1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the PowerPC implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCInstrInfo.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCHazardRecognizers.h" 18 #include "PPCInstrBuilder.h" 19 #include "PPCMachineFunctionInfo.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/PseudoSourceValue.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/TargetRegistry.h" 33 #include "llvm/Support/raw_ostream.h" 34 35 #define GET_INSTRMAP_INFO 36 #define GET_INSTRINFO_CTOR_DTOR 37 #include "PPCGenInstrInfo.inc" 38 39 using namespace llvm; 40 41 static cl:: 42 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 43 cl::desc("Disable analysis for CTR loops")); 44 45 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 46 cl::desc("Disable compare instruction optimization"), cl::Hidden); 47 48 // Pin the vtable to this file. 49 void PPCInstrInfo::anchor() {} 50 51 PPCInstrInfo::PPCInstrInfo(PPCTargetMachine &tm) 52 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP), 53 TM(tm), RI(*TM.getSubtargetImpl()) {} 54 55 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 56 /// this target when scheduling the DAG. 57 ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetHazardRecognizer( 58 const TargetMachine *TM, 59 const ScheduleDAG *DAG) const { 60 unsigned Directive = TM->getSubtarget<PPCSubtarget>().getDarwinDirective(); 61 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 62 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 63 const InstrItineraryData *II = TM->getInstrItineraryData(); 64 return new ScoreboardHazardRecognizer(II, DAG); 65 } 66 67 return TargetInstrInfo::CreateTargetHazardRecognizer(TM, DAG); 68 } 69 70 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 71 /// to use for this target when scheduling the DAG. 72 ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetPostRAHazardRecognizer( 73 const InstrItineraryData *II, 74 const ScheduleDAG *DAG) const { 75 unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective(); 76 77 if (Directive == PPC::DIR_PWR7) 78 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 79 80 // Most subtargets use a PPC970 recognizer. 81 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 82 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 83 assert(TM.getInstrInfo() && "No InstrInfo?"); 84 85 return new PPCHazardRecognizer970(TM); 86 } 87 88 return new ScoreboardHazardRecognizer(II, DAG); 89 } 90 91 92 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 93 const MachineInstr *DefMI, unsigned DefIdx, 94 const MachineInstr *UseMI, 95 unsigned UseIdx) const { 96 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 97 UseMI, UseIdx); 98 99 const MachineOperand &DefMO = DefMI->getOperand(DefIdx); 100 unsigned Reg = DefMO.getReg(); 101 102 const TargetRegisterInfo *TRI = &getRegisterInfo(); 103 bool IsRegCR; 104 if (TRI->isVirtualRegister(Reg)) { 105 const MachineRegisterInfo *MRI = 106 &DefMI->getParent()->getParent()->getRegInfo(); 107 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 108 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 109 } else { 110 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 111 PPC::CRBITRCRegClass.contains(Reg); 112 } 113 114 if (UseMI->isBranch() && IsRegCR) { 115 if (Latency < 0) 116 Latency = getInstrLatency(ItinData, DefMI); 117 118 // On some cores, there is an additional delay between writing to a condition 119 // register, and using it from a branch. 120 unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective(); 121 switch (Directive) { 122 default: break; 123 case PPC::DIR_7400: 124 case PPC::DIR_750: 125 case PPC::DIR_970: 126 case PPC::DIR_E5500: 127 case PPC::DIR_PWR4: 128 case PPC::DIR_PWR5: 129 case PPC::DIR_PWR5X: 130 case PPC::DIR_PWR6: 131 case PPC::DIR_PWR6X: 132 case PPC::DIR_PWR7: 133 Latency += 2; 134 break; 135 } 136 } 137 138 return Latency; 139 } 140 141 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 142 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 143 unsigned &SrcReg, unsigned &DstReg, 144 unsigned &SubIdx) const { 145 switch (MI.getOpcode()) { 146 default: return false; 147 case PPC::EXTSW: 148 case PPC::EXTSW_32_64: 149 SrcReg = MI.getOperand(1).getReg(); 150 DstReg = MI.getOperand(0).getReg(); 151 SubIdx = PPC::sub_32; 152 return true; 153 } 154 } 155 156 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 157 int &FrameIndex) const { 158 // Note: This list must be kept consistent with LoadRegFromStackSlot. 159 switch (MI->getOpcode()) { 160 default: break; 161 case PPC::LD: 162 case PPC::LWZ: 163 case PPC::LFS: 164 case PPC::LFD: 165 case PPC::RESTORE_CR: 166 case PPC::LVX: 167 case PPC::RESTORE_VRSAVE: 168 // Check for the operands added by addFrameReference (the immediate is the 169 // offset which defaults to 0). 170 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 171 MI->getOperand(2).isFI()) { 172 FrameIndex = MI->getOperand(2).getIndex(); 173 return MI->getOperand(0).getReg(); 174 } 175 break; 176 } 177 return 0; 178 } 179 180 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI, 181 int &FrameIndex) const { 182 // Note: This list must be kept consistent with StoreRegToStackSlot. 183 switch (MI->getOpcode()) { 184 default: break; 185 case PPC::STD: 186 case PPC::STW: 187 case PPC::STFS: 188 case PPC::STFD: 189 case PPC::SPILL_CR: 190 case PPC::STVX: 191 case PPC::SPILL_VRSAVE: 192 // Check for the operands added by addFrameReference (the immediate is the 193 // offset which defaults to 0). 194 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 195 MI->getOperand(2).isFI()) { 196 FrameIndex = MI->getOperand(2).getIndex(); 197 return MI->getOperand(0).getReg(); 198 } 199 break; 200 } 201 return 0; 202 } 203 204 // commuteInstruction - We can commute rlwimi instructions, but only if the 205 // rotate amt is zero. We also have to munge the immediates a bit. 206 MachineInstr * 207 PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { 208 MachineFunction &MF = *MI->getParent()->getParent(); 209 210 // Normal instructions can be commuted the obvious way. 211 if (MI->getOpcode() != PPC::RLWIMI && 212 MI->getOpcode() != PPC::RLWIMIo) 213 return TargetInstrInfo::commuteInstruction(MI, NewMI); 214 215 // Cannot commute if it has a non-zero rotate count. 216 if (MI->getOperand(3).getImm() != 0) 217 return 0; 218 219 // If we have a zero rotate count, we have: 220 // M = mask(MB,ME) 221 // Op0 = (Op1 & ~M) | (Op2 & M) 222 // Change this to: 223 // M = mask((ME+1)&31, (MB-1)&31) 224 // Op0 = (Op2 & ~M) | (Op1 & M) 225 226 // Swap op1/op2 227 unsigned Reg0 = MI->getOperand(0).getReg(); 228 unsigned Reg1 = MI->getOperand(1).getReg(); 229 unsigned Reg2 = MI->getOperand(2).getReg(); 230 bool Reg1IsKill = MI->getOperand(1).isKill(); 231 bool Reg2IsKill = MI->getOperand(2).isKill(); 232 bool ChangeReg0 = false; 233 // If machine instrs are no longer in two-address forms, update 234 // destination register as well. 235 if (Reg0 == Reg1) { 236 // Must be two address instruction! 