1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/PseudoSourceValue.h" 31 #include "llvm/CodeGen/RegisterClassInfo.h" 32 #include "llvm/CodeGen/RegisterPressure.h" 33 #include "llvm/CodeGen/ScheduleDAG.h" 34 #include "llvm/CodeGen/SlotIndexes.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/MCInst.h" 38 #include "llvm/MC/TargetRegistry.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/raw_ostream.h" 43 44 using namespace llvm; 45 46 #define DEBUG_TYPE "ppc-instr-info" 47 48 #define GET_INSTRMAP_INFO 49 #define GET_INSTRINFO_CTOR_DTOR 50 #include "PPCGenInstrInfo.inc" 51 52 STATISTIC(NumStoreSPILLVSRRCAsVec, 53 "Number of spillvsrrc spilled to stack as vec"); 54 STATISTIC(NumStoreSPILLVSRRCAsGpr, 55 "Number of spillvsrrc spilled to stack as gpr"); 56 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 57 STATISTIC(CmpIselsConverted, 58 "Number of ISELs that depend on comparison of constants converted"); 59 STATISTIC(MissedConvertibleImmediateInstrs, 60 "Number of compare-immediate instructions fed by constants"); 61 STATISTIC(NumRcRotatesConvertedToRcAnd, 62 "Number of record-form rotates converted to record-form andi"); 63 64 static cl:: 65 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 66 cl::desc("Disable analysis for CTR loops")); 67 68 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 69 cl::desc("Disable compare instruction optimization"), cl::Hidden); 70 71 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 72 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 73 cl::Hidden); 74 75 static cl::opt<bool> 76 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 77 cl::desc("Use the old (incorrect) instruction latency calculation")); 78 79 static cl::opt<float> 80 FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5), 81 cl::desc("register pressure factor for the transformations.")); 82 83 static cl::opt<bool> EnableFMARegPressureReduction( 84 "ppc-fma-rp-reduction", cl::Hidden, cl::init(true), 85 cl::desc("enable register pressure reduce in machine combiner pass.")); 86 87 // Pin the vtable to this file. 88 void PPCInstrInfo::anchor() {} 89 90 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 91 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 92 /* CatchRetOpcode */ -1, 93 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 94 Subtarget(STI), RI(STI.getTargetMachine()) {} 95 96 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 97 /// this target when scheduling the DAG. 98 ScheduleHazardRecognizer * 99 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 100 const ScheduleDAG *DAG) const { 101 unsigned Directive = 102 static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); 103 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 104 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 105 const InstrItineraryData *II = 106 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 107 return new ScoreboardHazardRecognizer(II, DAG); 108 } 109 110 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 111 } 112 113 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 114 /// to use for this target when scheduling the DAG. 115 ScheduleHazardRecognizer * 116 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 117 const ScheduleDAG *DAG) const { 118 unsigned Directive = 119 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); 120 121 // FIXME: Leaving this as-is until we have POWER9 scheduling info 122 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 123 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 124 125 // Most subtargets use a PPC970 recognizer. 126 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 127 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 128 assert(DAG->TII && "No InstrInfo?"); 129 130 return new PPCHazardRecognizer970(*DAG); 131 } 132 133 return new ScoreboardHazardRecognizer(II, DAG); 134 } 135 136 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 137 const MachineInstr &MI, 138 unsigned *PredCost) const { 139 if (!ItinData || UseOldLatencyCalc) 140 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 141 142 // The default implementation of getInstrLatency calls getStageLatency, but 143 // getStageLatency does not do the right thing for us. While we have 144 // itinerary, most cores are fully pipelined, and so the itineraries only 145 // express the first part of the pipeline, not every stage. Instead, we need 146 // to use the listed output operand cycle number (using operand 0 here, which 147 // is an output). 148 149 unsigned Latency = 1; 150 unsigned DefClass = MI.getDesc().getSchedClass(); 151 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 152 const MachineOperand &MO = MI.getOperand(i); 153 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 154 continue; 155 156 int Cycle = ItinData->getOperandCycle(DefClass, i); 157 if (Cycle < 0) 158 continue; 159 160 Latency = std::max(Latency, (unsigned) Cycle); 161 } 162 163 return Latency; 164 } 165 166 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 167 const MachineInstr &DefMI, unsigned DefIdx, 168 const MachineInstr &UseMI, 169 unsigned UseIdx) const { 170 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 171 UseMI, UseIdx); 172 173 if (!DefMI.getParent()) 174 return Latency; 175 176 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 177 Register Reg = DefMO.getReg(); 178 179 bool IsRegCR; 180 if (Register::isVirtualRegister(Reg)) { 181 const MachineRegisterInfo *MRI = 182 &DefMI.getParent()->getParent()->getRegInfo(); 183 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 184 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 185 } else { 186 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 187 PPC::CRBITRCRegClass.contains(Reg); 188 } 189 190 if (UseMI.isBranch() && IsRegCR) { 191 if (Latency < 0) 192 Latency = getInstrLatency(ItinData, DefMI); 193 194 // On some cores, there is an additional delay between writing to a condition 195 // register, and using it from a branch. 196 unsigned Directive = Subtarget.getCPUDirective(); 197 switch (Directive) { 198 default: break; 199 case PPC::DIR_7400: 200 case PPC::DIR_750: 201 case PPC::DIR_970: 202 case PPC::DIR_E5500: 203 case PPC::DIR_PWR4: 204 case PPC::DIR_PWR5: 205 case PPC::DIR_PWR5X: 206 case PPC::DIR_PWR6: 207 case PPC::DIR_PWR6X: 208 case PPC::DIR_PWR7: 209 case PPC::DIR_PWR8: 210 // FIXME: Is this needed for POWER9? 211 Latency += 2; 212 break; 213 } 214 } 215 216 return Latency; 217 } 218 219 /// This is an architecture-specific helper function of reassociateOps. 220 /// Set special operand attributes for new instructions after reassociation. 221 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, 222 MachineInstr &OldMI2, 223 MachineInstr &NewMI1, 224 MachineInstr &NewMI2) const { 225 // Propagate FP flags from the original instructions. 226 // But clear poison-generating flags because those may not be valid now. 227 uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags(); 228 NewMI1.setFlags(IntersectedFlags); 229 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap); 230 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap); 231 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact); 232 233 NewMI2.setFlags(IntersectedFlags); 234 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap); 235 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap); 236 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact); 237 } 238 239 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI, 240 uint16_t Flags) const { 241 MI.setFlags(Flags); 242 MI.clearFlag(MachineInstr::MIFlag::NoSWrap); 243 MI.clearFlag(MachineInstr::MIFlag::NoUWrap); 244 MI.clearFlag(MachineInstr::MIFlag::IsExact); 245 } 246 247 // This function does not list all associative and commutative operations, but 248 // only those worth feeding through the machine combiner in an attempt to 249 // reduce the critical path. Mostly, this means floating-point operations, 250 // because they have high latencies(>=5) (compared to other operations, such as 251 // and/or, which are also associative and commutative, but have low latencies). 252 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 253 switch (Inst.getOpcode()) { 254 // Floating point: 255 // FP Add: 256 case PPC::FADD: 257 case PPC::FADDS: 258 // FP Multiply: 259 case PPC::FMUL: 260 case PPC::FMULS: 261 // Altivec Add: 262 case PPC::VADDFP: 263 // VSX Add: 264 case PPC::XSADDDP: 265 case PPC::XVADDDP: 266 case PPC::XVADDSP: 267 case PPC::XSADDSP: 268 // VSX Multiply: 269 case PPC::XSMULDP: 270 case PPC::XVMULDP: 271 case PPC::XVMULSP: 272 case PPC::XSMULSP: 273 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && 274 Inst.getFlag(MachineInstr::MIFlag::FmNsz); 275 // Fixed point: 276 // Multiply: 277 case PPC::MULHD: 278 case PPC::MULLD: 279 case PPC::MULHW: 280 case PPC::MULLW: 281 return true; 282 default: 283 return false; 284 } 285 } 286 287 #define InfoArrayIdxFMAInst 0 288 #define InfoArrayIdxFAddInst 1 289 #define InfoArrayIdxFMULInst 2 290 #define InfoArrayIdxAddOpIdx 3 291 #define InfoArrayIdxMULOpIdx 4 292 #define InfoArrayIdxFSubInst 5 293 // Array keeps info for FMA instructions: 294 // Index 0(InfoArrayIdxFMAInst): FMA instruction; 295 // Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA; 296 // Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA; 297 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands; 298 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands; 299 // second MUL operand index is plus 1; 300 // Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA. 301 static const uint16_t FMAOpIdxInfo[][6] = { 302 // FIXME: Add more FMA instructions like XSNMADDADP and so on. 303 {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP}, 304 {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP}, 305 {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP}, 306 {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP}, 307 {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB}, 308 {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}}; 309 310 // Check if an opcode is a FMA instruction. If it is, return the index in array 311 // FMAOpIdxInfo. Otherwise, return -1. 312 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const { 313 for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++) 314 if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode) 315 return I; 316 return -1; 317 } 318 319 // On PowerPC target, we have two kinds of patterns related to FMA: 320 // 1: Improve ILP. 321 // Try to reassociate FMA chains like below: 322 // 323 // Pattern 1: 324 // A = FADD X, Y (Leaf) 325 // B = FMA A, M21, M22 (Prev) 326 // C = FMA B, M31, M32 (Root) 327 // --> 328 // A = FMA X, M21, M22 329 // B = FMA Y, M31, M32 330 // C = FADD A, B 331 // 332 // Pattern 2: 333 // A = FMA X, M11, M12 (Leaf) 334 // B = FMA A, M21, M22 (Prev) 335 // C = FMA B, M31, M32 (Root) 336 // --> 337 // A = FMUL M11, M12 338 // B = FMA X, M21, M22 339 // D = FMA A, M31, M32 340 // C = FADD B, D 341 // 342 // breaking the dependency between A and B, allowing FMA to be executed in 343 // parallel (or back-to-back in a pipeline) instead of depending on each other. 344 // 345 // 2: Reduce register pressure. 346 // Try to reassociate FMA with FSUB and a constant like below: 347 // C is a floating point const. 348 // 349 // Pattern 1: 350 // A = FSUB X, Y (Leaf) 351 // D = FMA B, C, A (Root) 352 // --> 353 // A = FMA B, Y, -C 354 // D = FMA A, X, C 355 // 356 // Pattern 2: 357 // A = FSUB X, Y (Leaf) 358 // D = FMA B, A, C (Root) 359 // --> 360 // A = FMA B, Y, -C 361 // D = FMA A, X, C 362 // 363 // Before the transformation, A must be assigned with different hardware 364 // register with D. After the transformation, A and D must be assigned with 365 // same hardware register due to TIE attribute of FMA instructions. 366 // 367 bool PPCInstrInfo::getFMAPatterns( 368 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, 369 bool DoRegPressureReduce) const { 370 MachineBasicBlock *MBB = Root.getParent(); 371 const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo(); 372 const TargetRegisterInfo *TRI = &getRegisterInfo(); 373 374 auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) { 375 for (const auto &MO : Instr.explicit_operands()) 376 if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg()))) 377 return false; 378 return true; 379 }; 380 381 auto IsReassociableAddOrSub = [&](const MachineInstr &Instr, 382 unsigned OpType) { 383 if (Instr.getOpcode() != 384 FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType]) 385 return false; 386 387 // Instruction can be reassociated. 388 // fast math flags may prohibit reassociation. 389 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 390 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 391 return false; 392 393 // Instruction operands are virtual registers for reassociation. 394 if (!IsAllOpsVirtualReg(Instr)) 395 return false; 396 397 // For register pressure reassociation, the FSub must have only one use as 398 // we want to delete the sub to save its def. 399 if (OpType == InfoArrayIdxFSubInst && 400 !MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg())) 401 return false; 402 403 return true; 404 }; 405 406 auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx, 407 int16_t &MulOpIdx, bool IsLeaf) { 408 int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode()); 409 if (Idx < 0) 410 return false; 411 412 // Instruction can be reassociated. 413 // fast math flags may prohibit reassociation. 414 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 415 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 416 return false; 417 418 // Instruction operands are virtual registers for reassociation. 419 if (!IsAllOpsVirtualReg(Instr)) 420 return false; 421 422 MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 423 if (IsLeaf) 424 return true; 425 426 AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 427 428 const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx); 429 MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg()); 430 // If 'add' operand's def is not in current block, don't do ILP related opt. 431 if (!MIAdd || MIAdd->getParent() != MBB) 432 return false; 433 434 // If this is not Leaf FMA Instr, its 'add' operand should only have one use 435 // as this fma will be changed later. 436 return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg()); 437 }; 438 439 int16_t AddOpIdx = -1; 440 int16_t MulOpIdx = -1; 441 442 bool IsUsedOnceL = false; 443 bool IsUsedOnceR = false; 444 MachineInstr *MULInstrL = nullptr; 445 MachineInstr *MULInstrR = nullptr; 446 447 auto IsRPReductionCandidate = [&]() { 448 // Currently, we only support float and double. 449 // FIXME: add support for other types. 450 unsigned Opcode = Root.getOpcode(); 451 if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP) 452 return false; 453 454 // Root must be a valid FMA like instruction. 455 // Treat it as leaf as we don't care its add operand. 456 if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) { 457 assert((MulOpIdx >= 0) && "mul operand index not right!"); 458 Register MULRegL = TRI->lookThruSingleUseCopyChain( 459 Root.getOperand(MulOpIdx).getReg(), MRI); 460 Register MULRegR = TRI->lookThruSingleUseCopyChain( 461 Root.getOperand(MulOpIdx + 1).getReg(), MRI); 462 if (!MULRegL && !MULRegR) 463 return false; 464 465 if (MULRegL && !MULRegR) { 466 MULRegR = 467 TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI); 468 IsUsedOnceL = true; 469 } else if (!MULRegL && MULRegR) { 470 MULRegL = 471 TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI); 472 IsUsedOnceR = true; 473 } else { 474 IsUsedOnceL = true; 475 IsUsedOnceR = true; 476 } 477 478 if (!Register::isVirtualRegister(MULRegL) || 479 !Register::isVirtualRegister(MULRegR)) 480 return false; 481 482 MULInstrL = MRI->getVRegDef(MULRegL); 483 MULInstrR = MRI->getVRegDef(MULRegR); 484 return true; 485 } 486 return false; 487 }; 488 489 // Register pressure fma reassociation patterns. 490 if (DoRegPressureReduce && IsRPReductionCandidate()) { 491 assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!"); 492 // Register pressure pattern 1 493 if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR && 494 IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) { 495 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n"); 496 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BCA); 497 return true; 498 } 499 500 // Register pressure pattern 2 501 if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL && 502 IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) { 503 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n"); 504 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BAC); 505 return true; 506 } 507 } 508 509 // ILP fma reassociation patterns. 510 // Root must be a valid FMA like instruction. 511 AddOpIdx = -1; 512 if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false)) 513 return false; 514 515 assert((AddOpIdx >= 0) && "add operand index not right!"); 516 517 Register RegB = Root.getOperand(AddOpIdx).getReg(); 518 MachineInstr *Prev = MRI->getUniqueVRegDef(RegB); 519 520 // Prev must be a valid FMA like instruction. 521 AddOpIdx = -1; 522 if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false)) 523 return false; 524 525 assert((AddOpIdx >= 0) && "add operand index not right!"); 526 527 Register RegA = Prev->getOperand(AddOpIdx).getReg(); 528 MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA); 529 AddOpIdx = -1; 530 if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) { 531 Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 532 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n"); 533 return true; 534 } 535 if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) { 536 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM); 537 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n"); 538 return true; 539 } 540 return false; 541 } 542 543 void PPCInstrInfo::finalizeInsInstrs( 544 MachineInstr &Root, MachineCombinerPattern &P, 545 SmallVectorImpl<MachineInstr *> &InsInstrs) const { 546 assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!"); 547 548 MachineFunction *MF = Root.getMF(); 549 MachineRegisterInfo *MRI = &MF->getRegInfo(); 550 const TargetRegisterInfo *TRI = &getRegisterInfo(); 551 MachineConstantPool *MCP = MF->getConstantPool(); 552 553 int16_t Idx = getFMAOpIdxInfo(Root.getOpcode()); 554 if (Idx < 0) 555 return; 556 557 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 558 559 // For now we only need to fix up placeholder for register pressure reduce 560 // patterns. 561 Register ConstReg = 0; 562 switch (P) { 563 case MachineCombinerPattern::REASSOC_XY_BCA: 564 ConstReg = 565 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI); 566 break; 567 case MachineCombinerPattern::REASSOC_XY_BAC: 568 ConstReg = 569 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI); 570 break; 571 default: 572 // Not register pressure reduce patterns. 573 return; 574 } 575 576 MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg); 577 // Get const value from const pool. 578 const Constant *C = getConstantFromConstantPool(ConstDefInstr); 579 assert(isa<llvm::ConstantFP>(C) && "not a valid constant!"); 580 581 // Get negative fp const. 582 APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF()); 583 F1.changeSign(); 584 Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1); 585 Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType()); 586 587 // Put negative fp const into constant pool. 588 unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment); 589 590 MachineOperand *Placeholder = nullptr; 591 // Record the placeholder PPC::ZERO8 we add in reassociateFMA. 592 for (auto *Inst : InsInstrs) { 593 for (MachineOperand &Operand : Inst->explicit_operands()) { 594 assert(Operand.isReg() && "Invalid instruction in InsInstrs!"); 595 if (Operand.getReg() == PPC::ZERO8) { 596 Placeholder = &Operand; 597 break; 598 } 599 } 600 } 601 602 assert(Placeholder && "Placeholder does not exist!"); 603 604 // Generate instructions to load the const fp from constant pool. 605 // We only support PPC64 and medium code model. 606 Register LoadNewConst = 607 generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs); 608 609 // Fill the placeholder with the new load from constant pool. 610 Placeholder->setReg(LoadNewConst); 611 } 612 613 bool PPCInstrInfo::shouldReduceRegisterPressure( 614 MachineBasicBlock *MBB, RegisterClassInfo *RegClassInfo) const { 615 616 if (!EnableFMARegPressureReduction) 617 return false; 618 619 // Currently, we only enable register pressure reducing in machine combiner 620 // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector 621 // support. 622 // 623 // So we need following instructions to access a TOC entry: 624 // 625 // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0 626 // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0, 627 // killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool) 628 // 629 // FIXME: add more supported targets, like Small and Large code model, PPC32, 630 // AIX. 631 if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() && 632 Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium)) 633 return false; 634 635 const TargetRegisterInfo *TRI = &getRegisterInfo(); 636 MachineFunction *MF = MBB->getParent(); 637 MachineRegisterInfo *MRI = &MF->getRegInfo(); 638 639 auto GetMBBPressure = [&](MachineBasicBlock *MBB) -> std::vector<unsigned> { 640 RegionPressure Pressure; 641 RegPressureTracker RPTracker(Pressure); 642 643 // Initialize the register pressure tracker. 644 RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(), 645 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 646 647 for (MachineBasicBlock::iterator MII = MBB->instr_end(), 648 MIE = MBB->instr_begin(); 649 MII != MIE; --MII) { 650 MachineInstr &MI = *std::prev(MII); 651 if (MI.isDebugValue() || MI.isDebugLabel()) 652 continue; 653 RegisterOperands RegOpers; 654 RegOpers.collect(MI, *TRI, *MRI, false, false); 655 RPTracker.recedeSkipDebugValues(); 656 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 657 RPTracker.recede(RegOpers); 658 } 659 660 // Close the RPTracker to finalize live ins. 661 RPTracker.closeRegion(); 662 663 return RPTracker.getPressure().MaxSetPressure; 664 }; 665 666 // For now we only care about float and double type fma. 667 unsigned VSSRCLimit = TRI->getRegPressureSetLimit( 668 *MBB->getParent(), PPC::RegisterPressureSets::VSSRC); 669 670 // Only reduce register pressure when pressure is high. 671 return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] > 672 (float)VSSRCLimit * FMARPFactor; 673 } 674 675 bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const { 676 // I has only one memory operand which is load from constant pool. 677 if (!I->hasOneMemOperand()) 678 return false; 679 680 MachineMemOperand *Op = I->memoperands()[0]; 681 return Op->isLoad() && Op->getPseudoValue() && 682 Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool; 683 } 684 685 Register PPCInstrInfo::generateLoadForNewConst( 686 unsigned Idx, MachineInstr *MI, Type *Ty, 687 SmallVectorImpl<MachineInstr *> &InsInstrs) const { 688 // Now we only support PPC64, Medium code model and P9 with vector. 689 // We have immutable pattern to access const pool. See function 690 // shouldReduceRegisterPressure. 691 assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() && 692 Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) && 693 "Target not supported!\n"); 694 695 MachineFunction *MF = MI->getMF(); 696 MachineRegisterInfo *MRI = &MF->getRegInfo(); 697 698 // Generate ADDIStocHA8 699 Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 700 MachineInstrBuilder TOCOffset = 701 BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1) 702 .addReg(PPC::X2) 703 .addConstantPoolIndex(Idx); 704 705 assert((Ty->isFloatTy() || Ty->isDoubleTy()) && 706 "Only float and double are supported!"); 707 708 unsigned LoadOpcode; 709 // Should be float type or double type. 710 if (Ty->isFloatTy()) 711 LoadOpcode = PPC::DFLOADf32; 712 else 713 LoadOpcode = PPC::DFLOADf64; 714 715 const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg()); 716 Register VReg2 = MRI->createVirtualRegister(RC); 717 MachineMemOperand *MMO = MF->getMachineMemOperand( 718 MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad, 719 Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty)); 720 721 // Generate Load from constant pool. 722 MachineInstrBuilder Load = 723 BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2) 724 .addConstantPoolIndex(Idx) 725 .addReg(VReg1, getKillRegState(true)) 726 .addMemOperand(MMO); 727 728 Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO); 729 730 // Insert the toc load instructions into InsInstrs. 731 InsInstrs.insert(InsInstrs.begin(), Load); 732 InsInstrs.insert(InsInstrs.begin(), TOCOffset); 733 return VReg2; 734 } 735 736 // This function returns the const value in constant pool if the \p I is a load 737 // from constant pool. 738 const Constant * 739 PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const { 740 MachineFunction *MF = I->getMF(); 741 MachineRegisterInfo *MRI = &MF->getRegInfo(); 742 MachineConstantPool *MCP = MF->getConstantPool(); 743 assert(I->mayLoad() && "Should be a load instruction.