1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the PowerPC implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCInstrInfo.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCHazardRecognizers.h" 18 #include "PPCInstrBuilder.h" 19 #include "PPCMachineFunctionInfo.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/ScheduleDAG.h" 31 #include "llvm/CodeGen/SlotIndexes.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCInst.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "ppc-instr-info" 44 45 #define GET_INSTRMAP_INFO 46 #define GET_INSTRINFO_CTOR_DTOR 47 #include "PPCGenInstrInfo.inc" 48 49 static cl:: 50 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 51 cl::desc("Disable analysis for CTR loops")); 52 53 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 54 cl::desc("Disable compare instruction optimization"), cl::Hidden); 55 56 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 57 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 58 cl::Hidden); 59 60 static cl::opt<bool> 61 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 62 cl::desc("Use the old (incorrect) instruction latency calculation")); 63 64 // Pin the vtable to this file. 65 void PPCInstrInfo::anchor() {} 66 67 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 68 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP), 69 Subtarget(STI), RI(STI.getTargetMachine()) {} 70 71 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 72 /// this target when scheduling the DAG. 73 ScheduleHazardRecognizer * 74 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 75 const ScheduleDAG *DAG) const { 76 unsigned Directive = 77 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); 78 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 79 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 80 const InstrItineraryData *II = 81 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 82 return new ScoreboardHazardRecognizer(II, DAG); 83 } 84 85 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 86 } 87 88 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 89 /// to use for this target when scheduling the DAG. 90 ScheduleHazardRecognizer * 91 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 92 const ScheduleDAG *DAG) const { 93 unsigned Directive = 94 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective(); 95 96 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 97 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 98 99 // Most subtargets use a PPC970 recognizer. 100 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 101 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 102 assert(DAG->TII && "No InstrInfo?"); 103 104 return new PPCHazardRecognizer970(*DAG); 105 } 106 107 return new ScoreboardHazardRecognizer(II, DAG); 108 } 109 110 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 111 const MachineInstr *MI, 112 unsigned *PredCost) const { 113 if (!ItinData || UseOldLatencyCalc) 114 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 115 116 // The default implementation of getInstrLatency calls getStageLatency, but 117 // getStageLatency does not do the right thing for us. While we have 118 // itinerary, most cores are fully pipelined, and so the itineraries only 119 // express the first part of the pipeline, not every stage. Instead, we need 120 // to use the listed output operand cycle number (using operand 0 here, which 121 // is an output). 122 123 unsigned Latency = 1; 124 unsigned DefClass = MI->getDesc().getSchedClass(); 125 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 126 const MachineOperand &MO = MI->getOperand(i); 127 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 128 continue; 129 130 int Cycle = ItinData->getOperandCycle(DefClass, i); 131 if (Cycle < 0) 132 continue; 133 134 Latency = std::max(Latency, (unsigned) Cycle); 135 } 136 137 return Latency; 138 } 139 140 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 141 const MachineInstr *DefMI, unsigned DefIdx, 142 const MachineInstr *UseMI, 143 unsigned UseIdx) const { 144 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 145 UseMI, UseIdx); 146 147 const MachineOperand &DefMO = DefMI->getOperand(DefIdx); 148 unsigned Reg = DefMO.getReg(); 149 150 bool IsRegCR; 151 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 152 const MachineRegisterInfo *MRI = 153 &DefMI->getParent()->getParent()->getRegInfo(); 154 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 155 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 156 } else { 157 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 158 PPC::CRBITRCRegClass.contains(Reg); 159 } 160 161 if (UseMI->isBranch() && IsRegCR) { 162 if (Latency < 0) 163 Latency = getInstrLatency(ItinData, DefMI); 164 165 // On some cores, there is an additional delay between writing to a condition 166 // register, and using it from a branch. 167 unsigned Directive = Subtarget.getDarwinDirective(); 168 switch (Directive) { 169 default: break; 170 case PPC::DIR_7400: 171 case PPC::DIR_750: 172 case PPC::DIR_970: 173 case PPC::DIR_E5500: 174 case PPC::DIR_PWR4: 175 case PPC::DIR_PWR5: 176 case PPC::DIR_PWR5X: 177 case PPC::DIR_PWR6: 178 case PPC::DIR_PWR6X: 179 case PPC::DIR_PWR7: 180 case PPC::DIR_PWR8: 181 Latency += 2; 182 break; 183 } 184 } 185 186 return Latency; 187 } 188 189 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 190 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 191 unsigned &SrcReg, unsigned &DstReg, 192 unsigned &SubIdx) const { 193 switch (MI.getOpcode()) { 194 default: return false; 195 case PPC::EXTSW: 196 case PPC::EXTSW_32_64: 197 SrcReg = MI.getOperand(1).getReg(); 198 DstReg = MI.getOperand(0).getReg(); 199 SubIdx = PPC::sub_32; 200 return true; 201 } 202 } 203 204 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 205 int &FrameIndex) const { 206 // Note: This list must be kept consistent with LoadRegFromStackSlot. 207 switch (MI->getOpcode()) { 208 default: break; 209 case PPC::LD: 210 case PPC::LWZ: 211 case PPC::LFS: 212 case PPC::LFD: 213 case PPC::RESTORE_CR: 214 case PPC::RESTORE_CRBIT: 215 case PPC::LVX: 216 case PPC::LXVD2X: 217 case PPC::QVLFDX: 218 case PPC::QVLFSXs: 219 case PPC::QVLFDXb: 220 case PPC::RESTORE_VRSAVE: 221 // Check for the operands added by addFrameReference (the immediate is the 222 // offset which defaults to 0). 223 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 224 MI->getOperand(2).isFI()) { 225 FrameIndex = MI->getOperand(2).getIndex(); 226 return MI->getOperand(0).getReg(); 227 } 228 break; 229 } 230 return 0; 231 } 232 233 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI, 234 int &FrameIndex) const { 235 // Note: This list must be kept consistent with StoreRegToStackSlot. 236 switch (MI->getOpcode()) { 237 default: break; 238 case PPC::STD: 239 case PPC::STW: 240 case PPC::STFS: 241 case PPC::STFD: 242 case PPC::SPILL_CR: 243 case PPC::SPILL_CRBIT: 244 case PPC::STVX: 245 case PPC::STXVD2X: 246 case PPC::QVSTFDX: 247 case PPC::QVSTFSXs: 248 case PPC::QVSTFDXb: 249 case PPC::SPILL_VRSAVE: 250 // Check for the operands added by addFrameReference (the immediate is the 251 // offset which defaults to 0). 