1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the PowerPC implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCInstrInfo.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCHazardRecognizers.h" 18 #include "PPCInstrBuilder.h" 19 #include "PPCMachineFunctionInfo.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/ScheduleDAG.h" 31 #include "llvm/CodeGen/SlotIndexes.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCInst.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "ppc-instr-info" 44 45 #define GET_INSTRMAP_INFO 46 #define GET_INSTRINFO_CTOR_DTOR 47 #include "PPCGenInstrInfo.inc" 48 49 static cl:: 50 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 51 cl::desc("Disable analysis for CTR loops")); 52 53 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 54 cl::desc("Disable compare instruction optimization"), cl::Hidden); 55 56 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 57 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 58 cl::Hidden); 59 60 static cl::opt<bool> 61 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 62 cl::desc("Use the old (incorrect) instruction latency calculation")); 63 64 // Pin the vtable to this file. 65 void PPCInstrInfo::anchor() {} 66 67 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 68 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 69 /* CatchRetOpcode */ -1, 70 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 71 Subtarget(STI), RI(STI.getTargetMachine()) {} 72 73 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 74 /// this target when scheduling the DAG. 75 ScheduleHazardRecognizer * 76 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 77 const ScheduleDAG *DAG) const { 78 unsigned Directive = 79 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); 80 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 81 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 82 const InstrItineraryData *II = 83 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 84 return new ScoreboardHazardRecognizer(II, DAG); 85 } 86 87 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 88 } 89 90 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 91 /// to use for this target when scheduling the DAG. 92 ScheduleHazardRecognizer * 93 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 94 const ScheduleDAG *DAG) const { 95 unsigned Directive = 96 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective(); 97 98 // FIXME: Leaving this as-is until we have POWER9 scheduling info 99 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 100 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 101 102 // Most subtargets use a PPC970 recognizer. 103 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 104 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 105 assert(DAG->TII && "No InstrInfo?"); 106 107 return new PPCHazardRecognizer970(*DAG); 108 } 109 110 return new ScoreboardHazardRecognizer(II, DAG); 111 } 112 113 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 114 const MachineInstr &MI, 115 unsigned *PredCost) const { 116 if (!ItinData || UseOldLatencyCalc) 117 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 118 119 // The default implementation of getInstrLatency calls getStageLatency, but 120 // getStageLatency does not do the right thing for us. While we have 121 // itinerary, most cores are fully pipelined, and so the itineraries only 122 // express the first part of the pipeline, not every stage. Instead, we need 123 // to use the listed output operand cycle number (using operand 0 here, which 124 // is an output). 125 126 unsigned Latency = 1; 127 unsigned DefClass = MI.getDesc().getSchedClass(); 128 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 129 const MachineOperand &MO = MI.getOperand(i); 130 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 131 continue; 132 133 int Cycle = ItinData->getOperandCycle(DefClass, i); 134 if (Cycle < 0) 135 continue; 136 137 Latency = std::max(Latency, (unsigned) Cycle); 138 } 139 140 return Latency; 141 } 142 143 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 144 const MachineInstr &DefMI, unsigned DefIdx, 145 const MachineInstr &UseMI, 146 unsigned UseIdx) const { 147 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 148 UseMI, UseIdx); 149 150 if (!DefMI.getParent()) 151 return Latency; 152 153 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 154 unsigned Reg = DefMO.getReg(); 155 156 bool IsRegCR; 157 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 158 const MachineRegisterInfo *MRI = 159 &DefMI.getParent()->getParent()->getRegInfo(); 160 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 161 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 162 } else { 163 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 164 PPC::CRBITRCRegClass.contains(Reg); 165 } 166 167 if (UseMI.isBranch() && IsRegCR) { 168 if (Latency < 0) 169 Latency = getInstrLatency(ItinData, DefMI); 170 171 // On some cores, there is an additional delay between writing to a condition 172 // register, and using it from a branch. 173 unsigned Directive = Subtarget.getDarwinDirective(); 174 switch (Directive) { 175 default: break; 176 case PPC::DIR_7400: 177 case PPC::DIR_750: 178 case PPC::DIR_970: 179 case PPC::DIR_E5500: 180 case PPC::DIR_PWR4: 181 case PPC::DIR_PWR5: 182 case PPC::DIR_PWR5X: 183 case PPC::DIR_PWR6: 184 case PPC::DIR_PWR6X: 185 case PPC::DIR_PWR7: 186 case PPC::DIR_PWR8: 187 // FIXME: Is this needed for POWER9? 188 Latency += 2; 189 break; 190 } 191 } 192 193 return Latency; 194 } 195 196 // This function does not list all associative and commutative operations, but 197 // only those worth feeding through the machine combiner in an attempt to 198 // reduce the critical path. Mostly, this means floating-point operations, 199 // because they have high latencies (compared to other operations, such and 200 // and/or, which are also associative and commutative, but have low latencies). 201 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 202 switch (Inst.getOpcode()) { 203 // FP Add: 204 case PPC::FADD: 205 case PPC::FADDS: 206 // FP Multiply: 207 case PPC::FMUL: 208 case PPC::FMULS: 209 // Altivec Add: 210 case PPC::VADDFP: 211 // VSX Add: 212 case PPC::XSADDDP: 213 case PPC::XVADDDP: 214 case PPC::XVADDSP: 215 case PPC::XSADDSP: 216 // VSX Multiply: 217 case PPC::XSMULDP: 218 case PPC::XVMULDP: 219 case PPC::XVMULSP: 220 case PPC::XSMULSP: 221 // QPX Add: 222 case PPC::QVFADD: 223 case PPC::QVFADDS: 224 case PPC::QVFADDSs: 225 // QPX Multiply: 226 case PPC::QVFMUL: 227 case PPC::QVFMULS: 228 case PPC::QVFMULSs: 229 return true; 230 default: 231 return false; 232 } 233 } 234 235 bool PPCInstrInfo::getMachineCombinerPatterns( 236 MachineInstr &Root, 237 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 238 // Using the machine combiner in this way is potentially expensive, so 239 // restrict to when aggressive optimizations are desired. 240 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 241 return false; 242 243 // FP reassociation is only legal when we don't need strict IEEE semantics. 244 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) 245 return false; 246 247 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 248 } 249 250 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 251 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 252 unsigned &SrcReg, unsigned &DstReg, 253 unsigned &SubIdx) const { 254 switch (MI.getOpcode()) { 255 default: return false; 256 case PPC::EXTSW: 257 case PPC::EXTSW_32_64: 258 SrcReg = MI.getOperand(1).getReg(); 259 DstReg = MI.getOperand(0).getReg(); 260 SubIdx = PPC::sub_32; 261 return true; 262 } 263 } 264 265 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 266 int &FrameIndex) const { 267 // Note: This list must be kept consistent with LoadRegFromStackSlot. 268 switch (MI.getOpcode()) { 269 default: break; 270 case PPC::LD: 271 case PPC::LWZ: 272 case PPC::LFS: 273 case PPC::LFD: 274 case PPC::RESTORE_CR: 275 case PPC::RESTORE_CRBIT: 276 case PPC::LVX: 277 case PPC::LXVD2X: 278 case PPC::LXVX: 279 case PPC::QVLFDX: 280 case PPC::QVLFSXs: 281 case PPC::QVLFDXb: 282 case PPC::RESTORE_VRSAVE: 283 // Check for the operands added by addFrameReference (the immediate is the 284 // offset which defaults to 0). 285 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 286 MI.getOperand(2).isFI()) { 287 FrameIndex = MI.getOperand(2).getIndex(); 288 return MI.getOperand(0).getReg(); 289 } 290 break; 291 } 292 return 0; 293 } 294 295 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 296 int &FrameIndex) const { 297 // Note: This list must be kept consistent with StoreRegToStackSlot. 