\n"); 744 for (auto MO : I->uses()) { 745 if (!MO.isReg()) 746 continue; 747 Register Reg = MO.getReg(); 748 if (Reg == 0 || !Register::isVirtualRegister(Reg)) 749 continue; 750 // Find the toc address. 751 MachineInstr *DefMI = MRI->getVRegDef(Reg); 752 for (auto MO2 : DefMI->uses()) 753 if (MO2.isCPI()) 754 return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal; 755 } 756 return nullptr; 757 } 758 759 bool PPCInstrInfo::getMachineCombinerPatterns( 760 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, 761 bool DoRegPressureReduce) const { 762 // Using the machine combiner in this way is potentially expensive, so 763 // restrict to when aggressive optimizations are desired. 764 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 765 return false; 766 767 if (getFMAPatterns(Root, Patterns, DoRegPressureReduce)) 768 return true; 769 770 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns, 771 DoRegPressureReduce); 772 } 773 774 void PPCInstrInfo::genAlternativeCodeSequence( 775 MachineInstr &Root, MachineCombinerPattern Pattern, 776 SmallVectorImpl<MachineInstr *> &InsInstrs, 777 SmallVectorImpl<MachineInstr *> &DelInstrs, 778 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 779 switch (Pattern) { 780 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 781 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 782 case MachineCombinerPattern::REASSOC_XY_BCA: 783 case MachineCombinerPattern::REASSOC_XY_BAC: 784 reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg); 785 break; 786 default: 787 // Reassociate default patterns. 788 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, 789 DelInstrs, InstrIdxForVirtReg); 790 break; 791 } 792 } 793 794 void PPCInstrInfo::reassociateFMA( 795 MachineInstr &Root, MachineCombinerPattern Pattern, 796 SmallVectorImpl<MachineInstr *> &InsInstrs, 797 SmallVectorImpl<MachineInstr *> &DelInstrs, 798 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 799 MachineFunction *MF = Root.getMF(); 800 MachineRegisterInfo &MRI = MF->getRegInfo(); 801 const TargetRegisterInfo *TRI = &getRegisterInfo(); 802 MachineOperand &OpC = Root.getOperand(0); 803 Register RegC = OpC.getReg(); 804 const TargetRegisterClass *RC = MRI.getRegClass(RegC); 805 MRI.constrainRegClass(RegC, RC); 806 807 unsigned FmaOp = Root.getOpcode(); 808 int16_t Idx = getFMAOpIdxInfo(FmaOp); 809 assert(Idx >= 0 && "Root must be a FMA instruction"); 810 811 bool IsILPReassociate = 812 (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) || 813 (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 814 815 uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 816 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 817 818 MachineInstr *Prev = nullptr; 819 MachineInstr *Leaf = nullptr; 820 switch (Pattern) { 821 default: 822 llvm_unreachable("not recognized pattern!"); 823 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 824 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 825 Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg()); 826 Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg()); 827 break; 828 case MachineCombinerPattern::REASSOC_XY_BAC: { 829 Register MULReg = 830 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI); 831 Leaf = MRI.getVRegDef(MULReg); 832 break; 833 } 834 case MachineCombinerPattern::REASSOC_XY_BCA: { 835 Register MULReg = TRI->lookThruCopyLike( 836 Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI); 837 Leaf = MRI.getVRegDef(MULReg); 838 break; 839 } 840 } 841 842 uint16_t IntersectedFlags = 0; 843 if (IsILPReassociate) 844 IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags(); 845 else 846 IntersectedFlags = Root.getFlags() & Leaf->getFlags(); 847 848 auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg, 849 bool &KillFlag) { 850 Reg = Operand.getReg(); 851 MRI.constrainRegClass(Reg, RC); 852 KillFlag = Operand.isKill(); 853 }; 854 855 auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1, 856 Register &MulOp2, Register &AddOp, 857 bool &MulOp1KillFlag, bool &MulOp2KillFlag, 858 bool &AddOpKillFlag) { 859 GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag); 860 GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag); 861 GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag); 862 }; 863 864 Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11, 865 RegA21, RegB; 866 bool KillX = false, KillY = false, KillM11 = false, KillM12 = false, 867 KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false, 868 KillA11 = false, KillA21 = false, KillB = false; 869 870 GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB); 871 872 if (IsILPReassociate) 873 GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21); 874 875 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 876 GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11); 877 GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX); 878 } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) { 879 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 880 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 881 } else { 882 // Get FSUB instruction info. 883 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 884 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 885 } 886 887 // Create new virtual registers for the new results instead of 888 // recycling legacy ones because the MachineCombiner's computation of the 889 // critical path requires a new register definition rather than an existing 890 // one. 891 // For register pressure reassociation, we only need create one virtual 892 // register for the new fma. 893 Register NewVRA = MRI.createVirtualRegister(RC); 894 InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0)); 895 896 Register NewVRB = 0; 897 if (IsILPReassociate) { 898 NewVRB = MRI.createVirtualRegister(RC); 899 InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1)); 900 } 901 902 Register NewVRD = 0; 903 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 904 NewVRD = MRI.createVirtualRegister(RC); 905 InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2)); 906 } 907 908 auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd, 909 Register RegMul1, bool KillRegMul1, 910 Register RegMul2, bool KillRegMul2) { 911 MI->getOperand(AddOpIdx).setReg(RegAdd); 912 MI->getOperand(AddOpIdx).setIsKill(KillAdd); 913 MI->getOperand(FirstMulOpIdx).setReg(RegMul1); 914 MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1); 915 MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2); 916 MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2); 917 }; 918 919 MachineInstrBuilder NewARegPressure, NewCRegPressure; 920 switch (Pattern) { 921 default: 922 llvm_unreachable("not recognized pattern!"); 923 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: { 924 // Create new instructions for insertion. 925 MachineInstrBuilder MINewB = 926 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 927 .addReg(RegX, getKillRegState(KillX)) 928 .addReg(RegM21, getKillRegState(KillM21)) 929 .addReg(RegM22, getKillRegState(KillM22)); 930 MachineInstrBuilder MINewA = 931 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 932 .addReg(RegY, getKillRegState(KillY)) 933 .addReg(RegM31, getKillRegState(KillM31)) 934 .addReg(RegM32, getKillRegState(KillM32)); 935 // If AddOpIdx is not 1, adjust the order. 936 if (AddOpIdx != 1) { 937 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 938 AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32); 939 } 940 941 MachineInstrBuilder MINewC = 942 BuildMI(*MF, Root.getDebugLoc(), 943 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 944 .addReg(NewVRB, getKillRegState(true)) 945 .addReg(NewVRA, getKillRegState(true)); 946 947 // Update flags for newly created instructions. 948 setSpecialOperandAttr(*MINewA, IntersectedFlags); 949 setSpecialOperandAttr(*MINewB, IntersectedFlags); 950 setSpecialOperandAttr(*MINewC, IntersectedFlags); 951 952 // Record new instructions for insertion. 953 InsInstrs.push_back(MINewA); 954 InsInstrs.push_back(MINewB); 955 InsInstrs.push_back(MINewC); 956 break; 957 } 958 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: { 959 assert(NewVRD && "new FMA register not created!"); 960 // Create new instructions for insertion. 961 MachineInstrBuilder MINewA = 962 BuildMI(*MF, Leaf->getDebugLoc(), 963 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA) 964 .addReg(RegM11, getKillRegState(KillM11)) 965 .addReg(RegM12, getKillRegState(KillM12)); 966 MachineInstrBuilder MINewB = 967 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 968 .addReg(RegX, getKillRegState(KillX)) 969 .addReg(RegM21, getKillRegState(KillM21)) 970 .addReg(RegM22, getKillRegState(KillM22)); 971 MachineInstrBuilder MINewD = 972 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD) 973 .addReg(NewVRA, getKillRegState(true)) 974 .addReg(RegM31, getKillRegState(KillM31)) 975 .addReg(RegM32, getKillRegState(KillM32)); 976 // If AddOpIdx is not 1, adjust the order. 977 if (AddOpIdx != 1) { 978 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 979 AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32, 980 KillM32); 981 } 982 983 MachineInstrBuilder MINewC = 984 BuildMI(*MF, Root.getDebugLoc(), 985 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 986 .addReg(NewVRB, getKillRegState(true)) 987 .addReg(NewVRD, getKillRegState(true)); 988 989 // Update flags for newly created instructions. 990 setSpecialOperandAttr(*MINewA, IntersectedFlags); 991 setSpecialOperandAttr(*MINewB, IntersectedFlags); 992 setSpecialOperandAttr(*MINewD, IntersectedFlags); 993 setSpecialOperandAttr(*MINewC, IntersectedFlags); 994 995 // Record new instructions for insertion. 996 InsInstrs.push_back(MINewA); 997 InsInstrs.push_back(MINewB); 998 InsInstrs.push_back(MINewD); 999 InsInstrs.push_back(MINewC); 1000 break; 1001 } 1002 case MachineCombinerPattern::REASSOC_XY_BAC: 1003 case MachineCombinerPattern::REASSOC_XY_BCA: { 1004 Register VarReg; 1005 bool KillVarReg = false; 1006 if (Pattern == MachineCombinerPattern::REASSOC_XY_BCA) { 1007 VarReg = RegM31; 1008 KillVarReg = KillM31; 1009 } else { 1010 VarReg = RegM32; 1011 KillVarReg = KillM32; 1012 } 1013 // We don't want to get negative const from memory pool too early, as the 1014 // created entry will not be deleted even if it has no users. Since all 1015 // operand of Leaf and Root are virtual register, we use zero register 1016 // here as a placeholder. When the InsInstrs is selected in 1017 // MachineCombiner, we call finalizeInsInstrs to replace the zero register 1018 // with a virtual register which is a load from constant pool. 1019 NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 1020 .addReg(RegB, getKillRegState(RegB)) 1021 .addReg(RegY, getKillRegState(KillY)) 1022 .addReg(PPC::ZERO8); 1023 NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC) 1024 .addReg(NewVRA, getKillRegState(true)) 1025 .addReg(RegX, getKillRegState(KillX)) 1026 .addReg(VarReg, getKillRegState(KillVarReg)); 1027 // For now, we only support xsmaddadp/xsmaddasp, their add operand are 1028 // both at index 1, no need to adjust. 1029 // FIXME: when add more fma instructions support, like fma/fmas, adjust 1030 // the operand index here. 1031 break; 1032 } 1033 } 1034 1035 if (!IsILPReassociate) { 1036 setSpecialOperandAttr(*NewARegPressure, IntersectedFlags); 1037 setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags); 1038 1039 InsInstrs.push_back(NewARegPressure); 1040 InsInstrs.push_back(NewCRegPressure); 1041 } 1042 1043 assert(!InsInstrs.empty() && 1044 "Insertion instructions set should not be empty!"); 1045 1046 // Record old instructions for deletion. 1047 DelInstrs.push_back(Leaf); 1048 if (IsILPReassociate) 1049 DelInstrs.push_back(Prev); 1050 DelInstrs.push_back(&Root); 1051 } 1052 1053 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 1054 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 1055 Register &SrcReg, Register &DstReg, 1056 unsigned &SubIdx) const { 1057 switch (MI.getOpcode()) { 1058 default: return false; 1059 case PPC::EXTSW: 1060 case PPC::EXTSW_32: 1061 case PPC::EXTSW_32_64: 1062 SrcReg = MI.getOperand(1).getReg(); 1063 DstReg = MI.getOperand(0).getReg(); 1064 SubIdx = PPC::sub_32; 1065 return true; 1066 } 1067 } 1068 1069 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1070 int &FrameIndex) const { 1071 unsigned Opcode = MI.getOpcode(); 1072 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1073 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 1074 1075 if (End != std::find(OpcodesForSpill, End, Opcode)) { 1076 // Check for the operands added by addFrameReference (the immediate is the 1077 // offset which defaults to 0). 1078 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 1079 MI.getOperand(2).isFI()) { 1080 FrameIndex = MI.getOperand(2).getIndex(); 1081 return MI.getOperand(0).getReg(); 1082 } 1083 } 1084 return 0; 1085 } 1086 1087 // For opcodes with the ReMaterializable flag set, this function is called to 1088 // verify the instruction is really rematable. 1089 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 1090 AliasAnalysis *AA) const { 1091 switch (MI.getOpcode()) { 1092 default: 1093 // This function should only be called for opcodes with the ReMaterializable 1094 // flag set. 1095 llvm_unreachable("Unknown rematerializable operation!"); 1096 break; 1097 case PPC::LI: 1098 case PPC::LI8: 1099 case PPC::PLI: 1100 case PPC::PLI8: 1101 case PPC::LIS: 1102 case PPC::LIS8: 1103 case PPC::ADDIStocHA: 1104 case PPC::ADDIStocHA8: 1105 case PPC::ADDItocL: 1106 case PPC::LOAD_STACK_GUARD: 1107 case PPC::XXLXORz: 1108 case PPC::XXLXORspz: 1109 case PPC::XXLXORdpz: 1110 case PPC::XXLEQVOnes: 1111 case PPC::XXSPLTI32DX: 1112 case PPC::XXSPLTIW: 1113 case PPC::XXSPLTIDP: 1114 case PPC::V_SET0B: 1115 case PPC::V_SET0H: 1116 case PPC::V_SET0: 1117 case PPC::V_SETALLONESB: 1118 case PPC::V_SETALLONESH: 1119 case PPC::V_SETALLONES: 1120 case PPC::CRSET: 1121 case PPC::CRUNSET: 1122 case PPC::XXSETACCZ: 1123 return true; 1124 } 1125 return false; 1126 } 1127 1128 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1129 int &FrameIndex) const { 1130 unsigned Opcode = MI.getOpcode(); 1131 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1132 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 1133 1134 if (End != std::find(OpcodesForSpill, End, Opcode)) { 1135 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 1136 MI.getOperand(2).isFI()) { 1137 FrameIndex = MI.getOperand(2).getIndex(); 1138 return MI.getOperand(0).getReg(); 1139 } 1140 } 1141 return 0; 1142 } 1143 1144 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 1145 unsigned OpIdx1, 1146 unsigned OpIdx2) const { 1147 MachineFunction &MF = *MI.getParent()->getParent(); 1148 1149 // Normal instructions can be commuted the obvious way. 1150 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) 1151 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 1152 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 1153 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 1154 // changing the relative order of the mask operands might change what happens 1155 // to the high-bits of the mask (and, thus, the result). 1156 1157 // Cannot commute if it has a non-zero rotate count. 1158 if (MI.getOperand(3).getImm() != 0) 1159 return nullptr; 1160 1161 // If we have a zero rotate count, we have: 1162 // M = mask(MB,ME) 1163 // Op0 = (Op1 & ~M) | (Op2 & M) 1164 // Change this to: 1165 // M = mask((ME+1)&31, (MB-1)&31) 1166 // Op0 = (Op2 & ~M) | (Op1 & M) 1167 1168 // Swap op1/op2 1169 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 1170 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); 1171 Register Reg0 = MI.getOperand(0).getReg(); 1172 Register Reg1 = MI.getOperand(1).getReg(); 1173 Register Reg2 = MI.getOperand(2).getReg(); 1174 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 1175 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 1176 bool Reg1IsKill = MI.getOperand(1).isKill(); 1177 bool Reg2IsKill = MI.getOperand(2).isKill(); 1178 bool ChangeReg0 = false; 1179 // If machine instrs are no longer in two-address forms, update 1180 // destination register as well. 1181 if (Reg0 == Reg1) { 1182 // Must be two address instruction! 1183 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 1184 "Expecting a two-address instruction!"); 1185 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 1186 Reg2IsKill = false; 1187 ChangeReg0 = true; 1188 } 1189 1190 // Masks. 1191 unsigned MB = MI.getOperand(4).getImm(); 1192 unsigned ME = MI.getOperand(5).getImm(); 1193 1194 // We can't commute a trivial mask (there is no way to represent an all-zero 1195 // mask). 1196 if (MB == 0 && ME == 31) 1197 return nullptr; 1198 1199 if (NewMI) { 1200 // Create a new instruction. 1201 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 1202 bool Reg0IsDead = MI.getOperand(0).isDead(); 1203 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 1204 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 1205 .addReg(Reg2, getKillRegState(Reg2IsKill)) 1206 .addReg(Reg1, getKillRegState(Reg1IsKill)) 1207 .addImm((ME + 1) & 31) 1208 .addImm((MB - 1) & 31); 1209 } 1210 1211 if (ChangeReg0) { 1212 MI.getOperand(0).setReg(Reg2); 1213 MI.getOperand(0).setSubReg(SubReg2); 1214 } 1215 MI.getOperand(2).setReg(Reg1); 1216 MI.getOperand(1).setReg(Reg2); 1217 MI.getOperand(2).setSubReg(SubReg1); 1218 MI.getOperand(1).setSubReg(SubReg2); 1219 MI.getOperand(2).setIsKill(Reg1IsKill); 1220 MI.getOperand(1).setIsKill(Reg2IsKill); 1221 1222 // Swap the mask around. 1223 MI.getOperand(4).setImm((ME + 1) & 31); 1224 MI.getOperand(5).setImm((MB - 1) & 31); 1225 return &MI; 1226 } 1227 1228 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 1229 unsigned &SrcOpIdx1, 1230 unsigned &SrcOpIdx2) const { 1231 // For VSX A-Type FMA instructions, it is the first two operands that can be 1232 // commuted, however, because the non-encoded tied input operand is listed 1233 // first, the operands to swap are actually the second and third. 1234 1235 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 1236 if (AltOpc == -1) 1237 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 1238 1239 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 1240 // and SrcOpIdx2. 1241 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 1242 } 1243 1244 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 1245 MachineBasicBlock::iterator MI) const { 1246 // This function is used for scheduling, and the nop wanted here is the type 1247 // that terminates dispatch groups on the POWER cores. 1248 unsigned Directive = Subtarget.getCPUDirective(); 1249 unsigned Opcode; 1250 switch (Directive) { 1251 default: Opcode = PPC::NOP; break; 1252 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 1253 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 1254 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 1255 // FIXME: Update when POWER9 scheduling model is ready. 1256 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 1257 } 1258 1259 DebugLoc DL; 1260 BuildMI(MBB, MI, DL, get(Opcode)); 1261 } 1262 1263 /// Return the noop instruction to use for a noop. 1264 MCInst PPCInstrInfo::getNop() const { 1265 MCInst Nop; 1266 Nop.setOpcode(PPC::NOP); 1267 return Nop; 1268 } 1269 1270 // Branch analysis. 1271 // Note: If the condition register is set to CTR or CTR8 then this is a 1272 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 1273 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 1274 MachineBasicBlock *&TBB, 1275 MachineBasicBlock *&FBB, 1276 SmallVectorImpl<MachineOperand> &Cond, 1277 bool AllowModify) const { 1278 bool isPPC64 = Subtarget.isPPC64(); 1279 1280 // If the block has no terminators, it just falls into the block after it. 1281 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1282 if (I == MBB.end()) 1283 return false; 1284 1285 if (!isUnpredicatedTerminator(*I)) 1286 return false; 1287 1288 if (AllowModify) { 1289 // If the BB ends with an unconditional branch to the fallthrough BB, 1290 // we eliminate the branch instruction. 1291 if (I->getOpcode() == PPC::B && 1292 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 1293 I->eraseFromParent(); 1294 1295 // We update iterator after deleting the last branch. 1296 I = MBB.getLastNonDebugInstr(); 1297 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 1298 return false; 1299 } 1300 } 1301 1302 // Get the last instruction in the block. 1303 MachineInstr &LastInst = *I; 1304 1305 // If there is only one terminator instruction, process it. 1306 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 1307 if (LastInst.getOpcode() == PPC::B) { 1308 if (!LastInst.getOperand(0).isMBB()) 1309 return true; 1310 TBB = LastInst.getOperand(0).getMBB(); 1311 return false; 1312 } else if (LastInst.getOpcode() == PPC::BCC) { 1313 if (!LastInst.getOperand(2).isMBB()) 1314 return true; 1315 // Block ends with fall-through condbranch. 1316 TBB = LastInst.getOperand(2).getMBB(); 1317 Cond.push_back(LastInst.getOperand(0)); 1318 Cond.push_back(LastInst.getOperand(1)); 1319 return false; 1320 } else if (LastInst.getOpcode() == PPC::BC) { 1321 if (!LastInst.getOperand(1).isMBB()) 1322 return true; 1323 // Block ends with fall-through condbranch. 1324 TBB = LastInst.getOperand(1).getMBB(); 1325 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 1326 Cond.push_back(LastInst.getOperand(0)); 1327 return false; 1328 } else if (LastInst.getOpcode() == PPC::BCn) { 1329 if (!LastInst.getOperand(1).isMBB()) 1330 return true; 1331 // Block ends with fall-through condbranch. 1332 TBB = LastInst.getOperand(1).getMBB(); 1333 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 1334 Cond.push_back(LastInst.getOperand(0)); 1335 return false; 1336 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 1337 LastInst.getOpcode() == PPC::BDNZ) { 1338 if (!LastInst.getOperand(0).isMBB()) 1339 return true; 1340 if (DisableCTRLoopAnal) 1341 return true; 1342 TBB = LastInst.getOperand(0).getMBB(); 1343 Cond.push_back(MachineOperand::CreateImm(1)); 1344 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1345 true)); 1346 return false; 1347 } else if (LastInst.getOpcode() == PPC::BDZ8 || 1348 LastInst.getOpcode() == PPC::BDZ) { 1349 if (!LastInst.getOperand(0).isMBB()) 1350 return true; 1351 if (DisableCTRLoopAnal) 1352 return true; 1353 TBB = LastInst.getOperand(0).getMBB(); 1354 Cond.push_back(MachineOperand::CreateImm(0)); 1355 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1356 true)); 1357 return false; 1358 } 1359 1360 // Otherwise, don't know what this is. 1361 return true; 1362 } 1363 1364 // Get the instruction before it if it's a terminator. 1365 MachineInstr &SecondLastInst = *I; 1366 1367 // If there are three terminators, we don't know what sort of block this is. 1368 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 1369 return true; 1370 1371 // If the block ends with PPC::B and PPC:BCC, handle it. 1372 if (SecondLastInst.getOpcode() == PPC::BCC && 1373 LastInst.getOpcode() == PPC::B) { 1374 if (!SecondLastInst.getOperand(2).isMBB() || 1375 !LastInst.getOperand(0).isMBB()) 1376 return true; 1377 TBB = SecondLastInst.getOperand(2).getMBB(); 1378 Cond.push_back(SecondLastInst.getOperand(0)); 1379 Cond.push_back(SecondLastInst.getOperand(1)); 1380 FBB = LastInst.getOperand(0).getMBB(); 1381 return false; 1382 } else if (SecondLastInst.getOpcode() == PPC::BC && 1383 LastInst.getOpcode() == PPC::B) { 1384 if (!SecondLastInst.getOperand(1).isMBB() || 1385 !LastInst.getOperand(0).isMBB()) 1386 return true; 1387 TBB = SecondLastInst.getOperand(1).getMBB(); 1388 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 1389 Cond.push_back(SecondLastInst.getOperand(0)); 1390 FBB = LastInst.getOperand(0).getMBB(); 1391 return false; 1392 } else if (SecondLastInst.getOpcode() == PPC::BCn && 1393 LastInst.getOpcode() == PPC::B) { 1394 if (!SecondLastInst.getOperand(1).isMBB() || 1395 !LastInst.getOperand(0).isMBB()) 1396 return true; 1397 TBB = SecondLastInst.getOperand(1).getMBB(); 1398 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 1399 Cond.push_back(SecondLastInst.getOperand(0)); 1400 FBB = LastInst.getOperand(0).getMBB(); 1401 return false; 1402 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 1403 SecondLastInst.getOpcode() == PPC::BDNZ) && 1404 LastInst.getOpcode() == PPC::B) { 1405 if (!SecondLastInst.getOperand(0).isMBB() || 1406 !LastInst.getOperand(0).isMBB()) 1407 return true; 1408 if (DisableCTRLoopAnal) 1409 return true; 1410 TBB = SecondLastInst.getOperand(0).getMBB(); 1411 Cond.push_back(MachineOperand::CreateImm(1)); 1412 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1413 true)); 1414 FBB = LastInst.getOperand(0).getMBB(); 1415 return false; 1416 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 1417 SecondLastInst.getOpcode() == PPC::BDZ) && 1418 LastInst.getOpcode() == PPC::B) { 1419 if (!SecondLastInst.getOperand(0).isMBB() || 1420 !LastInst.getOperand(0).isMBB()) 1421 return true; 1422 if (DisableCTRLoopAnal) 1423 return true; 1424 TBB = SecondLastInst.getOperand(0).getMBB(); 1425 Cond.push_back(MachineOperand::CreateImm(0)); 1426 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1427 true)); 1428 FBB = LastInst.getOperand(0).getMBB(); 1429 return false; 1430 } 1431 1432 // If the block ends with two PPC:Bs, handle it. The second one is not 1433 // executed, so remove it. 1434 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 1435 if (!SecondLastInst.getOperand(0).isMBB()) 1436 return true; 1437 TBB = SecondLastInst.getOperand(0).getMBB(); 1438 I = LastInst; 1439 if (AllowModify) 1440 I->eraseFromParent(); 1441 return false; 1442 } 1443 1444 // Otherwise, can't handle this. 1445 return true; 1446 } 1447 1448 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 1449 int *BytesRemoved) const { 1450 assert(!BytesRemoved && "code size not handled"); 1451 1452 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1453 if (I == MBB.end()) 1454 return 0; 1455 1456 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 1457 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1458 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1459 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1460 return 0; 1461 1462 // Remove the branch. 