252 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 253 MI->getOperand(2).isFI()) { 254 FrameIndex = MI->getOperand(2).getIndex(); 255 return MI->getOperand(0).getReg(); 256 } 257 break; 258 } 259 return 0; 260 } 261 262 // commuteInstruction - We can commute rlwimi instructions, but only if the 263 // rotate amt is zero. We also have to munge the immediates a bit. 264 MachineInstr * 265 PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { 266 MachineFunction &MF = *MI->getParent()->getParent(); 267 268 // Normal instructions can be commuted the obvious way. 269 if (MI->getOpcode() != PPC::RLWIMI && 270 MI->getOpcode() != PPC::RLWIMIo) 271 return TargetInstrInfo::commuteInstruction(MI, NewMI); 272 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 273 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 274 // changing the relative order of the mask operands might change what happens 275 // to the high-bits of the mask (and, thus, the result). 276 277 // Cannot commute if it has a non-zero rotate count. 278 if (MI->getOperand(3).getImm() != 0) 279 return nullptr; 280 281 // If we have a zero rotate count, we have: 282 // M = mask(MB,ME) 283 // Op0 = (Op1 & ~M) | (Op2 & M) 284 // Change this to: 285 // M = mask((ME+1)&31, (MB-1)&31) 286 // Op0 = (Op2 & ~M) | (Op1 & M) 287 288 // Swap op1/op2 289 unsigned Reg0 = MI->getOperand(0).getReg(); 290 unsigned Reg1 = MI->getOperand(1).getReg(); 291 unsigned Reg2 = MI->getOperand(2).getReg(); 292 unsigned SubReg1 = MI->getOperand(1).getSubReg(); 293 unsigned SubReg2 = MI->getOperand(2).getSubReg(); 294 bool Reg1IsKill = MI->getOperand(1).isKill(); 295 bool Reg2IsKill = MI->getOperand(2).isKill(); 296 bool ChangeReg0 = false; 297 // If machine instrs are no longer in two-address forms, update 298 // destination register as well. 299 if (Reg0 == Reg1) { 300 // Must be two address instruction! 301 assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 302 "Expecting a two-address instruction!"); 303 assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 304 Reg2IsKill = false; 305 ChangeReg0 = true; 306 } 307 308 // Masks. 309 unsigned MB = MI->getOperand(4).getImm(); 310 unsigned ME = MI->getOperand(5).getImm(); 311 312 if (NewMI) { 313 // Create a new instruction. 314 unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg(); 315 bool Reg0IsDead = MI->getOperand(0).isDead(); 316 return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) 317 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 318 .addReg(Reg2, getKillRegState(Reg2IsKill)) 319 .addReg(Reg1, getKillRegState(Reg1IsKill)) 320 .addImm((ME+1) & 31) 321 .addImm((MB-1) & 31); 322 } 323 324 if (ChangeReg0) { 325 MI->getOperand(0).setReg(Reg2); 326 MI->getOperand(0).setSubReg(SubReg2); 327 } 328 MI->getOperand(2).setReg(Reg1); 329 MI->getOperand(1).setReg(Reg2); 330 MI->getOperand(2).setSubReg(SubReg1); 331 MI->getOperand(1).setSubReg(SubReg2); 332 MI->getOperand(2).setIsKill(Reg1IsKill); 333 MI->getOperand(1).setIsKill(Reg2IsKill); 334 335 // Swap the mask around. 336 MI->getOperand(4).setImm((ME+1) & 31); 337 MI->getOperand(5).setImm((MB-1) & 31); 338 return MI; 339 } 340 341 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1, 342 unsigned &SrcOpIdx2) const { 343 // For VSX A-Type FMA instructions, it is the first two operands that can be 344 // commuted, however, because the non-encoded tied input operand is listed 345 // first, the operands to swap are actually the second and third. 346 347 int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode()); 348 if (AltOpc == -1) 349 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 350 351 SrcOpIdx1 = 2; 352 SrcOpIdx2 = 3; 353 return true; 354 } 355 356 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 357 MachineBasicBlock::iterator MI) const { 358 // This function is used for scheduling, and the nop wanted here is the type 359 // that terminates dispatch groups on the POWER cores. 360 unsigned Directive = Subtarget.getDarwinDirective(); 361 unsigned Opcode; 362 switch (Directive) { 363 default: Opcode = PPC::NOP; break; 364 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 365 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 366 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 367 } 368 369 DebugLoc DL; 370 BuildMI(MBB, MI, DL, get(Opcode)); 371 } 372 373 /// getNoopForMachoTarget - Return the noop instruction to use for a noop. 374 void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { 375 NopInst.setOpcode(PPC::NOP); 376 } 377 378 // Branch analysis. 379 // Note: If the condition register is set to CTR or CTR8 then this is a 380 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 381 bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, 382 MachineBasicBlock *&FBB, 383 SmallVectorImpl<MachineOperand> &Cond, 384 bool AllowModify) const { 385 bool isPPC64 = Subtarget.isPPC64(); 386 387 // If the block has no terminators, it just falls into the block after it. 388 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 389 if (I == MBB.end()) 390 return false; 391 392 if (!isUnpredicatedTerminator(I)) 393 return false; 394 395 // Get the last instruction in the block. 396 MachineInstr *LastInst = I; 397 398 // If there is only one terminator instruction, process it. 399 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { 400 if (LastInst->getOpcode() == PPC::B) { 401 if (!LastInst->getOperand(0).isMBB()) 402 return true; 403 TBB = LastInst->getOperand(0).getMBB(); 404 return false; 405 } else if (LastInst->getOpcode() == PPC::BCC) { 406 if (!LastInst->getOperand(2).isMBB()) 407 return true; 408 // Block ends with fall-through condbranch. 409 TBB = LastInst->getOperand(2).getMBB(); 410 Cond.push_back(LastInst->getOperand(0)); 411 Cond.push_back(LastInst->getOperand(1)); 412 return false; 413 } else if (LastInst->getOpcode() == PPC::BC) { 414 if (!LastInst->getOperand(1).isMBB()) 415 return true; 416 // Block ends with fall-through condbranch. 417 TBB = LastInst->getOperand(1).getMBB(); 418 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 419 Cond.push_back(LastInst->getOperand(0)); 420 return false; 421 } else if (LastInst->getOpcode() == PPC::BCn) { 422 if (!LastInst->getOperand(1).isMBB()) 423 return true; 424 // Block ends with fall-through condbranch. 425 TBB = LastInst->getOperand(1).getMBB(); 426 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 427 Cond.push_back(LastInst->getOperand(0)); 428 return false; 429 } else if (LastInst->getOpcode() == PPC::BDNZ8 || 430 LastInst->getOpcode() == PPC::BDNZ) { 431 if (!LastInst->getOperand(0).isMBB()) 432 return true; 433 if (DisableCTRLoopAnal) 434 return true; 435 TBB = LastInst->getOperand(0).getMBB(); 436 Cond.push_back(MachineOperand::CreateImm(1)); 437 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 438 true)); 439 return false; 440 } else if (LastInst->getOpcode() == PPC::BDZ8 || 441 LastInst->getOpcode() == PPC::BDZ) { 442 if (!LastInst->getOperand(0).isMBB()) 443 return true; 444 if (DisableCTRLoopAnal) 445 return true; 446 TBB = LastInst->getOperand(0).getMBB(); 447 Cond.push_back(MachineOperand::CreateImm(0)); 448 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 449 true)); 450 return false; 451 } 452 453 // Otherwise, don't know what this is. 454 return true; 455 } 456 457 // Get the instruction before it if it's a terminator. 