298 switch (MI.getOpcode()) { 299 default: break; 300 case PPC::STD: 301 case PPC::STW: 302 case PPC::STFS: 303 case PPC::STFD: 304 case PPC::SPILL_CR: 305 case PPC::SPILL_CRBIT: 306 case PPC::STVX: 307 case PPC::STXVD2X: 308 case PPC::STXVX: 309 case PPC::QVSTFDX: 310 case PPC::QVSTFSXs: 311 case PPC::QVSTFDXb: 312 case PPC::SPILL_VRSAVE: 313 // Check for the operands added by addFrameReference (the immediate is the 314 // offset which defaults to 0). 315 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 316 MI.getOperand(2).isFI()) { 317 FrameIndex = MI.getOperand(2).getIndex(); 318 return MI.getOperand(0).getReg(); 319 } 320 break; 321 } 322 return 0; 323 } 324 325 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 326 unsigned OpIdx1, 327 unsigned OpIdx2) const { 328 MachineFunction &MF = *MI.getParent()->getParent(); 329 330 // Normal instructions can be commuted the obvious way. 331 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo) 332 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 333 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 334 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 335 // changing the relative order of the mask operands might change what happens 336 // to the high-bits of the mask (and, thus, the result). 337 338 // Cannot commute if it has a non-zero rotate count. 339 if (MI.getOperand(3).getImm() != 0) 340 return nullptr; 341 342 // If we have a zero rotate count, we have: 343 // M = mask(MB,ME) 344 // Op0 = (Op1 & ~M) | (Op2 & M) 345 // Change this to: 346 // M = mask((ME+1)&31, (MB-1)&31) 347 // Op0 = (Op2 & ~M) | (Op1 & M) 348 349 // Swap op1/op2 350 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 351 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo."); 352 unsigned Reg0 = MI.getOperand(0).getReg(); 353 unsigned Reg1 = MI.getOperand(1).getReg(); 354 unsigned Reg2 = MI.getOperand(2).getReg(); 355 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 356 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 357 bool Reg1IsKill = MI.getOperand(1).isKill(); 358 bool Reg2IsKill = MI.getOperand(2).isKill(); 359 bool ChangeReg0 = false; 360 // If machine instrs are no longer in two-address forms, update 361 // destination register as well. 362 if (Reg0 == Reg1) { 363 // Must be two address instruction! 364 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 365 "Expecting a two-address instruction!"); 366 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 367 Reg2IsKill = false; 368 ChangeReg0 = true; 369 } 370 371 // Masks. 372 unsigned MB = MI.getOperand(4).getImm(); 373 unsigned ME = MI.getOperand(5).getImm(); 374 375 // We can't commute a trivial mask (there is no way to represent an all-zero 376 // mask). 377 if (MB == 0 && ME == 31) 378 return nullptr; 379 380 if (NewMI) { 381 // Create a new instruction. 382 unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 383 bool Reg0IsDead = MI.getOperand(0).isDead(); 384 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 385 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 386 .addReg(Reg2, getKillRegState(Reg2IsKill)) 387 .addReg(Reg1, getKillRegState(Reg1IsKill)) 388 .addImm((ME + 1) & 31) 389 .addImm((MB - 1) & 31); 390 } 391 392 if (ChangeReg0) { 393 MI.getOperand(0).setReg(Reg2); 394 MI.getOperand(0).setSubReg(SubReg2); 395 } 396 MI.getOperand(2).setReg(Reg1); 397 MI.getOperand(1).setReg(Reg2); 398 MI.getOperand(2).setSubReg(SubReg1); 399 MI.getOperand(1).setSubReg(SubReg2); 400 MI.getOperand(2).setIsKill(Reg1IsKill); 401 MI.getOperand(1).setIsKill(Reg2IsKill); 402 403 // Swap the mask around. 404 MI.getOperand(4).setImm((ME + 1) & 31); 405 MI.getOperand(5).setImm((MB - 1) & 31); 406 return &MI; 407 } 408 409 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, 410 unsigned &SrcOpIdx2) const { 411 // For VSX A-Type FMA instructions, it is the first two operands that can be 412 // commuted, however, because the non-encoded tied input operand is listed 413 // first, the operands to swap are actually the second and third. 414 415 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 416 if (AltOpc == -1) 417 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 418 419 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 420 // and SrcOpIdx2. 421 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 422 } 423 424 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 425 MachineBasicBlock::iterator MI) const { 426 // This function is used for scheduling, and the nop wanted here is the type 427 // that terminates dispatch groups on the POWER cores. 428 unsigned Directive = Subtarget.getDarwinDirective(); 429 unsigned Opcode; 430 switch (Directive) { 431 default: Opcode = PPC::NOP; break; 432 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 433 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 434 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 435 // FIXME: Update when POWER9 scheduling model is ready. 436 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 437 } 438 439 DebugLoc DL; 440 BuildMI(MBB, MI, DL, get(Opcode)); 441 } 442 443 /// getNoopForMachoTarget - Return the noop instruction to use for a noop. 444 void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { 445 NopInst.setOpcode(PPC::NOP); 446 } 447 448 // Branch analysis. 449 // Note: If the condition register is set to CTR or CTR8 then this is a 450 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 451 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 452 MachineBasicBlock *&TBB, 453 MachineBasicBlock *&FBB, 454 SmallVectorImpl<MachineOperand> &Cond, 455 bool AllowModify) const { 456 bool isPPC64 = Subtarget.isPPC64(); 457 458 // If the block has no terminators, it just falls into the block after it. 459 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 460 if (I == MBB.end()) 461 return false; 462 463 if (!isUnpredicatedTerminator(*I)) 464 return false; 465 466 // Get the last instruction in the block. 467 MachineInstr &LastInst = *I; 468 469 // If there is only one terminator instruction, process it. 470 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 471 if (LastInst.getOpcode() == PPC::B) { 472 if (!LastInst.getOperand(0).isMBB()) 473 return true; 474 TBB = LastInst.getOperand(0).getMBB(); 475 return false; 476 } else if (LastInst.getOpcode() == PPC::BCC) { 477 if (!LastInst.getOperand(2).isMBB()) 478 return true; 479 // Block ends with fall-through condbranch. 480 TBB = LastInst.getOperand(2).getMBB(); 481 Cond.push_back(LastInst.getOperand(0)); 482 Cond.push_back(LastInst.getOperand(1)); 483 return false; 484 } else if (LastInst.getOpcode() == PPC::BC) { 485 if (!LastInst.getOperand(1).isMBB()) 486 return true; 487 // Block ends with fall-through condbranch. 488 TBB = LastInst.getOperand(1).getMBB(); 489 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 490 Cond.push_back(LastInst.getOperand(0)); 491 return false; 492 } else if (LastInst.getOpcode() == PPC::BCn) { 493 if (!LastInst.getOperand(1).isMBB()) 494 return true; 495 // Block ends with fall-through condbranch. 496 TBB = LastInst.getOperand(1).getMBB(); 497 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 498 Cond.push_back(LastInst.getOperand(0)); 499 return false; 500 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 501 LastInst.getOpcode() == PPC::BDNZ) { 502 if (!LastInst.getOperand(0).isMBB()) 503 return true; 504 if (DisableCTRLoopAnal) 505 return true; 506 TBB = LastInst.getOperand(0).getMBB(); 507 Cond.push_back(MachineOperand::CreateImm(1)); 508 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 509 true)); 510 return false; 511 } else if (LastInst.getOpcode() == PPC::BDZ8 || 512 LastInst.getOpcode() == PPC::BDZ) { 513 if (!LastInst.getOperand(0).isMBB()) 514 return true; 515 if (DisableCTRLoopAnal) 516 return true; 517 TBB = LastInst.getOperand(0).getMBB(); 518 Cond.push_back(MachineOperand::CreateImm(0)); 519 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 520 true)); 521 return false; 522 } 523 524 // Otherwise, don't know what this is. 525 return true; 526 } 527 528 // Get the instruction before it if it's a terminator. 