1463 I->eraseFromParent(); 1464 1465 I = MBB.end(); 1466 1467 if (I == MBB.begin()) return 1; 1468 --I; 1469 if (I->getOpcode() != PPC::BCC && 1470 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1471 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1472 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1473 return 1; 1474 1475 // Remove the branch. 1476 I->eraseFromParent(); 1477 return 2; 1478 } 1479 1480 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 1481 MachineBasicBlock *TBB, 1482 MachineBasicBlock *FBB, 1483 ArrayRef<MachineOperand> Cond, 1484 const DebugLoc &DL, 1485 int *BytesAdded) const { 1486 // Shouldn't be a fall through. 1487 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 1488 assert((Cond.size() == 2 || Cond.size() == 0) && 1489 "PPC branch conditions have two components!"); 1490 assert(!BytesAdded && "code size not handled"); 1491 1492 bool isPPC64 = Subtarget.isPPC64(); 1493 1494 // One-way branch. 1495 if (!FBB) { 1496 if (Cond.empty()) // Unconditional branch 1497 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 1498 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1499 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1500 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1501 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1502 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1503 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1504 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1505 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1506 else // Conditional branch 1507 BuildMI(&MBB, DL, get(PPC::BCC)) 1508 .addImm(Cond[0].getImm()) 1509 .add(Cond[1]) 1510 .addMBB(TBB); 1511 return 1; 1512 } 1513 1514 // Two-way Conditional Branch. 1515 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1516 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1517 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1518 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1519 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1520 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1521 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1522 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1523 else 1524 BuildMI(&MBB, DL, get(PPC::BCC)) 1525 .addImm(Cond[0].getImm()) 1526 .add(Cond[1]) 1527 .addMBB(TBB); 1528 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 1529 return 2; 1530 } 1531 1532 // Select analysis. 1533 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 1534 ArrayRef<MachineOperand> Cond, 1535 Register DstReg, Register TrueReg, 1536 Register FalseReg, int &CondCycles, 1537 int &TrueCycles, int &FalseCycles) const { 1538 if (Cond.size() != 2) 1539 return false; 1540 1541 // If this is really a bdnz-like condition, then it cannot be turned into a 1542 // select. 1543 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1544 return false; 1545 1546 // If the conditional branch uses a physical register, then it cannot be 1547 // turned into a select. 1548 if (Register::isPhysicalRegister(Cond[1].getReg())) 1549 return false; 1550 1551 // Check register classes. 1552 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1553 const TargetRegisterClass *RC = 1554 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1555 if (!RC) 1556 return false; 1557 1558 // isel is for regular integer GPRs only. 1559 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 1560 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 1561 !PPC::G8RCRegClass.hasSubClassEq(RC) && 1562 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 1563 return false; 1564 1565 // FIXME: These numbers are for the A2, how well they work for other cores is 1566 // an open question. On the A2, the isel instruction has a 2-cycle latency 1567 // but single-cycle throughput. These numbers are used in combination with 1568 // the MispredictPenalty setting from the active SchedMachineModel. 1569 CondCycles = 1; 1570 TrueCycles = 1; 1571 FalseCycles = 1; 1572 1573 return true; 1574 } 1575 1576 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 1577 MachineBasicBlock::iterator MI, 1578 const DebugLoc &dl, Register DestReg, 1579 ArrayRef<MachineOperand> Cond, Register TrueReg, 1580 Register FalseReg) const { 1581 assert(Cond.size() == 2 && 1582 "PPC branch conditions have two components!"); 1583 1584 // Get the register classes. 1585 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1586 const TargetRegisterClass *RC = 1587 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1588 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 1589 1590 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 1591 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 1592 assert((Is64Bit || 1593 PPC::GPRCRegClass.hasSubClassEq(RC) || 1594 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 1595 "isel is for regular integer GPRs only"); 1596 1597 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 1598 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 1599 1600 unsigned SubIdx = 0; 1601 bool SwapOps = false; 1602 switch (SelectPred) { 1603 case PPC::PRED_EQ: 1604 case PPC::PRED_EQ_MINUS: 1605 case PPC::PRED_EQ_PLUS: 1606 SubIdx = PPC::sub_eq; SwapOps = false; break; 1607 case PPC::PRED_NE: 1608 case PPC::PRED_NE_MINUS: 1609 case PPC::PRED_NE_PLUS: 1610 SubIdx = PPC::sub_eq; SwapOps = true; break; 1611 case PPC::PRED_LT: 1612 case PPC::PRED_LT_MINUS: 1613 case PPC::PRED_LT_PLUS: 1614 SubIdx = PPC::sub_lt; SwapOps = false; break; 1615 case PPC::PRED_GE: 1616 case PPC::PRED_GE_MINUS: 1617 case PPC::PRED_GE_PLUS: 1618 SubIdx = PPC::sub_lt; SwapOps = true; break; 1619 case PPC::PRED_GT: 1620 case PPC::PRED_GT_MINUS: 1621 case PPC::PRED_GT_PLUS: 1622 SubIdx = PPC::sub_gt; SwapOps = false; break; 1623 case PPC::PRED_LE: 1624 case PPC::PRED_LE_MINUS: 1625 case PPC::PRED_LE_PLUS: 1626 SubIdx = PPC::sub_gt; SwapOps = true; break; 1627 case PPC::PRED_UN: 1628 case PPC::PRED_UN_MINUS: 1629 case PPC::PRED_UN_PLUS: 1630 SubIdx = PPC::sub_un; SwapOps = false; break; 1631 case PPC::PRED_NU: 1632 case PPC::PRED_NU_MINUS: 1633 case PPC::PRED_NU_PLUS: 1634 SubIdx = PPC::sub_un; SwapOps = true; break; 1635 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 1636 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 1637 } 1638 1639 Register FirstReg = SwapOps ? FalseReg : TrueReg, 1640 SecondReg = SwapOps ? TrueReg : FalseReg; 1641 1642 // The first input register of isel cannot be r0. If it is a member 1643 // of a register class that can be r0, then copy it first (the 1644 // register allocator should eliminate the copy). 1645 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 1646 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 1647 const TargetRegisterClass *FirstRC = 1648 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 1649 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 1650 Register OldFirstReg = FirstReg; 1651 FirstReg = MRI.createVirtualRegister(FirstRC); 1652 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 1653 .addReg(OldFirstReg); 1654 } 1655 1656 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 1657 .addReg(FirstReg).addReg(SecondReg) 1658 .addReg(Cond[1].getReg(), 0, SubIdx); 1659 } 1660 1661 static unsigned getCRBitValue(unsigned CRBit) { 1662 unsigned Ret = 4; 1663 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 1664 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 1665 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 1666 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 1667 Ret = 3; 1668 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 1669 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 1670 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 1671 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 1672 Ret = 2; 1673 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 1674 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 1675 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 1676 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 1677 Ret = 1; 1678 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 1679 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 1680 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 1681 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 1682 Ret = 0; 1683 1684 assert(Ret != 4 && "Invalid CR bit register"); 1685 return Ret; 1686 } 1687 1688 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 1689 MachineBasicBlock::iterator I, 1690 const DebugLoc &DL, MCRegister DestReg, 1691 MCRegister SrcReg, bool KillSrc) const { 1692 // We can end up with self copies and similar things as a result of VSX copy 1693 // legalization. Promote them here. 1694 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1695 if (PPC::F8RCRegClass.contains(DestReg) && 1696 PPC::VSRCRegClass.contains(SrcReg)) { 1697 MCRegister SuperReg = 1698 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 1699 1700 if (VSXSelfCopyCrash && SrcReg == SuperReg) 1701 llvm_unreachable("nop VSX copy"); 1702 1703 DestReg = SuperReg; 1704 } else if (PPC::F8RCRegClass.contains(SrcReg) && 1705 PPC::VSRCRegClass.contains(DestReg)) { 1706 MCRegister SuperReg = 1707 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 1708 1709 if (VSXSelfCopyCrash && DestReg == SuperReg) 1710 llvm_unreachable("nop VSX copy"); 1711 1712 SrcReg = SuperReg; 1713 } 1714 1715 // Different class register copy 1716 if (PPC::CRBITRCRegClass.contains(SrcReg) && 1717 PPC::GPRCRegClass.contains(DestReg)) { 1718 MCRegister CRReg = getCRFromCRBit(SrcReg); 1719 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 1720 getKillRegState(KillSrc); 1721 // Rotate the CR bit in the CR fields to be the least significant bit and 1722 // then mask with 0x1 (MB = ME = 31). 1723 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 1724 .addReg(DestReg, RegState::Kill) 1725 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 1726 .addImm(31) 1727 .addImm(31); 1728 return; 1729 } else if (PPC::CRRCRegClass.contains(SrcReg) && 1730 (PPC::G8RCRegClass.contains(DestReg) || 1731 PPC::GPRCRegClass.contains(DestReg))) { 1732 bool Is64Bit = PPC::G8RCRegClass.contains(DestReg); 1733 unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF; 1734 unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM; 1735 unsigned CRNum = TRI->getEncodingValue(SrcReg); 1736 BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg); 1737 getKillRegState(KillSrc); 1738 if (CRNum == 7) 1739 return; 1740 // Shift the CR bits to make the CR field in the lowest 4 bits of GRC. 1741 BuildMI(MBB, I, DL, get(ShCode), DestReg) 1742 .addReg(DestReg, RegState::Kill) 1743 .addImm(CRNum * 4 + 4) 1744 .addImm(28) 1745 .addImm(31); 1746 return; 1747 } else if (PPC::G8RCRegClass.contains(SrcReg) && 1748 PPC::VSFRCRegClass.contains(DestReg)) { 1749 assert(Subtarget.hasDirectMove() && 1750 "Subtarget doesn't support directmove, don't know how to copy."); 1751 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 1752 NumGPRtoVSRSpill++; 1753 getKillRegState(KillSrc); 1754 return; 1755 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 1756 PPC::G8RCRegClass.contains(DestReg)) { 1757 assert(Subtarget.hasDirectMove() && 1758 "Subtarget doesn't support directmove, don't know how to copy."); 1759 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 1760 getKillRegState(KillSrc); 1761 return; 1762 } else if (PPC::SPERCRegClass.contains(SrcReg) && 1763 PPC::GPRCRegClass.contains(DestReg)) { 1764 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 1765 getKillRegState(KillSrc); 1766 return; 1767 } else if (PPC::GPRCRegClass.contains(SrcReg) && 1768 PPC::SPERCRegClass.contains(DestReg)) { 1769 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 1770 getKillRegState(KillSrc); 1771 return; 1772 } 1773 1774 unsigned Opc; 1775 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 1776 Opc = PPC::OR; 1777 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 1778 Opc = PPC::OR8; 1779 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 1780 Opc = PPC::FMR; 1781 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 1782 Opc = PPC::MCRF; 1783 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 1784 Opc = PPC::VOR; 1785 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 1786 // There are two different ways this can be done: 1787 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 1788 // issue in VSU pipeline 0. 1789 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 1790 // can go to either pipeline. 1791 // We'll always use xxlor here, because in practically all cases where 1792 // copies are generated, they are close enough to some use that the 1793 // lower-latency form is preferable. 1794 Opc = PPC::XXLOR; 1795 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1796 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1797 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1798 else if (Subtarget.pairedVectorMemops() && 1799 PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) { 1800 if (SrcReg > PPC::VSRp15) 1801 SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2; 1802 else 1803 SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2; 1804 if (DestReg > PPC::VSRp15) 1805 DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2; 1806 else 1807 DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2; 1808 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg). 1809 addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1810 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1). 1811 addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc)); 1812 return; 1813 } 1814 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1815 Opc = PPC::CROR; 1816 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1817 Opc = PPC::EVOR; 1818 else if ((PPC::ACCRCRegClass.contains(DestReg) || 1819 PPC::UACCRCRegClass.contains(DestReg)) && 1820 (PPC::ACCRCRegClass.contains(SrcReg) || 1821 PPC::UACCRCRegClass.contains(SrcReg))) { 1822 // If primed, de-prime the source register, copy the individual registers 1823 // and prime the destination if needed. The vector subregisters are 1824 // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the 1825 // source is primed, we need to re-prime it after the copy as well. 1826 PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg); 1827 bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg); 1828 bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg); 1829 MCRegister VSLSrcReg = 1830 PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; 1831 MCRegister VSLDestReg = 1832 PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; 1833 if (SrcPrimed) 1834 BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg); 1835 for (unsigned Idx = 0; Idx < 4; Idx++) 1836 BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx) 1837 .addReg(VSLSrcReg + Idx) 1838 .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc)); 1839 if (DestPrimed) 1840 BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg); 1841 if (SrcPrimed && !KillSrc) 1842 BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg); 1843 return; 1844 } else if (PPC::G8pRCRegClass.contains(DestReg) && 1845 PPC::G8pRCRegClass.contains(SrcReg)) { 1846 // TODO: Handle G8RC to G8pRC (and vice versa) copy. 1847 unsigned DestRegIdx = DestReg - PPC::G8p0; 1848 MCRegister DestRegSub0 = PPC::X0 + 2 * DestRegIdx; 1849 MCRegister DestRegSub1 = PPC::X0 + 2 * DestRegIdx + 1; 1850 unsigned SrcRegIdx = SrcReg - PPC::G8p0; 1851 MCRegister SrcRegSub0 = PPC::X0 + 2 * SrcRegIdx; 1852 MCRegister SrcRegSub1 = PPC::X0 + 2 * SrcRegIdx + 1; 1853 BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub0) 1854 .addReg(SrcRegSub0) 1855 .addReg(SrcRegSub0, getKillRegState(KillSrc)); 1856 BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub1) 1857 .addReg(SrcRegSub1) 1858 .addReg(SrcRegSub1, getKillRegState(KillSrc)); 1859 return; 1860 } else 1861 llvm_unreachable("Impossible reg-to-reg copy"); 1862 1863 const MCInstrDesc &MCID = get(Opc); 1864 if (MCID.getNumOperands() == 3) 1865 BuildMI(MBB, I, DL, MCID, DestReg) 1866 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1867 else 1868 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1869 } 1870 1871 unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const { 1872 int OpcodeIndex = 0; 1873 1874 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1875 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1876 OpcodeIndex = SOK_Int4Spill; 1877 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1878 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1879 OpcodeIndex = SOK_Int8Spill; 1880 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1881 OpcodeIndex = SOK_Float8Spill; 1882 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1883 OpcodeIndex = SOK_Float4Spill; 1884 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1885 OpcodeIndex = SOK_SPESpill; 1886 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1887 OpcodeIndex = SOK_CRSpill; 1888 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1889 OpcodeIndex = SOK_CRBitSpill; 1890 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1891 OpcodeIndex = SOK_VRVectorSpill; 1892 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1893 OpcodeIndex = SOK_VSXVectorSpill; 1894 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1895 OpcodeIndex = SOK_VectorFloat8Spill; 1896 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1897 OpcodeIndex = SOK_VectorFloat4Spill; 1898 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1899 OpcodeIndex = SOK_SpillToVSR; 1900 } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) { 1901 assert(Subtarget.pairedVectorMemops() && 1902 "Register unexpected when paired memops are disabled."); 1903 OpcodeIndex = SOK_AccumulatorSpill; 1904 } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) { 1905 assert(Subtarget.pairedVectorMemops() && 1906 "Register unexpected when paired memops are disabled."); 1907 OpcodeIndex = SOK_UAccumulatorSpill; 1908 } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) { 1909 assert(Subtarget.pairedVectorMemops() && 1910 "Register unexpected when paired memops are disabled."); 1911 OpcodeIndex = SOK_PairedVecSpill; 1912 } else if (PPC::G8pRCRegClass.hasSubClassEq(RC)) { 1913 OpcodeIndex = SOK_PairedG8Spill; 1914 } else { 1915 llvm_unreachable("Unknown regclass!"); 1916 } 1917 return OpcodeIndex; 1918 } 1919 1920 unsigned 1921 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const { 1922 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1923 return OpcodesForSpill[getSpillIndex(RC)]; 1924 } 1925 1926 unsigned 1927 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const { 1928 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1929 return OpcodesForSpill[getSpillIndex(RC)]; 1930 } 1931 1932 void PPCInstrInfo::StoreRegToStackSlot( 1933 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1934 const TargetRegisterClass *RC, 1935 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1936 unsigned Opcode = getStoreOpcodeForSpill(RC); 1937 DebugLoc DL; 1938 1939 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1940 FuncInfo->setHasSpills(); 1941 1942 NewMIs.push_back(addFrameReference( 1943 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1944 FrameIdx)); 1945 1946 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1947 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1948 FuncInfo->setSpillsCR(); 1949 1950 if (isXFormMemOp(Opcode)) 1951 FuncInfo->setHasNonRISpills(); 1952 } 1953 1954 void PPCInstrInfo::storeRegToStackSlotNoUpd( 1955 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, 1956 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 1957 const TargetRegisterInfo *TRI) const { 1958 MachineFunction &MF = *MBB.getParent(); 1959 SmallVector<MachineInstr *, 4> NewMIs; 1960 1961 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1962 1963 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1964 MBB.insert(MI, NewMIs[i]); 1965 1966 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1967 MachineMemOperand *MMO = MF.getMachineMemOperand( 1968 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1969 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1970 MFI.getObjectAlign(FrameIdx)); 1971 NewMIs.back()->addMemOperand(MF, MMO); 1972 } 1973 1974 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1975 MachineBasicBlock::iterator MI, 1976 Register SrcReg, bool isKill, 1977 int FrameIdx, 1978 const TargetRegisterClass *RC, 1979 const TargetRegisterInfo *TRI) const { 1980 // We need to avoid a situation in which the value from a VRRC register is 1981 // spilled using an Altivec instruction and reloaded into a VSRC register 1982 // using a VSX instruction. The issue with this is that the VSX 1983 // load/store instructions swap the doublewords in the vector and the Altivec 1984 // ones don't. The register classes on the spill/reload may be different if 1985 // the register is defined using an Altivec instruction and is then used by a 1986 // VSX instruction. 1987 RC = updatedRC(RC); 1988 storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI); 1989 } 1990 1991 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1992 unsigned DestReg, int FrameIdx, 1993 const TargetRegisterClass *RC, 1994 SmallVectorImpl<MachineInstr *> &NewMIs) 1995 const { 1996 unsigned Opcode = getLoadOpcodeForSpill(RC); 1997 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1998 FrameIdx)); 1999 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2000 2001 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 2002 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 2003 FuncInfo->setSpillsCR(); 2004 2005 if (isXFormMemOp(Opcode)) 2006 FuncInfo->setHasNonRISpills(); 2007 } 2008 2009 void PPCInstrInfo::loadRegFromStackSlotNoUpd( 2010 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, 2011 int FrameIdx, const TargetRegisterClass *RC, 2012 const TargetRegisterInfo *TRI) const { 2013 MachineFunction &MF = *MBB.getParent(); 2014 SmallVector<MachineInstr*, 4> NewMIs; 2015 DebugLoc DL; 2016 if (MI != MBB.end()) DL = MI->getDebugLoc(); 2017 2018 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2019 FuncInfo->setHasSpills(); 2020 2021 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 2022 2023 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 2024 MBB.insert(MI, NewMIs[i]); 2025 2026 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2027 MachineMemOperand *MMO = MF.getMachineMemOperand( 2028 MachinePointerInfo::getFixedStack(MF, FrameIdx), 2029 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 2030 MFI.getObjectAlign(FrameIdx)); 2031 NewMIs.back()->addMemOperand(MF, MMO); 2032 } 2033 2034 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 2035 MachineBasicBlock::iterator MI, 2036 Register DestReg, int FrameIdx, 2037 const TargetRegisterClass *RC, 2038 const TargetRegisterInfo *TRI) const { 2039 // We need to avoid a situation in which the value from a VRRC register is 2040 // spilled using an Altivec instruction and reloaded into a VSRC register 2041 // using a VSX instruction. The issue with this is that the VSX 2042 // load/store instructions swap the doublewords in the vector and the Altivec 2043 // ones don't. The register classes on the spill/reload may be different if 2044 // the register is defined using an Altivec instruction and is then used by a 2045 // VSX instruction. 2046 RC = updatedRC(RC); 2047 2048 loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI); 2049 } 2050 2051 bool PPCInstrInfo:: 2052 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 2053 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 2054 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 2055 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 2056 else 2057 // Leave the CR# the same, but invert the condition. 2058 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 2059 return false; 2060 } 2061 2062 // For some instructions, it is legal to fold ZERO into the RA register field. 