237 assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 238 "Expecting a two-address instruction!"); 239 Reg2IsKill = false; 240 ChangeReg0 = true; 241 } 242 243 // Masks. 244 unsigned MB = MI->getOperand(4).getImm(); 245 unsigned ME = MI->getOperand(5).getImm(); 246 247 if (NewMI) { 248 // Create a new instruction. 249 unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg(); 250 bool Reg0IsDead = MI->getOperand(0).isDead(); 251 return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) 252 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 253 .addReg(Reg2, getKillRegState(Reg2IsKill)) 254 .addReg(Reg1, getKillRegState(Reg1IsKill)) 255 .addImm((ME+1) & 31) 256 .addImm((MB-1) & 31); 257 } 258 259 if (ChangeReg0) 260 MI->getOperand(0).setReg(Reg2); 261 MI->getOperand(2).setReg(Reg1); 262 MI->getOperand(1).setReg(Reg2); 263 MI->getOperand(2).setIsKill(Reg1IsKill); 264 MI->getOperand(1).setIsKill(Reg2IsKill); 265 266 // Swap the mask around. 267 MI->getOperand(4).setImm((ME+1) & 31); 268 MI->getOperand(5).setImm((MB-1) & 31); 269 return MI; 270 } 271 272 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 273 MachineBasicBlock::iterator MI) const { 274 // This function is used for scheduling, and the nop wanted here is the type 275 // that terminates dispatch groups on the POWER cores. 276 unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective(); 277 unsigned Opcode; 278 switch (Directive) { 279 default: Opcode = PPC::NOP; break; 280 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 281 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 282 } 283 284 DebugLoc DL; 285 BuildMI(MBB, MI, DL, get(Opcode)); 286 } 287 288 // Branch analysis. 289 // Note: If the condition register is set to CTR or CTR8 then this is a 290 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 291 bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, 292 MachineBasicBlock *&FBB, 293 SmallVectorImpl<MachineOperand> &Cond, 294 bool AllowModify) const { 295 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 296 297 // If the block has no terminators, it just falls into the block after it. 298 MachineBasicBlock::iterator I = MBB.end(); 299 if (I == MBB.begin()) 300 return false; 301 --I; 302 while (I->isDebugValue()) { 303 if (I == MBB.begin()) 304 return false; 305 --I; 306 } 307 if (!isUnpredicatedTerminator(I)) 308 return false; 309 310 // Get the last instruction in the block. 311 MachineInstr *LastInst = I; 312 313 // If there is only one terminator instruction, process it. 314 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { 315 if (LastInst->getOpcode() == PPC::B) { 316 if (!LastInst->getOperand(0).isMBB()) 317 return true; 318 TBB = LastInst->getOperand(0).getMBB(); 319 return false; 320 } else if (LastInst->getOpcode() == PPC::BCC) { 321 if (!LastInst->getOperand(2).isMBB()) 322 return true; 323 // Block ends with fall-through condbranch. 324 TBB = LastInst->getOperand(2).getMBB(); 325 Cond.push_back(LastInst->getOperand(0)); 326 Cond.push_back(LastInst->getOperand(1)); 327 return false; 328 } else if (LastInst->getOpcode() == PPC::BDNZ8 || 329 LastInst->getOpcode() == PPC::BDNZ) { 330 if (!LastInst->getOperand(0).isMBB()) 331 return true; 332 if (DisableCTRLoopAnal) 333 return true; 334 TBB = LastInst->getOperand(0).getMBB(); 335 Cond.push_back(MachineOperand::CreateImm(1)); 336 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 337 true)); 338 return false; 339 } else if (LastInst->getOpcode() == PPC::BDZ8 || 340 LastInst->getOpcode() == PPC::BDZ) { 341 if (!LastInst->getOperand(0).isMBB()) 342 return true; 343 if (DisableCTRLoopAnal) 344 return true; 345 TBB = LastInst->getOperand(0).getMBB(); 346 Cond.push_back(MachineOperand::CreateImm(0)); 347 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 348 true)); 349 return false; 350 } 351 352 // Otherwise, don't know what this is. 353 return true; 354 } 355 356 // Get the instruction before it if it's a terminator. 357 MachineInstr *SecondLastInst = I; 358 359 // If there are three terminators, we don't know what sort of block this is. 360 if (SecondLastInst && I != MBB.begin() && 361 isUnpredicatedTerminator(--I)) 362 return true; 363 364 // If the block ends with PPC::B and PPC:BCC, handle it. 365 if (SecondLastInst->getOpcode() == PPC::BCC && 366 LastInst->getOpcode() == PPC::B) { 367 if (!SecondLastInst->getOperand(2).isMBB() || 368 !LastInst->getOperand(0).isMBB()) 369 return true; 370 TBB = SecondLastInst->getOperand(2).getMBB(); 371 Cond.push_back(SecondLastInst->getOperand(0)); 372 Cond.push_back(SecondLastInst->getOperand(1)); 373 FBB = LastInst->getOperand(0).getMBB(); 374 return false; 375 } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 || 376 SecondLastInst->getOpcode() == PPC::BDNZ) && 377 LastInst->getOpcode() == PPC::B) { 378 if (!SecondLastInst->getOperand(0).isMBB() || 379 !LastInst->getOperand(0).isMBB()) 380 return true; 381 if (DisableCTRLoopAnal) 382 return true; 383 TBB = SecondLastInst->getOperand(0).getMBB(); 384 Cond.push_back(MachineOperand::CreateImm(1)); 385 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 386 true)); 387 FBB = LastInst->getOperand(0).getMBB(); 388 return false; 389 } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 || 390 SecondLastInst->getOpcode() == PPC::BDZ) && 391 LastInst->getOpcode() == PPC::B) { 392 if (!SecondLastInst->getOperand(0).isMBB() || 393 !LastInst->getOperand(0).isMBB()) 394 return true; 395 if (DisableCTRLoopAnal) 396 return true; 397 TBB = SecondLastInst->getOperand(0).getMBB(); 398 Cond.push_back(MachineOperand::CreateImm(0)); 399 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 400 true)); 401 FBB = LastInst->getOperand(0).getMBB(); 402 return false; 403 } 404 405 // If the block ends with two PPC:Bs, handle it. The second one is not 406 // executed, so remove it. 407 if (SecondLastInst->getOpcode() == PPC::B && 408 LastInst->getOpcode() == PPC::B) { 409 if (!SecondLastInst->getOperand(0).isMBB()) 410 return true; 411 TBB = SecondLastInst->getOperand(0).getMBB(); 412 I = LastInst; 413 if (AllowModify) 414 I->eraseFromParent(); 415 return false; 416 } 417 418 // Otherwise, can't handle this. 419 return true; 420 } 421 422 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 423 MachineBasicBlock::iterator I = MBB.end(); 424 if (I == MBB.begin()) return 0; 425 --I; 426 while (I->isDebugValue()) { 427 if (I == MBB.begin()) 428 return 0; 429 --I; 430 } 431 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 432 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 433 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 434 return 0; 435 436 // Remove the branch. 