529 MachineInstr &SecondLastInst = *I; 530 531 // If there are three terminators, we don't know what sort of block this is. 532 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 533 return true; 534 535 // If the block ends with PPC::B and PPC:BCC, handle it. 536 if (SecondLastInst.getOpcode() == PPC::BCC && 537 LastInst.getOpcode() == PPC::B) { 538 if (!SecondLastInst.getOperand(2).isMBB() || 539 !LastInst.getOperand(0).isMBB()) 540 return true; 541 TBB = SecondLastInst.getOperand(2).getMBB(); 542 Cond.push_back(SecondLastInst.getOperand(0)); 543 Cond.push_back(SecondLastInst.getOperand(1)); 544 FBB = LastInst.getOperand(0).getMBB(); 545 return false; 546 } else if (SecondLastInst.getOpcode() == PPC::BC && 547 LastInst.getOpcode() == PPC::B) { 548 if (!SecondLastInst.getOperand(1).isMBB() || 549 !LastInst.getOperand(0).isMBB()) 550 return true; 551 TBB = SecondLastInst.getOperand(1).getMBB(); 552 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 553 Cond.push_back(SecondLastInst.getOperand(0)); 554 FBB = LastInst.getOperand(0).getMBB(); 555 return false; 556 } else if (SecondLastInst.getOpcode() == PPC::BCn && 557 LastInst.getOpcode() == PPC::B) { 558 if (!SecondLastInst.getOperand(1).isMBB() || 559 !LastInst.getOperand(0).isMBB()) 560 return true; 561 TBB = SecondLastInst.getOperand(1).getMBB(); 562 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 563 Cond.push_back(SecondLastInst.getOperand(0)); 564 FBB = LastInst.getOperand(0).getMBB(); 565 return false; 566 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 567 SecondLastInst.getOpcode() == PPC::BDNZ) && 568 LastInst.getOpcode() == PPC::B) { 569 if (!SecondLastInst.getOperand(0).isMBB() || 570 !LastInst.getOperand(0).isMBB()) 571 return true; 572 if (DisableCTRLoopAnal) 573 return true; 574 TBB = SecondLastInst.getOperand(0).getMBB(); 575 Cond.push_back(MachineOperand::CreateImm(1)); 576 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 577 true)); 578 FBB = LastInst.getOperand(0).getMBB(); 579 return false; 580 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 581 SecondLastInst.getOpcode() == PPC::BDZ) && 582 LastInst.getOpcode() == PPC::B) { 583 if (!SecondLastInst.getOperand(0).isMBB() || 584 !LastInst.getOperand(0).isMBB()) 585 return true; 586 if (DisableCTRLoopAnal) 587 return true; 588 TBB = SecondLastInst.getOperand(0).getMBB(); 589 Cond.push_back(MachineOperand::CreateImm(0)); 590 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 591 true)); 592 FBB = LastInst.getOperand(0).getMBB(); 593 return false; 594 } 595 596 // If the block ends with two PPC:Bs, handle it. The second one is not 597 // executed, so remove it. 598 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 599 if (!SecondLastInst.getOperand(0).isMBB()) 600 return true; 601 TBB = SecondLastInst.getOperand(0).getMBB(); 602 I = LastInst; 603 if (AllowModify) 604 I->eraseFromParent(); 605 return false; 606 } 607 608 // Otherwise, can't handle this. 609 return true; 610 } 611 612 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 613 int *BytesRemoved) const { 614 assert(!BytesRemoved && "code size not handled"); 615 616 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 617 if (I == MBB.end()) 618 return 0; 619 620 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 621 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 622 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 623 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 624 return 0; 625 626 // Remove the branch. 627 I->eraseFromParent(); 628 629 I = MBB.end(); 630 631 if (I == MBB.begin()) return 1; 632 --I; 633 if (I->getOpcode() != PPC::BCC && 634 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 635 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 636 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 637 return 1; 638 639 // Remove the branch. 640 I->eraseFromParent(); 641 return 2; 642 } 643 644 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 645 MachineBasicBlock *TBB, 646 MachineBasicBlock *FBB, 647 ArrayRef<MachineOperand> Cond, 648 const DebugLoc &DL, 649 int *BytesAdded) const { 650 // Shouldn't be a fall through. 651 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 652 assert((Cond.size() == 2 || Cond.size() == 0) && 653 "PPC branch conditions have two components!"); 654 assert(!BytesAdded && "code size not handled"); 655 656 bool isPPC64 = Subtarget.isPPC64(); 657 658 // One-way branch. 659 if (!FBB) { 660 if (Cond.empty()) // Unconditional branch 661 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 662 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 663 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 664 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 665 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 666 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 667 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 668 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 669 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 670 else // Conditional branch 671 BuildMI(&MBB, DL, get(PPC::BCC)) 672 .addImm(Cond[0].getImm()) 673 .add(Cond[1]) 674 .addMBB(TBB); 675 return 1; 676 } 677 678 // Two-way Conditional Branch. 679 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 680 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 681 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 682 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 683 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 684 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 685 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 686 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 687 else 688 BuildMI(&MBB, DL, get(PPC::BCC)) 689 .addImm(Cond[0].getImm()) 690 .add(Cond[1]) 691 .addMBB(TBB); 692 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 693 return 2; 694 } 695 696 // Select analysis. 697 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 698 ArrayRef<MachineOperand> Cond, 699 unsigned TrueReg, unsigned FalseReg, 700 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 701 if (Cond.size() != 2) 702 return false; 703 704 // If this is really a bdnz-like condition, then it cannot be turned into a 705 // select. 706 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 707 return false; 708 709 // Check register classes. 710 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 711 const TargetRegisterClass *RC = 712 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 713 if (!RC) 714 return false; 715 716 // isel is for regular integer GPRs only. 717 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 718 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 719 !PPC::G8RCRegClass.hasSubClassEq(RC) && 720 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 721 return false; 722 723 // FIXME: These numbers are for the A2, how well they work for other cores is 724 // an open question. On the A2, the isel instruction has a 2-cycle latency 725 // but single-cycle throughput. These numbers are used in combination with 726 // the MispredictPenalty setting from the active SchedMachineModel. 727 CondCycles = 1; 728 TrueCycles = 1; 729 FalseCycles = 1; 730 731 return true; 732 } 733 734 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 735 MachineBasicBlock::iterator MI, 736 const DebugLoc &dl, unsigned DestReg, 737 ArrayRef<MachineOperand> Cond, unsigned TrueReg, 738 unsigned FalseReg) const { 739 assert(Cond.size() == 2 && 740 "PPC branch conditions have two components!"); 741 742 // Get the register classes. 743 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 744 const TargetRegisterClass *RC = 745 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 746 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 747 748 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 749 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 750 assert((Is64Bit || 751 PPC::GPRCRegClass.hasSubClassEq(RC) || 752 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 753 "isel is for regular integer GPRs only"); 754 755 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 756 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 757 758 unsigned SubIdx = 0; 759 bool SwapOps = false; 760 switch (SelectPred) { 761 case PPC::PRED_EQ: 762 case PPC::PRED_EQ_MINUS: 763 case PPC::PRED_EQ_PLUS: 764 SubIdx = PPC::sub_eq; SwapOps = false; break; 765 case PPC::PRED_NE: 766 case PPC::PRED_NE_MINUS: 767 case PPC::PRED_NE_PLUS: 768 SubIdx = PPC::sub_eq; SwapOps = true; break; 769 case PPC::PRED_LT: 770 case PPC::PRED_LT_MINUS: 771 case PPC::PRED_LT_PLUS: 772 SubIdx = PPC::sub_lt; SwapOps = false; break; 773 case PPC::PRED_GE: 774 case PPC::PRED_GE_MINUS: 775 case PPC::PRED_GE_PLUS: 776 SubIdx = PPC::sub_lt; SwapOps = true; break; 777 case PPC::PRED_GT: 778 case PPC::PRED_GT_MINUS: 779 case PPC::PRED_GT_PLUS: 780 SubIdx = PPC::sub_gt; SwapOps = false; break; 781 case PPC::PRED_LE: 782 case PPC::PRED_LE_MINUS: 783 case PPC::PRED_LE_PLUS: 784 SubIdx = PPC::sub_gt; SwapOps = true; break; 785 case PPC::PRED_UN: 786 case PPC::PRED_UN_MINUS: 787 case PPC::PRED_UN_PLUS: 788 SubIdx = PPC::sub_un; SwapOps = false; break; 789 case PPC::PRED_NU: 790 case PPC::PRED_NU_MINUS: 791 case PPC::PRED_NU_PLUS: 792 SubIdx = PPC::sub_un; SwapOps = true; break; 793 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 794 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 795 } 796 797 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 798 SecondReg = SwapOps ? TrueReg : FalseReg; 799 800 // The first input register of isel cannot be r0. If it is a member 801 // of a register class that can be r0, then copy it first (the 802 // register allocator should eliminate the copy). 