2063 // This function performs that fold by replacing the operand with PPC::ZERO, 2064 // it does not consider whether the load immediate zero is no longer in use. 2065 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 2066 Register Reg) const { 2067 // A zero immediate should always be loaded with a single li. 2068 unsigned DefOpc = DefMI.getOpcode(); 2069 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 2070 return false; 2071 if (!DefMI.getOperand(1).isImm()) 2072 return false; 2073 if (DefMI.getOperand(1).getImm() != 0) 2074 return false; 2075 2076 // Note that we cannot here invert the arguments of an isel in order to fold 2077 // a ZERO into what is presented as the second argument. All we have here 2078 // is the condition bit, and that might come from a CR-logical bit operation. 2079 2080 const MCInstrDesc &UseMCID = UseMI.getDesc(); 2081 2082 // Only fold into real machine instructions. 2083 if (UseMCID.isPseudo()) 2084 return false; 2085 2086 // We need to find which of the User's operands is to be folded, that will be 2087 // the operand that matches the given register ID. 2088 unsigned UseIdx; 2089 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 2090 if (UseMI.getOperand(UseIdx).isReg() && 2091 UseMI.getOperand(UseIdx).getReg() == Reg) 2092 break; 2093 2094 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 2095 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 2096 2097 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 2098 2099 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 2100 // register (which might also be specified as a pointer class kind). 2101 if (UseInfo->isLookupPtrRegClass()) { 2102 if (UseInfo->RegClass /* Kind */ != 1) 2103 return false; 2104 } else { 2105 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 2106 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 2107 return false; 2108 } 2109 2110 // Make sure this is not tied to an output register (or otherwise 2111 // constrained). This is true for ST?UX registers, for example, which 2112 // are tied to their output registers. 2113 if (UseInfo->Constraints != 0) 2114 return false; 2115 2116 MCRegister ZeroReg; 2117 if (UseInfo->isLookupPtrRegClass()) { 2118 bool isPPC64 = Subtarget.isPPC64(); 2119 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 2120 } else { 2121 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 2122 PPC::ZERO8 : PPC::ZERO; 2123 } 2124 2125 UseMI.getOperand(UseIdx).setReg(ZeroReg); 2126 return true; 2127 } 2128 2129 // Folds zero into instructions which have a load immediate zero as an operand 2130 // but also recognize zero as immediate zero. If the definition of the load 2131 // has no more users it is deleted. 2132 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 2133 Register Reg, MachineRegisterInfo *MRI) const { 2134 bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg); 2135 if (MRI->use_nodbg_empty(Reg)) 2136 DefMI.eraseFromParent(); 2137 return Changed; 2138 } 2139 2140 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 2141 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 2142 I != IE; ++I) 2143 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 2144 return true; 2145 return false; 2146 } 2147 2148 // We should make sure that, if we're going to predicate both sides of a 2149 // condition (a diamond), that both sides don't define the counter register. We 2150 // can predicate counter-decrement-based branches, but while that predicates 2151 // the branching, it does not predicate the counter decrement. If we tried to 2152 // merge the triangle into one predicated block, we'd decrement the counter 2153 // twice. 2154 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 2155 unsigned NumT, unsigned ExtraT, 2156 MachineBasicBlock &FMBB, 2157 unsigned NumF, unsigned ExtraF, 2158 BranchProbability Probability) const { 2159 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 2160 } 2161 2162 2163 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 2164 // The predicated branches are identified by their type, not really by the 2165 // explicit presence of a predicate. Furthermore, some of them can be 2166 // predicated more than once. Because if conversion won't try to predicate 2167 // any instruction which already claims to be predicated (by returning true 2168 // here), always return false. In doing so, we let isPredicable() be the 2169 // final word on whether not the instruction can be (further) predicated. 2170 2171 return false; 2172 } 2173 2174 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 2175 const MachineBasicBlock *MBB, 2176 const MachineFunction &MF) const { 2177 // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion 2178 // across them, since some FP operations may change content of FPSCR. 2179 // TODO: Model FPSCR in PPC instruction definitions and remove the workaround 2180 if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF) 2181 return true; 2182 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); 2183 } 2184 2185 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 2186 ArrayRef<MachineOperand> Pred) const { 2187 unsigned OpC = MI.getOpcode(); 2188 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 2189 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 2190 bool isPPC64 = Subtarget.isPPC64(); 2191 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 2192 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 2193 // Need add Def and Use for CTR implicit operand. 2194 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2195 .addReg(Pred[1].getReg(), RegState::Implicit) 2196 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 2197 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2198 MI.setDesc(get(PPC::BCLR)); 2199 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2200 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2201 MI.setDesc(get(PPC::BCLRn)); 2202 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2203 } else { 2204 MI.setDesc(get(PPC::BCCLR)); 2205 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2206 .addImm(Pred[0].getImm()) 2207 .add(Pred[1]); 2208 } 2209 2210 return true; 2211 } else if (OpC == PPC::B) { 2212 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 2213 bool isPPC64 = Subtarget.isPPC64(); 2214 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 2215 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 2216 // Need add Def and Use for CTR implicit operand. 2217 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2218 .addReg(Pred[1].getReg(), RegState::Implicit) 2219 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 2220 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2221 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2222 MI.RemoveOperand(0); 2223 2224 MI.setDesc(get(PPC::BC)); 2225 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2226 .add(Pred[1]) 2227 .addMBB(MBB); 2228 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2229 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2230 MI.RemoveOperand(0); 2231 2232 MI.setDesc(get(PPC::BCn)); 2233 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2234 .add(Pred[1]) 2235 .addMBB(MBB); 2236 } else { 2237 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2238 MI.RemoveOperand(0); 2239 2240 MI.setDesc(get(PPC::BCC)); 2241 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2242 .addImm(Pred[0].getImm()) 2243 .add(Pred[1]) 2244 .addMBB(MBB); 2245 } 2246 2247 return true; 2248 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 2249 OpC == PPC::BCTRL8) { 2250 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 2251 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 2252 2253 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 2254 bool isPPC64 = Subtarget.isPPC64(); 2255 2256 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2257 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 2258 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 2259 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2260 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2261 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 2262 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 2263 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2264 } else { 2265 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 2266 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 2267 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2268 .addImm(Pred[0].getImm()) 2269 .add(Pred[1]); 2270 } 2271 2272 // Need add Def and Use for LR implicit operand. 2273 if (setLR) 2274 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2275 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit) 2276 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine); 2277 2278 return true; 2279 } 2280 2281 return false; 2282 } 2283 2284 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 2285 ArrayRef<MachineOperand> Pred2) const { 2286 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 2287 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 2288 2289 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 2290 return false; 2291 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 2292 return false; 2293 2294 // P1 can only subsume P2 if they test the same condition register. 2295 if (Pred1[1].getReg() != Pred2[1].getReg()) 2296 return false; 2297 2298 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 2299 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 2300 2301 if (P1 == P2) 2302 return true; 2303 2304 // Does P1 subsume P2, e.g. GE subsumes GT. 2305 if (P1 == PPC::PRED_LE && 2306 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 2307 return true; 2308 if (P1 == PPC::PRED_GE && 2309 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 2310 return true; 2311 2312 return false; 2313 } 2314 2315 bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI, 2316 std::vector<MachineOperand> &Pred, 2317 bool SkipDead) const { 2318 // Note: At the present time, the contents of Pred from this function is 2319 // unused by IfConversion. This implementation follows ARM by pushing the 2320 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 2321 // predicate, instructions defining CTR or CTR8 are also included as 2322 // predicate-defining instructions. 2323 2324 const TargetRegisterClass *RCs[] = 2325 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 2326 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 2327 2328 bool Found = false; 2329 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 2330 const MachineOperand &MO = MI.getOperand(i); 2331 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 2332 const TargetRegisterClass *RC = RCs[c]; 2333 if (MO.isReg()) { 2334 if (MO.isDef() && RC->contains(MO.getReg())) { 2335 Pred.push_back(MO); 2336 Found = true; 2337 } 2338 } else if (MO.isRegMask()) { 2339 for (TargetRegisterClass::iterator I = RC->begin(), 2340 IE = RC->end(); I != IE; ++I) 2341 if (MO.clobbersPhysReg(*I)) { 2342 Pred.push_back(MO); 2343 Found = true; 2344 } 2345 } 2346 } 2347 } 2348 2349 return Found; 2350 } 2351 2352 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 2353 Register &SrcReg2, int64_t &Mask, 2354 int64_t &Value) const { 2355 unsigned Opc = MI.getOpcode(); 2356 2357 switch (Opc) { 2358 default: return false; 2359 case PPC::CMPWI: 2360 case PPC::CMPLWI: 2361 case PPC::CMPDI: 2362 case PPC::CMPLDI: 2363 SrcReg = MI.getOperand(1).getReg(); 2364 SrcReg2 = 0; 2365 Value = MI.getOperand(2).getImm(); 2366 Mask = 0xFFFF; 2367 return true; 2368 case PPC::CMPW: 2369 case PPC::CMPLW: 2370 case PPC::CMPD: 2371 case PPC::CMPLD: 2372 case PPC::FCMPUS: 2373 case PPC::FCMPUD: 2374 SrcReg = MI.getOperand(1).getReg(); 2375 SrcReg2 = MI.getOperand(2).getReg(); 2376 Value = 0; 2377 Mask = 0; 2378 return true; 2379 } 2380 } 2381 2382 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 2383 Register SrcReg2, int64_t Mask, 2384 int64_t Value, 2385 const MachineRegisterInfo *MRI) const { 2386 if (DisableCmpOpt) 2387 return false; 2388 2389 int OpC = CmpInstr.getOpcode(); 2390 Register CRReg = CmpInstr.getOperand(0).getReg(); 2391 2392 // FP record forms set CR1 based on the exception status bits, not a 2393 // comparison with zero. 2394 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 2395 return false; 2396 2397 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2398 // The record forms set the condition register based on a signed comparison 2399 // with zero (so says the ISA manual). This is not as straightforward as it 2400 // seems, however, because this is always a 64-bit comparison on PPC64, even 2401 // for instructions that are 32-bit in nature (like slw for example). 2402 // So, on PPC32, for unsigned comparisons, we can use the record forms only 2403 // for equality checks (as those don't depend on the sign). On PPC64, 2404 // we are restricted to equality for unsigned 64-bit comparisons and for 2405 // signed 32-bit comparisons the applicability is more restricted. 2406 bool isPPC64 = Subtarget.isPPC64(); 2407 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 2408 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 2409 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 2410 2411 // Look through copies unless that gets us to a physical register. 2412 Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 2413 if (ActualSrc.isVirtual()) 2414 SrcReg = ActualSrc; 2415 2416 // Get the unique definition of SrcReg. 2417 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 2418 if (!MI) return false; 2419 2420 bool equalityOnly = false; 2421 bool noSub = false; 2422 if (isPPC64) { 2423 if (is32BitSignedCompare) { 2424 // We can perform this optimization only if MI is sign-extending. 2425 if (isSignExtended(*MI)) 2426 noSub = true; 2427 else 2428 return false; 2429 } else if (is32BitUnsignedCompare) { 2430 // We can perform this optimization, equality only, if MI is 2431 // zero-extending. 2432 if (isZeroExtended(*MI)) { 2433 noSub = true; 2434 equalityOnly = true; 2435 } else 2436 return false; 2437 } else 2438 equalityOnly = is64BitUnsignedCompare; 2439 } else 2440 equalityOnly = is32BitUnsignedCompare; 2441 2442 if (equalityOnly) { 2443 // We need to check the uses of the condition register in order to reject 2444 // non-equality comparisons. 2445 for (MachineRegisterInfo::use_instr_iterator 2446 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2447 I != IE; ++I) { 2448 MachineInstr *UseMI = &*I; 2449 if (UseMI->getOpcode() == PPC::BCC) { 2450 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 2451 unsigned PredCond = PPC::getPredicateCondition(Pred); 2452 // We ignore hint bits when checking for non-equality comparisons. 2453 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 2454 return false; 2455 } else if (UseMI->getOpcode() == PPC::ISEL || 2456 UseMI->getOpcode() == PPC::ISEL8) { 2457 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 2458 if (SubIdx != PPC::sub_eq) 2459 return false; 2460 } else 2461 return false; 2462 } 2463 } 2464 2465 MachineBasicBlock::iterator I = CmpInstr; 2466 2467 // Scan forward to find the first use of the compare. 2468 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 2469 ++I) { 2470 bool FoundUse = false; 2471 for (MachineRegisterInfo::use_instr_iterator 2472 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 2473 J != JE; ++J) 2474 if (&*J == &*I) { 2475 FoundUse = true; 2476 break; 2477 } 2478 2479 if (FoundUse) 2480 break; 2481 } 2482 2483 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 2484 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 2485 2486 // There are two possible candidates which can be changed to set CR[01]. 2487 // One is MI, the other is a SUB instruction. 2488 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 2489 MachineInstr *Sub = nullptr; 2490 if (SrcReg2 != 0) 2491 // MI is not a candidate for CMPrr. 2492 MI = nullptr; 2493 // FIXME: Conservatively refuse to convert an instruction which isn't in the 2494 // same BB as the comparison. This is to allow the check below to avoid calls 2495 // (and other explicit clobbers); instead we should really check for these 2496 // more explicitly (in at least a few predecessors). 2497 else if (MI->getParent() != CmpInstr.getParent()) 2498 return false; 2499 else if (Value != 0) { 2500 // The record-form instructions set CR bit based on signed comparison 2501 // against 0. We try to convert a compare against 1 or -1 into a compare 2502 // against 0 to exploit record-form instructions. For example, we change 2503 // the condition "greater than -1" into "greater than or equal to 0" 2504 // and "less than 1" into "less than or equal to 0". 2505 2506 // Since we optimize comparison based on a specific branch condition, 2507 // we don't optimize if condition code is used by more than once. 2508 if (equalityOnly || !MRI->hasOneUse(CRReg)) 2509 return false; 2510 2511 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 2512 if (UseMI->getOpcode() != PPC::BCC) 2513 return false; 2514 2515 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 2516 unsigned PredCond = PPC::getPredicateCondition(Pred); 2517 unsigned PredHint = PPC::getPredicateHint(Pred); 2518 int16_t Immed = (int16_t)Value; 2519 2520 // When modifying the condition in the predicate, we propagate hint bits 2521 // from the original predicate to the new one. 2522 if (Immed == -1 && PredCond == PPC::PRED_GT) 2523 // We convert "greater than -1" into "greater than or equal to 0", 2524 // since we are assuming signed comparison by !equalityOnly 2525 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 2526 else if (Immed == -1 && PredCond == PPC::PRED_LE) 2527 // We convert "less than or equal to -1" into "less than 0". 2528 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 2529 else if (Immed == 1 && PredCond == PPC::PRED_LT) 2530 // We convert "less than 1" into "less than or equal to 0". 2531 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 2532 else if (Immed == 1 && PredCond == PPC::PRED_GE) 2533 // We convert "greater than or equal to 1" into "greater than 0". 2534 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 2535 else 2536 return false; 2537 2538 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred)); 2539 } 2540 2541 // Search for Sub. 2542 --I; 2543 2544 // Get ready to iterate backward from CmpInstr. 2545 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 2546 2547 for (; I != E && !noSub; --I) { 2548 const MachineInstr &Instr = *I; 2549 unsigned IOpC = Instr.getOpcode(); 2550 2551 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 2552 Instr.readsRegister(PPC::CR0, TRI))) 2553 // This instruction modifies or uses the record condition register after 2554 // the one we want to change. While we could do this transformation, it 2555 // would likely not be profitable. This transformation removes one 2556 // instruction, and so even forcing RA to generate one move probably 2557 // makes it unprofitable. 2558 return false; 2559 2560 // Check whether CmpInstr can be made redundant by the current instruction. 2561 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 2562 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 2563 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 2564 ((Instr.getOperand(1).getReg() == SrcReg && 2565 Instr.getOperand(2).getReg() == SrcReg2) || 2566 (Instr.getOperand(1).getReg() == SrcReg2 && 2567 Instr.getOperand(2).getReg() == SrcReg))) { 2568 Sub = &*I; 2569 break; 2570 } 2571 2572 if (I == B) 2573 // The 'and' is below the comparison instruction. 2574 return false; 2575 } 2576 2577 // Return false if no candidates exist. 2578 if (!MI && !Sub) 2579 return false; 2580 2581 // The single candidate is called MI. 2582 if (!MI) MI = Sub; 2583 2584 int NewOpC = -1; 2585 int MIOpC = MI->getOpcode(); 2586 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || 2587 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) 2588 NewOpC = MIOpC; 2589 else { 2590 NewOpC = PPC::getRecordFormOpcode(MIOpC); 2591 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 2592 NewOpC = MIOpC; 2593 } 2594 2595 // FIXME: On the non-embedded POWER architectures, only some of the record 2596 // forms are fast, and we should use only the fast ones. 2597 2598 // The defining instruction has a record form (or is already a record 2599 // form). It is possible, however, that we'll need to reverse the condition 2600 // code of the users. 2601 if (NewOpC == -1) 2602 return false; 2603 2604 // This transformation should not be performed if `nsw` is missing and is not 2605 // `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in 2606 // CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in 2607 // CRReg can reflect if compared values are equal, this optz is still valid. 2608 if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) && 2609 Sub && !Sub->getFlag(MachineInstr::NoSWrap)) 2610 return false; 2611 2612 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 2613 // needs to be updated to be based on SUB. Push the condition code 2614 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 2615 // condition code of these operands will be modified. 2616 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 2617 // comparison against 0, which may modify predicate. 2618 bool ShouldSwap = false; 2619 if (Sub && Value == 0) { 2620 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 2621 Sub->getOperand(2).getReg() == SrcReg; 2622 2623 // The operands to subf are the opposite of sub, so only in the fixed-point 2624 // case, invert the order. 2625 ShouldSwap = !ShouldSwap; 2626 } 2627 2628 if (ShouldSwap) 2629 for (MachineRegisterInfo::use_instr_iterator 2630 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2631 I != IE; ++I) { 2632 MachineInstr *UseMI = &*I; 2633 if (UseMI->getOpcode() == PPC::BCC) { 2634 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 2635 unsigned PredCond = PPC::getPredicateCondition(Pred); 2636 assert((!equalityOnly || 2637 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 2638 "Invalid predicate for equality-only optimization"); 2639 (void)PredCond; // To suppress warning in release build. 2640 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 2641 PPC::getSwappedPredicate(Pred))); 2642 } else if (UseMI->getOpcode() == PPC::ISEL || 2643 UseMI->getOpcode() == PPC::ISEL8) { 2644 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 2645 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 2646 "Invalid CR bit for equality-only optimization"); 2647 2648 if (NewSubReg == PPC::sub_lt) 2649 NewSubReg = PPC::sub_gt; 2650 else if (NewSubReg == PPC::sub_gt) 2651 NewSubReg = PPC::sub_lt; 2652 2653 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 2654 NewSubReg)); 2655 } else // We need to abort on a user we don't understand. 2656 return false; 2657 } 2658 assert(!(Value != 0 && ShouldSwap) && 2659 "Non-zero immediate support and ShouldSwap" 2660 "may conflict in updating predicate"); 2661 2662 // Create a new virtual register to hold the value of the CR set by the 2663 // record-form instruction. If the instruction was not previously in 2664 // record form, then set the kill flag on the CR. 2665 CmpInstr.eraseFromParent(); 2666 2667 MachineBasicBlock::iterator MII = MI; 2668 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 2669 get(TargetOpcode::COPY), CRReg) 2670 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 2671 2672 // Even if CR0 register were dead before, it is alive now since the 2673 // instruction we just built uses it. 2674 MI->clearRegisterDeads(PPC::CR0); 2675 2676 if (MIOpC != NewOpC) { 2677 // We need to be careful here: we're replacing one instruction with 2678 // another, and we need to make sure that we get all of the right 2679 // implicit uses and defs. On the other hand, the caller may be holding 2680 // an iterator to this instruction, and so we can't delete it (this is 2681 // specifically the case if this is the instruction directly after the 2682 // compare). 2683 2684 // Rotates are expensive instructions. If we're emitting a record-form 2685 // rotate that can just be an andi/andis, we should just emit that. 2686 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 2687 Register GPRRes = MI->getOperand(0).getReg(); 2688 int64_t SH = MI->getOperand(2).getImm(); 2689 int64_t MB = MI->getOperand(3).getImm(); 2690 int64_t ME = MI->getOperand(4).getImm(); 2691 // We can only do this if both the start and end of the mask are in the 2692 // same halfword. 2693 bool MBInLoHWord = MB >= 16; 2694 bool MEInLoHWord = ME >= 16; 2695 uint64_t Mask = ~0LLU; 2696 2697 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 2698 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2699 // The mask value needs to shift right 16 if we're emitting andis. 2700 Mask >>= MBInLoHWord ? 0 : 16; 2701 NewOpC = MIOpC == PPC::RLWINM 2702 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) 2703 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); 2704 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 2705 (ME - MB + 1 == SH) && (MB >= 16)) { 2706 // If we are rotating by the exact number of bits as are in the mask 2707 // and the mask is in the least significant bits of the register, 2708 // that's just an andis. (as long as the GPR result has no uses). 2709 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 2710 Mask >>= 16; 2711 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; 2712 } 2713 // If we've set the mask, we can transform. 