1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCInstrInfo.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCHazardRecognizers.h"
18 #include "PPCInstrBuilder.h"
19 #include "PPCMachineFunctionInfo.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCInst.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/raw_ostream.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "ppc-instr-info"
44 
45 #define GET_INSTRMAP_INFO
46 #define GET_INSTRINFO_CTOR_DTOR
47 #include "PPCGenInstrInfo.inc"
48 
49 STATISTIC(NumStoreSPILLVSRRCAsVec,
50           "Number of spillvsrrc spilled to stack as vec");
51 STATISTIC(NumStoreSPILLVSRRCAsGpr,
52           "Number of spillvsrrc spilled to stack as gpr");
53 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
54 STATISTIC(CmpIselsConverted,
55           "Number of ISELs that depend on comparison of constants converted");
56 STATISTIC(MissedConvertibleImmediateInstrs,
57           "Number of compare-immediate instructions fed by constants");
58 STATISTIC(NumRcRotatesConvertedToRcAnd,
59           "Number of record-form rotates converted to record-form andi");
60 
61 static cl::
62 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
63             cl::desc("Disable analysis for CTR loops"));
64 
65 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
66 cl::desc("Disable compare instruction optimization"), cl::Hidden);
67 
68 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
69 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
70 cl::Hidden);
71 
72 static cl::opt<bool>
73 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
74   cl::desc("Use the old (incorrect) instruction latency calculation"));
75 
76 // Pin the vtable to this file.
77 void PPCInstrInfo::anchor() {}
78 
79 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
80     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
81                       /* CatchRetOpcode */ -1,
82                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
83       Subtarget(STI), RI(STI.getTargetMachine()) {}
84 
85 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
86 /// this target when scheduling the DAG.
87 ScheduleHazardRecognizer *
88 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
89                                            const ScheduleDAG *DAG) const {
90   unsigned Directive =
91       static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
92   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
93       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
94     const InstrItineraryData *II =
95         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
96     return new ScoreboardHazardRecognizer(II, DAG);
97   }
98 
99   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
100 }
101 
102 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
103 /// to use for this target when scheduling the DAG.
104 ScheduleHazardRecognizer *
105 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
106                                                  const ScheduleDAG *DAG) const {
107   unsigned Directive =
108       DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
109 
110   // FIXME: Leaving this as-is until we have POWER9 scheduling info
111   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
112     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
113 
114   // Most subtargets use a PPC970 recognizer.
115   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
116       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
117     assert(DAG->TII && "No InstrInfo?");
118 
119     return new PPCHazardRecognizer970(*DAG);
120   }
121 
122   return new ScoreboardHazardRecognizer(II, DAG);
123 }
124 
125 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
126                                        const MachineInstr &MI,
127                                        unsigned *PredCost) const {
128   if (!ItinData || UseOldLatencyCalc)
129     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
130 
131   // The default implementation of getInstrLatency calls getStageLatency, but
132   // getStageLatency does not do the right thing for us. While we have
133   // itinerary, most cores are fully pipelined, and so the itineraries only
134   // express the first part of the pipeline, not every stage. Instead, we need
135   // to use the listed output operand cycle number (using operand 0 here, which
136   // is an output).
137 
138   unsigned Latency = 1;
139   unsigned DefClass = MI.getDesc().getSchedClass();
140   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
141     const MachineOperand &MO = MI.getOperand(i);
142     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
143       continue;
144 
145     int Cycle = ItinData->getOperandCycle(DefClass, i);
146     if (Cycle < 0)
147       continue;
148 
149     Latency = std::max(Latency, (unsigned) Cycle);
150   }
151 
152   return Latency;
153 }
154 
155 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
156                                     const MachineInstr &DefMI, unsigned DefIdx,
157                                     const MachineInstr &UseMI,
158                                     unsigned UseIdx) const {
159   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
160                                                    UseMI, UseIdx);
161 
162   if (!DefMI.getParent())
163     return Latency;
164 
165   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
166   unsigned Reg = DefMO.getReg();
167 
168   bool IsRegCR;
169   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
170     const MachineRegisterInfo *MRI =
171         &DefMI.getParent()->getParent()->getRegInfo();
172     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
173               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
174   } else {
175     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
176               PPC::CRBITRCRegClass.contains(Reg);
177   }
178 
179   if (UseMI.isBranch() && IsRegCR) {
180     if (Latency < 0)
181       Latency = getInstrLatency(ItinData, DefMI);
182 
183     // On some cores, there is an additional delay between writing to a condition
184     // register, and using it from a branch.
185     unsigned Directive = Subtarget.getDarwinDirective();
186     switch (Directive) {
187     default: break;
188     case PPC::DIR_7400:
189     case PPC::DIR_750:
190     case PPC::DIR_970:
191     case PPC::DIR_E5500:
192     case PPC::DIR_PWR4:
193     case PPC::DIR_PWR5:
194     case PPC::DIR_PWR5X:
195     case PPC::DIR_PWR6:
196     case PPC::DIR_PWR6X:
197     case PPC::DIR_PWR7:
198     case PPC::DIR_PWR8:
199     // FIXME: Is this needed for POWER9?
200       Latency += 2;
201       break;
202     }
203   }
204 
205   return Latency;
206 }
207 
208 // This function does not list all associative and commutative operations, but
209 // only those worth feeding through the machine combiner in an attempt to
210 // reduce the critical path. Mostly, this means floating-point operations,
211 // because they have high latencies (compared to other operations, such and
212 // and/or, which are also associative and commutative, but have low latencies).
213 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
214   switch (Inst.getOpcode()) {
215   // FP Add:
216   case PPC::FADD:
217   case PPC::FADDS:
218   // FP Multiply:
219   case PPC::FMUL:
220   case PPC::FMULS:
221   // Altivec Add:
222   case PPC::VADDFP:
223   // VSX Add:
224   case PPC::XSADDDP:
225   case PPC::XVADDDP:
226   case PPC::XVADDSP:
227   case PPC::XSADDSP:
228   // VSX Multiply:
229   case PPC::XSMULDP:
230   case PPC::XVMULDP:
231   case PPC::XVMULSP:
232   case PPC::XSMULSP:
233   // QPX Add:
234   case PPC::QVFADD:
235   case PPC::QVFADDS:
236   case PPC::QVFADDSs:
237   // QPX Multiply:
238   case PPC::QVFMUL:
239   case PPC::QVFMULS:
240   case PPC::QVFMULSs:
241     return true;
242   default:
243     return false;
244   }
245 }
246 
247 bool PPCInstrInfo::getMachineCombinerPatterns(
248     MachineInstr &Root,
249     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
250   // Using the machine combiner in this way is potentially expensive, so
251   // restrict to when aggressive optimizations are desired.
252   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
253     return false;
254 
255   // FP reassociation is only legal when we don't need strict IEEE semantics.
256   if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
257     return false;
258 
259   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
260 }
261 
262 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
263 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
264                                          unsigned &SrcReg, unsigned &DstReg,
265                                          unsigned &SubIdx) const {
266   switch (MI.getOpcode()) {
267   default: return false;
268   case PPC::EXTSW:
269   case PPC::EXTSW_32:
270   case PPC::EXTSW_32_64:
271     SrcReg = MI.getOperand(1).getReg();
272     DstReg = MI.getOperand(0).getReg();
273     SubIdx = PPC::sub_32;
274     return true;
275   }
276 }
277 
278 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
279                                            int &FrameIndex) const {
280   // Note: This list must be kept consistent with LoadRegFromStackSlot.
281   switch (MI.getOpcode()) {
282   default: break;
283   case PPC::LD:
284   case PPC::LWZ:
285   case PPC::LFS:
286   case PPC::LFD:
287   case PPC::RESTORE_CR:
288   case PPC::RESTORE_CRBIT:
289   case PPC::LVX:
290   case PPC::LXVD2X:
291   case PPC::LXV:
292   case PPC::QVLFDX:
293   case PPC::QVLFSXs:
294   case PPC::QVLFDXb:
295   case PPC::RESTORE_VRSAVE:
296   case PPC::SPILLTOVSR_LD:
297     // Check for the operands added by addFrameReference (the immediate is the
298     // offset which defaults to 0).
299     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
300         MI.getOperand(2).isFI()) {
301       FrameIndex = MI.getOperand(2).getIndex();
302       return MI.getOperand(0).getReg();
303     }
304     break;
305   }
306   return 0;
307 }
308 
309 // For opcodes with the ReMaterializable flag set, this function is called to
310 // verify the instruction is really rematable.
311 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
312                                                      AliasAnalysis *AA) const {
313   switch (MI.getOpcode()) {
314   default:
315     // This function should only be called for opcodes with the ReMaterializable
316     // flag set.
317     llvm_unreachable("Unknown rematerializable operation!");
318     break;
319   case PPC::LI:
320   case PPC::LI8:
321   case PPC::LIS:
322   case PPC::LIS8:
323   case PPC::QVGPCI:
324   case PPC::ADDIStocHA:
325   case PPC::ADDItocL:
326   case PPC::LOAD_STACK_GUARD:
327     return true;
328   }
329   return false;
330 }
331 
332 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
333                                           int &FrameIndex) const {
334   // Note: This list must be kept consistent with StoreRegToStackSlot.
335   switch (MI.getOpcode()) {
336   default: break;
337   case PPC::STD:
338   case PPC::STW:
339   case PPC::STFS:
340   case PPC::STFD:
341   case PPC::SPILL_CR:
342   case PPC::SPILL_CRBIT:
343   case PPC::STVX:
344   case PPC::STXVD2X:
345   case PPC::STXV:
346   case PPC::QVSTFDX:
347   case PPC::QVSTFSXs:
348   case PPC::QVSTFDXb:
349   case PPC::SPILL_VRSAVE:
350   case PPC::SPILLTOVSR_ST:
351     // Check for the operands added by addFrameReference (the immediate is the
352     // offset which defaults to 0).
353     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
354         MI.getOperand(2).isFI()) {
355       FrameIndex = MI.getOperand(2).getIndex();
356       return MI.getOperand(0).getReg();
357     }
358     break;
359   }
360   return 0;
361 }
362 
363 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
364                                                    unsigned OpIdx1,
365                                                    unsigned OpIdx2) const {
366   MachineFunction &MF = *MI.getParent()->getParent();
367 
368   // Normal instructions can be commuted the obvious way.
369   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
370     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
371   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
372   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
373   // changing the relative order of the mask operands might change what happens
374   // to the high-bits of the mask (and, thus, the result).
375 
376   // Cannot commute if it has a non-zero rotate count.
377   if (MI.getOperand(3).getImm() != 0)
378     return nullptr;
379 
380   // If we have a zero rotate count, we have:
381   //   M = mask(MB,ME)
382   //   Op0 = (Op1 & ~M) | (Op2 & M)
383   // Change this to:
384   //   M = mask((ME+1)&31, (MB-1)&31)
385   //   Op0 = (Op2 & ~M) | (Op1 & M)
386 
387   // Swap op1/op2
388   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
389          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
390   unsigned Reg0 = MI.getOperand(0).getReg();
391   unsigned Reg1 = MI.getOperand(1).getReg();
392   unsigned Reg2 = MI.getOperand(2).getReg();
393   unsigned SubReg1 = MI.getOperand(1).getSubReg();
394   unsigned SubReg2 = MI.getOperand(2).getSubReg();
395   bool Reg1IsKill = MI.getOperand(1).isKill();
396   bool Reg2IsKill = MI.getOperand(2).isKill();
397   bool ChangeReg0 = false;
398   // If machine instrs are no longer in two-address forms, update
399   // destination register as well.
400   if (Reg0 == Reg1) {
401     // Must be two address instruction!
402     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
403            "Expecting a two-address instruction!");
404     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
405     Reg2IsKill = false;
406     ChangeReg0 = true;
407   }
408 
409   // Masks.
410   unsigned MB = MI.getOperand(4).getImm();
411   unsigned ME = MI.getOperand(5).getImm();
412 
413   // We can't commute a trivial mask (there is no way to represent an all-zero
414   // mask).
415   if (MB == 0 && ME == 31)
416     return nullptr;
417 
418   if (NewMI) {
419     // Create a new instruction.