437 I->eraseFromParent(); 438 439 I = MBB.end(); 440 441 if (I == MBB.begin()) return 1; 442 --I; 443 if (I->getOpcode() != PPC::BCC && 444 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 445 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 446 return 1; 447 448 // Remove the branch. 449 I->eraseFromParent(); 450 return 2; 451 } 452 453 unsigned 454 PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 455 MachineBasicBlock *FBB, 456 const SmallVectorImpl<MachineOperand> &Cond, 457 DebugLoc DL) const { 458 // Shouldn't be a fall through. 459 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 460 assert((Cond.size() == 2 || Cond.size() == 0) && 461 "PPC branch conditions have two components!"); 462 463 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 464 465 // One-way branch. 466 if (FBB == 0) { 467 if (Cond.empty()) // Unconditional branch 468 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 469 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 470 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 471 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 472 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 473 else // Conditional branch 474 BuildMI(&MBB, DL, get(PPC::BCC)) 475 .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB); 476 return 1; 477 } 478 479 // Two-way Conditional Branch. 480 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 481 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 482 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 483 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 484 else 485 BuildMI(&MBB, DL, get(PPC::BCC)) 486 .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB); 487 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 488 return 2; 489 } 490 491 // Select analysis. 492 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 493 const SmallVectorImpl<MachineOperand> &Cond, 494 unsigned TrueReg, unsigned FalseReg, 495 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 496 if (!TM.getSubtargetImpl()->hasISEL()) 497 return false; 498 499 if (Cond.size() != 2) 500 return false; 501 502 // If this is really a bdnz-like condition, then it cannot be turned into a 503 // select. 504 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 505 return false; 506 507 // Check register classes. 508 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 509 const TargetRegisterClass *RC = 510 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 511 if (!RC) 512 return false; 513 514 // isel is for regular integer GPRs only. 515 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 516 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 517 !PPC::G8RCRegClass.hasSubClassEq(RC) && 518 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 519 return false; 520 521 // FIXME: These numbers are for the A2, how well they work for other cores is 522 // an open question. On the A2, the isel instruction has a 2-cycle latency 523 // but single-cycle throughput. These numbers are used in combination with 524 // the MispredictPenalty setting from the active SchedMachineModel. 525 CondCycles = 1; 526 TrueCycles = 1; 527 FalseCycles = 1; 528 529 return true; 530 } 531 532 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 533 MachineBasicBlock::iterator MI, DebugLoc dl, 534 unsigned DestReg, 535 const SmallVectorImpl<MachineOperand> &Cond, 536 unsigned TrueReg, unsigned FalseReg) const { 537 assert(Cond.size() == 2 && 538 "PPC branch conditions have two components!"); 539 540 assert(TM.getSubtargetImpl()->hasISEL() && 541 "Cannot insert select on target without ISEL support"); 542 543 // Get the register classes. 544 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 545 const TargetRegisterClass *RC = 546 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 547 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 548 549 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 550 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 551 assert((Is64Bit || 552 PPC::GPRCRegClass.hasSubClassEq(RC) || 553 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 554 "isel is for regular integer GPRs only"); 555 556 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 557 unsigned SelectPred = Cond[0].getImm(); 558 559 unsigned SubIdx; 560 bool SwapOps; 561 switch (SelectPred) { 562 default: llvm_unreachable("invalid predicate for isel"); 563 case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break; 564 case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break; 565 case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break; 566 case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break; 567 case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break; 568 case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break; 569 case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break; 570 case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break; 571 } 572 573 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 574 SecondReg = SwapOps ? TrueReg : FalseReg; 575 576 // The first input register of isel cannot be r0. If it is a member 577 // of a register class that can be r0, then copy it first (the 578 // register allocator should eliminate the copy). 579 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 580 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 581 const TargetRegisterClass *FirstRC = 582 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 583 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 584 unsigned OldFirstReg = FirstReg; 585 FirstReg = MRI.createVirtualRegister(FirstRC); 586 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 587 .addReg(OldFirstReg); 588 } 589 590 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 591 .addReg(FirstReg).addReg(SecondReg) 592 .addReg(Cond[1].getReg(), 0, SubIdx); 593 } 594 595 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 596 MachineBasicBlock::iterator I, DebugLoc DL, 597 unsigned DestReg, unsigned SrcReg, 598 bool KillSrc) const { 599 unsigned Opc; 600 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 601 Opc = PPC::OR; 602 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 603 Opc = PPC::OR8; 604 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 605 Opc = PPC::FMR; 606 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 607 Opc = PPC::MCRF; 608 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 609 Opc = PPC::VOR; 610 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 611 Opc = PPC::CROR; 612 else 613 llvm_unreachable("Impossible reg-to-reg copy"); 614 615 const MCInstrDesc &MCID = get(Opc); 616 if (MCID.getNumOperands() == 3) 617 BuildMI(MBB, I, DL, MCID, DestReg) 618 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 619 else 620 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 621 } 622 623 // This function returns true if a CR spill is necessary and false otherwise. 