2714 if (Mask != ~0LLU) { 2715 MI->RemoveOperand(4); 2716 MI->RemoveOperand(3); 2717 MI->getOperand(2).setImm(Mask); 2718 NumRcRotatesConvertedToRcAnd++; 2719 } 2720 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 2721 int64_t MB = MI->getOperand(3).getImm(); 2722 if (MB >= 48) { 2723 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2724 NewOpC = PPC::ANDI8_rec; 2725 MI->RemoveOperand(3); 2726 MI->getOperand(2).setImm(Mask); 2727 NumRcRotatesConvertedToRcAnd++; 2728 } 2729 } 2730 2731 const MCInstrDesc &NewDesc = get(NewOpC); 2732 MI->setDesc(NewDesc); 2733 2734 if (NewDesc.ImplicitDefs) 2735 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 2736 *ImpDefs; ++ImpDefs) 2737 if (!MI->definesRegister(*ImpDefs)) 2738 MI->addOperand(*MI->getParent()->getParent(), 2739 MachineOperand::CreateReg(*ImpDefs, true, true)); 2740 if (NewDesc.ImplicitUses) 2741 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 2742 *ImpUses; ++ImpUses) 2743 if (!MI->readsRegister(*ImpUses)) 2744 MI->addOperand(*MI->getParent()->getParent(), 2745 MachineOperand::CreateReg(*ImpUses, false, true)); 2746 } 2747 assert(MI->definesRegister(PPC::CR0) && 2748 "Record-form instruction does not define cr0?"); 2749 2750 // Modify the condition code of operands in OperandsToUpdate. 2751 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 2752 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 2753 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 2754 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 2755 2756 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 2757 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 2758 2759 return true; 2760 } 2761 2762 bool PPCInstrInfo::getMemOperandsWithOffsetWidth( 2763 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, 2764 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, 2765 const TargetRegisterInfo *TRI) const { 2766 const MachineOperand *BaseOp; 2767 OffsetIsScalable = false; 2768 if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI)) 2769 return false; 2770 BaseOps.push_back(BaseOp); 2771 return true; 2772 } 2773 2774 static bool isLdStSafeToCluster(const MachineInstr &LdSt, 2775 const TargetRegisterInfo *TRI) { 2776 // If this is a volatile load/store, don't mess with it. 2777 if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3) 2778 return false; 2779 2780 if (LdSt.getOperand(2).isFI()) 2781 return true; 2782 2783 assert(LdSt.getOperand(2).isReg() && "Expected a reg operand."); 2784 // Can't cluster if the instruction modifies the base register 2785 // or it is update form. e.g. ld r2,3(r2) 2786 if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI)) 2787 return false; 2788 2789 return true; 2790 } 2791 2792 // Only cluster instruction pair that have the same opcode, and they are 2793 // clusterable according to PowerPC specification. 2794 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc, 2795 const PPCSubtarget &Subtarget) { 2796 switch (FirstOpc) { 2797 default: 2798 return false; 2799 case PPC::STD: 2800 case PPC::STFD: 2801 case PPC::STXSD: 2802 case PPC::DFSTOREf64: 2803 return FirstOpc == SecondOpc; 2804 // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with 2805 // 32bit and 64bit instruction selection. They are clusterable pair though 2806 // they are different opcode. 2807 case PPC::STW: 2808 case PPC::STW8: 2809 return SecondOpc == PPC::STW || SecondOpc == PPC::STW8; 2810 } 2811 } 2812 2813 bool PPCInstrInfo::shouldClusterMemOps( 2814 ArrayRef<const MachineOperand *> BaseOps1, 2815 ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads, 2816 unsigned NumBytes) const { 2817 2818 assert(BaseOps1.size() == 1 && BaseOps2.size() == 1); 2819 const MachineOperand &BaseOp1 = *BaseOps1.front(); 2820 const MachineOperand &BaseOp2 = *BaseOps2.front(); 2821 assert((BaseOp1.isReg() || BaseOp1.isFI()) && 2822 "Only base registers and frame indices are supported."); 2823 2824 // The NumLoads means the number of loads that has been clustered. 2825 // Don't cluster memory op if there are already two ops clustered at least. 2826 if (NumLoads > 2) 2827 return false; 2828 2829 // Cluster the load/store only when they have the same base 2830 // register or FI. 2831 if ((BaseOp1.isReg() != BaseOp2.isReg()) || 2832 (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) || 2833 (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex())) 2834 return false; 2835 2836 // Check if the load/store are clusterable according to the PowerPC 2837 // specification. 2838 const MachineInstr &FirstLdSt = *BaseOp1.getParent(); 2839 const MachineInstr &SecondLdSt = *BaseOp2.getParent(); 2840 unsigned FirstOpc = FirstLdSt.getOpcode(); 2841 unsigned SecondOpc = SecondLdSt.getOpcode(); 2842 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2843 // Cluster the load/store only when they have the same opcode, and they are 2844 // clusterable opcode according to PowerPC specification. 2845 if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget)) 2846 return false; 2847 2848 // Can't cluster load/store that have ordered or volatile memory reference. 2849 if (!isLdStSafeToCluster(FirstLdSt, TRI) || 2850 !isLdStSafeToCluster(SecondLdSt, TRI)) 2851 return false; 2852 2853 int64_t Offset1 = 0, Offset2 = 0; 2854 unsigned Width1 = 0, Width2 = 0; 2855 const MachineOperand *Base1 = nullptr, *Base2 = nullptr; 2856 if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) || 2857 !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) || 2858 Width1 != Width2) 2859 return false; 2860 2861 assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 && 2862 "getMemOperandWithOffsetWidth return incorrect base op"); 2863 // The caller should already have ordered FirstMemOp/SecondMemOp by offset. 2864 assert(Offset1 <= Offset2 && "Caller should have ordered offsets."); 2865 return Offset1 + Width1 == Offset2; 2866 } 2867 2868 /// GetInstSize - Return the number of bytes of code the specified 2869 /// instruction may be. This returns the maximum number of bytes. 2870 /// 2871 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2872 unsigned Opcode = MI.getOpcode(); 2873 2874 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 2875 const MachineFunction *MF = MI.getParent()->getParent(); 2876 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2877 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2878 } else if (Opcode == TargetOpcode::STACKMAP) { 2879 StackMapOpers Opers(&MI); 2880 return Opers.getNumPatchBytes(); 2881 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2882 PatchPointOpers Opers(&MI); 2883 return Opers.getNumPatchBytes(); 2884 } else { 2885 return get(Opcode).getSize(); 2886 } 2887 } 2888 2889 std::pair<unsigned, unsigned> 2890 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2891 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2892 return std::make_pair(TF & Mask, TF & ~Mask); 2893 } 2894 2895 ArrayRef<std::pair<unsigned, const char *>> 2896 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2897 using namespace PPCII; 2898 static const std::pair<unsigned, const char *> TargetFlags[] = { 2899 {MO_LO, "ppc-lo"}, 2900 {MO_HA, "ppc-ha"}, 2901 {MO_TPREL_LO, "ppc-tprel-lo"}, 2902 {MO_TPREL_HA, "ppc-tprel-ha"}, 2903 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2904 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2905 {MO_TOC_LO, "ppc-toc-lo"}, 2906 {MO_TLS, "ppc-tls"}}; 2907 return makeArrayRef(TargetFlags); 2908 } 2909 2910 ArrayRef<std::pair<unsigned, const char *>> 2911 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2912 using namespace PPCII; 2913 static const std::pair<unsigned, const char *> TargetFlags[] = { 2914 {MO_PLT, "ppc-plt"}, 2915 {MO_PIC_FLAG, "ppc-pic"}, 2916 {MO_PCREL_FLAG, "ppc-pcrel"}, 2917 {MO_GOT_FLAG, "ppc-got"}, 2918 {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"}, 2919 {MO_TLSGD_FLAG, "ppc-tlsgd"}, 2920 {MO_TLSLD_FLAG, "ppc-tlsld"}, 2921 {MO_TPREL_FLAG, "ppc-tprel"}, 2922 {MO_TLSGDM_FLAG, "ppc-tlsgdm"}, 2923 {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"}, 2924 {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"}, 2925 {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}}; 2926 return makeArrayRef(TargetFlags); 2927 } 2928 2929 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2930 // The VSX versions have the advantage of a full 64-register target whereas 2931 // the FP ones have the advantage of lower latency and higher throughput. So 2932 // what we are after is using the faster instructions in low register pressure 2933 // situations and using the larger register file in high register pressure 2934 // situations. 2935 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2936 unsigned UpperOpcode, LowerOpcode; 2937 switch (MI.getOpcode()) { 2938 case PPC::DFLOADf32: 2939 UpperOpcode = PPC::LXSSP; 2940 LowerOpcode = PPC::LFS; 2941 break; 2942 case PPC::DFLOADf64: 2943 UpperOpcode = PPC::LXSD; 2944 LowerOpcode = PPC::LFD; 2945 break; 2946 case PPC::DFSTOREf32: 2947 UpperOpcode = PPC::STXSSP; 2948 LowerOpcode = PPC::STFS; 2949 break; 2950 case PPC::DFSTOREf64: 2951 UpperOpcode = PPC::STXSD; 2952 LowerOpcode = PPC::STFD; 2953 break; 2954 case PPC::XFLOADf32: 2955 UpperOpcode = PPC::LXSSPX; 2956 LowerOpcode = PPC::LFSX; 2957 break; 2958 case PPC::XFLOADf64: 2959 UpperOpcode = PPC::LXSDX; 2960 LowerOpcode = PPC::LFDX; 2961 break; 2962 case PPC::XFSTOREf32: 2963 UpperOpcode = PPC::STXSSPX; 2964 LowerOpcode = PPC::STFSX; 2965 break; 2966 case PPC::XFSTOREf64: 2967 UpperOpcode = PPC::STXSDX; 2968 LowerOpcode = PPC::STFDX; 2969 break; 2970 case PPC::LIWAX: 2971 UpperOpcode = PPC::LXSIWAX; 2972 LowerOpcode = PPC::LFIWAX; 2973 break; 2974 case PPC::LIWZX: 2975 UpperOpcode = PPC::LXSIWZX; 2976 LowerOpcode = PPC::LFIWZX; 2977 break; 2978 case PPC::STIWX: 2979 UpperOpcode = PPC::STXSIWX; 2980 LowerOpcode = PPC::STFIWX; 2981 break; 2982 default: 2983 llvm_unreachable("Unknown Operation!"); 2984 } 2985 2986 Register TargetReg = MI.getOperand(0).getReg(); 2987 unsigned Opcode; 2988 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2989 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2990 Opcode = LowerOpcode; 2991 else 2992 Opcode = UpperOpcode; 2993 MI.setDesc(get(Opcode)); 2994 return true; 2995 } 2996 2997 static bool isAnImmediateOperand(const MachineOperand &MO) { 2998 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2999 } 3000 3001 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 3002 auto &MBB = *MI.getParent(); 3003 auto DL = MI.getDebugLoc(); 3004 3005 switch (MI.getOpcode()) { 3006 case PPC::BUILD_UACC: { 3007 MCRegister ACC = MI.getOperand(0).getReg(); 3008 MCRegister UACC = MI.getOperand(1).getReg(); 3009 if (ACC - PPC::ACC0 != UACC - PPC::UACC0) { 3010 MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4; 3011 MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4; 3012 // FIXME: This can easily be improved to look up to the top of the MBB 3013 // to see if the inputs are XXLOR's. If they are and SrcReg is killed, 3014 // we can just re-target any such XXLOR's to DstVSR + offset. 3015 for (int VecNo = 0; VecNo < 4; VecNo++) 3016 BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo) 3017 .addReg(SrcVSR + VecNo) 3018 .addReg(SrcVSR + VecNo); 3019 } 3020 // BUILD_UACC is expanded to 4 copies of the underlying vsx registers. 3021 // So after building the 4 copies, we can replace the BUILD_UACC instruction 3022 // with a NOP. 3023 LLVM_FALLTHROUGH; 3024 } 3025 case PPC::KILL_PAIR: { 3026 MI.setDesc(get(PPC::UNENCODED_NOP)); 3027 MI.RemoveOperand(1); 3028 MI.RemoveOperand(0); 3029 return true; 3030 } 3031 case TargetOpcode::LOAD_STACK_GUARD: { 3032 assert(Subtarget.isTargetLinux() && 3033 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 3034 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 3035 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 3036 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 3037 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3038 .addImm(Offset) 3039 .addReg(Reg); 3040 return true; 3041 } 3042 case PPC::DFLOADf32: 3043 case PPC::DFLOADf64: 3044 case PPC::DFSTOREf32: 3045 case PPC::DFSTOREf64: { 3046 assert(Subtarget.hasP9Vector() && 3047 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 3048 assert(MI.getOperand(2).isReg() && 3049 isAnImmediateOperand(MI.getOperand(1)) && 3050 "D-form op must have register and immediate operands"); 3051 return expandVSXMemPseudo(MI); 3052 } 3053 case PPC::XFLOADf32: 3054 case PPC::XFSTOREf32: 3055 case PPC::LIWAX: 3056 case PPC::LIWZX: 3057 case PPC::STIWX: { 3058 assert(Subtarget.hasP8Vector() && 3059 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 3060 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 3061 "X-form op must have register and register operands"); 3062 return expandVSXMemPseudo(MI); 3063 } 3064 case PPC::XFLOADf64: 3065 case PPC::XFSTOREf64: { 3066 assert(Subtarget.hasVSX() && 3067 "Invalid X-Form Pseudo-ops on target that has no VSX."); 3068 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 3069 "X-form op must have register and register operands"); 3070 return expandVSXMemPseudo(MI); 3071 } 3072 case PPC::SPILLTOVSR_LD: { 3073 Register TargetReg = MI.getOperand(0).getReg(); 3074 if (PPC::VSFRCRegClass.contains(TargetReg)) { 3075 MI.setDesc(get(PPC::DFLOADf64)); 3076 return expandPostRAPseudo(MI); 3077 } 3078 else 3079 MI.setDesc(get(PPC::LD)); 3080 return true; 3081 } 3082 case PPC::SPILLTOVSR_ST: { 3083 Register SrcReg = MI.getOperand(0).getReg(); 3084 if (PPC::VSFRCRegClass.contains(SrcReg)) { 3085 NumStoreSPILLVSRRCAsVec++; 3086 MI.setDesc(get(PPC::DFSTOREf64)); 3087 return expandPostRAPseudo(MI); 3088 } else { 3089 NumStoreSPILLVSRRCAsGpr++; 3090 MI.setDesc(get(PPC::STD)); 3091 } 3092 return true; 3093 } 3094 case PPC::SPILLTOVSR_LDX: { 3095 Register TargetReg = MI.getOperand(0).getReg(); 3096 if (PPC::VSFRCRegClass.contains(TargetReg)) 3097 MI.setDesc(get(PPC::LXSDX)); 3098 else 3099 MI.setDesc(get(PPC::LDX)); 3100 return true; 3101 } 3102 case PPC::SPILLTOVSR_STX: { 3103 Register SrcReg = MI.getOperand(0).getReg(); 3104 if (PPC::VSFRCRegClass.contains(SrcReg)) { 3105 NumStoreSPILLVSRRCAsVec++; 3106 MI.setDesc(get(PPC::STXSDX)); 3107 } else { 3108 NumStoreSPILLVSRRCAsGpr++; 3109 MI.setDesc(get(PPC::STDX)); 3110 } 3111 return true; 3112 } 3113 3114 // FIXME: Maybe we can expand it in 'PowerPC Expand Atomic' pass. 3115 case PPC::CFENCE8: { 3116 auto Val = MI.getOperand(0).getReg(); 3117 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 3118 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 3119 .addImm(PPC::PRED_NE_MINUS) 3120 .addReg(PPC::CR7) 3121 .addImm(1); 3122 MI.setDesc(get(PPC::ISYNC)); 3123 MI.RemoveOperand(0); 3124 return true; 3125 } 3126 } 3127 return false; 3128 } 3129 3130 // Essentially a compile-time implementation of a compare->isel sequence. 3131 // It takes two constants to compare, along with the true/false registers 3132 // and the comparison type (as a subreg to a CR field) and returns one 3133 // of the true/false registers, depending on the comparison results. 3134 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 3135 unsigned TrueReg, unsigned FalseReg, 3136 unsigned CRSubReg) { 3137 // Signed comparisons. The immediates are assumed to be sign-extended. 3138 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 3139 switch (CRSubReg) { 3140 default: llvm_unreachable("Unknown integer comparison type."); 3141 case PPC::sub_lt: 3142 return Imm1 < Imm2 ? TrueReg : FalseReg; 3143 case PPC::sub_gt: 3144 return Imm1 > Imm2 ? TrueReg : FalseReg; 3145 case PPC::sub_eq: 3146 return Imm1 == Imm2 ? TrueReg : FalseReg; 3147 } 3148 } 3149 // Unsigned comparisons. 3150 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 3151 switch (CRSubReg) { 3152 default: llvm_unreachable("Unknown integer comparison type."); 3153 case PPC::sub_lt: 3154 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 3155 case PPC::sub_gt: 3156 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 3157 case PPC::sub_eq: 3158 return Imm1 == Imm2 ? TrueReg : FalseReg; 3159 } 3160 } 3161 return PPC::NoRegister; 3162 } 3163 3164 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 3165 unsigned OpNo, 3166 int64_t Imm) const { 3167 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 3168 // Replace the REG with the Immediate. 3169 Register InUseReg = MI.getOperand(OpNo).getReg(); 3170 MI.getOperand(OpNo).ChangeToImmediate(Imm); 3171 3172 // We need to make sure that the MI didn't have any implicit use 3173 // of this REG any more. We don't call MI.implicit_operands().empty() to 3174 // return early, since MI's MCID might be changed in calling context, as a 3175 // result its number of explicit operands may be changed, thus the begin of 3176 // implicit operand is changed. 3177 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3178 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 3179 if (UseOpIdx >= 0) { 3180 MachineOperand &MO = MI.getOperand(UseOpIdx); 3181 if (MO.isImplicit()) 3182 // The operands must always be in the following order: 3183 // - explicit reg defs, 3184 // - other explicit operands (reg uses, immediates, etc.), 3185 // - implicit reg defs 3186 // - implicit reg uses 3187 // Therefore, removing the implicit operand won't change the explicit 3188 // operands layout. 3189 MI.RemoveOperand(UseOpIdx); 3190 } 3191 } 3192 3193 // Replace an instruction with one that materializes a constant (and sets 3194 // CR0 if the original instruction was a record-form instruction). 3195 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 3196 const LoadImmediateInfo &LII) const { 3197 // Remove existing operands. 3198 int OperandToKeep = LII.SetCR ? 1 : 0; 3199 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 3200 MI.RemoveOperand(i); 3201 3202 // Replace the instruction. 3203 if (LII.SetCR) { 3204 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 3205 // Set the immediate. 3206 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3207 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 3208 return; 3209 } 3210 else 3211 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 3212 3213 // Set the immediate. 3214 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3215 .addImm(LII.Imm); 3216 } 3217 3218 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 3219 bool &SeenIntermediateUse) const { 3220 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 3221 "Should be called after register allocation."); 3222 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3223 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 3224 It++; 3225 SeenIntermediateUse = false; 3226 for (; It != E; ++It) { 3227 if (It->modifiesRegister(Reg, TRI)) 3228 return &*It; 3229 if (It->readsRegister(Reg, TRI)) 3230 SeenIntermediateUse = true; 3231 } 3232 return nullptr; 3233 } 3234 3235 MachineInstr *PPCInstrInfo::getForwardingDefMI( 3236 MachineInstr &MI, 3237 unsigned &OpNoForForwarding, 3238 bool &SeenIntermediateUse) const { 3239 OpNoForForwarding = ~0U; 3240 MachineInstr *DefMI = nullptr; 3241 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 3242 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3243 // If we're in SSA, get the defs through the MRI. Otherwise, only look 3244 // within the basic block to see if the register is defined using an 3245 // LI/LI8/ADDI/ADDI8. 3246 if (MRI->isSSA()) { 3247 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 3248 if (!MI.getOperand(i).isReg()) 3249 continue; 3250 Register Reg = MI.getOperand(i).getReg(); 3251 if (!Register::isVirtualRegister(Reg)) 3252 continue; 3253 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 3254 if (Register::isVirtualRegister(TrueReg)) { 3255 DefMI = MRI->getVRegDef(TrueReg); 3256 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 || 3257 DefMI->getOpcode() == PPC::ADDI || 3258 DefMI->getOpcode() == PPC::ADDI8) { 3259 OpNoForForwarding = i; 3260 // The ADDI and LI operand maybe exist in one instruction at same 3261 // time. we prefer to fold LI operand as LI only has one Imm operand 3262 // and is more possible to be converted. So if current DefMI is 3263 // ADDI/ADDI8, we continue to find possible LI/LI8. 3264 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) 3265 break; 3266 } 3267 } 3268 } 3269 } else { 3270 // Looking back through the definition for each operand could be expensive, 3271 // so exit early if this isn't an instruction that either has an immediate 3272 // form or is already an immediate form that we can handle. 3273 ImmInstrInfo III; 3274 unsigned Opc = MI.getOpcode(); 3275 bool ConvertibleImmForm = 3276 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || 3277 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || 3278 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || 3279 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || 3280 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 3281 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || 3282 Opc == PPC::RLWINM8_rec; 3283 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 3284 ? isVFRegister(MI.getOperand(0).getReg()) 3285 : false; 3286 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 3287 return nullptr; 3288 3289 // Don't convert or %X, %Y, %Y since that's just a register move. 3290 if ((Opc == PPC::OR || Opc == PPC::OR8) && 3291 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 3292 return nullptr; 3293 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 3294 MachineOperand &MO = MI.getOperand(i); 3295 SeenIntermediateUse = false; 3296 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 3297 Register Reg = MI.getOperand(i).getReg(); 3298 // If we see another use of this reg between the def and the MI, 3299 // we want to flat it so the def isn't deleted. 3300 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 3301 if (DefMI) { 3302 // Is this register defined by some form of add-immediate (including 3303 // load-immediate) within this basic block? 3304 switch (DefMI->getOpcode()) { 3305 default: 3306 break; 3307 case PPC::LI: 3308 case PPC::LI8: 3309 case PPC::ADDItocL: 3310 case PPC::ADDI: 3311 case PPC::ADDI8: 3312 OpNoForForwarding = i; 3313 return DefMI; 3314 } 3315 } 3316 } 3317 } 3318 } 3319 return OpNoForForwarding == ~0U ? nullptr : DefMI; 3320 } 3321 3322 unsigned PPCInstrInfo::getSpillTarget() const { 3323 // With P10, we may need to spill paired vector registers or accumulator 3324 // registers. MMA implies paired vectors, so we can just check that. 3325 bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops(); 3326 return IsP10Variant ? 2 : Subtarget.hasP9Vector() ? 1 : 0; 3327 } 3328 3329 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 3330 return StoreSpillOpcodesArray[getSpillTarget()]; 3331 } 3332 3333 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 3334 return LoadSpillOpcodesArray[getSpillTarget()]; 3335 } 3336 3337 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI, 3338 unsigned RegNo) const { 3339 // Conservatively clear kill flag for the register if the instructions are in 3340 // different basic blocks and in SSA form, because the kill flag may no longer 3341 // be right. There is no need to bother with dead flags since defs with no 3342 // uses will be handled by DCE. 3343 MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo(); 3344 if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) { 3345 MRI.clearKillFlags(RegNo); 3346 return; 3347 } 3348 3349 // Instructions between [StartMI, EndMI] should be in same basic block. 3350 assert((StartMI->getParent() == EndMI->getParent()) && 3351 "Instructions are not in same basic block"); 3352 3353 // If before RA, StartMI may be def through COPY, we need to adjust it to the 3354 // real def. See function getForwardingDefMI. 3355 if (MRI.isSSA()) { 3356 bool Reads, Writes; 3357 std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo); 3358 if (!Reads && !Writes) { 3359 assert(Register::isVirtualRegister(RegNo) && 3360 "Must be a virtual register"); 3361 // Get real def and ignore copies. 3362 StartMI = MRI.getVRegDef(RegNo); 3363 } 3364 } 3365 3366 bool IsKillSet = false; 3367 3368 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 3369 MachineOperand &MO = MI.getOperand(Index); 3370 if (MO.isReg() && MO.isUse() && MO.isKill() && 3371 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 3372 MO.setIsKill(false); 3373 }; 3374 3375 // Set killed flag for EndMI. 3376 // No need to do anything if EndMI defines RegNo. 3377 int UseIndex = 3378 EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 3379 if (UseIndex != -1) { 3380 EndMI->getOperand(UseIndex).setIsKill(true); 3381 IsKillSet = true; 3382 // Clear killed flag for other EndMI operands related to RegNo. In some 3383 // upexpected cases, killed may be set multiple times for same register 3384 // operand in same MI. 3385 for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i) 3386 if (i != UseIndex) 3387 clearOperandKillInfo(*EndMI, i); 3388 } 3389 3390 // Walking the inst in reverse order (EndMI -> StartMI]. 3391 MachineBasicBlock::reverse_iterator It = *EndMI; 3392 MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend(); 3393 // EndMI has been handled above, skip it here. 3394 It++; 3395 MachineOperand *MO = nullptr; 3396 for (; It != E; ++It) { 3397 // Skip insturctions which could not be a def/use of RegNo. 