1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/PseudoSourceValue.h" 29 #include "llvm/CodeGen/ScheduleDAG.h" 30 #include "llvm/CodeGen/SlotIndexes.h" 31 #include "llvm/CodeGen/StackMaps.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "ppc-instr-info" 43 44 #define GET_INSTRMAP_INFO 45 #define GET_INSTRINFO_CTOR_DTOR 46 #include "PPCGenInstrInfo.inc" 47 48 STATISTIC(NumStoreSPILLVSRRCAsVec, 49 "Number of spillvsrrc spilled to stack as vec"); 50 STATISTIC(NumStoreSPILLVSRRCAsGpr, 51 "Number of spillvsrrc spilled to stack as gpr"); 52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 53 STATISTIC(CmpIselsConverted, 54 "Number of ISELs that depend on comparison of constants converted"); 55 STATISTIC(MissedConvertibleImmediateInstrs, 56 "Number of compare-immediate instructions fed by constants"); 57 STATISTIC(NumRcRotatesConvertedToRcAnd, 58 "Number of record-form rotates converted to record-form andi"); 59 60 static cl:: 61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 62 cl::desc("Disable analysis for CTR loops")); 63 64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 65 cl::desc("Disable compare instruction optimization"), cl::Hidden); 66 67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 69 cl::Hidden); 70 71 static cl::opt<bool> 72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 73 cl::desc("Use the old (incorrect) instruction latency calculation")); 74 75 // Index into the OpcodesForSpill array. 76 enum SpillOpcodeKey { 77 SOK_Int4Spill, 78 SOK_Int8Spill, 79 SOK_Float8Spill, 80 SOK_Float4Spill, 81 SOK_CRSpill, 82 SOK_CRBitSpill, 83 SOK_VRVectorSpill, 84 SOK_VSXVectorSpill, 85 SOK_VectorFloat8Spill, 86 SOK_VectorFloat4Spill, 87 SOK_VRSaveSpill, 88 SOK_QuadFloat8Spill, 89 SOK_QuadFloat4Spill, 90 SOK_QuadBitSpill, 91 SOK_SpillToVSR, 92 SOK_SPESpill, 93 SOK_LastOpcodeSpill // This must be last on the enum. 94 }; 95 96 // Pin the vtable to this file. 97 void PPCInstrInfo::anchor() {} 98 99 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 100 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 101 /* CatchRetOpcode */ -1, 102 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 103 Subtarget(STI), RI(STI.getTargetMachine()) {} 104 105 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 106 /// this target when scheduling the DAG. 107 ScheduleHazardRecognizer * 108 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 109 const ScheduleDAG *DAG) const { 110 unsigned Directive = 111 static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); 112 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 113 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 114 const InstrItineraryData *II = 115 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 116 return new ScoreboardHazardRecognizer(II, DAG); 117 } 118 119 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 120 } 121 122 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 123 /// to use for this target when scheduling the DAG. 124 ScheduleHazardRecognizer * 125 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 126 const ScheduleDAG *DAG) const { 127 unsigned Directive = 128 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); 129 130 // FIXME: Leaving this as-is until we have POWER9 scheduling info 131 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 132 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 133 134 // Most subtargets use a PPC970 recognizer. 135 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 136 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 137 assert(DAG->TII && "No InstrInfo?"); 138 139 return new PPCHazardRecognizer970(*DAG); 140 } 141 142 return new ScoreboardHazardRecognizer(II, DAG); 143 } 144 145 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 146 const MachineInstr &MI, 147 unsigned *PredCost) const { 148 if (!ItinData || UseOldLatencyCalc) 149 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 150 151 // The default implementation of getInstrLatency calls getStageLatency, but 152 // getStageLatency does not do the right thing for us. While we have 153 // itinerary, most cores are fully pipelined, and so the itineraries only 154 // express the first part of the pipeline, not every stage. Instead, we need 155 // to use the listed output operand cycle number (using operand 0 here, which 156 // is an output). 157 158 unsigned Latency = 1; 159 unsigned DefClass = MI.getDesc().getSchedClass(); 160 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 161 const MachineOperand &MO = MI.getOperand(i); 162 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 163 continue; 164 165 int Cycle = ItinData->getOperandCycle(DefClass, i); 166 if (Cycle < 0) 167 continue; 168 169 Latency = std::max(Latency, (unsigned) Cycle); 170 } 171 172 return Latency; 173 } 174 175 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 176 const MachineInstr &DefMI, unsigned DefIdx, 177 const MachineInstr &UseMI, 178 unsigned UseIdx) const { 179 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 180 UseMI, UseIdx); 181 182 if (!DefMI.getParent()) 183 return Latency; 184 185 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 186 Register Reg = DefMO.getReg(); 187 188 bool IsRegCR; 189 if (Register::isVirtualRegister(Reg)) { 190 const MachineRegisterInfo *MRI = 191 &DefMI.getParent()->getParent()->getRegInfo(); 192 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 193 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 194 } else { 195 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 196 PPC::CRBITRCRegClass.contains(Reg); 197 } 198 199 if (UseMI.isBranch() && IsRegCR) { 200 if (Latency < 0) 201 Latency = getInstrLatency(ItinData, DefMI); 202 203 // On some cores, there is an additional delay between writing to a condition 204 // register, and using it from a branch. 205 unsigned Directive = Subtarget.getCPUDirective(); 206 switch (Directive) { 207 default: break; 208 case PPC::DIR_7400: 209 case PPC::DIR_750: 210 case PPC::DIR_970: 211 case PPC::DIR_E5500: 212 case PPC::DIR_PWR4: 213 case PPC::DIR_PWR5: 214 case PPC::DIR_PWR5X: 215 case PPC::DIR_PWR6: 216 case PPC::DIR_PWR6X: 217 case PPC::DIR_PWR7: 218 case PPC::DIR_PWR8: 219 // FIXME: Is this needed for POWER9? 220 Latency += 2; 221 break; 222 } 223 } 224 225 return Latency; 226 } 227 228 // This function does not list all associative and commutative operations, but 229 // only those worth feeding through the machine combiner in an attempt to 230 // reduce the critical path. Mostly, this means floating-point operations, 231 // because they have high latencies (compared to other operations, such and 232 // and/or, which are also associative and commutative, but have low latencies). 233 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 234 switch (Inst.getOpcode()) { 235 // FP Add: 236 case PPC::FADD: 237 case PPC::FADDS: 238 // FP Multiply: 239 case PPC::FMUL: 240 case PPC::FMULS: 241 // Altivec Add: 242 case PPC::VADDFP: 243 // VSX Add: 244 case PPC::XSADDDP: 245 case PPC::XVADDDP: 246 case PPC::XVADDSP: 247 case PPC::XSADDSP: 248 // VSX Multiply: 249 case PPC::XSMULDP: 250 case PPC::XVMULDP: 251 case PPC::XVMULSP: 252 case PPC::XSMULSP: 253 // QPX Add: 254 case PPC::QVFADD: 255 case PPC::QVFADDS: 256 case PPC::QVFADDSs: 257 // QPX Multiply: 258 case PPC::QVFMUL: 259 case PPC::QVFMULS: 260 case PPC::QVFMULSs: 261 return true; 262 default: 263 return false; 264 } 265 } 266 267 bool PPCInstrInfo::getMachineCombinerPatterns( 268 MachineInstr &Root, 269 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 270 // Using the machine combiner in this way is potentially expensive, so 271 // restrict to when aggressive optimizations are desired. 272 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 273 return false; 274 275 // FP reassociation is only legal when we don't need strict IEEE semantics. 276 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) 277 return false; 278 279 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 280 } 281 282 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 283 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 284 unsigned &SrcReg, unsigned &DstReg, 285 unsigned &SubIdx) const { 286 switch (MI.getOpcode()) { 287 default: return false; 288 case PPC::EXTSW: 289 case PPC::EXTSW_32: 290 case PPC::EXTSW_32_64: 291 SrcReg = MI.getOperand(1).getReg(); 292 DstReg = MI.getOperand(0).getReg(); 293 SubIdx = PPC::sub_32; 294 return true; 295 } 296 } 297 298 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 299 int &FrameIndex) const { 300 unsigned Opcode = MI.getOpcode(); 301 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 302 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 303 304 if (End != std::find(OpcodesForSpill, End, Opcode)) { 305 // Check for the operands added by addFrameReference (the immediate is the 306 // offset which defaults to 0). 307 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 308 MI.getOperand(2).isFI()) { 309 FrameIndex = MI.getOperand(2).getIndex(); 310 return MI.getOperand(0).getReg(); 311 } 312 } 313 return 0; 314 } 315 316 // For opcodes with the ReMaterializable flag set, this function is called to 317 // verify the instruction is really rematable. 318 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 319 AliasAnalysis *AA) const { 320 switch (MI.getOpcode()) { 321 default: 322 // This function should only be called for opcodes with the ReMaterializable 323 // flag set. 324 llvm_unreachable("Unknown rematerializable operation!"); 325 break; 326 case PPC::LI: 327 case PPC::LI8: 328 case PPC::LIS: 329 case PPC::LIS8: 330 case PPC::QVGPCI: 331 case PPC::ADDIStocHA: 332 case PPC::ADDIStocHA8: 333 case PPC::ADDItocL: 334 case PPC::LOAD_STACK_GUARD: 335 case PPC::XXLXORz: 336 case PPC::XXLXORspz: 337 case PPC::XXLXORdpz: 338 case PPC::XXLEQVOnes: 339 case PPC::V_SET0B: 340 case PPC::V_SET0H: 341 case PPC::V_SET0: 342 case PPC::V_SETALLONESB: 343 case PPC::V_SETALLONESH: 344 case PPC::V_SETALLONES: 345 case PPC::CRSET: 346 case PPC::CRUNSET: 347 return true; 348 } 349 return false; 350 } 351 352 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 353 int &FrameIndex) const { 354 unsigned Opcode = MI.getOpcode(); 355 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 356 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 357 358 if (End != std::find(OpcodesForSpill, End, Opcode)) { 359 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 360 MI.getOperand(2).isFI()) { 361 FrameIndex = MI.getOperand(2).getIndex(); 362 return MI.getOperand(0).getReg(); 363 } 364 } 365 return 0; 366 } 367 368 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 369 unsigned OpIdx1, 370 unsigned OpIdx2) const { 371 MachineFunction &MF = *MI.getParent()->getParent(); 372 373 // Normal instructions can be commuted the obvious way. 374 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) 375 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 376 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 377 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 378 // changing the relative order of the mask operands might change what happens 379 // to the high-bits of the mask (and, thus, the result). 380 381 // Cannot commute if it has a non-zero rotate count. 382 if (MI.getOperand(3).getImm() != 0) 383 return nullptr; 384 385 // If we have a zero rotate count, we have: 386 // M = mask(MB,ME) 387 // Op0 = (Op1 & ~M) | (Op2 & M) 388 // Change this to: 389 // M = mask((ME+1)&31, (MB-1)&31) 390 // Op0 = (Op2 & ~M) | (Op1 & M) 391 392 // Swap op1/op2 393 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 394 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); 395 Register Reg0 = MI.getOperand(0).getReg(); 396 Register Reg1 = MI.getOperand(1).getReg(); 397 Register Reg2 = MI.getOperand(2).getReg(); 398 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 399 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 400 bool Reg1IsKill = MI.getOperand(1).isKill(); 401 bool Reg2IsKill = MI.getOperand(2).isKill(); 402 bool ChangeReg0 = false; 403 // If machine instrs are no longer in two-address forms, update 404 // destination register as well. 405 if (Reg0 == Reg1) { 406 // Must be two address instruction! 407 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 408 "Expecting a two-address instruction!"); 409 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 410 Reg2IsKill = false; 411 ChangeReg0 = true; 412 } 413 414 // Masks. 415 unsigned MB = MI.getOperand(4).getImm(); 416 unsigned ME = MI.getOperand(5).getImm(); 417 418 // We can't commute a trivial mask (there is no way to represent an all-zero 419 // mask). 420 if (MB == 0 && ME == 31) 421 return nullptr; 422 423 if (NewMI) { 424 // Create a new instruction. 425 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 426 bool Reg0IsDead = MI.getOperand(0).isDead(); 427 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 428 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 429 .addReg(Reg2, getKillRegState(Reg2IsKill)) 430 .addReg(Reg1, getKillRegState(Reg1IsKill)) 431 .addImm((ME + 1) & 31) 432 .addImm((MB - 1) & 31); 433 } 434 435 if (ChangeReg0) { 436 MI.getOperand(0).setReg(Reg2); 437 MI.getOperand(0).setSubReg(SubReg2); 438 } 439 MI.getOperand(2).setReg(Reg1); 440 MI.getOperand(1).setReg(Reg2); 441 MI.getOperand(2).setSubReg(SubReg1); 442 MI.getOperand(1).setSubReg(SubReg2); 443 MI.getOperand(2).setIsKill(Reg1IsKill); 444 MI.getOperand(1).setIsKill(Reg2IsKill); 445 446 // Swap the mask around. 447 MI.getOperand(4).setImm((ME + 1) & 31); 448 MI.getOperand(5).setImm((MB - 1) & 31); 449 return &MI; 450 } 451 452 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 453 unsigned &SrcOpIdx1, 454 unsigned &SrcOpIdx2) const { 455 // For VSX A-Type FMA instructions, it is the first two operands that can be 456 // commuted, however, because the non-encoded tied input operand is listed 457 // first, the operands to swap are actually the second and third. 458 459 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 460 if (AltOpc == -1) 461 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 462 463 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 464 // and SrcOpIdx2. 465 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 466 } 467 468 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 469 MachineBasicBlock::iterator MI) const { 470 // This function is used for scheduling, and the nop wanted here is the type 471 // that terminates dispatch groups on the POWER cores. 472 unsigned Directive = Subtarget.getCPUDirective(); 473 unsigned Opcode; 474 switch (Directive) { 475 default: Opcode = PPC::NOP; break; 476 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 477 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 478 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 479 // FIXME: Update when POWER9 scheduling model is ready. 480 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 481 } 482 483 DebugLoc DL; 484 BuildMI(MBB, MI, DL, get(Opcode)); 485 } 486 487 /// Return the noop instruction to use for a noop. 488 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 489 NopInst.setOpcode(PPC::NOP); 490 } 491 492 // Branch analysis. 493 // Note: If the condition register is set to CTR or CTR8 then this is a 494 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 495 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 496 MachineBasicBlock *&TBB, 497 MachineBasicBlock *&FBB, 498 SmallVectorImpl<MachineOperand> &Cond, 499 bool AllowModify) const { 500 bool isPPC64 = Subtarget.isPPC64(); 501 502 // If the block has no terminators, it just falls into the block after it. 503 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 504 if (I == MBB.end()) 505 return false; 506 507 if (!isUnpredicatedTerminator(*I)) 508 return false; 509 510 if (AllowModify) { 511 // If the BB ends with an unconditional branch to the fallthrough BB, 512 // we eliminate the branch instruction. 513 if (I->getOpcode() == PPC::B && 514 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 515 I->eraseFromParent(); 516 517 // We update iterator after deleting the last branch. 518 I = MBB.getLastNonDebugInstr(); 519 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 520 return false; 521 } 522 } 523 524 // Get the last instruction in the block. 525 MachineInstr &LastInst = *I; 526 527 // If there is only one terminator instruction, process it. 528 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 529 if (LastInst.getOpcode() == PPC::B) { 530 if (!LastInst.getOperand(0).isMBB()) 531 return true; 532 TBB = LastInst.getOperand(0).getMBB(); 533 return false; 534 } else if (LastInst.getOpcode() == PPC::BCC) { 535 if (!LastInst.getOperand(2).isMBB()) 536 return true; 537 // Block ends with fall-through condbranch. 538 TBB = LastInst.getOperand(2).getMBB(); 539 Cond.push_back(LastInst.getOperand(0)); 540 Cond.push_back(LastInst.getOperand(1)); 541 return false; 542 } else if (LastInst.getOpcode() == PPC::BC) { 543 if (!LastInst.getOperand(1).isMBB()) 544 return true; 545 // Block ends with fall-through condbranch. 546 TBB = LastInst.getOperand(1).getMBB(); 547 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 548 Cond.push_back(LastInst.getOperand(0)); 549 return false; 550 } else if (LastInst.getOpcode() == PPC::BCn) { 551 if (!LastInst.getOperand(1).isMBB()) 552 return true; 553 // Block ends with fall-through condbranch. 554 TBB = LastInst.getOperand(1).getMBB(); 555 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 556 Cond.push_back(LastInst.getOperand(0)); 557 return false; 558 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 559 LastInst.getOpcode() == PPC::BDNZ) { 560 if (!LastInst.getOperand(0).isMBB()) 561 return true; 562 if (DisableCTRLoopAnal) 563 return true; 564 TBB = LastInst.getOperand(0).getMBB(); 565 Cond.push_back(MachineOperand::CreateImm(1)); 566 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 567 true)); 568 return false; 569 } else if (LastInst.getOpcode() == PPC::BDZ8 || 570 LastInst.getOpcode() == PPC::BDZ) { 571 if (!LastInst.getOperand(0).isMBB()) 572 return true; 573 if (DisableCTRLoopAnal) 574 return true; 575 TBB = LastInst.getOperand(0).getMBB(); 576 Cond.push_back(MachineOperand::CreateImm(0)); 577 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 578 true)); 579 return false; 580 } 581 582 // Otherwise, don't know what this is. 583 return true; 584 } 585 586 // Get the instruction before it if it's a terminator. 