458 MachineInstr *SecondLastInst = I; 459 460 // If there are three terminators, we don't know what sort of block this is. 461 if (SecondLastInst && I != MBB.begin() && 462 isUnpredicatedTerminator(--I)) 463 return true; 464 465 // If the block ends with PPC::B and PPC:BCC, handle it. 466 if (SecondLastInst->getOpcode() == PPC::BCC && 467 LastInst->getOpcode() == PPC::B) { 468 if (!SecondLastInst->getOperand(2).isMBB() || 469 !LastInst->getOperand(0).isMBB()) 470 return true; 471 TBB = SecondLastInst->getOperand(2).getMBB(); 472 Cond.push_back(SecondLastInst->getOperand(0)); 473 Cond.push_back(SecondLastInst->getOperand(1)); 474 FBB = LastInst->getOperand(0).getMBB(); 475 return false; 476 } else if (SecondLastInst->getOpcode() == PPC::BC && 477 LastInst->getOpcode() == PPC::B) { 478 if (!SecondLastInst->getOperand(1).isMBB() || 479 !LastInst->getOperand(0).isMBB()) 480 return true; 481 TBB = SecondLastInst->getOperand(1).getMBB(); 482 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 483 Cond.push_back(SecondLastInst->getOperand(0)); 484 FBB = LastInst->getOperand(0).getMBB(); 485 return false; 486 } else if (SecondLastInst->getOpcode() == PPC::BCn && 487 LastInst->getOpcode() == PPC::B) { 488 if (!SecondLastInst->getOperand(1).isMBB() || 489 !LastInst->getOperand(0).isMBB()) 490 return true; 491 TBB = SecondLastInst->getOperand(1).getMBB(); 492 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 493 Cond.push_back(SecondLastInst->getOperand(0)); 494 FBB = LastInst->getOperand(0).getMBB(); 495 return false; 496 } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 || 497 SecondLastInst->getOpcode() == PPC::BDNZ) && 498 LastInst->getOpcode() == PPC::B) { 499 if (!SecondLastInst->getOperand(0).isMBB() || 500 !LastInst->getOperand(0).isMBB()) 501 return true; 502 if (DisableCTRLoopAnal) 503 return true; 504 TBB = SecondLastInst->getOperand(0).getMBB(); 505 Cond.push_back(MachineOperand::CreateImm(1)); 506 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 507 true)); 508 FBB = LastInst->getOperand(0).getMBB(); 509 return false; 510 } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 || 511 SecondLastInst->getOpcode() == PPC::BDZ) && 512 LastInst->getOpcode() == PPC::B) { 513 if (!SecondLastInst->getOperand(0).isMBB() || 514 !LastInst->getOperand(0).isMBB()) 515 return true; 516 if (DisableCTRLoopAnal) 517 return true; 518 TBB = SecondLastInst->getOperand(0).getMBB(); 519 Cond.push_back(MachineOperand::CreateImm(0)); 520 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 521 true)); 522 FBB = LastInst->getOperand(0).getMBB(); 523 return false; 524 } 525 526 // If the block ends with two PPC:Bs, handle it. The second one is not 527 // executed, so remove it. 528 if (SecondLastInst->getOpcode() == PPC::B && 529 LastInst->getOpcode() == PPC::B) { 530 if (!SecondLastInst->getOperand(0).isMBB()) 531 return true; 532 TBB = SecondLastInst->getOperand(0).getMBB(); 533 I = LastInst; 534 if (AllowModify) 535 I->eraseFromParent(); 536 return false; 537 } 538 539 // Otherwise, can't handle this. 540 return true; 541 } 542 543 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 544 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 545 if (I == MBB.end()) 546 return 0; 547 548 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 549 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 550 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 551 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 552 return 0; 553 554 // Remove the branch. 555 I->eraseFromParent(); 556 557 I = MBB.end(); 558 559 if (I == MBB.begin()) return 1; 560 --I; 561 if (I->getOpcode() != PPC::BCC && 562 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 563 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 564 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 565 return 1; 566 567 // Remove the branch. 568 I->eraseFromParent(); 569 return 2; 570 } 571 572 unsigned 573 PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 574 MachineBasicBlock *FBB, 575 ArrayRef<MachineOperand> Cond, 576 DebugLoc DL) const { 577 // Shouldn't be a fall through. 578 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 579 assert((Cond.size() == 2 || Cond.size() == 0) && 580 "PPC branch conditions have two components!"); 581 582 bool isPPC64 = Subtarget.isPPC64(); 583 584 // One-way branch. 585 if (!FBB) { 586 if (Cond.empty()) // Unconditional branch 587 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 588 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 589 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 590 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 591 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 592 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 593 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); 594 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 595 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); 596 else // Conditional branch 597 BuildMI(&MBB, DL, get(PPC::BCC)) 598 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); 599 return 1; 600 } 601 602 // Two-way Conditional Branch. 603 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 604 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 605 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 606 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 607 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 608 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); 609 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 610 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); 611 else 612 BuildMI(&MBB, DL, get(PPC::BCC)) 613 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); 614 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 615 return 2; 616 } 617 618 // Select analysis. 619 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 620 ArrayRef<MachineOperand> Cond, 621 unsigned TrueReg, unsigned FalseReg, 622 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 623 if (!Subtarget.hasISEL()) 624 return false; 625 626 if (Cond.size() != 2) 627 return false; 628 629 // If this is really a bdnz-like condition, then it cannot be turned into a 630 // select. 631 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 632 return false; 633 634 // Check register classes. 635 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 636 const TargetRegisterClass *RC = 637 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 638 if (!RC) 639 return false; 640 641 // isel is for regular integer GPRs only. 642 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 643 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 644 !PPC::G8RCRegClass.hasSubClassEq(RC) && 645 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 646 return false; 647 648 // FIXME: These numbers are for the A2, how well they work for other cores is 649 // an open question. On the A2, the isel instruction has a 2-cycle latency 650 // but single-cycle throughput. These numbers are used in combination with 651 // the MispredictPenalty setting from the active SchedMachineModel. 652 CondCycles = 1; 653 TrueCycles = 1; 654 FalseCycles = 1; 655 656 return true; 657 } 658 659 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 660 MachineBasicBlock::iterator MI, DebugLoc dl, 661 unsigned DestReg, ArrayRef<MachineOperand> Cond, 662 unsigned TrueReg, unsigned FalseReg) const { 663 assert(Cond.size() == 2 && 664 "PPC branch conditions have two components!"); 665 666 assert(Subtarget.hasISEL() && 667 "Cannot insert select on target without ISEL support"); 668 669 // Get the register classes. 