3398 if (It->isDebugInstr() || It->isPosition()) 3399 continue; 3400 3401 // Clear killed flag for all It operands related to RegNo. In some 3402 // upexpected cases, killed may be set multiple times for same register 3403 // operand in same MI. 3404 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 3405 clearOperandKillInfo(*It, i); 3406 3407 // If killed is not set, set killed for its last use or set dead for its def 3408 // if no use found. 3409 if (!IsKillSet) { 3410 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 3411 // Use found, set it killed. 3412 IsKillSet = true; 3413 MO->setIsKill(true); 3414 continue; 3415 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 3416 &getRegisterInfo()))) { 3417 // No use found, set dead for its def. 3418 assert(&*It == StartMI && "No new def between StartMI and EndMI."); 3419 MO->setIsDead(true); 3420 break; 3421 } 3422 } 3423 3424 if ((&*It) == StartMI) 3425 break; 3426 } 3427 // Ensure RegMo liveness is killed after EndMI. 3428 assert((IsKillSet || (MO && MO->isDead())) && 3429 "RegNo should be killed or dead"); 3430 } 3431 3432 // This opt tries to convert the following imm form to an index form to save an 3433 // add for stack variables. 3434 // Return false if no such pattern found. 3435 // 3436 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 3437 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg 3438 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) 3439 // 3440 // can be converted to: 3441 // 3442 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) 3443 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) 3444 // 3445 // In order to eliminate ADD instr, make sure that: 3446 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in 3447 // new ADDI instr and ADDI can only take int16 Imm. 3448 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use 3449 // between ADDI and ADD instr since its original def in ADDI will be changed 3450 // in new ADDI instr. And also there should be no new def for it between 3451 // ADD and Imm instr as ToBeChangedReg will be used in Index instr. 3452 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use 3453 // between ADD and Imm instr since ADD instr will be eliminated. 3454 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be 3455 // moved to Index instr. 3456 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { 3457 MachineFunction *MF = MI.getParent()->getParent(); 3458 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3459 bool PostRA = !MRI->isSSA(); 3460 // Do this opt after PEI which is after RA. The reason is stack slot expansion 3461 // in PEI may expose such opportunities since in PEI, stack slot offsets to 3462 // frame base(OffsetAddi) are determined. 3463 if (!PostRA) 3464 return false; 3465 unsigned ToBeDeletedReg = 0; 3466 int64_t OffsetImm = 0; 3467 unsigned XFormOpcode = 0; 3468 ImmInstrInfo III; 3469 3470 // Check if Imm instr meets requirement. 3471 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, 3472 III)) 3473 return false; 3474 3475 bool OtherIntermediateUse = false; 3476 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); 3477 3478 // Exit if there is other use between ADD and Imm instr or no def found. 3479 if (OtherIntermediateUse || !ADDMI) 3480 return false; 3481 3482 // Check if ADD instr meets requirement. 3483 if (!isADDInstrEligibleForFolding(*ADDMI)) 3484 return false; 3485 3486 unsigned ScaleRegIdx = 0; 3487 int64_t OffsetAddi = 0; 3488 MachineInstr *ADDIMI = nullptr; 3489 3490 // Check if there is a valid ToBeChangedReg in ADDMI. 3491 // 1: It must be killed. 3492 // 2: Its definition must be a valid ADDIMI. 3493 // 3: It must satify int16 offset requirement. 3494 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) 3495 ScaleRegIdx = 2; 3496 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) 3497 ScaleRegIdx = 1; 3498 else 3499 return false; 3500 3501 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); 3502 unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg(); 3503 unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); 3504 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, 3505 MachineBasicBlock::iterator End) { 3506 for (auto It = ++Start; It != End; It++) 3507 if (It->modifiesRegister(Reg, &getRegisterInfo())) 3508 return true; 3509 return false; 3510 }; 3511 3512 // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is 3513 // treated as special zero when ScaleReg is R0/X0 register. 3514 if (III.ZeroIsSpecialOrig == III.ImmOpNo && 3515 (ScaleReg == PPC::R0 || ScaleReg == PPC::X0)) 3516 return false; 3517 3518 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr 3519 // and Imm Instr. 3520 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) 3521 return false; 3522 3523 // Now start to do the transformation. 3524 LLVM_DEBUG(dbgs() << "Replace instruction: " 3525 << "\n"); 3526 LLVM_DEBUG(ADDIMI->dump()); 3527 LLVM_DEBUG(ADDMI->dump()); 3528 LLVM_DEBUG(MI.dump()); 3529 LLVM_DEBUG(dbgs() << "with: " 3530 << "\n"); 3531 3532 // Update ADDI instr. 3533 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); 3534 3535 // Update Imm instr. 3536 MI.setDesc(get(XFormOpcode)); 3537 MI.getOperand(III.ImmOpNo) 3538 .ChangeToRegister(ScaleReg, false, false, 3539 ADDMI->getOperand(ScaleRegIdx).isKill()); 3540 3541 MI.getOperand(III.OpNoForForwarding) 3542 .ChangeToRegister(ToBeChangedReg, false, false, true); 3543 3544 // Eliminate ADD instr. 3545 ADDMI->eraseFromParent(); 3546 3547 LLVM_DEBUG(ADDIMI->dump()); 3548 LLVM_DEBUG(MI.dump()); 3549 3550 return true; 3551 } 3552 3553 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, 3554 int64_t &Imm) const { 3555 unsigned Opc = ADDIMI.getOpcode(); 3556 3557 // Exit if the instruction is not ADDI. 3558 if (Opc != PPC::ADDI && Opc != PPC::ADDI8) 3559 return false; 3560 3561 // The operand may not necessarily be an immediate - it could be a relocation. 3562 if (!ADDIMI.getOperand(2).isImm()) 3563 return false; 3564 3565 Imm = ADDIMI.getOperand(2).getImm(); 3566 3567 return true; 3568 } 3569 3570 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { 3571 unsigned Opc = ADDMI.getOpcode(); 3572 3573 // Exit if the instruction is not ADD. 3574 return Opc == PPC::ADD4 || Opc == PPC::ADD8; 3575 } 3576 3577 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, 3578 unsigned &ToBeDeletedReg, 3579 unsigned &XFormOpcode, 3580 int64_t &OffsetImm, 3581 ImmInstrInfo &III) const { 3582 // Only handle load/store. 3583 if (!MI.mayLoadOrStore()) 3584 return false; 3585 3586 unsigned Opc = MI.getOpcode(); 3587 3588 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); 3589 3590 // Exit if instruction has no index form. 3591 if (XFormOpcode == PPC::INSTRUCTION_LIST_END) 3592 return false; 3593 3594 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. 3595 if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()), 3596 III, true)) 3597 return false; 3598 3599 if (!III.IsSummingOperands) 3600 return false; 3601 3602 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); 3603 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); 3604 // Only support imm operands, not relocation slots or others. 3605 if (!ImmOperand.isImm()) 3606 return false; 3607 3608 assert(RegOperand.isReg() && "Instruction format is not right"); 3609 3610 // There are other use for ToBeDeletedReg after Imm instr, can not delete it. 3611 if (!RegOperand.isKill()) 3612 return false; 3613 3614 ToBeDeletedReg = RegOperand.getReg(); 3615 OffsetImm = ImmOperand.getImm(); 3616 3617 return true; 3618 } 3619 3620 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, 3621 MachineInstr *&ADDIMI, 3622 int64_t &OffsetAddi, 3623 int64_t OffsetImm) const { 3624 assert((Index == 1 || Index == 2) && "Invalid operand index for add."); 3625 MachineOperand &MO = ADDMI->getOperand(Index); 3626 3627 if (!MO.isKill()) 3628 return false; 3629 3630 bool OtherIntermediateUse = false; 3631 3632 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); 3633 // Currently handle only one "add + Imminstr" pair case, exit if other 3634 // intermediate use for ToBeChangedReg found. 3635 // TODO: handle the cases where there are other "add + Imminstr" pairs 3636 // with same offset in Imminstr which is like: 3637 // 3638 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 3639 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 3640 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) 3641 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 3642 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) 3643 // 3644 // can be converted to: 3645 // 3646 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, 3647 // (OffsetAddi + OffsetImm) 3648 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg 3649 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) 3650 3651 if (OtherIntermediateUse || !ADDIMI) 3652 return false; 3653 // Check if ADDI instr meets requirement. 3654 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) 3655 return false; 3656 3657 if (isInt<16>(OffsetAddi + OffsetImm)) 3658 return true; 3659 return false; 3660 } 3661 3662 // If this instruction has an immediate form and one of its operands is a 3663 // result of a load-immediate or an add-immediate, convert it to 3664 // the immediate form if the constant is in range. 3665 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 3666 MachineInstr **KilledDef) const { 3667 MachineFunction *MF = MI.getParent()->getParent(); 3668 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3669 bool PostRA = !MRI->isSSA(); 3670 bool SeenIntermediateUse = true; 3671 unsigned ForwardingOperand = ~0U; 3672 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 3673 SeenIntermediateUse); 3674 if (!DefMI) 3675 return false; 3676 assert(ForwardingOperand < MI.getNumOperands() && 3677 "The forwarding operand needs to be valid at this point"); 3678 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 3679 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 3680 if (KilledDef && KillFwdDefMI) 3681 *KilledDef = DefMI; 3682 3683 // If this is a imm instruction and its register operands is produced by ADDI, 3684 // put the imm into imm inst directly. 3685 if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) != 3686 PPC::INSTRUCTION_LIST_END && 3687 transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand)) 3688 return true; 3689 3690 ImmInstrInfo III; 3691 bool IsVFReg = MI.getOperand(0).isReg() 3692 ? isVFRegister(MI.getOperand(0).getReg()) 3693 : false; 3694 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 3695 // If this is a reg+reg instruction that has a reg+imm form, 3696 // and one of the operands is produced by an add-immediate, 3697 // try to convert it. 3698 if (HasImmForm && 3699 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 3700 KillFwdDefMI)) 3701 return true; 3702 3703 // If this is a reg+reg instruction that has a reg+imm form, 3704 // and one of the operands is produced by LI, convert it now. 3705 if (HasImmForm && 3706 transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI)) 3707 return true; 3708 3709 // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI 3710 // can be simpified to LI. 3711 if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef)) 3712 return true; 3713 3714 return false; 3715 } 3716 3717 bool PPCInstrInfo::combineRLWINM(MachineInstr &MI, 3718 MachineInstr **ToErase) const { 3719 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 3720 unsigned FoldingReg = MI.getOperand(1).getReg(); 3721 if (!Register::isVirtualRegister(FoldingReg)) 3722 return false; 3723 MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg); 3724 if (SrcMI->getOpcode() != PPC::RLWINM && 3725 SrcMI->getOpcode() != PPC::RLWINM_rec && 3726 SrcMI->getOpcode() != PPC::RLWINM8 && 3727 SrcMI->getOpcode() != PPC::RLWINM8_rec) 3728 return false; 3729 assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() && 3730 MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() && 3731 SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) && 3732 "Invalid PPC::RLWINM Instruction!"); 3733 uint64_t SHSrc = SrcMI->getOperand(2).getImm(); 3734 uint64_t SHMI = MI.getOperand(2).getImm(); 3735 uint64_t MBSrc = SrcMI->getOperand(3).getImm(); 3736 uint64_t MBMI = MI.getOperand(3).getImm(); 3737 uint64_t MESrc = SrcMI->getOperand(4).getImm(); 3738 uint64_t MEMI = MI.getOperand(4).getImm(); 3739 3740 assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) && 3741 "Invalid PPC::RLWINM Instruction!"); 3742 // If MBMI is bigger than MEMI, we always can not get run of ones. 3743 // RotatedSrcMask non-wrap: 3744 // 0........31|32........63 3745 // RotatedSrcMask: B---E B---E 3746 // MaskMI: -----------|--E B------ 3747 // Result: ----- --- (Bad candidate) 3748 // 3749 // RotatedSrcMask wrap: 3750 // 0........31|32........63 3751 // RotatedSrcMask: --E B----|--E B---- 3752 // MaskMI: -----------|--E B------ 3753 // Result: --- -----|--- ----- (Bad candidate) 3754 // 3755 // One special case is RotatedSrcMask is a full set mask. 3756 // RotatedSrcMask full: 3757 // 0........31|32........63 3758 // RotatedSrcMask: ------EB---|-------EB--- 3759 // MaskMI: -----------|--E B------ 3760 // Result: -----------|--- ------- (Good candidate) 3761 3762 // Mark special case. 3763 bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31); 3764 3765 // For other MBMI > MEMI cases, just return. 3766 if ((MBMI > MEMI) && !SrcMaskFull) 3767 return false; 3768 3769 // Handle MBMI <= MEMI cases. 3770 APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI); 3771 // In MI, we only need low 32 bits of SrcMI, just consider about low 32 3772 // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0, 3773 // while in PowerPC ISA, lowerest bit is at index 63. 3774 APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc); 3775 3776 APInt RotatedSrcMask = MaskSrc.rotl(SHMI); 3777 APInt FinalMask = RotatedSrcMask & MaskMI; 3778 uint32_t NewMB, NewME; 3779 bool Simplified = false; 3780 3781 // If final mask is 0, MI result should be 0 too. 3782 if (FinalMask.isZero()) { 3783 bool Is64Bit = 3784 (MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec); 3785 Simplified = true; 3786 LLVM_DEBUG(dbgs() << "Replace Instr: "); 3787 LLVM_DEBUG(MI.dump()); 3788 3789 if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) { 3790 // Replace MI with "LI 0" 3791 MI.RemoveOperand(4); 3792 MI.RemoveOperand(3); 3793 MI.RemoveOperand(2); 3794 MI.getOperand(1).ChangeToImmediate(0); 3795 MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI)); 3796 } else { 3797 // Replace MI with "ANDI_rec reg, 0" 3798 MI.RemoveOperand(4); 3799 MI.RemoveOperand(3); 3800 MI.getOperand(2).setImm(0); 3801 MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 3802 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 3803 if (SrcMI->getOperand(1).isKill()) { 3804 MI.getOperand(1).setIsKill(true); 3805 SrcMI->getOperand(1).setIsKill(false); 3806 } else 3807 // About to replace MI.getOperand(1), clear its kill flag. 3808 MI.getOperand(1).setIsKill(false); 3809 } 3810 3811 LLVM_DEBUG(dbgs() << "With: "); 3812 LLVM_DEBUG(MI.dump()); 3813 3814 } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) && 3815 NewMB <= NewME) || 3816 SrcMaskFull) { 3817 // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger 3818 // than NewME. Otherwise we get a 64 bit value after folding, but MI 3819 // return a 32 bit value. 3820 Simplified = true; 3821 LLVM_DEBUG(dbgs() << "Converting Instr: "); 3822 LLVM_DEBUG(MI.dump()); 3823 3824 uint16_t NewSH = (SHSrc + SHMI) % 32; 3825 MI.getOperand(2).setImm(NewSH); 3826 // If SrcMI mask is full, no need to update MBMI and MEMI. 3827 if (!SrcMaskFull) { 3828 MI.getOperand(3).setImm(NewMB); 3829 MI.getOperand(4).setImm(NewME); 3830 } 3831 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 3832 if (SrcMI->getOperand(1).isKill()) { 3833 MI.getOperand(1).setIsKill(true); 3834 SrcMI->getOperand(1).setIsKill(false); 3835 } else 3836 // About to replace MI.getOperand(1), clear its kill flag. 3837 MI.getOperand(1).setIsKill(false); 3838 3839 LLVM_DEBUG(dbgs() << "To: "); 3840 LLVM_DEBUG(MI.dump()); 3841 } 3842 if (Simplified & MRI->use_nodbg_empty(FoldingReg) && 3843 !SrcMI->hasImplicitDef()) { 3844 // If FoldingReg has no non-debug use and it has no implicit def (it 3845 // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI. 3846 // Otherwise keep it. 3847 *ToErase = SrcMI; 3848 LLVM_DEBUG(dbgs() << "Delete dead instruction: "); 3849 LLVM_DEBUG(SrcMI->dump()); 3850 } 3851 return Simplified; 3852 } 3853 3854 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 3855 ImmInstrInfo &III, bool PostRA) const { 3856 // The vast majority of the instructions would need their operand 2 replaced 3857 // with an immediate when switching to the reg+imm form. A marked exception 3858 // are the update form loads/stores for which a constant operand 2 would need 3859 // to turn into a displacement and move operand 1 to the operand 2 position. 3860 III.ImmOpNo = 2; 3861 III.OpNoForForwarding = 2; 3862 III.ImmWidth = 16; 3863 III.ImmMustBeMultipleOf = 1; 3864 III.TruncateImmTo = 0; 3865 III.IsSummingOperands = false; 3866 switch (Opc) { 3867 default: return false; 3868 case PPC::ADD4: 3869 case PPC::ADD8: 3870 III.SignedImm = true; 3871 III.ZeroIsSpecialOrig = 0; 3872 III.ZeroIsSpecialNew = 1; 3873 III.IsCommutative = true; 3874 III.IsSummingOperands = true; 3875 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 3876 break; 3877 case PPC::ADDC: 3878 case PPC::ADDC8: 3879 III.SignedImm = true; 3880 III.ZeroIsSpecialOrig = 0; 3881 III.ZeroIsSpecialNew = 0; 3882 III.IsCommutative = true; 3883 III.IsSummingOperands = true; 3884 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 3885 break; 3886 case PPC::ADDC_rec: 3887 III.SignedImm = true; 3888 III.ZeroIsSpecialOrig = 0; 3889 III.ZeroIsSpecialNew = 0; 3890 III.IsCommutative = true; 3891 III.IsSummingOperands = true; 3892 III.ImmOpcode = PPC::ADDIC_rec; 3893 break; 3894 case PPC::SUBFC: 3895 case PPC::SUBFC8: 3896 III.SignedImm = true; 3897 III.ZeroIsSpecialOrig = 0; 3898 III.ZeroIsSpecialNew = 0; 3899 III.IsCommutative = false; 3900 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 3901 break; 3902 case PPC::CMPW: 3903 case PPC::CMPD: 3904 III.SignedImm = true; 3905 III.ZeroIsSpecialOrig = 0; 3906 III.ZeroIsSpecialNew = 0; 3907 III.IsCommutative = false; 3908 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 3909 break; 3910 case PPC::CMPLW: 3911 case PPC::CMPLD: 3912 III.SignedImm = false; 3913 III.ZeroIsSpecialOrig = 0; 3914 III.ZeroIsSpecialNew = 0; 3915 III.IsCommutative = false; 3916 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 3917 break; 3918 case PPC::AND_rec: 3919 case PPC::AND8_rec: 3920 case PPC::OR: 3921 case PPC::OR8: 3922 case PPC::XOR: 3923 case PPC::XOR8: 3924 III.SignedImm = false; 3925 III.ZeroIsSpecialOrig = 0; 3926 III.ZeroIsSpecialNew = 0; 3927 III.IsCommutative = true; 3928 switch(Opc) { 3929 default: llvm_unreachable("Unknown opcode"); 3930 case PPC::AND_rec: 3931 III.ImmOpcode = PPC::ANDI_rec; 3932 break; 3933 case PPC::AND8_rec: 3934 III.ImmOpcode = PPC::ANDI8_rec; 3935 break; 3936 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 3937 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 3938 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 3939 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 3940 } 3941 break; 3942 case PPC::RLWNM: 3943 case PPC::RLWNM8: 3944 case PPC::RLWNM_rec: 3945 case PPC::RLWNM8_rec: 3946 case PPC::SLW: 3947 case PPC::SLW8: 3948 case PPC::SLW_rec: 3949 case PPC::SLW8_rec: 3950 case PPC::SRW: 3951 case PPC::SRW8: 3952 case PPC::SRW_rec: 3953 case PPC::SRW8_rec: 3954 case PPC::SRAW: 3955 case PPC::SRAW_rec: 3956 III.SignedImm = false; 3957 III.ZeroIsSpecialOrig = 0; 3958 III.ZeroIsSpecialNew = 0; 3959 III.IsCommutative = false; 3960 // This isn't actually true, but the instructions ignore any of the 3961 // upper bits, so any immediate loaded with an LI is acceptable. 3962 // This does not apply to shift right algebraic because a value 3963 // out of range will produce a -1/0. 3964 III.ImmWidth = 16; 3965 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || 3966 Opc == PPC::RLWNM8_rec) 3967 III.TruncateImmTo = 5; 3968 else 3969 III.TruncateImmTo = 6; 3970 switch(Opc) { 3971 default: llvm_unreachable("Unknown opcode"); 3972 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 3973 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 3974 case PPC::RLWNM_rec: 3975 III.ImmOpcode = PPC::RLWINM_rec; 3976 break; 3977 case PPC::RLWNM8_rec: 3978 III.ImmOpcode = PPC::RLWINM8_rec; 3979 break; 3980 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 3981 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 3982 case PPC::SLW_rec: 3983 III.ImmOpcode = PPC::RLWINM_rec; 3984 break; 3985 case PPC::SLW8_rec: 3986 III.ImmOpcode = PPC::RLWINM8_rec; 3987 break; 3988 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 3989 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 3990 case PPC::SRW_rec: 3991 III.ImmOpcode = PPC::RLWINM_rec; 3992 break; 3993 case PPC::SRW8_rec: 3994 III.ImmOpcode = PPC::RLWINM8_rec; 3995 break; 3996 case PPC::SRAW: 3997 III.ImmWidth = 5; 3998 III.TruncateImmTo = 0; 3999 III.ImmOpcode = PPC::SRAWI; 4000 break; 4001 case PPC::SRAW_rec: 4002 III.ImmWidth = 5; 4003 III.TruncateImmTo = 0; 4004 III.ImmOpcode = PPC::SRAWI_rec; 4005 break; 4006 } 4007 break; 4008 case PPC::RLDCL: 4009 case PPC::RLDCL_rec: 4010 case PPC::RLDCR: 4011 case PPC::RLDCR_rec: 4012 case PPC::SLD: 4013 case PPC::SLD_rec: 4014 case PPC::SRD: 4015 case PPC::SRD_rec: 4016 case PPC::SRAD: 4017 case PPC::SRAD_rec: 4018 III.SignedImm = false; 4019 III.ZeroIsSpecialOrig = 0; 4020 III.ZeroIsSpecialNew = 0; 4021 III.IsCommutative = false; 4022 // This isn't actually true, but the instructions ignore any of the 4023 // upper bits, so any immediate loaded with an LI is acceptable. 4024 // This does not apply to shift right algebraic because a value 4025 // out of range will produce a -1/0. 4026 III.ImmWidth = 16; 4027 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || 4028 Opc == PPC::RLDCR_rec) 4029 III.TruncateImmTo = 6; 4030 else 4031 III.TruncateImmTo = 7; 4032 switch(Opc) { 4033 default: llvm_unreachable("Unknown opcode"); 4034 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 4035 case PPC::RLDCL_rec: 4036 III.ImmOpcode = PPC::RLDICL_rec; 4037 break; 4038 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 4039 case PPC::RLDCR_rec: 4040 III.ImmOpcode = PPC::RLDICR_rec; 4041 break; 4042 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 4043 case PPC::SLD_rec: 4044 III.ImmOpcode = PPC::RLDICR_rec; 4045 break; 4046 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 4047 case PPC::SRD_rec: 4048 III.ImmOpcode = PPC::RLDICL_rec; 4049 break; 4050 case PPC::SRAD: 4051 III.ImmWidth = 6; 4052 III.TruncateImmTo = 0; 4053 III.ImmOpcode = PPC::SRADI; 4054 break; 4055 case PPC::SRAD_rec: 4056 III.ImmWidth = 6; 4057 III.TruncateImmTo = 0; 4058 III.ImmOpcode = PPC::SRADI_rec; 4059 break; 4060 } 4061 break; 4062 // Loads and stores: 4063 case PPC::LBZX: 4064 case PPC::LBZX8: 4065 case PPC::LHZX: 4066 case PPC::LHZX8: 4067 case PPC::LHAX: 4068 case PPC::LHAX8: 4069 case PPC::LWZX: 4070 case PPC::LWZX8: 4071 case PPC::LWAX: 4072 case PPC::LDX: 4073 case PPC::LFSX: 4074 case PPC::LFDX: 4075 case PPC::STBX: 4076 case PPC::STBX8: 4077 case PPC::STHX: 4078 case PPC::STHX8: 4079 case PPC::STWX: 4080 case PPC::STWX8: 4081 case PPC::STDX: 4082 case PPC::STFSX: 4083 case PPC::STFDX: 4084 III.SignedImm = true; 4085 III.ZeroIsSpecialOrig = 1; 4086 III.ZeroIsSpecialNew = 2; 4087 III.IsCommutative = true; 4088 III.IsSummingOperands = true; 4089 III.ImmOpNo = 1; 4090 III.OpNoForForwarding = 2; 4091 switch(Opc) { 4092 default: llvm_unreachable("Unknown opcode"); 4093 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 4094 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 4095 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 4096 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 4097 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 4098 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 4099 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 4100 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 4101 case PPC::LWAX: 4102 III.ImmOpcode = PPC::LWA; 4103 III.ImmMustBeMultipleOf = 4; 4104 break; 4105 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 4106 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 4107 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 4108 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 4109 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 4110 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 4111 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 4112 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 4113 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 4114 case PPC::STDX: 4115 III.ImmOpcode = PPC::STD; 4116 III.ImmMustBeMultipleOf = 4; 4117 break; 4118 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 4119 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 4120 } 4121 break; 4122 case PPC::LBZUX: 4123 case PPC::LBZUX8: 4124 case PPC::LHZUX: 4125 case PPC::LHZUX8: 4126 case PPC::LHAUX: 4127 case PPC::LHAUX8: 4128 case PPC::LWZUX: 4129 case PPC::LWZUX8: 4130 case PPC::LDUX: 4131 case PPC::LFSUX: 4132 case PPC::LFDUX: 4133 case PPC::STBUX: 4134 case PPC::STBUX8: 4135 case PPC::STHUX: 4136 case PPC::STHUX8: 4137 case PPC::STWUX: 4138 case PPC::STWUX8: 4139 case PPC::STDUX: 4140 case PPC::STFSUX: 4141 case PPC::STFDUX: 4142 III.SignedImm = true; 4143 III.ZeroIsSpecialOrig = 2; 4144 III.ZeroIsSpecialNew = 3; 4145 III.IsCommutative = false; 4146 III.IsSummingOperands = true; 4147 III.ImmOpNo = 2; 4148 III.OpNoForForwarding = 3; 4149 switch(Opc) { 4150 default: llvm_unreachable("Unknown opcode"); 4151 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 4152 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 4153 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 4154 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 4155 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 4156 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 4157 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 4158 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 4159 case PPC::LDUX: 4160 III.ImmOpcode = PPC::LDU; 4161 III.ImmMustBeMultipleOf = 4; 4162 break; 4163 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 4164 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 4165 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 4166 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 4167 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 4168 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 4169 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 4170 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 4171 case PPC::STDUX: 4172 III.ImmOpcode = PPC::STDU; 4173 III.ImmMustBeMultipleOf = 4; 4174 break; 4175 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 4176 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 4177 } 4178 break; 4179 // Power9 and up only. For some of these, the X-Form version has access to all 4180 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 4181 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 4182 // into or stored from is one of the VR registers. 