587 MachineInstr &SecondLastInst = *I; 588 589 // If there are three terminators, we don't know what sort of block this is. 590 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 591 return true; 592 593 // If the block ends with PPC::B and PPC:BCC, handle it. 594 if (SecondLastInst.getOpcode() == PPC::BCC && 595 LastInst.getOpcode() == PPC::B) { 596 if (!SecondLastInst.getOperand(2).isMBB() || 597 !LastInst.getOperand(0).isMBB()) 598 return true; 599 TBB = SecondLastInst.getOperand(2).getMBB(); 600 Cond.push_back(SecondLastInst.getOperand(0)); 601 Cond.push_back(SecondLastInst.getOperand(1)); 602 FBB = LastInst.getOperand(0).getMBB(); 603 return false; 604 } else if (SecondLastInst.getOpcode() == PPC::BC && 605 LastInst.getOpcode() == PPC::B) { 606 if (!SecondLastInst.getOperand(1).isMBB() || 607 !LastInst.getOperand(0).isMBB()) 608 return true; 609 TBB = SecondLastInst.getOperand(1).getMBB(); 610 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 611 Cond.push_back(SecondLastInst.getOperand(0)); 612 FBB = LastInst.getOperand(0).getMBB(); 613 return false; 614 } else if (SecondLastInst.getOpcode() == PPC::BCn && 615 LastInst.getOpcode() == PPC::B) { 616 if (!SecondLastInst.getOperand(1).isMBB() || 617 !LastInst.getOperand(0).isMBB()) 618 return true; 619 TBB = SecondLastInst.getOperand(1).getMBB(); 620 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 621 Cond.push_back(SecondLastInst.getOperand(0)); 622 FBB = LastInst.getOperand(0).getMBB(); 623 return false; 624 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 625 SecondLastInst.getOpcode() == PPC::BDNZ) && 626 LastInst.getOpcode() == PPC::B) { 627 if (!SecondLastInst.getOperand(0).isMBB() || 628 !LastInst.getOperand(0).isMBB()) 629 return true; 630 if (DisableCTRLoopAnal) 631 return true; 632 TBB = SecondLastInst.getOperand(0).getMBB(); 633 Cond.push_back(MachineOperand::CreateImm(1)); 634 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 635 true)); 636 FBB = LastInst.getOperand(0).getMBB(); 637 return false; 638 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 639 SecondLastInst.getOpcode() == PPC::BDZ) && 640 LastInst.getOpcode() == PPC::B) { 641 if (!SecondLastInst.getOperand(0).isMBB() || 642 !LastInst.getOperand(0).isMBB()) 643 return true; 644 if (DisableCTRLoopAnal) 645 return true; 646 TBB = SecondLastInst.getOperand(0).getMBB(); 647 Cond.push_back(MachineOperand::CreateImm(0)); 648 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 649 true)); 650 FBB = LastInst.getOperand(0).getMBB(); 651 return false; 652 } 653 654 // If the block ends with two PPC:Bs, handle it. The second one is not 655 // executed, so remove it. 656 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 657 if (!SecondLastInst.getOperand(0).isMBB()) 658 return true; 659 TBB = SecondLastInst.getOperand(0).getMBB(); 660 I = LastInst; 661 if (AllowModify) 662 I->eraseFromParent(); 663 return false; 664 } 665 666 // Otherwise, can't handle this. 667 return true; 668 } 669 670 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 671 int *BytesRemoved) const { 672 assert(!BytesRemoved && "code size not handled"); 673 674 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 675 if (I == MBB.end()) 676 return 0; 677 678 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 679 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 680 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 681 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 682 return 0; 683 684 // Remove the branch. 685 I->eraseFromParent(); 686 687 I = MBB.end(); 688 689 if (I == MBB.begin()) return 1; 690 --I; 691 if (I->getOpcode() != PPC::BCC && 692 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 693 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 694 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 695 return 1; 696 697 // Remove the branch. 698 I->eraseFromParent(); 699 return 2; 700 } 701 702 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 703 MachineBasicBlock *TBB, 704 MachineBasicBlock *FBB, 705 ArrayRef<MachineOperand> Cond, 706 const DebugLoc &DL, 707 int *BytesAdded) const { 708 // Shouldn't be a fall through. 709 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 710 assert((Cond.size() == 2 || Cond.size() == 0) && 711 "PPC branch conditions have two components!"); 712 assert(!BytesAdded && "code size not handled"); 713 714 bool isPPC64 = Subtarget.isPPC64(); 715 716 // One-way branch. 717 if (!FBB) { 718 if (Cond.empty()) // Unconditional branch 719 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 720 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 721 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 722 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 723 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 724 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 725 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 726 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 727 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 728 else // Conditional branch 729 BuildMI(&MBB, DL, get(PPC::BCC)) 730 .addImm(Cond[0].getImm()) 731 .add(Cond[1]) 732 .addMBB(TBB); 733 return 1; 734 } 735 736 // Two-way Conditional Branch. 737 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 738 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 739 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 740 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 741 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 742 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 743 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 744 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 745 else 746 BuildMI(&MBB, DL, get(PPC::BCC)) 747 .addImm(Cond[0].getImm()) 748 .add(Cond[1]) 749 .addMBB(TBB); 750 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 751 return 2; 752 } 753 754 // Select analysis. 755 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 756 ArrayRef<MachineOperand> Cond, 757 unsigned TrueReg, unsigned FalseReg, 758 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 759 if (Cond.size() != 2) 760 return false; 761 762 // If this is really a bdnz-like condition, then it cannot be turned into a 763 // select. 764 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 765 return false; 766 767 // Check register classes. 768 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 769 const TargetRegisterClass *RC = 770 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 771 if (!RC) 772 return false; 773 774 // isel is for regular integer GPRs only. 775 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 776 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 777 !PPC::G8RCRegClass.hasSubClassEq(RC) && 778 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 779 return false; 780 781 // FIXME: These numbers are for the A2, how well they work for other cores is 782 // an open question. On the A2, the isel instruction has a 2-cycle latency 783 // but single-cycle throughput. These numbers are used in combination with 784 // the MispredictPenalty setting from the active SchedMachineModel. 785 CondCycles = 1; 786 TrueCycles = 1; 787 FalseCycles = 1; 788 789 return true; 790 } 791 792 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 793 MachineBasicBlock::iterator MI, 794 const DebugLoc &dl, unsigned DestReg, 795 ArrayRef<MachineOperand> Cond, unsigned TrueReg, 796 unsigned FalseReg) const { 797 assert(Cond.size() == 2 && 798 "PPC branch conditions have two components!"); 799 800 // Get the register classes. 801 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 802 const TargetRegisterClass *RC = 803 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 804 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 805 806 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 807 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 808 assert((Is64Bit || 809 PPC::GPRCRegClass.hasSubClassEq(RC) || 810 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 811 "isel is for regular integer GPRs only"); 812 813 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 814 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 815 816 unsigned SubIdx = 0; 817 bool SwapOps = false; 818 switch (SelectPred) { 819 case PPC::PRED_EQ: 820 case PPC::PRED_EQ_MINUS: 821 case PPC::PRED_EQ_PLUS: 822 SubIdx = PPC::sub_eq; SwapOps = false; break; 823 case PPC::PRED_NE: 824 case PPC::PRED_NE_MINUS: 825 case PPC::PRED_NE_PLUS: 826 SubIdx = PPC::sub_eq; SwapOps = true; break; 827 case PPC::PRED_LT: 828 case PPC::PRED_LT_MINUS: 829 case PPC::PRED_LT_PLUS: 830 SubIdx = PPC::sub_lt; SwapOps = false; break; 831 case PPC::PRED_GE: 832 case PPC::PRED_GE_MINUS: 833 case PPC::PRED_GE_PLUS: 834 SubIdx = PPC::sub_lt; SwapOps = true; break; 835 case PPC::PRED_GT: 836 case PPC::PRED_GT_MINUS: 837 case PPC::PRED_GT_PLUS: 838 SubIdx = PPC::sub_gt; SwapOps = false; break; 839 case PPC::PRED_LE: 840 case PPC::PRED_LE_MINUS: 841 case PPC::PRED_LE_PLUS: 842 SubIdx = PPC::sub_gt; SwapOps = true; break; 843 case PPC::PRED_UN: 844 case PPC::PRED_UN_MINUS: 845 case PPC::PRED_UN_PLUS: 846 SubIdx = PPC::sub_un; SwapOps = false; break; 847 case PPC::PRED_NU: 848 case PPC::PRED_NU_MINUS: 849 case PPC::PRED_NU_PLUS: 850 SubIdx = PPC::sub_un; SwapOps = true; break; 851 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 852 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 853 } 854 855 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 856 SecondReg = SwapOps ? TrueReg : FalseReg; 857 858 // The first input register of isel cannot be r0. If it is a member 859 // of a register class that can be r0, then copy it first (the 860 // register allocator should eliminate the copy). 861 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 862 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 863 const TargetRegisterClass *FirstRC = 864 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 865 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 866 unsigned OldFirstReg = FirstReg; 867 FirstReg = MRI.createVirtualRegister(FirstRC); 868 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 869 .addReg(OldFirstReg); 870 } 871 872 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 873 .addReg(FirstReg).addReg(SecondReg) 874 .addReg(Cond[1].getReg(), 0, SubIdx); 875 } 876 877 static unsigned getCRBitValue(unsigned CRBit) { 878 unsigned Ret = 4; 879 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 880 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 881 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 882 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 883 Ret = 3; 884 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 885 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 886 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 887 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 888 Ret = 2; 889 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 890 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 891 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 892 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 893 Ret = 1; 894 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 895 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 896 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 897 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 898 Ret = 0; 899 900 assert(Ret != 4 && "Invalid CR bit register"); 901 return Ret; 902 } 903 904 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 905 MachineBasicBlock::iterator I, 906 const DebugLoc &DL, MCRegister DestReg, 907 MCRegister SrcReg, bool KillSrc) const { 908 // We can end up with self copies and similar things as a result of VSX copy 909 // legalization. Promote them here. 910 const TargetRegisterInfo *TRI = &getRegisterInfo(); 911 if (PPC::F8RCRegClass.contains(DestReg) && 912 PPC::VSRCRegClass.contains(SrcReg)) { 913 MCRegister SuperReg = 914 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 915 916 if (VSXSelfCopyCrash && SrcReg == SuperReg) 917 llvm_unreachable("nop VSX copy"); 918 919 DestReg = SuperReg; 920 } else if (PPC::F8RCRegClass.contains(SrcReg) && 921 PPC::VSRCRegClass.contains(DestReg)) { 922 MCRegister SuperReg = 923 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 924 925 if (VSXSelfCopyCrash && DestReg == SuperReg) 926 llvm_unreachable("nop VSX copy"); 927 928 SrcReg = SuperReg; 929 } 930 931 // Different class register copy 932 if (PPC::CRBITRCRegClass.contains(SrcReg) && 933 PPC::GPRCRegClass.contains(DestReg)) { 934 MCRegister CRReg = getCRFromCRBit(SrcReg); 935 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 936 getKillRegState(KillSrc); 937 // Rotate the CR bit in the CR fields to be the least significant bit and 938 // then mask with 0x1 (MB = ME = 31). 939 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 940 .addReg(DestReg, RegState::Kill) 941 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 942 .addImm(31) 943 .addImm(31); 944 return; 945 } else if (PPC::CRRCRegClass.contains(SrcReg) && 946 PPC::G8RCRegClass.contains(DestReg)) { 947 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 948 getKillRegState(KillSrc); 949 return; 950 } else if (PPC::CRRCRegClass.contains(SrcReg) && 951 PPC::GPRCRegClass.contains(DestReg)) { 952 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 953 getKillRegState(KillSrc); 954 return; 955 } else if (PPC::G8RCRegClass.contains(SrcReg) && 956 PPC::VSFRCRegClass.contains(DestReg)) { 957 assert(Subtarget.hasDirectMove() && 958 "Subtarget doesn't support directmove, don't know how to copy."); 959 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 960 NumGPRtoVSRSpill++; 961 getKillRegState(KillSrc); 962 return; 963 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 964 PPC::G8RCRegClass.contains(DestReg)) { 965 assert(Subtarget.hasDirectMove() && 966 "Subtarget doesn't support directmove, don't know how to copy."); 967 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 968 getKillRegState(KillSrc); 969 return; 970 } else if (PPC::SPERCRegClass.contains(SrcReg) && 971 PPC::GPRCRegClass.contains(DestReg)) { 972 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 973 getKillRegState(KillSrc); 974 return; 975 } else if (PPC::GPRCRegClass.contains(SrcReg) && 976 PPC::SPERCRegClass.contains(DestReg)) { 977 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 978 getKillRegState(KillSrc); 979 return; 980 } 981 982 unsigned Opc; 983 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 984 Opc = PPC::OR; 985 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 986 Opc = PPC::OR8; 987 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 988 Opc = PPC::FMR; 989 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 990 Opc = PPC::MCRF; 991 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 992 Opc = PPC::VOR; 993 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 994 // There are two different ways this can be done: 995 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 996 // issue in VSU pipeline 0. 997 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 998 // can go to either pipeline. 999 // We'll always use xxlor here, because in practically all cases where 1000 // copies are generated, they are close enough to some use that the 1001 // lower-latency form is preferable. 1002 Opc = PPC::XXLOR; 1003 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1004 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1005 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1006 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 1007 Opc = PPC::QVFMR; 1008 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 1009 Opc = PPC::QVFMRs; 1010 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 1011 Opc = PPC::QVFMRb; 1012 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1013 Opc = PPC::CROR; 1014 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1015 Opc = PPC::EVOR; 1016 else 1017 llvm_unreachable("Impossible reg-to-reg copy"); 1018 1019 const MCInstrDesc &MCID = get(Opc); 1020 if (MCID.getNumOperands() == 3) 1021 BuildMI(MBB, I, DL, MCID, DestReg) 1022 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1023 else 1024 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1025 } 1026 1027 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg, 1028 const TargetRegisterClass *RC) 1029 const { 1030 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1031 int OpcodeIndex = 0; 1032 1033 if (RC != nullptr) { 1034 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1035 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1036 OpcodeIndex = SOK_Int4Spill; 1037 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1038 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1039 OpcodeIndex = SOK_Int8Spill; 1040 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1041 OpcodeIndex = SOK_Float8Spill; 1042 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1043 OpcodeIndex = SOK_Float4Spill; 1044 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1045 OpcodeIndex = SOK_SPESpill; 1046 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1047 OpcodeIndex = SOK_CRSpill; 1048 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1049 OpcodeIndex = SOK_CRBitSpill; 1050 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1051 OpcodeIndex = SOK_VRVectorSpill; 1052 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1053 OpcodeIndex = SOK_VSXVectorSpill; 1054 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1055 OpcodeIndex = SOK_VectorFloat8Spill; 1056 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1057 OpcodeIndex = SOK_VectorFloat4Spill; 1058 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1059 OpcodeIndex = SOK_VRSaveSpill; 1060 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1061 OpcodeIndex = SOK_QuadFloat8Spill; 1062 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1063 OpcodeIndex = SOK_QuadFloat4Spill; 1064 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1065 OpcodeIndex = SOK_QuadBitSpill; 1066 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1067 OpcodeIndex = SOK_SpillToVSR; 1068 } else { 1069 llvm_unreachable("Unknown regclass!"); 1070 } 1071 } else { 1072 if (PPC::GPRCRegClass.contains(Reg) || 1073 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1074 OpcodeIndex = SOK_Int4Spill; 1075 } else if (PPC::G8RCRegClass.contains(Reg) || 1076 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1077 OpcodeIndex = SOK_Int8Spill; 1078 } else if (PPC::F8RCRegClass.contains(Reg)) { 1079 OpcodeIndex = SOK_Float8Spill; 1080 } else if (PPC::F4RCRegClass.contains(Reg)) { 1081 OpcodeIndex = SOK_Float4Spill; 1082 } else if (PPC::SPERCRegClass.contains(Reg)) { 1083 OpcodeIndex = SOK_SPESpill; 1084 } else if (PPC::CRRCRegClass.contains(Reg)) { 1085 OpcodeIndex = SOK_CRSpill; 1086 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1087 OpcodeIndex = SOK_CRBitSpill; 1088 } else if (PPC::VRRCRegClass.contains(Reg)) { 1089 OpcodeIndex = SOK_VRVectorSpill; 1090 } else if (PPC::VSRCRegClass.contains(Reg)) { 1091 OpcodeIndex = SOK_VSXVectorSpill; 1092 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1093 OpcodeIndex = SOK_VectorFloat8Spill; 1094 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1095 OpcodeIndex = SOK_VectorFloat4Spill; 1096 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1097 OpcodeIndex = SOK_VRSaveSpill; 1098 } else if (PPC::QFRCRegClass.contains(Reg)) { 1099 OpcodeIndex = SOK_QuadFloat8Spill; 1100 } else if (PPC::QSRCRegClass.contains(Reg)) { 1101 OpcodeIndex = SOK_QuadFloat4Spill; 1102 } else if (PPC::QBRCRegClass.contains(Reg)) { 1103 OpcodeIndex = SOK_QuadBitSpill; 1104 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1105 OpcodeIndex = SOK_SpillToVSR; 1106 } else { 1107 llvm_unreachable("Unknown regclass!"); 1108 } 1109 } 1110 return OpcodesForSpill[OpcodeIndex]; 1111 } 1112 1113 unsigned 1114 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg, 1115 const TargetRegisterClass *RC) const { 1116 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1117 int OpcodeIndex = 0; 1118 1119 if (RC != nullptr) { 1120 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1121 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1122 OpcodeIndex = SOK_Int4Spill; 1123 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1124 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1125 OpcodeIndex = SOK_Int8Spill; 1126 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1127 OpcodeIndex = SOK_Float8Spill; 1128 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1129 OpcodeIndex = SOK_Float4Spill; 1130 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1131 OpcodeIndex = SOK_SPESpill; 1132 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1133 OpcodeIndex = SOK_CRSpill; 1134 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1135 OpcodeIndex = SOK_CRBitSpill; 1136 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1137 OpcodeIndex = SOK_VRVectorSpill; 1138 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1139 OpcodeIndex = SOK_VSXVectorSpill; 1140 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1141 OpcodeIndex = SOK_VectorFloat8Spill; 1142 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1143 OpcodeIndex = SOK_VectorFloat4Spill; 1144 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1145 OpcodeIndex = SOK_VRSaveSpill; 1146 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1147 OpcodeIndex = SOK_QuadFloat8Spill; 1148 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1149 OpcodeIndex = SOK_QuadFloat4Spill; 1150 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1151 OpcodeIndex = SOK_QuadBitSpill; 1152 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1153 OpcodeIndex = SOK_SpillToVSR; 1154 } else { 1155 llvm_unreachable("Unknown regclass!"); 1156 } 1157 } else { 1158 if (PPC::GPRCRegClass.contains(Reg) || 1159 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1160 OpcodeIndex = SOK_Int4Spill; 1161 } else if (PPC::G8RCRegClass.contains(Reg) || 1162 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1163 OpcodeIndex = SOK_Int8Spill; 1164 } else if (PPC::F8RCRegClass.contains(Reg)) { 1165 OpcodeIndex = SOK_Float8Spill; 1166 } else if (PPC::F4RCRegClass.contains(Reg)) { 1167 OpcodeIndex = SOK_Float4Spill; 1168 } else if (PPC::SPERCRegClass.contains(Reg)) { 1169 OpcodeIndex = SOK_SPESpill; 1170 } else if (PPC::CRRCRegClass.contains(Reg)) { 1171 OpcodeIndex = SOK_CRSpill; 1172 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1173 OpcodeIndex = SOK_CRBitSpill; 1174 } else if (PPC::VRRCRegClass.contains(Reg)) { 1175 OpcodeIndex = SOK_VRVectorSpill; 1176 } else if (PPC::VSRCRegClass.contains(Reg)) { 1177 OpcodeIndex = SOK_VSXVectorSpill; 1178 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1179 OpcodeIndex = SOK_VectorFloat8Spill; 1180 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1181 OpcodeIndex = SOK_VectorFloat4Spill; 1182 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1183 OpcodeIndex = SOK_VRSaveSpill; 1184 } else if (PPC::QFRCRegClass.contains(Reg)) { 1185 OpcodeIndex = SOK_QuadFloat8Spill; 1186 } else if (PPC::QSRCRegClass.contains(Reg)) { 1187 OpcodeIndex = SOK_QuadFloat4Spill; 1188 } else if (PPC::QBRCRegClass.contains(Reg)) { 1189 OpcodeIndex = SOK_QuadBitSpill; 1190 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1191 OpcodeIndex = SOK_SpillToVSR; 1192 } else { 1193 llvm_unreachable("Unknown regclass!"); 1194 } 1195 } 1196 return OpcodesForSpill[OpcodeIndex]; 1197 } 1198 1199 void PPCInstrInfo::StoreRegToStackSlot( 1200 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1201 const TargetRegisterClass *RC, 1202 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1203 unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC); 1204 DebugLoc DL; 1205 1206 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1207 FuncInfo->setHasSpills(); 1208 1209 NewMIs.push_back(addFrameReference( 1210 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1211 FrameIdx)); 1212 1213 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1214 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1215 FuncInfo->setSpillsCR(); 1216 1217 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1218 FuncInfo->setSpillsVRSAVE(); 1219 1220 if (isXFormMemOp(Opcode)) 1221 FuncInfo->setHasNonRISpills(); 1222 } 1223 1224 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1225 MachineBasicBlock::iterator MI, 1226 unsigned SrcReg, bool isKill, 1227 int FrameIdx, 1228 const TargetRegisterClass *RC, 1229 const TargetRegisterInfo *TRI) const { 1230 MachineFunction &MF = *MBB.getParent(); 1231 SmallVector<MachineInstr *, 4> NewMIs; 1232 1233 // We need to avoid a situation in which the value from a VRRC register is 1234 // spilled using an Altivec instruction and reloaded into a VSRC register 1235 // using a VSX instruction. The issue with this is that the VSX 1236 // load/store instructions swap the doublewords in the vector and the Altivec 1237 // ones don't. The register classes on the spill/reload may be different if 1238 // the register is defined using an Altivec instruction and is then used by a 1239 // VSX instruction. 1240 RC = updatedRC(RC); 1241 1242 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1243 1244 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1245 MBB.insert(MI, NewMIs[i]); 1246 1247 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1248 MachineMemOperand *MMO = MF.getMachineMemOperand( 1249 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1250 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1251 MFI.getObjectAlignment(FrameIdx)); 1252 NewMIs.back()->addMemOperand(MF, MMO); 1253 } 1254 1255 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1256 unsigned DestReg, int FrameIdx, 1257 const TargetRegisterClass *RC, 1258 SmallVectorImpl<MachineInstr *> &NewMIs) 1259 const { 1260 unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC); 1261 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1262 FrameIdx)); 1263 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1264 1265 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1266 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1267 FuncInfo->setSpillsCR(); 1268 1269 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1270 FuncInfo->setSpillsVRSAVE(); 1271 1272 if (isXFormMemOp(Opcode)) 1273 FuncInfo->setHasNonRISpills(); 1274 } 1275 1276 void 1277 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1278 MachineBasicBlock::iterator MI, 1279 unsigned DestReg, int FrameIdx, 1280 const TargetRegisterClass *RC, 1281 const TargetRegisterInfo *TRI) const { 1282 MachineFunction &MF = *MBB.getParent(); 1283 SmallVector<MachineInstr*, 4> NewMIs; 1284 DebugLoc DL; 1285 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1286 1287 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1288 FuncInfo->setHasSpills(); 1289 1290 // We need to avoid a situation in which the value from a VRRC register is 1291 // spilled using an Altivec instruction and reloaded into a VSRC register 1292 // using a VSX instruction. The issue with this is that the VSX 1293 // load/store instructions swap the doublewords in the vector and the Altivec 1294 // ones don't. The register classes on the spill/reload may be different if 1295 // the register is defined using an Altivec instruction and is then used by a 1296 // VSX instruction. 1297 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 1298 RC = &PPC::VSRCRegClass; 1299 1300 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1301 1302 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1303 MBB.insert(MI, NewMIs[i]); 1304 1305 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1306 MachineMemOperand *MMO = MF.getMachineMemOperand( 1307 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1308 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1309 MFI.getObjectAlignment(FrameIdx)); 1310 NewMIs.back()->addMemOperand(MF, MMO); 1311 } 1312 1313 bool PPCInstrInfo:: 1314 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1315 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1316 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1317 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1318 else 1319 // Leave the CR# the same, but invert the condition. 1320 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1321 return false; 1322 } 1323 1324 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1325 unsigned Reg, MachineRegisterInfo *MRI) const { 1326 // For some instructions, it is legal to fold ZERO into the RA register field. 1327 // A zero immediate should always be loaded with a single li. 1328 unsigned DefOpc = DefMI.getOpcode(); 1329 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1330 return false; 1331 if (!DefMI.getOperand(1).isImm()) 1332 return false; 1333 if (DefMI.getOperand(1).getImm() != 0) 1334 return false; 1335 1336 // Note that we cannot here invert the arguments of an isel in order to fold 1337 // a ZERO into what is presented as the second argument. All we have here 1338 // is the condition bit, and that might come from a CR-logical bit operation. 1339 1340 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1341 1342 // Only fold into real machine instructions. 1343 if (UseMCID.isPseudo()) 1344 return false; 1345 1346 unsigned UseIdx; 1347 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1348 if (UseMI.getOperand(UseIdx).isReg() && 1349 UseMI.getOperand(UseIdx).getReg() == Reg) 1350 break; 1351 1352 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1353 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1354 1355 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1356 1357 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1358 // register (which might also be specified as a pointer class kind). 1359 if (UseInfo->isLookupPtrRegClass()) { 1360 if (UseInfo->RegClass /* Kind */ != 1) 1361 return false; 1362 } else { 1363 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1364 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1365 return false; 1366 } 1367 1368 // Make sure this is not tied to an output register (or otherwise 1369 // constrained). This is true for ST?UX registers, for example, which 1370 // are tied to their output registers. 1371 if (UseInfo->Constraints != 0) 1372 return false; 1373 1374 unsigned ZeroReg; 1375 if (UseInfo->isLookupPtrRegClass()) { 1376 bool isPPC64 = Subtarget.isPPC64(); 1377 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1378 } else { 1379 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1380 PPC::ZERO8 : PPC::ZERO; 1381 } 1382 1383 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1384 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1385 1386 if (DeleteDef) 1387 DefMI.eraseFromParent(); 1388 1389 return true; 1390 } 1391 1392 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1393 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1394 I != IE; ++I) 1395 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1396 return true; 1397 return false; 1398 } 1399 1400 // We should make sure that, if we're going to predicate both sides of a 1401 // condition (a diamond), that both sides don't define the counter register. We 1402 // can predicate counter-decrement-based branches, but while that predicates 1403 // the branching, it does not predicate the counter decrement. If we tried to 1404 // merge the triangle into one predicated block, we'd decrement the counter 1405 // twice. 1406 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1407 unsigned NumT, unsigned ExtraT, 1408 MachineBasicBlock &FMBB, 1409 unsigned NumF, unsigned ExtraF, 1410 BranchProbability Probability) const { 1411 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1412 } 1413 1414 1415 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1416 // The predicated branches are identified by their type, not really by the 1417 // explicit presence of a predicate. Furthermore, some of them can be 1418 // predicated more than once. Because if conversion won't try to predicate 1419 // any instruction which already claims to be predicated (by returning true 1420 // here), always return false. In doing so, we let isPredicable() be the 1421 // final word on whether not the instruction can be (further) predicated. 1422 1423 return false; 1424 } 1425 1426 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 1427 if (!MI.isTerminator()) 1428 return false; 1429 1430 // Conditional branch is a special case. 1431 if (MI.isBranch() && !MI.isBarrier()) 1432 return true; 1433 1434 return !isPredicated(MI); 1435 } 1436 1437 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1438 ArrayRef<MachineOperand> Pred) const { 1439 unsigned OpC = MI.getOpcode(); 1440 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1441 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1442 bool isPPC64 = Subtarget.isPPC64(); 1443 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1444 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1445 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1446 MI.setDesc(get(PPC::BCLR)); 1447 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1448 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1449 MI.setDesc(get(PPC::BCLRn)); 1450 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1451 } else { 1452 MI.setDesc(get(PPC::BCCLR)); 1453 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1454 .addImm(Pred[0].getImm()) 1455 .add(Pred[1]); 1456 } 1457 1458 return true; 1459 } else if (OpC == PPC::B) { 1460 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1461 bool isPPC64 = Subtarget.isPPC64(); 1462 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1463 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1464 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1465 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1466 MI.RemoveOperand(0); 1467 1468 MI.setDesc(get(PPC::BC)); 1469 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1470 .add(Pred[1]) 1471 .addMBB(MBB); 1472 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1473 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1474 MI.RemoveOperand(0); 1475 1476 MI.setDesc(get(PPC::BCn)); 1477 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1478 .add(Pred[1]) 1479 .addMBB(MBB); 1480 } else { 1481 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1482 MI.RemoveOperand(0); 1483 1484 MI.setDesc(get(PPC::BCC)); 1485 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1486 .addImm(Pred[0].getImm()) 1487 .add(Pred[1]) 1488 .addMBB(MBB); 1489 } 1490 1491 return true; 1492 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 1493 OpC == PPC::BCTRL8) { 1494 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1495 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1496 1497 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1498 bool isPPC64 = Subtarget.isPPC64(); 1499 1500 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1501 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1502 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1503 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1504 return true; 1505 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1506 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1507 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1508 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1509 return true; 1510 } 1511 1512 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1513 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1514 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1515 .addImm(Pred[0].getImm()) 1516 .add(Pred[1]); 1517 return true; 1518 } 1519 1520 return false; 1521 } 1522 1523 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1524 ArrayRef<MachineOperand> Pred2) const { 1525 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1526 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1527 1528 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1529 return false; 1530 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1531 return false; 1532 1533 // P1 can only subsume P2 if they test the same condition register. 1534 if (Pred1[1].getReg() != Pred2[1].getReg()) 1535 return false; 1536 1537 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1538 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1539 1540 if (P1 == P2) 1541 return true; 1542 1543 // Does P1 subsume P2, e.g. GE subsumes GT. 1544 if (P1 == PPC::PRED_LE && 1545 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1546 return true; 1547 if (P1 == PPC::PRED_GE && 1548 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1549 return true; 1550 1551 return false; 1552 } 1553 1554 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1555 std::vector<MachineOperand> &Pred) const { 1556 // Note: At the present time, the contents of Pred from this function is 1557 // unused by IfConversion. This implementation follows ARM by pushing the 1558 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1559 // predicate, instructions defining CTR or CTR8 are also included as 1560 // predicate-defining instructions. 1561 1562 const TargetRegisterClass *RCs[] = 1563 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1564 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1565 1566 bool Found = false; 1567 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1568 const MachineOperand &MO = MI.getOperand(i); 1569 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1570 const TargetRegisterClass *RC = RCs[c]; 1571 if (MO.isReg()) { 1572 if (MO.isDef() && RC->contains(MO.getReg())) { 1573 Pred.push_back(MO); 1574 Found = true; 1575 } 1576 } else if (MO.isRegMask()) { 1577 for (TargetRegisterClass::iterator I = RC->begin(), 1578 IE = RC->end(); I != IE; ++I) 1579 if (MO.clobbersPhysReg(*I)) { 1580 Pred.push_back(MO); 1581 Found = true; 1582 } 1583 } 1584 } 1585 } 1586 1587 return Found; 1588 } 1589 1590 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const { 1591 unsigned OpC = MI.getOpcode(); 1592 switch (OpC) { 1593 default: 1594 return false; 1595 case PPC::B: 1596 case PPC::BLR: 1597 case PPC::BLR8: 1598 case PPC::BCTR: 1599 case PPC::BCTR8: 1600 case PPC::BCTRL: 1601 case PPC::BCTRL8: 1602 return true; 1603 } 1604 } 1605 1606 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 1607 unsigned &SrcReg2, int &Mask, 1608 int &Value) const { 1609 unsigned Opc = MI.getOpcode(); 1610 1611 switch (Opc) { 1612 default: return false; 1613 case PPC::CMPWI: 1614 case PPC::CMPLWI: 1615 case PPC::CMPDI: 1616 case PPC::CMPLDI: 1617 SrcReg = MI.getOperand(1).getReg(); 1618 SrcReg2 = 0; 1619 Value = MI.getOperand(2).getImm(); 1620 Mask = 0xFFFF; 1621 return true; 1622 case PPC::CMPW: 1623 case PPC::CMPLW: 1624 case PPC::CMPD: 1625 case PPC::CMPLD: 1626 case PPC::FCMPUS: 1627 case PPC::FCMPUD: 1628 SrcReg = MI.getOperand(1).getReg(); 1629 SrcReg2 = MI.getOperand(2).getReg(); 1630 Value = 0; 1631 Mask = 0; 1632 return true; 1633 } 1634 } 1635 1636 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, 1637 unsigned SrcReg2, int Mask, int Value, 1638 const MachineRegisterInfo *MRI) const { 1639 if (DisableCmpOpt) 1640 return false; 1641 1642 int OpC = CmpInstr.getOpcode(); 1643 Register CRReg = CmpInstr.getOperand(0).getReg(); 1644 1645 // FP record forms set CR1 based on the exception status bits, not a 1646 // comparison with zero. 1647 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1648 return false; 1649 1650 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1651 // The record forms set the condition register based on a signed comparison 1652 // with zero (so says the ISA manual). This is not as straightforward as it 1653 // seems, however, because this is always a 64-bit comparison on PPC64, even 1654 // for instructions that are 32-bit in nature (like slw for example). 