670 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 671 const TargetRegisterClass *RC = 672 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 673 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 674 675 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 676 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 677 assert((Is64Bit || 678 PPC::GPRCRegClass.hasSubClassEq(RC) || 679 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 680 "isel is for regular integer GPRs only"); 681 682 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 683 unsigned SelectPred = Cond[0].getImm(); 684 685 unsigned SubIdx; 686 bool SwapOps; 687 switch (SelectPred) { 688 default: llvm_unreachable("invalid predicate for isel"); 689 case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break; 690 case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break; 691 case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break; 692 case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break; 693 case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break; 694 case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break; 695 case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break; 696 case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break; 697 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 698 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 699 } 700 701 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 702 SecondReg = SwapOps ? TrueReg : FalseReg; 703 704 // The first input register of isel cannot be r0. If it is a member 705 // of a register class that can be r0, then copy it first (the 706 // register allocator should eliminate the copy). 707 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 708 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 709 const TargetRegisterClass *FirstRC = 710 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 711 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 712 unsigned OldFirstReg = FirstReg; 713 FirstReg = MRI.createVirtualRegister(FirstRC); 714 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 715 .addReg(OldFirstReg); 716 } 717 718 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 719 .addReg(FirstReg).addReg(SecondReg) 720 .addReg(Cond[1].getReg(), 0, SubIdx); 721 } 722 723 static unsigned getCRBitValue(unsigned CRBit) { 724 unsigned Ret = 4; 725 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 726 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 727 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 728 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 729 Ret = 3; 730 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 731 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 732 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 733 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 734 Ret = 2; 735 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 736 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 737 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 738 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 739 Ret = 1; 740 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 741 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 742 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 743 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 744 Ret = 0; 745 746 assert(Ret != 4 && "Invalid CR bit register"); 747 return Ret; 748 } 749 750 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 751 MachineBasicBlock::iterator I, DebugLoc DL, 752 unsigned DestReg, unsigned SrcReg, 753 bool KillSrc) const { 754 // We can end up with self copies and similar things as a result of VSX copy 755 // legalization. Promote them here. 756 const TargetRegisterInfo *TRI = &getRegisterInfo(); 757 if (PPC::F8RCRegClass.contains(DestReg) && 758 PPC::VSRCRegClass.contains(SrcReg)) { 759 unsigned SuperReg = 760 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 761 762 if (VSXSelfCopyCrash && SrcReg == SuperReg) 763 llvm_unreachable("nop VSX copy"); 764 765 DestReg = SuperReg; 766 } else if (PPC::VRRCRegClass.contains(DestReg) && 767 PPC::VSRCRegClass.contains(SrcReg)) { 768 unsigned SuperReg = 769 TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass); 770 771 if (VSXSelfCopyCrash && SrcReg == SuperReg) 772 llvm_unreachable("nop VSX copy"); 773 774 DestReg = SuperReg; 775 } else if (PPC::F8RCRegClass.contains(SrcReg) && 776 PPC::VSRCRegClass.contains(DestReg)) { 777 unsigned SuperReg = 778 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 779 780 if (VSXSelfCopyCrash && DestReg == SuperReg) 781 llvm_unreachable("nop VSX copy"); 782 783 SrcReg = SuperReg; 784 } else if (PPC::VRRCRegClass.contains(SrcReg) && 785 PPC::VSRCRegClass.contains(DestReg)) { 786 unsigned SuperReg = 787 TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass); 788 789 if (VSXSelfCopyCrash && DestReg == SuperReg) 790 llvm_unreachable("nop VSX copy"); 791 792 SrcReg = SuperReg; 793 } 794 795 // Different class register copy 796 if (PPC::CRBITRCRegClass.contains(SrcReg) && 797 PPC::GPRCRegClass.contains(DestReg)) { 798 unsigned CRReg = getCRFromCRBit(SrcReg); 799 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg) 800 .addReg(CRReg), getKillRegState(KillSrc); 801 // Rotate the CR bit in the CR fields to be the least significant bit and 802 // then mask with 0x1 (MB = ME = 31). 803 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 804 .addReg(DestReg, RegState::Kill) 805 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 806 .addImm(31) 807 .addImm(31); 808 return; 809 } else if (PPC::CRRCRegClass.contains(SrcReg) && 810 PPC::G8RCRegClass.contains(DestReg)) { 811 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg) 812 .addReg(SrcReg), getKillRegState(KillSrc); 813 return; 814 } else if (PPC::CRRCRegClass.contains(SrcReg) && 815 PPC::GPRCRegClass.contains(DestReg)) { 816 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg) 817 .addReg(SrcReg), getKillRegState(KillSrc); 818 return; 819 } 820 821 unsigned Opc; 822 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 823 Opc = PPC::OR; 824 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 825 Opc = PPC::OR8; 826 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 827 Opc = PPC::FMR; 828 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 829 Opc = PPC::MCRF; 830 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 831 Opc = PPC::VOR; 832 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 833 // There are two different ways this can be done: 834 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 835 // issue in VSU pipeline 0. 836 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 837 // can go to either pipeline. 838 // We'll always use xxlor here, because in practically all cases where 839 // copies are generated, they are close enough to some use that the 840 // lower-latency form is preferable. 841 Opc = PPC::XXLOR; 842 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 843 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 844 Opc = PPC::XXLORf; 845 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 846 Opc = PPC::QVFMR; 847 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 848 Opc = PPC::QVFMRs; 849 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 850 Opc = PPC::QVFMRb; 851 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 852 Opc = PPC::CROR; 853 else 854 llvm_unreachable("Impossible reg-to-reg copy"); 855 856 const MCInstrDesc &MCID = get(Opc); 857 if (MCID.getNumOperands() == 3) 858 BuildMI(MBB, I, DL, MCID, DestReg) 859 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 860 else 861 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 862 } 863 864 // This function returns true if a CR spill is necessary and false otherwise. 865 bool 866 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, 867 unsigned SrcReg, bool isKill, 868 int FrameIdx, 869 const TargetRegisterClass *RC, 870 SmallVectorImpl<MachineInstr*> &NewMIs, 871 bool &NonRI, bool &SpillsVRS) const{ 872 // Note: If additional store instructions are added here, 873 // update isStoreToStackSlot. 