624 bool 625 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, 626 unsigned SrcReg, bool isKill, 627 int FrameIdx, 628 const TargetRegisterClass *RC, 629 SmallVectorImpl<MachineInstr*> &NewMIs, 630 bool &NonRI, bool &SpillsVRS) const{ 631 // Note: If additional store instructions are added here, 632 // update isStoreToStackSlot. 633 634 DebugLoc DL; 635 if (PPC::GPRCRegClass.hasSubClassEq(RC)) { 636 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) 637 .addReg(SrcReg, 638 getKillRegState(isKill)), 639 FrameIdx)); 640 } else if (PPC::G8RCRegClass.hasSubClassEq(RC)) { 641 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) 642 .addReg(SrcReg, 643 getKillRegState(isKill)), 644 FrameIdx)); 645 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 646 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) 647 .addReg(SrcReg, 648 getKillRegState(isKill)), 649 FrameIdx)); 650 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 651 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) 652 .addReg(SrcReg, 653 getKillRegState(isKill)), 654 FrameIdx)); 655 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 656 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) 657 .addReg(SrcReg, 658 getKillRegState(isKill)), 659 FrameIdx)); 660 return true; 661 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 662 // FIXME: We use CRi here because there is no mtcrf on a bit. Since the 663 // backend currently only uses CR1EQ as an individual bit, this should 664 // not cause any bug. If we need other uses of CR bits, the following 665 // code may be invalid. 666 unsigned Reg = 0; 667 if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR0GT || 668 SrcReg == PPC::CR0EQ || SrcReg == PPC::CR0UN) 669 Reg = PPC::CR0; 670 else if (SrcReg == PPC::CR1LT || SrcReg == PPC::CR1GT || 671 SrcReg == PPC::CR1EQ || SrcReg == PPC::CR1UN) 672 Reg = PPC::CR1; 673 else if (SrcReg == PPC::CR2LT || SrcReg == PPC::CR2GT || 674 SrcReg == PPC::CR2EQ || SrcReg == PPC::CR2UN) 675 Reg = PPC::CR2; 676 else if (SrcReg == PPC::CR3LT || SrcReg == PPC::CR3GT || 677 SrcReg == PPC::CR3EQ || SrcReg == PPC::CR3UN) 678 Reg = PPC::CR3; 679 else if (SrcReg == PPC::CR4LT || SrcReg == PPC::CR4GT || 680 SrcReg == PPC::CR4EQ || SrcReg == PPC::CR4UN) 681 Reg = PPC::CR4; 682 else if (SrcReg == PPC::CR5LT || SrcReg == PPC::CR5GT || 683 SrcReg == PPC::CR5EQ || SrcReg == PPC::CR5UN) 684 Reg = PPC::CR5; 685 else if (SrcReg == PPC::CR6LT || SrcReg == PPC::CR6GT || 686 SrcReg == PPC::CR6EQ || SrcReg == PPC::CR6UN) 687 Reg = PPC::CR6; 688 else if (SrcReg == PPC::CR7LT || SrcReg == PPC::CR7GT || 689 SrcReg == PPC::CR7EQ || SrcReg == PPC::CR7UN) 690 Reg = PPC::CR7; 691 692 return StoreRegToStackSlot(MF, Reg, isKill, FrameIdx, 693 &PPC::CRRCRegClass, NewMIs, NonRI, SpillsVRS); 694 695 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 696 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX)) 697 .addReg(SrcReg, 698 getKillRegState(isKill)), 699 FrameIdx)); 700 NonRI = true; 701 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 702 assert(TM.getSubtargetImpl()->isDarwin() && 703 "VRSAVE only needs spill/restore on Darwin"); 704 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE)) 705 .addReg(SrcReg, 706 getKillRegState(isKill)), 707 FrameIdx)); 708 SpillsVRS = true; 709 } else { 710 llvm_unreachable("Unknown regclass!"); 711 } 712 713 return false; 714 } 715 716 void 717 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 718 MachineBasicBlock::iterator MI, 719 unsigned SrcReg, bool isKill, int FrameIdx, 720 const TargetRegisterClass *RC, 721 const TargetRegisterInfo *TRI) const { 722 MachineFunction &MF = *MBB.getParent(); 723 SmallVector<MachineInstr*, 4> NewMIs; 724 725 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 726 FuncInfo->setHasSpills(); 727 728 bool NonRI = false, SpillsVRS = false; 729 if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs, 730 NonRI, SpillsVRS)) 731 FuncInfo->setSpillsCR(); 732 733 if (SpillsVRS) 734 FuncInfo->setSpillsVRSAVE(); 735 736 if (NonRI) 737 FuncInfo->setHasNonRISpills(); 738 739 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 740 MBB.insert(MI, NewMIs[i]); 741 742 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 743 MachineMemOperand *MMO = 744 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 745 MachineMemOperand::MOStore, 746 MFI.getObjectSize(FrameIdx), 747 MFI.getObjectAlignment(FrameIdx)); 748 NewMIs.back()->addMemOperand(MF, MMO); 749 } 750 751 bool 752 PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL, 753 unsigned DestReg, int FrameIdx, 754 const TargetRegisterClass *RC, 755 SmallVectorImpl<MachineInstr*> &NewMIs, 756 bool &NonRI, bool &SpillsVRS) const{ 757 // Note: If additional load instructions are added here, 758 // update isLoadFromStackSlot. 759 760 if (PPC::GPRCRegClass.hasSubClassEq(RC)) { 761 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), 762 DestReg), FrameIdx)); 763 } else if (PPC::G8RCRegClass.hasSubClassEq(RC)) { 764 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), 765 FrameIdx)); 766 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 767 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), 768 FrameIdx)); 769 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 770 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), 771 FrameIdx)); 772 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 773 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 774 get(PPC::RESTORE_CR), DestReg), 775 FrameIdx)); 776 return true; 777 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 778 779 unsigned Reg = 0; 780 if (DestReg == PPC::CR0LT || DestReg == PPC::CR0GT || 781 DestReg == PPC::CR0EQ || DestReg == PPC::CR0UN) 782 Reg = PPC::CR0; 783 else if (DestReg == PPC::CR1LT || DestReg == PPC::CR1GT || 784 DestReg == PPC::CR1EQ || DestReg == PPC::CR1UN) 785 Reg = PPC::CR1; 786 else if (DestReg == PPC::CR2LT || DestReg == PPC::CR2GT || 787 DestReg == PPC::CR2EQ || DestReg == PPC::CR2UN) 788 Reg = PPC::CR2; 789 else if (DestReg == PPC::CR3LT || DestReg == PPC::CR3GT || 790 DestReg == PPC::CR3EQ || DestReg == PPC::CR3UN) 791 Reg = PPC::CR3; 792 else if (DestReg == PPC::CR4LT || DestReg == PPC::CR4GT || 793 DestReg == PPC::CR4EQ || DestReg == PPC::CR4UN) 794 Reg = PPC::CR4; 795 else if (DestReg == PPC::CR5LT || DestReg == PPC::CR5GT || 796 DestReg == PPC::CR5EQ || DestReg == PPC::CR5UN) 797 Reg = PPC::CR5; 798 else if (DestReg == PPC::CR6LT || DestReg == PPC::CR6GT || 799 DestReg == PPC::CR6EQ || DestReg == PPC::CR6UN) 800 Reg = PPC::CR6; 801 else if (DestReg == PPC::CR7LT || DestReg == PPC::CR7GT || 802 DestReg == PPC::CR7EQ || DestReg == PPC::CR7UN) 803 Reg = PPC::CR7; 804 805 return LoadRegFromStackSlot(MF, DL, Reg, FrameIdx, 806 &PPC::CRRCRegClass, NewMIs, NonRI, SpillsVRS); 807 808 