1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/PseudoSourceValue.h"
29 #include "llvm/CodeGen/ScheduleDAG.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/raw_ostream.h"
39 
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "ppc-instr-info"
43 
44 #define GET_INSTRMAP_INFO
45 #define GET_INSTRINFO_CTOR_DTOR
46 #include "PPCGenInstrInfo.inc"
47 
48 STATISTIC(NumStoreSPILLVSRRCAsVec,
49           "Number of spillvsrrc spilled to stack as vec");
50 STATISTIC(NumStoreSPILLVSRRCAsGpr,
51           "Number of spillvsrrc spilled to stack as gpr");
52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
53 STATISTIC(CmpIselsConverted,
54           "Number of ISELs that depend on comparison of constants converted");
55 STATISTIC(MissedConvertibleImmediateInstrs,
56           "Number of compare-immediate instructions fed by constants");
57 STATISTIC(NumRcRotatesConvertedToRcAnd,
58           "Number of record-form rotates converted to record-form andi");
59 
60 static cl::
61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
62             cl::desc("Disable analysis for CTR loops"));
63 
64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
65 cl::desc("Disable compare instruction optimization"), cl::Hidden);
66 
67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
69 cl::Hidden);
70 
71 static cl::opt<bool>
72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
73   cl::desc("Use the old (incorrect) instruction latency calculation"));
74 
75 // Index into the OpcodesForSpill array.
76 enum SpillOpcodeKey {
77   SOK_Int4Spill,
78   SOK_Int8Spill,
79   SOK_Float8Spill,
80   SOK_Float4Spill,
81   SOK_CRSpill,
82   SOK_CRBitSpill,
83   SOK_VRVectorSpill,
84   SOK_VSXVectorSpill,
85   SOK_VectorFloat8Spill,
86   SOK_VectorFloat4Spill,
87   SOK_VRSaveSpill,
88   SOK_QuadFloat8Spill,
89   SOK_QuadFloat4Spill,
90   SOK_QuadBitSpill,
91   SOK_SpillToVSR,
92   SOK_SPESpill,
93   SOK_SPE4Spill,
94   SOK_LastOpcodeSpill  // This must be last on the enum.
95 };
96 
97 // Pin the vtable to this file.
98 void PPCInstrInfo::anchor() {}
99 
100 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
101     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
102                       /* CatchRetOpcode */ -1,
103                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
104       Subtarget(STI), RI(STI.getTargetMachine()) {}
105 
106 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
107 /// this target when scheduling the DAG.
108 ScheduleHazardRecognizer *
109 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
110                                            const ScheduleDAG *DAG) const {
111   unsigned Directive =
112       static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
113   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
114       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
115     const InstrItineraryData *II =
116         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
117     return new ScoreboardHazardRecognizer(II, DAG);
118   }
119 
120   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
121 }
122 
123 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
124 /// to use for this target when scheduling the DAG.
125 ScheduleHazardRecognizer *
126 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
127                                                  const ScheduleDAG *DAG) const {
128   unsigned Directive =
129       DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
130 
131   // FIXME: Leaving this as-is until we have POWER9 scheduling info
132   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
133     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
134 
135   // Most subtargets use a PPC970 recognizer.
136   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
137       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
138     assert(DAG->TII && "No InstrInfo?");
139 
140     return new PPCHazardRecognizer970(*DAG);
141   }
142 
143   return new ScoreboardHazardRecognizer(II, DAG);
144 }
145 
146 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
147                                        const MachineInstr &MI,
148                                        unsigned *PredCost) const {
149   if (!ItinData || UseOldLatencyCalc)
150     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
151 
152   // The default implementation of getInstrLatency calls getStageLatency, but
153   // getStageLatency does not do the right thing for us. While we have
154   // itinerary, most cores are fully pipelined, and so the itineraries only
155   // express the first part of the pipeline, not every stage. Instead, we need
156   // to use the listed output operand cycle number (using operand 0 here, which
157   // is an output).
158 
159   unsigned Latency = 1;
160   unsigned DefClass = MI.getDesc().getSchedClass();
161   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
162     const MachineOperand &MO = MI.getOperand(i);
163     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
164       continue;
165 
166     int Cycle = ItinData->getOperandCycle(DefClass, i);
167     if (Cycle < 0)
168       continue;
169 
170     Latency = std::max(Latency, (unsigned) Cycle);
171   }
172 
173   return Latency;
174 }
175 
176 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
177                                     const MachineInstr &DefMI, unsigned DefIdx,
178                                     const MachineInstr &UseMI,
179                                     unsigned UseIdx) const {
180   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
181                                                    UseMI, UseIdx);
182 
183   if (!DefMI.getParent())
184     return Latency;
185 
186   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
187   unsigned Reg = DefMO.getReg();
188 
189   bool IsRegCR;
190   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
191     const MachineRegisterInfo *MRI =
192         &DefMI.getParent()->getParent()->getRegInfo();
193     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
194               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
195   } else {
196     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
197               PPC::CRBITRCRegClass.contains(Reg);
198   }
199 
200   if (UseMI.isBranch() && IsRegCR) {
201     if (Latency < 0)
202       Latency = getInstrLatency(ItinData, DefMI);
203 
204     // On some cores, there is an additional delay between writing to a condition
205     // register, and using it from a branch.
206     unsigned Directive = Subtarget.getDarwinDirective();
207     switch (Directive) {
208     default: break;
209     case PPC::DIR_7400:
210     case PPC::DIR_750:
211     case PPC::DIR_970:
212     case PPC::DIR_E5500:
213     case PPC::DIR_PWR4:
214     case PPC::DIR_PWR5:
215     case PPC::DIR_PWR5X:
216     case PPC::DIR_PWR6:
217     case PPC::DIR_PWR6X:
218     case PPC::DIR_PWR7:
219     case PPC::DIR_PWR8:
220     // FIXME: Is this needed for POWER9?
221       Latency += 2;
222       break;
223     }
224   }
225 
226   return Latency;
227 }
228 
229 // This function does not list all associative and commutative operations, but
230 // only those worth feeding through the machine combiner in an attempt to
231 // reduce the critical path. Mostly, this means floating-point operations,
232 // because they have high latencies (compared to other operations, such and
233 // and/or, which are also associative and commutative, but have low latencies).
234 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
235   switch (Inst.getOpcode()) {
236   // FP Add:
237   case PPC::FADD:
238   case PPC::FADDS:
239   // FP Multiply:
240   case PPC::FMUL:
241   case PPC::FMULS:
242   // Altivec Add:
243   case PPC::VADDFP:
244   // VSX Add:
245   case PPC::XSADDDP:
246   case PPC::XVADDDP:
247   case PPC::XVADDSP:
248   case PPC::XSADDSP:
249   // VSX Multiply:
250   case PPC::XSMULDP:
251   case PPC::XVMULDP:
252   case PPC::XVMULSP:
253   case PPC::XSMULSP:
254   // QPX Add:
255   case PPC::QVFADD:
256   case PPC::QVFADDS:
257   case PPC::QVFADDSs:
258   // QPX Multiply:
259   case PPC::QVFMUL:
260   case PPC::QVFMULS:
261   case PPC::QVFMULSs:
262     return true;
263   default:
264     return false;
265   }
266 }
267 
268 bool PPCInstrInfo::getMachineCombinerPatterns(
269     MachineInstr &Root,
270     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
271   // Using the machine combiner in this way is potentially expensive, so
272   // restrict to when aggressive optimizations are desired.
273   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
274     return false;
275 
276   // FP reassociation is only legal when we don't need strict IEEE semantics.
277   if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
278     return false;
279 
280   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
281 }
282 
283 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
284 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
285                                          unsigned &SrcReg, unsigned &DstReg,
286                                          unsigned &SubIdx) const {
287   switch (MI.getOpcode()) {
288   default: return false;
289   case PPC::EXTSW:
290   case PPC::EXTSW_32:
291   case PPC::EXTSW_32_64:
292     SrcReg = MI.getOperand(1).getReg();
293     DstReg = MI.getOperand(0).getReg();
294     SubIdx = PPC::sub_32;
295     return true;
296   }
297 }
298 
299 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
300                                            int &FrameIndex) const {
301   unsigned Opcode = MI.getOpcode();
302   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
303   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
304 
305   if (End != std::find(OpcodesForSpill, End, Opcode)) {
306     // Check for the operands added by addFrameReference (the immediate is the
307     // offset which defaults to 0).
308     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
309         MI.getOperand(2).isFI()) {
310       FrameIndex = MI.getOperand(2).getIndex();
311       return MI.getOperand(0).getReg();
312     }
313   }
314   return 0;
315 }
316 
317 // For opcodes with the ReMaterializable flag set, this function is called to
318 // verify the instruction is really rematable.
319 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
320                                                      AliasAnalysis *AA) const {
321   switch (MI.getOpcode()) {
322   default:
323     // This function should only be called for opcodes with the ReMaterializable
324     // flag set.
325     llvm_unreachable("Unknown rematerializable operation!");
326     break;
327   case PPC::LI:
328   case PPC::LI8:
329   case PPC::LIS:
330   case PPC::LIS8:
331   case PPC::QVGPCI:
332   case PPC::ADDIStocHA:
333   case PPC::ADDItocL:
334   case PPC::LOAD_STACK_GUARD:
335   case PPC::XXLXORz:
336   case PPC::XXLXORspz:
337   case PPC::XXLXORdpz:
338   case PPC::V_SET0B:
339   case PPC::V_SET0H:
340   case PPC::V_SET0:
341   case PPC::V_SETALLONESB:
342   case PPC::V_SETALLONESH:
343   case PPC::V_SETALLONES:
344   case PPC::CRSET:
345   case PPC::CRUNSET:
346     return true;
347   }
348   return false;
349 }
350 
351 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
352                                           int &FrameIndex) const {
353   unsigned Opcode = MI.getOpcode();
354   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
355   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
356 
357   if (End != std::find(OpcodesForSpill, End, Opcode)) {
358     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
359         MI.getOperand(2).isFI()) {
360       FrameIndex = MI.getOperand(2).getIndex();
361       return MI.getOperand(0).getReg();
362     }
363   }
364   return 0;
365 }
366 
367 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
368                                                    unsigned OpIdx1,
369                                                    unsigned OpIdx2) const {
370   MachineFunction &MF = *MI.getParent()->getParent();
371 
372   // Normal instructions can be commuted the obvious way.
373   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
374     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
375   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
376   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
377   // changing the relative order of the mask operands might change what happens
378   // to the high-bits of the mask (and, thus, the result).
379 
380   // Cannot commute if it has a non-zero rotate count.
381   if (MI.getOperand(3).getImm() != 0)
382     return nullptr;
383 
384   // If we have a zero rotate count, we have:
385   //   M = mask(MB,ME)
386   //   Op0 = (Op1 & ~M) | (Op2 & M)
387   // Change this to:
388   //   M = mask((ME+1)&31, (MB-1)&31)
389   //   Op0 = (Op2 & ~M) | (Op1 & M)
390 
391   // Swap op1/op2
392   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
393          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
394   Register Reg0 = MI.getOperand(0).getReg();
395   Register Reg1 = MI.getOperand(1).getReg();
396   Register Reg2 = MI.getOperand(2).getReg();
397   unsigned SubReg1 = MI.getOperand(1).getSubReg();
398   unsigned SubReg2 = MI.getOperand(2).getSubReg();
399   bool Reg1IsKill = MI.getOperand(1).isKill();
400   bool Reg2IsKill = MI.getOperand(2).isKill();
401   bool ChangeReg0 = false;
402   // If machine instrs are no longer in two-address forms, update
403   // destination register as well.
404   if (Reg0 == Reg1) {
405     // Must be two address instruction!
406     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
407            "Expecting a two-address instruction!");
408     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
409     Reg2IsKill = false;
410     ChangeReg0 = true;
411   }
412 
413   // Masks.
414   unsigned MB = MI.getOperand(4).getImm();
415   unsigned ME = MI.getOperand(5).getImm();
416 
417   // We can't commute a trivial mask (there is no way to represent an all-zero
418   // mask).
419   if (MB == 0 && ME == 31)
420     return nullptr;
421 
422   if (NewMI) {
423     // Create a new instruction.
424     Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
425     bool Reg0IsDead = MI.getOperand(0).isDead();
426     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
427         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
428         .addReg(Reg2, getKillRegState(Reg2IsKill))
429         .addReg(Reg1, getKillRegState(Reg1IsKill))
430         .addImm((ME + 1) & 31)
431         .addImm((MB - 1) & 31);
432   }
433 
434   if (ChangeReg0) {
435     MI.getOperand(0).setReg(Reg2);
436     MI.getOperand(0).setSubReg(SubReg2);
437   }
438   MI.getOperand(2).setReg(Reg1);
439   MI.getOperand(1).setReg(Reg2);
440   MI.getOperand(2).setSubReg(SubReg1);
441   MI.getOperand(1).setSubReg(SubReg2);
442   MI.getOperand(2).setIsKill(Reg1IsKill);
443   MI.getOperand(1).setIsKill(Reg2IsKill);
444 
445   // Swap the mask around.
446   MI.getOperand(4).setImm((ME + 1) & 31);
447   MI.getOperand(5).setImm((MB - 1) & 31);
448   return &MI;
449 }
450 
451 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
452                                          unsigned &SrcOpIdx2) const {
453   // For VSX A-Type FMA instructions, it is the first two operands that can be
454   // commuted, however, because the non-encoded tied input operand is listed
455   // first, the operands to swap are actually the second and third.
456 
457   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
458   if (AltOpc == -1)
459     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
460 
461   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
462   // and SrcOpIdx2.
463   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
464 }
465 
466 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
467                               MachineBasicBlock::iterator MI) const {
468   // This function is used for scheduling, and the nop wanted here is the type
469   // that terminates dispatch groups on the POWER cores.
470   unsigned Directive = Subtarget.getDarwinDirective();
471   unsigned Opcode;
472   switch (Directive) {
473   default:            Opcode = PPC::NOP; break;
474   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
475   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
476   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
477   // FIXME: Update when POWER9 scheduling model is ready.
478   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
479   }
480 
481   DebugLoc DL;
482   BuildMI(MBB, MI, DL, get(Opcode));
483 }
484 
485 /// Return the noop instruction to use for a noop.
486 void PPCInstrInfo::getNoop(MCInst &NopInst) const {
487   NopInst.setOpcode(PPC::NOP);
488 }
489 
490 // Branch analysis.
491 // Note: If the condition register is set to CTR or CTR8 then this is a
492 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
493 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
494                                  MachineBasicBlock *&TBB,
495                                  MachineBasicBlock *&FBB,
496                                  SmallVectorImpl<MachineOperand> &Cond,
497                                  bool AllowModify) const {
498   bool isPPC64 = Subtarget.isPPC64();
499 
500   // If the block has no terminators, it just falls into the block after it.
501   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
502   if (I == MBB.end())
503     return false;
504 
505   if (!isUnpredicatedTerminator(*I))
506     return false;
507 
508   if (AllowModify) {
509     // If the BB ends with an unconditional branch to the fallthrough BB,
510     // we eliminate the branch instruction.
511     if (I->getOpcode() == PPC::B &&
512         MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
513       I->eraseFromParent();
514 
515       // We update iterator after deleting the last branch.
516       I = MBB.getLastNonDebugInstr();
517       if (I == MBB.end() || !isUnpredicatedTerminator(*I))
518         return false;
519     }
520   }
521 
522   // Get the last instruction in the block.
523   MachineInstr &LastInst = *I;
524 
525   // If there is only one terminator instruction, process it.
526   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
527     if (LastInst.getOpcode() == PPC::B) {
528       if (!LastInst.getOperand(0).isMBB())
529         return true;
530       TBB = LastInst.getOperand(0).getMBB();
531       return false;
532     } else if (LastInst.getOpcode() == PPC::BCC) {
533       if (!LastInst.getOperand(2).isMBB())
534         return true;
535       // Block ends with fall-through condbranch.
536       TBB = LastInst.getOperand(2).getMBB();
537       Cond.push_back(LastInst.getOperand(0));
538       Cond.push_back(LastInst.getOperand(1));
539       return false;
540     } else if (LastInst.getOpcode() == PPC::BC) {
541       if (!LastInst.getOperand(1).isMBB())
542         return true;
543       // Block ends with fall-through condbranch.
544       TBB = LastInst.getOperand(1).getMBB();
545       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
546       Cond.push_back(LastInst.getOperand(0));
547       return false;
548     } else if (LastInst.getOpcode() == PPC::BCn) {
549       if (!LastInst.getOperand(1).isMBB())
550         return true;
551       // Block ends with fall-through condbranch.
552       TBB = LastInst.getOperand(1).getMBB();
553       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
554       Cond.push_back(LastInst.getOperand(0));
555       return false;
556     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
557                LastInst.getOpcode() == PPC::BDNZ) {
558       if (!LastInst.getOperand(0).isMBB())
559         return true;
560       if (DisableCTRLoopAnal)
561         return true;
562       TBB = LastInst.getOperand(0).getMBB();
563       Cond.push_back(MachineOperand::CreateImm(1));
564       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
565                                                true));
566       return false;
567     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
568                LastInst.getOpcode() == PPC::BDZ) {
569       if (!LastInst.getOperand(0).isMBB())
570         return true;
571       if (DisableCTRLoopAnal)
572         return true;
573       TBB = LastInst.getOperand(0).getMBB();
574       Cond.push_back(MachineOperand::CreateImm(0));
575       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
576                                                true));
577       return false;
578     }
579 
580     // Otherwise, don't know what this is.