1655 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1656 // for equality checks (as those don't depend on the sign). On PPC64, 1657 // we are restricted to equality for unsigned 64-bit comparisons and for 1658 // signed 32-bit comparisons the applicability is more restricted. 1659 bool isPPC64 = Subtarget.isPPC64(); 1660 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1661 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1662 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1663 1664 // Look through copies unless that gets us to a physical register. 1665 unsigned ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 1666 if (Register::isVirtualRegister(ActualSrc)) 1667 SrcReg = ActualSrc; 1668 1669 // Get the unique definition of SrcReg. 1670 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1671 if (!MI) return false; 1672 1673 bool equalityOnly = false; 1674 bool noSub = false; 1675 if (isPPC64) { 1676 if (is32BitSignedCompare) { 1677 // We can perform this optimization only if MI is sign-extending. 1678 if (isSignExtended(*MI)) 1679 noSub = true; 1680 else 1681 return false; 1682 } else if (is32BitUnsignedCompare) { 1683 // We can perform this optimization, equality only, if MI is 1684 // zero-extending. 1685 if (isZeroExtended(*MI)) { 1686 noSub = true; 1687 equalityOnly = true; 1688 } else 1689 return false; 1690 } else 1691 equalityOnly = is64BitUnsignedCompare; 1692 } else 1693 equalityOnly = is32BitUnsignedCompare; 1694 1695 if (equalityOnly) { 1696 // We need to check the uses of the condition register in order to reject 1697 // non-equality comparisons. 1698 for (MachineRegisterInfo::use_instr_iterator 1699 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1700 I != IE; ++I) { 1701 MachineInstr *UseMI = &*I; 1702 if (UseMI->getOpcode() == PPC::BCC) { 1703 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1704 unsigned PredCond = PPC::getPredicateCondition(Pred); 1705 // We ignore hint bits when checking for non-equality comparisons. 1706 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1707 return false; 1708 } else if (UseMI->getOpcode() == PPC::ISEL || 1709 UseMI->getOpcode() == PPC::ISEL8) { 1710 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1711 if (SubIdx != PPC::sub_eq) 1712 return false; 1713 } else 1714 return false; 1715 } 1716 } 1717 1718 MachineBasicBlock::iterator I = CmpInstr; 1719 1720 // Scan forward to find the first use of the compare. 1721 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1722 ++I) { 1723 bool FoundUse = false; 1724 for (MachineRegisterInfo::use_instr_iterator 1725 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 1726 J != JE; ++J) 1727 if (&*J == &*I) { 1728 FoundUse = true; 1729 break; 1730 } 1731 1732 if (FoundUse) 1733 break; 1734 } 1735 1736 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1737 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1738 1739 // There are two possible candidates which can be changed to set CR[01]. 1740 // One is MI, the other is a SUB instruction. 1741 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1742 MachineInstr *Sub = nullptr; 1743 if (SrcReg2 != 0) 1744 // MI is not a candidate for CMPrr. 1745 MI = nullptr; 1746 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1747 // same BB as the comparison. This is to allow the check below to avoid calls 1748 // (and other explicit clobbers); instead we should really check for these 1749 // more explicitly (in at least a few predecessors). 1750 else if (MI->getParent() != CmpInstr.getParent()) 1751 return false; 1752 else if (Value != 0) { 1753 // The record-form instructions set CR bit based on signed comparison 1754 // against 0. We try to convert a compare against 1 or -1 into a compare 1755 // against 0 to exploit record-form instructions. For example, we change 1756 // the condition "greater than -1" into "greater than or equal to 0" 1757 // and "less than 1" into "less than or equal to 0". 1758 1759 // Since we optimize comparison based on a specific branch condition, 1760 // we don't optimize if condition code is used by more than once. 1761 if (equalityOnly || !MRI->hasOneUse(CRReg)) 1762 return false; 1763 1764 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 1765 if (UseMI->getOpcode() != PPC::BCC) 1766 return false; 1767 1768 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1769 unsigned PredCond = PPC::getPredicateCondition(Pred); 1770 unsigned PredHint = PPC::getPredicateHint(Pred); 1771 int16_t Immed = (int16_t)Value; 1772 1773 // When modifying the condition in the predicate, we propagate hint bits 1774 // from the original predicate to the new one. 1775 if (Immed == -1 && PredCond == PPC::PRED_GT) 1776 // We convert "greater than -1" into "greater than or equal to 0", 1777 // since we are assuming signed comparison by !equalityOnly 1778 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 1779 else if (Immed == -1 && PredCond == PPC::PRED_LE) 1780 // We convert "less than or equal to -1" into "less than 0". 1781 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 1782 else if (Immed == 1 && PredCond == PPC::PRED_LT) 1783 // We convert "less than 1" into "less than or equal to 0". 1784 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 1785 else if (Immed == 1 && PredCond == PPC::PRED_GE) 1786 // We convert "greater than or equal to 1" into "greater than 0". 1787 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 1788 else 1789 return false; 1790 1791 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred)); 1792 } 1793 1794 // Search for Sub. 1795 --I; 1796 1797 // Get ready to iterate backward from CmpInstr. 1798 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 1799 1800 for (; I != E && !noSub; --I) { 1801 const MachineInstr &Instr = *I; 1802 unsigned IOpC = Instr.getOpcode(); 1803 1804 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 1805 Instr.readsRegister(PPC::CR0, TRI))) 1806 // This instruction modifies or uses the record condition register after 1807 // the one we want to change. While we could do this transformation, it 1808 // would likely not be profitable. This transformation removes one 1809 // instruction, and so even forcing RA to generate one move probably 1810 // makes it unprofitable. 1811 return false; 1812 1813 // Check whether CmpInstr can be made redundant by the current instruction. 1814 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1815 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1816 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1817 ((Instr.getOperand(1).getReg() == SrcReg && 1818 Instr.getOperand(2).getReg() == SrcReg2) || 1819 (Instr.getOperand(1).getReg() == SrcReg2 && 1820 Instr.getOperand(2).getReg() == SrcReg))) { 1821 Sub = &*I; 1822 break; 1823 } 1824 1825 if (I == B) 1826 // The 'and' is below the comparison instruction. 1827 return false; 1828 } 1829 1830 // Return false if no candidates exist. 1831 if (!MI && !Sub) 1832 return false; 1833 1834 // The single candidate is called MI. 1835 if (!MI) MI = Sub; 1836 1837 int NewOpC = -1; 1838 int MIOpC = MI->getOpcode(); 1839 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || 1840 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) 1841 NewOpC = MIOpC; 1842 else { 1843 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1844 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1845 NewOpC = MIOpC; 1846 } 1847 1848 // FIXME: On the non-embedded POWER architectures, only some of the record 1849 // forms are fast, and we should use only the fast ones. 1850 1851 // The defining instruction has a record form (or is already a record 1852 // form). It is possible, however, that we'll need to reverse the condition 1853 // code of the users. 1854 if (NewOpC == -1) 1855 return false; 1856 1857 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1858 // needs to be updated to be based on SUB. Push the condition code 1859 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1860 // condition code of these operands will be modified. 1861 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 1862 // comparison against 0, which may modify predicate. 1863 bool ShouldSwap = false; 1864 if (Sub && Value == 0) { 1865 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1866 Sub->getOperand(2).getReg() == SrcReg; 1867 1868 // The operands to subf are the opposite of sub, so only in the fixed-point 1869 // case, invert the order. 1870 ShouldSwap = !ShouldSwap; 1871 } 1872 1873 if (ShouldSwap) 1874 for (MachineRegisterInfo::use_instr_iterator 1875 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1876 I != IE; ++I) { 1877 MachineInstr *UseMI = &*I; 1878 if (UseMI->getOpcode() == PPC::BCC) { 1879 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1880 unsigned PredCond = PPC::getPredicateCondition(Pred); 1881 assert((!equalityOnly || 1882 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 1883 "Invalid predicate for equality-only optimization"); 1884 (void)PredCond; // To suppress warning in release build. 1885 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1886 PPC::getSwappedPredicate(Pred))); 1887 } else if (UseMI->getOpcode() == PPC::ISEL || 1888 UseMI->getOpcode() == PPC::ISEL8) { 1889 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1890 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1891 "Invalid CR bit for equality-only optimization"); 1892 1893 if (NewSubReg == PPC::sub_lt) 1894 NewSubReg = PPC::sub_gt; 1895 else if (NewSubReg == PPC::sub_gt) 1896 NewSubReg = PPC::sub_lt; 1897 1898 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1899 NewSubReg)); 1900 } else // We need to abort on a user we don't understand. 1901 return false; 1902 } 1903 assert(!(Value != 0 && ShouldSwap) && 1904 "Non-zero immediate support and ShouldSwap" 1905 "may conflict in updating predicate"); 1906 1907 // Create a new virtual register to hold the value of the CR set by the 1908 // record-form instruction. If the instruction was not previously in 1909 // record form, then set the kill flag on the CR. 1910 CmpInstr.eraseFromParent(); 1911 1912 MachineBasicBlock::iterator MII = MI; 1913 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1914 get(TargetOpcode::COPY), CRReg) 1915 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1916 1917 // Even if CR0 register were dead before, it is alive now since the 1918 // instruction we just built uses it. 1919 MI->clearRegisterDeads(PPC::CR0); 1920 1921 if (MIOpC != NewOpC) { 1922 // We need to be careful here: we're replacing one instruction with 1923 // another, and we need to make sure that we get all of the right 1924 // implicit uses and defs. On the other hand, the caller may be holding 1925 // an iterator to this instruction, and so we can't delete it (this is 1926 // specifically the case if this is the instruction directly after the 1927 // compare). 1928 1929 // Rotates are expensive instructions. If we're emitting a record-form 1930 // rotate that can just be an andi/andis, we should just emit that. 1931 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 1932 Register GPRRes = MI->getOperand(0).getReg(); 1933 int64_t SH = MI->getOperand(2).getImm(); 1934 int64_t MB = MI->getOperand(3).getImm(); 1935 int64_t ME = MI->getOperand(4).getImm(); 1936 // We can only do this if both the start and end of the mask are in the 1937 // same halfword. 1938 bool MBInLoHWord = MB >= 16; 1939 bool MEInLoHWord = ME >= 16; 1940 uint64_t Mask = ~0LLU; 1941 1942 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 1943 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 1944 // The mask value needs to shift right 16 if we're emitting andis. 1945 Mask >>= MBInLoHWord ? 0 : 16; 1946 NewOpC = MIOpC == PPC::RLWINM 1947 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) 1948 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); 1949 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 1950 (ME - MB + 1 == SH) && (MB >= 16)) { 1951 // If we are rotating by the exact number of bits as are in the mask 1952 // and the mask is in the least significant bits of the register, 1953 // that's just an andis. (as long as the GPR result has no uses). 1954 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 1955 Mask >>= 16; 1956 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; 1957 } 1958 // If we've set the mask, we can transform. 1959 if (Mask != ~0LLU) { 1960 MI->RemoveOperand(4); 1961 MI->RemoveOperand(3); 1962 MI->getOperand(2).setImm(Mask); 1963 NumRcRotatesConvertedToRcAnd++; 1964 } 1965 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 1966 int64_t MB = MI->getOperand(3).getImm(); 1967 if (MB >= 48) { 1968 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 1969 NewOpC = PPC::ANDI8_rec; 1970 MI->RemoveOperand(3); 1971 MI->getOperand(2).setImm(Mask); 1972 NumRcRotatesConvertedToRcAnd++; 1973 } 1974 } 1975 1976 const MCInstrDesc &NewDesc = get(NewOpC); 1977 MI->setDesc(NewDesc); 1978 1979 if (NewDesc.ImplicitDefs) 1980 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 1981 *ImpDefs; ++ImpDefs) 1982 if (!MI->definesRegister(*ImpDefs)) 1983 MI->addOperand(*MI->getParent()->getParent(), 1984 MachineOperand::CreateReg(*ImpDefs, true, true)); 1985 if (NewDesc.ImplicitUses) 1986 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 1987 *ImpUses; ++ImpUses) 1988 if (!MI->readsRegister(*ImpUses)) 1989 MI->addOperand(*MI->getParent()->getParent(), 1990 MachineOperand::CreateReg(*ImpUses, false, true)); 1991 } 1992 assert(MI->definesRegister(PPC::CR0) && 1993 "Record-form instruction does not define cr0?"); 1994 1995 // Modify the condition code of operands in OperandsToUpdate. 1996 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1997 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1998 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1999 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 2000 2001 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 2002 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 2003 2004 return true; 2005 } 2006 2007 /// GetInstSize - Return the number of bytes of code the specified 2008 /// instruction may be. This returns the maximum number of bytes. 2009 /// 2010 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2011 unsigned Opcode = MI.getOpcode(); 2012 2013 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 2014 const MachineFunction *MF = MI.getParent()->getParent(); 2015 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2016 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2017 } else if (Opcode == TargetOpcode::STACKMAP) { 2018 StackMapOpers Opers(&MI); 2019 return Opers.getNumPatchBytes(); 2020 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2021 PatchPointOpers Opers(&MI); 2022 return Opers.getNumPatchBytes(); 2023 } else { 2024 return get(Opcode).getSize(); 2025 } 2026 } 2027 2028 std::pair<unsigned, unsigned> 2029 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2030 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2031 return std::make_pair(TF & Mask, TF & ~Mask); 2032 } 2033 2034 ArrayRef<std::pair<unsigned, const char *>> 2035 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2036 using namespace PPCII; 2037 static const std::pair<unsigned, const char *> TargetFlags[] = { 2038 {MO_LO, "ppc-lo"}, 2039 {MO_HA, "ppc-ha"}, 2040 {MO_TPREL_LO, "ppc-tprel-lo"}, 2041 {MO_TPREL_HA, "ppc-tprel-ha"}, 2042 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2043 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2044 {MO_TOC_LO, "ppc-toc-lo"}, 2045 {MO_TLS, "ppc-tls"}}; 2046 return makeArrayRef(TargetFlags); 2047 } 2048 2049 ArrayRef<std::pair<unsigned, const char *>> 2050 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2051 using namespace PPCII; 2052 static const std::pair<unsigned, const char *> TargetFlags[] = { 2053 {MO_PLT, "ppc-plt"}, 2054 {MO_PIC_FLAG, "ppc-pic"}, 2055 {MO_NLP_FLAG, "ppc-nlp"}, 2056 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}}; 2057 return makeArrayRef(TargetFlags); 2058 } 2059 2060 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2061 // The VSX versions have the advantage of a full 64-register target whereas 2062 // the FP ones have the advantage of lower latency and higher throughput. So 2063 // what we are after is using the faster instructions in low register pressure 2064 // situations and using the larger register file in high register pressure 2065 // situations. 2066 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2067 unsigned UpperOpcode, LowerOpcode; 2068 switch (MI.getOpcode()) { 2069 case PPC::DFLOADf32: 2070 UpperOpcode = PPC::LXSSP; 2071 LowerOpcode = PPC::LFS; 2072 break; 2073 case PPC::DFLOADf64: 2074 UpperOpcode = PPC::LXSD; 2075 LowerOpcode = PPC::LFD; 2076 break; 2077 case PPC::DFSTOREf32: 2078 UpperOpcode = PPC::STXSSP; 2079 LowerOpcode = PPC::STFS; 2080 break; 2081 case PPC::DFSTOREf64: 2082 UpperOpcode = PPC::STXSD; 2083 LowerOpcode = PPC::STFD; 2084 break; 2085 case PPC::XFLOADf32: 2086 UpperOpcode = PPC::LXSSPX; 2087 LowerOpcode = PPC::LFSX; 2088 break; 2089 case PPC::XFLOADf64: 2090 UpperOpcode = PPC::LXSDX; 2091 LowerOpcode = PPC::LFDX; 2092 break; 2093 case PPC::XFSTOREf32: 2094 UpperOpcode = PPC::STXSSPX; 2095 LowerOpcode = PPC::STFSX; 2096 break; 2097 case PPC::XFSTOREf64: 2098 UpperOpcode = PPC::STXSDX; 2099 LowerOpcode = PPC::STFDX; 2100 break; 2101 case PPC::LIWAX: 2102 UpperOpcode = PPC::LXSIWAX; 2103 LowerOpcode = PPC::LFIWAX; 2104 break; 2105 case PPC::LIWZX: 2106 UpperOpcode = PPC::LXSIWZX; 2107 LowerOpcode = PPC::LFIWZX; 2108 break; 2109 case PPC::STIWX: 2110 UpperOpcode = PPC::STXSIWX; 2111 LowerOpcode = PPC::STFIWX; 2112 break; 2113 default: 2114 llvm_unreachable("Unknown Operation!"); 2115 } 2116 2117 Register TargetReg = MI.getOperand(0).getReg(); 2118 unsigned Opcode; 2119 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2120 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2121 Opcode = LowerOpcode; 2122 else 2123 Opcode = UpperOpcode; 2124 MI.setDesc(get(Opcode)); 2125 return true; 2126 } 2127 2128 static bool isAnImmediateOperand(const MachineOperand &MO) { 2129 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2130 } 2131 2132 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2133 auto &MBB = *MI.getParent(); 2134 auto DL = MI.getDebugLoc(); 2135 2136 switch (MI.getOpcode()) { 2137 case TargetOpcode::LOAD_STACK_GUARD: { 2138 assert(Subtarget.isTargetLinux() && 2139 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 2140 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 2141 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 2142 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 2143 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2144 .addImm(Offset) 2145 .addReg(Reg); 2146 return true; 2147 } 2148 case PPC::DFLOADf32: 2149 case PPC::DFLOADf64: 2150 case PPC::DFSTOREf32: 2151 case PPC::DFSTOREf64: { 2152 assert(Subtarget.hasP9Vector() && 2153 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 2154 assert(MI.getOperand(2).isReg() && 2155 isAnImmediateOperand(MI.getOperand(1)) && 2156 "D-form op must have register and immediate operands"); 2157 return expandVSXMemPseudo(MI); 2158 } 2159 case PPC::XFLOADf32: 2160 case PPC::XFSTOREf32: 2161 case PPC::LIWAX: 2162 case PPC::LIWZX: 2163 case PPC::STIWX: { 2164 assert(Subtarget.hasP8Vector() && 2165 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 2166 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2167 "X-form op must have register and register operands"); 2168 return expandVSXMemPseudo(MI); 2169 } 2170 case PPC::XFLOADf64: 2171 case PPC::XFSTOREf64: { 2172 assert(Subtarget.hasVSX() && 2173 "Invalid X-Form Pseudo-ops on target that has no VSX."); 2174 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2175 "X-form op must have register and register operands"); 2176 return expandVSXMemPseudo(MI); 2177 } 2178 case PPC::SPILLTOVSR_LD: { 2179 Register TargetReg = MI.getOperand(0).getReg(); 2180 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2181 MI.setDesc(get(PPC::DFLOADf64)); 2182 return expandPostRAPseudo(MI); 2183 } 2184 else 2185 MI.setDesc(get(PPC::LD)); 2186 return true; 2187 } 2188 case PPC::SPILLTOVSR_ST: { 2189 Register SrcReg = MI.getOperand(0).getReg(); 2190 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2191 NumStoreSPILLVSRRCAsVec++; 2192 MI.setDesc(get(PPC::DFSTOREf64)); 2193 return expandPostRAPseudo(MI); 2194 } else { 2195 NumStoreSPILLVSRRCAsGpr++; 2196 MI.setDesc(get(PPC::STD)); 2197 } 2198 return true; 2199 } 2200 case PPC::SPILLTOVSR_LDX: { 2201 Register TargetReg = MI.getOperand(0).getReg(); 2202 if (PPC::VSFRCRegClass.contains(TargetReg)) 2203 MI.setDesc(get(PPC::LXSDX)); 2204 else 2205 MI.setDesc(get(PPC::LDX)); 2206 return true; 2207 } 2208 case PPC::SPILLTOVSR_STX: { 2209 Register SrcReg = MI.getOperand(0).getReg(); 2210 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2211 NumStoreSPILLVSRRCAsVec++; 2212 MI.setDesc(get(PPC::STXSDX)); 2213 } else { 2214 NumStoreSPILLVSRRCAsGpr++; 2215 MI.setDesc(get(PPC::STDX)); 2216 } 2217 return true; 2218 } 2219 2220 case PPC::CFENCE8: { 2221 auto Val = MI.getOperand(0).getReg(); 2222 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2223 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2224 .addImm(PPC::PRED_NE_MINUS) 2225 .addReg(PPC::CR7) 2226 .addImm(1); 2227 MI.setDesc(get(PPC::ISYNC)); 2228 MI.RemoveOperand(0); 2229 return true; 2230 } 2231 } 2232 return false; 2233 } 2234 2235 // Essentially a compile-time implementation of a compare->isel sequence. 