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 809 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg), 810 FrameIdx)); 811 NonRI = true; 812 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 813 assert(TM.getSubtargetImpl()->isDarwin() && 814 "VRSAVE only needs spill/restore on Darwin"); 815 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 816 get(PPC::RESTORE_VRSAVE), 817 DestReg), 818 FrameIdx)); 819 SpillsVRS = true; 820 } else { 821 llvm_unreachable("Unknown regclass!"); 822 } 823 824 return false; 825 } 826 827 void 828 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 829 MachineBasicBlock::iterator MI, 830 unsigned DestReg, int FrameIdx, 831 const TargetRegisterClass *RC, 832 const TargetRegisterInfo *TRI) const { 833 MachineFunction &MF = *MBB.getParent(); 834 SmallVector<MachineInstr*, 4> NewMIs; 835 DebugLoc DL; 836 if (MI != MBB.end()) DL = MI->getDebugLoc(); 837 838 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 839 FuncInfo->setHasSpills(); 840 841 bool NonRI = false, SpillsVRS = false; 842 if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs, 843 NonRI, SpillsVRS)) 844 FuncInfo->setSpillsCR(); 845 846 if (SpillsVRS) 847 FuncInfo->setSpillsVRSAVE(); 848 849 if (NonRI) 850 FuncInfo->setHasNonRISpills(); 851 852 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 853 MBB.insert(MI, NewMIs[i]); 854 855 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 856 MachineMemOperand *MMO = 857 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 858 MachineMemOperand::MOLoad, 859 MFI.getObjectSize(FrameIdx), 860 MFI.getObjectAlignment(FrameIdx)); 861 NewMIs.back()->addMemOperand(MF, MMO); 862 } 863 864 bool PPCInstrInfo:: 865 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 866 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 867 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 868 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 869 else 870 // Leave the CR# the same, but invert the condition. 871 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 872 return false; 873 } 874 875 bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, 876 unsigned Reg, MachineRegisterInfo *MRI) const { 877 // For some instructions, it is legal to fold ZERO into the RA register field. 878 // A zero immediate should always be loaded with a single li. 879 unsigned DefOpc = DefMI->getOpcode(); 880 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 881 return false; 882 if (!DefMI->getOperand(1).isImm()) 883 return false; 884 if (DefMI->getOperand(1).getImm() != 0) 885 return false; 886 887 // Note that we cannot here invert the arguments of an isel in order to fold 888 // a ZERO into what is presented as the second argument. All we have here 889 // is the condition bit, and that might come from a CR-logical bit operation. 890 891 const MCInstrDesc &UseMCID = UseMI->getDesc(); 892 893 // Only fold into real machine instructions. 894 if (UseMCID.isPseudo()) 895 return false; 896 897 unsigned UseIdx; 898 for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx) 899 if (UseMI->getOperand(UseIdx).isReg() && 900 UseMI->getOperand(UseIdx).getReg() == Reg) 901 break; 902 903 assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI"); 904 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 905 906 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 907 908 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 909 // register (which might also be specified as a pointer class kind). 910 if (UseInfo->isLookupPtrRegClass()) { 911 if (UseInfo->RegClass /* Kind */ != 1) 912 return false; 913 } else { 914 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 915 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 916 return false; 917 } 918 919 // Make sure this is not tied to an output register (or otherwise 920 // constrained). This is true for ST?UX registers, for example, which 921 // are tied to their output registers. 922 if (UseInfo->Constraints != 0) 923 return false; 924 925 unsigned ZeroReg; 926 if (UseInfo->isLookupPtrRegClass()) { 927 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 928 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 929 } else { 930 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 931 PPC::ZERO8 : PPC::ZERO; 932 } 933 934 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 935 UseMI->getOperand(UseIdx).setReg(ZeroReg); 936 937 if (DeleteDef) 938 DefMI->eraseFromParent(); 939 940 return true; 941 } 942 943 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 944 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 945 I != IE; ++I) 946 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 947 return true; 948 return false; 949 } 950 951 // We should make sure that, if we're going to predicate both sides of a 952 // condition (a diamond), that both sides don't define the counter register. We 953 // can predicate counter-decrement-based branches, but while that predicates 954 // the branching, it does not predicate the counter decrement. If we tried to 955 // merge the triangle into one predicated block, we'd decrement the counter 956 // twice. 957 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 958 unsigned NumT, unsigned ExtraT, 959 MachineBasicBlock &FMBB, 960 unsigned NumF, unsigned ExtraF, 961 const BranchProbability &Probability) const { 962 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 963 } 964 965 966 bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const { 967 // The predicated branches are identified by their type, not really by the 968 // explicit presence of a predicate. Furthermore, some of them can be 969 // predicated more than once. Because if conversion won't try to predicate 970 // any instruction which already claims to be predicated (by returning true 971 // here), always return false. In doing so, we let isPredicable() be the 972 // final word on whether not the instruction can be (further) predicated. 973 974 return false; 975 } 976 977 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 978 if (!MI->isTerminator()) 979 return false; 980 981 // Conditional branch is a special case. 982 if (MI->isBranch() && !MI->isBarrier()) 983 return true; 984 985 return !isPredicated(MI); 986 } 987 988 bool PPCInstrInfo::PredicateInstruction( 989 MachineInstr *MI, 990 const SmallVectorImpl<MachineOperand> &Pred) const { 991 unsigned OpC = MI->getOpcode(); 992 if (OpC == PPC::BLR) { 993 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 994 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 995 MI->setDesc(get(Pred[0].getImm() ? 996 (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) : 997 (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 998 } else { 999 MI->setDesc(get(PPC::BCLR)); 1000 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1001 .addImm(Pred[0].getImm()) 1002 .addReg(Pred[1].getReg()); 1003 } 1004 1005 return true; 1006 } else if (OpC == PPC::B) { 1007 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1008 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 1009 MI->setDesc(get(Pred[0].getImm() ? 