420     unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
421     bool Reg0IsDead = MI.getOperand(0).isDead();
422     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
423         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
424         .addReg(Reg2, getKillRegState(Reg2IsKill))
425         .addReg(Reg1, getKillRegState(Reg1IsKill))
426         .addImm((ME + 1) & 31)
427         .addImm((MB - 1) & 31);
428   }
429 
430   if (ChangeReg0) {
431     MI.getOperand(0).setReg(Reg2);
432     MI.getOperand(0).setSubReg(SubReg2);
433   }
434   MI.getOperand(2).setReg(Reg1);
435   MI.getOperand(1).setReg(Reg2);
436   MI.getOperand(2).setSubReg(SubReg1);
437   MI.getOperand(1).setSubReg(SubReg2);
438   MI.getOperand(2).setIsKill(Reg1IsKill);
439   MI.getOperand(1).setIsKill(Reg2IsKill);
440 
441   // Swap the mask around.
442   MI.getOperand(4).setImm((ME + 1) & 31);
443   MI.getOperand(5).setImm((MB - 1) & 31);
444   return &MI;
445 }
446 
447 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
448                                          unsigned &SrcOpIdx2) const {
449   // For VSX A-Type FMA instructions, it is the first two operands that can be
450   // commuted, however, because the non-encoded tied input operand is listed
451   // first, the operands to swap are actually the second and third.
452 
453   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
454   if (AltOpc == -1)
455     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
456 
457   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
458   // and SrcOpIdx2.
459   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
460 }
461 
462 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
463                               MachineBasicBlock::iterator MI) const {
464   // This function is used for scheduling, and the nop wanted here is the type
465   // that terminates dispatch groups on the POWER cores.
466   unsigned Directive = Subtarget.getDarwinDirective();
467   unsigned Opcode;
468   switch (Directive) {
469   default:            Opcode = PPC::NOP; break;
470   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
471   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
472   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
473   // FIXME: Update when POWER9 scheduling model is ready.
474   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
475   }
476 
477   DebugLoc DL;
478   BuildMI(MBB, MI, DL, get(Opcode));
479 }
480 
481 /// Return the noop instruction to use for a noop.
482 void PPCInstrInfo::getNoop(MCInst &NopInst) const {
483   NopInst.setOpcode(PPC::NOP);
484 }
485 
486 // Branch analysis.
487 // Note: If the condition register is set to CTR or CTR8 then this is a
488 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
489 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
490                                  MachineBasicBlock *&TBB,
491                                  MachineBasicBlock *&FBB,
492                                  SmallVectorImpl<MachineOperand> &Cond,
493                                  bool AllowModify) const {
494   bool isPPC64 = Subtarget.isPPC64();
495 
496   // If the block has no terminators, it just falls into the block after it.
497   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
498   if (I == MBB.end())
499     return false;
500 
501   if (!isUnpredicatedTerminator(*I))
502     return false;
503 
504   if (AllowModify) {
505     // If the BB ends with an unconditional branch to the fallthrough BB,
506     // we eliminate the branch instruction.
507     if (I->getOpcode() == PPC::B &&
508         MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
509       I->eraseFromParent();
510 
511       // We update iterator after deleting the last branch.
512       I = MBB.getLastNonDebugInstr();
513       if (I == MBB.end() || !isUnpredicatedTerminator(*I))
514         return false;
515     }
516   }
517 
518   // Get the last instruction in the block.
519   MachineInstr &LastInst = *I;
520 
521   // If there is only one terminator instruction, process it.
522   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
523     if (LastInst.getOpcode() == PPC::B) {
524       if (!LastInst.getOperand(0).isMBB())
525         return true;
526       TBB = LastInst.getOperand(0).getMBB();
527       return false;
528     } else if (LastInst.getOpcode() == PPC::BCC) {
529       if (!LastInst.getOperand(2).isMBB())
530         return true;
531       // Block ends with fall-through condbranch.
532       TBB = LastInst.getOperand(2).getMBB();
533       Cond.push_back(LastInst.getOperand(0));
534       Cond.push_back(LastInst.getOperand(1));
535       return false;
536     } else if (LastInst.getOpcode() == PPC::BC) {
537       if (!LastInst.getOperand(1).isMBB())
538         return true;
539       // Block ends with fall-through condbranch.
540       TBB = LastInst.getOperand(1).getMBB();
541       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
542       Cond.push_back(LastInst.getOperand(0));
543       return false;
544     } else if (LastInst.getOpcode() == PPC::BCn) {
545       if (!LastInst.getOperand(1).isMBB())
546         return true;
547       // Block ends with fall-through condbranch.
548       TBB = LastInst.getOperand(1).getMBB();
549       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
550       Cond.push_back(LastInst.getOperand(0));
551       return false;
552     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
553                LastInst.getOpcode() == PPC::BDNZ) {
554       if (!LastInst.getOperand(0).isMBB())
555         return true;
556       if (DisableCTRLoopAnal)
557         return true;
558       TBB = LastInst.getOperand(0).getMBB();
559       Cond.push_back(MachineOperand::CreateImm(1));
560       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
561                                                true));
562       return false;
563     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
564                LastInst.getOpcode() == PPC::BDZ) {
565       if (!LastInst.getOperand(0).isMBB())
566         return true;
567       if (DisableCTRLoopAnal)
568         return true;
569       TBB = LastInst.getOperand(0).getMBB();
570       Cond.push_back(MachineOperand::CreateImm(0));
571       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
572                                                true));
573       return false;
574     }
575 
576     // Otherwise, don't know what this is.
577     return true;
578   }
579 
580   // Get the instruction before it if it's a terminator.
581   MachineInstr &SecondLastInst = *I;
582 
583   // If there are three terminators, we don't know what sort of block this is.
584   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
585     return true;
586 
587   // If the block ends with PPC::B and PPC:BCC, handle it.
588   if (SecondLastInst.getOpcode() == PPC::BCC &&
589       LastInst.getOpcode() == PPC::B) {
590     if (!SecondLastInst.getOperand(2).isMBB() ||
591         !LastInst.getOperand(0).isMBB())
592       return true;
593     TBB = SecondLastInst.getOperand(2).getMBB();
594     Cond.push_back(SecondLastInst.getOperand(0));
595     Cond.push_back(SecondLastInst.getOperand(1));
596     FBB = LastInst.getOperand(0).getMBB();
597     return false;
598   } else if (SecondLastInst.getOpcode() == PPC::BC &&
599              LastInst.getOpcode() == PPC::B) {
600     if (!SecondLastInst.getOperand(1).isMBB() ||
601         !LastInst.getOperand(0).isMBB())
602       return true;
603     TBB = SecondLastInst.getOperand(1).getMBB();
604     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
605     Cond.push_back(SecondLastInst.getOperand(0));
606     FBB = LastInst.getOperand(0).getMBB();
607     return false;
608   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
609              LastInst.getOpcode() == PPC::B) {
610     if (!SecondLastInst.getOperand(1).isMBB() ||
611         !LastInst.getOperand(0).isMBB())
612       return true;
613     TBB = SecondLastInst.getOperand(1).getMBB();
614     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
615     Cond.push_back(SecondLastInst.getOperand(0));
616     FBB = LastInst.getOperand(0).getMBB();
617     return false;
618   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
619               SecondLastInst.getOpcode() == PPC::BDNZ) &&
620              LastInst.getOpcode() == PPC::B) {
621     if (!SecondLastInst.getOperand(0).isMBB() ||
622         !LastInst.getOperand(0).isMBB())
623       return true;
624     if (DisableCTRLoopAnal)
625       return true;
626     TBB = SecondLastInst.getOperand(0).getMBB();
627     Cond.push_back(MachineOperand::CreateImm(1));
628     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
629                                              true));
630     FBB = LastInst.getOperand(0).getMBB();
631     return false;
632   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
633               SecondLastInst.getOpcode() == PPC::BDZ) &&
634              LastInst.getOpcode() == PPC::B) {
635     if (!SecondLastInst.getOperand(0).isMBB() ||
636         !LastInst.getOperand(0).isMBB())
637       return true;
638     if (DisableCTRLoopAnal)
639       return true;
640     TBB = SecondLastInst.getOperand(0).getMBB();
641     Cond.push_back(MachineOperand::CreateImm(0));
642     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
643                                              true));
644     FBB = LastInst.getOperand(0).getMBB();
645     return false;
646   }
647 
648   // If the block ends with two PPC:Bs, handle it.  The second one is not
649   // executed, so remove it.
650   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
651     if (!SecondLastInst.getOperand(0).isMBB())
652       return true;
653     TBB = SecondLastInst.getOperand(0).getMBB();
654     I = LastInst;
655     if (AllowModify)
656       I->eraseFromParent();
657     return false;
658   }
659 
660   // Otherwise, can't handle this.
661   return true;
662 }
663 
664 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
665                                     int *BytesRemoved) const {
666   assert(!BytesRemoved && "code size not handled");
667 
668   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
669   if (I == MBB.end())
670     return 0;
671 
672   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
673       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
674       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
675       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
676     return 0;
677 
678   // Remove the branch.
679   I->eraseFromParent();
680 
681   I = MBB.end();
682 
683   if (I == MBB.begin()) return 1;
684   --I;
685   if (I->getOpcode() != PPC::BCC &&
686       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
687       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
688       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
689     return 1;
690 
691   // Remove the branch.
692   I->eraseFromParent();
693   return 2;
694 }
695 
696 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
697                                     MachineBasicBlock *TBB,
698                                     MachineBasicBlock *FBB,
699                                     ArrayRef<MachineOperand> Cond,
700                                     const DebugLoc &DL,
701                                     int *BytesAdded) const {
702   // Shouldn't be a fall through.
703   assert(TBB && "insertBranch must not be told to insert a fallthrough");
704   assert((Cond.size() == 2 || Cond.size() == 0) &&
705          "PPC branch conditions have two components!");
706   assert(!BytesAdded && "code size not handled");
707 
708   bool isPPC64 = Subtarget.isPPC64();
709 
710   // One-way branch.
711   if (!FBB) {
712     if (Cond.empty())   // Unconditional branch
713       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
714     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
715       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
716                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
717                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
718     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
719       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
720     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
721       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
722     else                // Conditional branch
723       BuildMI(&MBB, DL, get(PPC::BCC))
724           .addImm(Cond[0].getImm())
725           .add(Cond[1])
726           .addMBB(TBB);
727     return 1;
728   }
729 
730   // Two-way Conditional Branch.
731   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
732     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
733                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
734                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
735   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
736     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
737   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
738     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
739   else
740     BuildMI(&MBB, DL, get(PPC::BCC))
741         .addImm(Cond[0].getImm())
742         .add(Cond[1])
743         .addMBB(TBB);
744   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
745   return 2;
746 }
747 
748 // Select analysis.
749 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
750                 ArrayRef<MachineOperand> Cond,
751                 unsigned TrueReg, unsigned FalseReg,
752                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
753   if (Cond.size() != 2)
754     return false;
755 
756   // If this is really a bdnz-like condition, then it cannot be turned into a
757   // select.
758   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
759     return false;
760 
761   // Check register classes.
762   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
763   const TargetRegisterClass *RC =
764     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
765   if (!RC)
766     return false;
767 
768   // isel is for regular integer GPRs only.
769   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
770       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
771       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
772       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
773     return false;
774 
775   // FIXME: These numbers are for the A2, how well they work for other cores is
776   // an open question. On the A2, the isel instruction has a 2-cycle latency
777   // but single-cycle throughput. These numbers are used in combination with
778   // the MispredictPenalty setting from the active SchedMachineModel.
779   CondCycles = 1;
780   TrueCycles = 1;
781   FalseCycles = 1;
782 
783   return true;
784 }
785 
786 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
787                                 MachineBasicBlock::iterator MI,
788                                 const DebugLoc &dl, unsigned DestReg,
789                                 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
790                                 unsigned FalseReg) const {
791   assert(Cond.size() == 2 &&
792          "PPC branch conditions have two components!");
793 
794   // Get the register classes.