2236 // It takes two constants to compare, along with the true/false registers 2237 // and the comparison type (as a subreg to a CR field) and returns one 2238 // of the true/false registers, depending on the comparison results. 2239 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 2240 unsigned TrueReg, unsigned FalseReg, 2241 unsigned CRSubReg) { 2242 // Signed comparisons. The immediates are assumed to be sign-extended. 2243 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 2244 switch (CRSubReg) { 2245 default: llvm_unreachable("Unknown integer comparison type."); 2246 case PPC::sub_lt: 2247 return Imm1 < Imm2 ? TrueReg : FalseReg; 2248 case PPC::sub_gt: 2249 return Imm1 > Imm2 ? TrueReg : FalseReg; 2250 case PPC::sub_eq: 2251 return Imm1 == Imm2 ? TrueReg : FalseReg; 2252 } 2253 } 2254 // Unsigned comparisons. 2255 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 2256 switch (CRSubReg) { 2257 default: llvm_unreachable("Unknown integer comparison type."); 2258 case PPC::sub_lt: 2259 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 2260 case PPC::sub_gt: 2261 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 2262 case PPC::sub_eq: 2263 return Imm1 == Imm2 ? TrueReg : FalseReg; 2264 } 2265 } 2266 return PPC::NoRegister; 2267 } 2268 2269 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 2270 unsigned OpNo, 2271 int64_t Imm) const { 2272 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 2273 // Replace the REG with the Immediate. 2274 Register InUseReg = MI.getOperand(OpNo).getReg(); 2275 MI.getOperand(OpNo).ChangeToImmediate(Imm); 2276 2277 if (MI.implicit_operands().empty()) 2278 return; 2279 2280 // We need to make sure that the MI didn't have any implicit use 2281 // of this REG any more. 2282 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2283 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 2284 if (UseOpIdx >= 0) { 2285 MachineOperand &MO = MI.getOperand(UseOpIdx); 2286 if (MO.isImplicit()) 2287 // The operands must always be in the following order: 2288 // - explicit reg defs, 2289 // - other explicit operands (reg uses, immediates, etc.), 2290 // - implicit reg defs 2291 // - implicit reg uses 2292 // Therefore, removing the implicit operand won't change the explicit 2293 // operands layout. 2294 MI.RemoveOperand(UseOpIdx); 2295 } 2296 } 2297 2298 // Replace an instruction with one that materializes a constant (and sets 2299 // CR0 if the original instruction was a record-form instruction). 2300 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 2301 const LoadImmediateInfo &LII) const { 2302 // Remove existing operands. 2303 int OperandToKeep = LII.SetCR ? 1 : 0; 2304 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 2305 MI.RemoveOperand(i); 2306 2307 // Replace the instruction. 2308 if (LII.SetCR) { 2309 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 2310 // Set the immediate. 2311 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2312 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 2313 return; 2314 } 2315 else 2316 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 2317 2318 // Set the immediate. 2319 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2320 .addImm(LII.Imm); 2321 } 2322 2323 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 2324 bool &SeenIntermediateUse) const { 2325 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 2326 "Should be called after register allocation."); 2327 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2328 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 2329 It++; 2330 SeenIntermediateUse = false; 2331 for (; It != E; ++It) { 2332 if (It->modifiesRegister(Reg, TRI)) 2333 return &*It; 2334 if (It->readsRegister(Reg, TRI)) 2335 SeenIntermediateUse = true; 2336 } 2337 return nullptr; 2338 } 2339 2340 MachineInstr *PPCInstrInfo::getForwardingDefMI( 2341 MachineInstr &MI, 2342 unsigned &OpNoForForwarding, 2343 bool &SeenIntermediateUse) const { 2344 OpNoForForwarding = ~0U; 2345 MachineInstr *DefMI = nullptr; 2346 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 2347 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2348 // If we're in SSA, get the defs through the MRI. Otherwise, only look 2349 // within the basic block to see if the register is defined using an LI/LI8. 2350 if (MRI->isSSA()) { 2351 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2352 if (!MI.getOperand(i).isReg()) 2353 continue; 2354 Register Reg = MI.getOperand(i).getReg(); 2355 if (!Register::isVirtualRegister(Reg)) 2356 continue; 2357 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 2358 if (Register::isVirtualRegister(TrueReg)) { 2359 DefMI = MRI->getVRegDef(TrueReg); 2360 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) { 2361 OpNoForForwarding = i; 2362 break; 2363 } 2364 } 2365 } 2366 } else { 2367 // Looking back through the definition for each operand could be expensive, 2368 // so exit early if this isn't an instruction that either has an immediate 2369 // form or is already an immediate form that we can handle. 2370 ImmInstrInfo III; 2371 unsigned Opc = MI.getOpcode(); 2372 bool ConvertibleImmForm = 2373 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || 2374 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || 2375 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || 2376 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || 2377 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 2378 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || 2379 Opc == PPC::RLWINM8_rec; 2380 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 2381 ? isVFRegister(MI.getOperand(0).getReg()) 2382 : false; 2383 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 2384 return nullptr; 2385 2386 // Don't convert or %X, %Y, %Y since that's just a register move. 2387 if ((Opc == PPC::OR || Opc == PPC::OR8) && 2388 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 2389 return nullptr; 2390 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2391 MachineOperand &MO = MI.getOperand(i); 2392 SeenIntermediateUse = false; 2393 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 2394 Register Reg = MI.getOperand(i).getReg(); 2395 // If we see another use of this reg between the def and the MI, 2396 // we want to flat it so the def isn't deleted. 2397 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 2398 if (DefMI) { 2399 // Is this register defined by some form of add-immediate (including 2400 // load-immediate) within this basic block? 2401 switch (DefMI->getOpcode()) { 2402 default: 2403 break; 2404 case PPC::LI: 2405 case PPC::LI8: 2406 case PPC::ADDItocL: 2407 case PPC::ADDI: 2408 case PPC::ADDI8: 2409 OpNoForForwarding = i; 2410 return DefMI; 2411 } 2412 } 2413 } 2414 } 2415 } 2416 return OpNoForForwarding == ~0U ? nullptr : DefMI; 2417 } 2418 2419 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 2420 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2421 // Power 8 2422 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2423 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, 2424 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2425 PPC::SPILLTOVSR_ST, PPC::EVSTDD}, 2426 // Power 9 2427 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2428 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, 2429 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2430 PPC::SPILLTOVSR_ST}}; 2431 2432 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2433 } 2434 2435 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 2436 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2437 // Power 8 2438 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2439 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX, 2440 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2441 PPC::SPILLTOVSR_LD, PPC::EVLDD}, 2442 // Power 9 2443 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2444 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32, 2445 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2446 PPC::SPILLTOVSR_LD}}; 2447 2448 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2449 } 2450 2451 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI, 2452 unsigned RegNo) const { 2453 const MachineRegisterInfo &MRI = 2454 StartMI.getParent()->getParent()->getRegInfo(); 2455 if (MRI.isSSA()) 2456 return; 2457 2458 // Instructions between [StartMI, EndMI] should be in same basic block. 2459 assert((StartMI.getParent() == EndMI.getParent()) && 2460 "Instructions are not in same basic block"); 2461 2462 bool IsKillSet = false; 2463 2464 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 2465 MachineOperand &MO = MI.getOperand(Index); 2466 if (MO.isReg() && MO.isUse() && MO.isKill() && 2467 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 2468 MO.setIsKill(false); 2469 }; 2470 2471 // Set killed flag for EndMI. 2472 // No need to do anything if EndMI defines RegNo. 2473 int UseIndex = 2474 EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 2475 if (UseIndex != -1) { 2476 EndMI.getOperand(UseIndex).setIsKill(true); 2477 IsKillSet = true; 2478 // Clear killed flag for other EndMI operands related to RegNo. In some 2479 // upexpected cases, killed may be set multiple times for same register 2480 // operand in same MI. 2481 for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i) 2482 if (i != UseIndex) 2483 clearOperandKillInfo(EndMI, i); 2484 } 2485 2486 // Walking the inst in reverse order (EndMI -> StartMI]. 2487 MachineBasicBlock::reverse_iterator It = EndMI; 2488 MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend(); 2489 // EndMI has been handled above, skip it here. 2490 It++; 2491 MachineOperand *MO = nullptr; 2492 for (; It != E; ++It) { 2493 // Skip insturctions which could not be a def/use of RegNo. 2494 if (It->isDebugInstr() || It->isPosition()) 2495 continue; 2496 2497 // Clear killed flag for all It operands related to RegNo. In some 2498 // upexpected cases, killed may be set multiple times for same register 2499 // operand in same MI. 2500 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 2501 clearOperandKillInfo(*It, i); 2502 2503 // If killed is not set, set killed for its last use or set dead for its def 2504 // if no use found. 2505 if (!IsKillSet) { 2506 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 2507 // Use found, set it killed. 2508 IsKillSet = true; 2509 MO->setIsKill(true); 2510 continue; 2511 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 2512 &getRegisterInfo()))) { 2513 // No use found, set dead for its def. 2514 assert(&*It == &StartMI && "No new def between StartMI and EndMI."); 2515 MO->setIsDead(true); 2516 break; 2517 } 2518 } 2519 2520 if ((&*It) == &StartMI) 2521 break; 2522 } 2523 // Ensure RegMo liveness is killed after EndMI. 2524 assert((IsKillSet || (MO && MO->isDead())) && 2525 "RegNo should be killed or dead"); 2526 } 2527 2528 // This opt tries to convert the following imm form to an index form to save an 2529 // add for stack variables. 2530 // Return false if no such pattern found. 2531 // 2532 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 2533 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg 2534 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) 2535 // 2536 // can be converted to: 2537 // 2538 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) 2539 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) 2540 // 2541 // In order to eliminate ADD instr, make sure that: 2542 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in 2543 // new ADDI instr and ADDI can only take int16 Imm. 2544 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use 2545 // between ADDI and ADD instr since its original def in ADDI will be changed 2546 // in new ADDI instr. And also there should be no new def for it between 2547 // ADD and Imm instr as ToBeChangedReg will be used in Index instr. 2548 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use 2549 // between ADD and Imm instr since ADD instr will be eliminated. 2550 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be 2551 // moved to Index instr. 2552 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { 2553 MachineFunction *MF = MI.getParent()->getParent(); 2554 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2555 bool PostRA = !MRI->isSSA(); 2556 // Do this opt after PEI which is after RA. The reason is stack slot expansion 2557 // in PEI may expose such opportunities since in PEI, stack slot offsets to 2558 // frame base(OffsetAddi) are determined. 2559 if (!PostRA) 2560 return false; 2561 unsigned ToBeDeletedReg = 0; 2562 int64_t OffsetImm = 0; 2563 unsigned XFormOpcode = 0; 2564 ImmInstrInfo III; 2565 2566 // Check if Imm instr meets requirement. 2567 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, 2568 III)) 2569 return false; 2570 2571 bool OtherIntermediateUse = false; 2572 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); 2573 2574 // Exit if there is other use between ADD and Imm instr or no def found. 2575 if (OtherIntermediateUse || !ADDMI) 2576 return false; 2577 2578 // Check if ADD instr meets requirement. 2579 if (!isADDInstrEligibleForFolding(*ADDMI)) 2580 return false; 2581 2582 unsigned ScaleRegIdx = 0; 2583 int64_t OffsetAddi = 0; 2584 MachineInstr *ADDIMI = nullptr; 2585 2586 // Check if there is a valid ToBeChangedReg in ADDMI. 2587 // 1: It must be killed. 2588 // 2: Its definition must be a valid ADDIMI. 2589 // 3: It must satify int16 offset requirement. 2590 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) 2591 ScaleRegIdx = 2; 2592 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) 2593 ScaleRegIdx = 1; 2594 else 2595 return false; 2596 2597 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); 2598 unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg(); 2599 unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); 2600 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, 2601 MachineBasicBlock::iterator End) { 2602 for (auto It = ++Start; It != End; It++) 2603 if (It->modifiesRegister(Reg, &getRegisterInfo())) 2604 return true; 2605 return false; 2606 }; 2607 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr 2608 // and Imm Instr. 2609 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) 2610 return false; 2611 2612 // Now start to do the transformation. 2613 LLVM_DEBUG(dbgs() << "Replace instruction: " 2614 << "\n"); 2615 LLVM_DEBUG(ADDIMI->dump()); 2616 LLVM_DEBUG(ADDMI->dump()); 2617 LLVM_DEBUG(MI.dump()); 2618 LLVM_DEBUG(dbgs() << "with: " 2619 << "\n"); 2620 2621 // Update ADDI instr. 2622 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); 2623 2624 // Update Imm instr. 2625 MI.setDesc(get(XFormOpcode)); 2626 MI.getOperand(III.ImmOpNo) 2627 .ChangeToRegister(ScaleReg, false, false, 2628 ADDMI->getOperand(ScaleRegIdx).isKill()); 2629 2630 MI.getOperand(III.OpNoForForwarding) 2631 .ChangeToRegister(ToBeChangedReg, false, false, true); 2632 2633 // Eliminate ADD instr. 2634 ADDMI->eraseFromParent(); 2635 2636 LLVM_DEBUG(ADDIMI->dump()); 2637 LLVM_DEBUG(MI.dump()); 2638 2639 return true; 2640 } 2641 2642 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, 2643 int64_t &Imm) const { 2644 unsigned Opc = ADDIMI.getOpcode(); 2645 2646 // Exit if the instruction is not ADDI. 2647 if (Opc != PPC::ADDI && Opc != PPC::ADDI8) 2648 return false; 2649 2650 Imm = ADDIMI.getOperand(2).getImm(); 2651 2652 return true; 2653 } 2654 2655 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { 2656 unsigned Opc = ADDMI.getOpcode(); 2657 2658 // Exit if the instruction is not ADD. 2659 return Opc == PPC::ADD4 || Opc == PPC::ADD8; 2660 } 2661 2662 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, 2663 unsigned &ToBeDeletedReg, 2664 unsigned &XFormOpcode, 2665 int64_t &OffsetImm, 2666 ImmInstrInfo &III) const { 2667 // Only handle load/store. 2668 if (!MI.mayLoadOrStore()) 2669 return false; 2670 2671 unsigned Opc = MI.getOpcode(); 2672 2673 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); 2674 2675 // Exit if instruction has no index form. 2676 if (XFormOpcode == PPC::INSTRUCTION_LIST_END) 2677 return false; 2678 2679 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. 2680 if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()), 2681 III, true)) 2682 return false; 2683 2684 if (!III.IsSummingOperands) 2685 return false; 2686 2687 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); 2688 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); 2689 // Only support imm operands, not relocation slots or others. 