4183 case PPC::LXVX: 4184 case PPC::LXSSPX: 4185 case PPC::LXSDX: 4186 case PPC::STXVX: 4187 case PPC::STXSSPX: 4188 case PPC::STXSDX: 4189 case PPC::XFLOADf32: 4190 case PPC::XFLOADf64: 4191 case PPC::XFSTOREf32: 4192 case PPC::XFSTOREf64: 4193 if (!Subtarget.hasP9Vector()) 4194 return false; 4195 III.SignedImm = true; 4196 III.ZeroIsSpecialOrig = 1; 4197 III.ZeroIsSpecialNew = 2; 4198 III.IsCommutative = true; 4199 III.IsSummingOperands = true; 4200 III.ImmOpNo = 1; 4201 III.OpNoForForwarding = 2; 4202 III.ImmMustBeMultipleOf = 4; 4203 switch(Opc) { 4204 default: llvm_unreachable("Unknown opcode"); 4205 case PPC::LXVX: 4206 III.ImmOpcode = PPC::LXV; 4207 III.ImmMustBeMultipleOf = 16; 4208 break; 4209 case PPC::LXSSPX: 4210 if (PostRA) { 4211 if (IsVFReg) 4212 III.ImmOpcode = PPC::LXSSP; 4213 else { 4214 III.ImmOpcode = PPC::LFS; 4215 III.ImmMustBeMultipleOf = 1; 4216 } 4217 break; 4218 } 4219 LLVM_FALLTHROUGH; 4220 case PPC::XFLOADf32: 4221 III.ImmOpcode = PPC::DFLOADf32; 4222 break; 4223 case PPC::LXSDX: 4224 if (PostRA) { 4225 if (IsVFReg) 4226 III.ImmOpcode = PPC::LXSD; 4227 else { 4228 III.ImmOpcode = PPC::LFD; 4229 III.ImmMustBeMultipleOf = 1; 4230 } 4231 break; 4232 } 4233 LLVM_FALLTHROUGH; 4234 case PPC::XFLOADf64: 4235 III.ImmOpcode = PPC::DFLOADf64; 4236 break; 4237 case PPC::STXVX: 4238 III.ImmOpcode = PPC::STXV; 4239 III.ImmMustBeMultipleOf = 16; 4240 break; 4241 case PPC::STXSSPX: 4242 if (PostRA) { 4243 if (IsVFReg) 4244 III.ImmOpcode = PPC::STXSSP; 4245 else { 4246 III.ImmOpcode = PPC::STFS; 4247 III.ImmMustBeMultipleOf = 1; 4248 } 4249 break; 4250 } 4251 LLVM_FALLTHROUGH; 4252 case PPC::XFSTOREf32: 4253 III.ImmOpcode = PPC::DFSTOREf32; 4254 break; 4255 case PPC::STXSDX: 4256 if (PostRA) { 4257 if (IsVFReg) 4258 III.ImmOpcode = PPC::STXSD; 4259 else { 4260 III.ImmOpcode = PPC::STFD; 4261 III.ImmMustBeMultipleOf = 1; 4262 } 4263 break; 4264 } 4265 LLVM_FALLTHROUGH; 4266 case PPC::XFSTOREf64: 4267 III.ImmOpcode = PPC::DFSTOREf64; 4268 break; 4269 } 4270 break; 4271 } 4272 return true; 4273 } 4274 4275 // Utility function for swaping two arbitrary operands of an instruction. 4276 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 4277 assert(Op1 != Op2 && "Cannot swap operand with itself."); 4278 4279 unsigned MaxOp = std::max(Op1, Op2); 4280 unsigned MinOp = std::min(Op1, Op2); 4281 MachineOperand MOp1 = MI.getOperand(MinOp); 4282 MachineOperand MOp2 = MI.getOperand(MaxOp); 4283 MI.RemoveOperand(std::max(Op1, Op2)); 4284 MI.RemoveOperand(std::min(Op1, Op2)); 4285 4286 // If the operands we are swapping are the two at the end (the common case) 4287 // we can just remove both and add them in the opposite order. 4288 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 4289 MI.addOperand(MOp2); 4290 MI.addOperand(MOp1); 4291 } else { 4292 // Store all operands in a temporary vector, remove them and re-add in the 4293 // right order. 4294 SmallVector<MachineOperand, 2> MOps; 4295 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 4296 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 4297 MOps.push_back(MI.getOperand(i)); 4298 MI.RemoveOperand(i); 4299 } 4300 // MOp2 needs to be added next. 4301 MI.addOperand(MOp2); 4302 // Now add the rest. 4303 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 4304 if (i == MaxOp) 4305 MI.addOperand(MOp1); 4306 else { 4307 MI.addOperand(MOps.back()); 4308 MOps.pop_back(); 4309 } 4310 } 4311 } 4312 } 4313 4314 // Check if the 'MI' that has the index OpNoForForwarding 4315 // meets the requirement described in the ImmInstrInfo. 4316 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 4317 const ImmInstrInfo &III, 4318 unsigned OpNoForForwarding 4319 ) const { 4320 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 4321 // would not work pre-RA, we can only do the check post RA. 4322 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4323 if (MRI.isSSA()) 4324 return false; 4325 4326 // Cannot do the transform if MI isn't summing the operands. 4327 if (!III.IsSummingOperands) 4328 return false; 4329 4330 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 4331 if (!III.ZeroIsSpecialOrig) 4332 return false; 4333 4334 // We cannot do the transform if the operand we are trying to replace 4335 // isn't the same as the operand the instruction allows. 4336 if (OpNoForForwarding != III.OpNoForForwarding) 4337 return false; 4338 4339 // Check if the instruction we are trying to transform really has 4340 // the special zero register as its operand. 4341 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 4342 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 4343 return false; 4344 4345 // This machine instruction is convertible if it is, 4346 // 1. summing the operands. 4347 // 2. one of the operands is special zero register. 4348 // 3. the operand we are trying to replace is allowed by the MI. 4349 return true; 4350 } 4351 4352 // Check if the DefMI is the add inst and set the ImmMO and RegMO 4353 // accordingly. 4354 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 4355 const ImmInstrInfo &III, 4356 MachineOperand *&ImmMO, 4357 MachineOperand *&RegMO) const { 4358 unsigned Opc = DefMI.getOpcode(); 4359 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 4360 return false; 4361 4362 assert(DefMI.getNumOperands() >= 3 && 4363 "Add inst must have at least three operands"); 4364 RegMO = &DefMI.getOperand(1); 4365 ImmMO = &DefMI.getOperand(2); 4366 4367 // Before RA, ADDI first operand could be a frame index. 4368 if (!RegMO->isReg()) 4369 return false; 4370 4371 // This DefMI is elgible for forwarding if it is: 4372 // 1. add inst 4373 // 2. one of the operands is Imm/CPI/Global. 4374 return isAnImmediateOperand(*ImmMO); 4375 } 4376 4377 bool PPCInstrInfo::isRegElgibleForForwarding( 4378 const MachineOperand &RegMO, const MachineInstr &DefMI, 4379 const MachineInstr &MI, bool KillDefMI, 4380 bool &IsFwdFeederRegKilled) const { 4381 // x = addi y, imm 4382 // ... 4383 // z = lfdx 0, x -> z = lfd imm(y) 4384 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 4385 // of "y" between the DEF of "x" and "z". 4386 // The query is only valid post RA. 4387 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4388 if (MRI.isSSA()) 4389 return false; 4390 4391 Register Reg = RegMO.getReg(); 4392 4393 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 4394 MachineBasicBlock::const_reverse_iterator It = MI; 4395 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 4396 It++; 4397 for (; It != E; ++It) { 4398 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 4399 return false; 4400 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 4401 IsFwdFeederRegKilled = true; 4402 // Made it to DefMI without encountering a clobber. 4403 if ((&*It) == &DefMI) 4404 break; 4405 } 4406 assert((&*It) == &DefMI && "DefMI is missing"); 4407 4408 // If DefMI also defines the register to be forwarded, we can only forward it 4409 // if DefMI is being erased. 4410 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 4411 return KillDefMI; 4412 4413 return true; 4414 } 4415 4416 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 4417 const MachineInstr &DefMI, 4418 const ImmInstrInfo &III, 4419 int64_t &Imm, 4420 int64_t BaseImm) const { 4421 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 4422 if (DefMI.getOpcode() == PPC::ADDItocL) { 4423 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 4424 // However, we know that, it is 16-bit width, and has the alignment of 4. 4425 // Check if the instruction met the requirement. 4426 if (III.ImmMustBeMultipleOf > 4 || 4427 III.TruncateImmTo || III.ImmWidth != 16) 4428 return false; 4429 4430 // Going from XForm to DForm loads means that the displacement needs to be 4431 // not just an immediate but also a multiple of 4, or 16 depending on the 4432 // load. A DForm load cannot be represented if it is a multiple of say 2. 4433 // XForm loads do not have this restriction. 4434 if (ImmMO.isGlobal()) { 4435 const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout(); 4436 if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf) 4437 return false; 4438 } 4439 4440 return true; 4441 } 4442 4443 if (ImmMO.isImm()) { 4444 // It is Imm, we need to check if the Imm fit the range. 4445 // Sign-extend to 64-bits. 4446 // DefMI may be folded with another imm form instruction, the result Imm is 4447 // the sum of Imm of DefMI and BaseImm which is from imm form instruction. 4448 APInt ActualValue(64, ImmMO.getImm() + BaseImm, true); 4449 if (III.SignedImm && !ActualValue.isSignedIntN(III.ImmWidth)) 4450 return false; 4451 if (!III.SignedImm && !ActualValue.isIntN(III.ImmWidth)) 4452 return false; 4453 Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm); 4454 4455 if (Imm % III.ImmMustBeMultipleOf) 4456 return false; 4457 if (III.TruncateImmTo) 4458 Imm &= ((1 << III.TruncateImmTo) - 1); 4459 } 4460 else 4461 return false; 4462 4463 // This ImmMO is forwarded if it meets the requriement describle 4464 // in ImmInstrInfo 4465 return true; 4466 } 4467 4468 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI, 4469 unsigned OpNoForForwarding, 4470 MachineInstr **KilledDef) const { 4471 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4472 !DefMI.getOperand(1).isImm()) 4473 return false; 4474 4475 MachineFunction *MF = MI.getParent()->getParent(); 4476 MachineRegisterInfo *MRI = &MF->getRegInfo(); 4477 bool PostRA = !MRI->isSSA(); 4478 4479 int64_t Immediate = DefMI.getOperand(1).getImm(); 4480 // Sign-extend to 64-bits. 4481 int64_t SExtImm = SignExtend64<16>(Immediate); 4482 4483 bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill(); 4484 Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 4485 4486 bool ReplaceWithLI = false; 4487 bool Is64BitLI = false; 4488 int64_t NewImm = 0; 4489 bool SetCR = false; 4490 unsigned Opc = MI.getOpcode(); 4491 switch (Opc) { 4492 default: 4493 return false; 4494 4495 // FIXME: Any branches conditional on such a comparison can be made 4496 // unconditional. At this time, this happens too infrequently to be worth 4497 // the implementation effort, but if that ever changes, we could convert 4498 // such a pattern here. 4499 case PPC::CMPWI: 4500 case PPC::CMPLWI: 4501 case PPC::CMPDI: 4502 case PPC::CMPLDI: { 4503 // Doing this post-RA would require dataflow analysis to reliably find uses 4504 // of the CR register set by the compare. 4505 // No need to fixup killed/dead flag since this transformation is only valid 4506 // before RA. 4507 if (PostRA) 4508 return false; 4509 // If a compare-immediate is fed by an immediate and is itself an input of 4510 // an ISEL (the most common case) into a COPY of the correct register. 4511 bool Changed = false; 4512 Register DefReg = MI.getOperand(0).getReg(); 4513 int64_t Comparand = MI.getOperand(2).getImm(); 4514 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 4515 ? (Comparand | 0xFFFFFFFFFFFF0000) 4516 : Comparand; 4517 4518 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 4519 unsigned UseOpc = CompareUseMI.getOpcode(); 4520 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 4521 continue; 4522 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 4523 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 4524 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 4525 unsigned RegToCopy = 4526 selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg); 4527 if (RegToCopy == PPC::NoRegister) 4528 continue; 4529 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 4530 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 4531 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 4532 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 4533 CompareUseMI.RemoveOperand(3); 4534 CompareUseMI.RemoveOperand(2); 4535 continue; 4536 } 4537 LLVM_DEBUG( 4538 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 4539 LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump()); 4540 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 4541 // Convert to copy and remove unneeded operands. 4542 CompareUseMI.setDesc(get(PPC::COPY)); 4543 CompareUseMI.RemoveOperand(3); 4544 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 4545 CmpIselsConverted++; 4546 Changed = true; 4547 LLVM_DEBUG(CompareUseMI.dump()); 4548 } 4549 if (Changed) 4550 return true; 4551 // This may end up incremented multiple times since this function is called 4552 // during a fixed-point transformation, but it is only meant to indicate the 4553 // presence of this opportunity. 4554 MissedConvertibleImmediateInstrs++; 4555 return false; 4556 } 4557 4558 // Immediate forms - may simply be convertable to an LI. 4559 case PPC::ADDI: 4560 case PPC::ADDI8: { 4561 // Does the sum fit in a 16-bit signed field? 4562 int64_t Addend = MI.getOperand(2).getImm(); 4563 if (isInt<16>(Addend + SExtImm)) { 4564 ReplaceWithLI = true; 4565 Is64BitLI = Opc == PPC::ADDI8; 4566 NewImm = Addend + SExtImm; 4567 break; 4568 } 4569 return false; 4570 } 4571 case PPC::SUBFIC: 4572 case PPC::SUBFIC8: { 4573 // Only transform this if the CARRY implicit operand is dead. 4574 if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead()) 4575 return false; 4576 int64_t Minuend = MI.getOperand(2).getImm(); 4577 if (isInt<16>(Minuend - SExtImm)) { 4578 ReplaceWithLI = true; 4579 Is64BitLI = Opc == PPC::SUBFIC8; 4580 NewImm = Minuend - SExtImm; 4581 break; 4582 } 4583 return false; 4584 } 4585 case PPC::RLDICL: 4586 case PPC::RLDICL_rec: 4587 case PPC::RLDICL_32: 4588 case PPC::RLDICL_32_64: { 4589 // Use APInt's rotate function. 4590 int64_t SH = MI.getOperand(2).getImm(); 4591 int64_t MB = MI.getOperand(3).getImm(); 4592 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, 4593 SExtImm, true); 4594 InVal = InVal.rotl(SH); 4595 uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1; 4596 InVal &= Mask; 4597 // Can't replace negative values with an LI as that will sign-extend 4598 // and not clear the left bits. If we're setting the CR bit, we will use 4599 // ANDI_rec which won't sign extend, so that's safe. 4600 if (isUInt<15>(InVal.getSExtValue()) || 4601 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { 4602 ReplaceWithLI = true; 4603 Is64BitLI = Opc != PPC::RLDICL_32; 4604 NewImm = InVal.getSExtValue(); 4605 SetCR = Opc == PPC::RLDICL_rec; 4606 break; 4607 } 4608 return false; 4609 } 4610 case PPC::RLWINM: 4611 case PPC::RLWINM8: 4612 case PPC::RLWINM_rec: 4613 case PPC::RLWINM8_rec: { 4614 int64_t SH = MI.getOperand(2).getImm(); 4615 int64_t MB = MI.getOperand(3).getImm(); 4616 int64_t ME = MI.getOperand(4).getImm(); 4617 APInt InVal(32, SExtImm, true); 4618 InVal = InVal.rotl(SH); 4619 APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB); 4620 InVal &= Mask; 4621 // Can't replace negative values with an LI as that will sign-extend 4622 // and not clear the left bits. If we're setting the CR bit, we will use 4623 // ANDI_rec which won't sign extend, so that's safe. 4624 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 4625 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && 4626 isUInt<16>(InVal.getSExtValue())); 4627 if (ValueFits) { 4628 ReplaceWithLI = true; 4629 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; 4630 NewImm = InVal.getSExtValue(); 4631 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; 4632 break; 4633 } 4634 return false; 4635 } 4636 case PPC::ORI: 4637 case PPC::ORI8: 4638 case PPC::XORI: 4639 case PPC::XORI8: { 4640 int64_t LogicalImm = MI.getOperand(2).getImm(); 4641 int64_t Result = 0; 4642 if (Opc == PPC::ORI || Opc == PPC::ORI8) 4643 Result = LogicalImm | SExtImm; 4644 else 4645 Result = LogicalImm ^ SExtImm; 4646 if (isInt<16>(Result)) { 4647 ReplaceWithLI = true; 4648 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 4649 NewImm = Result; 4650 break; 4651 } 4652 return false; 4653 } 4654 } 4655 4656 if (ReplaceWithLI) { 4657 // We need to be careful with CR-setting instructions we're replacing. 4658 if (SetCR) { 4659 // We don't know anything about uses when we're out of SSA, so only 4660 // replace if the new immediate will be reproduced. 4661 bool ImmChanged = (SExtImm & NewImm) != NewImm; 4662 if (PostRA && ImmChanged) 4663 return false; 4664 4665 if (!PostRA) { 4666 // If the defining load-immediate has no other uses, we can just replace 4667 // the immediate with the new immediate. 4668 if (MRI->hasOneUse(DefMI.getOperand(0).getReg())) 4669 DefMI.getOperand(1).setImm(NewImm); 4670 4671 // If we're not using the GPR result of the CR-setting instruction, we 4672 // just need to and with zero/non-zero depending on the new immediate. 4673 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 4674 if (NewImm) { 4675 assert(Immediate && "Transformation converted zero to non-zero?"); 4676 NewImm = Immediate; 4677 } 4678 } else if (ImmChanged) 4679 return false; 4680 } 4681 } 4682 4683 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4684 LLVM_DEBUG(MI.dump()); 4685 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4686 LLVM_DEBUG(DefMI.dump()); 4687 LoadImmediateInfo LII; 4688 LII.Imm = NewImm; 4689 LII.Is64Bit = Is64BitLI; 4690 LII.SetCR = SetCR; 4691 // If we're setting the CR, the original load-immediate must be kept (as an 4692 // operand to ANDI_rec/ANDI8_rec). 4693 if (KilledDef && SetCR) 4694 *KilledDef = nullptr; 4695 replaceInstrWithLI(MI, LII); 4696 4697 // Fixup killed/dead flag after transformation. 4698 // Pattern: 4699 // ForwardingOperandReg = LI imm1 4700 // y = op2 imm2, ForwardingOperandReg(killed) 4701 if (IsForwardingOperandKilled) 4702 fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg); 4703 4704 LLVM_DEBUG(dbgs() << "With:\n"); 4705 LLVM_DEBUG(MI.dump()); 4706 return true; 4707 } 4708 return false; 4709 } 4710 4711 bool PPCInstrInfo::transformToNewImmFormFedByAdd( 4712 MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const { 4713 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 4714 bool PostRA = !MRI->isSSA(); 4715 // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI 4716 // for post-ra. 4717 if (PostRA) 4718 return false; 4719 4720 // Only handle load/store. 4721 if (!MI.mayLoadOrStore()) 4722 return false; 4723 4724 unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode()); 4725 4726 assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) && 4727 "MI must have x-form opcode"); 4728 4729 // get Imm Form info. 4730 ImmInstrInfo III; 4731 bool IsVFReg = MI.getOperand(0).isReg() 4732 ? isVFRegister(MI.getOperand(0).getReg()) 4733 : false; 4734 4735 if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA)) 4736 return false; 4737 4738 if (!III.IsSummingOperands) 4739 return false; 4740 4741 if (OpNoForForwarding != III.OpNoForForwarding) 4742 return false; 4743 4744 MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo); 4745 if (!ImmOperandMI.isImm()) 4746 return false; 4747 4748 // Check DefMI. 4749 MachineOperand *ImmMO = nullptr; 4750 MachineOperand *RegMO = nullptr; 4751 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4752 return false; 4753 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4754 4755 // Check Imm. 4756 // Set ImmBase from imm instruction as base and get new Imm inside 4757 // isImmElgibleForForwarding. 4758 int64_t ImmBase = ImmOperandMI.getImm(); 4759 int64_t Imm = 0; 4760 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase)) 4761 return false; 4762 4763 // Get killed info in case fixup needed after transformation. 4764 unsigned ForwardKilledOperandReg = ~0U; 4765 if (MI.getOperand(III.OpNoForForwarding).isKill()) 4766 ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg(); 4767 4768 // Do the transform 4769 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4770 LLVM_DEBUG(MI.dump()); 4771 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4772 LLVM_DEBUG(DefMI.dump()); 4773 4774 MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg()); 4775 if (RegMO->isKill()) { 4776 MI.getOperand(III.OpNoForForwarding).setIsKill(true); 4777 // Clear the killed flag in RegMO. Doing this here can handle some cases 4778 // that DefMI and MI are not in same basic block. 4779 RegMO->setIsKill(false); 4780 } 4781 MI.getOperand(III.ImmOpNo).setImm(Imm); 4782 4783 // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block. 4784 if (DefMI.getParent() == MI.getParent()) { 4785 // Check if reg is killed between MI and DefMI. 4786 auto IsKilledFor = [&](unsigned Reg) { 4787 MachineBasicBlock::const_reverse_iterator It = MI; 4788 MachineBasicBlock::const_reverse_iterator E = DefMI; 4789 It++; 4790 for (; It != E; ++It) { 4791 if (It->killsRegister(Reg)) 4792 return true; 4793 } 4794 return false; 4795 }; 4796 4797 // Update kill flag 4798 if (RegMO->isKill() || IsKilledFor(RegMO->getReg())) 4799 fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); 4800 if (ForwardKilledOperandReg != ~0U) 4801 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4802 } 4803 4804 LLVM_DEBUG(dbgs() << "With:\n"); 4805 LLVM_DEBUG(MI.dump()); 4806 return true; 4807 } 4808 4809 // If an X-Form instruction is fed by an add-immediate and one of its operands 4810 // is the literal zero, attempt to forward the source of the add-immediate to 4811 // the corresponding D-Form instruction with the displacement coming from 4812 // the immediate being added. 4813 bool PPCInstrInfo::transformToImmFormFedByAdd( 4814 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 4815 MachineInstr &DefMI, bool KillDefMI) const { 4816 // RegMO ImmMO 4817 // | | 4818 // x = addi reg, imm <----- DefMI 4819 // y = op 0 , x <----- MI 4820 // | 4821 // OpNoForForwarding 4822 // Check if the MI meet the requirement described in the III. 4823 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 4824 return false; 4825 4826 // Check if the DefMI meet the requirement 4827 // described in the III. If yes, set the ImmMO and RegMO accordingly. 4828 MachineOperand *ImmMO = nullptr; 4829 MachineOperand *RegMO = nullptr; 4830 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4831 return false; 4832 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4833 4834 // As we get the Imm operand now, we need to check if the ImmMO meet 4835 // the requirement described in the III. If yes set the Imm. 4836 int64_t Imm = 0; 4837 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 4838 return false; 4839 4840 bool IsFwdFeederRegKilled = false; 4841 // Check if the RegMO can be forwarded to MI. 4842 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 4843 IsFwdFeederRegKilled)) 4844 return false; 4845 4846 // Get killed info in case fixup needed after transformation. 4847 unsigned ForwardKilledOperandReg = ~0U; 4848 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4849 bool PostRA = !MRI.isSSA(); 4850 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 4851 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 4852 4853 // We know that, the MI and DefMI both meet the pattern, and 4854 // the Imm also meet the requirement with the new Imm-form. 4855 // It is safe to do the transformation now. 4856 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4857 LLVM_DEBUG(MI.dump()); 4858 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4859 LLVM_DEBUG(DefMI.dump()); 4860 4861 // Update the base reg first. 4862 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 4863 false, false, 4864 RegMO->isKill()); 4865 4866 // Then, update the imm. 4867 if (ImmMO->isImm()) { 4868 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 4869 // directly. 