795   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
796   const TargetRegisterClass *RC =
797     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
798   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
799 
800   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
801                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
802   assert((Is64Bit ||
803           PPC::GPRCRegClass.hasSubClassEq(RC) ||
804           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
805          "isel is for regular integer GPRs only");
806 
807   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
808   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
809 
810   unsigned SubIdx = 0;
811   bool SwapOps = false;
812   switch (SelectPred) {
813   case PPC::PRED_EQ:
814   case PPC::PRED_EQ_MINUS:
815   case PPC::PRED_EQ_PLUS:
816       SubIdx = PPC::sub_eq; SwapOps = false; break;
817   case PPC::PRED_NE:
818   case PPC::PRED_NE_MINUS:
819   case PPC::PRED_NE_PLUS:
820       SubIdx = PPC::sub_eq; SwapOps = true; break;
821   case PPC::PRED_LT:
822   case PPC::PRED_LT_MINUS:
823   case PPC::PRED_LT_PLUS:
824       SubIdx = PPC::sub_lt; SwapOps = false; break;
825   case PPC::PRED_GE:
826   case PPC::PRED_GE_MINUS:
827   case PPC::PRED_GE_PLUS:
828       SubIdx = PPC::sub_lt; SwapOps = true; break;
829   case PPC::PRED_GT:
830   case PPC::PRED_GT_MINUS:
831   case PPC::PRED_GT_PLUS:
832       SubIdx = PPC::sub_gt; SwapOps = false; break;
833   case PPC::PRED_LE:
834   case PPC::PRED_LE_MINUS:
835   case PPC::PRED_LE_PLUS:
836       SubIdx = PPC::sub_gt; SwapOps = true; break;
837   case PPC::PRED_UN:
838   case PPC::PRED_UN_MINUS:
839   case PPC::PRED_UN_PLUS:
840       SubIdx = PPC::sub_un; SwapOps = false; break;
841   case PPC::PRED_NU:
842   case PPC::PRED_NU_MINUS:
843   case PPC::PRED_NU_PLUS:
844       SubIdx = PPC::sub_un; SwapOps = true; break;
845   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
846   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
847   }
848 
849   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
850            SecondReg = SwapOps ? TrueReg  : FalseReg;
851 
852   // The first input register of isel cannot be r0. If it is a member
853   // of a register class that can be r0, then copy it first (the
854   // register allocator should eliminate the copy).
855   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
856       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
857     const TargetRegisterClass *FirstRC =
858       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
859         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
860     unsigned OldFirstReg = FirstReg;
861     FirstReg = MRI.createVirtualRegister(FirstRC);
862     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
863       .addReg(OldFirstReg);
864   }
865 
866   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
867     .addReg(FirstReg).addReg(SecondReg)
868     .addReg(Cond[1].getReg(), 0, SubIdx);
869 }
870 
871 static unsigned getCRBitValue(unsigned CRBit) {
872   unsigned Ret = 4;
873   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
874       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
875       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
876       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
877     Ret = 3;
878   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
879       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
880       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
881       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
882     Ret = 2;
883   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
884       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
885       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
886       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
887     Ret = 1;
888   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
889       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
890       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
891       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
892     Ret = 0;
893 
894   assert(Ret != 4 && "Invalid CR bit register");
895   return Ret;
896 }
897 
898 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
899                                MachineBasicBlock::iterator I,
900                                const DebugLoc &DL, unsigned DestReg,
901                                unsigned SrcReg, bool KillSrc) const {
902   // We can end up with self copies and similar things as a result of VSX copy
903   // legalization. Promote them here.
904   const TargetRegisterInfo *TRI = &getRegisterInfo();
905   if (PPC::F8RCRegClass.contains(DestReg) &&
906       PPC::VSRCRegClass.contains(SrcReg)) {
907     unsigned SuperReg =
908       TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
909 
910     if (VSXSelfCopyCrash && SrcReg == SuperReg)
911       llvm_unreachable("nop VSX copy");
912 
913     DestReg = SuperReg;
914   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
915              PPC::VSRCRegClass.contains(DestReg)) {
916     unsigned SuperReg =
917       TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
918 
919     if (VSXSelfCopyCrash && DestReg == SuperReg)
920       llvm_unreachable("nop VSX copy");
921 
922     SrcReg = SuperReg;
923   }
924 
925   // Different class register copy
926   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
927       PPC::GPRCRegClass.contains(DestReg)) {
928     unsigned CRReg = getCRFromCRBit(SrcReg);
929     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
930     getKillRegState(KillSrc);
931     // Rotate the CR bit in the CR fields to be the least significant bit and
932     // then mask with 0x1 (MB = ME = 31).
933     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
934        .addReg(DestReg, RegState::Kill)
935        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
936        .addImm(31)
937        .addImm(31);
938     return;
939   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
940       PPC::G8RCRegClass.contains(DestReg)) {
941     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
942     getKillRegState(KillSrc);
943     return;
944   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
945       PPC::GPRCRegClass.contains(DestReg)) {
946     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
947     getKillRegState(KillSrc);
948     return;
949   } else if (PPC::G8RCRegClass.contains(SrcReg) &&
950              PPC::VSFRCRegClass.contains(DestReg)) {
951     BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
952     NumGPRtoVSRSpill++;
953     getKillRegState(KillSrc);
954     return;
955   } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
956              PPC::G8RCRegClass.contains(DestReg)) {
957     BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
958     getKillRegState(KillSrc);
959     return;
960   }
961 
962   unsigned Opc;
963   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
964     Opc = PPC::OR;
965   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
966     Opc = PPC::OR8;
967   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
968     Opc = PPC::FMR;
969   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
970     Opc = PPC::MCRF;
971   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
972     Opc = PPC::VOR;
973   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
974     // There are two different ways this can be done:
975     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
976     //      issue in VSU pipeline 0.
977     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
978     //      can go to either pipeline.
979     // We'll always use xxlor here, because in practically all cases where
980     // copies are generated, they are close enough to some use that the
981     // lower-latency form is preferable.
982     Opc = PPC::XXLOR;
983   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
984            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
985     Opc = PPC::XXLORf;
986   else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
987     Opc = PPC::QVFMR;
988   else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
989     Opc = PPC::QVFMRs;
990   else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
991     Opc = PPC::QVFMRb;
992   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
993     Opc = PPC::CROR;
994   else
995     llvm_unreachable("Impossible reg-to-reg copy");
996 
997   const MCInstrDesc &MCID = get(Opc);
998   if (MCID.getNumOperands() == 3)
999     BuildMI(MBB, I, DL, MCID, DestReg)
1000       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1001   else
1002     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1003 }
1004 
1005 // This function returns true if a CR spill is necessary and false otherwise.
1006 bool
1007 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
1008                                   unsigned SrcReg, bool isKill,
1009                                   int FrameIdx,
1010                                   const TargetRegisterClass *RC,
1011                                   SmallVectorImpl<MachineInstr*> &NewMIs,
1012                                   bool &NonRI, bool &SpillsVRS) const{
1013   // Note: If additional store instructions are added here,
1014   // update isStoreToStackSlot.
1015 
1016   DebugLoc DL;
1017   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1018       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1019     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
1020                                        .addReg(SrcReg,
1021                                                getKillRegState(isKill)),
1022                                        FrameIdx));
1023   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1024              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1025     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
1026                                        .addReg(SrcReg,
1027                                                getKillRegState(isKill)),
1028                                        FrameIdx));
1029   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1030     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
1031                                        .addReg(SrcReg,
1032                                                getKillRegState(isKill)),
1033                                        FrameIdx));
1034   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1035     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
1036                                        .addReg(SrcReg,
1037                                                getKillRegState(isKill)),
1038                                        FrameIdx));
1039   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1040     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
1041                                        .addReg(SrcReg,
1042                                                getKillRegState(isKill)),
1043                                        FrameIdx));
1044     return true;
1045   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1046     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
1047                                        .addReg(SrcReg,
1048                                                getKillRegState(isKill)),
1049                                        FrameIdx));
1050     return true;
1051   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1052     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
1053                                        .addReg(SrcReg,
1054                                                getKillRegState(isKill)),
1055                                        FrameIdx));
1056     NonRI = true;
1057   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1058     unsigned Op = Subtarget.hasP9Vector() ? PPC::STXV : PPC::STXVD2X;
1059     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Op))
1060                                        .addReg(SrcReg,
1061                                                getKillRegState(isKill)),
1062                                        FrameIdx));
1063     NonRI = true;
1064   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1065     unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFSTOREf64 : PPC::STXSDX;
1066     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc))
1067                                        .addReg(SrcReg,
1068                                                getKillRegState(isKill)),
1069                                        FrameIdx));
1070     NonRI = true;
1071   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1072     unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFSTOREf32 : PPC::STXSSPX;
1073     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc))
1074                                        .addReg(SrcReg,
1075                                                getKillRegState(isKill)),
1076                                        FrameIdx));
1077     NonRI = true;
1078   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1079     assert(Subtarget.isDarwin() &&
1080            "VRSAVE only needs spill/restore on Darwin");
1081     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
1082                                        .addReg(SrcReg,
1083                                                getKillRegState(isKill)),
1084                                        FrameIdx));
1085     SpillsVRS = true;
1086   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1087     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX))
1088                                        .addReg(SrcReg,
1089                                                getKillRegState(isKill)),
1090                                        FrameIdx));
1091     NonRI = true;
1092   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1093     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs))
1094                                        .addReg(SrcReg,
1095                                                getKillRegState(isKill)),
1096                                        FrameIdx));
1097     NonRI = true;
1098   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1099     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb))
1100                                        .addReg(SrcReg,
1101                                                getKillRegState(isKill)),
1102                                        FrameIdx));
1103     NonRI = true;
1104   } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1105     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILLTOVSR_ST))
1106                                        .addReg(SrcReg,
1107                                                getKillRegState(isKill)),
1108                                        FrameIdx));
1109   } else {
1110     llvm_unreachable("Unknown regclass!");
1111   }
1112 
1113   return false;
1114 }
1115 
1116 void
1117 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1118                                   MachineBasicBlock::iterator MI,
1119                                   unsigned SrcReg, bool isKill, int FrameIdx,
1120                                   const TargetRegisterClass *RC,
1121                                   const TargetRegisterInfo *TRI) const {
1122   MachineFunction &MF = *MBB.getParent();
1123   SmallVector<MachineInstr*, 4> NewMIs;
1124 
1125   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1126   FuncInfo->setHasSpills();
1127 
1128   // We need to avoid a situation in which the value from a VRRC register is
1129   // spilled using an Altivec instruction and reloaded into a VSRC register
1130   // using a VSX instruction. The issue with this is that the VSX
1131   // load/store instructions swap the doublewords in the vector and the Altivec
1132   // ones don't. The register classes on the spill/reload may be different if
1133   // the register is defined using an Altivec instruction and is then used by a
1134   // VSX instruction.
1135   RC = updatedRC(RC);
1136 
1137   bool NonRI = false, SpillsVRS = false;
1138   if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
1139                           NonRI, SpillsVRS))
1140     FuncInfo->setSpillsCR();
1141 
1142   if (SpillsVRS)
1143     FuncInfo->setSpillsVRSAVE();
1144 
1145   if (NonRI)
1146     FuncInfo->setHasNonRISpills();
1147 
1148   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1149     MBB.insert(MI, NewMIs[i]);
1150 
1151   const MachineFrameInfo &MFI = MF.getFrameInfo();
1152   MachineMemOperand *MMO = MF.getMachineMemOperand(
1153       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1154       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1155       MFI.getObjectAlignment(FrameIdx));
1156   NewMIs.back()->addMemOperand(MF, MMO);
1157 }
1158 
1159 bool PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1160                                         unsigned DestReg, int FrameIdx,
1161                                         const TargetRegisterClass *RC,
1162                                         SmallVectorImpl<MachineInstr *> &NewMIs,
1163                                         bool &NonRI, bool &SpillsVRS) const {
1164   // Note: If additional load instructions are added here,
1165   // update isLoadFromStackSlot.