2690 if (!ImmOperand.isImm()) 2691 return false; 2692 2693 assert(RegOperand.isReg() && "Instruction format is not right"); 2694 2695 // There are other use for ToBeDeletedReg after Imm instr, can not delete it. 2696 if (!RegOperand.isKill()) 2697 return false; 2698 2699 ToBeDeletedReg = RegOperand.getReg(); 2700 OffsetImm = ImmOperand.getImm(); 2701 2702 return true; 2703 } 2704 2705 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, 2706 MachineInstr *&ADDIMI, 2707 int64_t &OffsetAddi, 2708 int64_t OffsetImm) const { 2709 assert((Index == 1 || Index == 2) && "Invalid operand index for add."); 2710 MachineOperand &MO = ADDMI->getOperand(Index); 2711 2712 if (!MO.isKill()) 2713 return false; 2714 2715 bool OtherIntermediateUse = false; 2716 2717 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); 2718 // Currently handle only one "add + Imminstr" pair case, exit if other 2719 // intermediate use for ToBeChangedReg found. 2720 // TODO: handle the cases where there are other "add + Imminstr" pairs 2721 // with same offset in Imminstr which is like: 2722 // 2723 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 2724 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 2725 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) 2726 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 2727 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) 2728 // 2729 // can be converted to: 2730 // 2731 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, 2732 // (OffsetAddi + OffsetImm) 2733 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg 2734 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) 2735 2736 if (OtherIntermediateUse || !ADDIMI) 2737 return false; 2738 // Check if ADDI instr meets requirement. 2739 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) 2740 return false; 2741 2742 if (isInt<16>(OffsetAddi + OffsetImm)) 2743 return true; 2744 return false; 2745 } 2746 2747 // If this instruction has an immediate form and one of its operands is a 2748 // result of a load-immediate or an add-immediate, convert it to 2749 // the immediate form if the constant is in range. 2750 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 2751 MachineInstr **KilledDef) const { 2752 MachineFunction *MF = MI.getParent()->getParent(); 2753 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2754 bool PostRA = !MRI->isSSA(); 2755 bool SeenIntermediateUse = true; 2756 unsigned ForwardingOperand = ~0U; 2757 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 2758 SeenIntermediateUse); 2759 if (!DefMI) 2760 return false; 2761 assert(ForwardingOperand < MI.getNumOperands() && 2762 "The forwarding operand needs to be valid at this point"); 2763 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 2764 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 2765 Register ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg(); 2766 if (KilledDef && KillFwdDefMI) 2767 *KilledDef = DefMI; 2768 2769 ImmInstrInfo III; 2770 bool IsVFReg = MI.getOperand(0).isReg() 2771 ? isVFRegister(MI.getOperand(0).getReg()) 2772 : false; 2773 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 2774 // If this is a reg+reg instruction that has a reg+imm form, 2775 // and one of the operands is produced by an add-immediate, 2776 // try to convert it. 2777 if (HasImmForm && 2778 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 2779 KillFwdDefMI)) 2780 return true; 2781 2782 if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) || 2783 !DefMI->getOperand(1).isImm()) 2784 return false; 2785 2786 int64_t Immediate = DefMI->getOperand(1).getImm(); 2787 // Sign-extend to 64-bits. 2788 int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 2789 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 2790 2791 // If this is a reg+reg instruction that has a reg+imm form, 2792 // and one of the operands is produced by LI, convert it now. 2793 if (HasImmForm) 2794 return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm); 2795 2796 bool ReplaceWithLI = false; 2797 bool Is64BitLI = false; 2798 int64_t NewImm = 0; 2799 bool SetCR = false; 2800 unsigned Opc = MI.getOpcode(); 2801 switch (Opc) { 2802 default: return false; 2803 2804 // FIXME: Any branches conditional on such a comparison can be made 2805 // unconditional. At this time, this happens too infrequently to be worth 2806 // the implementation effort, but if that ever changes, we could convert 2807 // such a pattern here. 2808 case PPC::CMPWI: 2809 case PPC::CMPLWI: 2810 case PPC::CMPDI: 2811 case PPC::CMPLDI: { 2812 // Doing this post-RA would require dataflow analysis to reliably find uses 2813 // of the CR register set by the compare. 2814 // No need to fixup killed/dead flag since this transformation is only valid 2815 // before RA. 2816 if (PostRA) 2817 return false; 2818 // If a compare-immediate is fed by an immediate and is itself an input of 2819 // an ISEL (the most common case) into a COPY of the correct register. 2820 bool Changed = false; 2821 Register DefReg = MI.getOperand(0).getReg(); 2822 int64_t Comparand = MI.getOperand(2).getImm(); 2823 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ? 2824 (Comparand | 0xFFFFFFFFFFFF0000) : Comparand; 2825 2826 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 2827 unsigned UseOpc = CompareUseMI.getOpcode(); 2828 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 2829 continue; 2830 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 2831 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 2832 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 2833 unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg, 2834 FalseReg, CRSubReg); 2835 if (RegToCopy == PPC::NoRegister) 2836 continue; 2837 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 2838 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 2839 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 2840 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 2841 CompareUseMI.RemoveOperand(3); 2842 CompareUseMI.RemoveOperand(2); 2843 continue; 2844 } 2845 LLVM_DEBUG( 2846 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 2847 LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump()); 2848 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 2849 // Convert to copy and remove unneeded operands. 2850 CompareUseMI.setDesc(get(PPC::COPY)); 2851 CompareUseMI.RemoveOperand(3); 2852 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 2853 CmpIselsConverted++; 2854 Changed = true; 2855 LLVM_DEBUG(CompareUseMI.dump()); 2856 } 2857 if (Changed) 2858 return true; 2859 // This may end up incremented multiple times since this function is called 2860 // during a fixed-point transformation, but it is only meant to indicate the 2861 // presence of this opportunity. 2862 MissedConvertibleImmediateInstrs++; 2863 return false; 2864 } 2865 2866 // Immediate forms - may simply be convertable to an LI. 2867 case PPC::ADDI: 2868 case PPC::ADDI8: { 2869 // Does the sum fit in a 16-bit signed field? 2870 int64_t Addend = MI.getOperand(2).getImm(); 2871 if (isInt<16>(Addend + SExtImm)) { 2872 ReplaceWithLI = true; 2873 Is64BitLI = Opc == PPC::ADDI8; 2874 NewImm = Addend + SExtImm; 2875 break; 2876 } 2877 return false; 2878 } 2879 case PPC::RLDICL: 2880 case PPC::RLDICL_rec: 2881 case PPC::RLDICL_32: 2882 case PPC::RLDICL_32_64: { 2883 // Use APInt's rotate function. 2884 int64_t SH = MI.getOperand(2).getImm(); 2885 int64_t MB = MI.getOperand(3).getImm(); 2886 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, 2887 SExtImm, true); 2888 InVal = InVal.rotl(SH); 2889 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2890 InVal &= Mask; 2891 // Can't replace negative values with an LI as that will sign-extend 2892 // and not clear the left bits. If we're setting the CR bit, we will use 2893 // ANDI_rec which won't sign extend, so that's safe. 2894 if (isUInt<15>(InVal.getSExtValue()) || 2895 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { 2896 ReplaceWithLI = true; 2897 Is64BitLI = Opc != PPC::RLDICL_32; 2898 NewImm = InVal.getSExtValue(); 2899 SetCR = Opc == PPC::RLDICL_rec; 2900 break; 2901 } 2902 return false; 2903 } 2904 case PPC::RLWINM: 2905 case PPC::RLWINM8: 2906 case PPC::RLWINM_rec: 2907 case PPC::RLWINM8_rec: { 2908 int64_t SH = MI.getOperand(2).getImm(); 2909 int64_t MB = MI.getOperand(3).getImm(); 2910 int64_t ME = MI.getOperand(4).getImm(); 2911 APInt InVal(32, SExtImm, true); 2912 InVal = InVal.rotl(SH); 2913 // Set the bits ( MB + 32 ) to ( ME + 32 ). 2914 uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2915 InVal &= Mask; 2916 // Can't replace negative values with an LI as that will sign-extend 2917 // and not clear the left bits. If we're setting the CR bit, we will use 2918 // ANDI_rec which won't sign extend, so that's safe. 2919 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 2920 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && 2921 isUInt<16>(InVal.getSExtValue())); 2922 if (ValueFits) { 2923 ReplaceWithLI = true; 2924 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; 2925 NewImm = InVal.getSExtValue(); 2926 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; 2927 break; 2928 } 2929 return false; 2930 } 2931 case PPC::ORI: 2932 case PPC::ORI8: 2933 case PPC::XORI: 2934 case PPC::XORI8: { 2935 int64_t LogicalImm = MI.getOperand(2).getImm(); 2936 int64_t Result = 0; 2937 if (Opc == PPC::ORI || Opc == PPC::ORI8) 2938 Result = LogicalImm | SExtImm; 2939 else 2940 Result = LogicalImm ^ SExtImm; 2941 if (isInt<16>(Result)) { 2942 ReplaceWithLI = true; 2943 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 2944 NewImm = Result; 2945 break; 2946 } 2947 return false; 2948 } 2949 } 2950 2951 if (ReplaceWithLI) { 2952 // We need to be careful with CR-setting instructions we're replacing. 2953 if (SetCR) { 2954 // We don't know anything about uses when we're out of SSA, so only 2955 // replace if the new immediate will be reproduced. 2956 bool ImmChanged = (SExtImm & NewImm) != NewImm; 2957 if (PostRA && ImmChanged) 2958 return false; 2959 2960 if (!PostRA) { 2961 // If the defining load-immediate has no other uses, we can just replace 2962 // the immediate with the new immediate. 2963 if (MRI->hasOneUse(DefMI->getOperand(0).getReg())) 2964 DefMI->getOperand(1).setImm(NewImm); 2965 2966 // If we're not using the GPR result of the CR-setting instruction, we 2967 // just need to and with zero/non-zero depending on the new immediate. 2968 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 2969 if (NewImm) { 2970 assert(Immediate && "Transformation converted zero to non-zero?"); 2971 NewImm = Immediate; 2972 } 2973 } 2974 else if (ImmChanged) 2975 return false; 2976 } 2977 } 2978 2979 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 2980 LLVM_DEBUG(MI.dump()); 2981 LLVM_DEBUG(dbgs() << "Fed by:\n"); 2982 LLVM_DEBUG(DefMI->dump()); 2983 LoadImmediateInfo LII; 2984 LII.Imm = NewImm; 2985 LII.Is64Bit = Is64BitLI; 2986 LII.SetCR = SetCR; 2987 // If we're setting the CR, the original load-immediate must be kept (as an 2988 // operand to ANDI_rec/ANDI8_rec). 2989 if (KilledDef && SetCR) 2990 *KilledDef = nullptr; 2991 replaceInstrWithLI(MI, LII); 2992 2993 // Fixup killed/dead flag after transformation. 2994 // Pattern: 2995 // ForwardingOperandReg = LI imm1 2996 // y = op2 imm2, ForwardingOperandReg(killed) 2997 if (IsForwardingOperandKilled) 2998 fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg); 2999 3000 LLVM_DEBUG(dbgs() << "With:\n"); 3001 LLVM_DEBUG(MI.dump()); 3002 return true; 3003 } 3004 return false; 3005 } 3006 3007 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 3008 ImmInstrInfo &III, bool PostRA) const { 3009 // The vast majority of the instructions would need their operand 2 replaced 3010 // with an immediate when switching to the reg+imm form. A marked exception 3011 // are the update form loads/stores for which a constant operand 2 would need 3012 // to turn into a displacement and move operand 1 to the operand 2 position. 3013 III.ImmOpNo = 2; 3014 III.OpNoForForwarding = 2; 3015 III.ImmWidth = 16; 3016 III.ImmMustBeMultipleOf = 1; 3017 III.TruncateImmTo = 0; 3018 III.IsSummingOperands = false; 3019 switch (Opc) { 3020 default: return false; 3021 case PPC::ADD4: 3022 case PPC::ADD8: 3023 III.SignedImm = true; 3024 III.ZeroIsSpecialOrig = 0; 3025 III.ZeroIsSpecialNew = 1; 3026 III.IsCommutative = true; 3027 III.IsSummingOperands = true; 3028 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 3029 break; 3030 case PPC::ADDC: 3031 case PPC::ADDC8: 3032 III.SignedImm = true; 3033 III.ZeroIsSpecialOrig = 0; 3034 III.ZeroIsSpecialNew = 0; 3035 III.IsCommutative = true; 3036 III.IsSummingOperands = true; 3037 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 3038 break; 3039 case PPC::ADDC_rec: 3040 III.SignedImm = true; 3041 III.ZeroIsSpecialOrig = 0; 3042 III.ZeroIsSpecialNew = 0; 3043 III.IsCommutative = true; 3044 III.IsSummingOperands = true; 3045 III.ImmOpcode = PPC::ADDIC_rec; 3046 break; 3047 case PPC::SUBFC: 3048 case PPC::SUBFC8: 3049 III.SignedImm = true; 3050 III.ZeroIsSpecialOrig = 0; 3051 III.ZeroIsSpecialNew = 0; 3052 III.IsCommutative = false; 3053 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 3054 break; 3055 case PPC::CMPW: 3056 case PPC::CMPD: 3057 III.SignedImm = true; 3058 III.ZeroIsSpecialOrig = 0; 3059 III.ZeroIsSpecialNew = 0; 3060 III.IsCommutative = false; 3061 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 3062 break; 3063 case PPC::CMPLW: 3064 case PPC::CMPLD: 3065 III.SignedImm = false; 3066 III.ZeroIsSpecialOrig = 0; 3067 III.ZeroIsSpecialNew = 0; 3068 III.IsCommutative = false; 3069 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 3070 break; 3071 case PPC::AND_rec: 3072 case PPC::AND8_rec: 3073 case PPC::OR: 3074 case PPC::OR8: 3075 case PPC::XOR: 3076 case PPC::XOR8: 3077 III.SignedImm = false; 3078 III.ZeroIsSpecialOrig = 0; 3079 III.ZeroIsSpecialNew = 0; 3080 III.IsCommutative = true; 3081 switch(Opc) { 3082 default: llvm_unreachable("Unknown opcode"); 3083 case PPC::AND_rec: 3084 III.ImmOpcode = PPC::ANDI_rec; 3085 break; 3086 case PPC::AND8_rec: 3087 III.ImmOpcode = PPC::ANDI8_rec; 3088 break; 3089 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 3090 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 3091 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 3092 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 3093 } 3094 break; 3095 case PPC::RLWNM: 3096 case PPC::RLWNM8: 3097 case PPC::RLWNM_rec: 3098 case PPC::RLWNM8_rec: 3099 case PPC::SLW: 3100 case PPC::SLW8: 3101 case PPC::SLW_rec: 3102 case PPC::SLW8_rec: 3103 case PPC::SRW: 3104 case PPC::SRW8: 3105 case PPC::SRW_rec: 3106 case PPC::SRW8_rec: 3107 case PPC::SRAW: 3108 case PPC::SRAW_rec: 3109 III.SignedImm = false; 3110 III.ZeroIsSpecialOrig = 0; 3111 III.ZeroIsSpecialNew = 0; 3112 III.IsCommutative = false; 3113 // This isn't actually true, but the instructions ignore any of the 3114 // upper bits, so any immediate loaded with an LI is acceptable. 3115 // This does not apply to shift right algebraic because a value 3116 // out of range will produce a -1/0. 3117 III.ImmWidth = 16; 3118 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || 3119 Opc == PPC::RLWNM8_rec) 3120 III.TruncateImmTo = 5; 3121 else 3122 III.TruncateImmTo = 6; 3123 switch(Opc) { 3124 default: llvm_unreachable("Unknown opcode"); 3125 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 3126 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 3127 case PPC::RLWNM_rec: 3128 III.ImmOpcode = PPC::RLWINM_rec; 3129 break; 3130 case PPC::RLWNM8_rec: 3131 III.ImmOpcode = PPC::RLWINM8_rec; 3132 break; 3133 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 3134 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 3135 case PPC::SLW_rec: 3136 III.ImmOpcode = PPC::RLWINM_rec; 3137 break; 3138 case PPC::SLW8_rec: 3139 III.ImmOpcode = PPC::RLWINM8_rec; 3140 break; 3141 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 3142 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 3143 case PPC::SRW_rec: 3144 III.ImmOpcode = PPC::RLWINM_rec; 3145 break; 3146 case PPC::SRW8_rec: 3147 III.ImmOpcode = PPC::RLWINM8_rec; 3148 break; 3149 case PPC::SRAW: 3150 III.ImmWidth = 5; 3151 III.TruncateImmTo = 0; 3152 III.ImmOpcode = PPC::SRAWI; 3153 break; 3154 case PPC::SRAW_rec: 3155 III.ImmWidth = 5; 3156 III.TruncateImmTo = 0; 3157 III.ImmOpcode = PPC::SRAWI_rec; 3158 break; 3159 } 3160 break; 3161 case PPC::RLDCL: 3162 case PPC::RLDCL_rec: 3163 case PPC::RLDCR: 3164 case PPC::RLDCR_rec: 3165 case PPC::SLD: 3166 case PPC::SLD_rec: 3167 case PPC::SRD: 3168 case PPC::SRD_rec: 3169 case PPC::SRAD: 3170 case PPC::SRAD_rec: 3171 III.SignedImm = false; 3172 III.ZeroIsSpecialOrig = 0; 3173 III.ZeroIsSpecialNew = 0; 3174 III.IsCommutative = false; 3175 // This isn't actually true, but the instructions ignore any of the 3176 // upper bits, so any immediate loaded with an LI is acceptable. 3177 // This does not apply to shift right algebraic because a value 3178 // out of range will produce a -1/0. 3179 III.ImmWidth = 16; 3180 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || 3181 Opc == PPC::RLDCR_rec) 3182 III.TruncateImmTo = 6; 3183 else 3184 III.TruncateImmTo = 7; 3185 switch(Opc) { 3186 default: llvm_unreachable("Unknown opcode"); 3187 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 3188 case PPC::RLDCL_rec: 3189 III.ImmOpcode = PPC::RLDICL_rec; 3190 break; 3191 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 3192 case PPC::RLDCR_rec: 3193 III.ImmOpcode = PPC::RLDICR_rec; 3194 break; 3195 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 3196 case PPC::SLD_rec: 3197 III.ImmOpcode = PPC::RLDICR_rec; 3198 break; 3199 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 3200 case PPC::SRD_rec: 3201 III.ImmOpcode = PPC::RLDICL_rec; 3202 break; 3203 case PPC::SRAD: 3204 III.ImmWidth = 6; 3205 III.TruncateImmTo = 0; 3206 III.ImmOpcode = PPC::SRADI; 3207 break; 3208 case PPC::SRAD_rec: 3209 III.ImmWidth = 6; 3210 III.TruncateImmTo = 0; 3211 III.ImmOpcode = PPC::SRADI_rec; 3212 break; 3213 } 3214 break; 3215 // Loads and stores: 3216 case PPC::LBZX: 3217 case PPC::LBZX8: 3218 case PPC::LHZX: 3219 case PPC::LHZX8: 3220 case PPC::LHAX: 3221 case PPC::LHAX8: 3222 case PPC::LWZX: 3223 case PPC::LWZX8: 3224 case PPC::LWAX: 3225 case PPC::LDX: 3226 case PPC::LFSX: 3227 case PPC::LFDX: 3228 case PPC::STBX: 3229 case PPC::STBX8: 3230 case PPC::STHX: 3231 case PPC::STHX8: 3232 case PPC::STWX: 3233 case PPC::STWX8: 3234 case PPC::STDX: 3235 case PPC::STFSX: 3236 case PPC::STFDX: 3237 III.SignedImm = true; 3238 III.ZeroIsSpecialOrig = 1; 3239 III.ZeroIsSpecialNew = 2; 3240 III.IsCommutative = true; 3241 III.IsSummingOperands = true; 3242 III.ImmOpNo = 1; 3243 III.OpNoForForwarding = 2; 3244 switch(Opc) { 3245 default: llvm_unreachable("Unknown opcode"); 3246 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 3247 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 3248 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 3249 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 3250 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 3251 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 3252 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 3253 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 3254 case PPC::LWAX: 3255 III.ImmOpcode = PPC::LWA; 3256 III.ImmMustBeMultipleOf = 4; 3257 break; 3258 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 3259 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 3260 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 3261 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 3262 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 3263 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 3264 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 3265 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 3266 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 3267 case PPC::STDX: 3268 III.ImmOpcode = PPC::STD; 3269 III.ImmMustBeMultipleOf = 4; 3270 break; 3271 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 3272 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 3273 } 3274 break; 3275 case PPC::LBZUX: 3276 case PPC::LBZUX8: 3277 case PPC::LHZUX: 3278 case PPC::LHZUX8: 3279 case PPC::LHAUX: 3280 case PPC::LHAUX8: 3281 case PPC::LWZUX: 3282 case PPC::LWZUX8: 3283 case PPC::LDUX: 3284 case PPC::LFSUX: 3285 case PPC::LFDUX: 3286 case PPC::STBUX: 3287 case PPC::STBUX8: 3288 case PPC::STHUX: 3289 case PPC::STHUX8: 3290 case PPC::STWUX: 3291 case PPC::STWUX8: 3292 case PPC::STDUX: 3293 case PPC::STFSUX: 3294 case PPC::STFDUX: 3295 III.SignedImm = true; 3296 III.ZeroIsSpecialOrig = 2; 3297 III.ZeroIsSpecialNew = 3; 3298 III.IsCommutative = false; 3299 III.IsSummingOperands = true; 3300 III.ImmOpNo = 2; 3301 III.OpNoForForwarding = 3; 3302 switch(Opc) { 3303 default: llvm_unreachable("Unknown opcode"); 3304 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 3305 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 3306 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 3307 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 3308 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 3309 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 3310 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 3311 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 3312 case PPC::LDUX: 3313 III.ImmOpcode = PPC::LDU; 3314 III.ImmMustBeMultipleOf = 4; 3315 break; 3316 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 3317 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 3318 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 3319 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 3320 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 3321 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 3322 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 3323 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 3324 case PPC::STDUX: 3325 III.ImmOpcode = PPC::STDU; 3326 III.ImmMustBeMultipleOf = 4; 3327 break; 3328 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 3329 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 3330 } 3331 break; 3332 // Power9 and up only. For some of these, the X-Form version has access to all 3333 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 3334 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 3335 // into or stored from is one of the VR registers. 