581     return true;
582   }
583 
584   // Get the instruction before it if it's a terminator.
585   MachineInstr &SecondLastInst = *I;
586 
587   // If there are three terminators, we don't know what sort of block this is.
588   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
589     return true;
590 
591   // If the block ends with PPC::B and PPC:BCC, handle it.
592   if (SecondLastInst.getOpcode() == PPC::BCC &&
593       LastInst.getOpcode() == PPC::B) {
594     if (!SecondLastInst.getOperand(2).isMBB() ||
595         !LastInst.getOperand(0).isMBB())
596       return true;
597     TBB = SecondLastInst.getOperand(2).getMBB();
598     Cond.push_back(SecondLastInst.getOperand(0));
599     Cond.push_back(SecondLastInst.getOperand(1));
600     FBB = LastInst.getOperand(0).getMBB();
601     return false;
602   } else if (SecondLastInst.getOpcode() == PPC::BC &&
603              LastInst.getOpcode() == PPC::B) {
604     if (!SecondLastInst.getOperand(1).isMBB() ||
605         !LastInst.getOperand(0).isMBB())
606       return true;
607     TBB = SecondLastInst.getOperand(1).getMBB();
608     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
609     Cond.push_back(SecondLastInst.getOperand(0));
610     FBB = LastInst.getOperand(0).getMBB();
611     return false;
612   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
613              LastInst.getOpcode() == PPC::B) {
614     if (!SecondLastInst.getOperand(1).isMBB() ||
615         !LastInst.getOperand(0).isMBB())
616       return true;
617     TBB = SecondLastInst.getOperand(1).getMBB();
618     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
619     Cond.push_back(SecondLastInst.getOperand(0));
620     FBB = LastInst.getOperand(0).getMBB();
621     return false;
622   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
623               SecondLastInst.getOpcode() == PPC::BDNZ) &&
624              LastInst.getOpcode() == PPC::B) {
625     if (!SecondLastInst.getOperand(0).isMBB() ||
626         !LastInst.getOperand(0).isMBB())
627       return true;
628     if (DisableCTRLoopAnal)
629       return true;
630     TBB = SecondLastInst.getOperand(0).getMBB();
631     Cond.push_back(MachineOperand::CreateImm(1));
632     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
633                                              true));
634     FBB = LastInst.getOperand(0).getMBB();
635     return false;
636   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
637               SecondLastInst.getOpcode() == PPC::BDZ) &&
638              LastInst.getOpcode() == PPC::B) {
639     if (!SecondLastInst.getOperand(0).isMBB() ||
640         !LastInst.getOperand(0).isMBB())
641       return true;
642     if (DisableCTRLoopAnal)
643       return true;
644     TBB = SecondLastInst.getOperand(0).getMBB();
645     Cond.push_back(MachineOperand::CreateImm(0));
646     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
647                                              true));
648     FBB = LastInst.getOperand(0).getMBB();
649     return false;
650   }
651 
652   // If the block ends with two PPC:Bs, handle it.  The second one is not
653   // executed, so remove it.
654   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
655     if (!SecondLastInst.getOperand(0).isMBB())
656       return true;
657     TBB = SecondLastInst.getOperand(0).getMBB();
658     I = LastInst;
659     if (AllowModify)
660       I->eraseFromParent();
661     return false;
662   }
663 
664   // Otherwise, can't handle this.
665   return true;
666 }
667 
668 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
669                                     int *BytesRemoved) const {
670   assert(!BytesRemoved && "code size not handled");
671 
672   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
673   if (I == MBB.end())
674     return 0;
675 
676   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
677       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
678       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
679       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
680     return 0;
681 
682   // Remove the branch.
683   I->eraseFromParent();
684 
685   I = MBB.end();
686 
687   if (I == MBB.begin()) return 1;
688   --I;
689   if (I->getOpcode() != PPC::BCC &&
690       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
691       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
692       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
693     return 1;
694 
695   // Remove the branch.
696   I->eraseFromParent();
697   return 2;
698 }
699 
700 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
701                                     MachineBasicBlock *TBB,
702                                     MachineBasicBlock *FBB,
703                                     ArrayRef<MachineOperand> Cond,
704                                     const DebugLoc &DL,
705                                     int *BytesAdded) const {
706   // Shouldn't be a fall through.
707   assert(TBB && "insertBranch must not be told to insert a fallthrough");
708   assert((Cond.size() == 2 || Cond.size() == 0) &&
709          "PPC branch conditions have two components!");
710   assert(!BytesAdded && "code size not handled");
711 
712   bool isPPC64 = Subtarget.isPPC64();
713 
714   // One-way branch.
715   if (!FBB) {
716     if (Cond.empty())   // Unconditional branch
717       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
718     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
719       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
720                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
721                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
722     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
723       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
724     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
725       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
726     else                // Conditional branch
727       BuildMI(&MBB, DL, get(PPC::BCC))
728           .addImm(Cond[0].getImm())
729           .add(Cond[1])
730           .addMBB(TBB);
731     return 1;
732   }
733 
734   // Two-way Conditional Branch.
735   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
736     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
737                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
738                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
739   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
740     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
741   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
742     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
743   else
744     BuildMI(&MBB, DL, get(PPC::BCC))
745         .addImm(Cond[0].getImm())
746         .add(Cond[1])
747         .addMBB(TBB);
748   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
749   return 2;
750 }
751 
752 // Select analysis.
753 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
754                 ArrayRef<MachineOperand> Cond,
755                 unsigned TrueReg, unsigned FalseReg,
756                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
757   if (Cond.size() != 2)
758     return false;
759 
760   // If this is really a bdnz-like condition, then it cannot be turned into a
761   // select.
762   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
763     return false;
764 
765   // Check register classes.
766   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
767   const TargetRegisterClass *RC =
768     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
769   if (!RC)
770     return false;
771 
772   // isel is for regular integer GPRs only.
773   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
774       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
775       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
776       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
777     return false;
778 
779   // FIXME: These numbers are for the A2, how well they work for other cores is
780   // an open question. On the A2, the isel instruction has a 2-cycle latency
781   // but single-cycle throughput. These numbers are used in combination with
782   // the MispredictPenalty setting from the active SchedMachineModel.
783   CondCycles = 1;
784   TrueCycles = 1;
785   FalseCycles = 1;
786 
787   return true;
788 }
789 
790 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
791                                 MachineBasicBlock::iterator MI,
792                                 const DebugLoc &dl, unsigned DestReg,
793                                 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
794                                 unsigned FalseReg) const {
795   assert(Cond.size() == 2 &&
796          "PPC branch conditions have two components!");
797 
798   // Get the register classes.
799   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
800   const TargetRegisterClass *RC =
801     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
802   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
803 
804   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
805                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
806   assert((Is64Bit ||
807           PPC::GPRCRegClass.hasSubClassEq(RC) ||
808           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
809          "isel is for regular integer GPRs only");
810 
811   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
812   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
813 
814   unsigned SubIdx = 0;
815   bool SwapOps = false;
816   switch (SelectPred) {
817   case PPC::PRED_EQ:
818   case PPC::PRED_EQ_MINUS:
819   case PPC::PRED_EQ_PLUS:
820       SubIdx = PPC::sub_eq; SwapOps = false; break;
821   case PPC::PRED_NE:
822   case PPC::PRED_NE_MINUS:
823   case PPC::PRED_NE_PLUS:
824       SubIdx = PPC::sub_eq; SwapOps = true; break;
825   case PPC::PRED_LT:
826   case PPC::PRED_LT_MINUS:
827   case PPC::PRED_LT_PLUS:
828       SubIdx = PPC::sub_lt; SwapOps = false; break;
829   case PPC::PRED_GE:
830   case PPC::PRED_GE_MINUS:
831   case PPC::PRED_GE_PLUS:
832       SubIdx = PPC::sub_lt; SwapOps = true; break;
833   case PPC::PRED_GT:
834   case PPC::PRED_GT_MINUS:
835   case PPC::PRED_GT_PLUS:
836       SubIdx = PPC::sub_gt; SwapOps = false; break;
837   case PPC::PRED_LE:
838   case PPC::PRED_LE_MINUS:
839   case PPC::PRED_LE_PLUS:
840       SubIdx = PPC::sub_gt; SwapOps = true; break;
841   case PPC::PRED_UN:
842   case PPC::PRED_UN_MINUS:
843   case PPC::PRED_UN_PLUS:
844       SubIdx = PPC::sub_un; SwapOps = false; break;
845   case PPC::PRED_NU:
846   case PPC::PRED_NU_MINUS:
847   case PPC::PRED_NU_PLUS:
848       SubIdx = PPC::sub_un; SwapOps = true; break;
849   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
850   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
851   }
852 
853   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
854            SecondReg = SwapOps ? TrueReg  : FalseReg;
855 
856   // The first input register of isel cannot be r0. If it is a member
857   // of a register class that can be r0, then copy it first (the
858   // register allocator should eliminate the copy).
859   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
860       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
861     const TargetRegisterClass *FirstRC =
862       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
863         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
864     unsigned OldFirstReg = FirstReg;
865     FirstReg = MRI.createVirtualRegister(FirstRC);
866     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
867       .addReg(OldFirstReg);
868   }
869 
870   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
871     .addReg(FirstReg).addReg(SecondReg)
872     .addReg(Cond[1].getReg(), 0, SubIdx);
873 }
874 
875 static unsigned getCRBitValue(unsigned CRBit) {
876   unsigned Ret = 4;
877   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
878       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
879       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
880       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
881     Ret = 3;
882   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
883       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
884       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
885       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
886     Ret = 2;
887   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
888       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
889       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
890       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
891     Ret = 1;
892   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
893       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
894       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
895       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
896     Ret = 0;
897 
898   assert(Ret != 4 && "Invalid CR bit register");
899   return Ret;
900 }
901 
902 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
903                                MachineBasicBlock::iterator I,
904                                const DebugLoc &DL, unsigned DestReg,
905                                unsigned SrcReg, bool KillSrc) const {
906   // We can end up with self copies and similar things as a result of VSX copy
907   // legalization. Promote them here.
908   const TargetRegisterInfo *TRI = &getRegisterInfo();
909   if (PPC::F8RCRegClass.contains(DestReg) &&
910       PPC::VSRCRegClass.contains(SrcReg)) {
911     unsigned SuperReg =
912       TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
913 
914     if (VSXSelfCopyCrash && SrcReg == SuperReg)
915       llvm_unreachable("nop VSX copy");
916 
917     DestReg = SuperReg;
918   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
919              PPC::VSRCRegClass.contains(DestReg)) {
920     unsigned SuperReg =
921       TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
922 
923     if (VSXSelfCopyCrash && DestReg == SuperReg)
924       llvm_unreachable("nop VSX copy");
925 
926     SrcReg = SuperReg;
927   }
928 
929   // Different class register copy
930   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
931       PPC::GPRCRegClass.contains(DestReg)) {
932     unsigned CRReg = getCRFromCRBit(SrcReg);
933     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
934     getKillRegState(KillSrc);
935     // Rotate the CR bit in the CR fields to be the least significant bit and
936     // then mask with 0x1 (MB = ME = 31).
937     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
938        .addReg(DestReg, RegState::Kill)
939        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
940        .addImm(31)
941        .addImm(31);
942     return;
943   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
944       PPC::G8RCRegClass.contains(DestReg)) {
945     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
946     getKillRegState(KillSrc);
947     return;
948   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
949       PPC::GPRCRegClass.contains(DestReg)) {
950     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
951     getKillRegState(KillSrc);
952     return;
953   } else if (PPC::G8RCRegClass.contains(SrcReg) &&
954              PPC::VSFRCRegClass.contains(DestReg)) {
955     assert(Subtarget.hasDirectMove() &&
956            "Subtarget doesn't support directmove, don't know how to copy.");
957     BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
958     NumGPRtoVSRSpill++;
959     getKillRegState(KillSrc);
960     return;
961   } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
962              PPC::G8RCRegClass.contains(DestReg)) {
963     assert(Subtarget.hasDirectMove() &&
964            "Subtarget doesn't support directmove, don't know how to copy.");
965     BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
966     getKillRegState(KillSrc);
967     return;
968   } else if (PPC::SPERCRegClass.contains(SrcReg) &&
969              PPC::SPE4RCRegClass.contains(DestReg)) {
970     BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
971     getKillRegState(KillSrc);
972     return;
973   } else if (PPC::SPE4RCRegClass.contains(SrcReg) &&
974              PPC::SPERCRegClass.contains(DestReg)) {
975     BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
976     getKillRegState(KillSrc);
977     return;
978   }
979 
980   unsigned Opc;
981   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
982     Opc = PPC::OR;
983   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
984     Opc = PPC::OR8;
985   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
986     Opc = PPC::FMR;
987   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
988     Opc = PPC::MCRF;
989   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
990     Opc = PPC::VOR;
991   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
992     // There are two different ways this can be done:
993     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
994     //      issue in VSU pipeline 0.
995     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
996     //      can go to either pipeline.
997     // We'll always use xxlor here, because in practically all cases where
998     // copies are generated, they are close enough to some use that the
999     // lower-latency form is preferable.