803 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 804 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 805 const TargetRegisterClass *FirstRC = 806 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 807 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 808 unsigned OldFirstReg = FirstReg; 809 FirstReg = MRI.createVirtualRegister(FirstRC); 810 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 811 .addReg(OldFirstReg); 812 } 813 814 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 815 .addReg(FirstReg).addReg(SecondReg) 816 .addReg(Cond[1].getReg(), 0, SubIdx); 817 } 818 819 static unsigned getCRBitValue(unsigned CRBit) { 820 unsigned Ret = 4; 821 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 822 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 823 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 824 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 825 Ret = 3; 826 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 827 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 828 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 829 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 830 Ret = 2; 831 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 832 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 833 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 834 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 835 Ret = 1; 836 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 837 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 838 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 839 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 840 Ret = 0; 841 842 assert(Ret != 4 && "Invalid CR bit register"); 843 return Ret; 844 } 845 846 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 847 MachineBasicBlock::iterator I, 848 const DebugLoc &DL, unsigned DestReg, 849 unsigned SrcReg, bool KillSrc) const { 850 // We can end up with self copies and similar things as a result of VSX copy 851 // legalization. Promote them here. 852 const TargetRegisterInfo *TRI = &getRegisterInfo(); 853 if (PPC::F8RCRegClass.contains(DestReg) && 854 PPC::VSRCRegClass.contains(SrcReg)) { 855 unsigned SuperReg = 856 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 857 858 if (VSXSelfCopyCrash && SrcReg == SuperReg) 859 llvm_unreachable("nop VSX copy"); 860 861 DestReg = SuperReg; 862 } else if (PPC::F8RCRegClass.contains(SrcReg) && 863 PPC::VSRCRegClass.contains(DestReg)) { 864 unsigned SuperReg = 865 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 866 867 if (VSXSelfCopyCrash && DestReg == SuperReg) 868 llvm_unreachable("nop VSX copy"); 869 870 SrcReg = SuperReg; 871 } 872 873 // Different class register copy 874 if (PPC::CRBITRCRegClass.contains(SrcReg) && 875 PPC::GPRCRegClass.contains(DestReg)) { 876 unsigned CRReg = getCRFromCRBit(SrcReg); 877 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 878 getKillRegState(KillSrc); 879 // Rotate the CR bit in the CR fields to be the least significant bit and 880 // then mask with 0x1 (MB = ME = 31). 881 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 882 .addReg(DestReg, RegState::Kill) 883 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 884 .addImm(31) 885 .addImm(31); 886 return; 887 } else if (PPC::CRRCRegClass.contains(SrcReg) && 888 PPC::G8RCRegClass.contains(DestReg)) { 889 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 890 getKillRegState(KillSrc); 891 return; 892 } else if (PPC::CRRCRegClass.contains(SrcReg) && 893 PPC::GPRCRegClass.contains(DestReg)) { 894 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 895 getKillRegState(KillSrc); 896 return; 897 } 898 899 unsigned Opc; 900 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 901 Opc = PPC::OR; 902 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 903 Opc = PPC::OR8; 904 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 905 Opc = PPC::FMR; 906 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 907 Opc = PPC::MCRF; 908 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 909 Opc = PPC::VOR; 910 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 911 // There are two different ways this can be done: 912 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 913 // issue in VSU pipeline 0. 914 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 915 // can go to either pipeline. 916 // We'll always use xxlor here, because in practically all cases where 917 // copies are generated, they are close enough to some use that the 918 // lower-latency form is preferable. 919 Opc = PPC::XXLOR; 920 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 921 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 922 Opc = PPC::XXLORf; 923 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 924 Opc = PPC::QVFMR; 925 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 926 Opc = PPC::QVFMRs; 927 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 928 Opc = PPC::QVFMRb; 929 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 930 Opc = PPC::CROR; 931 else 932 llvm_unreachable("Impossible reg-to-reg copy"); 933 934 const MCInstrDesc &MCID = get(Opc); 935 if (MCID.getNumOperands() == 3) 936 BuildMI(MBB, I, DL, MCID, DestReg) 937 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 938 else 939 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 940 } 941 942 // This function returns true if a CR spill is necessary and false otherwise. 943 bool 944 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, 945 unsigned SrcReg, bool isKill, 946 int FrameIdx, 947 const TargetRegisterClass *RC, 948 SmallVectorImpl<MachineInstr*> &NewMIs, 949 bool &NonRI, bool &SpillsVRS) const{ 950 // Note: If additional store instructions are added here, 951 // update isStoreToStackSlot. 952 953 DebugLoc DL; 954 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 955 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 956 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) 957 .addReg(SrcReg, 958 getKillRegState(isKill)), 959 FrameIdx)); 960 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 961 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 962 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) 963 .addReg(SrcReg, 964 getKillRegState(isKill)), 965 FrameIdx)); 966 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 967 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) 968 .addReg(SrcReg, 969 getKillRegState(isKill)), 970 FrameIdx)); 971 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 972 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) 973 .addReg(SrcReg, 974 getKillRegState(isKill)), 975 FrameIdx)); 976 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 977 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) 978 .addReg(SrcReg, 979 getKillRegState(isKill)), 980 FrameIdx)); 981 return true; 982 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 983 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT)) 984 .addReg(SrcReg, 985 getKillRegState(isKill)), 986 FrameIdx)); 987 return true; 988 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 989 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX)) 990 .addReg(SrcReg, 991 getKillRegState(isKill)), 992 FrameIdx)); 993 NonRI = true; 994 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 995 unsigned Op = Subtarget.hasP9Vector() ? PPC::STXVX : PPC::STXVD2X; 996 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Op)) 997 .addReg(SrcReg, 998 getKillRegState(isKill)), 999 FrameIdx)); 1000 