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 4349 const unsigned Depth) const { 4350 const MachineFunction *MF = MI.getParent()->getParent(); 4351 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 4352 4353 // If we know this instruction returns sign- or zero-extended result, 4354 // return true. 4355 if (SignExt ? isSignExtendingOp(MI): 4356 isZeroExtendingOp(MI)) 4357 return true; 4358 4359 switch (MI.getOpcode()) { 4360 case PPC::COPY: { 4361 Register SrcReg = MI.getOperand(1).getReg(); 4362 4363 // In both ELFv1 and v2 ABI, method parameters and the return value 4364 // are sign- or zero-extended. 4365 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 4366 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 4367 // We check the ZExt/SExt flags for a method parameter. 4368 if (MI.getParent()->getBasicBlock() == 4369 &MF->getFunction().getEntryBlock()) { 4370 Register VReg = MI.getOperand(0).getReg(); 4371 if (MF->getRegInfo().isLiveIn(VReg)) 4372 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 4373 FuncInfo->isLiveInZExt(VReg); 4374 } 4375 4376 // For a method return value, we check the ZExt/SExt flags in attribute. 4377 // We assume the following code sequence for method call. 4378 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 4379 // BL8_NOP @func,... 4380 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 4381 // %5 = COPY %x3; G8RC:%5 4382 if (SrcReg == PPC::X3) { 4383 const MachineBasicBlock *MBB = MI.getParent(); 4384 MachineBasicBlock::const_instr_iterator II = 4385 MachineBasicBlock::const_instr_iterator(&MI); 4386 if (II != MBB->instr_begin() && 4387 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 4388 const MachineInstr &CallMI = *(--II); 4389 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 4390 const Function *CalleeFn = 4391 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 4392 if (!CalleeFn) 4393 return false; 4394 const IntegerType *IntTy = 4395 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 4396 const AttributeSet &Attrs = 4397 CalleeFn->getAttributes().getRetAttributes(); 4398 if (IntTy && IntTy->getBitWidth() <= 32) 4399 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 4400 Attribute::ZExt); 4401 } 4402 } 4403 } 4404 } 4405 4406 // If this is a copy from another register, we recursively check source. 4407 if (!Register::isVirtualRegister(SrcReg)) 4408 return false; 4409 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4410 if (SrcMI != NULL) 4411 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 4412 4413 return false; 4414 } 4415 4416 case PPC::ANDI_rec: 4417 case PPC::ANDIS_rec: 4418 case PPC::ORI: 4419 case PPC::ORIS: 4420 case PPC::XORI: 4421 case PPC::XORIS: 4422 case PPC::ANDI8_rec: 4423 case PPC::ANDIS8_rec: 4424 case PPC::ORI8: 4425 case PPC::ORIS8: 4426 case PPC::XORI8: 4427 case PPC::XORIS8: { 4428 // logical operation with 16-bit immediate does not change the upper bits. 4429 // So, we track the operand register as we do for register copy. 4430 Register SrcReg = MI.getOperand(1).getReg(); 4431 if (!Register::isVirtualRegister(SrcReg)) 4432 return false; 4433 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4434 if (SrcMI != NULL) 4435 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 4436 4437 return false; 4438 } 4439 4440 // If all incoming values are sign-/zero-extended, 4441 // the output of OR, ISEL or PHI is also sign-/zero-extended. 4442 case PPC::OR: 4443 case PPC::OR8: 4444 case PPC::ISEL: 4445 case PPC::PHI: { 4446 if (Depth >= MAX_DEPTH) 4447 return false; 4448 4449 // The input registers for PHI are operand 1, 3, ... 4450 // The input registers for others are operand 1 and 2. 4451 unsigned E = 3, D = 1; 4452 if (MI.getOpcode() == PPC::PHI) { 4453 E = MI.getNumOperands(); 4454 D = 2; 4455 } 4456 4457 for (unsigned I = 1; I != E; I += D) { 4458 if (MI.getOperand(I).isReg()) { 4459 Register SrcReg = MI.getOperand(I).getReg(); 4460 if (!Register::isVirtualRegister(SrcReg)) 4461 return false; 4462 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4463 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 4464 return false; 4465 } 4466 else 4467 return false; 4468 } 4469 return true; 4470 } 4471 4472 // If at least one of the incoming values of an AND is zero extended 4473 // then the output is also zero-extended. If both of the incoming values 4474 // are sign-extended then the output is also sign extended. 4475 case PPC::AND: 4476 case PPC::AND8: { 4477 if (Depth >= MAX_DEPTH) 4478 return false; 4479 4480 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 4481 4482 Register SrcReg1 = MI.getOperand(1).getReg(); 4483 Register SrcReg2 = MI.getOperand(2).getReg(); 4484 4485 if (!Register::isVirtualRegister(SrcReg1) || 4486 !Register::isVirtualRegister(SrcReg2)) 4487 return false; 4488 4489 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 4490 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 4491 if (!MISrc1 || !MISrc2) 4492 return false; 4493 4494 if(SignExt) 4495 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 4496 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4497 else 4498 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 4499 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4500 } 4501 4502 default: 4503 break; 4504 } 4505 return false; 4506 } 4507 4508 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 4509 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 4510 } 4511 4512 namespace { 4513 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 4514 MachineInstr *Loop, *EndLoop, *LoopCount; 4515 MachineFunction *MF; 4516 const TargetInstrInfo *TII; 4517 int64_t TripCount; 4518 4519 public: 4520 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 4521 MachineInstr *LoopCount) 4522 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 4523 MF(Loop->getParent()->getParent()), 4524 TII(MF->getSubtarget().getInstrInfo()) { 4525 // Inspect the Loop instruction up-front, as it may be deleted when we call 4526 // createTripCountGreaterCondition. 