1166 
1167   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1168       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1169     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
1170                                                DestReg), FrameIdx));
1171   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1172              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1173     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
1174                                        FrameIdx));
1175   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1176     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
1177                                        FrameIdx));
1178   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1179     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
1180                                        FrameIdx));
1181   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1182     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1183                                                get(PPC::RESTORE_CR), DestReg),
1184                                        FrameIdx));
1185     return true;
1186   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1187     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1188                                                get(PPC::RESTORE_CRBIT), DestReg),
1189                                        FrameIdx));
1190     return true;
1191   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1192     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
1193                                        FrameIdx));
1194     NonRI = true;
1195   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1196     unsigned Op = Subtarget.hasP9Vector() ? PPC::LXV : PPC::LXVD2X;
1197     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Op), DestReg),
1198                                        FrameIdx));
1199     NonRI = true;
1200   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1201     unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFLOADf64 : PPC::LXSDX;
1202     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc),
1203                                                DestReg), FrameIdx));
1204     NonRI = true;
1205   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1206     unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFLOADf32 : PPC::LXSSPX;
1207     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc),
1208                                                DestReg), FrameIdx));
1209     NonRI = true;
1210   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1211     assert(Subtarget.isDarwin() &&
1212            "VRSAVE only needs spill/restore on Darwin");
1213     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1214                                                get(PPC::RESTORE_VRSAVE),
1215                                                DestReg),
1216                                        FrameIdx));
1217     SpillsVRS = true;
1218   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1219     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg),
1220                                        FrameIdx));
1221     NonRI = true;
1222   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1223     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg),
1224                                        FrameIdx));
1225     NonRI = true;
1226   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1227     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg),
1228                                        FrameIdx));
1229     NonRI = true;
1230   } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1231     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILLTOVSR_LD),
1232                                                DestReg), FrameIdx));
1233   } else {
1234     llvm_unreachable("Unknown regclass!");
1235   }
1236 
1237   return false;
1238 }
1239 
1240 void
1241 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1242                                    MachineBasicBlock::iterator MI,
1243                                    unsigned DestReg, int FrameIdx,
1244                                    const TargetRegisterClass *RC,
1245                                    const TargetRegisterInfo *TRI) const {
1246   MachineFunction &MF = *MBB.getParent();
1247   SmallVector<MachineInstr*, 4> NewMIs;
1248   DebugLoc DL;
1249   if (MI != MBB.end()) DL = MI->getDebugLoc();
1250 
1251   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1252   FuncInfo->setHasSpills();
1253 
1254   // We need to avoid a situation in which the value from a VRRC register is
1255   // spilled using an Altivec instruction and reloaded into a VSRC register
1256   // using a VSX instruction. The issue with this is that the VSX
1257   // load/store instructions swap the doublewords in the vector and the Altivec
1258   // ones don't. The register classes on the spill/reload may be different if
1259   // the register is defined using an Altivec instruction and is then used by a
1260   // VSX instruction.
1261   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
1262     RC = &PPC::VSRCRegClass;
1263 
1264   bool NonRI = false, SpillsVRS = false;
1265   if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
1266                            NonRI, SpillsVRS))
1267     FuncInfo->setSpillsCR();
1268 
1269   if (SpillsVRS)
1270     FuncInfo->setSpillsVRSAVE();
1271 
1272   if (NonRI)
1273     FuncInfo->setHasNonRISpills();
1274 
1275   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1276     MBB.insert(MI, NewMIs[i]);
1277 
1278   const MachineFrameInfo &MFI = MF.getFrameInfo();
1279   MachineMemOperand *MMO = MF.getMachineMemOperand(
1280       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1281       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1282       MFI.getObjectAlignment(FrameIdx));
1283   NewMIs.back()->addMemOperand(MF, MMO);
1284 }
1285 
1286 bool PPCInstrInfo::
1287 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1288   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1289   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1290     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1291   else
1292     // Leave the CR# the same, but invert the condition.
1293     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1294   return false;
1295 }
1296 
1297 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1298                                  unsigned Reg, MachineRegisterInfo *MRI) const {
1299   // For some instructions, it is legal to fold ZERO into the RA register field.
1300   // A zero immediate should always be loaded with a single li.
1301   unsigned DefOpc = DefMI.getOpcode();
1302   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1303     return false;
1304   if (!DefMI.getOperand(1).isImm())
1305     return false;
1306   if (DefMI.getOperand(1).getImm() != 0)
1307     return false;
1308 
1309   // Note that we cannot here invert the arguments of an isel in order to fold
1310   // a ZERO into what is presented as the second argument. All we have here
1311   // is the condition bit, and that might come from a CR-logical bit operation.
1312 
1313   const MCInstrDesc &UseMCID = UseMI.getDesc();
1314 
1315   // Only fold into real machine instructions.
1316   if (UseMCID.isPseudo())
1317     return false;
1318 
1319   unsigned UseIdx;
1320   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1321     if (UseMI.getOperand(UseIdx).isReg() &&
1322         UseMI.getOperand(UseIdx).getReg() == Reg)
1323       break;
1324 
1325   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1326   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1327 
1328   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1329 
1330   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1331   // register (which might also be specified as a pointer class kind).
1332   if (UseInfo->isLookupPtrRegClass()) {
1333     if (UseInfo->RegClass /* Kind */ != 1)
1334       return false;
1335   } else {
1336     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1337         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1338       return false;
1339   }
1340 
1341   // Make sure this is not tied to an output register (or otherwise
1342   // constrained). This is true for ST?UX registers, for example, which
1343   // are tied to their output registers.
1344   if (UseInfo->Constraints != 0)
1345     return false;
1346 
1347   unsigned ZeroReg;
1348   if (UseInfo->isLookupPtrRegClass()) {
1349     bool isPPC64 = Subtarget.isPPC64();
1350     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1351   } else {
1352     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1353               PPC::ZERO8 : PPC::ZERO;
1354   }
1355 
1356   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1357   UseMI.getOperand(UseIdx).setReg(ZeroReg);
1358 
1359   if (DeleteDef)
1360     DefMI.eraseFromParent();
1361 
1362   return true;
1363 }
1364 
1365 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1366   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1367        I != IE; ++I)
1368     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1369       return true;
1370   return false;
1371 }
1372 
1373 // We should make sure that, if we're going to predicate both sides of a
1374 // condition (a diamond), that both sides don't define the counter register. We
1375 // can predicate counter-decrement-based branches, but while that predicates
1376 // the branching, it does not predicate the counter decrement. If we tried to
1377 // merge the triangle into one predicated block, we'd decrement the counter
1378 // twice.
1379 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1380                      unsigned NumT, unsigned ExtraT,
1381                      MachineBasicBlock &FMBB,
1382                      unsigned NumF, unsigned ExtraF,
1383                      BranchProbability Probability) const {
1384   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1385 }
1386 
1387 
1388 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1389   // The predicated branches are identified by their type, not really by the
1390   // explicit presence of a predicate. Furthermore, some of them can be
1391   // predicated more than once. Because if conversion won't try to predicate
1392   // any instruction which already claims to be predicated (by returning true
1393   // here), always return false. In doing so, we let isPredicable() be the
1394   // final word on whether not the instruction can be (further) predicated.
1395 
1396   return false;
1397 }
1398 
1399 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1400   if (!MI.isTerminator())
1401     return false;
1402 
1403   // Conditional branch is a special case.
1404   if (MI.isBranch() && !MI.isBarrier())
1405     return true;
1406 
1407   return !isPredicated(MI);
1408 }
1409 
1410 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1411                                         ArrayRef<MachineOperand> Pred) const {
1412   unsigned OpC = MI.getOpcode();
1413   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1414     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1415       bool isPPC64 = Subtarget.isPPC64();
1416       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1417                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1418     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1419       MI.setDesc(get(PPC::BCLR));
1420       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1421           .addReg(Pred[1].getReg());
1422     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1423       MI.setDesc(get(PPC::BCLRn));
1424       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1425           .addReg(Pred[1].getReg());
1426     } else {
1427       MI.setDesc(get(PPC::BCCLR));
1428       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1429           .addImm(Pred[0].getImm())
1430           .addReg(Pred[1].getReg());
1431     }
1432 
1433     return true;
1434   } else if (OpC == PPC::B) {
1435     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1436       bool isPPC64 = Subtarget.isPPC64();
1437       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1438                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1439     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1440       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1441       MI.RemoveOperand(0);
1442 
1443       MI.setDesc(get(PPC::BC));
1444       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1445           .addReg(Pred[1].getReg())
1446           .addMBB(MBB);
1447     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1448       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1449       MI.RemoveOperand(0);
1450 
1451       MI.setDesc(get(PPC::BCn));
1452       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1453           .addReg(Pred[1].getReg())
1454           .addMBB(MBB);
1455     } else {
1456       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1457       MI.RemoveOperand(0);
1458 
1459       MI.setDesc(get(PPC::BCC));
1460       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1461           .addImm(Pred[0].getImm())
1462           .addReg(Pred[1].getReg())
1463           .addMBB(MBB);
1464     }
1465 
1466     return true;
1467   } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
1468              OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
1469     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1470       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1471 
1472     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1473     bool isPPC64 = Subtarget.isPPC64();
1474 
1475     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1476       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1477                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1478       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1479           .addReg(Pred[1].getReg());
1480       return true;
1481     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1482       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1483                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1484       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1485           .addReg(Pred[1].getReg());
1486       return true;
1487     }
1488 
1489     MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1490                            : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1491     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1492         .addImm(Pred[0].getImm())
1493         .addReg(Pred[1].getReg());
1494     return true;
1495   }
1496 
1497   return false;
1498 }
1499 
1500 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1501                                      ArrayRef<MachineOperand> Pred2) const {
1502   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1503   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1504 
1505   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1506     return false;
1507   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1508     return false;
1509 
1510   // P1 can only subsume P2 if they test the same condition register.
1511   if (Pred1[1].getReg() != Pred2[1].getReg())
1512     return false;
1513 
1514   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1515   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1516 
1517   if (P1 == P2)
1518     return true;
1519 
1520   // Does P1 subsume P2, e.g. GE subsumes GT.
1521   if (P1 == PPC::PRED_LE &&
1522       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1523     return true;
1524   if (P1 == PPC::PRED_GE &&
1525       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1526     return true;
1527 
1528   return false;
1529 }
1530 
1531 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1532                                     std::vector<MachineOperand> &Pred) const {
1533   // Note: At the present time, the contents of Pred from this function is
1534   // unused by IfConversion. This implementation follows ARM by pushing the
1535   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1536   // predicate, instructions defining CTR or CTR8 are also included as
1537   // predicate-defining instructions.
1538 
1539   const TargetRegisterClass *RCs[] =
1540     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1541       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1542 
1543   bool Found = false;
1544   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1545     const MachineOperand &MO = MI.getOperand(i);
1546     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1547       const TargetRegisterClass *RC = RCs[c];
1548       if (MO.isReg()) {
1549         if (MO.isDef() && RC->contains(MO.getReg())) {
1550           Pred.push_back(MO);
1551           Found = true;
1552         }
1553       } else if (MO.isRegMask()) {
1554         for (TargetRegisterClass::iterator I = RC->begin(),
1555              IE = RC->end(); I != IE; ++I)
1556           if (MO.clobbersPhysReg(*I)) {
1557             Pred.push_back(MO);
1558             Found = true;
1559           }
1560       }
1561     }
1562   }
1563 
1564   return Found;
1565 }
1566 
1567 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const {
1568   unsigned OpC = MI.getOpcode();
1569   switch (OpC) {
1570   default:
1571     return false;
1572   case PPC::B:
1573   case PPC::BLR:
1574   case PPC::BLR8:
1575   case PPC::BCTR:
1576   case PPC::BCTR8:
1577   case PPC::BCTRL:
1578   case PPC::BCTRL8:
1579     return true;
1580   }
1581 }
1582 
1583 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1584                                   unsigned &SrcReg2, int &Mask,
1585                                   int &Value) const {
1586   unsigned Opc = MI.getOpcode();
1587 
1588   switch (Opc) {
1589   default: return false;
1590   case PPC::CMPWI:
1591   case PPC::CMPLWI:
1592   case PPC::CMPDI:
1593   case PPC::CMPLDI:
1594     SrcReg = MI.getOperand(1).getReg();
1595     SrcReg2 = 0;
1596     Value = MI.getOperand(2).getImm();
1597     Mask = 0xFFFF;
1598     return true;
1599   case PPC::CMPW:
1600   case PPC::CMPLW:
1601   case PPC::CMPD:
1602   case PPC::CMPLD:
1603   case PPC::FCMPUS:
1604   case PPC::FCMPUD:
1605     SrcReg = MI.getOperand(1).getReg();
1606     SrcReg2 = MI.getOperand(2).getReg();
1607     Value = 0;
1608     Mask = 0;
1609     return true;
1610   }
1611 }
1612 
1613 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1614                                         unsigned SrcReg2, int Mask, int Value,
1615                                         const MachineRegisterInfo *MRI) const {
1616   if (DisableCmpOpt)
1617     return false;
1618 
1619   int OpC = CmpInstr.getOpcode();
1620   unsigned CRReg = CmpInstr.getOperand(0).getReg();
1621 
1622   // FP record forms set CR1 based on the execption status bits, not a
1623   // comparison with zero.