NonRI = true; 1001 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1002 unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFSTOREf64 : PPC::STXSDX; 1003 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc)) 1004 .addReg(SrcReg, 1005 getKillRegState(isKill)), 1006 FrameIdx)); 1007 NonRI = true; 1008 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1009 unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFSTOREf32 : PPC::STXSSPX; 1010 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc)) 1011 .addReg(SrcReg, 1012 getKillRegState(isKill)), 1013 FrameIdx)); 1014 NonRI = true; 1015 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1016 assert(Subtarget.isDarwin() && 1017 "VRSAVE only needs spill/restore on Darwin"); 1018 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE)) 1019 .addReg(SrcReg, 1020 getKillRegState(isKill)), 1021 FrameIdx)); 1022 SpillsVRS = true; 1023 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1024 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX)) 1025 .addReg(SrcReg, 1026 getKillRegState(isKill)), 1027 FrameIdx)); 1028 NonRI = true; 1029 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1030 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs)) 1031 .addReg(SrcReg, 1032 getKillRegState(isKill)), 1033 FrameIdx)); 1034 NonRI = true; 1035 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1036 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb)) 1037 .addReg(SrcReg, 1038 getKillRegState(isKill)), 1039 FrameIdx)); 1040 NonRI = true; 1041 } else { 1042 llvm_unreachable("Unknown regclass!"); 1043 } 1044 1045 return false; 1046 } 1047 1048 void 1049 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1050 MachineBasicBlock::iterator MI, 1051 unsigned SrcReg, bool isKill, int FrameIdx, 1052 const TargetRegisterClass *RC, 1053 const TargetRegisterInfo *TRI) const { 1054 MachineFunction &MF = *MBB.getParent(); 1055 SmallVector<MachineInstr*, 4> NewMIs; 1056 1057 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1058 FuncInfo->setHasSpills(); 1059 1060 // We need to avoid a situation in which the value from a VRRC register is 1061 // spilled using an Altivec instruction and reloaded into a VSRC register 1062 // using a VSX instruction. The issue with this is that the VSX 1063 // load/store instructions swap the doublewords in the vector and the Altivec 1064 // ones don't. The register classes on the spill/reload may be different if 1065 // the register is defined using an Altivec instruction and is then used by a 1066 // VSX instruction. 1067 RC = updatedRC(RC); 1068 1069 bool NonRI = false, SpillsVRS = false; 1070 if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs, 1071 NonRI, SpillsVRS)) 1072 FuncInfo->setSpillsCR(); 1073 1074 if (SpillsVRS) 1075 FuncInfo->setSpillsVRSAVE(); 1076 1077 if (NonRI) 1078 FuncInfo->setHasNonRISpills(); 1079 1080 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1081 MBB.insert(MI, NewMIs[i]); 1082 1083 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1084 MachineMemOperand *MMO = MF.getMachineMemOperand( 1085 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1086 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1087 MFI.getObjectAlignment(FrameIdx)); 1088 NewMIs.back()->addMemOperand(MF, MMO); 1089 } 1090 1091 bool PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1092 unsigned DestReg, int FrameIdx, 1093 const TargetRegisterClass *RC, 1094 SmallVectorImpl<MachineInstr *> &NewMIs, 1095 bool &NonRI, bool &SpillsVRS) const { 1096 // Note: If additional load instructions are added here, 1097 // update isLoadFromStackSlot. 1098 1099 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1100 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1101 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), 1102 DestReg), FrameIdx)); 1103 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1104 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1105 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), 1106 FrameIdx)); 1107 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1108 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), 1109 FrameIdx)); 1110 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1111 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), 1112 FrameIdx)); 1113 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1114 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1115 get(PPC::RESTORE_CR), DestReg), 1116 FrameIdx)); 1117 return true; 1118 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1119 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1120 get(PPC::RESTORE_CRBIT), DestReg), 1121 FrameIdx)); 1122 return true; 1123 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1124 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg), 1125 FrameIdx)); 1126 NonRI = true; 1127 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1128 unsigned Op = Subtarget.hasP9Vector() ? PPC::LXVX : PPC::LXVD2X; 1129 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Op), DestReg), 1130 FrameIdx)); 1131 NonRI = true; 1132 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1133 unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFLOADf64 : PPC::LXSDX; 1134 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc), 1135 DestReg), FrameIdx)); 1136 NonRI = true; 1137 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1138 unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFLOADf32 : PPC::LXSSPX; 1139 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc), 1140 DestReg), FrameIdx)); 1141 NonRI = true; 1142 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1143 assert(Subtarget.isDarwin() && 1144 "VRSAVE only needs spill/restore on Darwin"); 1145 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1146 get(PPC::RESTORE_VRSAVE), 1147 DestReg), 1148 FrameIdx)); 1149 SpillsVRS = true; 1150 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1151 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg), 1152 FrameIdx)); 1153 NonRI = true; 1154 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1155 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg), 1156 FrameIdx)); 1157 NonRI = true; 1158 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1159 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg), 1160 FrameIdx)); 1161 NonRI = true; 1162 } else { 1163 llvm_unreachable("Unknown regclass!"); 1164 } 1165 1166 return false; 1167 } 1168 1169 void 1170 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1171 MachineBasicBlock::iterator MI, 1172 unsigned DestReg, int FrameIdx, 1173 const TargetRegisterClass *RC, 1174 const TargetRegisterInfo *TRI) const { 1175 MachineFunction &MF = *MBB.getParent(); 1176 SmallVector<MachineInstr*, 4> NewMIs; 1177 DebugLoc DL; 1178 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1179 1180 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1181 FuncInfo->setHasSpills(); 1182 1183 // We need to avoid a situation in which the value from a VRRC register is 1184 // spilled using an Altivec instruction and reloaded into a VSRC register 1185 // using a VSX instruction. The issue with this is that the VSX 1186 // load/store instructions swap the doublewords in the vector and the Altivec 1187 // ones don't. The register classes on the spill/reload may be different if 1188 // the register is defined using an Altivec instruction and is then used by a 1189 // VSX instruction. 1190 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 1191 RC = &PPC::VSRCRegClass; 1192 1193 bool NonRI = false, SpillsVRS = false; 1194 if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs, 1195 NonRI, SpillsVRS)) 1196 FuncInfo->setSpillsCR(); 1197 1198 if (SpillsVRS) 1199 FuncInfo->setSpillsVRSAVE(); 1200 1201 if (NonRI) 1202 FuncInfo->setHasNonRISpills(); 1203 1204 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1205 MBB.insert(MI, NewMIs[i]); 1206 1207 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1208 MachineMemOperand *MMO = MF.getMachineMemOperand( 1209 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1210 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1211 MFI.getObjectAlignment(FrameIdx)); 1212 NewMIs.back()->addMemOperand(MF, MMO); 1213 } 1214 1215 bool PPCInstrInfo:: 1216 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1217 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1218 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1219 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1220 else 1221 // Leave the CR# the same, but invert the condition. 