1010 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1011 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1012 } else { 1013 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1014 MI->RemoveOperand(0); 1015 1016 MI->setDesc(get(PPC::BCC)); 1017 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1018 .addImm(Pred[0].getImm()) 1019 .addReg(Pred[1].getReg()) 1020 .addMBB(MBB); 1021 } 1022 1023 return true; 1024 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || 1025 OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { 1026 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1027 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1028 1029 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1030 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 1031 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) : 1032 (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1033 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1034 .addImm(Pred[0].getImm()) 1035 .addReg(Pred[1].getReg()); 1036 return true; 1037 } 1038 1039 return false; 1040 } 1041 1042 bool PPCInstrInfo::SubsumesPredicate( 1043 const SmallVectorImpl<MachineOperand> &Pred1, 1044 const SmallVectorImpl<MachineOperand> &Pred2) const { 1045 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1046 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1047 1048 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1049 return false; 1050 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1051 return false; 1052 1053 // P1 can only subsume P2 if they test the same condition register. 1054 if (Pred1[1].getReg() != Pred2[1].getReg()) 1055 return false; 1056 1057 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1058 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1059 1060 if (P1 == P2) 1061 return true; 1062 1063 // Does P1 subsume P2, e.g. GE subsumes GT. 1064 if (P1 == PPC::PRED_LE && 1065 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1066 return true; 1067 if (P1 == PPC::PRED_GE && 1068 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1069 return true; 1070 1071 return false; 1072 } 1073 1074 bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI, 1075 std::vector<MachineOperand> &Pred) const { 1076 // Note: At the present time, the contents of Pred from this function is 1077 // unused by IfConversion. This implementation follows ARM by pushing the 1078 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1079 // predicate, instructions defining CTR or CTR8 are also included as 1080 // predicate-defining instructions. 1081 1082 const TargetRegisterClass *RCs[] = 1083 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1084 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1085 1086 bool Found = false; 1087 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1088 const MachineOperand &MO = MI->getOperand(i); 1089 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1090 const TargetRegisterClass *RC = RCs[c]; 1091 if (MO.isReg()) { 1092 if (MO.isDef() && RC->contains(MO.getReg())) { 1093 Pred.push_back(MO); 1094 Found = true; 1095 } 1096 } else if (MO.isRegMask()) { 1097 for (TargetRegisterClass::iterator I = RC->begin(), 1098 IE = RC->end(); I != IE; ++I) 1099 if (MO.clobbersPhysReg(*I)) { 1100 Pred.push_back(MO); 1101 Found = true; 1102 } 1103 } 1104 } 1105 } 1106 1107 return Found; 1108 } 1109 1110 bool PPCInstrInfo::isPredicable(MachineInstr *MI) const { 1111 unsigned OpC = MI->getOpcode(); 1112 switch (OpC) { 1113 default: 1114 return false; 1115 case PPC::B: 1116 case PPC::BLR: 1117 case PPC::BCTR: 1118 case PPC::BCTR8: 1119 case PPC::BCTRL: 1120 case PPC::BCTRL8: 1121 return true; 1122 } 1123 } 1124 1125 bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI, 1126 unsigned &SrcReg, unsigned &SrcReg2, 1127 int &Mask, int &Value) const { 1128 unsigned Opc = MI->getOpcode(); 1129 1130 switch (Opc) { 1131 default: return false; 1132 case PPC::CMPWI: 1133 case PPC::CMPLWI: 1134 case PPC::CMPDI: 1135 case PPC::CMPLDI: 1136 SrcReg = MI->getOperand(1).getReg(); 1137 SrcReg2 = 0; 1138 Value = MI->getOperand(2).getImm(); 1139 Mask = 0xFFFF; 1140 return true; 1141 case PPC::CMPW: 1142 case PPC::CMPLW: 1143 case PPC::CMPD: 1144 case PPC::CMPLD: 1145 case PPC::FCMPUS: 1146 case PPC::FCMPUD: 1147 SrcReg = MI->getOperand(1).getReg(); 1148 SrcReg2 = MI->getOperand(2).getReg(); 1149 return true; 1150 } 1151 } 1152 1153 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr, 1154 unsigned SrcReg, unsigned SrcReg2, 1155 int Mask, int Value, 1156 const MachineRegisterInfo *MRI) const { 1157 if (DisableCmpOpt) 1158 return false; 1159 1160 int OpC = CmpInstr->getOpcode(); 1161 unsigned CRReg = CmpInstr->getOperand(0).getReg(); 1162 1163 // FP record forms set CR1 based on the execption status bits, not a 1164 // comparison with zero. 1165 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1166 return false; 1167 1168 // The record forms set the condition register based on a signed comparison 1169 // with zero (so says the ISA manual). This is not as straightforward as it 1170 // seems, however, because this is always a 64-bit comparison on PPC64, even 1171 // for instructions that are 32-bit in nature (like slw for example). 1172 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1173 // for equality checks (as those don't depend on the sign). On PPC64, 1174 // we are restricted to equality for unsigned 64-bit comparisons and for 1175 // signed 32-bit comparisons the applicability is more restricted. 1176 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 1177 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1178 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1179 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1180 1181 // Get the unique definition of SrcReg. 1182 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1183 if (!MI) return false; 1184 int MIOpC = MI->getOpcode(); 1185 1186 bool equalityOnly = false; 1187 bool noSub = false; 1188 if (isPPC64) { 1189 if (is32BitSignedCompare) { 1190 // We can perform this optimization only if MI is sign-extending. 1191 if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo || 1192 MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo || 1193 MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo || 1194 MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo || 1195 MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) { 1196 noSub = true; 1197 } else 1198 return false; 1199 } else if (is32BitUnsignedCompare) { 1200 // We can perform this optimization, equality only, if MI is 1201 // zero-extending. 