1000     Opc = PPC::XXLOR;
1001   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1002            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1003     Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1004   else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
1005     Opc = PPC::QVFMR;
1006   else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
1007     Opc = PPC::QVFMRs;
1008   else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
1009     Opc = PPC::QVFMRb;
1010   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1011     Opc = PPC::CROR;
1012   else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1013     Opc = PPC::EVOR;
1014   else
1015     llvm_unreachable("Impossible reg-to-reg copy");
1016 
1017   const MCInstrDesc &MCID = get(Opc);
1018   if (MCID.getNumOperands() == 3)
1019     BuildMI(MBB, I, DL, MCID, DestReg)
1020       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1021   else
1022     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1023 }
1024 
1025 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg,
1026                                               const TargetRegisterClass *RC)
1027                                               const {
1028   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1029   int OpcodeIndex = 0;
1030 
1031   if (RC != nullptr) {
1032     if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1033         PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1034       OpcodeIndex = SOK_Int4Spill;
1035     } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1036                PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1037       OpcodeIndex = SOK_Int8Spill;
1038     } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1039       OpcodeIndex = SOK_Float8Spill;
1040     } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1041       OpcodeIndex = SOK_Float4Spill;
1042     } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1043       OpcodeIndex = SOK_SPESpill;
1044     } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) {
1045       OpcodeIndex = SOK_SPE4Spill;
1046     } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1047       OpcodeIndex = SOK_CRSpill;
1048     } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1049       OpcodeIndex = SOK_CRBitSpill;
1050     } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1051       OpcodeIndex = SOK_VRVectorSpill;
1052     } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1053       OpcodeIndex = SOK_VSXVectorSpill;
1054     } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1055       OpcodeIndex = SOK_VectorFloat8Spill;
1056     } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1057       OpcodeIndex = SOK_VectorFloat4Spill;
1058     } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1059       OpcodeIndex = SOK_VRSaveSpill;
1060     } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1061       OpcodeIndex = SOK_QuadFloat8Spill;
1062     } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1063       OpcodeIndex = SOK_QuadFloat4Spill;
1064     } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1065       OpcodeIndex = SOK_QuadBitSpill;
1066     } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1067       OpcodeIndex = SOK_SpillToVSR;
1068     } else {
1069       llvm_unreachable("Unknown regclass!");
1070     }
1071   } else {
1072     if (PPC::GPRCRegClass.contains(Reg) ||
1073         PPC::GPRC_NOR0RegClass.contains(Reg)) {
1074       OpcodeIndex = SOK_Int4Spill;
1075     } else if (PPC::G8RCRegClass.contains(Reg) ||
1076                PPC::G8RC_NOX0RegClass.contains(Reg)) {
1077       OpcodeIndex = SOK_Int8Spill;
1078     } else if (PPC::F8RCRegClass.contains(Reg)) {
1079       OpcodeIndex = SOK_Float8Spill;
1080     } else if (PPC::F4RCRegClass.contains(Reg)) {
1081       OpcodeIndex = SOK_Float4Spill;
1082     } else if (PPC::SPERCRegClass.contains(Reg)) {
1083       OpcodeIndex = SOK_SPESpill;
1084     } else if (PPC::SPE4RCRegClass.contains(Reg)) {
1085       OpcodeIndex = SOK_SPE4Spill;
1086     } else if (PPC::CRRCRegClass.contains(Reg)) {
1087       OpcodeIndex = SOK_CRSpill;
1088     } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1089       OpcodeIndex = SOK_CRBitSpill;
1090     } else if (PPC::VRRCRegClass.contains(Reg)) {
1091       OpcodeIndex = SOK_VRVectorSpill;
1092     } else if (PPC::VSRCRegClass.contains(Reg)) {
1093       OpcodeIndex = SOK_VSXVectorSpill;
1094     } else if (PPC::VSFRCRegClass.contains(Reg)) {
1095       OpcodeIndex = SOK_VectorFloat8Spill;
1096     } else if (PPC::VSSRCRegClass.contains(Reg)) {
1097       OpcodeIndex = SOK_VectorFloat4Spill;
1098     } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1099       OpcodeIndex = SOK_VRSaveSpill;
1100     } else if (PPC::QFRCRegClass.contains(Reg)) {
1101       OpcodeIndex = SOK_QuadFloat8Spill;
1102     } else if (PPC::QSRCRegClass.contains(Reg)) {
1103       OpcodeIndex = SOK_QuadFloat4Spill;
1104     } else if (PPC::QBRCRegClass.contains(Reg)) {
1105       OpcodeIndex = SOK_QuadBitSpill;
1106     } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1107       OpcodeIndex = SOK_SpillToVSR;
1108     } else {
1109       llvm_unreachable("Unknown regclass!");
1110     }
1111   }
1112   return OpcodesForSpill[OpcodeIndex];
1113 }
1114 
1115 unsigned
1116 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg,
1117                                     const TargetRegisterClass *RC) const {
1118   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1119   int OpcodeIndex = 0;
1120 
1121   if (RC != nullptr) {
1122     if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1123         PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1124       OpcodeIndex = SOK_Int4Spill;
1125     } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1126                PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1127       OpcodeIndex = SOK_Int8Spill;
1128     } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1129       OpcodeIndex = SOK_Float8Spill;
1130     } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1131       OpcodeIndex = SOK_Float4Spill;
1132     } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1133       OpcodeIndex = SOK_SPESpill;
1134     } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) {
1135       OpcodeIndex = SOK_SPE4Spill;
1136     } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1137       OpcodeIndex = SOK_CRSpill;
1138     } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1139       OpcodeIndex = SOK_CRBitSpill;
1140     } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1141       OpcodeIndex = SOK_VRVectorSpill;
1142     } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1143       OpcodeIndex = SOK_VSXVectorSpill;
1144     } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1145       OpcodeIndex = SOK_VectorFloat8Spill;
1146     } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1147       OpcodeIndex = SOK_VectorFloat4Spill;
1148     } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1149       OpcodeIndex = SOK_VRSaveSpill;
1150     } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1151       OpcodeIndex = SOK_QuadFloat8Spill;
1152     } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1153       OpcodeIndex = SOK_QuadFloat4Spill;
1154     } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1155       OpcodeIndex = SOK_QuadBitSpill;
1156     } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1157       OpcodeIndex = SOK_SpillToVSR;
1158     } else {
1159       llvm_unreachable("Unknown regclass!");
1160     }
1161   } else {
1162     if (PPC::GPRCRegClass.contains(Reg) ||
1163         PPC::GPRC_NOR0RegClass.contains(Reg)) {
1164       OpcodeIndex = SOK_Int4Spill;
1165     } else if (PPC::G8RCRegClass.contains(Reg) ||
1166                PPC::G8RC_NOX0RegClass.contains(Reg)) {
1167       OpcodeIndex = SOK_Int8Spill;
1168     } else if (PPC::F8RCRegClass.contains(Reg)) {
1169       OpcodeIndex = SOK_Float8Spill;
1170     } else if (PPC::F4RCRegClass.contains(Reg)) {
1171       OpcodeIndex = SOK_Float4Spill;
1172     } else if (PPC::SPERCRegClass.contains(Reg)) {
1173       OpcodeIndex = SOK_SPESpill;
1174     } else if (PPC::SPE4RCRegClass.contains(Reg)) {
1175       OpcodeIndex = SOK_SPE4Spill;
1176     } else if (PPC::CRRCRegClass.contains(Reg)) {
1177       OpcodeIndex = SOK_CRSpill;
1178     } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1179       OpcodeIndex = SOK_CRBitSpill;
1180     } else if (PPC::VRRCRegClass.contains(Reg)) {
1181       OpcodeIndex = SOK_VRVectorSpill;
1182     } else if (PPC::VSRCRegClass.contains(Reg)) {
1183       OpcodeIndex = SOK_VSXVectorSpill;
1184     } else if (PPC::VSFRCRegClass.contains(Reg)) {
1185       OpcodeIndex = SOK_VectorFloat8Spill;
1186     } else if (PPC::VSSRCRegClass.contains(Reg)) {
1187       OpcodeIndex = SOK_VectorFloat4Spill;
1188     } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1189       OpcodeIndex = SOK_VRSaveSpill;
1190     } else if (PPC::QFRCRegClass.contains(Reg)) {
1191       OpcodeIndex = SOK_QuadFloat8Spill;
1192     } else if (PPC::QSRCRegClass.contains(Reg)) {
1193       OpcodeIndex = SOK_QuadFloat4Spill;
1194     } else if (PPC::QBRCRegClass.contains(Reg)) {
1195       OpcodeIndex = SOK_QuadBitSpill;
1196     } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1197       OpcodeIndex = SOK_SpillToVSR;
1198     } else {
1199       llvm_unreachable("Unknown regclass!");
1200     }
1201   }
1202   return OpcodesForSpill[OpcodeIndex];
1203 }
1204 
1205 void PPCInstrInfo::StoreRegToStackSlot(
1206     MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1207     const TargetRegisterClass *RC,
1208     SmallVectorImpl<MachineInstr *> &NewMIs) const {
1209   unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC);
1210   DebugLoc DL;
1211 
1212   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1213   FuncInfo->setHasSpills();
1214 
1215   NewMIs.push_back(addFrameReference(
1216       BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1217       FrameIdx));
1218 
1219   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1220       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1221     FuncInfo->setSpillsCR();
1222 
1223   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1224     FuncInfo->setSpillsVRSAVE();
1225 
1226   if (isXFormMemOp(Opcode))
1227     FuncInfo->setHasNonRISpills();
1228 }
1229 
1230 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1231                                        MachineBasicBlock::iterator MI,
1232                                        unsigned SrcReg, bool isKill,
1233                                        int FrameIdx,
1234                                        const TargetRegisterClass *RC,
1235                                        const TargetRegisterInfo *TRI) const {
1236   MachineFunction &MF = *MBB.getParent();
1237   SmallVector<MachineInstr *, 4> NewMIs;
1238 
1239   // We need to avoid a situation in which the value from a VRRC register is
1240   // spilled using an Altivec instruction and reloaded into a VSRC register
1241   // using a VSX instruction. The issue with this is that the VSX
1242   // load/store instructions swap the doublewords in the vector and the Altivec
1243   // ones don't. The register classes on the spill/reload may be different if
1244   // the register is defined using an Altivec instruction and is then used by a
1245   // VSX instruction.
1246   RC = updatedRC(RC);
1247 
1248   StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1249 
1250   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1251     MBB.insert(MI, NewMIs[i]);
1252 
1253   const MachineFrameInfo &MFI = MF.getFrameInfo();
1254   MachineMemOperand *MMO = MF.getMachineMemOperand(
1255       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1256       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1257       MFI.getObjectAlignment(FrameIdx));
1258   NewMIs.back()->addMemOperand(MF, MMO);
1259 }
1260 
1261 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1262                                         unsigned DestReg, int FrameIdx,
1263                                         const TargetRegisterClass *RC,
1264                                         SmallVectorImpl<MachineInstr *> &NewMIs)
1265                                         const {
1266   unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC);
1267   NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1268                                      FrameIdx));
1269   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1270 
1271   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1272       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1273     FuncInfo->setSpillsCR();
1274 
1275   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1276     FuncInfo->setSpillsVRSAVE();
1277 
1278   if (isXFormMemOp(Opcode))
1279     FuncInfo->setHasNonRISpills();
1280 }
1281 
1282 void
1283 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1284                                    MachineBasicBlock::iterator MI,
1285                                    unsigned DestReg, int FrameIdx,
1286                                    const TargetRegisterClass *RC,
1287                                    const TargetRegisterInfo *TRI) const {
1288   MachineFunction &MF = *MBB.getParent();
1289   SmallVector<MachineInstr*, 4> NewMIs;
1290   DebugLoc DL;
1291   if (MI != MBB.end()) DL = MI->getDebugLoc();
1292 
1293   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1294   FuncInfo->setHasSpills();
1295 
1296   // We need to avoid a situation in which the value from a VRRC register is
1297   // spilled using an Altivec instruction and reloaded into a VSRC register
1298   // using a VSX instruction. The issue with this is that the VSX
1299   // load/store instructions swap the doublewords in the vector and the Altivec
1300   // ones don't. The register classes on the spill/reload may be different if
1301   // the register is defined using an Altivec instruction and is then used by a
1302   // VSX instruction.
1303   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
1304     RC = &PPC::VSRCRegClass;
1305 
1306   LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
1307 
1308   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1309     MBB.insert(MI, NewMIs[i]);
1310 
1311   const MachineFrameInfo &MFI = MF.getFrameInfo();
1312   MachineMemOperand *MMO = MF.getMachineMemOperand(
1313       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1314       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1315       MFI.getObjectAlignment(FrameIdx));
1316   NewMIs.back()->addMemOperand(MF, MMO);
1317 }
1318 
1319 bool PPCInstrInfo::
1320 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1321   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1322   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1323     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1324   else
1325     // Leave the CR# the same, but invert the condition.
1326     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1327   return false;
1328 }
1329 
1330 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1331                                  unsigned Reg, MachineRegisterInfo *MRI) const {
1332   // For some instructions, it is legal to fold ZERO into the RA register field.
1333   // A zero immediate should always be loaded with a single li.
1334   unsigned DefOpc = DefMI.getOpcode();
1335   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1336     return false;
1337   if (!DefMI.getOperand(1).isImm())
1338     return false;
1339   if (DefMI.getOperand(1).getImm() != 0)
1340     return false;
1341 
1342   // Note that we cannot here invert the arguments of an isel in order to fold
1343   // a ZERO into what is presented as the second argument. All we have here
1344   // is the condition bit, and that might come from a CR-logical bit operation.
1345 
1346   const MCInstrDesc &UseMCID = UseMI.getDesc();
1347 
1348   // Only fold into real machine instructions.
1349   if (UseMCID.isPseudo())
1350     return false;
1351 
1352   unsigned UseIdx;
1353   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1354     if (UseMI.getOperand(UseIdx).isReg() &&
1355         UseMI.getOperand(UseIdx).getReg() == Reg)
1356       break;
1357 
1358   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1359   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1360 
1361   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1362 
1363   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1364   // register (which might also be specified as a pointer class kind).
1365   if (UseInfo->isLookupPtrRegClass()) {
1366     if (UseInfo->RegClass /* Kind */ != 1)
1367       return false;
1368   } else {
1369     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1370         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1371       return false;
1372   }
1373 
1374   // Make sure this is not tied to an output register (or otherwise
1375   // constrained). This is true for ST?UX registers, for example, which
1376   // are tied to their output registers.
1377   if (UseInfo->Constraints != 0)
1378     return false;
1379 
1380   unsigned ZeroReg;
1381   if (UseInfo->isLookupPtrRegClass()) {
1382     bool isPPC64 = Subtarget.isPPC64();
1383     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1384   } else {
1385     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1386               PPC::ZERO8 : PPC::ZERO;
1387   }
1388 
1389   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1390   UseMI.getOperand(UseIdx).setReg(ZeroReg);
1391 
1392   if (DeleteDef)
1393     DefMI.eraseFromParent();
1394 
1395   return true;
1396 }
1397 
1398 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1399   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1400        I != IE; ++I)
1401     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1402       return true;
1403   return false;
1404 }
1405 
1406 // We should make sure that, if we're going to predicate both sides of a
1407 // condition (a diamond), that both sides don't define the counter register. We
1408 // can predicate counter-decrement-based branches, but while that predicates
1409 // the branching, it does not predicate the counter decrement. If we tried to
1410 // merge the triangle into one predicated block, we'd decrement the counter
1411 // twice.
1412 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1413                      unsigned NumT, unsigned ExtraT,
1414                      MachineBasicBlock &FMBB,
1415                      unsigned NumF, unsigned ExtraF,
1416                      BranchProbability Probability) const {
1417   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1418 }
1419 
1420 
1421 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1422   // The predicated branches are identified by their type, not really by the
1423   // explicit presence of a predicate. Furthermore, some of them can be
1424   // predicated more than once. Because if conversion won't try to predicate
1425   // any instruction which already claims to be predicated (by returning true
1426   // here), always return false. In doing so, we let isPredicable() be the
1427   // final word on whether not the instruction can be (further) predicated.
1428 
1429   return false;
1430 }
1431 
1432 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1433   if (!MI.isTerminator())
1434     return false;
1435 
1436   // Conditional branch is a special case.
1437   if (MI.isBranch() && !MI.isBarrier())
1438     return true;
1439 
1440   return !isPredicated(MI);
1441 }
1442 
1443 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1444                                         ArrayRef<MachineOperand> Pred) const {
1445   unsigned OpC = MI.getOpcode();
1446   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1447     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1448       bool isPPC64 = Subtarget.isPPC64();
1449       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1450                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1451     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1452       MI.setDesc(get(PPC::BCLR));
1453       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1454     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1455       MI.setDesc(get(PPC::BCLRn));
1456       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1457     } else {
1458       MI.setDesc(get(PPC::BCCLR));
1459       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1460           .addImm(Pred[0].getImm())
1461           .add(Pred[1]);
1462     }
1463 
1464     return true;
1465   } else if (OpC == PPC::B) {
1466     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1467       bool isPPC64 = Subtarget.isPPC64();
1468       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1469                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1470     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1471       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1472       MI.RemoveOperand(0);
1473 
1474       MI.setDesc(get(PPC::BC));
1475       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1476           .add(Pred[1])
1477           .addMBB(MBB);
1478     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1479       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1480       MI.RemoveOperand(0);
1481 
1482       MI.setDesc(get(PPC::BCn));
1483       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1484           .add(Pred[1])
1485           .addMBB(MBB);
1486     } else {
1487       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1488       MI.RemoveOperand(0);
1489 
1490       MI.setDesc(get(PPC::BCC));
1491       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1492           .addImm(Pred[0].getImm())
1493           .add(Pred[1])
1494           .addMBB(MBB);
1495     }
1496 
1497     return true;
1498   } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
1499              OpC == PPC::BCTRL8) {
1500     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1501       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1502 
1503     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1504     bool isPPC64 = Subtarget.isPPC64();
1505 
1506     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1507       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1508                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1509       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1510       return true;
1511     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1512       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1513                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1514       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1515       return true;
1516     }
1517 
1518     MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1519                            : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1520     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1521         .addImm(Pred[0].getImm())
1522         .add(Pred[1]);
1523     return true;
1524   }
1525 
1526   return false;
1527 }
1528 
1529 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1530                                      ArrayRef<MachineOperand> Pred2) const {
1531   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1532   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1533 
1534   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1535     return false;
1536   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1537     return false;
1538 
1539   // P1 can only subsume P2 if they test the same condition register.
1540   if (Pred1[1].getReg() != Pred2[1].getReg())
1541     return false;
1542 
1543   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1544   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1545 
1546   if (P1 == P2)
1547     return true;
1548 
1549   // Does P1 subsume P2, e.g. GE subsumes GT.
1550   if (P1 == PPC::PRED_LE &&
1551       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1552     return true;
1553   if (P1 == PPC::PRED_GE &&
1554       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1555     return true;
1556 
1557   return false;
1558 }
1559 
1560 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1561                                     std::vector<MachineOperand> &Pred) const {
1562   // Note: At the present time, the contents of Pred from this function is
1563   // unused by IfConversion. This implementation follows ARM by pushing the
1564   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1565   // predicate, instructions defining CTR or CTR8 are also included as
1566   // predicate-defining instructions.
1567 
1568   const TargetRegisterClass *RCs[] =
1569     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1570       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1571 
1572   bool Found = false;
1573   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1574     const MachineOperand &MO = MI.getOperand(i);
1575     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1576       const TargetRegisterClass *RC = RCs[c];
1577       if (MO.isReg()) {
1578         if (MO.isDef() && RC->contains(MO.getReg())) {
1579           Pred.push_back(MO);
1580           Found = true;
1581         }
1582       } else if (MO.isRegMask()) {
1583         for (TargetRegisterClass::iterator I = RC->begin(),
1584              IE = RC->end(); I != IE; ++I)
1585           if (MO.clobbersPhysReg(*I)) {
1586             Pred.push_back(MO);
1587             Found = true;
1588           }
1589       }
1590     }
1591   }
1592 
1593   return Found;
1594 }
1595 
1596 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const {
1597   unsigned OpC = MI.getOpcode();
1598   switch (OpC) {
1599   default:
1600     return false;
1601   case PPC::B:
1602   case PPC::BLR:
1603   case PPC::BLR8:
1604   case PPC::BCTR:
1605   case PPC::BCTR8:
1606   case PPC::BCTRL:
1607   case PPC::BCTRL8:
1608     return true;
1609   }
1610 }
1611 
1612 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1613                                   unsigned &SrcReg2, int &Mask,
1614                                   int &Value) const {
1615   unsigned Opc = MI.getOpcode();
1616 
1617   switch (Opc) {
1618   default: return false;
1619   case PPC::CMPWI:
1620   case PPC::CMPLWI:
1621   case PPC::CMPDI:
1622   case PPC::CMPLDI:
1623     SrcReg = MI.getOperand(1).getReg();
1624     SrcReg2 = 0;
1625     Value = MI.getOperand(2).getImm();
1626     Mask = 0xFFFF;
1627     return true;
1628   case PPC::CMPW:
1629   case PPC::CMPLW:
1630   case PPC::CMPD:
1631   case PPC::CMPLD:
1632   case PPC::FCMPUS:
1633   case PPC::FCMPUD:
1634     SrcReg = MI.getOperand(1).getReg();
1635     SrcReg2 = MI.getOperand(2).getReg();
1636     Value = 0;
1637     Mask = 0;
1638     return true;
1639   }
1640 }
1641 
1642 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1643                                         unsigned SrcReg2, int Mask, int Value,
1644                                         const MachineRegisterInfo *MRI) const {
1645   if (DisableCmpOpt)
1646     return false;
1647 
1648   int OpC = CmpInstr.getOpcode();
1649   unsigned CRReg = CmpInstr.getOperand(0).getReg();
1650 
1651   // FP record forms set CR1 based on the exception status bits, not a
1652   // comparison with zero.