3336 case PPC::LXVX: 3337 case PPC::LXSSPX: 3338 case PPC::LXSDX: 3339 case PPC::STXVX: 3340 case PPC::STXSSPX: 3341 case PPC::STXSDX: 3342 case PPC::XFLOADf32: 3343 case PPC::XFLOADf64: 3344 case PPC::XFSTOREf32: 3345 case PPC::XFSTOREf64: 3346 if (!Subtarget.hasP9Vector()) 3347 return false; 3348 III.SignedImm = true; 3349 III.ZeroIsSpecialOrig = 1; 3350 III.ZeroIsSpecialNew = 2; 3351 III.IsCommutative = true; 3352 III.IsSummingOperands = true; 3353 III.ImmOpNo = 1; 3354 III.OpNoForForwarding = 2; 3355 III.ImmMustBeMultipleOf = 4; 3356 switch(Opc) { 3357 default: llvm_unreachable("Unknown opcode"); 3358 case PPC::LXVX: 3359 III.ImmOpcode = PPC::LXV; 3360 III.ImmMustBeMultipleOf = 16; 3361 break; 3362 case PPC::LXSSPX: 3363 if (PostRA) { 3364 if (IsVFReg) 3365 III.ImmOpcode = PPC::LXSSP; 3366 else { 3367 III.ImmOpcode = PPC::LFS; 3368 III.ImmMustBeMultipleOf = 1; 3369 } 3370 break; 3371 } 3372 LLVM_FALLTHROUGH; 3373 case PPC::XFLOADf32: 3374 III.ImmOpcode = PPC::DFLOADf32; 3375 break; 3376 case PPC::LXSDX: 3377 if (PostRA) { 3378 if (IsVFReg) 3379 III.ImmOpcode = PPC::LXSD; 3380 else { 3381 III.ImmOpcode = PPC::LFD; 3382 III.ImmMustBeMultipleOf = 1; 3383 } 3384 break; 3385 } 3386 LLVM_FALLTHROUGH; 3387 case PPC::XFLOADf64: 3388 III.ImmOpcode = PPC::DFLOADf64; 3389 break; 3390 case PPC::STXVX: 3391 III.ImmOpcode = PPC::STXV; 3392 III.ImmMustBeMultipleOf = 16; 3393 break; 3394 case PPC::STXSSPX: 3395 if (PostRA) { 3396 if (IsVFReg) 3397 III.ImmOpcode = PPC::STXSSP; 3398 else { 3399 III.ImmOpcode = PPC::STFS; 3400 III.ImmMustBeMultipleOf = 1; 3401 } 3402 break; 3403 } 3404 LLVM_FALLTHROUGH; 3405 case PPC::XFSTOREf32: 3406 III.ImmOpcode = PPC::DFSTOREf32; 3407 break; 3408 case PPC::STXSDX: 3409 if (PostRA) { 3410 if (IsVFReg) 3411 III.ImmOpcode = PPC::STXSD; 3412 else { 3413 III.ImmOpcode = PPC::STFD; 3414 III.ImmMustBeMultipleOf = 1; 3415 } 3416 break; 3417 } 3418 LLVM_FALLTHROUGH; 3419 case PPC::XFSTOREf64: 3420 III.ImmOpcode = PPC::DFSTOREf64; 3421 break; 3422 } 3423 break; 3424 } 3425 return true; 3426 } 3427 3428 // Utility function for swaping two arbitrary operands of an instruction. 3429 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 3430 assert(Op1 != Op2 && "Cannot swap operand with itself."); 3431 3432 unsigned MaxOp = std::max(Op1, Op2); 3433 unsigned MinOp = std::min(Op1, Op2); 3434 MachineOperand MOp1 = MI.getOperand(MinOp); 3435 MachineOperand MOp2 = MI.getOperand(MaxOp); 3436 MI.RemoveOperand(std::max(Op1, Op2)); 3437 MI.RemoveOperand(std::min(Op1, Op2)); 3438 3439 // If the operands we are swapping are the two at the end (the common case) 3440 // we can just remove both and add them in the opposite order. 3441 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 3442 MI.addOperand(MOp2); 3443 MI.addOperand(MOp1); 3444 } else { 3445 // Store all operands in a temporary vector, remove them and re-add in the 3446 // right order. 3447 SmallVector<MachineOperand, 2> MOps; 3448 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 3449 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 3450 MOps.push_back(MI.getOperand(i)); 3451 MI.RemoveOperand(i); 3452 } 3453 // MOp2 needs to be added next. 3454 MI.addOperand(MOp2); 3455 // Now add the rest. 3456 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 3457 if (i == MaxOp) 3458 MI.addOperand(MOp1); 3459 else { 3460 MI.addOperand(MOps.back()); 3461 MOps.pop_back(); 3462 } 3463 } 3464 } 3465 } 3466 3467 // Check if the 'MI' that has the index OpNoForForwarding 3468 // meets the requirement described in the ImmInstrInfo. 3469 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 3470 const ImmInstrInfo &III, 3471 unsigned OpNoForForwarding 3472 ) const { 3473 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 3474 // would not work pre-RA, we can only do the check post RA. 3475 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3476 if (MRI.isSSA()) 3477 return false; 3478 3479 // Cannot do the transform if MI isn't summing the operands. 3480 if (!III.IsSummingOperands) 3481 return false; 3482 3483 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 3484 if (!III.ZeroIsSpecialOrig) 3485 return false; 3486 3487 // We cannot do the transform if the operand we are trying to replace 3488 // isn't the same as the operand the instruction allows. 3489 if (OpNoForForwarding != III.OpNoForForwarding) 3490 return false; 3491 3492 // Check if the instruction we are trying to transform really has 3493 // the special zero register as its operand. 3494 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 3495 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 3496 return false; 3497 3498 // This machine instruction is convertible if it is, 3499 // 1. summing the operands. 3500 // 2. one of the operands is special zero register. 3501 // 3. the operand we are trying to replace is allowed by the MI. 3502 return true; 3503 } 3504 3505 // Check if the DefMI is the add inst and set the ImmMO and RegMO 3506 // accordingly. 3507 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 3508 const ImmInstrInfo &III, 3509 MachineOperand *&ImmMO, 3510 MachineOperand *&RegMO) const { 3511 unsigned Opc = DefMI.getOpcode(); 3512 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 3513 return false; 3514 3515 assert(DefMI.getNumOperands() >= 3 && 3516 "Add inst must have at least three operands"); 3517 RegMO = &DefMI.getOperand(1); 3518 ImmMO = &DefMI.getOperand(2); 3519 3520 // This DefMI is elgible for forwarding if it is: 3521 // 1. add inst 3522 // 2. one of the operands is Imm/CPI/Global. 3523 return isAnImmediateOperand(*ImmMO); 3524 } 3525 3526 bool PPCInstrInfo::isRegElgibleForForwarding( 3527 const MachineOperand &RegMO, const MachineInstr &DefMI, 3528 const MachineInstr &MI, bool KillDefMI, 3529 bool &IsFwdFeederRegKilled) const { 3530 // x = addi y, imm 3531 // ... 3532 // z = lfdx 0, x -> z = lfd imm(y) 3533 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 3534 // of "y" between the DEF of "x" and "z". 3535 // The query is only valid post RA. 3536 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3537 if (MRI.isSSA()) 3538 return false; 3539 3540 Register Reg = RegMO.getReg(); 3541 3542 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 3543 MachineBasicBlock::const_reverse_iterator It = MI; 3544 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 3545 It++; 3546 for (; It != E; ++It) { 3547 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3548 return false; 3549 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3550 IsFwdFeederRegKilled = true; 3551 // Made it to DefMI without encountering a clobber. 3552 if ((&*It) == &DefMI) 3553 break; 3554 } 3555 assert((&*It) == &DefMI && "DefMI is missing"); 3556 3557 // If DefMI also defines the register to be forwarded, we can only forward it 3558 // if DefMI is being erased. 3559 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 3560 return KillDefMI; 3561 3562 return true; 3563 } 3564 3565 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 3566 const MachineInstr &DefMI, 3567 const ImmInstrInfo &III, 3568 int64_t &Imm) const { 3569 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 3570 if (DefMI.getOpcode() == PPC::ADDItocL) { 3571 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 3572 // However, we know that, it is 16-bit width, and has the alignment of 4. 3573 // Check if the instruction met the requirement. 3574 if (III.ImmMustBeMultipleOf > 4 || 3575 III.TruncateImmTo || III.ImmWidth != 16) 3576 return false; 3577 3578 // Going from XForm to DForm loads means that the displacement needs to be 3579 // not just an immediate but also a multiple of 4, or 16 depending on the 3580 // load. A DForm load cannot be represented if it is a multiple of say 2. 3581 // XForm loads do not have this restriction. 3582 if (ImmMO.isGlobal() && 3583 ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf) 3584 return false; 3585 3586 return true; 3587 } 3588 3589 if (ImmMO.isImm()) { 3590 // It is Imm, we need to check if the Imm fit the range. 3591 int64_t Immediate = ImmMO.getImm(); 3592 // Sign-extend to 64-bits. 3593 Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 3594 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 3595 3596 if (Imm % III.ImmMustBeMultipleOf) 3597 return false; 3598 if (III.TruncateImmTo) 3599 Imm &= ((1 << III.TruncateImmTo) - 1); 3600 if (III.SignedImm) { 3601 APInt ActualValue(64, Imm, true); 3602 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3603 return false; 3604 } else { 3605 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3606 if ((uint64_t)Imm > UnsignedMax) 3607 return false; 3608 } 3609 } 3610 else 3611 return false; 3612 3613 // This ImmMO is forwarded if it meets the requriement describle 3614 // in ImmInstrInfo 3615 return true; 3616 } 3617 3618 // If an X-Form instruction is fed by an add-immediate and one of its operands 3619 // is the literal zero, attempt to forward the source of the add-immediate to 3620 // the corresponding D-Form instruction with the displacement coming from 3621 // the immediate being added. 3622 bool PPCInstrInfo::transformToImmFormFedByAdd( 3623 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 3624 MachineInstr &DefMI, bool KillDefMI) const { 3625 // RegMO ImmMO 3626 // | | 3627 // x = addi reg, imm <----- DefMI 3628 // y = op 0 , x <----- MI 3629 // | 3630 // OpNoForForwarding 3631 // Check if the MI meet the requirement described in the III. 3632 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 3633 return false; 3634 3635 // Check if the DefMI meet the requirement 3636 // described in the III. If yes, set the ImmMO and RegMO accordingly. 3637 MachineOperand *ImmMO = nullptr; 3638 MachineOperand *RegMO = nullptr; 3639 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 3640 return false; 3641 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 3642 3643 // As we get the Imm operand now, we need to check if the ImmMO meet 3644 // the requirement described in the III. If yes set the Imm. 3645 int64_t Imm = 0; 3646 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 3647 return false; 3648 3649 bool IsFwdFeederRegKilled = false; 3650 // Check if the RegMO can be forwarded to MI. 3651 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 3652 IsFwdFeederRegKilled)) 3653 return false; 3654 3655 // Get killed info in case fixup needed after transformation. 3656 unsigned ForwardKilledOperandReg = ~0U; 3657 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3658 bool PostRA = !MRI.isSSA(); 3659 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 3660 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 3661 3662 // We know that, the MI and DefMI both meet the pattern, and 3663 // the Imm also meet the requirement with the new Imm-form. 3664 // It is safe to do the transformation now. 3665 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 3666 LLVM_DEBUG(MI.dump()); 3667 LLVM_DEBUG(dbgs() << "Fed by:\n"); 3668 LLVM_DEBUG(DefMI.dump()); 3669 3670 // Update the base reg first. 3671 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 3672 false, false, 3673 RegMO->isKill()); 3674 3675 // Then, update the imm. 3676 if (ImmMO->isImm()) { 3677 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 3678 // directly. 3679 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 3680 } 3681 else { 3682 // Otherwise, it is Constant Pool Index(CPI) or Global, 3683 // which is relocation in fact. We need to replace the special zero 3684 // register with ImmMO. 3685 // Before that, we need to fixup the target flags for imm. 3686 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 3687 if (DefMI.getOpcode() == PPC::ADDItocL) 3688 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 3689 3690 // MI didn't have the interface such as MI.setOperand(i) though 3691 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 3692 // ImmMO, we need to remove ZERO operand and all the operands behind it, 3693 // and, add the ImmMO, then, move back all the operands behind ZERO. 3694 SmallVector<MachineOperand, 2> MOps; 3695 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 3696 MOps.push_back(MI.getOperand(i)); 3697 MI.RemoveOperand(i); 3698 } 3699 3700 // Remove the last MO in the list, which is ZERO operand in fact. 3701 MOps.pop_back(); 3702 // Add the imm operand. 3703 MI.addOperand(*ImmMO); 3704 // Now add the rest back. 3705 for (auto &MO : MOps) 3706 MI.addOperand(MO); 3707 } 3708 3709 // Update the opcode. 3710 MI.setDesc(get(III.ImmOpcode)); 3711 3712 // Fix up killed/dead flag after transformation. 3713 // Pattern 1: 3714 // x = ADD KilledFwdFeederReg, imm 3715 // n = opn KilledFwdFeederReg(killed), regn 3716 // y = XOP 0, x 3717 // Pattern 2: 3718 // x = ADD reg(killed), imm 3719 // y = XOP 0, x 3720 if (IsFwdFeederRegKilled || RegMO->isKill()) 3721 fixupIsDeadOrKill(DefMI, MI, RegMO->getReg()); 3722 // Pattern 3: 3723 // ForwardKilledOperandReg = ADD reg, imm 3724 // y = XOP 0, ForwardKilledOperandReg(killed) 3725 if (ForwardKilledOperandReg != ~0U) 3726 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3727 3728 LLVM_DEBUG(dbgs() << "With:\n"); 3729 LLVM_DEBUG(MI.dump()); 3730 3731 return true; 3732 } 3733 3734 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 3735 const ImmInstrInfo &III, 3736 unsigned ConstantOpNo, 3737 MachineInstr &DefMI, 3738 int64_t Imm) const { 3739 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3740 bool PostRA = !MRI.isSSA(); 3741 // Exit early if we can't convert this. 3742 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 3743 return false; 3744 if (Imm % III.ImmMustBeMultipleOf) 3745 return false; 3746 if (III.TruncateImmTo) 3747 Imm &= ((1 << III.TruncateImmTo) - 1); 3748 if (III.SignedImm) { 3749 APInt ActualValue(64, Imm, true); 3750 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3751 return false; 3752 } else { 3753 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3754 if ((uint64_t)Imm > UnsignedMax) 3755 return false; 3756 } 3757 3758 // If we're post-RA, the instructions don't agree on whether register zero is 3759 // special, we can transform this as long as the register operand that will 3760 // end up in the location where zero is special isn't R0. 3761 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3762 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 3763 III.ZeroIsSpecialNew + 1; 3764 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 3765 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3766 // If R0 is in the operand where zero is special for the new instruction, 3767 // it is unsafe to transform if the constant operand isn't that operand. 3768 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 3769 ConstantOpNo != III.ZeroIsSpecialNew) 3770 return false; 3771 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 3772 ConstantOpNo != PosForOrigZero) 3773 return false; 3774 } 3775 3776 // Get killed info in case fixup needed after transformation. 3777 unsigned ForwardKilledOperandReg = ~0U; 3778 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 3779 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 3780 3781 unsigned Opc = MI.getOpcode(); 3782 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || 3783 Opc == PPC::SRW || Opc == PPC::SRW_rec || 3784 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || 3785 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; 3786 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || 3787 Opc == PPC::SRD || Opc == PPC::SRD_rec; 3788 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || 3789 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; 3790 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || 3791 Opc == PPC::SRD_rec; 3792 3793 MI.setDesc(get(III.ImmOpcode)); 3794 if (ConstantOpNo == III.OpNoForForwarding) { 3795 // Converting shifts to immediate form is a bit tricky since they may do 3796 // one of three things: 3797 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 3798 // 2. If the shift amount is zero, the result is unchanged (save for maybe 3799 // setting CR0) 3800 // 3. If the shift amount is in [1, OpSize), it's just a shift 3801 if (SpecialShift32 || SpecialShift64) { 3802 LoadImmediateInfo LII; 3803 LII.Imm = 0; 3804 LII.SetCR = SetCR; 3805 LII.Is64Bit = SpecialShift64; 3806 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 3807 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 3808 replaceInstrWithLI(MI, LII); 3809 // Shifts by zero don't change the value. If we don't need to set CR0, 3810 // just convert this to a COPY. Can't do this post-RA since we've already 3811 // cleaned up the copies. 