1202 if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo || 1203 MIOpC == PPC::SLW || MIOpC == PPC::SLWo || 1204 MIOpC == PPC::SRW || MIOpC == PPC::SRWo) { 1205 noSub = true; 1206 equalityOnly = true; 1207 } else 1208 return false; 1209 } else 1210 equalityOnly = is64BitUnsignedCompare; 1211 } else 1212 equalityOnly = is32BitUnsignedCompare; 1213 1214 if (equalityOnly) { 1215 // We need to check the uses of the condition register in order to reject 1216 // non-equality comparisons. 1217 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(CRReg), 1218 IE = MRI->use_end(); I != IE; ++I) { 1219 MachineInstr *UseMI = &*I; 1220 if (UseMI->getOpcode() == PPC::BCC) { 1221 unsigned Pred = UseMI->getOperand(0).getImm(); 1222 if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE) 1223 return false; 1224 } else if (UseMI->getOpcode() == PPC::ISEL || 1225 UseMI->getOpcode() == PPC::ISEL8) { 1226 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1227 if (SubIdx != PPC::sub_eq) 1228 return false; 1229 } else 1230 return false; 1231 } 1232 } 1233 1234 MachineBasicBlock::iterator I = CmpInstr; 1235 1236 // Scan forward to find the first use of the compare. 1237 for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end(); 1238 I != EL; ++I) { 1239 bool FoundUse = false; 1240 for (MachineRegisterInfo::use_iterator J = MRI->use_begin(CRReg), 1241 JE = MRI->use_end(); J != JE; ++J) 1242 if (&*J == &*I) { 1243 FoundUse = true; 1244 break; 1245 } 1246 1247 if (FoundUse) 1248 break; 1249 } 1250 1251 // There are two possible candidates which can be changed to set CR[01]. 1252 // One is MI, the other is a SUB instruction. 1253 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1254 MachineInstr *Sub = NULL; 1255 if (SrcReg2 != 0) 1256 // MI is not a candidate for CMPrr. 1257 MI = NULL; 1258 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1259 // same BB as the comparison. This is to allow the check below to avoid calls 1260 // (and other explicit clobbers); instead we should really check for these 1261 // more explicitly (in at least a few predecessors). 1262 else if (MI->getParent() != CmpInstr->getParent() || Value != 0) { 1263 // PPC does not have a record-form SUBri. 1264 return false; 1265 } 1266 1267 // Search for Sub. 1268 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1269 --I; 1270 1271 // Get ready to iterate backward from CmpInstr. 1272 MachineBasicBlock::iterator E = MI, 1273 B = CmpInstr->getParent()->begin(); 1274 1275 for (; I != E && !noSub; --I) { 1276 const MachineInstr &Instr = *I; 1277 unsigned IOpC = Instr.getOpcode(); 1278 1279 if (&*I != CmpInstr && ( 1280 Instr.modifiesRegister(PPC::CR0, TRI) || 1281 Instr.readsRegister(PPC::CR0, TRI))) 1282 // This instruction modifies or uses the record condition register after 1283 // the one we want to change. While we could do this transformation, it 1284 // would likely not be profitable. This transformation removes one 1285 // instruction, and so even forcing RA to generate one move probably 1286 // makes it unprofitable. 1287 return false; 1288 1289 // Check whether CmpInstr can be made redundant by the current instruction. 1290 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1291 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1292 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1293 ((Instr.getOperand(1).getReg() == SrcReg && 1294 Instr.getOperand(2).getReg() == SrcReg2) || 1295 (Instr.getOperand(1).getReg() == SrcReg2 && 1296 Instr.getOperand(2).getReg() == SrcReg))) { 1297 Sub = &*I; 1298 break; 1299 } 1300 1301 if (I == B) 1302 // The 'and' is below the comparison instruction. 1303 return false; 1304 } 1305 1306 // Return false if no candidates exist. 1307 if (!MI && !Sub) 1308 return false; 1309 1310 // The single candidate is called MI. 1311 if (!MI) MI = Sub; 1312 1313 int NewOpC = -1; 1314 MIOpC = MI->getOpcode(); 1315 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8) 1316 NewOpC = MIOpC; 1317 else { 1318 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1319 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1320 NewOpC = MIOpC; 1321 } 1322 1323 // FIXME: On the non-embedded POWER architectures, only some of the record 1324 // forms are fast, and we should use only the fast ones. 1325 1326 // The defining instruction has a record form (or is already a record 1327 // form). It is possible, however, that we'll need to reverse the condition 1328 // code of the users. 1329 if (NewOpC == -1) 1330 return false; 1331 1332 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1333 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1334 1335 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1336 // needs to be updated to be based on SUB. Push the condition code 1337 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1338 // condition code of these operands will be modified. 1339 bool ShouldSwap = false; 1340 if (Sub) { 1341 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1342 Sub->getOperand(2).getReg() == SrcReg; 1343 1344 // The operands to subf are the opposite of sub, so only in the fixed-point 1345 // case, invert the order. 1346 ShouldSwap = !ShouldSwap; 1347 } 1348 1349 if (ShouldSwap) 1350 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(CRReg), 1351 IE = MRI->use_end(); I != IE; ++I) { 1352 MachineInstr *UseMI = &*I; 1353 if (UseMI->getOpcode() == PPC::BCC) { 1354 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1355 assert((!equalityOnly || 1356 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) && 1357 "Invalid predicate for equality-only optimization"); 1358 PredsToUpdate.push_back(std::make_pair(&((*I).getOperand(0)), 1359 PPC::getSwappedPredicate(Pred))); 1360 } else if (UseMI->getOpcode() == PPC::ISEL || 1361 UseMI->getOpcode() == PPC::ISEL8) { 1362 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1363 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1364 "Invalid CR bit for equality-only optimization"); 1365 1366 if (NewSubReg == PPC::sub_lt) 1367 NewSubReg = PPC::sub_gt; 1368 else if (NewSubReg == PPC::sub_gt) 1369 NewSubReg = PPC::sub_lt; 1370 1371 SubRegsToUpdate.push_back(std::make_pair(&((*I).getOperand(3)), 1372 NewSubReg)); 1373 } else // We need to abort on a user we don't understand. 1374 return false; 1375 } 1376 1377 // Create a new virtual register to hold the value of the CR set by the 1378 // record-form instruction. If the instruction was not previously in 1379 // record form, then set the kill flag on the CR. 1380 CmpInstr->eraseFromParent(); 1381 1382 MachineBasicBlock::iterator MII = MI; 1383 BuildMI(*MI->getParent(), llvm::next(MII), MI->getDebugLoc(), 1384 get(TargetOpcode::COPY), CRReg) 1385 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1386 1387 if (MIOpC != NewOpC) { 1388 // We need to be careful here: we're replacing one instruction with 1389 // another, and we need to make sure that we get all of the right 1390 // implicit uses and defs. On the other hand, the caller may be holding 1391 // an iterator to this instruction, and so we can't delete it (this is 1392 // specifically the case if this is the instruction directly after the 1393 // compare). 