1653   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1654     return false;
1655 
1656   const TargetRegisterInfo *TRI = &getRegisterInfo();
1657   // The record forms set the condition register based on a signed comparison
1658   // with zero (so says the ISA manual). This is not as straightforward as it
1659   // seems, however, because this is always a 64-bit comparison on PPC64, even
1660   // for instructions that are 32-bit in nature (like slw for example).
1661   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1662   // for equality checks (as those don't depend on the sign). On PPC64,
1663   // we are restricted to equality for unsigned 64-bit comparisons and for
1664   // signed 32-bit comparisons the applicability is more restricted.
1665   bool isPPC64 = Subtarget.isPPC64();
1666   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1667   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1668   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1669 
1670   // Look through copies unless that gets us to a physical register.
1671   unsigned ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
1672   if (TargetRegisterInfo::isVirtualRegister(ActualSrc))
1673     SrcReg = ActualSrc;
1674 
1675   // Get the unique definition of SrcReg.
1676   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1677   if (!MI) return false;
1678 
1679   bool equalityOnly = false;
1680   bool noSub = false;
1681   if (isPPC64) {
1682     if (is32BitSignedCompare) {
1683       // We can perform this optimization only if MI is sign-extending.
1684       if (isSignExtended(*MI))
1685         noSub = true;
1686       else
1687         return false;
1688     } else if (is32BitUnsignedCompare) {
1689       // We can perform this optimization, equality only, if MI is
1690       // zero-extending.
1691       if (isZeroExtended(*MI)) {
1692         noSub = true;
1693         equalityOnly = true;
1694       } else
1695         return false;
1696     } else
1697       equalityOnly = is64BitUnsignedCompare;
1698   } else
1699     equalityOnly = is32BitUnsignedCompare;
1700 
1701   if (equalityOnly) {
1702     // We need to check the uses of the condition register in order to reject
1703     // non-equality comparisons.
1704     for (MachineRegisterInfo::use_instr_iterator
1705          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1706          I != IE; ++I) {
1707       MachineInstr *UseMI = &*I;
1708       if (UseMI->getOpcode() == PPC::BCC) {
1709         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1710         unsigned PredCond = PPC::getPredicateCondition(Pred);
1711         // We ignore hint bits when checking for non-equality comparisons.
1712         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
1713           return false;
1714       } else if (UseMI->getOpcode() == PPC::ISEL ||
1715                  UseMI->getOpcode() == PPC::ISEL8) {
1716         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1717         if (SubIdx != PPC::sub_eq)
1718           return false;
1719       } else
1720         return false;
1721     }
1722   }
1723 
1724   MachineBasicBlock::iterator I = CmpInstr;
1725 
1726   // Scan forward to find the first use of the compare.
1727   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1728        ++I) {
1729     bool FoundUse = false;
1730     for (MachineRegisterInfo::use_instr_iterator
1731          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
1732          J != JE; ++J)
1733       if (&*J == &*I) {
1734         FoundUse = true;
1735         break;
1736       }
1737 
1738     if (FoundUse)
1739       break;
1740   }
1741 
1742   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1743   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1744 
1745   // There are two possible candidates which can be changed to set CR[01].
1746   // One is MI, the other is a SUB instruction.
1747   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1748   MachineInstr *Sub = nullptr;
1749   if (SrcReg2 != 0)
1750     // MI is not a candidate for CMPrr.
1751     MI = nullptr;
1752   // FIXME: Conservatively refuse to convert an instruction which isn't in the
1753   // same BB as the comparison. This is to allow the check below to avoid calls
1754   // (and other explicit clobbers); instead we should really check for these
1755   // more explicitly (in at least a few predecessors).
1756   else if (MI->getParent() != CmpInstr.getParent())
1757     return false;
1758   else if (Value != 0) {
1759     // The record-form instructions set CR bit based on signed comparison
1760     // against 0. We try to convert a compare against 1 or -1 into a compare
1761     // against 0 to exploit record-form instructions. For example, we change
1762     // the condition "greater than -1" into "greater than or equal to 0"
1763     // and "less than 1" into "less than or equal to 0".
1764 
1765     // Since we optimize comparison based on a specific branch condition,
1766     // we don't optimize if condition code is used by more than once.
1767     if (equalityOnly || !MRI->hasOneUse(CRReg))
1768       return false;
1769 
1770     MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
1771     if (UseMI->getOpcode() != PPC::BCC)
1772       return false;
1773 
1774     PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1775     PPC::Predicate NewPred = Pred;
1776     unsigned PredCond = PPC::getPredicateCondition(Pred);
1777     unsigned PredHint = PPC::getPredicateHint(Pred);
1778     int16_t Immed = (int16_t)Value;
1779 
1780     // When modifying the condition in the predicate, we propagate hint bits
1781     // from the original predicate to the new one.
1782     if (Immed == -1 && PredCond == PPC::PRED_GT)
1783       // We convert "greater than -1" into "greater than or equal to 0",
1784       // since we are assuming signed comparison by !equalityOnly
1785       NewPred = PPC::getPredicate(PPC::PRED_GE, PredHint);
1786     else if (Immed == -1 && PredCond == PPC::PRED_LE)
1787       // We convert "less than or equal to -1" into "less than 0".
1788       NewPred = PPC::getPredicate(PPC::PRED_LT, PredHint);
1789     else if (Immed == 1 && PredCond == PPC::PRED_LT)
1790       // We convert "less than 1" into "less than or equal to 0".
1791       NewPred = PPC::getPredicate(PPC::PRED_LE, PredHint);
1792     else if (Immed == 1 && PredCond == PPC::PRED_GE)
1793       // We convert "greater than or equal to 1" into "greater than 0".
1794       NewPred = PPC::getPredicate(PPC::PRED_GT, PredHint);
1795     else
1796       return false;
1797 
1798     PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1799                                             NewPred));
1800   }
1801 
1802   // Search for Sub.
1803   --I;
1804 
1805   // Get ready to iterate backward from CmpInstr.
1806   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
1807 
1808   for (; I != E && !noSub; --I) {
1809     const MachineInstr &Instr = *I;
1810     unsigned IOpC = Instr.getOpcode();
1811 
1812     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
1813                              Instr.readsRegister(PPC::CR0, TRI)))
1814       // This instruction modifies or uses the record condition register after
1815       // the one we want to change. While we could do this transformation, it
1816       // would likely not be profitable. This transformation removes one
1817       // instruction, and so even forcing RA to generate one move probably
1818       // makes it unprofitable.
1819       return false;
1820 
1821     // Check whether CmpInstr can be made redundant by the current instruction.
1822     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1823          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1824         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1825         ((Instr.getOperand(1).getReg() == SrcReg &&
1826           Instr.getOperand(2).getReg() == SrcReg2) ||
1827         (Instr.getOperand(1).getReg() == SrcReg2 &&
1828          Instr.getOperand(2).getReg() == SrcReg))) {
1829       Sub = &*I;
1830       break;
1831     }
1832 
1833     if (I == B)
1834       // The 'and' is below the comparison instruction.
1835       return false;
1836   }
1837 
1838   // Return false if no candidates exist.
1839   if (!MI && !Sub)
1840     return false;
1841 
1842   // The single candidate is called MI.
1843   if (!MI) MI = Sub;
1844 
1845   int NewOpC = -1;
1846   int MIOpC = MI->getOpcode();
1847   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 ||
1848       MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8)
1849     NewOpC = MIOpC;
1850   else {
1851     NewOpC = PPC::getRecordFormOpcode(MIOpC);
1852     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1853       NewOpC = MIOpC;
1854   }
1855 
1856   // FIXME: On the non-embedded POWER architectures, only some of the record
1857   // forms are fast, and we should use only the fast ones.
1858 
1859   // The defining instruction has a record form (or is already a record
1860   // form). It is possible, however, that we'll need to reverse the condition
1861   // code of the users.
1862   if (NewOpC == -1)
1863     return false;
1864 
1865   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1866   // needs to be updated to be based on SUB.  Push the condition code
1867   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1868   // condition code of these operands will be modified.
1869   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
1870   // comparison against 0, which may modify predicate.
1871   bool ShouldSwap = false;
1872   if (Sub && Value == 0) {
1873     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1874       Sub->getOperand(2).getReg() == SrcReg;
1875 
1876     // The operands to subf are the opposite of sub, so only in the fixed-point
1877     // case, invert the order.
1878     ShouldSwap = !ShouldSwap;
1879   }
1880 
1881   if (ShouldSwap)
1882     for (MachineRegisterInfo::use_instr_iterator
1883          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1884          I != IE; ++I) {
1885       MachineInstr *UseMI = &*I;
1886       if (UseMI->getOpcode() == PPC::BCC) {
1887         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1888         unsigned PredCond = PPC::getPredicateCondition(Pred);
1889         assert((!equalityOnly ||
1890                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
1891                "Invalid predicate for equality-only optimization");
1892         (void)PredCond; // To suppress warning in release build.
1893         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1894                                 PPC::getSwappedPredicate(Pred)));
1895       } else if (UseMI->getOpcode() == PPC::ISEL ||
1896                  UseMI->getOpcode() == PPC::ISEL8) {
1897         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1898         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1899                "Invalid CR bit for equality-only optimization");
1900 
1901         if (NewSubReg == PPC::sub_lt)
1902           NewSubReg = PPC::sub_gt;
1903         else if (NewSubReg == PPC::sub_gt)
1904           NewSubReg = PPC::sub_lt;
1905 
1906         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1907                                                  NewSubReg));
1908       } else // We need to abort on a user we don't understand.
1909         return false;
1910     }
1911   assert(!(Value != 0 && ShouldSwap) &&
1912          "Non-zero immediate support and ShouldSwap"
1913          "may conflict in updating predicate");
1914 
1915   // Create a new virtual register to hold the value of the CR set by the
1916   // record-form instruction. If the instruction was not previously in
1917   // record form, then set the kill flag on the CR.
1918   CmpInstr.eraseFromParent();
1919 
1920   MachineBasicBlock::iterator MII = MI;
1921   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1922           get(TargetOpcode::COPY), CRReg)
1923     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1924 
1925   // Even if CR0 register were dead before, it is alive now since the
1926   // instruction we just built uses it.
1927   MI->clearRegisterDeads(PPC::CR0);
1928 
1929   if (MIOpC != NewOpC) {
1930     // We need to be careful here: we're replacing one instruction with
1931     // another, and we need to make sure that we get all of the right
1932     // implicit uses and defs. On the other hand, the caller may be holding
1933     // an iterator to this instruction, and so we can't delete it (this is
1934     // specifically the case if this is the instruction directly after the
1935     // compare).
1936 
1937     // Rotates are expensive instructions. If we're emitting a record-form
1938     // rotate that can just be an andi/andis, we should just emit that.
1939     if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
1940       unsigned GPRRes = MI->getOperand(0).getReg();
1941       int64_t SH = MI->getOperand(2).getImm();
1942       int64_t MB = MI->getOperand(3).getImm();
1943       int64_t ME = MI->getOperand(4).getImm();
1944       // We can only do this if both the start and end of the mask are in the
1945       // same halfword.
1946       bool MBInLoHWord = MB >= 16;
1947       bool MEInLoHWord = ME >= 16;
1948       uint64_t Mask = ~0LLU;
1949 
1950       if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
1951         Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
1952         // The mask value needs to shift right 16 if we're emitting andis.
1953         Mask >>= MBInLoHWord ? 0 : 16;
1954         NewOpC = MIOpC == PPC::RLWINM ?
1955           (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) :
1956           (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8);
1957       } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
1958                  (ME - MB + 1 == SH) && (MB >= 16)) {
1959         // If we are rotating by the exact number of bits as are in the mask
1960         // and the mask is in the least significant bits of the register,
1961         // that's just an andis. (as long as the GPR result has no uses).
1962         Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
1963         Mask >>= 16;
1964         NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8;
1965       }
1966       // If we've set the mask, we can transform.
1967       if (Mask != ~0LLU) {
1968         MI->RemoveOperand(4);
1969         MI->RemoveOperand(3);
1970         MI->getOperand(2).setImm(Mask);
1971         NumRcRotatesConvertedToRcAnd++;
1972       }
1973     } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
1974       int64_t MB = MI->getOperand(3).getImm();
1975       if (MB >= 48) {
1976         uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
1977         NewOpC = PPC::ANDIo8;
1978         MI->RemoveOperand(3);
1979         MI->getOperand(2).setImm(Mask);
1980         NumRcRotatesConvertedToRcAnd++;
1981       }
1982     }
1983 
1984     const MCInstrDesc &NewDesc = get(NewOpC);
1985     MI->setDesc(NewDesc);
1986 
1987     if (NewDesc.ImplicitDefs)
1988       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1989            *ImpDefs; ++ImpDefs)
1990         if (!MI->definesRegister(*ImpDefs))
1991           MI->addOperand(*MI->getParent()->getParent(),
1992                          MachineOperand::CreateReg(*ImpDefs, true, true));
1993     if (NewDesc.ImplicitUses)
1994       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1995            *ImpUses; ++ImpUses)
1996         if (!MI->readsRegister(*ImpUses))
1997           MI->addOperand(*MI->getParent()->getParent(),
1998                          MachineOperand::CreateReg(*ImpUses, false, true));
1999   }
2000   assert(MI->definesRegister(PPC::CR0) &&
2001          "Record-form instruction does not define cr0?");
2002 
2003   // Modify the condition code of operands in OperandsToUpdate.
2004   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2005   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2006   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
2007     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
2008 
2009   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2010     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2011 
2012   return true;
2013 }
2014 
2015 /// GetInstSize - Return the number of bytes of code the specified
2016 /// instruction may be.  This returns the maximum number of bytes.
2017 ///
2018 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2019   unsigned Opcode = MI.getOpcode();
2020 
2021   if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
2022     const MachineFunction *MF = MI.getParent()->getParent();
2023     const char *AsmStr = MI.getOperand(0).getSymbolName();
2024     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2025   } else if (Opcode == TargetOpcode::STACKMAP) {
2026     StackMapOpers Opers(&MI);
2027     return Opers.getNumPatchBytes();
2028   } else if (Opcode == TargetOpcode::PATCHPOINT) {
2029     PatchPointOpers Opers(&MI);
2030     return Opers.getNumPatchBytes();
2031   } else {
2032     return get(Opcode).getSize();
2033   }
2034 }
2035 
2036 std::pair<unsigned, unsigned>
2037 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2038   const unsigned Mask = PPCII::MO_ACCESS_MASK;
2039   return std::make_pair(TF & Mask, TF & ~Mask);
2040 }
2041 
2042 ArrayRef<std::pair<unsigned, const char *>>
2043 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2044   using namespace PPCII;
2045   static const std::pair<unsigned, const char *> TargetFlags[] = {
2046       {MO_LO, "ppc-lo"},
2047       {MO_HA, "ppc-ha"},
2048       {MO_TPREL_LO, "ppc-tprel-lo"},
2049       {MO_TPREL_HA, "ppc-tprel-ha"},
2050       {MO_DTPREL_LO, "ppc-dtprel-lo"},
2051       {MO_TLSLD_LO, "ppc-tlsld-lo"},
2052       {MO_TOC_LO, "ppc-toc-lo"},
2053       {MO_TLS, "ppc-tls"}};
2054   return makeArrayRef(TargetFlags);
2055 }
2056 
2057 ArrayRef<std::pair<unsigned, const char *>>
2058 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2059   using namespace PPCII;
2060   static const std::pair<unsigned, const char *> TargetFlags[] = {
2061       {MO_PLT, "ppc-plt"},
2062       {MO_PIC_FLAG, "ppc-pic"},
2063       {MO_NLP_FLAG, "ppc-nlp"},
2064       {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
2065   return makeArrayRef(TargetFlags);
2066 }
2067 
2068 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2069 // The VSX versions have the advantage of a full 64-register target whereas
2070 // the FP ones have the advantage of lower latency and higher throughput. So
2071 // what we are after is using the faster instructions in low register pressure
2072 // situations and using the larger register file in high register pressure
2073 // situations.