874 875 DebugLoc DL; 876 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 877 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 878 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) 879 .addReg(SrcReg, 880 getKillRegState(isKill)), 881 FrameIdx)); 882 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 883 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 884 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) 885 .addReg(SrcReg, 886 getKillRegState(isKill)), 887 FrameIdx)); 888 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 889 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) 890 .addReg(SrcReg, 891 getKillRegState(isKill)), 892 FrameIdx)); 893 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 894 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) 895 .addReg(SrcReg, 896 getKillRegState(isKill)), 897 FrameIdx)); 898 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 899 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) 900 .addReg(SrcReg, 901 getKillRegState(isKill)), 902 FrameIdx)); 903 return true; 904 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 905 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT)) 906 .addReg(SrcReg, 907 getKillRegState(isKill)), 908 FrameIdx)); 909 return true; 910 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 911 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX)) 912 .addReg(SrcReg, 913 getKillRegState(isKill)), 914 FrameIdx)); 915 NonRI = true; 916 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 917 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X)) 918 .addReg(SrcReg, 919 getKillRegState(isKill)), 920 FrameIdx)); 921 NonRI = true; 922 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 923 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX)) 924 .addReg(SrcReg, 925 getKillRegState(isKill)), 926 FrameIdx)); 927 NonRI = true; 928 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 929 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSSPX)) 930 .addReg(SrcReg, 931 getKillRegState(isKill)), 932 FrameIdx)); 933 NonRI = true; 934 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 935 assert(Subtarget.isDarwin() && 936 "VRSAVE only needs spill/restore on Darwin"); 937 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE)) 938 .addReg(SrcReg, 939 getKillRegState(isKill)), 940 FrameIdx)); 941 SpillsVRS = true; 942 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 943 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX)) 944 .addReg(SrcReg, 945 getKillRegState(isKill)), 946 FrameIdx)); 947 NonRI = true; 948 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 949 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs)) 950 .addReg(SrcReg, 951 getKillRegState(isKill)), 952 FrameIdx)); 953 NonRI = true; 954 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 955 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb)) 956 .addReg(SrcReg, 957 getKillRegState(isKill)), 958 FrameIdx)); 959 NonRI = true; 960 } else { 961 llvm_unreachable("Unknown regclass!"); 962 } 963 964 return false; 965 } 966 967 void 968 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 969 MachineBasicBlock::iterator MI, 970 unsigned SrcReg, bool isKill, int FrameIdx, 971 const TargetRegisterClass *RC, 972 const TargetRegisterInfo *TRI) const { 973 MachineFunction &MF = *MBB.getParent(); 974 SmallVector<MachineInstr*, 4> NewMIs; 975 976 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 977 FuncInfo->setHasSpills(); 978 979 bool NonRI = false, SpillsVRS = false; 980 if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs, 981 NonRI, SpillsVRS)) 982 FuncInfo->setSpillsCR(); 983 984 if (SpillsVRS) 985 FuncInfo->setSpillsVRSAVE(); 986 987 if (NonRI) 988 FuncInfo->setHasNonRISpills(); 989 990 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 991 MBB.insert(MI, NewMIs[i]); 992 993 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 994 MachineMemOperand *MMO = 995 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 996 MachineMemOperand::MOStore, 997 MFI.getObjectSize(FrameIdx), 998 MFI.getObjectAlignment(FrameIdx)); 999 NewMIs.back()->addMemOperand(MF, MMO); 1000 } 1001 1002 bool 1003 PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL, 1004 unsigned DestReg, int FrameIdx, 1005 const TargetRegisterClass *RC, 1006 SmallVectorImpl<MachineInstr*> &NewMIs, 1007 bool &NonRI, bool &SpillsVRS) const{ 1008 // Note: If additional load instructions are added here, 1009 // update isLoadFromStackSlot. 1010 1011 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1012 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1013 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), 1014 DestReg), FrameIdx)); 1015 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1016 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1017 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), 1018 FrameIdx)); 1019 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1020 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), 1021 FrameIdx)); 1022 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1023 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), 1024 FrameIdx)); 1025 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1026 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1027 get(PPC::RESTORE_CR), DestReg), 1028 FrameIdx)); 1029 return true; 1030 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1031 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1032 get(PPC::RESTORE_CRBIT), DestReg), 1033 FrameIdx)); 1034 return true; 1035 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1036 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg), 1037 FrameIdx)); 1038 NonRI = true; 1039 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1040 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg), 1041 FrameIdx)); 1042 NonRI = true; 1043 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1044 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg), 1045 FrameIdx)); 1046 NonRI = true; 1047 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1048 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSSPX), DestReg), 1049 FrameIdx)); 1050 NonRI = true; 1051 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1052 assert(Subtarget.isDarwin() && 1053 "VRSAVE only needs spill/restore on Darwin"); 1054 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1055 get(PPC::RESTORE_VRSAVE), 1056 DestReg), 1057 FrameIdx)); 1058 SpillsVRS = true; 1059 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1060 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg), 1061 FrameIdx)); 1062 NonRI = true; 1063 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1064 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg), 1065 FrameIdx)); 1066 NonRI = true; 1067 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1068 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg), 1069 FrameIdx)); 1070 NonRI = true; 1071 } else { 1072 llvm_unreachable("Unknown regclass!"); 1073 } 1074 1075 return false; 1076 } 1077 1078 void 1079 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1080 MachineBasicBlock::iterator MI, 1081 unsigned DestReg, int FrameIdx, 1082 const TargetRegisterClass *RC, 1083 const TargetRegisterInfo *TRI) const { 1084 MachineFunction &MF = *MBB.getParent(); 1085 SmallVector<MachineInstr*, 4> NewMIs; 1086 DebugLoc DL; 1087 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1088 1089 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1090 FuncInfo->setHasSpills(); 1091 1092 bool NonRI = false, SpillsVRS = false; 1093 if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs, 1094 NonRI, SpillsVRS)) 1095 FuncInfo->setSpillsCR(); 1096 1097 if (SpillsVRS) 1098 FuncInfo->setSpillsVRSAVE(); 1099 1100 if (NonRI) 1101 FuncInfo->setHasNonRISpills(); 1102 1103 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1104 MBB.insert(MI, NewMIs[i]); 1105 1106 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 1107 MachineMemOperand *MMO = 1108 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 1109 MachineMemOperand::MOLoad, 1110 MFI.getObjectSize(FrameIdx), 1111 MFI.getObjectAlignment(FrameIdx)); 1112 NewMIs.back()->addMemOperand(MF, MMO); 1113 } 1114 1115 bool PPCInstrInfo:: 1116 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1117 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1118 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1119 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1120 else 1121 // Leave the CR# the same, but invert the condition. 