1624   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1625     return false;
1626 
1627   // The record forms set the condition register based on a signed comparison
1628   // with zero (so says the ISA manual). This is not as straightforward as it
1629   // seems, however, because this is always a 64-bit comparison on PPC64, even
1630   // for instructions that are 32-bit in nature (like slw for example).
1631   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1632   // for equality checks (as those don't depend on the sign). On PPC64,
1633   // we are restricted to equality for unsigned 64-bit comparisons and for
1634   // signed 32-bit comparisons the applicability is more restricted.
1635   bool isPPC64 = Subtarget.isPPC64();
1636   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1637   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1638   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1639 
1640   // Get the unique definition of SrcReg.
1641   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1642   if (!MI) return false;
1643 
1644   bool equalityOnly = false;
1645   bool noSub = false;
1646   if (isPPC64) {
1647     if (is32BitSignedCompare) {
1648       // We can perform this optimization only if MI is sign-extending.
1649       if (isSignExtended(*MI))
1650         noSub = true;
1651       else
1652         return false;
1653     } else if (is32BitUnsignedCompare) {
1654       // We can perform this optimization, equality only, if MI is
1655       // zero-extending.
1656       if (isZeroExtended(*MI)) {
1657         noSub = true;
1658         equalityOnly = true;
1659       } else
1660         return false;
1661     } else
1662       equalityOnly = is64BitUnsignedCompare;
1663   } else
1664     equalityOnly = is32BitUnsignedCompare;
1665 
1666   if (equalityOnly) {
1667     // We need to check the uses of the condition register in order to reject
1668     // non-equality comparisons.
1669     for (MachineRegisterInfo::use_instr_iterator
1670          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1671          I != IE; ++I) {
1672       MachineInstr *UseMI = &*I;
1673       if (UseMI->getOpcode() == PPC::BCC) {
1674         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1675         unsigned PredCond = PPC::getPredicateCondition(Pred);
1676         // We ignore hint bits when checking for non-equality comparisons.
1677         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
1678           return false;
1679       } else if (UseMI->getOpcode() == PPC::ISEL ||
1680                  UseMI->getOpcode() == PPC::ISEL8) {
1681         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1682         if (SubIdx != PPC::sub_eq)
1683           return false;
1684       } else
1685         return false;
1686     }
1687   }
1688 
1689   MachineBasicBlock::iterator I = CmpInstr;
1690 
1691   // Scan forward to find the first use of the compare.
1692   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1693        ++I) {
1694     bool FoundUse = false;
1695     for (MachineRegisterInfo::use_instr_iterator
1696          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
1697          J != JE; ++J)
1698       if (&*J == &*I) {
1699         FoundUse = true;
1700         break;
1701       }
1702 
1703     if (FoundUse)
1704       break;
1705   }
1706 
1707   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1708   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1709 
1710   // There are two possible candidates which can be changed to set CR[01].
1711   // One is MI, the other is a SUB instruction.
1712   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1713   MachineInstr *Sub = nullptr;
1714   if (SrcReg2 != 0)
1715     // MI is not a candidate for CMPrr.
1716     MI = nullptr;
1717   // FIXME: Conservatively refuse to convert an instruction which isn't in the
1718   // same BB as the comparison. This is to allow the check below to avoid calls
1719   // (and other explicit clobbers); instead we should really check for these
1720   // more explicitly (in at least a few predecessors).
1721   else if (MI->getParent() != CmpInstr.getParent())
1722     return false;
1723   else if (Value != 0) {
1724     // The record-form instructions set CR bit based on signed comparison
1725     // against 0. We try to convert a compare against 1 or -1 into a compare
1726     // against 0 to exploit record-form instructions. For example, we change
1727     // the condition "greater than -1" into "greater than or equal to 0"
1728     // and "less than 1" into "less than or equal to 0".
1729 
1730     // Since we optimize comparison based on a specific branch condition,
1731     // we don't optimize if condition code is used by more than once.
1732     if (equalityOnly || !MRI->hasOneUse(CRReg))
1733       return false;
1734 
1735     MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
1736     if (UseMI->getOpcode() != PPC::BCC)
1737       return false;
1738 
1739     PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1740     PPC::Predicate NewPred = Pred;
1741     unsigned PredCond = PPC::getPredicateCondition(Pred);
1742     unsigned PredHint = PPC::getPredicateHint(Pred);
1743     int16_t Immed = (int16_t)Value;
1744 
1745     // When modyfing the condition in the predicate, we propagate hint bits
1746     // from the original predicate to the new one.
1747     if (Immed == -1 && PredCond == PPC::PRED_GT)
1748       // We convert "greater than -1" into "greater than or equal to 0",
1749       // since we are assuming signed comparison by !equalityOnly
1750       NewPred = PPC::getPredicate(PPC::PRED_GE, PredHint);
1751     else if (Immed == -1 && PredCond == PPC::PRED_LE)
1752       // We convert "less than or equal to -1" into "less than 0".
1753       NewPred = PPC::getPredicate(PPC::PRED_LT, PredHint);
1754     else if (Immed == 1 && PredCond == PPC::PRED_LT)
1755       // We convert "less than 1" into "less than or equal to 0".
1756       NewPred = PPC::getPredicate(PPC::PRED_LE, PredHint);
1757     else if (Immed == 1 && PredCond == PPC::PRED_GE)
1758       // We convert "greater than or equal to 1" into "greater than 0".
1759       NewPred = PPC::getPredicate(PPC::PRED_GT, PredHint);
1760     else
1761       return false;
1762 
1763     PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1764                                             NewPred));
1765   }
1766 
1767   // Search for Sub.
1768   const TargetRegisterInfo *TRI = &getRegisterInfo();
1769   --I;
1770 
1771   // Get ready to iterate backward from CmpInstr.
1772   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
1773 
1774   for (; I != E && !noSub; --I) {
1775     const MachineInstr &Instr = *I;
1776     unsigned IOpC = Instr.getOpcode();
1777 
1778     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
1779                              Instr.readsRegister(PPC::CR0, TRI)))
1780       // This instruction modifies or uses the record condition register after
1781       // the one we want to change. While we could do this transformation, it
1782       // would likely not be profitable. This transformation removes one
1783       // instruction, and so even forcing RA to generate one move probably
1784       // makes it unprofitable.
1785       return false;
1786 
1787     // Check whether CmpInstr can be made redundant by the current instruction.
1788     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1789          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1790         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1791         ((Instr.getOperand(1).getReg() == SrcReg &&
1792           Instr.getOperand(2).getReg() == SrcReg2) ||
1793         (Instr.getOperand(1).getReg() == SrcReg2 &&
1794          Instr.getOperand(2).getReg() == SrcReg))) {
1795       Sub = &*I;
1796       break;
1797     }
1798 
1799     if (I == B)
1800       // The 'and' is below the comparison instruction.
1801       return false;
1802   }
1803 
1804   // Return false if no candidates exist.
1805   if (!MI && !Sub)
1806     return false;
1807 
1808   // The single candidate is called MI.
1809   if (!MI) MI = Sub;
1810 
1811   int NewOpC = -1;
1812   int MIOpC = MI->getOpcode();
1813   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
1814     NewOpC = MIOpC;
1815   else {
1816     NewOpC = PPC::getRecordFormOpcode(MIOpC);
1817     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1818       NewOpC = MIOpC;
1819   }
1820 
1821   // FIXME: On the non-embedded POWER architectures, only some of the record
1822   // forms are fast, and we should use only the fast ones.
1823 
1824   // The defining instruction has a record form (or is already a record
1825   // form). It is possible, however, that we'll need to reverse the condition
1826   // code of the users.
1827   if (NewOpC == -1)
1828     return false;
1829 
1830   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1831   // needs to be updated to be based on SUB.  Push the condition code
1832   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1833   // condition code of these operands will be modified.
1834   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
1835   // comparison against 0, which may modify predicate.
1836   bool ShouldSwap = false;
1837   if (Sub && Value == 0) {
1838     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1839       Sub->getOperand(2).getReg() == SrcReg;
1840 
1841     // The operands to subf are the opposite of sub, so only in the fixed-point
1842     // case, invert the order.
1843     ShouldSwap = !ShouldSwap;
1844   }
1845 
1846   if (ShouldSwap)
1847     for (MachineRegisterInfo::use_instr_iterator
1848          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1849          I != IE; ++I) {
1850       MachineInstr *UseMI = &*I;
1851       if (UseMI->getOpcode() == PPC::BCC) {
1852         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1853         unsigned PredCond = PPC::getPredicateCondition(Pred);
1854         assert((!equalityOnly ||
1855                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
1856                "Invalid predicate for equality-only optimization");
1857         (void)PredCond; // To suppress warning in release build.
1858         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1859                                 PPC::getSwappedPredicate(Pred)));
1860       } else if (UseMI->getOpcode() == PPC::ISEL ||
1861                  UseMI->getOpcode() == PPC::ISEL8) {
1862         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1863         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1864                "Invalid CR bit for equality-only optimization");
1865 
1866         if (NewSubReg == PPC::sub_lt)
1867           NewSubReg = PPC::sub_gt;
1868         else if (NewSubReg == PPC::sub_gt)
1869           NewSubReg = PPC::sub_lt;
1870 
1871         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1872                                                  NewSubReg));
1873       } else // We need to abort on a user we don't understand.
1874         return false;
1875     }
1876   assert(!(Value != 0 && ShouldSwap) &&
1877          "Non-zero immediate support and ShouldSwap"
1878          "may conflict in updating predicate");
1879 
1880   // Create a new virtual register to hold the value of the CR set by the
1881   // record-form instruction. If the instruction was not previously in
1882   // record form, then set the kill flag on the CR.
1883   CmpInstr.eraseFromParent();
1884 
1885   MachineBasicBlock::iterator MII = MI;
1886   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1887           get(TargetOpcode::COPY), CRReg)
1888     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1889 
1890   // Even if CR0 register were dead before, it is alive now since the
1891   // instruction we just built uses it.
1892   MI->clearRegisterDeads(PPC::CR0);
1893 
1894   if (MIOpC != NewOpC) {
1895     // We need to be careful here: we're replacing one instruction with
1896     // another, and we need to make sure that we get all of the right
1897     // implicit uses and defs. On the other hand, the caller may be holding
1898     // an iterator to this instruction, and so we can't delete it (this is
1899     // specifically the case if this is the instruction directly after the
1900     // compare).
1901 
1902     // Rotates are expensive instructions. If we're emitting a record-form
1903     // rotate that can just be an andi, we should just emit the andi.
1904     if ((MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) &&
1905         MI->getOperand(2).getImm() == 0) {
1906       int64_t MB = MI->getOperand(3).getImm();
1907       int64_t ME = MI->getOperand(4).getImm();
1908       if (MB < ME && MB >= 16) {
1909         uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
1910         NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIo : PPC::ANDIo8;
1911         MI->RemoveOperand(4);
1912         MI->RemoveOperand(3);
1913         MI->getOperand(2).setImm(Mask);
1914         NumRcRotatesConvertedToRcAnd++;
1915       }
1916     } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
1917       int64_t MB = MI->getOperand(3).getImm();
1918       if (MB >= 48) {
1919         uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
1920         NewOpC = PPC::ANDIo8;
1921         MI->RemoveOperand(3);
1922         MI->getOperand(2).setImm(Mask);
1923         NumRcRotatesConvertedToRcAnd++;
1924       }
1925     }
1926 
1927     const MCInstrDesc &NewDesc = get(NewOpC);
1928     MI->setDesc(NewDesc);
1929 
1930     if (NewDesc.ImplicitDefs)
1931       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1932            *ImpDefs; ++ImpDefs)
1933         if (!MI->definesRegister(*ImpDefs))
1934           MI->addOperand(*MI->getParent()->getParent(),
1935                          MachineOperand::CreateReg(*ImpDefs, true, true));
1936     if (NewDesc.ImplicitUses)
1937       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1938            *ImpUses; ++ImpUses)
1939         if (!MI->readsRegister(*ImpUses))
1940           MI->addOperand(*MI->getParent()->getParent(),
1941                          MachineOperand::CreateReg(*ImpUses, false, true));
1942   }
1943   assert(MI->definesRegister(PPC::CR0) &&
1944          "Record-form instruction does not define cr0?");
1945 
1946   // Modify the condition code of operands in OperandsToUpdate.