2074 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2075     unsigned UpperOpcode, LowerOpcode;
2076     switch (MI.getOpcode()) {
2077     case PPC::DFLOADf32:
2078       UpperOpcode = PPC::LXSSP;
2079       LowerOpcode = PPC::LFS;
2080       break;
2081     case PPC::DFLOADf64:
2082       UpperOpcode = PPC::LXSD;
2083       LowerOpcode = PPC::LFD;
2084       break;
2085     case PPC::DFSTOREf32:
2086       UpperOpcode = PPC::STXSSP;
2087       LowerOpcode = PPC::STFS;
2088       break;
2089     case PPC::DFSTOREf64:
2090       UpperOpcode = PPC::STXSD;
2091       LowerOpcode = PPC::STFD;
2092       break;
2093     case PPC::XFLOADf32:
2094       UpperOpcode = PPC::LXSSPX;
2095       LowerOpcode = PPC::LFSX;
2096       break;
2097     case PPC::XFLOADf64:
2098       UpperOpcode = PPC::LXSDX;
2099       LowerOpcode = PPC::LFDX;
2100       break;
2101     case PPC::XFSTOREf32:
2102       UpperOpcode = PPC::STXSSPX;
2103       LowerOpcode = PPC::STFSX;
2104       break;
2105     case PPC::XFSTOREf64:
2106       UpperOpcode = PPC::STXSDX;
2107       LowerOpcode = PPC::STFDX;
2108       break;
2109     case PPC::LIWAX:
2110       UpperOpcode = PPC::LXSIWAX;
2111       LowerOpcode = PPC::LFIWAX;
2112       break;
2113     case PPC::LIWZX:
2114       UpperOpcode = PPC::LXSIWZX;
2115       LowerOpcode = PPC::LFIWZX;
2116       break;
2117     case PPC::STIWX:
2118       UpperOpcode = PPC::STXSIWX;
2119       LowerOpcode = PPC::STFIWX;
2120       break;
2121     default:
2122       llvm_unreachable("Unknown Operation!");
2123     }
2124 
2125     unsigned TargetReg = MI.getOperand(0).getReg();
2126     unsigned Opcode;
2127     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2128         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2129       Opcode = LowerOpcode;
2130     else
2131       Opcode = UpperOpcode;
2132     MI.setDesc(get(Opcode));
2133     return true;
2134 }
2135 
2136 static bool isAnImmediateOperand(const MachineOperand &MO) {
2137   return MO.isCPI() || MO.isGlobal() || MO.isImm();
2138 }
2139 
2140 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2141   auto &MBB = *MI.getParent();
2142   auto DL = MI.getDebugLoc();
2143 
2144   switch (MI.getOpcode()) {
2145   case TargetOpcode::LOAD_STACK_GUARD: {
2146     assert(Subtarget.isTargetLinux() &&
2147            "Only Linux target is expected to contain LOAD_STACK_GUARD");
2148     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
2149     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
2150     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
2151     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2152         .addImm(Offset)
2153         .addReg(Reg);
2154     return true;
2155   }
2156   case PPC::DFLOADf32:
2157   case PPC::DFLOADf64:
2158   case PPC::DFSTOREf32:
2159   case PPC::DFSTOREf64: {
2160     assert(Subtarget.hasP9Vector() &&
2161            "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2162     assert(MI.getOperand(2).isReg() &&
2163            isAnImmediateOperand(MI.getOperand(1)) &&
2164            "D-form op must have register and immediate operands");
2165     return expandVSXMemPseudo(MI);
2166   }
2167   case PPC::XFLOADf32:
2168   case PPC::XFSTOREf32:
2169   case PPC::LIWAX:
2170   case PPC::LIWZX:
2171   case PPC::STIWX: {
2172     assert(Subtarget.hasP8Vector() &&
2173            "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2174     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2175            "X-form op must have register and register operands");
2176     return expandVSXMemPseudo(MI);
2177   }
2178   case PPC::XFLOADf64:
2179   case PPC::XFSTOREf64: {
2180     assert(Subtarget.hasVSX() &&
2181            "Invalid X-Form Pseudo-ops on target that has no VSX.");
2182     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2183            "X-form op must have register and register operands");
2184     return expandVSXMemPseudo(MI);
2185   }
2186   case PPC::SPILLTOVSR_LD: {
2187     unsigned TargetReg = MI.getOperand(0).getReg();
2188     if (PPC::VSFRCRegClass.contains(TargetReg)) {
2189       MI.setDesc(get(PPC::DFLOADf64));
2190       return expandPostRAPseudo(MI);
2191     }
2192     else
2193       MI.setDesc(get(PPC::LD));
2194     return true;
2195   }
2196   case PPC::SPILLTOVSR_ST: {
2197     unsigned SrcReg = MI.getOperand(0).getReg();
2198     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2199       NumStoreSPILLVSRRCAsVec++;
2200       MI.setDesc(get(PPC::DFSTOREf64));
2201       return expandPostRAPseudo(MI);
2202     } else {
2203       NumStoreSPILLVSRRCAsGpr++;
2204       MI.setDesc(get(PPC::STD));
2205     }
2206     return true;
2207   }
2208   case PPC::SPILLTOVSR_LDX: {
2209     unsigned TargetReg = MI.getOperand(0).getReg();
2210     if (PPC::VSFRCRegClass.contains(TargetReg))
2211       MI.setDesc(get(PPC::LXSDX));
2212     else
2213       MI.setDesc(get(PPC::LDX));
2214     return true;
2215   }
2216   case PPC::SPILLTOVSR_STX: {
2217     unsigned SrcReg = MI.getOperand(0).getReg();
2218     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2219       NumStoreSPILLVSRRCAsVec++;
2220       MI.setDesc(get(PPC::STXSDX));
2221     } else {
2222       NumStoreSPILLVSRRCAsGpr++;
2223       MI.setDesc(get(PPC::STDX));
2224     }
2225     return true;
2226   }
2227 
2228   case PPC::CFENCE8: {
2229     auto Val = MI.getOperand(0).getReg();
2230     BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
2231     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
2232         .addImm(PPC::PRED_NE_MINUS)
2233         .addReg(PPC::CR7)
2234         .addImm(1);
2235     MI.setDesc(get(PPC::ISYNC));
2236     MI.RemoveOperand(0);
2237     return true;
2238   }
2239   }
2240   return false;
2241 }
2242 
2243 // Essentially a compile-time implementation of a compare->isel sequence.
2244 // It takes two constants to compare, along with the true/false registers
2245 // and the comparison type (as a subreg to a CR field) and returns one
2246 // of the true/false registers, depending on the comparison results.
2247 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
2248                           unsigned TrueReg, unsigned FalseReg,
2249                           unsigned CRSubReg) {
2250   // Signed comparisons. The immediates are assumed to be sign-extended.
2251   if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
2252     switch (CRSubReg) {
2253     default: llvm_unreachable("Unknown integer comparison type.");
2254     case PPC::sub_lt:
2255       return Imm1 < Imm2 ? TrueReg : FalseReg;
2256     case PPC::sub_gt:
2257       return Imm1 > Imm2 ? TrueReg : FalseReg;
2258     case PPC::sub_eq:
2259       return Imm1 == Imm2 ? TrueReg : FalseReg;
2260     }
2261   }
2262   // Unsigned comparisons.
2263   else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
2264     switch (CRSubReg) {
2265     default: llvm_unreachable("Unknown integer comparison type.");
2266     case PPC::sub_lt:
2267       return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
2268     case PPC::sub_gt:
2269       return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
2270     case PPC::sub_eq:
2271       return Imm1 == Imm2 ? TrueReg : FalseReg;
2272     }
2273   }
2274   return PPC::NoRegister;
2275 }
2276 
2277 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
2278                                               unsigned OpNo,
2279                                               int64_t Imm) const {
2280   assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
2281   // Replace the REG with the Immediate.
2282   unsigned InUseReg = MI.getOperand(OpNo).getReg();
2283   MI.getOperand(OpNo).ChangeToImmediate(Imm);
2284 
2285   if (empty(MI.implicit_operands()))
2286     return;
2287 
2288   // We need to make sure that the MI didn't have any implicit use
2289   // of this REG any more.
2290   const TargetRegisterInfo *TRI = &getRegisterInfo();
2291   int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
2292   if (UseOpIdx >= 0) {
2293     MachineOperand &MO = MI.getOperand(UseOpIdx);
2294     if (MO.isImplicit())
2295       // The operands must always be in the following order:
2296       // - explicit reg defs,
2297       // - other explicit operands (reg uses, immediates, etc.),
2298       // - implicit reg defs
2299       // - implicit reg uses
2300       // Therefore, removing the implicit operand won't change the explicit
2301       // operands layout.
2302       MI.RemoveOperand(UseOpIdx);
2303   }
2304 }
2305 
2306 // Replace an instruction with one that materializes a constant (and sets
2307 // CR0 if the original instruction was a record-form instruction).
2308 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
2309                                       const LoadImmediateInfo &LII) const {
2310   // Remove existing operands.
2311   int OperandToKeep = LII.SetCR ? 1 : 0;
2312   for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
2313     MI.RemoveOperand(i);
2314 
2315   // Replace the instruction.
2316   if (LII.SetCR) {
2317     MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo));
2318     // Set the immediate.
2319     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2320         .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
2321     return;
2322   }
2323   else
2324     MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
2325 
2326   // Set the immediate.
2327   MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2328       .addImm(LII.Imm);
2329 }
2330 
2331 MachineInstr *PPCInstrInfo::getForwardingDefMI(
2332   MachineInstr &MI,
2333   unsigned &OpNoForForwarding,
2334   bool &SeenIntermediateUse) const {
2335   OpNoForForwarding = ~0U;
2336   MachineInstr *DefMI = nullptr;
2337   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
2338   const TargetRegisterInfo *TRI = &getRegisterInfo();
2339   // If we're in SSA, get the defs through the MRI. Otherwise, only look
2340   // within the basic block to see if the register is defined using an LI/LI8.
2341   if (MRI->isSSA()) {
2342     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2343       if (!MI.getOperand(i).isReg())
2344         continue;
2345       unsigned Reg = MI.getOperand(i).getReg();
2346       if (!TargetRegisterInfo::isVirtualRegister(Reg))
2347         continue;
2348       unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
2349       if (TargetRegisterInfo::isVirtualRegister(TrueReg)) {
2350         DefMI = MRI->getVRegDef(TrueReg);
2351         if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) {
2352           OpNoForForwarding = i;
2353           break;
2354         }
2355       }
2356     }
2357   } else {
2358     // Looking back through the definition for each operand could be expensive,
2359     // so exit early if this isn't an instruction that either has an immediate
2360     // form or is already an immediate form that we can handle.
2361     ImmInstrInfo III;
2362     unsigned Opc = MI.getOpcode();
2363     bool ConvertibleImmForm =
2364       Opc == PPC::CMPWI || Opc == PPC::CMPLWI ||
2365       Opc == PPC::CMPDI || Opc == PPC::CMPLDI ||
2366       Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
2367       Opc == PPC::ORI || Opc == PPC::ORI8 ||
2368       Opc == PPC::XORI || Opc == PPC::XORI8 ||
2369       Opc == PPC::RLDICL || Opc == PPC::RLDICLo ||
2370       Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
2371       Opc == PPC::RLWINM || Opc == PPC::RLWINMo ||
2372       Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2373     if (!instrHasImmForm(MI, III, true) && !ConvertibleImmForm)
2374       return nullptr;
2375 
2376     // Don't convert or %X, %Y, %Y since that's just a register move.
2377     if ((Opc == PPC::OR || Opc == PPC::OR8) &&
2378         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
2379       return nullptr;
2380     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2381       MachineOperand &MO = MI.getOperand(i);
2382       SeenIntermediateUse = false;
2383       if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
2384         MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
2385         It++;
2386         unsigned Reg = MI.getOperand(i).getReg();
2387 
2388         // Is this register defined by some form of add-immediate (including
2389         // load-immediate) within this basic block?
2390         for ( ; It != E; ++It) {
2391           if (It->modifiesRegister(Reg, &getRegisterInfo())) {
2392             switch (It->getOpcode()) {
2393             default: break;
2394             case PPC::LI:
2395             case PPC::LI8:
2396             case PPC::ADDItocL:
2397             case PPC::ADDI:
2398             case PPC::ADDI8:
2399               OpNoForForwarding = i;
2400               return &*It;
2401             }
2402             break;
2403           } else if (It->readsRegister(Reg, &getRegisterInfo()))
2404             // If we see another use of this reg between the def and the MI,
2405             // we want to flat it so the def isn't deleted.
2406             SeenIntermediateUse = true;
2407         }
2408       }
2409     }
2410   }
2411   return OpNoForForwarding == ~0U ? nullptr : DefMI;
2412 }
2413 
2414 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2415   static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2416       // Power 8
2417       {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2418        PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX,
2419        PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2420        PPC::SPILLTOVSR_ST, PPC::EVSTDD, PPC::SPESTW},
2421       // Power 9
2422       {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2423        PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32,
2424        PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2425        PPC::SPILLTOVSR_ST}};
2426 
2427   return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2428 }
2429 
2430 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2431   static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2432       // Power 8
2433       {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2434        PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX,
2435        PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2436        PPC::SPILLTOVSR_LD, PPC::EVLDD, PPC::SPELWZ},
2437       // Power 9
2438       {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2439        PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32,
2440        PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2441        PPC::SPILLTOVSR_LD}};
2442 
2443   return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2444 }
2445 
2446 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI,
2447                                      unsigned RegNo) const {
2448   const MachineRegisterInfo &MRI =
2449       StartMI.getParent()->getParent()->getRegInfo();
2450   if (MRI.isSSA())
2451     return;
2452 
2453   // Instructions between [StartMI, EndMI] should be in same basic block.
2454   assert((StartMI.getParent() == EndMI.getParent()) &&
2455          "Instructions are not in same basic block");
2456 
2457   bool IsKillSet = false;
2458 
2459   auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
2460     MachineOperand &MO = MI.getOperand(Index);
2461     if (MO.isReg() && MO.isUse() && MO.isKill() &&
2462         getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
2463       MO.setIsKill(false);
2464   };
2465 
2466   // Set killed flag for EndMI.
2467   // No need to do anything if EndMI defines RegNo.
2468   int UseIndex =
2469       EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
2470   if (UseIndex != -1) {
2471     EndMI.getOperand(UseIndex).setIsKill(true);
2472     IsKillSet = true;
2473     // Clear killed flag for other EndMI operands related to RegNo. In some
2474     // upexpected cases, killed may be set multiple times for same register
2475     // operand in same MI.
2476     for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i)
2477       if (i != UseIndex)
2478         clearOperandKillInfo(EndMI, i);
2479   }
2480 
2481   // Walking the inst in reverse order (EndMI -> StartMI].
2482   MachineBasicBlock::reverse_iterator It = EndMI;
2483   MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend();
2484   // EndMI has been handled above, skip it here.
2485   It++;
2486   MachineOperand *MO = nullptr;
2487   for (; It != E; ++It) {
2488     // Skip insturctions which could not be a def/use of RegNo.
2489     if (It->isDebugInstr() || It->isPosition())
2490       continue;
2491 
2492     // Clear killed flag for all It operands related to RegNo. In some
2493     // upexpected cases, killed may be set multiple times for same register
2494     // operand in same MI.
2495     for (int i = 0, e = It->getNumOperands(); i != e; ++i)
2496         clearOperandKillInfo(*It, i);
2497 
2498     // If killed is not set, set killed for its last use or set dead for its def
2499     // if no use found.
2500     if (!IsKillSet) {
2501       if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
2502         // Use found, set it killed.
2503         IsKillSet = true;
2504         MO->setIsKill(true);
2505         continue;
2506       } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
2507                                                   &getRegisterInfo()))) {
2508         // No use found, set dead for its def.
2509         assert(&*It == &StartMI && "No new def between StartMI and EndMI.");
2510         MO->setIsDead(true);
2511         break;
2512       }
2513     }
2514 
2515     if ((&*It) == &StartMI)
2516       break;
2517   }
2518   // Ensure RegMo liveness is killed after EndMI.
2519   assert((IsKillSet || (MO && MO->isDead())) &&
2520          "RegNo should be killed or dead");
2521 }
2522 
2523 // If this instruction has an immediate form and one of its operands is a
2524 // result of a load-immediate or an add-immediate, convert it to
2525 // the immediate form if the constant is in range.
2526 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
2527                                           MachineInstr **KilledDef) const {
2528   MachineFunction *MF = MI.getParent()->getParent();
2529   MachineRegisterInfo *MRI = &MF->getRegInfo();
2530   bool PostRA = !MRI->isSSA();
2531   bool SeenIntermediateUse = true;
2532   unsigned ForwardingOperand = ~0U;
2533   MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
2534                                            SeenIntermediateUse);
2535   if (!DefMI)
2536     return false;
2537   assert(ForwardingOperand < MI.getNumOperands() &&
2538          "The forwarding operand needs to be valid at this point");
2539   bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
2540   bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
2541   unsigned ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg();
2542   if (KilledDef && KillFwdDefMI)
2543     *KilledDef = DefMI;
2544 
2545   ImmInstrInfo III;
2546   bool HasImmForm = instrHasImmForm(MI, III, PostRA);
2547   // If this is a reg+reg instruction that has a reg+imm form,
2548   // and one of the operands is produced by an add-immediate,
2549   // try to convert it.
2550   if (HasImmForm &&
2551       transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
2552                                  KillFwdDefMI))
2553     return true;
2554 
2555   if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) ||
2556       !DefMI->getOperand(1).isImm())
2557     return false;
2558 
2559   int64_t Immediate = DefMI->getOperand(1).getImm();
2560   // Sign-extend to 64-bits.
2561   int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
2562     (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
2563 
2564   // If this is a reg+reg instruction that has a reg+imm form,
2565   // and one of the operands is produced by LI, convert it now.
2566   if (HasImmForm)
2567     return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm);
2568 
2569   bool ReplaceWithLI = false;
2570   bool Is64BitLI = false;
2571   int64_t NewImm = 0;
2572   bool SetCR = false;
2573   unsigned Opc = MI.getOpcode();
2574   switch (Opc) {
2575   default: return false;
2576 
2577   // FIXME: Any branches conditional on such a comparison can be made
2578   // unconditional. At this time, this happens too infrequently to be worth
2579   // the implementation effort, but if that ever changes, we could convert
2580   // such a pattern here.
2581   case PPC::CMPWI:
2582   case PPC::CMPLWI:
2583   case PPC::CMPDI:
2584   case PPC::CMPLDI: {
2585     // Doing this post-RA would require dataflow analysis to reliably find uses
2586     // of the CR register set by the compare.
2587     // No need to fixup killed/dead flag since this transformation is only valid
2588     // before RA.
2589     if (PostRA)
2590       return false;
2591     // If a compare-immediate is fed by an immediate and is itself an input of
2592     // an ISEL (the most common case) into a COPY of the correct register.
2593     bool Changed = false;
2594     unsigned DefReg = MI.getOperand(0).getReg();
2595     int64_t Comparand = MI.getOperand(2).getImm();
2596     int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ?