1222 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1223 return false; 1224 } 1225 1226 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1227 unsigned Reg, MachineRegisterInfo *MRI) const { 1228 // For some instructions, it is legal to fold ZERO into the RA register field. 1229 // A zero immediate should always be loaded with a single li. 1230 unsigned DefOpc = DefMI.getOpcode(); 1231 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1232 return false; 1233 if (!DefMI.getOperand(1).isImm()) 1234 return false; 1235 if (DefMI.getOperand(1).getImm() != 0) 1236 return false; 1237 1238 // Note that we cannot here invert the arguments of an isel in order to fold 1239 // a ZERO into what is presented as the second argument. All we have here 1240 // is the condition bit, and that might come from a CR-logical bit operation. 1241 1242 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1243 1244 // Only fold into real machine instructions. 1245 if (UseMCID.isPseudo()) 1246 return false; 1247 1248 unsigned UseIdx; 1249 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1250 if (UseMI.getOperand(UseIdx).isReg() && 1251 UseMI.getOperand(UseIdx).getReg() == Reg) 1252 break; 1253 1254 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1255 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1256 1257 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1258 1259 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1260 // register (which might also be specified as a pointer class kind). 1261 if (UseInfo->isLookupPtrRegClass()) { 1262 if (UseInfo->RegClass /* Kind */ != 1) 1263 return false; 1264 } else { 1265 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1266 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1267 return false; 1268 } 1269 1270 // Make sure this is not tied to an output register (or otherwise 1271 // constrained). This is true for ST?UX registers, for example, which 1272 // are tied to their output registers. 1273 if (UseInfo->Constraints != 0) 1274 return false; 1275 1276 unsigned ZeroReg; 1277 if (UseInfo->isLookupPtrRegClass()) { 1278 bool isPPC64 = Subtarget.isPPC64(); 1279 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1280 } else { 1281 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1282 PPC::ZERO8 : PPC::ZERO; 1283 } 1284 1285 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1286 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1287 1288 if (DeleteDef) 1289 DefMI.eraseFromParent(); 1290 1291 return true; 1292 } 1293 1294 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1295 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1296 I != IE; ++I) 1297 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1298 return true; 1299 return false; 1300 } 1301 1302 // We should make sure that, if we're going to predicate both sides of a 1303 // condition (a diamond), that both sides don't define the counter register. We 1304 // can predicate counter-decrement-based branches, but while that predicates 1305 // the branching, it does not predicate the counter decrement. If we tried to 1306 // merge the triangle into one predicated block, we'd decrement the counter 1307 // twice. 1308 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1309 unsigned NumT, unsigned ExtraT, 1310 MachineBasicBlock &FMBB, 1311 unsigned NumF, unsigned ExtraF, 1312 BranchProbability Probability) const { 1313 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1314 } 1315 1316 1317 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1318 // The predicated branches are identified by their type, not really by the 1319 // explicit presence of a predicate. Furthermore, some of them can be 1320 // predicated more than once. Because if conversion won't try to predicate 1321 // any instruction which already claims to be predicated (by returning true 1322 // here), always return false. In doing so, we let isPredicable() be the 1323 // final word on whether not the instruction can be (further) predicated. 1324 1325 return false; 1326 } 1327 1328 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 1329 if (!MI.isTerminator()) 1330 return false; 1331 1332 // Conditional branch is a special case. 1333 if (MI.isBranch() && !MI.isBarrier()) 1334 return true; 1335 1336 return !isPredicated(MI); 1337 } 1338 1339 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1340 ArrayRef<MachineOperand> Pred) const { 1341 unsigned OpC = MI.getOpcode(); 1342 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1343 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1344 bool isPPC64 = Subtarget.isPPC64(); 1345 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1346 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1347 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1348 MI.setDesc(get(PPC::BCLR)); 1349 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1350 .addReg(Pred[1].getReg()); 1351 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1352 MI.setDesc(get(PPC::BCLRn)); 1353 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1354 .addReg(Pred[1].getReg()); 1355 } else { 1356 MI.setDesc(get(PPC::BCCLR)); 1357 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1358 .addImm(Pred[0].getImm()) 1359 .addReg(Pred[1].getReg()); 1360 } 1361 1362 return true; 1363 } else if (OpC == PPC::B) { 1364 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1365 bool isPPC64 = Subtarget.isPPC64(); 1366 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1367 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1368 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1369 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1370 MI.RemoveOperand(0); 1371 1372 MI.setDesc(get(PPC::BC)); 1373 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1374 .addReg(Pred[1].getReg()) 1375 .addMBB(MBB); 1376 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1377 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1378 MI.RemoveOperand(0); 1379 1380 MI.setDesc(get(PPC::BCn)); 1381 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1382 .addReg(Pred[1].getReg()) 1383 .addMBB(MBB); 1384 } else { 1385 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1386 MI.RemoveOperand(0); 1387 1388 MI.setDesc(get(PPC::BCC)); 1389 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1390 .addImm(Pred[0].getImm()) 1391 .addReg(Pred[1].getReg()) 1392 .addMBB(MBB); 1393 } 1394 1395 return true; 1396 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || 1397 OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { 1398 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1399 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1400 1401 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1402 bool isPPC64 = Subtarget.isPPC64(); 1403 1404 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1405 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1406 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1407 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1408 .addReg(Pred[1].getReg()); 1409 return true; 1410 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1411 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1412 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1413 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1414 .addReg(Pred[1].getReg()); 1415 return true; 1416 } 1417 1418 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1419 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1420 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1421 .addImm(Pred[0].getImm()) 1422 .addReg(Pred[1].getReg()); 1423 return true; 1424 } 1425 1426 return false; 1427 } 1428 1429 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1430 ArrayRef<MachineOperand> Pred2) const { 1431 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1432 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1433 1434 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1435 return false; 1436 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1437 return false; 1438 1439 // P1 can only subsume P2 if they test the same condition register. 