1947   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1948   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1949   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1950     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1951 
1952   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1953     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1954 
1955   return true;
1956 }
1957 
1958 /// GetInstSize - Return the number of bytes of code the specified
1959 /// instruction may be.  This returns the maximum number of bytes.
1960 ///
1961 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1962   unsigned Opcode = MI.getOpcode();
1963 
1964   if (Opcode == PPC::INLINEASM) {
1965     const MachineFunction *MF = MI.getParent()->getParent();
1966     const char *AsmStr = MI.getOperand(0).getSymbolName();
1967     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1968   } else if (Opcode == TargetOpcode::STACKMAP) {
1969     StackMapOpers Opers(&MI);
1970     return Opers.getNumPatchBytes();
1971   } else if (Opcode == TargetOpcode::PATCHPOINT) {
1972     PatchPointOpers Opers(&MI);
1973     return Opers.getNumPatchBytes();
1974   } else {
1975     return get(Opcode).getSize();
1976   }
1977 }
1978 
1979 std::pair<unsigned, unsigned>
1980 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
1981   const unsigned Mask = PPCII::MO_ACCESS_MASK;
1982   return std::make_pair(TF & Mask, TF & ~Mask);
1983 }
1984 
1985 ArrayRef<std::pair<unsigned, const char *>>
1986 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
1987   using namespace PPCII;
1988   static const std::pair<unsigned, const char *> TargetFlags[] = {
1989       {MO_LO, "ppc-lo"},
1990       {MO_HA, "ppc-ha"},
1991       {MO_TPREL_LO, "ppc-tprel-lo"},
1992       {MO_TPREL_HA, "ppc-tprel-ha"},
1993       {MO_DTPREL_LO, "ppc-dtprel-lo"},
1994       {MO_TLSLD_LO, "ppc-tlsld-lo"},
1995       {MO_TOC_LO, "ppc-toc-lo"},
1996       {MO_TLS, "ppc-tls"}};
1997   return makeArrayRef(TargetFlags);
1998 }
1999 
2000 ArrayRef<std::pair<unsigned, const char *>>
2001 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2002   using namespace PPCII;
2003   static const std::pair<unsigned, const char *> TargetFlags[] = {
2004       {MO_PLT, "ppc-plt"},
2005       {MO_PIC_FLAG, "ppc-pic"},
2006       {MO_NLP_FLAG, "ppc-nlp"},
2007       {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
2008   return makeArrayRef(TargetFlags);
2009 }
2010 
2011 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2012 // The VSX versions have the advantage of a full 64-register target whereas
2013 // the FP ones have the advantage of lower latency and higher throughput. So
2014 // what we are after is using the faster instructions in low register pressure
2015 // situations and using the larger register file in high register pressure
2016 // situations.
2017 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2018     unsigned UpperOpcode, LowerOpcode;
2019     switch (MI.getOpcode()) {
2020     case PPC::DFLOADf32:
2021       UpperOpcode = PPC::LXSSP;
2022       LowerOpcode = PPC::LFS;
2023       break;
2024     case PPC::DFLOADf64:
2025       UpperOpcode = PPC::LXSD;
2026       LowerOpcode = PPC::LFD;
2027       break;
2028     case PPC::DFSTOREf32:
2029       UpperOpcode = PPC::STXSSP;
2030       LowerOpcode = PPC::STFS;
2031       break;
2032     case PPC::DFSTOREf64:
2033       UpperOpcode = PPC::STXSD;
2034       LowerOpcode = PPC::STFD;
2035       break;
2036     case PPC::XFLOADf32:
2037       UpperOpcode = PPC::LXSSPX;
2038       LowerOpcode = PPC::LFSX;
2039       break;
2040     case PPC::XFLOADf64:
2041       UpperOpcode = PPC::LXSDX;
2042       LowerOpcode = PPC::LFDX;
2043       break;
2044     case PPC::XFSTOREf32:
2045       UpperOpcode = PPC::STXSSPX;
2046       LowerOpcode = PPC::STFSX;
2047       break;
2048     case PPC::XFSTOREf64:
2049       UpperOpcode = PPC::STXSDX;
2050       LowerOpcode = PPC::STFDX;
2051       break;
2052     case PPC::LIWAX:
2053       UpperOpcode = PPC::LXSIWAX;
2054       LowerOpcode = PPC::LFIWAX;
2055       break;
2056     case PPC::LIWZX:
2057       UpperOpcode = PPC::LXSIWZX;
2058       LowerOpcode = PPC::LFIWZX;
2059       break;
2060     case PPC::STIWX:
2061       UpperOpcode = PPC::STXSIWX;
2062       LowerOpcode = PPC::STFIWX;
2063       break;
2064     default:
2065       llvm_unreachable("Unknown Operation!");
2066     }
2067 
2068     unsigned TargetReg = MI.getOperand(0).getReg();
2069     unsigned Opcode;
2070     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2071         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2072       Opcode = LowerOpcode;
2073     else
2074       Opcode = UpperOpcode;
2075     MI.setDesc(get(Opcode));
2076     return true;
2077 }
2078 
2079 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2080   auto &MBB = *MI.getParent();
2081   auto DL = MI.getDebugLoc();
2082 
2083   switch (MI.getOpcode()) {
2084   case TargetOpcode::LOAD_STACK_GUARD: {
2085     assert(Subtarget.isTargetLinux() &&
2086            "Only Linux target is expected to contain LOAD_STACK_GUARD");
2087     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
2088     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
2089     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
2090     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2091         .addImm(Offset)
2092         .addReg(Reg);
2093     return true;
2094   }
2095   case PPC::DFLOADf32:
2096   case PPC::DFLOADf64:
2097   case PPC::DFSTOREf32:
2098   case PPC::DFSTOREf64: {
2099     assert(Subtarget.hasP9Vector() &&
2100            "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2101     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isImm() &&
2102            "D-form op must have register and immediate operands");
2103     return expandVSXMemPseudo(MI);
2104   }
2105   case PPC::XFLOADf32:
2106   case PPC::XFSTOREf32:
2107   case PPC::LIWAX:
2108   case PPC::LIWZX:
2109   case PPC::STIWX: {
2110     assert(Subtarget.hasP8Vector() &&
2111            "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2112     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2113            "X-form op must have register and register operands");
2114     return expandVSXMemPseudo(MI);
2115   }
2116   case PPC::XFLOADf64:
2117   case PPC::XFSTOREf64: {
2118     assert(Subtarget.hasVSX() &&
2119            "Invalid X-Form Pseudo-ops on target that has no VSX.");
2120     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2121            "X-form op must have register and register operands");
2122     return expandVSXMemPseudo(MI);
2123   }
2124   case PPC::SPILLTOVSR_LD: {
2125     unsigned TargetReg = MI.getOperand(0).getReg();
2126     if (PPC::VSFRCRegClass.contains(TargetReg)) {
2127       MI.setDesc(get(PPC::DFLOADf64));
2128       return expandPostRAPseudo(MI);
2129     }
2130     else
2131       MI.setDesc(get(PPC::LD));
2132     return true;
2133   }
2134   case PPC::SPILLTOVSR_ST: {
2135     unsigned SrcReg = MI.getOperand(0).getReg();
2136     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2137       NumStoreSPILLVSRRCAsVec++;
2138       MI.setDesc(get(PPC::DFSTOREf64));
2139       return expandPostRAPseudo(MI);
2140     } else {
2141       NumStoreSPILLVSRRCAsGpr++;
2142       MI.setDesc(get(PPC::STD));
2143     }
2144     return true;
2145   }
2146   case PPC::SPILLTOVSR_LDX: {
2147     unsigned TargetReg = MI.getOperand(0).getReg();
2148     if (PPC::VSFRCRegClass.contains(TargetReg))
2149       MI.setDesc(get(PPC::LXSDX));
2150     else
2151       MI.setDesc(get(PPC::LDX));
2152     return true;
2153   }
2154   case PPC::SPILLTOVSR_STX: {
2155     unsigned SrcReg = MI.getOperand(0).getReg();
2156     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2157       NumStoreSPILLVSRRCAsVec++;
2158       MI.setDesc(get(PPC::STXSDX));
2159     } else {
2160       NumStoreSPILLVSRRCAsGpr++;
2161       MI.setDesc(get(PPC::STDX));
2162     }
2163     return true;
2164   }
2165 
2166   case PPC::CFENCE8: {
2167     auto Val = MI.getOperand(0).getReg();
2168     BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
2169     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
2170         .addImm(PPC::PRED_NE_MINUS)
2171         .addReg(PPC::CR7)
2172         .addImm(1);
2173     MI.setDesc(get(PPC::ISYNC));
2174     MI.RemoveOperand(0);
2175     return true;
2176   }
2177   }
2178   return false;
2179 }
2180 
2181 unsigned PPCInstrInfo::lookThruCopyLike(unsigned SrcReg,
2182                                         const MachineRegisterInfo *MRI) {
2183   while (true) {
2184     MachineInstr *MI = MRI->getVRegDef(SrcReg);
2185     if (!MI->isCopyLike())
2186       return SrcReg;
2187 
2188     unsigned CopySrcReg;
2189     if (MI->isCopy())
2190       CopySrcReg = MI->getOperand(1).getReg();
2191     else {
2192       assert(MI->isSubregToReg() && "Bad opcode for lookThruCopyLike");
2193       CopySrcReg = MI->getOperand(2).getReg();
2194     }
2195 
2196     if (!TargetRegisterInfo::isVirtualRegister(CopySrcReg))
2197       return CopySrcReg;
2198 
2199     SrcReg = CopySrcReg;
2200   }
2201 }
2202 
2203 // Essentially a compile-time implementation of a compare->isel sequence.
2204 // It takes two constants to compare, along with the true/false registers
2205 // and the comparison type (as a subreg to a CR field) and returns one
2206 // of the true/false registers, depending on the comparison results.
2207 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
2208                           unsigned TrueReg, unsigned FalseReg,
2209                           unsigned CRSubReg) {
2210   // Signed comparisons. The immediates are assumed to be sign-extended.
2211   if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
2212     switch (CRSubReg) {
2213     default: llvm_unreachable("Unknown integer comparison type.");
2214     case PPC::sub_lt:
2215       return Imm1 < Imm2 ? TrueReg : FalseReg;
2216     case PPC::sub_gt:
2217       return Imm1 > Imm2 ? TrueReg : FalseReg;
2218     case PPC::sub_eq:
2219       return Imm1 == Imm2 ? TrueReg : FalseReg;
2220     }
2221   }
2222   // Unsigned comparisons.
2223   else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
2224     switch (CRSubReg) {
2225     default: llvm_unreachable("Unknown integer comparison type.");
2226     case PPC::sub_lt:
2227       return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
2228     case PPC::sub_gt:
2229       return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
2230     case PPC::sub_eq:
2231       return Imm1 == Imm2 ? TrueReg : FalseReg;
2232     }
2233   }
2234   return PPC::NoRegister;
2235 }
2236 
2237 // Replace an instruction with one that materializes a constant (and sets
2238 // CR0 if the original instruction was a record-form instruction).
2239 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
2240                                       const LoadImmediateInfo &LII) const {
2241   // Remove existing operands.
2242   int OperandToKeep = LII.SetCR ? 1 : 0;
2243   for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
2244     MI.RemoveOperand(i);
2245 
2246   // Replace the instruction.
2247   if (LII.SetCR) {
2248     MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo));
2249     // Set the immediate.
2250     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2251         .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
2252     return;
2253   }
2254   else
2255     MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
2256 
2257   // Set the immediate.