2597       (Comparand | 0xFFFFFFFFFFFF0000) : Comparand;
2598 
2599     for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
2600       unsigned UseOpc = CompareUseMI.getOpcode();
2601       if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
2602         continue;
2603       unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
2604       unsigned TrueReg = CompareUseMI.getOperand(1).getReg();
2605       unsigned FalseReg = CompareUseMI.getOperand(2).getReg();
2606       unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg,
2607                                      FalseReg, CRSubReg);
2608       if (RegToCopy == PPC::NoRegister)
2609         continue;
2610       // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
2611       if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
2612         CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
2613         replaceInstrOperandWithImm(CompareUseMI, 1, 0);
2614         CompareUseMI.RemoveOperand(3);
2615         CompareUseMI.RemoveOperand(2);
2616         continue;
2617       }
2618       LLVM_DEBUG(
2619           dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
2620       LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump());
2621       LLVM_DEBUG(dbgs() << "Is converted to:\n");
2622       // Convert to copy and remove unneeded operands.
2623       CompareUseMI.setDesc(get(PPC::COPY));
2624       CompareUseMI.RemoveOperand(3);
2625       CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
2626       CmpIselsConverted++;
2627       Changed = true;
2628       LLVM_DEBUG(CompareUseMI.dump());
2629     }
2630     if (Changed)
2631       return true;
2632     // This may end up incremented multiple times since this function is called
2633     // during a fixed-point transformation, but it is only meant to indicate the
2634     // presence of this opportunity.
2635     MissedConvertibleImmediateInstrs++;
2636     return false;
2637   }
2638 
2639   // Immediate forms - may simply be convertable to an LI.
2640   case PPC::ADDI:
2641   case PPC::ADDI8: {
2642     // Does the sum fit in a 16-bit signed field?
2643     int64_t Addend = MI.getOperand(2).getImm();
2644     if (isInt<16>(Addend + SExtImm)) {
2645       ReplaceWithLI = true;
2646       Is64BitLI = Opc == PPC::ADDI8;
2647       NewImm = Addend + SExtImm;
2648       break;
2649     }
2650     return false;
2651   }
2652   case PPC::RLDICL:
2653   case PPC::RLDICLo:
2654   case PPC::RLDICL_32:
2655   case PPC::RLDICL_32_64: {
2656     // Use APInt's rotate function.
2657     int64_t SH = MI.getOperand(2).getImm();
2658     int64_t MB = MI.getOperand(3).getImm();
2659     APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ?
2660                 64 : 32, SExtImm, true);
2661     InVal = InVal.rotl(SH);
2662     uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2663     InVal &= Mask;
2664     // Can't replace negative values with an LI as that will sign-extend
2665     // and not clear the left bits. If we're setting the CR bit, we will use
2666     // ANDIo which won't sign extend, so that's safe.
2667     if (isUInt<15>(InVal.getSExtValue()) ||
2668         (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) {
2669       ReplaceWithLI = true;
2670       Is64BitLI = Opc != PPC::RLDICL_32;
2671       NewImm = InVal.getSExtValue();
2672       SetCR = Opc == PPC::RLDICLo;
2673       break;
2674     }
2675     return false;
2676   }
2677   case PPC::RLWINM:
2678   case PPC::RLWINM8:
2679   case PPC::RLWINMo:
2680   case PPC::RLWINM8o: {
2681     int64_t SH = MI.getOperand(2).getImm();
2682     int64_t MB = MI.getOperand(3).getImm();
2683     int64_t ME = MI.getOperand(4).getImm();
2684     APInt InVal(32, SExtImm, true);
2685     InVal = InVal.rotl(SH);
2686     // Set the bits (        MB + 32        ) to (        ME + 32        ).
2687     uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2688     InVal &= Mask;
2689     // Can't replace negative values with an LI as that will sign-extend
2690     // and not clear the left bits. If we're setting the CR bit, we will use
2691     // ANDIo which won't sign extend, so that's safe.
2692     bool ValueFits = isUInt<15>(InVal.getSExtValue());
2693     ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) &&
2694                   isUInt<16>(InVal.getSExtValue()));
2695     if (ValueFits) {
2696       ReplaceWithLI = true;
2697       Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2698       NewImm = InVal.getSExtValue();
2699       SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o;
2700       break;
2701     }
2702     return false;
2703   }
2704   case PPC::ORI:
2705   case PPC::ORI8:
2706   case PPC::XORI:
2707   case PPC::XORI8: {
2708     int64_t LogicalImm = MI.getOperand(2).getImm();
2709     int64_t Result = 0;
2710     if (Opc == PPC::ORI || Opc == PPC::ORI8)
2711       Result = LogicalImm | SExtImm;
2712     else
2713       Result = LogicalImm ^ SExtImm;
2714     if (isInt<16>(Result)) {
2715       ReplaceWithLI = true;
2716       Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
2717       NewImm = Result;
2718       break;
2719     }
2720     return false;
2721   }
2722   }
2723 
2724   if (ReplaceWithLI) {
2725     // We need to be careful with CR-setting instructions we're replacing.
2726     if (SetCR) {
2727       // We don't know anything about uses when we're out of SSA, so only
2728       // replace if the new immediate will be reproduced.
2729       bool ImmChanged = (SExtImm & NewImm) != NewImm;
2730       if (PostRA && ImmChanged)
2731         return false;
2732 
2733       if (!PostRA) {
2734         // If the defining load-immediate has no other uses, we can just replace
2735         // the immediate with the new immediate.
2736         if (MRI->hasOneUse(DefMI->getOperand(0).getReg()))
2737           DefMI->getOperand(1).setImm(NewImm);
2738 
2739         // If we're not using the GPR result of the CR-setting instruction, we
2740         // just need to and with zero/non-zero depending on the new immediate.
2741         else if (MRI->use_empty(MI.getOperand(0).getReg())) {
2742           if (NewImm) {
2743             assert(Immediate && "Transformation converted zero to non-zero?");
2744             NewImm = Immediate;
2745           }
2746         }
2747         else if (ImmChanged)
2748           return false;
2749       }
2750     }
2751 
2752     LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
2753     LLVM_DEBUG(MI.dump());
2754     LLVM_DEBUG(dbgs() << "Fed by:\n");
2755     LLVM_DEBUG(DefMI->dump());
2756     LoadImmediateInfo LII;
2757     LII.Imm = NewImm;
2758     LII.Is64Bit = Is64BitLI;
2759     LII.SetCR = SetCR;
2760     // If we're setting the CR, the original load-immediate must be kept (as an
2761     // operand to ANDIo/ANDI8o).
2762     if (KilledDef && SetCR)
2763       *KilledDef = nullptr;
2764     replaceInstrWithLI(MI, LII);
2765 
2766     // Fixup killed/dead flag after transformation.
2767     // Pattern:
2768     // ForwardingOperandReg = LI imm1
2769     // y = op2 imm2, ForwardingOperandReg(killed)
2770     if (IsForwardingOperandKilled)
2771       fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg);
2772 
2773     LLVM_DEBUG(dbgs() << "With:\n");
2774     LLVM_DEBUG(MI.dump());
2775     return true;
2776   }
2777   return false;
2778 }
2779 
2780 static bool isVFReg(unsigned Reg) {
2781   return PPC::VFRCRegClass.contains(Reg);
2782 }
2783 
2784 bool PPCInstrInfo::instrHasImmForm(const MachineInstr &MI,
2785                                    ImmInstrInfo &III, bool PostRA) const {
2786   unsigned Opc = MI.getOpcode();
2787   // The vast majority of the instructions would need their operand 2 replaced
2788   // with an immediate when switching to the reg+imm form. A marked exception
2789   // are the update form loads/stores for which a constant operand 2 would need
2790   // to turn into a displacement and move operand 1 to the operand 2 position.
2791   III.ImmOpNo = 2;
2792   III.OpNoForForwarding = 2;
2793   III.ImmWidth = 16;
2794   III.ImmMustBeMultipleOf = 1;
2795   III.TruncateImmTo = 0;
2796   III.IsSummingOperands = false;
2797   switch (Opc) {
2798   default: return false;
2799   case PPC::ADD4:
2800   case PPC::ADD8:
2801     III.SignedImm = true;
2802     III.ZeroIsSpecialOrig = 0;
2803     III.ZeroIsSpecialNew = 1;
2804     III.IsCommutative = true;
2805     III.IsSummingOperands = true;
2806     III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
2807     break;
2808   case PPC::ADDC:
2809   case PPC::ADDC8:
2810     III.SignedImm = true;
2811     III.ZeroIsSpecialOrig = 0;
2812     III.ZeroIsSpecialNew = 0;
2813     III.IsCommutative = true;
2814     III.IsSummingOperands = true;
2815     III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
2816     break;
2817   case PPC::ADDCo:
2818     III.SignedImm = true;
2819     III.ZeroIsSpecialOrig = 0;
2820     III.ZeroIsSpecialNew = 0;
2821     III.IsCommutative = true;
2822     III.IsSummingOperands = true;
2823     III.ImmOpcode = PPC::ADDICo;
2824     break;
2825   case PPC::SUBFC:
2826   case PPC::SUBFC8:
2827     III.SignedImm = true;
2828     III.ZeroIsSpecialOrig = 0;
2829     III.ZeroIsSpecialNew = 0;
2830     III.IsCommutative = false;
2831     III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
2832     break;
2833   case PPC::CMPW:
2834   case PPC::CMPD:
2835     III.SignedImm = true;
2836     III.ZeroIsSpecialOrig = 0;
2837     III.ZeroIsSpecialNew = 0;
2838     III.IsCommutative = false;
2839     III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
2840     break;
2841   case PPC::CMPLW:
2842   case PPC::CMPLD:
2843     III.SignedImm = false;
2844     III.ZeroIsSpecialOrig = 0;
2845     III.ZeroIsSpecialNew = 0;
2846     III.IsCommutative = false;
2847     III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
2848     break;
2849   case PPC::ANDo:
2850   case PPC::AND8o:
2851   case PPC::OR:
2852   case PPC::OR8:
2853   case PPC::XOR:
2854   case PPC::XOR8:
2855     III.SignedImm = false;
2856     III.ZeroIsSpecialOrig = 0;
2857     III.ZeroIsSpecialNew = 0;
2858     III.IsCommutative = true;
2859     switch(Opc) {
2860     default: llvm_unreachable("Unknown opcode");
2861     case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break;
2862     case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break;
2863     case PPC::OR: III.ImmOpcode = PPC::ORI; break;
2864     case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
2865     case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
2866     case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
2867     }
2868     break;
2869   case PPC::RLWNM:
2870   case PPC::RLWNM8:
2871   case PPC::RLWNMo:
2872   case PPC::RLWNM8o:
2873   case PPC::SLW:
2874   case PPC::SLW8:
2875   case PPC::SLWo:
2876   case PPC::SLW8o:
2877   case PPC::SRW:
2878   case PPC::SRW8:
2879   case PPC::SRWo:
2880   case PPC::SRW8o:
2881   case PPC::SRAW:
2882   case PPC::SRAWo:
2883     III.SignedImm = false;
2884     III.ZeroIsSpecialOrig = 0;
2885     III.ZeroIsSpecialNew = 0;
2886     III.IsCommutative = false;
2887     // This isn't actually true, but the instructions ignore any of the
2888     // upper bits, so any immediate loaded with an LI is acceptable.
2889     // This does not apply to shift right algebraic because a value
2890     // out of range will produce a -1/0.
2891     III.ImmWidth = 16;
2892     if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 ||
2893         Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o)
2894       III.TruncateImmTo = 5;
2895     else
2896       III.TruncateImmTo = 6;
2897     switch(Opc) {
2898     default: llvm_unreachable("Unknown opcode");
2899     case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
2900     case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
2901     case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break;
2902     case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break;
2903     case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
2904     case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
2905     case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break;
2906     case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2907     case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
2908     case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
2909     case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break;
2910     case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2911     case PPC::SRAW:
2912       III.ImmWidth = 5;
2913       III.TruncateImmTo = 0;
2914       III.ImmOpcode = PPC::SRAWI;
2915       break;
2916     case PPC::SRAWo:
2917       III.ImmWidth = 5;
2918       III.TruncateImmTo = 0;
2919       III.ImmOpcode = PPC::SRAWIo;
2920       break;
2921     }
2922     break;
2923   case PPC::RLDCL:
2924   case PPC::RLDCLo:
2925   case PPC::RLDCR:
2926   case PPC::RLDCRo:
2927   case PPC::SLD:
2928   case PPC::SLDo:
2929   case PPC::SRD:
2930   case PPC::SRDo:
2931   case PPC::SRAD:
2932   case PPC::SRADo:
2933     III.SignedImm = false;
2934     III.ZeroIsSpecialOrig = 0;
2935     III.ZeroIsSpecialNew = 0;
2936     III.IsCommutative = false;
2937     // This isn't actually true, but the instructions ignore any of the
2938     // upper bits, so any immediate loaded with an LI is acceptable.
2939     // This does not apply to shift right algebraic because a value
2940     // out of range will produce a -1/0.
2941     III.ImmWidth = 16;
2942     if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo ||
2943         Opc == PPC::RLDCR || Opc == PPC::RLDCRo)
2944       III.TruncateImmTo = 6;
2945     else
2946       III.TruncateImmTo = 7;
2947     switch(Opc) {
2948     default: llvm_unreachable("Unknown opcode");
2949     case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
2950     case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break;
2951     case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
2952     case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break;
2953     case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
2954     case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break;
2955     case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
2956     case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break;
2957     case PPC::SRAD:
2958       III.ImmWidth = 6;
2959       III.TruncateImmTo = 0;
2960       III.ImmOpcode = PPC::SRADI;
2961        break;
2962     case PPC::SRADo:
2963       III.ImmWidth = 6;
2964       III.TruncateImmTo = 0;
2965       III.ImmOpcode = PPC::SRADIo;
2966       break;
2967     }
2968     break;
2969   // Loads and stores:
2970   case PPC::LBZX:
2971   case PPC::LBZX8:
2972   case PPC::LHZX:
2973   case PPC::LHZX8:
2974   case PPC::LHAX:
2975   case PPC::LHAX8:
2976   case PPC::LWZX:
2977   case PPC::LWZX8:
2978   case PPC::LWAX:
2979   case PPC::LDX:
2980   case PPC::LFSX:
2981   case PPC::LFDX:
2982   case PPC::STBX:
2983   case PPC::STBX8:
2984   case PPC::STHX:
2985   case PPC::STHX8:
2986   case PPC::STWX:
2987   case PPC::STWX8:
2988   case PPC::STDX:
2989   case PPC::STFSX:
2990   case PPC::STFDX:
2991     III.SignedImm = true;
2992     III.ZeroIsSpecialOrig = 1;
2993     III.ZeroIsSpecialNew = 2;
2994     III.IsCommutative = true;
2995     III.IsSummingOperands = true;
2996     III.ImmOpNo = 1;
2997     III.OpNoForForwarding = 2;
2998     switch(Opc) {
2999     default: llvm_unreachable("Unknown opcode");
3000     case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
3001     case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
3002     case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
3003     case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
3004     case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
3005     case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
3006     case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
3007     case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
3008     case PPC::LWAX:
3009       III.ImmOpcode = PPC::LWA;
3010       III.ImmMustBeMultipleOf = 4;
3011       break;
3012     case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
3013     case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
3014     case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
3015     case PPC::STBX: III.ImmOpcode = PPC::STB; break;
3016     case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
3017     case PPC::STHX: III.ImmOpcode = PPC::STH; break;
3018     case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
3019     case PPC::STWX: III.ImmOpcode = PPC::STW; break;
3020     case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
3021     case PPC::STDX:
3022       III.ImmOpcode = PPC::STD;
3023       III.ImmMustBeMultipleOf = 4;
3024       break;
3025     case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
3026     case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
3027     }
3028     break;
3029   case PPC::LBZUX:
3030   case PPC::LBZUX8:
3031   case PPC::LHZUX:
3032   case PPC::LHZUX8:
3033   case PPC::LHAUX:
3034   case PPC::LHAUX8:
3035   case PPC::LWZUX:
3036   case PPC::LWZUX8:
3037   case PPC::LDUX:
3038   case PPC::LFSUX:
3039   case PPC::LFDUX:
3040   case PPC::STBUX:
3041   case PPC::STBUX8:
3042   case PPC::STHUX:
3043   case PPC::STHUX8:
3044   case PPC::STWUX:
3045   case PPC::STWUX8:
3046   case PPC::STDUX:
3047   case PPC::STFSUX:
3048   case PPC::STFDUX:
3049     III.SignedImm = true;
3050     III.ZeroIsSpecialOrig = 2;
3051     III.ZeroIsSpecialNew = 3;
3052     III.IsCommutative = false;
3053     III.IsSummingOperands = true;
3054     III.ImmOpNo = 2;
3055     III.OpNoForForwarding = 3;
3056     switch(Opc) {
3057     default: llvm_unreachable("Unknown opcode");
3058     case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
3059     case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
3060     case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
3061     case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
3062     case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
3063     case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
3064     case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
3065     case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
3066     case PPC::LDUX:
3067       III.ImmOpcode = PPC::LDU;
3068       III.ImmMustBeMultipleOf = 4;
3069       break;
3070     case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
3071     case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
3072     case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
3073     case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
3074     case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
3075     case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
3076     case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
3077     case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
3078     case PPC::STDUX:
3079       III.ImmOpcode = PPC::STDU;
3080       III.ImmMustBeMultipleOf = 4;
3081       break;
3082     case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
3083     case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
3084     }
3085     break;
3086   // Power9 and up only. For some of these, the X-Form version has access to all
3087   // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
3088   // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
3089   // into or stored from is one of the VR registers.