1122 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1123 return false; 1124 } 1125 1126 bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, 1127 unsigned Reg, MachineRegisterInfo *MRI) const { 1128 // For some instructions, it is legal to fold ZERO into the RA register field. 1129 // A zero immediate should always be loaded with a single li. 1130 unsigned DefOpc = DefMI->getOpcode(); 1131 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1132 return false; 1133 if (!DefMI->getOperand(1).isImm()) 1134 return false; 1135 if (DefMI->getOperand(1).getImm() != 0) 1136 return false; 1137 1138 // Note that we cannot here invert the arguments of an isel in order to fold 1139 // a ZERO into what is presented as the second argument. All we have here 1140 // is the condition bit, and that might come from a CR-logical bit operation. 1141 1142 const MCInstrDesc &UseMCID = UseMI->getDesc(); 1143 1144 // Only fold into real machine instructions. 1145 if (UseMCID.isPseudo()) 1146 return false; 1147 1148 unsigned UseIdx; 1149 for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx) 1150 if (UseMI->getOperand(UseIdx).isReg() && 1151 UseMI->getOperand(UseIdx).getReg() == Reg) 1152 break; 1153 1154 assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI"); 1155 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1156 1157 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1158 1159 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1160 // register (which might also be specified as a pointer class kind). 1161 if (UseInfo->isLookupPtrRegClass()) { 1162 if (UseInfo->RegClass /* Kind */ != 1) 1163 return false; 1164 } else { 1165 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1166 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1167 return false; 1168 } 1169 1170 // Make sure this is not tied to an output register (or otherwise 1171 // constrained). This is true for ST?UX registers, for example, which 1172 // are tied to their output registers. 1173 if (UseInfo->Constraints != 0) 1174 return false; 1175 1176 unsigned ZeroReg; 1177 if (UseInfo->isLookupPtrRegClass()) { 1178 bool isPPC64 = Subtarget.isPPC64(); 1179 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1180 } else { 1181 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1182 PPC::ZERO8 : PPC::ZERO; 1183 } 1184 1185 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1186 UseMI->getOperand(UseIdx).setReg(ZeroReg); 1187 1188 if (DeleteDef) 1189 DefMI->eraseFromParent(); 1190 1191 return true; 1192 } 1193 1194 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1195 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1196 I != IE; ++I) 1197 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1198 return true; 1199 return false; 1200 } 1201 1202 // We should make sure that, if we're going to predicate both sides of a 1203 // condition (a diamond), that both sides don't define the counter register. We 1204 // can predicate counter-decrement-based branches, but while that predicates 1205 // the branching, it does not predicate the counter decrement. If we tried to 1206 // merge the triangle into one predicated block, we'd decrement the counter 1207 // twice. 1208 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1209 unsigned NumT, unsigned ExtraT, 1210 MachineBasicBlock &FMBB, 1211 unsigned NumF, unsigned ExtraF, 1212 const BranchProbability &Probability) const { 1213 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1214 } 1215 1216 1217 bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const { 1218 // The predicated branches are identified by their type, not really by the 1219 // explicit presence of a predicate. Furthermore, some of them can be 1220 // predicated more than once. Because if conversion won't try to predicate 1221 // any instruction which already claims to be predicated (by returning true 1222 // here), always return false. In doing so, we let isPredicable() be the 1223 // final word on whether not the instruction can be (further) predicated. 1224 1225 return false; 1226 } 1227 1228 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 1229 if (!MI->isTerminator()) 1230 return false; 1231 1232 // Conditional branch is a special case. 1233 if (MI->isBranch() && !MI->isBarrier()) 1234 return true; 1235 1236 return !isPredicated(MI); 1237 } 1238 1239 bool PPCInstrInfo::PredicateInstruction(MachineInstr *MI, 1240 ArrayRef<MachineOperand> Pred) const { 1241 unsigned OpC = MI->getOpcode(); 1242 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1243 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1244 bool isPPC64 = Subtarget.isPPC64(); 1245 MI->setDesc(get(Pred[0].getImm() ? 1246 (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) : 1247 (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1248 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1249 MI->setDesc(get(PPC::BCLR)); 1250 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1251 .addReg(Pred[1].getReg()); 1252 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1253 MI->setDesc(get(PPC::BCLRn)); 1254 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1255 .addReg(Pred[1].getReg()); 1256 } else { 1257 MI->setDesc(get(PPC::BCCLR)); 1258 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1259 .addImm(Pred[0].getImm()) 1260 .addReg(Pred[1].getReg()); 1261 } 1262 1263 return true; 1264 } else if (OpC == PPC::B) { 1265 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1266 bool isPPC64 = Subtarget.isPPC64(); 1267 MI->setDesc(get(Pred[0].getImm() ? 1268 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1269 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1270 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1271 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1272 MI->RemoveOperand(0); 1273 1274 MI->setDesc(get(PPC::BC)); 1275 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1276 .addReg(Pred[1].getReg()) 1277 .addMBB(MBB); 1278 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1279 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1280 MI->RemoveOperand(0); 1281 1282 MI->setDesc(get(PPC::BCn)); 1283 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1284 .addReg(Pred[1].getReg()) 1285 .addMBB(MBB); 1286 } else { 1287 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1288 MI->RemoveOperand(0); 1289 1290 MI->setDesc(get(PPC::BCC)); 1291 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1292 .addImm(Pred[0].getImm()) 1293 .addReg(Pred[1].getReg()) 1294 .addMBB(MBB); 1295 } 1296 1297 return true; 1298 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || 1299 OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { 1300 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1301 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1302 1303 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1304 bool isPPC64 = Subtarget.isPPC64(); 1305 1306 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1307 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) : 1308 (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1309 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1310 .addReg(Pred[1].getReg()); 1311 return true; 1312 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1313 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) : 1314 (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1315 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1316 .addReg(Pred[1].getReg()); 1317 return true; 1318 } 1319 1320 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) : 1321 (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1322 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1323 .addImm(Pred[0].getImm()) 1324 .addReg(Pred[1].getReg()); 1325 return true; 1326 } 1327 1328 return false; 1329 } 1330 1331 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1332 ArrayRef<MachineOperand> Pred2) const { 1333 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1334 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1335 1336 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1337 return false; 1338 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1339 return false; 1340 1341 // P1 can only subsume P2 if they test the same condition register. 1342 if (Pred1[1].getReg() != Pred2[1].getReg()) 1343 return false; 1344 1345 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1346 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1347 1348 if (P1 == P2) 1349 return true; 1350 1351 // Does P1 subsume P2, e.g. GE subsumes GT. 1352 if (P1 == PPC::PRED_LE && 1353 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1354 return true; 1355 if (P1 == PPC::PRED_GE && 1356 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1357 return true; 1358 1359 return false; 1360 } 1361 1362 bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI, 1363 std::vector<MachineOperand> &Pred) const { 1364 // Note: At the present time, the contents of Pred from this function is 1365 // unused by IfConversion. This implementation follows ARM by pushing the 1366 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1367 // predicate, instructions defining CTR or CTR8 are also included as 1368 // predicate-defining instructions. 1369 1370 const TargetRegisterClass *RCs[] = 1371 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1372 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1373 1374 bool Found = false; 1375 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1376 const MachineOperand &MO = MI->getOperand(i); 1377 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1378 const TargetRegisterClass *RC = RCs[c]; 1379 if (MO.isReg()) { 1380 if (MO.isDef() && RC->contains(MO.getReg())) { 1381 Pred.push_back(MO); 1382 Found = true; 1383 } 1384 } else if (MO.isRegMask()) { 1385 for (TargetRegisterClass::iterator I = RC->begin(), 1386 IE = RC->end(); I != IE; ++I) 1387 if (MO.clobbersPhysReg(*I)) { 1388 Pred.push_back(MO); 1389 Found = true; 1390 } 1391 } 1392 } 1393 } 1394 1395 return Found; 1396 } 1397 1398 bool PPCInstrInfo::isPredicable(MachineInstr *MI) const { 1399 unsigned OpC = MI->getOpcode(); 1400 switch (OpC) { 1401 default: 1402 return false; 1403 case PPC::B: 1404 case PPC::BLR: 1405 case PPC::BLR8: 1406 case PPC::BCTR: 1407 case PPC::BCTR8: 1408 case PPC::BCTRL: 1409 case PPC::BCTRL8: 1410 return true; 1411 } 1412 } 1413 1414 bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI, 1415 unsigned &SrcReg, unsigned &SrcReg2, 1416 int &Mask, int &Value) const { 1417 unsigned Opc = MI->getOpcode(); 1418 1419 switch (Opc) { 1420 default: return false; 1421 case PPC::CMPWI: 1422 case PPC::CMPLWI: 1423 case PPC::CMPDI: 1424 case PPC::CMPLDI: 1425 SrcReg = MI->getOperand(1).getReg(); 1426 SrcReg2 = 0; 1427 Value = MI->getOperand(2).getImm(); 1428 Mask = 0xFFFF; 1429 return true; 1430 case PPC::CMPW: 1431 case PPC::CMPLW: 1432 case PPC::CMPD: 1433 case PPC::CMPLD: 1434 case PPC::FCMPUS: 1435 case PPC::FCMPUD: 1436 SrcReg = MI->getOperand(1).getReg(); 1437 SrcReg2 = MI->getOperand(2).getReg(); 1438 return true; 1439 } 1440 } 1441 1442 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr, 1443 unsigned SrcReg, unsigned SrcReg2, 1444 int Mask, int Value, 1445 const MachineRegisterInfo *MRI) const { 1446 if (DisableCmpOpt) 1447 return false; 1448 1449 int OpC = CmpInstr->getOpcode(); 1450 unsigned CRReg = CmpInstr->getOperand(0).getReg(); 1451 1452 // FP record forms set CR1 based on the execption status bits, not a 1453 // comparison with zero. 1454 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1455 return false; 1456 1457 // The record forms set the condition register based on a signed comparison 1458 // with zero (so says the ISA manual). This is not as straightforward as it 1459 // seems, however, because this is always a 64-bit comparison on PPC64, even 1460 // for instructions that are 32-bit in nature (like slw for example). 1461 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1462 // for equality checks (as those don't depend on the sign). On PPC64, 1463 // we are restricted to equality for unsigned 64-bit comparisons and for 1464 // signed 32-bit comparisons the applicability is more restricted. 1465 bool isPPC64 = Subtarget.isPPC64(); 1466 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1467 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1468 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1469 1470 // Get the unique definition of SrcReg. 1471 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1472 if (!MI) return false; 1473 int MIOpC = MI->getOpcode(); 1474 1475 bool equalityOnly = false; 1476 bool noSub = false; 1477 if (isPPC64) { 1478 if (is32BitSignedCompare) { 1479 // We can perform this optimization only if MI is sign-extending. 1480 if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo || 1481 MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo || 1482 MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo || 1483 MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo || 1484 MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) { 1485 noSub = true; 1486 } else 1487 return false; 1488 } else if (is32BitUnsignedCompare) { 1489 // We can perform this optimization, equality only, if MI is 1490 // zero-extending. 1491 if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo || 1492 MIOpC == PPC::SLW || MIOpC == PPC::SLWo || 1493 MIOpC == PPC::SRW || MIOpC == PPC::SRWo) { 1494 noSub = true; 1495 equalityOnly = true; 1496 } else 1497 return false; 1498 } else 1499 equalityOnly = is64BitUnsignedCompare; 1500 } else 1501 equalityOnly = is32BitUnsignedCompare; 1502 1503 if (equalityOnly) { 1504 // We need to check the uses of the condition register in order to reject 1505 // non-equality comparisons. 1506 for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg), 1507 IE = MRI->use_instr_end(); I != IE; ++I) { 1508 MachineInstr *UseMI = &*I; 1509 if (UseMI->getOpcode() == PPC::BCC) { 1510 unsigned Pred = UseMI->getOperand(0).getImm(); 1511 if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE) 1512 return false; 1513 } else if (UseMI->getOpcode() == PPC::ISEL || 1514 UseMI->getOpcode() == PPC::ISEL8) { 1515 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1516 if (SubIdx != PPC::sub_eq) 1517 return false; 1518 } else 1519 return false; 1520 } 1521 } 1522 1523 MachineBasicBlock::iterator I = CmpInstr; 1524 1525 // Scan forward to find the first use of the compare. 1526 for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end(); 1527 I != EL; ++I) { 1528 bool FoundUse = false; 1529 for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg), 1530 JE = MRI->use_instr_end(); J != JE; ++J) 1531 if (&*J == &*I) { 1532 FoundUse = true; 1533 break; 1534 } 1535 1536 if (FoundUse) 1537 break; 1538 } 1539 1540 // There are two possible candidates which can be changed to set CR[01]. 