1394 1395 const MCInstrDesc &NewDesc = get(NewOpC); 1396 MI->setDesc(NewDesc); 1397 1398 if (NewDesc.ImplicitDefs) 1399 for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs(); 1400 *ImpDefs; ++ImpDefs) 1401 if (!MI->definesRegister(*ImpDefs)) 1402 MI->addOperand(*MI->getParent()->getParent(), 1403 MachineOperand::CreateReg(*ImpDefs, true, true)); 1404 if (NewDesc.ImplicitUses) 1405 for (const uint16_t *ImpUses = NewDesc.getImplicitUses(); 1406 *ImpUses; ++ImpUses) 1407 if (!MI->readsRegister(*ImpUses)) 1408 MI->addOperand(*MI->getParent()->getParent(), 1409 MachineOperand::CreateReg(*ImpUses, false, true)); 1410 } 1411 1412 // Modify the condition code of operands in OperandsToUpdate. 1413 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1414 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1415 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1416 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1417 1418 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1419 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1420 1421 return true; 1422 } 1423 1424 /// GetInstSize - Return the number of bytes of code the specified 1425 /// instruction may be. This returns the maximum number of bytes. 1426 /// 1427 unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { 1428 switch (MI->getOpcode()) { 1429 case PPC::INLINEASM: { // Inline Asm: Variable size. 1430 const MachineFunction *MF = MI->getParent()->getParent(); 1431 const char *AsmStr = MI->getOperand(0).getSymbolName(); 1432 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1433 } 1434 case PPC::PROLOG_LABEL: 1435 case PPC::EH_LABEL: 1436 case PPC::GC_LABEL: 1437 case PPC::DBG_VALUE: 1438 return 0; 1439 case PPC::BL8_NOP: 1440 case PPC::BLA8_NOP: 1441 return 8; 1442 default: 1443 return 4; // PowerPC instructions are all 4 bytes 1444 } 1445 } 1446 1447 #undef DEBUG_TYPE 1448 #define DEBUG_TYPE "ppc-early-ret" 1449 STATISTIC(NumBCLR, "Number of early conditional returns"); 1450 STATISTIC(NumBLR, "Number of early returns"); 1451 1452 namespace llvm { 1453 void initializePPCEarlyReturnPass(PassRegistry&); 1454 } 1455 1456 namespace { 1457 // PPCEarlyReturn pass - For simple functions without epilogue code, move 1458 // returns up, and create conditional returns, to avoid unnecessary 1459 // branch-to-blr sequences. 1460 struct PPCEarlyReturn : public MachineFunctionPass { 1461 static char ID; 1462 PPCEarlyReturn() : MachineFunctionPass(ID) { 1463 initializePPCEarlyReturnPass(*PassRegistry::getPassRegistry()); 1464 } 1465 1466 const PPCTargetMachine *TM; 1467 const PPCInstrInfo *TII; 1468 1469 protected: 1470 bool processBlock(MachineBasicBlock &ReturnMBB) { 1471 bool Changed = false; 1472 1473 MachineBasicBlock::iterator I = ReturnMBB.begin(); 1474 I = ReturnMBB.SkipPHIsAndLabels(I); 1475 1476 // The block must be essentially empty except for the blr. 1477 if (I == ReturnMBB.end() || I->getOpcode() != PPC::BLR || 1478 I != ReturnMBB.getLastNonDebugInstr()) 1479 return Changed; 1480 1481 SmallVector<MachineBasicBlock*, 8> PredToRemove; 1482 for (MachineBasicBlock::pred_iterator PI = ReturnMBB.pred_begin(), 1483 PIE = ReturnMBB.pred_end(); PI != PIE; ++PI) { 1484 bool OtherReference = false, BlockChanged = false; 1485 for (MachineBasicBlock::iterator J = (*PI)->getLastNonDebugInstr();;) { 1486 if (J->getOpcode() == PPC::B) { 1487 if (J->getOperand(0).getMBB() == &ReturnMBB) { 1488 // This is an unconditional branch to the return. Replace the 1489 // branch with a blr. 1490 BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BLR)); 1491 MachineBasicBlock::iterator K = J--; 1492 K->eraseFromParent(); 1493 BlockChanged = true; 1494 ++NumBLR; 1495 continue; 1496 } 1497 } else if (J->getOpcode() == PPC::BCC) { 1498 if (J->getOperand(2).getMBB() == &ReturnMBB) { 1499 // This is a conditional branch to the return. Replace the branch 1500 // with a bclr. 1501 BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BCLR)) 1502 .addImm(J->getOperand(0).getImm()) 1503 .addReg(J->getOperand(1).getReg()); 1504 MachineBasicBlock::iterator K = J--; 1505 K->eraseFromParent(); 1506 BlockChanged = true; 1507 ++NumBCLR; 1508 continue; 1509 } 1510 } else if (J->isBranch()) { 1511 if (J->isIndirectBranch()) { 1512 if (ReturnMBB.hasAddressTaken()) 1513 OtherReference = true; 1514 } else 1515 for (unsigned i = 0; i < J->getNumOperands(); ++i) 1516 if (J->getOperand(i).isMBB() && 1517 J->getOperand(i).getMBB() == &ReturnMBB) 1518 OtherReference = true; 1519 } else if (!J->isTerminator() && !J->isDebugValue()) 1520 break; 1521 1522 if (J == (*PI)->begin()) 1523 break; 1524 1525 --J; 1526 } 1527 1528 if ((*PI)->canFallThrough() && (*PI)->isLayoutSuccessor(&ReturnMBB)) 1529 OtherReference = true; 1530 1531 // Predecessors are stored in a vector and can't be removed here. 1532 if (!OtherReference && BlockChanged) { 1533 PredToRemove.push_back(*PI); 1534 } 1535 1536 if (BlockChanged) 1537 Changed = true; 1538 } 1539 1540 for (unsigned i = 0, ie = PredToRemove.size(); i != ie; ++i) 1541 PredToRemove[i]->removeSuccessor(&ReturnMBB); 1542 1543 if (Changed && !ReturnMBB.hasAddressTaken()) { 1544 // We now might be able to merge this blr-only block into its 1545 // by-layout predecessor. 1546 if (ReturnMBB.pred_size() == 1 && 1547 (*ReturnMBB.pred_begin())->isLayoutSuccessor(&ReturnMBB)) { 1548 // Move the blr into the preceding block. 1549 MachineBasicBlock &PrevMBB = **ReturnMBB.pred_begin(); 1550 PrevMBB.splice(PrevMBB.end(), &ReturnMBB, I); 1551 PrevMBB.removeSuccessor(&ReturnMBB); 1552 } 1553 1554 if (ReturnMBB.pred_empty()) 1555 ReturnMBB.eraseFromParent(); 1556 } 1557 1558 return Changed; 1559 } 1560 1561 public: 1562 virtual bool runOnMachineFunction(MachineFunction &MF) { 1563 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 1564 TII = TM->getInstrInfo(); 1565 1566 bool Changed = false; 1567 1568 // If the function does not have at least two blocks, then there is 1569 // nothing to do. 1570 if (MF.size() < 2) 1571 return Changed; 1572 1573 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 1574 MachineBasicBlock &B = *I++; 1575 if (processBlock(B)) 1576 Changed = true; 1577 } 1578 1579 return Changed; 1580 } 1581 1582 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1583 MachineFunctionPass::getAnalysisUsage(AU); 1584 } 1585 }; 1586 } 1587 1588 INITIALIZE_PASS(PPCEarlyReturn, DEBUG_TYPE, 1589 "PowerPC Early-Return Creation", false, false) 1590 1591 char PPCEarlyReturn::ID = 0; 1592 FunctionPass* 1593 llvm::createPPCEarlyReturnPass() { return new PPCEarlyReturn(); } 1594 1595