3090   case PPC::LXVX:
3091   case PPC::LXSSPX:
3092   case PPC::LXSDX:
3093   case PPC::STXVX:
3094   case PPC::STXSSPX:
3095   case PPC::STXSDX:
3096   case PPC::XFLOADf32:
3097   case PPC::XFLOADf64:
3098   case PPC::XFSTOREf32:
3099   case PPC::XFSTOREf64:
3100     if (!Subtarget.hasP9Vector())
3101       return false;
3102     III.SignedImm = true;
3103     III.ZeroIsSpecialOrig = 1;
3104     III.ZeroIsSpecialNew = 2;
3105     III.IsCommutative = true;
3106     III.IsSummingOperands = true;
3107     III.ImmOpNo = 1;
3108     III.OpNoForForwarding = 2;
3109     III.ImmMustBeMultipleOf = 4;
3110     switch(Opc) {
3111     default: llvm_unreachable("Unknown opcode");
3112     case PPC::LXVX:
3113       III.ImmOpcode = PPC::LXV;
3114       III.ImmMustBeMultipleOf = 16;
3115       break;
3116     case PPC::LXSSPX:
3117       if (PostRA) {
3118         if (isVFReg(MI.getOperand(0).getReg()))
3119           III.ImmOpcode = PPC::LXSSP;
3120         else {
3121           III.ImmOpcode = PPC::LFS;
3122           III.ImmMustBeMultipleOf = 1;
3123         }
3124         break;
3125       }
3126       LLVM_FALLTHROUGH;
3127     case PPC::XFLOADf32:
3128       III.ImmOpcode = PPC::DFLOADf32;
3129       break;
3130     case PPC::LXSDX:
3131       if (PostRA) {
3132         if (isVFReg(MI.getOperand(0).getReg()))
3133           III.ImmOpcode = PPC::LXSD;
3134         else {
3135           III.ImmOpcode = PPC::LFD;
3136           III.ImmMustBeMultipleOf = 1;
3137         }
3138         break;
3139       }
3140       LLVM_FALLTHROUGH;
3141     case PPC::XFLOADf64:
3142       III.ImmOpcode = PPC::DFLOADf64;
3143       break;
3144     case PPC::STXVX:
3145       III.ImmOpcode = PPC::STXV;
3146       III.ImmMustBeMultipleOf = 16;
3147       break;
3148     case PPC::STXSSPX:
3149       if (PostRA) {
3150         if (isVFReg(MI.getOperand(0).getReg()))
3151           III.ImmOpcode = PPC::STXSSP;
3152         else {
3153           III.ImmOpcode = PPC::STFS;
3154           III.ImmMustBeMultipleOf = 1;
3155         }
3156         break;
3157       }
3158       LLVM_FALLTHROUGH;
3159     case PPC::XFSTOREf32:
3160       III.ImmOpcode = PPC::DFSTOREf32;
3161       break;
3162     case PPC::STXSDX:
3163       if (PostRA) {
3164         if (isVFReg(MI.getOperand(0).getReg()))
3165           III.ImmOpcode = PPC::STXSD;
3166         else {
3167           III.ImmOpcode = PPC::STFD;
3168           III.ImmMustBeMultipleOf = 1;
3169         }
3170         break;
3171       }
3172       LLVM_FALLTHROUGH;
3173     case PPC::XFSTOREf64:
3174       III.ImmOpcode = PPC::DFSTOREf64;
3175       break;
3176     }
3177     break;
3178   }
3179   return true;
3180 }
3181 
3182 // Utility function for swaping two arbitrary operands of an instruction.
3183 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
3184   assert(Op1 != Op2 && "Cannot swap operand with itself.");
3185 
3186   unsigned MaxOp = std::max(Op1, Op2);
3187   unsigned MinOp = std::min(Op1, Op2);
3188   MachineOperand MOp1 = MI.getOperand(MinOp);
3189   MachineOperand MOp2 = MI.getOperand(MaxOp);
3190   MI.RemoveOperand(std::max(Op1, Op2));
3191   MI.RemoveOperand(std::min(Op1, Op2));
3192 
3193   // If the operands we are swapping are the two at the end (the common case)
3194   // we can just remove both and add them in the opposite order.
3195   if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
3196     MI.addOperand(MOp2);
3197     MI.addOperand(MOp1);
3198   } else {
3199     // Store all operands in a temporary vector, remove them and re-add in the
3200     // right order.
3201     SmallVector<MachineOperand, 2> MOps;
3202     unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
3203     for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
3204       MOps.push_back(MI.getOperand(i));
3205       MI.RemoveOperand(i);
3206     }
3207     // MOp2 needs to be added next.
3208     MI.addOperand(MOp2);
3209     // Now add the rest.
3210     for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
3211       if (i == MaxOp)
3212         MI.addOperand(MOp1);
3213       else {
3214         MI.addOperand(MOps.back());
3215         MOps.pop_back();
3216       }
3217     }
3218   }
3219 }
3220 
3221 // Check if the 'MI' that has the index OpNoForForwarding
3222 // meets the requirement described in the ImmInstrInfo.
3223 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
3224                                                const ImmInstrInfo &III,
3225                                                unsigned OpNoForForwarding
3226                                                ) const {
3227   // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
3228   // would not work pre-RA, we can only do the check post RA.
3229   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3230   if (MRI.isSSA())
3231     return false;
3232 
3233   // Cannot do the transform if MI isn't summing the operands.
3234   if (!III.IsSummingOperands)
3235     return false;
3236 
3237   // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
3238   if (!III.ZeroIsSpecialOrig)
3239     return false;
3240 
3241   // We cannot do the transform if the operand we are trying to replace
3242   // isn't the same as the operand the instruction allows.
3243   if (OpNoForForwarding != III.OpNoForForwarding)
3244     return false;
3245 
3246   // Check if the instruction we are trying to transform really has
3247   // the special zero register as its operand.
3248   if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
3249       MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
3250     return false;
3251 
3252   // This machine instruction is convertible if it is,
3253   // 1. summing the operands.
3254   // 2. one of the operands is special zero register.
3255   // 3. the operand we are trying to replace is allowed by the MI.
3256   return true;
3257 }
3258 
3259 // Check if the DefMI is the add inst and set the ImmMO and RegMO
3260 // accordingly.
3261 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
3262                                                const ImmInstrInfo &III,
3263                                                MachineOperand *&ImmMO,
3264                                                MachineOperand *&RegMO) const {
3265   unsigned Opc = DefMI.getOpcode();
3266   if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
3267     return false;
3268 
3269   assert(DefMI.getNumOperands() >= 3 &&
3270          "Add inst must have at least three operands");
3271   RegMO = &DefMI.getOperand(1);
3272   ImmMO = &DefMI.getOperand(2);
3273 
3274   // This DefMI is elgible for forwarding if it is:
3275   // 1. add inst
3276   // 2. one of the operands is Imm/CPI/Global.
3277   return isAnImmediateOperand(*ImmMO);
3278 }
3279 
3280 bool PPCInstrInfo::isRegElgibleForForwarding(
3281     const MachineOperand &RegMO, const MachineInstr &DefMI,
3282     const MachineInstr &MI, bool KillDefMI,
3283     bool &IsFwdFeederRegKilled) const {
3284   // x = addi y, imm
3285   // ...
3286   // z = lfdx 0, x   -> z = lfd imm(y)
3287   // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
3288   // of "y" between the DEF of "x" and "z".
3289   // The query is only valid post RA.
3290   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3291   if (MRI.isSSA())
3292     return false;
3293 
3294   unsigned Reg = RegMO.getReg();
3295 
3296   // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
3297   MachineBasicBlock::const_reverse_iterator It = MI;
3298   MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
3299   It++;
3300   for (; It != E; ++It) {
3301     if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3302       return false;
3303     else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3304       IsFwdFeederRegKilled = true;
3305     // Made it to DefMI without encountering a clobber.
3306     if ((&*It) == &DefMI)
3307       break;
3308   }
3309   assert((&*It) == &DefMI && "DefMI is missing");
3310 
3311   // If DefMI also defines the register to be forwarded, we can only forward it
3312   // if DefMI is being erased.
3313   if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
3314     return KillDefMI;
3315 
3316   return true;
3317 }
3318 
3319 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
3320                                              const MachineInstr &DefMI,
3321                                              const ImmInstrInfo &III,
3322                                              int64_t &Imm) const {
3323   assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
3324   if (DefMI.getOpcode() == PPC::ADDItocL) {
3325     // The operand for ADDItocL is CPI, which isn't imm at compiling time,
3326     // However, we know that, it is 16-bit width, and has the alignment of 4.
3327     // Check if the instruction met the requirement.
3328     if (III.ImmMustBeMultipleOf > 4 ||
3329        III.TruncateImmTo || III.ImmWidth != 16)
3330       return false;
3331 
3332     // Going from XForm to DForm loads means that the displacement needs to be
3333     // not just an immediate but also a multiple of 4, or 16 depending on the
3334     // load. A DForm load cannot be represented if it is a multiple of say 2.
3335     // XForm loads do not have this restriction.
3336     if (ImmMO.isGlobal() &&
3337         ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf)
3338       return false;
3339 
3340     return true;
3341   }
3342 
3343   if (ImmMO.isImm()) {
3344     // It is Imm, we need to check if the Imm fit the range.
3345     int64_t Immediate = ImmMO.getImm();
3346     // Sign-extend to 64-bits.
3347     Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
3348       (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
3349 
3350     if (Imm % III.ImmMustBeMultipleOf)
3351       return false;
3352     if (III.TruncateImmTo)
3353       Imm &= ((1 << III.TruncateImmTo) - 1);
3354     if (III.SignedImm) {
3355       APInt ActualValue(64, Imm, true);
3356       if (!ActualValue.isSignedIntN(III.ImmWidth))
3357         return false;
3358     } else {
3359       uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3360       if ((uint64_t)Imm > UnsignedMax)
3361         return false;
3362     }
3363   }
3364   else
3365     return false;
3366 
3367   // This ImmMO is forwarded if it meets the requriement describle
3368   // in ImmInstrInfo
3369   return true;
3370 }
3371 
3372 // If an X-Form instruction is fed by an add-immediate and one of its operands
3373 // is the literal zero, attempt to forward the source of the add-immediate to
3374 // the corresponding D-Form instruction with the displacement coming from
3375 // the immediate being added.
3376 bool PPCInstrInfo::transformToImmFormFedByAdd(
3377     MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
3378     MachineInstr &DefMI, bool KillDefMI) const {
3379   //         RegMO ImmMO
3380   //           |    |
3381   // x = addi reg, imm  <----- DefMI
3382   // y = op    0 ,  x   <----- MI
3383   //                |
3384   //         OpNoForForwarding
3385   // Check if the MI meet the requirement described in the III.
3386   if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
3387     return false;
3388 
3389   // Check if the DefMI meet the requirement
3390   // described in the III. If yes, set the ImmMO and RegMO accordingly.
3391   MachineOperand *ImmMO = nullptr;
3392   MachineOperand *RegMO = nullptr;
3393   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
3394     return false;
3395   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
3396 
3397   // As we get the Imm operand now, we need to check if the ImmMO meet
3398   // the requirement described in the III. If yes set the Imm.
3399   int64_t Imm = 0;
3400   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
3401     return false;
3402 
3403   bool IsFwdFeederRegKilled = false;
3404   // Check if the RegMO can be forwarded to MI.
3405   if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
3406                                  IsFwdFeederRegKilled))
3407     return false;
3408 
3409   // Get killed info in case fixup needed after transformation.
3410   unsigned ForwardKilledOperandReg = ~0U;
3411   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3412   bool PostRA = !MRI.isSSA();
3413   if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
3414     ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
3415 
3416   // We know that, the MI and DefMI both meet the pattern, and
3417   // the Imm also meet the requirement with the new Imm-form.
3418   // It is safe to do the transformation now.
3419   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
3420   LLVM_DEBUG(MI.dump());
3421   LLVM_DEBUG(dbgs() << "Fed by:\n");
3422   LLVM_DEBUG(DefMI.dump());
3423 
3424   // Update the base reg first.
3425   MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
3426                                                         false, false,
3427                                                         RegMO->isKill());
3428 
3429   // Then, update the imm.
3430   if (ImmMO->isImm()) {
3431     // If the ImmMO is Imm, change the operand that has ZERO to that Imm
3432     // directly.
3433     replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
3434   }
3435   else {
3436     // Otherwise, it is Constant Pool Index(CPI) or Global,
3437     // which is relocation in fact. We need to replace the special zero
3438     // register with ImmMO.
3439     // Before that, we need to fixup the target flags for imm.
3440     // For some reason, we miss to set the flag for the ImmMO if it is CPI.
3441     if (DefMI.getOpcode() == PPC::ADDItocL)
3442       ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
3443 
3444     // MI didn't have the interface such as MI.setOperand(i) though
3445     // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
3446     // ImmMO, we need to remove ZERO operand and all the operands behind it,
3447     // and, add the ImmMO, then, move back all the operands behind ZERO.
3448     SmallVector<MachineOperand, 2> MOps;
3449     for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
3450       MOps.push_back(MI.getOperand(i));
3451       MI.RemoveOperand(i);
3452     }
3453 
3454     // Remove the last MO in the list, which is ZERO operand in fact.
3455     MOps.pop_back();
3456     // Add the imm operand.
3457     MI.addOperand(*ImmMO);
3458     // Now add the rest back.
3459     for (auto &MO : MOps)
3460       MI.addOperand(MO);
3461   }
3462 
3463   // Update the opcode.
3464   MI.setDesc(get(III.ImmOpcode));
3465 
3466   // Fix up killed/dead flag after transformation.
3467   // Pattern 1:
3468   // x = ADD KilledFwdFeederReg, imm
3469   // n = opn KilledFwdFeederReg(killed), regn
3470   // y = XOP 0, x
3471   // Pattern 2:
3472   // x = ADD reg(killed), imm
3473   // y = XOP 0, x
3474   if (IsFwdFeederRegKilled || RegMO->isKill())
3475     fixupIsDeadOrKill(DefMI, MI, RegMO->getReg());
3476   // Pattern 3:
3477   // ForwardKilledOperandReg = ADD reg, imm
3478   // y = XOP 0, ForwardKilledOperandReg(killed)
3479   if (ForwardKilledOperandReg != ~0U)
3480     fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3481 
3482   LLVM_DEBUG(dbgs() << "With:\n");
3483   LLVM_DEBUG(MI.dump());
3484 
3485   return true;
3486 }
3487 
3488 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
3489                                              const ImmInstrInfo &III,
3490                                              unsigned ConstantOpNo,
3491                                              MachineInstr &DefMI,
3492                                              int64_t Imm) const {
3493   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3494   bool PostRA = !MRI.isSSA();
3495   // Exit early if we can't convert this.
3496   if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
3497     return false;
3498   if (Imm % III.ImmMustBeMultipleOf)
3499     return false;
3500   if (III.TruncateImmTo)
3501     Imm &= ((1 << III.TruncateImmTo) - 1);
3502   if (III.SignedImm) {
3503     APInt ActualValue(64, Imm, true);
3504     if (!ActualValue.isSignedIntN(III.ImmWidth))
3505       return false;
3506   } else {
3507     uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3508     if ((uint64_t)Imm > UnsignedMax)
3509       return false;
3510   }
3511 
3512   // If we're post-RA, the instructions don't agree on whether register zero is
3513   // special, we can transform this as long as the register operand that will
3514   // end up in the location where zero is special isn't R0.
3515   if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3516     unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
3517       III.ZeroIsSpecialNew + 1;
3518     unsigned OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
3519     unsigned NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3520     // If R0 is in the operand where zero is special for the new instruction,
3521     // it is unsafe to transform if the constant operand isn't that operand.
3522     if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
3523         ConstantOpNo != III.ZeroIsSpecialNew)
3524       return false;
3525     if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
3526         ConstantOpNo != PosForOrigZero)
3527       return false;
3528   }
3529 
3530   // Get killed info in case fixup needed after transformation.
3531   unsigned ForwardKilledOperandReg = ~0U;
3532   if (PostRA && MI.getOperand(ConstantOpNo).isKill())
3533     ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
3534 
3535   unsigned Opc = MI.getOpcode();
3536   bool SpecialShift32 =
3537     Opc == PPC::SLW || Opc == PPC::SLWo || Opc == PPC::SRW || Opc == PPC::SRWo;
3538   bool SpecialShift64 =
3539     Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo;
3540   bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo ||
3541     Opc == PPC::SLDo || Opc == PPC::SRDo;
3542   bool RightShift =
3543     Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo;
3544 
3545   MI.setDesc(get(III.ImmOpcode));
3546   if (ConstantOpNo == III.OpNoForForwarding) {
3547     // Converting shifts to immediate form is a bit tricky since they may do
3548     // one of three things:
3549     // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
3550     // 2. If the shift amount is zero, the result is unchanged (save for maybe
3551     //    setting CR0)
3552     // 3. If the shift amount is in [1, OpSize), it's just a shift
3553     if (SpecialShift32 || SpecialShift64) {
3554       LoadImmediateInfo LII;
3555       LII.Imm = 0;
3556       LII.SetCR = SetCR;
3557       LII.Is64Bit = SpecialShift64;
3558       uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
3559       if (Imm & (SpecialShift32 ? 0x20 : 0x40))
3560         replaceInstrWithLI(MI, LII);
3561       // Shifts by zero don't change the value. If we don't need to set CR0,
3562       // just convert this to a COPY. Can't do this post-RA since we've already
3563       // cleaned up the copies.