3812 else if (!SetCR && ShAmt == 0 && !PostRA) { 3813 MI.RemoveOperand(2); 3814 MI.setDesc(get(PPC::COPY)); 3815 } else { 3816 // The 32 bit and 64 bit instructions are quite different. 3817 if (SpecialShift32) { 3818 // Left shifts use (N, 0, 31-N). 3819 // Right shifts use (32-N, N, 31) if 0 < N < 32. 3820 // use (0, 0, 31) if N == 0. 3821 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; 3822 uint64_t MB = RightShift ? ShAmt : 0; 3823 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 3824 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3825 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 3826 .addImm(ME); 3827 } else { 3828 // Left shifts use (N, 63-N). 3829 // Right shifts use (64-N, N) if 0 < N < 64. 3830 // use (0, 0) if N == 0. 3831 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; 3832 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 3833 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3834 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 3835 } 3836 } 3837 } else 3838 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3839 } 3840 // Convert commutative instructions (switch the operands and convert the 3841 // desired one to an immediate. 3842 else if (III.IsCommutative) { 3843 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3844 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 3845 } else 3846 llvm_unreachable("Should have exited early!"); 3847 3848 // For instructions for which the constant register replaces a different 3849 // operand than where the immediate goes, we need to swap them. 3850 if (III.OpNoForForwarding != III.ImmOpNo) 3851 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 3852 3853 // If the special R0/X0 register index are different for original instruction 3854 // and new instruction, we need to fix up the register class in new 3855 // instruction. 3856 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3857 if (III.ZeroIsSpecialNew) { 3858 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 3859 // need to fix up register class. 3860 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3861 if (Register::isVirtualRegister(RegToModify)) { 3862 const TargetRegisterClass *NewRC = 3863 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 3864 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 3865 MRI.setRegClass(RegToModify, NewRC); 3866 } 3867 } 3868 } 3869 3870 // Fix up killed/dead flag after transformation. 3871 // Pattern: 3872 // ForwardKilledOperandReg = LI imm 3873 // y = XOP reg, ForwardKilledOperandReg(killed) 3874 if (ForwardKilledOperandReg != ~0U) 3875 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3876 return true; 3877 } 3878 3879 const TargetRegisterClass * 3880 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 3881 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 3882 return &PPC::VSRCRegClass; 3883 return RC; 3884 } 3885 3886 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 3887 return PPC::getRecordFormOpcode(Opcode); 3888 } 3889 3890 // This function returns true if the machine instruction 3891 // always outputs a value by sign-extending a 32 bit value, 3892 // i.e. 0 to 31-th bits are same as 32-th bit. 3893 static bool isSignExtendingOp(const MachineInstr &MI) { 3894 int Opcode = MI.getOpcode(); 3895 if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS || 3896 Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec || 3897 Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA || 3898 Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 3899 Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 || 3900 Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3901 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU || 3902 Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3903 Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 || 3904 Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3905 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB || 3906 Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH || 3907 Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 || 3908 Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW || 3909 Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 || 3910 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 3911 Opcode == PPC::EXTSB8_32_64) 3912 return true; 3913 3914 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 3915 return true; 3916 3917 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 3918 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && 3919 MI.getOperand(3).getImm() > 0 && 3920 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3921 return true; 3922 3923 return false; 3924 } 3925 3926 // This function returns true if the machine instruction 3927 // always outputs zeros in higher 32 bits. 3928 static bool isZeroExtendingOp(const MachineInstr &MI) { 3929 int Opcode = MI.getOpcode(); 3930 // The 16-bit immediate is sign-extended in li/lis. 3931 // If the most significant bit is zero, all higher bits are zero. 3932 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3933 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 3934 int64_t Imm = MI.getOperand(1).getImm(); 3935 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 3936 return true; 3937 } 3938 3939 // We have some variations of rotate-and-mask instructions 3940 // that clear higher 32-bits. 3941 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 3942 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || 3943 Opcode == PPC::RLDICL_32_64) && 3944 MI.getOperand(3).getImm() >= 32) 3945 return true; 3946 3947 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 3948 MI.getOperand(3).getImm() >= 32 && 3949 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 3950 return true; 3951 3952 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 3953 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 3954 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 3955 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3956 return true; 3957 3958 // There are other instructions that clear higher 32-bits. 3959 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec || 3960 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec || 3961 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 3962 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec || 3963 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec || 3964 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW || 3965 Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec || 3966 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI || 3967 Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI || 3968 Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX || 3969 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX || 3970 Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3971 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ || 3972 Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 3973 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 || 3974 Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 3975 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 || 3976 Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 3977 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3978 Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec || 3979 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec || 3980 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec || 3981 Opcode == PPC::MFVSRWZ) 3982 return true; 3983 3984 return false; 3985 } 3986 3987 // This function returns true if the input MachineInstr is a TOC save 3988 // instruction. 3989 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 3990 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 3991 return false; 3992 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 3993 unsigned StackOffset = MI.getOperand(1).getImm(); 3994 Register StackReg = MI.getOperand(2).getReg(); 3995 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) 3996 return true; 3997 3998 return false; 3999 } 4000 4001 // We limit the max depth to track incoming values of PHIs or binary ops 4002 // (e.g. AND) to avoid excessive cost. 4003 const unsigned MAX_DEPTH = 1; 4004 4005 bool 4006 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 4007 const unsigned Depth) const { 4008 const MachineFunction *MF = MI.getParent()->getParent(); 4009 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 4010 4011 // If we know this instruction returns sign- or zero-extended result, 4012 // return true. 4013 if (SignExt ? isSignExtendingOp(MI): 4014 isZeroExtendingOp(MI)) 4015 return true; 4016 4017 switch (MI.getOpcode()) { 4018 case PPC::COPY: { 4019 Register SrcReg = MI.getOperand(1).getReg(); 4020 4021 // In both ELFv1 and v2 ABI, method parameters and the return value 4022 // are sign- or zero-extended. 4023 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 4024 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 4025 // We check the ZExt/SExt flags for a method parameter. 4026 if (MI.getParent()->getBasicBlock() == 4027 &MF->getFunction().getEntryBlock()) { 4028 Register VReg = MI.getOperand(0).getReg(); 4029 if (MF->getRegInfo().isLiveIn(VReg)) 4030 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 4031 FuncInfo->isLiveInZExt(VReg); 4032 } 4033 4034 // For a method return value, we check the ZExt/SExt flags in attribute. 4035 // We assume the following code sequence for method call. 4036 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 4037 // BL8_NOP @func,... 4038 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 4039 // %5 = COPY %x3; G8RC:%5 4040 if (SrcReg == PPC::X3) { 4041 const MachineBasicBlock *MBB = MI.getParent(); 4042 MachineBasicBlock::const_instr_iterator II = 4043 MachineBasicBlock::const_instr_iterator(&MI); 4044 if (II != MBB->instr_begin() && 4045 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 4046 const MachineInstr &CallMI = *(--II); 4047 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 4048 const Function *CalleeFn = 4049 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 4050 if (!CalleeFn) 4051 return false; 4052 const IntegerType *IntTy = 4053 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 4054 const AttributeSet &Attrs = 4055 CalleeFn->getAttributes().getRetAttributes(); 4056 if (IntTy && IntTy->getBitWidth() <= 32) 4057 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 4058 Attribute::ZExt); 4059 } 4060 } 4061 } 4062 } 4063 4064 // If this is a copy from another register, we recursively check source. 4065 if (!Register::isVirtualRegister(SrcReg)) 4066 return false; 4067 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4068 if (SrcMI != NULL) 4069 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 4070 4071 return false; 4072 } 4073 4074 case PPC::ANDI_rec: 4075 case PPC::ANDIS_rec: 4076 case PPC::ORI: 4077 case PPC::ORIS: 4078 case PPC::XORI: 4079 case PPC::XORIS: 4080 case PPC::ANDI8_rec: 4081 case PPC::ANDIS8_rec: 4082 case PPC::ORI8: 4083 case PPC::ORIS8: 4084 case PPC::XORI8: 4085 case PPC::XORIS8: { 4086 // logical operation with 16-bit immediate does not change the upper bits. 4087 // So, we track the operand register as we do for register copy. 4088 Register SrcReg = MI.getOperand(1).getReg(); 4089 if (!Register::isVirtualRegister(SrcReg)) 4090 return false; 4091 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4092 if (SrcMI != NULL) 4093 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 4094 4095 return false; 4096 } 4097 4098 // If all incoming values are sign-/zero-extended, 4099 // the output of OR, ISEL or PHI is also sign-/zero-extended. 4100 case PPC::OR: 4101 case PPC::OR8: 4102 case PPC::ISEL: 4103 case PPC::PHI: { 4104 if (Depth >= MAX_DEPTH) 4105 return false; 4106 4107 // The input registers for PHI are operand 1, 3, ... 4108 // The input registers for others are operand 1 and 2. 4109 unsigned E = 3, D = 1; 4110 if (MI.getOpcode() == PPC::PHI) { 4111 E = MI.getNumOperands(); 4112 D = 2; 4113 } 4114 4115 for (unsigned I = 1; I != E; I += D) { 4116 if (MI.getOperand(I).isReg()) { 4117 Register SrcReg = MI.getOperand(I).getReg(); 4118 if (!Register::isVirtualRegister(SrcReg)) 4119 return false; 4120 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4121 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 4122 return false; 4123 } 4124 else 4125 return false; 4126 } 4127 return true; 4128 } 4129 4130 // If at least one of the incoming values of an AND is zero extended 4131 // then the output is also zero-extended. If both of the incoming values 4132 // are sign-extended then the output is also sign extended. 4133 case PPC::AND: 4134 case PPC::AND8: { 4135 if (Depth >= MAX_DEPTH) 4136 return false; 4137 4138 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 4139 4140 Register SrcReg1 = MI.getOperand(1).getReg(); 4141 Register SrcReg2 = MI.getOperand(2).getReg(); 4142 4143 if (!Register::isVirtualRegister(SrcReg1) || 4144 !Register::isVirtualRegister(SrcReg2)) 4145 return false; 4146 4147 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 4148 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 4149 if (!MISrc1 || !MISrc2) 4150 return false; 4151 4152 if(SignExt) 4153 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 4154 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4155 else 4156 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 4157 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4158 } 4159 4160 default: 4161 break; 4162 } 4163 return false; 4164 } 4165 4166 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 4167 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 4168 } 4169 4170 namespace { 4171 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 4172 MachineInstr *Loop, *EndLoop, *LoopCount; 4173 MachineFunction *MF; 4174 const TargetInstrInfo *TII; 4175 int64_t TripCount; 4176 4177 public: 4178 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 4179 MachineInstr *LoopCount) 4180 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 4181 MF(Loop->getParent()->getParent()), 4182 TII(MF->getSubtarget().getInstrInfo()) { 4183 // Inspect the Loop instruction up-front, as it may be deleted when we call 4184 // createTripCountGreaterCondition. 4185 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 4186 TripCount = LoopCount->getOperand(1).getImm(); 4187 else 4188 TripCount = -1; 4189 } 4190 4191 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 4192 // Only ignore the terminator. 4193 return MI == EndLoop; 4194 } 4195 4196 Optional<bool> 4197 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 4198 SmallVectorImpl<MachineOperand> &Cond) override { 4199 if (TripCount == -1) { 4200 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4201 // so we don't need to generate any thing here. 4202 Cond.push_back(MachineOperand::CreateImm(0)); 4203 Cond.push_back(MachineOperand::CreateReg( 4204 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 4205 true)); 4206 return {}; 4207 } 4208 4209 return TripCount > TC; 4210 } 4211 4212 void setPreheader(MachineBasicBlock *NewPreheader) override { 4213 // Do nothing. We want the LOOP setup instruction to stay in the *old* 4214 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 4215 } 4216 4217 void adjustTripCount(int TripCountAdjust) override { 4218 // If the loop trip count is a compile-time value, then just change the 4219 // value. 4220 if (LoopCount->getOpcode() == PPC::LI8 || 4221 LoopCount->getOpcode() == PPC::LI) { 4222 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 4223 LoopCount->getOperand(1).setImm(TripCount); 4224 return; 4225 } 4226 4227 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4228 // so we don't need to generate any thing here. 4229 } 4230 4231 void disposed() override { 4232 Loop->eraseFromParent(); 4233 // Ensure the loop setup instruction is deleted too. 4234 LoopCount->eraseFromParent(); 4235 } 4236 }; 4237 } // namespace 4238 4239 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 4240 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 4241 // We really "analyze" only hardware loops right now. 4242 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 4243 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 4244 if (Preheader == LoopBB) 4245 Preheader = *std::next(LoopBB->pred_begin()); 4246 MachineFunction *MF = Preheader->getParent(); 4247 4248 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 4249 SmallPtrSet<MachineBasicBlock *, 8> Visited; 4250 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 4251 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 4252 MachineRegisterInfo &MRI = MF->getRegInfo(); 4253 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 4254 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 4255 } 4256 } 4257 return nullptr; 4258 } 4259 4260 MachineInstr *PPCInstrInfo::findLoopInstr( 4261 MachineBasicBlock &PreHeader, 4262 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 4263 4264 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 4265 4266 // The loop set-up instruction should be in preheader 4267 for (auto &I : PreHeader.instrs()) 4268 if (I.getOpcode() == LOOPi) 4269 return &I; 4270 return nullptr; 4271 } 4272 4273 // Return true if get the base operand, byte offset of an instruction and the 4274 // memory width. Width is the size of memory that is being loaded/stored. 4275 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 4276 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, 4277 unsigned &Width, const TargetRegisterInfo *TRI) const { 4278 if (!LdSt.mayLoadOrStore()) 4279 return false; 4280 4281 // Handle only loads/stores with base register followed by immediate offset. 4282 if (LdSt.getNumExplicitOperands() != 3) 4283 return false; 4284 if (!LdSt.getOperand(1).isImm() || !LdSt.getOperand(2).isReg()) 4285 return false; 4286 4287 if (!LdSt.hasOneMemOperand()) 4288 return false; 4289 4290 Width = (*LdSt.memoperands_begin())->getSize(); 4291 Offset = LdSt.getOperand(1).getImm(); 4292 BaseReg = &LdSt.getOperand(2); 4293 return true; 4294 } 4295 4296 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 4297 const MachineInstr &MIa, const MachineInstr &MIb) const { 4298 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 4299 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 4300 4301 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 4302 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 4303 return false; 4304 4305 // Retrieve the base register, offset from the base register and width. Width 4306 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 4307 // base registers are identical, and the offset of a lower memory access + 4308 // the width doesn't overlap the offset of a higher memory access, 4309 // then the memory accesses are different. 4310 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4311 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 4312 int64_t OffsetA = 0, OffsetB = 0; 4313 unsigned int WidthA = 0, WidthB = 0; 4314 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 4315 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 4316 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 4317 int LowOffset = std::min(OffsetA, OffsetB); 4318 int HighOffset = std::max(OffsetA, OffsetB); 4319 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 4320 if (LowOffset + LowWidth <= HighOffset) 4321 return true; 4322 } 4323 } 4324 return false; 4325 } 4326