1440 if (Pred1[1].getReg() != Pred2[1].getReg()) 1441 return false; 1442 1443 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1444 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1445 1446 if (P1 == P2) 1447 return true; 1448 1449 // Does P1 subsume P2, e.g. GE subsumes GT. 1450 if (P1 == PPC::PRED_LE && 1451 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1452 return true; 1453 if (P1 == PPC::PRED_GE && 1454 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1455 return true; 1456 1457 return false; 1458 } 1459 1460 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1461 std::vector<MachineOperand> &Pred) const { 1462 // Note: At the present time, the contents of Pred from this function is 1463 // unused by IfConversion. This implementation follows ARM by pushing the 1464 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1465 // predicate, instructions defining CTR or CTR8 are also included as 1466 // predicate-defining instructions. 1467 1468 const TargetRegisterClass *RCs[] = 1469 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1470 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1471 1472 bool Found = false; 1473 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1474 const MachineOperand &MO = MI.getOperand(i); 1475 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1476 const TargetRegisterClass *RC = RCs[c]; 1477 if (MO.isReg()) { 1478 if (MO.isDef() && RC->contains(MO.getReg())) { 1479 Pred.push_back(MO); 1480 Found = true; 1481 } 1482 } else if (MO.isRegMask()) { 1483 for (TargetRegisterClass::iterator I = RC->begin(), 1484 IE = RC->end(); I != IE; ++I) 1485 if (MO.clobbersPhysReg(*I)) { 1486 Pred.push_back(MO); 1487 Found = true; 1488 } 1489 } 1490 } 1491 } 1492 1493 return Found; 1494 } 1495 1496 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const { 1497 unsigned OpC = MI.getOpcode(); 1498 switch (OpC) { 1499 default: 1500 return false; 1501 case PPC::B: 1502 case PPC::BLR: 1503 case PPC::BLR8: 1504 case PPC::BCTR: 1505 case PPC::BCTR8: 1506 case PPC::BCTRL: 1507 case PPC::BCTRL8: 1508 return true; 1509 } 1510 } 1511 1512 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 1513 unsigned &SrcReg2, int &Mask, 1514 int &Value) const { 1515 unsigned Opc = MI.getOpcode(); 1516 1517 switch (Opc) { 1518 default: return false; 1519 case PPC::CMPWI: 1520 case PPC::CMPLWI: 1521 case PPC::CMPDI: 1522 case PPC::CMPLDI: 1523 SrcReg = MI.getOperand(1).getReg(); 1524 SrcReg2 = 0; 1525 Value = MI.getOperand(2).getImm(); 1526 Mask = 0xFFFF; 1527 return true; 1528 case PPC::CMPW: 1529 case PPC::CMPLW: 1530 case PPC::CMPD: 1531 case PPC::CMPLD: 1532 case PPC::FCMPUS: 1533 case PPC::FCMPUD: 1534 SrcReg = MI.getOperand(1).getReg(); 1535 SrcReg2 = MI.getOperand(2).getReg(); 1536 return true; 1537 } 1538 } 1539 1540 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, 1541 unsigned SrcReg2, int Mask, int Value, 1542 const MachineRegisterInfo *MRI) const { 1543 if (DisableCmpOpt) 1544 return false; 1545 1546 int OpC = CmpInstr.getOpcode(); 1547 unsigned CRReg = CmpInstr.getOperand(0).getReg(); 1548 1549 // FP record forms set CR1 based on the execption status bits, not a 1550 // comparison with zero. 1551 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1552 return false; 1553 1554 // The record forms set the condition register based on a signed comparison 1555 // with zero (so says the ISA manual). This is not as straightforward as it 1556 // seems, however, because this is always a 64-bit comparison on PPC64, even 1557 // for instructions that are 32-bit in nature (like slw for example). 1558 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1559 // for equality checks (as those don't depend on the sign). On PPC64, 1560 // we are restricted to equality for unsigned 64-bit comparisons and for 1561 // signed 32-bit comparisons the applicability is more restricted. 1562 bool isPPC64 = Subtarget.isPPC64(); 1563 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1564 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1565 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1566 1567 // Get the unique definition of SrcReg. 1568 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1569 if (!MI) return false; 1570 int MIOpC = MI->getOpcode(); 1571 1572 bool equalityOnly = false; 1573 bool noSub = false; 1574 if (isPPC64) { 1575 if (is32BitSignedCompare) { 1576 // We can perform this optimization only if MI is sign-extending. 1577 if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo || 1578 MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo || 1579 MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo || 1580 MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo || 1581 MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) { 1582 noSub = true; 1583 } else 1584 return false; 1585 } else if (is32BitUnsignedCompare) { 1586 // 32-bit rotate and mask instructions are zero extending only if MB <= ME 1587 bool isZeroExtendingRotate = 1588 (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINMo || 1589 MIOpC == PPC::RLWNM || MIOpC == PPC::RLWNMo) 1590 && MI->getOperand(3).getImm() <= MI->getOperand(4).getImm(); 1591 1592 // We can perform this optimization, equality only, if MI is 1593 // zero-extending. 1594 if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo || 1595 MIOpC == PPC::SLW || MIOpC == PPC::SLWo || 1596 MIOpC == PPC::SRW || MIOpC == PPC::SRWo || 1597 isZeroExtendingRotate) { 1598 noSub = true; 1599 equalityOnly = true; 1600 } else 1601 return false; 1602 } else 1603 equalityOnly = is64BitUnsignedCompare; 1604 } else 1605 equalityOnly = is32BitUnsignedCompare; 1606 1607 if (equalityOnly) { 1608 // We need to check the uses of the condition register in order to reject 1609 // non-equality comparisons. 1610 for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg), 1611 IE = MRI->use_instr_end(); I != IE; ++I) { 1612 MachineInstr *UseMI = &*I; 1613 if (UseMI->getOpcode() == PPC::BCC) { 1614 unsigned Pred = UseMI->getOperand(0).getImm(); 1615 if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE) 1616 return false; 1617 } else if (UseMI->getOpcode() == PPC::ISEL || 1618 UseMI->getOpcode() == PPC::ISEL8) { 1619 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1620 if (SubIdx != PPC::sub_eq) 1621 return false; 1622 } else 1623 return false; 1624 } 1625 } 1626 1627 MachineBasicBlock::iterator I = CmpInstr; 1628 1629 // Scan forward to find the first use of the compare. 1630 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1631 ++I) { 1632 bool FoundUse = false; 1633 for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg), 1634 JE = MRI->use_instr_end(); J != JE; ++J) 1635 if (&*J == &*I) { 1636 FoundUse = true; 1637 break; 1638 } 1639 1640 if (FoundUse) 1641 break; 1642 } 1643 1644 // There are two possible candidates which can be changed to set CR[01]. 1645 // One is MI, the other is a SUB instruction. 1646 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1647 MachineInstr *Sub = nullptr; 1648 if (SrcReg2 != 0) 1649 // MI is not a candidate for CMPrr. 1650 MI = nullptr; 1651 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1652 // same BB as the comparison. This is to allow the check below to avoid calls 1653 // (and other explicit clobbers); instead we should really check for these 1654 // more explicitly (in at least a few predecessors). 1655 else if (MI->getParent() != CmpInstr.getParent() || Value != 0) { 1656 // PPC does not have a record-form SUBri. 1657 return false; 1658 } 1659 1660 // Search for Sub. 1661 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1662 --I; 1663 1664 // Get ready to iterate backward from CmpInstr. 1665 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 1666 1667 for (; I != E && !noSub; --I) { 1668 const MachineInstr &Instr = *I; 1669 unsigned IOpC = Instr.getOpcode(); 1670 1671 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 1672 Instr.readsRegister(PPC::CR0, TRI))) 1673 // This instruction modifies or uses the record condition register after 1674 // the one we want to change. While we could do this transformation, it 1675 // would likely not be profitable. This transformation removes one 1676 // instruction, and so even forcing RA to generate one move probably 1677 // makes it unprofitable. 1678 return false; 1679 1680 // Check whether CmpInstr can be made redundant by the current instruction. 1681 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1682 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1683 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1684 ((Instr.getOperand(1).getReg() == SrcReg && 1685 Instr.getOperand(2).getReg() == SrcReg2) || 1686 (Instr.getOperand(1).getReg() == SrcReg2 && 1687 Instr.getOperand(2).getReg() == SrcReg))) { 1688 Sub = &*I; 1689 break; 1690 } 1691 1692 if (I == B) 1693 // The 'and' is below the comparison instruction. 1694 return false; 1695 } 1696 1697 // Return false if no candidates exist. 