3564       else if (!SetCR && ShAmt == 0 && !PostRA) {
3565         MI.RemoveOperand(2);
3566         MI.setDesc(get(PPC::COPY));
3567       } else {
3568         // The 32 bit and 64 bit instructions are quite different.
3569         if (SpecialShift32) {
3570           // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31).
3571           uint64_t SH = RightShift ? 32 - ShAmt : ShAmt;
3572           uint64_t MB = RightShift ? ShAmt : 0;
3573           uint64_t ME = RightShift ? 31 : 31 - ShAmt;
3574           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3575           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
3576             .addImm(ME);
3577         } else {
3578           // Left shifts use (N, 63-N), right shifts use (64-N, N).
3579           uint64_t SH = RightShift ? 64 - ShAmt : ShAmt;
3580           uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
3581           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3582           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
3583         }
3584       }
3585     } else
3586       replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3587   }
3588   // Convert commutative instructions (switch the operands and convert the
3589   // desired one to an immediate.
3590   else if (III.IsCommutative) {
3591     replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3592     swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
3593   } else
3594     llvm_unreachable("Should have exited early!");
3595 
3596   // For instructions for which the constant register replaces a different
3597   // operand than where the immediate goes, we need to swap them.
3598   if (III.OpNoForForwarding != III.ImmOpNo)
3599     swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
3600 
3601   // If the special R0/X0 register index are different for original instruction
3602   // and new instruction, we need to fix up the register class in new
3603   // instruction.
3604   if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3605     if (III.ZeroIsSpecialNew) {
3606       // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
3607       // need to fix up register class.
3608       unsigned RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3609       if (TargetRegisterInfo::isVirtualRegister(RegToModify)) {
3610         const TargetRegisterClass *NewRC =
3611           MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
3612           &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
3613         MRI.setRegClass(RegToModify, NewRC);
3614       }
3615     }
3616   }
3617 
3618   // Fix up killed/dead flag after transformation.
3619   // Pattern:
3620   // ForwardKilledOperandReg = LI imm
3621   // y = XOP reg, ForwardKilledOperandReg(killed)
3622   if (ForwardKilledOperandReg != ~0U)
3623     fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3624   return true;
3625 }
3626 
3627 const TargetRegisterClass *
3628 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
3629   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
3630     return &PPC::VSRCRegClass;
3631   return RC;
3632 }
3633 
3634 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
3635   return PPC::getRecordFormOpcode(Opcode);
3636 }
3637 
3638 // This function returns true if the machine instruction
3639 // always outputs a value by sign-extending a 32 bit value,
3640 // i.e. 0 to 31-th bits are same as 32-th bit.
3641 static bool isSignExtendingOp(const MachineInstr &MI) {
3642   int Opcode = MI.getOpcode();
3643   if (Opcode == PPC::LI     || Opcode == PPC::LI8     ||
3644       Opcode == PPC::LIS    || Opcode == PPC::LIS8    ||
3645       Opcode == PPC::SRAW   || Opcode == PPC::SRAWo   ||
3646       Opcode == PPC::SRAWI  || Opcode == PPC::SRAWIo  ||
3647       Opcode == PPC::LWA    || Opcode == PPC::LWAX    ||
3648       Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
3649       Opcode == PPC::LHA    || Opcode == PPC::LHAX    ||
3650       Opcode == PPC::LHA8   || Opcode == PPC::LHAX8   ||
3651       Opcode == PPC::LBZ    || Opcode == PPC::LBZX    ||
3652       Opcode == PPC::LBZ8   || Opcode == PPC::LBZX8   ||
3653       Opcode == PPC::LBZU   || Opcode == PPC::LBZUX   ||
3654       Opcode == PPC::LBZU8  || Opcode == PPC::LBZUX8  ||
3655       Opcode == PPC::LHZ    || Opcode == PPC::LHZX    ||
3656       Opcode == PPC::LHZ8   || Opcode == PPC::LHZX8   ||
3657       Opcode == PPC::LHZU   || Opcode == PPC::LHZUX   ||
3658       Opcode == PPC::LHZU8  || Opcode == PPC::LHZUX8  ||
3659       Opcode == PPC::EXTSB  || Opcode == PPC::EXTSBo  ||
3660       Opcode == PPC::EXTSH  || Opcode == PPC::EXTSHo  ||
3661       Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8  ||
3662       Opcode == PPC::EXTSW  || Opcode == PPC::EXTSWo  ||
3663       Opcode == PPC::SETB   || Opcode == PPC::SETB8   ||
3664       Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
3665       Opcode == PPC::EXTSB8_32_64)
3666     return true;
3667 
3668   if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
3669     return true;
3670 
3671   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
3672        Opcode == PPC::RLWNM  || Opcode == PPC::RLWNMo) &&
3673       MI.getOperand(3).getImm() > 0 &&
3674       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3675     return true;
3676 
3677   return false;
3678 }
3679 
3680 // This function returns true if the machine instruction
3681 // always outputs zeros in higher 32 bits.
3682 static bool isZeroExtendingOp(const MachineInstr &MI) {
3683   int Opcode = MI.getOpcode();
3684   // The 16-bit immediate is sign-extended in li/lis.
3685   // If the most significant bit is zero, all higher bits are zero.
3686   if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
3687       Opcode == PPC::LIS || Opcode == PPC::LIS8) {
3688     int64_t Imm = MI.getOperand(1).getImm();
3689     if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
3690       return true;
3691   }
3692 
3693   // We have some variations of rotate-and-mask instructions
3694   // that clear higher 32-bits.
3695   if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
3696        Opcode == PPC::RLDCL  || Opcode == PPC::RLDCLo  ||
3697        Opcode == PPC::RLDICL_32_64) &&
3698       MI.getOperand(3).getImm() >= 32)
3699     return true;
3700 
3701   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
3702       MI.getOperand(3).getImm() >= 32 &&
3703       MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
3704     return true;
3705 
3706   if ((Opcode == PPC::RLWINM  || Opcode == PPC::RLWINMo ||
3707        Opcode == PPC::RLWNM   || Opcode == PPC::RLWNMo  ||
3708        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
3709       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3710     return true;
3711 
3712   // There are other instructions that clear higher 32-bits.
3713   if (Opcode == PPC::CNTLZW  || Opcode == PPC::CNTLZWo ||
3714       Opcode == PPC::CNTTZW  || Opcode == PPC::CNTTZWo ||
3715       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
3716       Opcode == PPC::CNTLZD  || Opcode == PPC::CNTLZDo ||
3717       Opcode == PPC::CNTTZD  || Opcode == PPC::CNTTZDo ||
3718       Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW ||
3719       Opcode == PPC::SLW     || Opcode == PPC::SLWo    ||
3720       Opcode == PPC::SRW     || Opcode == PPC::SRWo    ||
3721       Opcode == PPC::SLW8    || Opcode == PPC::SRW8    ||
3722       Opcode == PPC::SLWI    || Opcode == PPC::SLWIo   ||
3723       Opcode == PPC::SRWI    || Opcode == PPC::SRWIo   ||
3724       Opcode == PPC::LWZ     || Opcode == PPC::LWZX    ||
3725       Opcode == PPC::LWZU    || Opcode == PPC::LWZUX   ||
3726       Opcode == PPC::LWBRX   || Opcode == PPC::LHBRX   ||
3727       Opcode == PPC::LHZ     || Opcode == PPC::LHZX    ||
3728       Opcode == PPC::LHZU    || Opcode == PPC::LHZUX   ||
3729       Opcode == PPC::LBZ     || Opcode == PPC::LBZX    ||
3730       Opcode == PPC::LBZU    || Opcode == PPC::LBZUX   ||
3731       Opcode == PPC::LWZ8    || Opcode == PPC::LWZX8   ||
3732       Opcode == PPC::LWZU8   || Opcode == PPC::LWZUX8  ||
3733       Opcode == PPC::LWBRX8  || Opcode == PPC::LHBRX8  ||
3734       Opcode == PPC::LHZ8    || Opcode == PPC::LHZX8   ||
3735       Opcode == PPC::LHZU8   || Opcode == PPC::LHZUX8  ||
3736       Opcode == PPC::LBZ8    || Opcode == PPC::LBZX8   ||
3737       Opcode == PPC::LBZU8   || Opcode == PPC::LBZUX8  ||
3738       Opcode == PPC::ANDIo   || Opcode == PPC::ANDISo  ||
3739       Opcode == PPC::ROTRWI  || Opcode == PPC::ROTRWIo ||
3740       Opcode == PPC::EXTLWI  || Opcode == PPC::EXTLWIo ||
3741       Opcode == PPC::MFVSRWZ)
3742     return true;
3743 
3744   return false;
3745 }
3746 
3747 // This function returns true if the input MachineInstr is a TOC save
3748 // instruction.
3749 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
3750   if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
3751     return false;
3752   unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
3753   unsigned StackOffset = MI.getOperand(1).getImm();
3754   unsigned StackReg = MI.getOperand(2).getReg();
3755   if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
3756     return true;
3757 
3758   return false;
3759 }
3760 
3761 // We limit the max depth to track incoming values of PHIs or binary ops
3762 // (e.g. AND) to avoid excessive cost.
3763 const unsigned MAX_DEPTH = 1;
3764 
3765 bool
3766 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
3767                                    const unsigned Depth) const {
3768   const MachineFunction *MF = MI.getParent()->getParent();
3769   const MachineRegisterInfo *MRI = &MF->getRegInfo();
3770 
3771   // If we know this instruction returns sign- or zero-extended result,
3772   // return true.
3773   if (SignExt ? isSignExtendingOp(MI):
3774                 isZeroExtendingOp(MI))
3775     return true;
3776 
3777   switch (MI.getOpcode()) {
3778   case PPC::COPY: {
3779     unsigned SrcReg = MI.getOperand(1).getReg();
3780 
3781     // In both ELFv1 and v2 ABI, method parameters and the return value
3782     // are sign- or zero-extended.
3783     if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
3784       const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
3785       // We check the ZExt/SExt flags for a method parameter.
3786       if (MI.getParent()->getBasicBlock() ==
3787           &MF->getFunction().getEntryBlock()) {
3788         unsigned VReg = MI.getOperand(0).getReg();
3789         if (MF->getRegInfo().isLiveIn(VReg))
3790           return SignExt ? FuncInfo->isLiveInSExt(VReg) :
3791                            FuncInfo->isLiveInZExt(VReg);
3792       }
3793 
3794       // For a method return value, we check the ZExt/SExt flags in attribute.
3795       // We assume the following code sequence for method call.
3796       //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
3797       //   BL8_NOP @func,...
3798       //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
3799       //   %5 = COPY %x3; G8RC:%5
3800       if (SrcReg == PPC::X3) {
3801         const MachineBasicBlock *MBB = MI.getParent();
3802         MachineBasicBlock::const_instr_iterator II =
3803           MachineBasicBlock::const_instr_iterator(&MI);
3804         if (II != MBB->instr_begin() &&
3805             (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
3806           const MachineInstr &CallMI = *(--II);
3807           if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
3808             const Function *CalleeFn =
3809               dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
3810             if (!CalleeFn)
3811               return false;
3812             const IntegerType *IntTy =
3813               dyn_cast<IntegerType>(CalleeFn->getReturnType());
3814             const AttributeSet &Attrs =
3815               CalleeFn->getAttributes().getRetAttributes();
3816             if (IntTy && IntTy->getBitWidth() <= 32)
3817               return Attrs.hasAttribute(SignExt ? Attribute::SExt :
3818                                                   Attribute::ZExt);
3819           }
3820         }
3821       }
3822     }
3823 
3824     // If this is a copy from another register, we recursively check source.
3825     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3826       return false;
3827     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3828     if (SrcMI != NULL)
3829       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3830 
3831     return false;
3832   }
3833 
3834   case PPC::ANDIo:
3835   case PPC::ANDISo:
3836   case PPC::ORI:
3837   case PPC::ORIS:
3838   case PPC::XORI:
3839   case PPC::XORIS:
3840   case PPC::ANDIo8:
3841   case PPC::ANDISo8:
3842   case PPC::ORI8:
3843   case PPC::ORIS8:
3844   case PPC::XORI8:
3845   case PPC::XORIS8: {
3846     // logical operation with 16-bit immediate does not change the upper bits.
3847     // So, we track the operand register as we do for register copy.
3848     unsigned SrcReg = MI.getOperand(1).getReg();
3849     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3850       return false;
3851     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3852     if (SrcMI != NULL)
3853       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3854 
3855     return false;
3856   }
3857 
3858   // If all incoming values are sign-/zero-extended,
3859   // the output of OR, ISEL or PHI is also sign-/zero-extended.
3860   case PPC::OR:
3861   case PPC::OR8:
3862   case PPC::ISEL:
3863   case PPC::PHI: {
3864     if (Depth >= MAX_DEPTH)
3865       return false;
3866 
3867     // The input registers for PHI are operand 1, 3, ...
3868     // The input registers for others are operand 1 and 2.
3869     unsigned E = 3, D = 1;
3870     if (MI.getOpcode() == PPC::PHI) {
3871       E = MI.getNumOperands();
3872       D = 2;
3873     }
3874 
3875     for (unsigned I = 1; I != E; I += D) {
3876       if (MI.getOperand(I).isReg()) {
3877         unsigned SrcReg = MI.getOperand(I).getReg();
3878         if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3879           return false;
3880         const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3881         if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
3882           return false;
3883       }
3884       else
3885         return false;
3886     }
3887     return true;
3888   }
3889 
3890   // If at least one of the incoming values of an AND is zero extended
3891   // then the output is also zero-extended. If both of the incoming values
3892   // are sign-extended then the output is also sign extended.
3893   case PPC::AND:
3894   case PPC::AND8: {
3895     if (Depth >= MAX_DEPTH)
3896        return false;
3897 
3898     assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
3899 
3900     unsigned SrcReg1 = MI.getOperand(1).getReg();
3901     unsigned SrcReg2 = MI.getOperand(2).getReg();
3902 
3903     if (!TargetRegisterInfo::isVirtualRegister(SrcReg1) ||
3904         !TargetRegisterInfo::isVirtualRegister(SrcReg2))
3905        return false;
3906 
3907     const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
3908     const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
3909     if (!MISrc1 || !MISrc2)
3910         return false;
3911 
3912     if(SignExt)
3913         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
3914                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3915     else
3916         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
3917                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3918   }
3919 
3920   default:
3921     break;
3922   }
3923   return false;
3924 }
3925 
3926 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
3927   return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
3928 }
3929 
3930 bool PPCInstrInfo::analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
3931                                MachineInstr *&CmpInst) const {
3932   MachineBasicBlock *LoopEnd = L.getBottomBlock();
3933   MachineBasicBlock::iterator I = LoopEnd->getFirstTerminator();
3934   // We really "analyze" only CTR loops right now.
3935   if (I != LoopEnd->end() && isBDNZ(I->getOpcode())) {
3936     IndVarInst = nullptr;
3937     CmpInst = &*I;
3938     return false;
3939   }
3940   return true;
3941 }
3942 
3943 MachineInstr *
3944 PPCInstrInfo::findLoopInstr(MachineBasicBlock &PreHeader) const {
3945 
3946   unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
3947 
3948   // The loop set-up instruction should be in preheader
3949   for (auto &I : PreHeader.instrs())
3950     if (I.getOpcode() == LOOPi)
3951       return &I;
3952   return nullptr;
3953 }
3954 
3955 unsigned PPCInstrInfo::reduceLoopCount(
3956     MachineBasicBlock &MBB, MachineBasicBlock &PreHeader, MachineInstr *IndVar,
3957     MachineInstr &Cmp, SmallVectorImpl<MachineOperand> &Cond,
3958     SmallVectorImpl<MachineInstr *> &PrevInsts, unsigned Iter,
3959     unsigned MaxIter) const {
3960   // We expect a hardware loop currently. This means that IndVar is set
3961   // to null, and the compare is the ENDLOOP instruction.
3962   assert((!IndVar) && isBDNZ(Cmp.getOpcode()) && "Expecting a CTR loop");
3963   MachineFunction *MF = MBB.getParent();
3964   DebugLoc DL = Cmp.getDebugLoc();
3965   MachineInstr *Loop = findLoopInstr(PreHeader);
3966   if (!Loop)
3967     return 0;
3968   unsigned LoopCountReg = Loop->getOperand(0).getReg();
3969   MachineRegisterInfo &MRI = MF->getRegInfo();
3970   MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
3971 
3972   if (!LoopCount)
3973     return 0;
3974   // If the loop trip count is a compile-time value, then just change the
3975   // value.
3976   if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) {
3977     int64_t Offset = LoopCount->getOperand(1).getImm();
3978     if (Offset <= 1) {
3979       LoopCount->eraseFromParent();
3980       Loop->eraseFromParent();
3981       return 0;
3982     }
3983     LoopCount->getOperand(1).setImm(Offset - 1);
3984     return Offset - 1;
3985   }
3986 
3987   // The loop trip count is a run-time value.
3988   // We need to subtract one from the trip count,
3989   // and insert branch later to check if we're done with the loop.
3990 
3991   // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
3992   // so we don't need to generate any thing here.
3993   Cond.push_back(MachineOperand::CreateImm(0));
3994   Cond.push_back(MachineOperand::CreateReg(
3995       Subtarget.isPPC64() ? PPC::CTR8 : PPC::CTR, true));
3996   return LoopCountReg;
3997 }
3998 
3999