1541 // One is MI, the other is a SUB instruction. 1542 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1543 MachineInstr *Sub = nullptr; 1544 if (SrcReg2 != 0) 1545 // MI is not a candidate for CMPrr. 1546 MI = nullptr; 1547 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1548 // same BB as the comparison. This is to allow the check below to avoid calls 1549 // (and other explicit clobbers); instead we should really check for these 1550 // more explicitly (in at least a few predecessors). 1551 else if (MI->getParent() != CmpInstr->getParent() || Value != 0) { 1552 // PPC does not have a record-form SUBri. 1553 return false; 1554 } 1555 1556 // Search for Sub. 1557 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1558 --I; 1559 1560 // Get ready to iterate backward from CmpInstr. 1561 MachineBasicBlock::iterator E = MI, 1562 B = CmpInstr->getParent()->begin(); 1563 1564 for (; I != E && !noSub; --I) { 1565 const MachineInstr &Instr = *I; 1566 unsigned IOpC = Instr.getOpcode(); 1567 1568 if (&*I != CmpInstr && ( 1569 Instr.modifiesRegister(PPC::CR0, TRI) || 1570 Instr.readsRegister(PPC::CR0, TRI))) 1571 // This instruction modifies or uses the record condition register after 1572 // the one we want to change. While we could do this transformation, it 1573 // would likely not be profitable. This transformation removes one 1574 // instruction, and so even forcing RA to generate one move probably 1575 // makes it unprofitable. 1576 return false; 1577 1578 // Check whether CmpInstr can be made redundant by the current instruction. 1579 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1580 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1581 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1582 ((Instr.getOperand(1).getReg() == SrcReg && 1583 Instr.getOperand(2).getReg() == SrcReg2) || 1584 (Instr.getOperand(1).getReg() == SrcReg2 && 1585 Instr.getOperand(2).getReg() == SrcReg))) { 1586 Sub = &*I; 1587 break; 1588 } 1589 1590 if (I == B) 1591 // The 'and' is below the comparison instruction. 1592 return false; 1593 } 1594 1595 // Return false if no candidates exist. 1596 if (!MI && !Sub) 1597 return false; 1598 1599 // The single candidate is called MI. 1600 if (!MI) MI = Sub; 1601 1602 int NewOpC = -1; 1603 MIOpC = MI->getOpcode(); 1604 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8) 1605 NewOpC = MIOpC; 1606 else { 1607 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1608 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1609 NewOpC = MIOpC; 1610 } 1611 1612 // FIXME: On the non-embedded POWER architectures, only some of the record 1613 // forms are fast, and we should use only the fast ones. 1614 1615 // The defining instruction has a record form (or is already a record 1616 // form). It is possible, however, that we'll need to reverse the condition 1617 // code of the users. 1618 if (NewOpC == -1) 1619 return false; 1620 1621 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1622 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1623 1624 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1625 // needs to be updated to be based on SUB. Push the condition code 1626 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1627 // condition code of these operands will be modified. 1628 bool ShouldSwap = false; 1629 if (Sub) { 1630 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1631 Sub->getOperand(2).getReg() == SrcReg; 1632 1633 // The operands to subf are the opposite of sub, so only in the fixed-point 1634 // case, invert the order. 1635 ShouldSwap = !ShouldSwap; 1636 } 1637 1638 if (ShouldSwap) 1639 for (MachineRegisterInfo::use_instr_iterator 1640 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1641 I != IE; ++I) { 1642 MachineInstr *UseMI = &*I; 1643 if (UseMI->getOpcode() == PPC::BCC) { 1644 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1645 assert((!equalityOnly || 1646 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) && 1647 "Invalid predicate for equality-only optimization"); 1648 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1649 PPC::getSwappedPredicate(Pred))); 1650 } else if (UseMI->getOpcode() == PPC::ISEL || 1651 UseMI->getOpcode() == PPC::ISEL8) { 1652 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1653 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1654 "Invalid CR bit for equality-only optimization"); 1655 1656 if (NewSubReg == PPC::sub_lt) 1657 NewSubReg = PPC::sub_gt; 1658 else if (NewSubReg == PPC::sub_gt) 1659 NewSubReg = PPC::sub_lt; 1660 1661 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1662 NewSubReg)); 1663 } else // We need to abort on a user we don't understand. 1664 return false; 1665 } 1666 1667 // Create a new virtual register to hold the value of the CR set by the 1668 // record-form instruction. If the instruction was not previously in 1669 // record form, then set the kill flag on the CR. 1670 CmpInstr->eraseFromParent(); 1671 1672 MachineBasicBlock::iterator MII = MI; 1673 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1674 get(TargetOpcode::COPY), CRReg) 1675 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1676 1677 if (MIOpC != NewOpC) { 1678 // We need to be careful here: we're replacing one instruction with 1679 // another, and we need to make sure that we get all of the right 1680 // implicit uses and defs. On the other hand, the caller may be holding 1681 // an iterator to this instruction, and so we can't delete it (this is 1682 // specifically the case if this is the instruction directly after the 1683 // compare). 1684 1685 const MCInstrDesc &NewDesc = get(NewOpC); 1686 MI->setDesc(NewDesc); 1687 1688 if (NewDesc.ImplicitDefs) 1689 for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs(); 1690 *ImpDefs; ++ImpDefs) 1691 if (!MI->definesRegister(*ImpDefs)) 1692 MI->addOperand(*MI->getParent()->getParent(), 1693 MachineOperand::CreateReg(*ImpDefs, true, true)); 1694 if (NewDesc.ImplicitUses) 1695 for (const uint16_t *ImpUses = NewDesc.getImplicitUses(); 1696 *ImpUses; ++ImpUses) 1697 if (!MI->readsRegister(*ImpUses)) 1698 MI->addOperand(*MI->getParent()->getParent(), 1699 MachineOperand::CreateReg(*ImpUses, false, true)); 1700 } 1701 1702 // Modify the condition code of operands in OperandsToUpdate. 1703 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1704 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1705 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1706 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1707 1708 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1709 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1710 1711 return true; 1712 } 1713 1714 /// GetInstSize - Return the number of bytes of code the specified 1715 /// instruction may be. This returns the maximum number of bytes. 1716 /// 1717 unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { 1718 unsigned Opcode = MI->getOpcode(); 1719 1720 if (Opcode == PPC::INLINEASM) { 1721 const MachineFunction *MF = MI->getParent()->getParent(); 1722 const char *AsmStr = MI->getOperand(0).getSymbolName(); 1723 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1724 } else if (Opcode == TargetOpcode::STACKMAP) { 1725 return MI->getOperand(1).getImm(); 1726 } else if (Opcode == TargetOpcode::PATCHPOINT) { 1727 PatchPointOpers Opers(MI); 1728 return Opers.getMetaOper(PatchPointOpers::NBytesPos).getImm(); 1729 } else { 1730 const MCInstrDesc &Desc = get(Opcode); 1731 return Desc.getSize(); 1732 } 1733 } 1734 1735