1698 if (!MI && !Sub) 1699 return false; 1700 1701 // The single candidate is called MI. 1702 if (!MI) MI = Sub; 1703 1704 int NewOpC = -1; 1705 MIOpC = MI->getOpcode(); 1706 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8) 1707 NewOpC = MIOpC; 1708 else { 1709 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1710 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1711 NewOpC = MIOpC; 1712 } 1713 1714 // FIXME: On the non-embedded POWER architectures, only some of the record 1715 // forms are fast, and we should use only the fast ones. 1716 1717 // The defining instruction has a record form (or is already a record 1718 // form). It is possible, however, that we'll need to reverse the condition 1719 // code of the users. 1720 if (NewOpC == -1) 1721 return false; 1722 1723 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1724 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1725 1726 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1727 // needs to be updated to be based on SUB. Push the condition code 1728 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1729 // condition code of these operands will be modified. 1730 bool ShouldSwap = false; 1731 if (Sub) { 1732 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1733 Sub->getOperand(2).getReg() == SrcReg; 1734 1735 // The operands to subf are the opposite of sub, so only in the fixed-point 1736 // case, invert the order. 1737 ShouldSwap = !ShouldSwap; 1738 } 1739 1740 if (ShouldSwap) 1741 for (MachineRegisterInfo::use_instr_iterator 1742 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1743 I != IE; ++I) { 1744 MachineInstr *UseMI = &*I; 1745 if (UseMI->getOpcode() == PPC::BCC) { 1746 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1747 assert((!equalityOnly || 1748 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) && 1749 "Invalid predicate for equality-only optimization"); 1750 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1751 PPC::getSwappedPredicate(Pred))); 1752 } else if (UseMI->getOpcode() == PPC::ISEL || 1753 UseMI->getOpcode() == PPC::ISEL8) { 1754 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1755 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1756 "Invalid CR bit for equality-only optimization"); 1757 1758 if (NewSubReg == PPC::sub_lt) 1759 NewSubReg = PPC::sub_gt; 1760 else if (NewSubReg == PPC::sub_gt) 1761 NewSubReg = PPC::sub_lt; 1762 1763 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1764 NewSubReg)); 1765 } else // We need to abort on a user we don't understand. 1766 return false; 1767 } 1768 1769 // Create a new virtual register to hold the value of the CR set by the 1770 // record-form instruction. If the instruction was not previously in 1771 // record form, then set the kill flag on the CR. 1772 CmpInstr.eraseFromParent(); 1773 1774 MachineBasicBlock::iterator MII = MI; 1775 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1776 get(TargetOpcode::COPY), CRReg) 1777 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1778 1779 // Even if CR0 register were dead before, it is alive now since the 1780 // instruction we just built uses it. 1781 MI->clearRegisterDeads(PPC::CR0); 1782 1783 if (MIOpC != NewOpC) { 1784 // We need to be careful here: we're replacing one instruction with 1785 // another, and we need to make sure that we get all of the right 1786 // implicit uses and defs. On the other hand, the caller may be holding 1787 // an iterator to this instruction, and so we can't delete it (this is 1788 // specifically the case if this is the instruction directly after the 1789 // compare). 1790 1791 const MCInstrDesc &NewDesc = get(NewOpC); 1792 MI->setDesc(NewDesc); 1793 1794 if (NewDesc.ImplicitDefs) 1795 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 1796 *ImpDefs; ++ImpDefs) 1797 if (!MI->definesRegister(*ImpDefs)) 1798 MI->addOperand(*MI->getParent()->getParent(), 1799 MachineOperand::CreateReg(*ImpDefs, true, true)); 1800 if (NewDesc.ImplicitUses) 1801 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 1802 *ImpUses; ++ImpUses) 1803 if (!MI->readsRegister(*ImpUses)) 1804 MI->addOperand(*MI->getParent()->getParent(), 1805 MachineOperand::CreateReg(*ImpUses, false, true)); 1806 } 1807 assert(MI->definesRegister(PPC::CR0) && 1808 "Record-form instruction does not define cr0?"); 1809 1810 // Modify the condition code of operands in OperandsToUpdate. 1811 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1812 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1813 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1814 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1815 1816 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1817 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1818 1819 return true; 1820 } 1821 1822 /// GetInstSize - Return the number of bytes of code the specified 1823 /// instruction may be. This returns the maximum number of bytes. 1824 /// 1825 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 1826 unsigned Opcode = MI.getOpcode(); 1827 1828 if (Opcode == PPC::INLINEASM) { 1829 const MachineFunction *MF = MI.getParent()->getParent(); 1830 const char *AsmStr = MI.getOperand(0).getSymbolName(); 1831 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1832 } else if (Opcode == TargetOpcode::STACKMAP) { 1833 StackMapOpers Opers(&MI); 1834 return Opers.getNumPatchBytes(); 1835 } else if (Opcode == TargetOpcode::PATCHPOINT) { 1836 PatchPointOpers Opers(&MI); 1837 return Opers.getNumPatchBytes(); 1838 } else { 1839 return get(Opcode).getSize(); 1840 } 1841 } 1842 1843 std::pair<unsigned, unsigned> 1844 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 1845 const unsigned Mask = PPCII::MO_ACCESS_MASK; 1846 return std::make_pair(TF & Mask, TF & ~Mask); 1847 } 1848 1849 ArrayRef<std::pair<unsigned, const char *>> 1850 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 1851 using namespace PPCII; 1852 static const std::pair<unsigned, const char *> TargetFlags[] = { 1853 {MO_LO, "ppc-lo"}, 1854 {MO_HA, "ppc-ha"}, 1855 {MO_TPREL_LO, "ppc-tprel-lo"}, 1856 {MO_TPREL_HA, "ppc-tprel-ha"}, 1857 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 1858 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 1859 {MO_TOC_LO, "ppc-toc-lo"}, 1860 {MO_TLS, "ppc-tls"}}; 1861 return makeArrayRef(TargetFlags); 1862 } 1863 1864 ArrayRef<std::pair<unsigned, const char *>> 1865 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 1866 using namespace PPCII; 1867 static const std::pair<unsigned, const char *> TargetFlags[] = { 1868 {MO_PLT, "ppc-plt"}, 1869 {MO_PIC_FLAG, "ppc-pic"}, 1870 {MO_NLP_FLAG, "ppc-nlp"}, 1871 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}}; 1872 return makeArrayRef(TargetFlags); 1873 } 1874 1875 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1876 switch (MI.getOpcode()) { 1877 case TargetOpcode::LOAD_STACK_GUARD: { 1878 assert(Subtarget.isTargetLinux() && 1879 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 1880 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 1881 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 1882 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 1883 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1884 .addImm(Offset) 1885 .addReg(Reg); 1886 return true; 1887 } 1888 case PPC::DFLOADf32: 1889 case PPC::DFLOADf64: 1890 case PPC::DFSTOREf32: 1891 case PPC::DFSTOREf64: { 1892 assert(Subtarget.hasP9Vector() && 1893 "Invalid D-Form Pseudo-ops on non-P9 target."); 1894 unsigned UpperOpcode, LowerOpcode; 1895 switch (MI.getOpcode()) { 1896 case PPC::DFLOADf32: 1897 UpperOpcode = PPC::LXSSP; 1898 LowerOpcode = PPC::LFS; 1899 break; 1900 case PPC::DFLOADf64: 1901 UpperOpcode = PPC::LXSD; 1902 LowerOpcode = PPC::LFD; 1903 break; 1904 case PPC::DFSTOREf32: 1905 UpperOpcode = PPC::STXSSP; 1906 LowerOpcode = PPC::STFS; 1907 break; 1908 case PPC::DFSTOREf64: 1909 UpperOpcode = PPC::STXSD; 1910 LowerOpcode = PPC::STFD; 1911 break; 1912 } 1913 unsigned TargetReg = MI.getOperand(0).getReg(); 1914 unsigned Opcode; 1915 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 1916 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 1917 Opcode = LowerOpcode; 1918 else 1919 Opcode = UpperOpcode; 1920 MI.setDesc(get(Opcode)); 1921 return true; 1922 } 1923 } 1924 return false; 1925 } 1926 1927 const TargetRegisterClass * 1928 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 1929 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 1930 return &PPC::VSRCRegClass; 1931 return RC; 1932 } 1933