4527 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 4528 TripCount = LoopCount->getOperand(1).getImm(); 4529 else 4530 TripCount = -1; 4531 } 4532 4533 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 4534 // Only ignore the terminator. 4535 return MI == EndLoop; 4536 } 4537 4538 Optional<bool> 4539 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 4540 SmallVectorImpl<MachineOperand> &Cond) override { 4541 if (TripCount == -1) { 4542 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4543 // so we don't need to generate any thing here. 4544 Cond.push_back(MachineOperand::CreateImm(0)); 4545 Cond.push_back(MachineOperand::CreateReg( 4546 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 4547 true)); 4548 return {}; 4549 } 4550 4551 return TripCount > TC; 4552 } 4553 4554 void setPreheader(MachineBasicBlock *NewPreheader) override { 4555 // Do nothing. We want the LOOP setup instruction to stay in the *old* 4556 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 4557 } 4558 4559 void adjustTripCount(int TripCountAdjust) override { 4560 // If the loop trip count is a compile-time value, then just change the 4561 // value. 4562 if (LoopCount->getOpcode() == PPC::LI8 || 4563 LoopCount->getOpcode() == PPC::LI) { 4564 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 4565 LoopCount->getOperand(1).setImm(TripCount); 4566 return; 4567 } 4568 4569 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4570 // so we don't need to generate any thing here. 4571 } 4572 4573 void disposed() override { 4574 Loop->eraseFromParent(); 4575 // Ensure the loop setup instruction is deleted too. 4576 LoopCount->eraseFromParent(); 4577 } 4578 }; 4579 } // namespace 4580 4581 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 4582 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 4583 // We really "analyze" only hardware loops right now. 4584 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 4585 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 4586 if (Preheader == LoopBB) 4587 Preheader = *std::next(LoopBB->pred_begin()); 4588 MachineFunction *MF = Preheader->getParent(); 4589 4590 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 4591 SmallPtrSet<MachineBasicBlock *, 8> Visited; 4592 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 4593 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 4594 MachineRegisterInfo &MRI = MF->getRegInfo(); 4595 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 4596 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 4597 } 4598 } 4599 return nullptr; 4600 } 4601 4602 MachineInstr *PPCInstrInfo::findLoopInstr( 4603 MachineBasicBlock &PreHeader, 4604 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 4605 4606 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 4607 4608 // The loop set-up instruction should be in preheader 4609 for (auto &I : PreHeader.instrs()) 4610 if (I.getOpcode() == LOOPi) 4611 return &I; 4612 return nullptr; 4613 } 4614 4615 // Return true if get the base operand, byte offset of an instruction and the 4616 // memory width. Width is the size of memory that is being loaded/stored. 4617 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 4618 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, 4619 unsigned &Width, const TargetRegisterInfo *TRI) const { 4620 if (!LdSt.mayLoadOrStore()) 4621 return false; 4622 4623 // Handle only loads/stores with base register followed by immediate offset. 4624 if (LdSt.getNumExplicitOperands() != 3) 4625 return false; 4626 if (!LdSt.getOperand(1).isImm() || !LdSt.getOperand(2).isReg()) 4627 return false; 4628 4629 if (!LdSt.hasOneMemOperand()) 4630 return false; 4631 4632 Width = (*LdSt.memoperands_begin())->getSize(); 4633 Offset = LdSt.getOperand(1).getImm(); 4634 BaseReg = &LdSt.getOperand(2); 4635 return true; 4636 } 4637 4638 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 4639 const MachineInstr &MIa, const MachineInstr &MIb) const { 4640 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 4641 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 4642 4643 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 4644 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 4645 return false; 4646 4647 // Retrieve the base register, offset from the base register and width. Width 4648 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 4649 // base registers are identical, and the offset of a lower memory access + 4650 // the width doesn't overlap the offset of a higher memory access, 4651 // then the memory accesses are different. 4652 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4653 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 4654 int64_t OffsetA = 0, OffsetB = 0; 4655 unsigned int WidthA = 0, WidthB = 0; 4656 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 4657 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 4658 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 4659 int LowOffset = std::min(OffsetA, OffsetB); 4660 int HighOffset = std::max(OffsetA, OffsetB); 4661 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 4662 if (LowOffset + LowWidth <= HighOffset) 4663 return true; 4664 } 4665 } 4666 return false; 4667 } 4668