2258   MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2259       .addImm(LII.Imm);
2260 }
2261 
2262 MachineInstr *PPCInstrInfo::getConstantDefMI(MachineInstr &MI,
2263                                              unsigned &ConstOp,
2264                                              bool &SeenIntermediateUse) const {
2265   ConstOp = ~0U;
2266   MachineInstr *DefMI = nullptr;
2267   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
2268   // If we'ere in SSA, get the defs through the MRI. Otherwise, only look
2269   // within the basic block to see if the register is defined using an LI/LI8.
2270   if (MRI->isSSA()) {
2271     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2272       if (!MI.getOperand(i).isReg())
2273         continue;
2274       unsigned Reg = MI.getOperand(i).getReg();
2275       if (!TargetRegisterInfo::isVirtualRegister(Reg))
2276         continue;
2277       unsigned TrueReg = lookThruCopyLike(Reg, MRI);
2278       if (TargetRegisterInfo::isVirtualRegister(TrueReg)) {
2279         DefMI = MRI->getVRegDef(TrueReg);
2280         if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) {
2281           ConstOp = i;
2282           break;
2283         }
2284       }
2285     }
2286   } else {
2287     // Looking back through the definition for each operand could be expensive,
2288     // so exit early if this isn't an instruction that either has an immediate
2289     // form or is already an immediate form that we can handle.
2290     ImmInstrInfo III;
2291     unsigned Opc = MI.getOpcode();
2292     bool ConvertibleImmForm =
2293       Opc == PPC::CMPWI || Opc == PPC::CMPLWI ||
2294       Opc == PPC::CMPDI || Opc == PPC::CMPLDI ||
2295       Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
2296       Opc == PPC::ORI || Opc == PPC::ORI8 ||
2297       Opc == PPC::XORI || Opc == PPC::XORI8 ||
2298       Opc == PPC::RLDICL || Opc == PPC::RLDICLo ||
2299       Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
2300       Opc == PPC::RLWINM || Opc == PPC::RLWINMo ||
2301       Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2302     if (!instrHasImmForm(MI, III) && !ConvertibleImmForm)
2303       return nullptr;
2304 
2305     // Don't convert or %X, %Y, %Y since that's just a register move.
2306     if ((Opc == PPC::OR || Opc == PPC::OR8) &&
2307         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
2308       return nullptr;
2309     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2310       MachineOperand &MO = MI.getOperand(i);
2311       SeenIntermediateUse = false;
2312       if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
2313         MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
2314         It++;
2315         unsigned Reg = MI.getOperand(i).getReg();
2316         // MachineInstr::readsRegister only returns true if the machine
2317         // instruction reads the exact register or its super-register. It
2318         // does not consider uses of sub-registers which seems like strange
2319         // behaviour. Nonetheless, if we end up with a 64-bit register here,
2320         // get the corresponding 32-bit register to check.
2321         if (PPC::G8RCRegClass.contains(Reg))
2322           Reg = Reg - PPC::X0 + PPC::R0;
2323 
2324         // Is this register defined by a load-immediate in this block?
2325         for ( ; It != E; ++It) {
2326           if (It->modifiesRegister(Reg, &getRegisterInfo())) {
2327             if (It->getOpcode() == PPC::LI || It->getOpcode() == PPC::LI8) {
2328               ConstOp = i;
2329               return &*It;
2330             } else
2331               break;
2332           } else if (It->readsRegister(Reg, &getRegisterInfo()))
2333             // If we see another use of this reg between the def and the MI,
2334             // we want to flat it so the def isn't deleted.
2335             SeenIntermediateUse = true;
2336         }
2337       }
2338     }
2339   }
2340   return ConstOp == ~0U ? nullptr : DefMI;
2341 }
2342 
2343 // If this instruction has an immediate form and one of its operands is a
2344 // result of a load-immediate, convert it to the immediate form if the constant
2345 // is in range.
2346 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
2347                                           MachineInstr **KilledDef) const {
2348   MachineFunction *MF = MI.getParent()->getParent();
2349   MachineRegisterInfo *MRI = &MF->getRegInfo();
2350   bool PostRA = !MRI->isSSA();
2351   bool SeenIntermediateUse = true;
2352   unsigned ConstantOperand = ~0U;
2353   MachineInstr *DefMI = getConstantDefMI(MI, ConstantOperand,
2354                                          SeenIntermediateUse);
2355   if (!DefMI || !DefMI->getOperand(1).isImm())
2356     return false;
2357   assert(ConstantOperand < MI.getNumOperands() &&
2358          "The constant operand needs to be valid at this point");
2359 
2360   int64_t Immediate = DefMI->getOperand(1).getImm();
2361   // Sign-extend to 64-bits.
2362   int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
2363     (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
2364 
2365   if (KilledDef && MI.getOperand(ConstantOperand).isKill() &&
2366       !SeenIntermediateUse)
2367     *KilledDef = DefMI;
2368 
2369   // If this is a reg+reg instruction that has a reg+imm form, convert it now.
2370   ImmInstrInfo III;
2371   if (instrHasImmForm(MI, III))
2372     return transformToImmForm(MI, III, ConstantOperand, SExtImm);
2373 
2374   bool ReplaceWithLI = false;
2375   bool Is64BitLI = false;
2376   int64_t NewImm = 0;
2377   bool SetCR = false;
2378   unsigned Opc = MI.getOpcode();
2379   switch (Opc) {
2380   default: return false;
2381 
2382   // FIXME: Any branches conditional on such a comparison can be made
2383   // unconditional. At this time, this happens too infrequently to be worth
2384   // the implementation effort, but if that ever changes, we could convert
2385   // such a pattern here.
2386   case PPC::CMPWI:
2387   case PPC::CMPLWI:
2388   case PPC::CMPDI:
2389   case PPC::CMPLDI: {
2390     // Doing this post-RA would require dataflow analysis to reliably find uses
2391     // of the CR register set by the compare.
2392     if (PostRA)
2393       return false;
2394     // If a compare-immediate is fed by an immediate and is itself an input of
2395     // an ISEL (the most common case) into a COPY of the correct register.
2396     bool Changed = false;
2397     unsigned DefReg = MI.getOperand(0).getReg();
2398     int64_t Comparand = MI.getOperand(2).getImm();
2399     int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ?
2400       (Comparand | 0xFFFFFFFFFFFF0000) : Comparand;
2401 
2402     for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
2403       unsigned UseOpc = CompareUseMI.getOpcode();
2404       if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
2405         continue;
2406       unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
2407       unsigned TrueReg = CompareUseMI.getOperand(1).getReg();
2408       unsigned FalseReg = CompareUseMI.getOperand(2).getReg();
2409       unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg,
2410                                      FalseReg, CRSubReg);
2411       if (RegToCopy == PPC::NoRegister)
2412         continue;
2413       // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
2414       if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
2415         CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
2416         CompareUseMI.getOperand(1).ChangeToImmediate(0);
2417         CompareUseMI.RemoveOperand(3);
2418         CompareUseMI.RemoveOperand(2);
2419         continue;
2420       }
2421       DEBUG(dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
2422       DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump());
2423       DEBUG(dbgs() << "Is converted to:\n");
2424       // Convert to copy and remove unneeded operands.
2425       CompareUseMI.setDesc(get(PPC::COPY));
2426       CompareUseMI.RemoveOperand(3);
2427       CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
2428       CmpIselsConverted++;
2429       Changed = true;
2430       DEBUG(CompareUseMI.dump());
2431     }
2432     if (Changed)
2433       return true;
2434     // This may end up incremented multiple times since this function is called
2435     // during a fixed-point transformation, but it is only meant to indicate the
2436     // presence of this opportunity.
2437     MissedConvertibleImmediateInstrs++;
2438     return false;
2439   }
2440 
2441   // Immediate forms - may simply be convertable to an LI.
2442   case PPC::ADDI:
2443   case PPC::ADDI8: {
2444     // Does the sum fit in a 16-bit signed field?
2445     int64_t Addend = MI.getOperand(2).getImm();
2446     if (isInt<16>(Addend + SExtImm)) {
2447       ReplaceWithLI = true;
2448       Is64BitLI = Opc == PPC::ADDI8;
2449       NewImm = Addend + SExtImm;
2450       break;
2451     }
2452     return false;
2453   }
2454   case PPC::RLDICL:
2455   case PPC::RLDICLo:
2456   case PPC::RLDICL_32:
2457   case PPC::RLDICL_32_64: {
2458     // Use APInt's rotate function.
2459     int64_t SH = MI.getOperand(2).getImm();
2460     int64_t MB = MI.getOperand(3).getImm();
2461     APInt InVal(Opc == PPC::RLDICL ? 64 : 32, SExtImm, true);
2462     InVal = InVal.rotl(SH);
2463     uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2464     InVal &= Mask;
2465     // Can't replace negative values with an LI as that will sign-extend
2466     // and not clear the left bits. If we're setting the CR bit, we will use
2467     // ANDIo which won't sign extend, so that's safe.
2468     if (isUInt<15>(InVal.getSExtValue()) ||
2469         (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) {
2470       ReplaceWithLI = true;
2471       Is64BitLI = Opc != PPC::RLDICL_32;
2472       NewImm = InVal.getSExtValue();
2473       SetCR = Opc == PPC::RLDICLo;
2474       if (SetCR && (SExtImm & NewImm) != NewImm)
2475         return false;
2476       break;
2477     }
2478     return false;
2479   }
2480   case PPC::RLWINM:
2481   case PPC::RLWINM8:
2482   case PPC::RLWINMo:
2483   case PPC::RLWINM8o: {
2484     int64_t SH = MI.getOperand(2).getImm();
2485     int64_t MB = MI.getOperand(3).getImm();
2486     int64_t ME = MI.getOperand(4).getImm();
2487     APInt InVal(32, SExtImm, true);
2488     InVal = InVal.rotl(SH);
2489     // Set the bits (        MB + 32       ) to (        ME + 32       ).
2490     uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2491     InVal &= Mask;
2492     // Can't replace negative values with an LI as that will sign-extend
2493     // and not clear the left bits. If we're setting the CR bit, we will use
2494     // ANDIo which won't sign extend, so that's safe.
2495     bool ValueFits = isUInt<15>(InVal.getSExtValue());
2496     ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) &&
2497                   isUInt<16>(InVal.getSExtValue()));
2498     if (ValueFits) {
2499       ReplaceWithLI = true;
2500       Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2501       NewImm = InVal.getSExtValue();
2502       SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o;
2503       if (SetCR && (SExtImm & NewImm) != NewImm)
2504         return false;
2505       break;
2506     }
2507     return false;
2508   }
2509   case PPC::ORI:
2510   case PPC::ORI8:
2511   case PPC::XORI:
2512   case PPC::XORI8: {
2513     int64_t LogicalImm = MI.getOperand(2).getImm();
2514     int64_t Result = 0;
2515     if (Opc == PPC::ORI || Opc == PPC::ORI8)
2516       Result = LogicalImm | SExtImm;
2517     else
2518       Result = LogicalImm ^ SExtImm;
2519     if (isInt<16>(Result)) {
2520       ReplaceWithLI = true;
2521       Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
2522       NewImm = Result;
2523       break;
2524     }
2525     return false;
2526   }
2527   }
2528 
2529   if (ReplaceWithLI) {
2530     DEBUG(dbgs() << "Replacing instruction:\n");
2531     DEBUG(MI.dump());
2532     DEBUG(dbgs() << "Fed by:\n");
2533     DEBUG(DefMI->dump());
2534     LoadImmediateInfo LII;
2535     LII.Imm = NewImm;
2536     LII.Is64Bit = Is64BitLI;
2537     LII.SetCR = SetCR;
2538     // If we're setting the CR, the original load-immediate must be kept (as an
2539     // operand to ANDIo/ANDI8o).
2540     if (KilledDef && SetCR)
2541       *KilledDef = nullptr;
2542     replaceInstrWithLI(MI, LII);
2543     DEBUG(dbgs() << "With:\n");
2544     DEBUG(MI.dump());
2545     return true;
2546   }
2547   return false;
2548 }
2549 
2550 bool PPCInstrInfo::instrHasImmForm(const MachineInstr &MI,
2551                                    ImmInstrInfo &III) const {
2552   unsigned Opc = MI.getOpcode();
2553   // The vast majority of the instructions would need their operand 2 replaced
2554   // with an immediate when switching to the reg+imm form. A marked exception
2555   // are the update form loads/stores for which a constant operand 2 would need
2556   // to turn into a displacement and move operand 1 to the operand 2 position.