4870 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 4871 } 4872 else { 4873 // Otherwise, it is Constant Pool Index(CPI) or Global, 4874 // which is relocation in fact. We need to replace the special zero 4875 // register with ImmMO. 4876 // Before that, we need to fixup the target flags for imm. 4877 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 4878 if (DefMI.getOpcode() == PPC::ADDItocL) 4879 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 4880 4881 // MI didn't have the interface such as MI.setOperand(i) though 4882 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 4883 // ImmMO, we need to remove ZERO operand and all the operands behind it, 4884 // and, add the ImmMO, then, move back all the operands behind ZERO. 4885 SmallVector<MachineOperand, 2> MOps; 4886 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 4887 MOps.push_back(MI.getOperand(i)); 4888 MI.RemoveOperand(i); 4889 } 4890 4891 // Remove the last MO in the list, which is ZERO operand in fact. 4892 MOps.pop_back(); 4893 // Add the imm operand. 4894 MI.addOperand(*ImmMO); 4895 // Now add the rest back. 4896 for (auto &MO : MOps) 4897 MI.addOperand(MO); 4898 } 4899 4900 // Update the opcode. 4901 MI.setDesc(get(III.ImmOpcode)); 4902 4903 // Fix up killed/dead flag after transformation. 4904 // Pattern 1: 4905 // x = ADD KilledFwdFeederReg, imm 4906 // n = opn KilledFwdFeederReg(killed), regn 4907 // y = XOP 0, x 4908 // Pattern 2: 4909 // x = ADD reg(killed), imm 4910 // y = XOP 0, x 4911 if (IsFwdFeederRegKilled || RegMO->isKill()) 4912 fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); 4913 // Pattern 3: 4914 // ForwardKilledOperandReg = ADD reg, imm 4915 // y = XOP 0, ForwardKilledOperandReg(killed) 4916 if (ForwardKilledOperandReg != ~0U) 4917 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4918 4919 LLVM_DEBUG(dbgs() << "With:\n"); 4920 LLVM_DEBUG(MI.dump()); 4921 4922 return true; 4923 } 4924 4925 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 4926 const ImmInstrInfo &III, 4927 unsigned ConstantOpNo, 4928 MachineInstr &DefMI) const { 4929 // DefMI must be LI or LI8. 4930 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4931 !DefMI.getOperand(1).isImm()) 4932 return false; 4933 4934 // Get Imm operand and Sign-extend to 64-bits. 4935 int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm()); 4936 4937 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4938 bool PostRA = !MRI.isSSA(); 4939 // Exit early if we can't convert this. 4940 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 4941 return false; 4942 if (Imm % III.ImmMustBeMultipleOf) 4943 return false; 4944 if (III.TruncateImmTo) 4945 Imm &= ((1 << III.TruncateImmTo) - 1); 4946 if (III.SignedImm) { 4947 APInt ActualValue(64, Imm, true); 4948 if (!ActualValue.isSignedIntN(III.ImmWidth)) 4949 return false; 4950 } else { 4951 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 4952 if ((uint64_t)Imm > UnsignedMax) 4953 return false; 4954 } 4955 4956 // If we're post-RA, the instructions don't agree on whether register zero is 4957 // special, we can transform this as long as the register operand that will 4958 // end up in the location where zero is special isn't R0. 4959 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 4960 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 4961 III.ZeroIsSpecialNew + 1; 4962 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 4963 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 4964 // If R0 is in the operand where zero is special for the new instruction, 4965 // it is unsafe to transform if the constant operand isn't that operand. 4966 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 4967 ConstantOpNo != III.ZeroIsSpecialNew) 4968 return false; 4969 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 4970 ConstantOpNo != PosForOrigZero) 4971 return false; 4972 } 4973 4974 // Get killed info in case fixup needed after transformation. 4975 unsigned ForwardKilledOperandReg = ~0U; 4976 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 4977 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 4978 4979 unsigned Opc = MI.getOpcode(); 4980 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || 4981 Opc == PPC::SRW || Opc == PPC::SRW_rec || 4982 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || 4983 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; 4984 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || 4985 Opc == PPC::SRD || Opc == PPC::SRD_rec; 4986 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || 4987 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; 4988 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || 4989 Opc == PPC::SRD_rec; 4990 4991 MI.setDesc(get(III.ImmOpcode)); 4992 if (ConstantOpNo == III.OpNoForForwarding) { 4993 // Converting shifts to immediate form is a bit tricky since they may do 4994 // one of three things: 4995 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 4996 // 2. If the shift amount is zero, the result is unchanged (save for maybe 4997 // setting CR0) 4998 // 3. If the shift amount is in [1, OpSize), it's just a shift 4999 if (SpecialShift32 || SpecialShift64) { 5000 LoadImmediateInfo LII; 5001 LII.Imm = 0; 5002 LII.SetCR = SetCR; 5003 LII.Is64Bit = SpecialShift64; 5004 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 5005 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 5006 replaceInstrWithLI(MI, LII); 5007 // Shifts by zero don't change the value. If we don't need to set CR0, 5008 // just convert this to a COPY. Can't do this post-RA since we've already 5009 // cleaned up the copies. 5010 else if (!SetCR && ShAmt == 0 && !PostRA) { 5011 MI.RemoveOperand(2); 5012 MI.setDesc(get(PPC::COPY)); 5013 } else { 5014 // The 32 bit and 64 bit instructions are quite different. 5015 if (SpecialShift32) { 5016 // Left shifts use (N, 0, 31-N). 5017 // Right shifts use (32-N, N, 31) if 0 < N < 32. 5018 // use (0, 0, 31) if N == 0. 5019 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; 5020 uint64_t MB = RightShift ? ShAmt : 0; 5021 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 5022 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 5023 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 5024 .addImm(ME); 5025 } else { 5026 // Left shifts use (N, 63-N). 5027 // Right shifts use (64-N, N) if 0 < N < 64. 5028 // use (0, 0) if N == 0. 5029 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; 5030 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 5031 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 5032 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 5033 } 5034 } 5035 } else 5036 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 5037 } 5038 // Convert commutative instructions (switch the operands and convert the 5039 // desired one to an immediate. 5040 else if (III.IsCommutative) { 5041 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 5042 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 5043 } else 5044 llvm_unreachable("Should have exited early!"); 5045 5046 // For instructions for which the constant register replaces a different 5047 // operand than where the immediate goes, we need to swap them. 5048 if (III.OpNoForForwarding != III.ImmOpNo) 5049 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 5050 5051 // If the special R0/X0 register index are different for original instruction 5052 // and new instruction, we need to fix up the register class in new 5053 // instruction. 5054 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 5055 if (III.ZeroIsSpecialNew) { 5056 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 5057 // need to fix up register class. 5058 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 5059 if (Register::isVirtualRegister(RegToModify)) { 5060 const TargetRegisterClass *NewRC = 5061 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 5062 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 5063 MRI.setRegClass(RegToModify, NewRC); 5064 } 5065 } 5066 } 5067 5068 // Fix up killed/dead flag after transformation. 5069 // Pattern: 5070 // ForwardKilledOperandReg = LI imm 5071 // y = XOP reg, ForwardKilledOperandReg(killed) 5072 if (ForwardKilledOperandReg != ~0U) 5073 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 5074 return true; 5075 } 5076 5077 const TargetRegisterClass * 5078 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 5079 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 5080 return &PPC::VSRCRegClass; 5081 return RC; 5082 } 5083 5084 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 5085 return PPC::getRecordFormOpcode(Opcode); 5086 } 5087 5088 // This function returns true if the machine instruction 5089 // always outputs a value by sign-extending a 32 bit value, 5090 // i.e. 0 to 31-th bits are same as 32-th bit. 5091 static bool isSignExtendingOp(const MachineInstr &MI) { 5092 int Opcode = MI.getOpcode(); 5093 if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS || 5094 Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec || 5095 Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA || 5096 Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 5097 Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 || 5098 Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX || 5099 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU || 5100 Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 5101 Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 || 5102 Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 5103 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB || 5104 Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH || 5105 Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 || 5106 Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW || 5107 Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 || 5108 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 5109 Opcode == PPC::EXTSB8_32_64) 5110 return true; 5111 5112 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 5113 return true; 5114 5115 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 5116 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && 5117 MI.getOperand(3).getImm() > 0 && 5118 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 5119 return true; 5120 5121 return false; 5122 } 5123 5124 // This function returns true if the machine instruction 5125 // always outputs zeros in higher 32 bits. 5126 static bool isZeroExtendingOp(const MachineInstr &MI) { 5127 int Opcode = MI.getOpcode(); 5128 // The 16-bit immediate is sign-extended in li/lis. 5129 // If the most significant bit is zero, all higher bits are zero. 5130 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 5131 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 5132 int64_t Imm = MI.getOperand(1).getImm(); 5133 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 5134 return true; 5135 } 5136 5137 // We have some variations of rotate-and-mask instructions 5138 // that clear higher 32-bits. 5139 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 5140 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || 5141 Opcode == PPC::RLDICL_32_64) && 5142 MI.getOperand(3).getImm() >= 32) 5143 return true; 5144 5145 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 5146 MI.getOperand(3).getImm() >= 32 && 5147 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 5148 return true; 5149 5150 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 5151 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 5152 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 5153 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 5154 return true; 5155 5156 // There are other instructions that clear higher 32-bits. 5157 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec || 5158 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec || 5159 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 5160 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec || 5161 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec || 5162 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW || 5163 Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec || 5164 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI || 5165 Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI || 5166 Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX || 5167 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX || 5168 Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX || 5169 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ || 5170 Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 5171 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 || 5172 Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 5173 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 || 5174 Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 5175 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 5176 Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec || 5177 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec || 5178 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec || 5179 Opcode == PPC::MFVSRWZ) 5180 return true; 5181 5182 return false; 5183 } 5184 5185 // This function returns true if the input MachineInstr is a TOC save 5186 // instruction. 5187 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 5188 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 5189 return false; 5190 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5191 unsigned StackOffset = MI.getOperand(1).getImm(); 5192 Register StackReg = MI.getOperand(2).getReg(); 5193 Register SPReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 5194 if (StackReg == SPReg && StackOffset == TOCSaveOffset) 5195 return true; 5196 5197 return false; 5198 } 5199 5200 // We limit the max depth to track incoming values of PHIs or binary ops 5201 // (e.g. AND) to avoid excessive cost. 5202 const unsigned MAX_DEPTH = 1; 5203 5204 bool 5205 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 5206 const unsigned Depth) const { 5207 const MachineFunction *MF = MI.getParent()->getParent(); 5208 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 5209 5210 // If we know this instruction returns sign- or zero-extended result, 5211 // return true. 5212 if (SignExt ? isSignExtendingOp(MI): 5213 isZeroExtendingOp(MI)) 5214 return true; 5215 5216 switch (MI.getOpcode()) { 5217 case PPC::COPY: { 5218 Register SrcReg = MI.getOperand(1).getReg(); 5219 5220 // In both ELFv1 and v2 ABI, method parameters and the return value 5221 // are sign- or zero-extended. 5222 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 5223 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 5224 // We check the ZExt/SExt flags for a method parameter. 5225 if (MI.getParent()->getBasicBlock() == 5226 &MF->getFunction().getEntryBlock()) { 5227 Register VReg = MI.getOperand(0).getReg(); 5228 if (MF->getRegInfo().isLiveIn(VReg)) 5229 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 5230 FuncInfo->isLiveInZExt(VReg); 5231 } 5232 5233 // For a method return value, we check the ZExt/SExt flags in attribute. 5234 // We assume the following code sequence for method call. 5235 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 5236 // BL8_NOP @func,... 5237 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 5238 // %5 = COPY %x3; G8RC:%5 5239 if (SrcReg == PPC::X3) { 5240 const MachineBasicBlock *MBB = MI.getParent(); 5241 MachineBasicBlock::const_instr_iterator II = 5242 MachineBasicBlock::const_instr_iterator(&MI); 5243 if (II != MBB->instr_begin() && 5244 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 5245 const MachineInstr &CallMI = *(--II); 5246 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 5247 const Function *CalleeFn = 5248 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 5249 if (!CalleeFn) 5250 return false; 5251 const IntegerType *IntTy = 5252 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 5253 const AttributeSet &Attrs = CalleeFn->getAttributes().getRetAttrs(); 5254 if (IntTy && IntTy->getBitWidth() <= 32) 5255 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 5256 Attribute::ZExt); 5257 } 5258 } 5259 } 5260 } 5261 5262 // If this is a copy from another register, we recursively check source. 5263 if (!Register::isVirtualRegister(SrcReg)) 5264 return false; 5265 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 5266 if (SrcMI != NULL) 5267 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 5268 5269 return false; 5270 } 5271 5272 case PPC::ANDI_rec: 5273 case PPC::ANDIS_rec: 5274 case PPC::ORI: 5275 case PPC::ORIS: 5276 case PPC::XORI: 5277 case PPC::XORIS: 5278 case PPC::ANDI8_rec: 5279 case PPC::ANDIS8_rec: 5280 case PPC::ORI8: 5281 case PPC::ORIS8: 5282 case PPC::XORI8: 5283 case PPC::XORIS8: { 5284 // logical operation with 16-bit immediate does not change the upper bits. 5285 // So, we track the operand register as we do for register copy. 5286 Register SrcReg = MI.getOperand(1).getReg(); 5287 if (!Register::isVirtualRegister(SrcReg)) 5288 return false; 5289 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 5290 if (SrcMI != NULL) 5291 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 5292 5293 return false; 5294 } 5295 5296 // If all incoming values are sign-/zero-extended, 5297 // the output of OR, ISEL or PHI is also sign-/zero-extended. 5298 case PPC::OR: 5299 case PPC::OR8: 5300 case PPC::ISEL: 5301 case PPC::PHI: { 5302 if (Depth >= MAX_DEPTH) 5303 return false; 5304 5305 // The input registers for PHI are operand 1, 3, ... 5306 // The input registers for others are operand 1 and 2. 5307 unsigned E = 3, D = 1; 5308 if (MI.getOpcode() == PPC::PHI) { 5309 E = MI.getNumOperands(); 5310 D = 2; 5311 } 5312 5313 for (unsigned I = 1; I != E; I += D) { 5314 if (MI.getOperand(I).isReg()) { 5315 Register SrcReg = MI.getOperand(I).getReg(); 5316 if (!Register::isVirtualRegister(SrcReg)) 5317 return false; 5318 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 5319 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 5320 return false; 5321 } 5322 else 5323 return false; 5324 } 5325 return true; 5326 } 5327 5328 // If at least one of the incoming values of an AND is zero extended 5329 // then the output is also zero-extended. If both of the incoming values 5330 // are sign-extended then the output is also sign extended. 5331 case PPC::AND: 5332 case PPC::AND8: { 5333 if (Depth >= MAX_DEPTH) 5334 return false; 5335 5336 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 5337 5338 Register SrcReg1 = MI.getOperand(1).getReg(); 5339 Register SrcReg2 = MI.getOperand(2).getReg(); 5340 5341 if (!Register::isVirtualRegister(SrcReg1) || 5342 !Register::isVirtualRegister(SrcReg2)) 5343 return false; 5344 5345 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 5346 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 5347 if (!MISrc1 || !MISrc2) 5348 return false; 5349 5350 if(SignExt) 5351 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 5352 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 5353 else 5354 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 5355 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 5356 } 5357 5358 default: 5359 break; 5360 } 5361 return false; 5362 } 5363 5364 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 5365 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 5366 } 5367 5368 namespace { 5369 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 5370 MachineInstr *Loop, *EndLoop, *LoopCount; 5371 MachineFunction *MF; 5372 const TargetInstrInfo *TII; 5373 int64_t TripCount; 5374 5375 public: 5376 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 5377 MachineInstr *LoopCount) 5378 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 5379 MF(Loop->getParent()->getParent()), 5380 TII(MF->getSubtarget().getInstrInfo()) { 5381 // Inspect the Loop instruction up-front, as it may be deleted when we call 5382 // createTripCountGreaterCondition. 5383 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 5384 TripCount = LoopCount->getOperand(1).getImm(); 5385 else 5386 TripCount = -1; 5387 } 5388 5389 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 5390 // Only ignore the terminator. 5391 return MI == EndLoop; 5392 } 5393 5394 Optional<bool> 5395 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 5396 SmallVectorImpl<MachineOperand> &Cond) override { 5397 if (TripCount == -1) { 5398 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 5399 // so we don't need to generate any thing here. 5400 Cond.push_back(MachineOperand::CreateImm(0)); 5401 Cond.push_back(MachineOperand::CreateReg( 5402 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 5403 true)); 5404 return {}; 5405 } 5406 5407 return TripCount > TC; 5408 } 5409 5410 void setPreheader(MachineBasicBlock *NewPreheader) override { 5411 // Do nothing. We want the LOOP setup instruction to stay in the *old* 5412 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 5413 } 5414 5415 void adjustTripCount(int TripCountAdjust) override { 5416 // If the loop trip count is a compile-time value, then just change the 5417 // value. 5418 if (LoopCount->getOpcode() == PPC::LI8 || 5419 LoopCount->getOpcode() == PPC::LI) { 5420 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 5421 LoopCount->getOperand(1).setImm(TripCount); 5422 return; 5423 } 5424 5425 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 5426 // so we don't need to generate any thing here. 5427 } 5428 5429 void disposed() override { 5430 Loop->eraseFromParent(); 5431 // Ensure the loop setup instruction is deleted too. 5432 LoopCount->eraseFromParent(); 5433 } 5434 }; 5435 } // namespace 5436 5437 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 5438 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 5439 // We really "analyze" only hardware loops right now. 5440 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 5441 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 5442 if (Preheader == LoopBB) 5443 Preheader = *std::next(LoopBB->pred_begin()); 5444 MachineFunction *MF = Preheader->getParent(); 5445 5446 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 5447 SmallPtrSet<MachineBasicBlock *, 8> Visited; 5448 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 5449 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 5450 MachineRegisterInfo &MRI = MF->getRegInfo(); 5451 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 5452 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 5453 } 5454 } 5455 return nullptr; 5456 } 5457 5458 MachineInstr *PPCInstrInfo::findLoopInstr( 5459 MachineBasicBlock &PreHeader, 5460 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 5461 5462 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 5463 5464 // The loop set-up instruction should be in preheader 5465 for (auto &I : PreHeader.instrs()) 5466 if (I.getOpcode() == LOOPi) 5467 return &I; 5468 return nullptr; 5469 } 5470 5471 // Return true if get the base operand, byte offset of an instruction and the 5472 // memory width. Width is the size of memory that is being loaded/stored. 5473 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 5474 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, 5475 unsigned &Width, const TargetRegisterInfo *TRI) const { 5476 if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3) 5477 return false; 5478 5479 // Handle only loads/stores with base register followed by immediate offset. 5480 if (!LdSt.getOperand(1).isImm() || 5481 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 5482 return false; 5483 if (!LdSt.getOperand(1).isImm() || 5484 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 5485 return false; 5486 5487 if (!LdSt.hasOneMemOperand()) 5488 return false; 5489 5490 Width = (*LdSt.memoperands_begin())->getSize(); 5491 Offset = LdSt.getOperand(1).getImm(); 5492 BaseReg = &LdSt.getOperand(2); 5493 return true; 5494 } 5495 5496 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 5497 const MachineInstr &MIa, const MachineInstr &MIb) const { 5498 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 5499 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 5500 5501 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 5502 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 5503 return false; 5504 5505 // Retrieve the base register, offset from the base register and width. Width 5506 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 5507 // base registers are identical, and the offset of a lower memory access + 5508 // the width doesn't overlap the offset of a higher memory access, 5509 // then the memory accesses are different. 5510 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5511 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 5512 int64_t OffsetA = 0, OffsetB = 0; 5513 unsigned int WidthA = 0, WidthB = 0; 5514 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 5515 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 5516 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 5517 int LowOffset = std::min(OffsetA, OffsetB); 5518 int HighOffset = std::max(OffsetA, OffsetB); 5519 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 5520 if (LowOffset + LowWidth <= HighOffset) 5521 return true; 5522 } 5523 } 5524 return false; 5525 } 5526