2557   III.ImmOpNo = 2;
2558   III.ConstantOpNo = 2;
2559   III.ImmWidth = 16;
2560   III.ImmMustBeMultipleOf = 1;
2561   III.TruncateImmTo = 0;
2562   switch (Opc) {
2563   default: return false;
2564   case PPC::ADD4:
2565   case PPC::ADD8:
2566     III.SignedImm = true;
2567     III.ZeroIsSpecialOrig = 0;
2568     III.ZeroIsSpecialNew = 1;
2569     III.IsCommutative = true;
2570     III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
2571     break;
2572   case PPC::ADDC:
2573   case PPC::ADDC8:
2574     III.SignedImm = true;
2575     III.ZeroIsSpecialOrig = 0;
2576     III.ZeroIsSpecialNew = 0;
2577     III.IsCommutative = true;
2578     III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
2579     break;
2580   case PPC::ADDCo:
2581     III.SignedImm = true;
2582     III.ZeroIsSpecialOrig = 0;
2583     III.ZeroIsSpecialNew = 0;
2584     III.IsCommutative = true;
2585     III.ImmOpcode = PPC::ADDICo;
2586     break;
2587   case PPC::SUBFC:
2588   case PPC::SUBFC8:
2589     III.SignedImm = true;
2590     III.ZeroIsSpecialOrig = 0;
2591     III.ZeroIsSpecialNew = 0;
2592     III.IsCommutative = false;
2593     III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
2594     break;
2595   case PPC::CMPW:
2596   case PPC::CMPD:
2597     III.SignedImm = true;
2598     III.ZeroIsSpecialOrig = 0;
2599     III.ZeroIsSpecialNew = 0;
2600     III.IsCommutative = false;
2601     III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
2602     break;
2603   case PPC::CMPLW:
2604   case PPC::CMPLD:
2605     III.SignedImm = false;
2606     III.ZeroIsSpecialOrig = 0;
2607     III.ZeroIsSpecialNew = 0;
2608     III.IsCommutative = false;
2609     III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
2610     break;
2611   case PPC::ANDo:
2612   case PPC::AND8o:
2613   case PPC::OR:
2614   case PPC::OR8:
2615   case PPC::XOR:
2616   case PPC::XOR8:
2617     III.SignedImm = false;
2618     III.ZeroIsSpecialOrig = 0;
2619     III.ZeroIsSpecialNew = 0;
2620     III.IsCommutative = true;
2621     switch(Opc) {
2622     default: llvm_unreachable("Unknown opcode");
2623     case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break;
2624     case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break;
2625     case PPC::OR: III.ImmOpcode = PPC::ORI; break;
2626     case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
2627     case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
2628     case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
2629     }
2630     break;
2631   case PPC::RLWNM:
2632   case PPC::RLWNM8:
2633   case PPC::RLWNMo:
2634   case PPC::RLWNM8o:
2635   case PPC::SLW:
2636   case PPC::SLW8:
2637   case PPC::SLWo:
2638   case PPC::SLW8o:
2639   case PPC::SRW:
2640   case PPC::SRW8:
2641   case PPC::SRWo:
2642   case PPC::SRW8o:
2643   case PPC::SRAW:
2644   case PPC::SRAWo:
2645     III.SignedImm = false;
2646     III.ZeroIsSpecialOrig = 0;
2647     III.ZeroIsSpecialNew = 0;
2648     III.IsCommutative = false;
2649     // This isn't actually true, but the instructions ignore any of the
2650     // upper bits, so any immediate loaded with an LI is acceptable.
2651     // This does not apply to shift right algebraic because a value
2652     // out of range will produce a -1/0.
2653     III.ImmWidth = 16;
2654     if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 ||
2655         Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o)
2656       III.TruncateImmTo = 5;
2657     else
2658       III.TruncateImmTo = 6;
2659     switch(Opc) {
2660     default: llvm_unreachable("Unknown opcode");
2661     case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
2662     case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
2663     case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break;
2664     case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break;
2665     case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
2666     case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
2667     case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break;
2668     case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2669     case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
2670     case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
2671     case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break;
2672     case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2673     case PPC::SRAW:
2674       III.ImmWidth = 5;
2675       III.TruncateImmTo = 0;
2676       III.ImmOpcode = PPC::SRAWI;
2677       break;
2678     case PPC::SRAWo:
2679       III.ImmWidth = 5;
2680       III.TruncateImmTo = 0;
2681       III.ImmOpcode = PPC::SRAWIo;
2682       break;
2683     }
2684     break;
2685   case PPC::RLDCL:
2686   case PPC::RLDCLo:
2687   case PPC::RLDCR:
2688   case PPC::RLDCRo:
2689   case PPC::SLD:
2690   case PPC::SLDo:
2691   case PPC::SRD:
2692   case PPC::SRDo:
2693   case PPC::SRAD:
2694   case PPC::SRADo:
2695     III.SignedImm = false;
2696     III.ZeroIsSpecialOrig = 0;
2697     III.ZeroIsSpecialNew = 0;
2698     III.IsCommutative = false;
2699     // This isn't actually true, but the instructions ignore any of the
2700     // upper bits, so any immediate loaded with an LI is acceptable.
2701     // This does not apply to shift right algebraic because a value
2702     // out of range will produce a -1/0.
2703     III.ImmWidth = 16;
2704     if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo ||
2705         Opc == PPC::RLDCR || Opc == PPC::RLDCRo)
2706       III.TruncateImmTo = 6;
2707     else
2708       III.TruncateImmTo = 7;
2709     switch(Opc) {
2710     default: llvm_unreachable("Unknown opcode");
2711     case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
2712     case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break;
2713     case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
2714     case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break;
2715     case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
2716     case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break;
2717     case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
2718     case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break;
2719     case PPC::SRAD:
2720       III.ImmWidth = 6;
2721       III.TruncateImmTo = 0;
2722       III.ImmOpcode = PPC::SRADI;
2723        break;
2724     case PPC::SRADo:
2725       III.ImmWidth = 6;
2726       III.TruncateImmTo = 0;
2727       III.ImmOpcode = PPC::SRADIo;
2728       break;
2729     }
2730     break;
2731   // Loads and stores:
2732   case PPC::LBZX:
2733   case PPC::LBZX8:
2734   case PPC::LHZX:
2735   case PPC::LHZX8:
2736   case PPC::LHAX:
2737   case PPC::LHAX8:
2738   case PPC::LWZX:
2739   case PPC::LWZX8:
2740   case PPC::LWAX:
2741   case PPC::LDX:
2742   case PPC::LFSX:
2743   case PPC::LFDX:
2744   case PPC::STBX:
2745   case PPC::STBX8:
2746   case PPC::STHX:
2747   case PPC::STHX8:
2748   case PPC::STWX:
2749   case PPC::STWX8:
2750   case PPC::STDX:
2751   case PPC::STFSX:
2752   case PPC::STFDX:
2753     III.SignedImm = true;
2754     III.ZeroIsSpecialOrig = 1;
2755     III.ZeroIsSpecialNew = 2;
2756     III.IsCommutative = true;
2757     III.ImmOpNo = 1;
2758     III.ConstantOpNo = 2;
2759     switch(Opc) {
2760     default: llvm_unreachable("Unknown opcode");
2761     case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
2762     case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
2763     case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
2764     case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
2765     case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
2766     case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
2767     case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
2768     case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
2769     case PPC::LWAX:
2770       III.ImmOpcode = PPC::LWA;
2771       III.ImmMustBeMultipleOf = 4;
2772       break;
2773     case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
2774     case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
2775     case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
2776     case PPC::STBX: III.ImmOpcode = PPC::STB; break;
2777     case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
2778     case PPC::STHX: III.ImmOpcode = PPC::STH; break;
2779     case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
2780     case PPC::STWX: III.ImmOpcode = PPC::STW; break;
2781     case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
2782     case PPC::STDX:
2783       III.ImmOpcode = PPC::STD;
2784       III.ImmMustBeMultipleOf = 4;
2785       break;
2786     case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
2787     case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
2788     }
2789     break;
2790   case PPC::LBZUX:
2791   case PPC::LBZUX8:
2792   case PPC::LHZUX:
2793   case PPC::LHZUX8:
2794   case PPC::LHAUX:
2795   case PPC::LHAUX8:
2796   case PPC::LWZUX:
2797   case PPC::LWZUX8:
2798   case PPC::LDUX:
2799   case PPC::LFSUX:
2800   case PPC::LFDUX:
2801   case PPC::STBUX:
2802   case PPC::STBUX8:
2803   case PPC::STHUX:
2804   case PPC::STHUX8:
2805   case PPC::STWUX:
2806   case PPC::STWUX8:
2807   case PPC::STDUX:
2808   case PPC::STFSUX:
2809   case PPC::STFDUX:
2810     III.SignedImm = true;
2811     III.ZeroIsSpecialOrig = 2;
2812     III.ZeroIsSpecialNew = 3;
2813     III.IsCommutative = false;
2814     III.ImmOpNo = 2;
2815     III.ConstantOpNo = 3;
2816     switch(Opc) {
2817     default: llvm_unreachable("Unknown opcode");
2818     case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
2819     case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
2820     case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
2821     case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
2822     case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
2823     case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
2824     case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
2825     case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
2826     case PPC::LDUX:
2827       III.ImmOpcode = PPC::LDU;
2828       III.ImmMustBeMultipleOf = 4;
2829       break;
2830     case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
2831     case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
2832     case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
2833     case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
2834     case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
2835     case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
2836     case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
2837     case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
2838     case PPC::STDUX:
2839       III.ImmOpcode = PPC::STDU;
2840       III.ImmMustBeMultipleOf = 4;
2841       break;
2842     case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
2843     case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
2844     }
2845     break;
2846   // Power9 only.
2847   case PPC::LXVX:
2848   case PPC::LXSSPX:
2849   case PPC::LXSDX:
2850   case PPC::STXVX:
2851   case PPC::STXSSPX:
2852   case PPC::STXSDX:
2853     if (!Subtarget.hasP9Vector())
2854       return false;
2855     III.SignedImm = true;
2856     III.ZeroIsSpecialOrig = 1;
2857     III.ZeroIsSpecialNew = 2;
2858     III.IsCommutative = true;
2859     III.ImmOpNo = 1;
2860     III.ConstantOpNo = 2;
2861     switch(Opc) {
2862     default: llvm_unreachable("Unknown opcode");
2863     case PPC::LXVX:
2864       III.ImmOpcode = PPC::LXV;
2865       III.ImmMustBeMultipleOf = 16;
2866       break;
2867     case PPC::LXSSPX:
2868       III.ImmOpcode = PPC::LXSSP;
2869       III.ImmMustBeMultipleOf = 4;
2870       break;
2871     case PPC::LXSDX:
2872       III.ImmOpcode = PPC::LXSD;
2873       III.ImmMustBeMultipleOf = 4;
2874       break;
2875     case PPC::STXVX:
2876       III.ImmOpcode = PPC::STXV;
2877       III.ImmMustBeMultipleOf = 16;
2878       break;
2879     case PPC::STXSSPX:
2880       III.ImmOpcode = PPC::STXSSP;
2881       III.ImmMustBeMultipleOf = 4;
2882       break;
2883     case PPC::STXSDX:
2884       III.ImmOpcode = PPC::STXSD;
2885       III.ImmMustBeMultipleOf = 4;
2886       break;
2887     }
2888     break;
2889   }
2890   return true;
2891 }
2892 
2893 // Utility function for swaping two arbitrary operands of an instruction.
2894 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
2895   assert(Op1 != Op2 && "Cannot swap operand with itself.");
2896 
2897   unsigned MaxOp = std::max(Op1, Op2);
2898   unsigned MinOp = std::min(Op1, Op2);
2899   MachineOperand MOp1 = MI.getOperand(MinOp);
2900   MachineOperand MOp2 = MI.getOperand(MaxOp);
2901   MI.RemoveOperand(std::max(Op1, Op2));
2902   MI.RemoveOperand(std::min(Op1, Op2));
2903 
2904   // If the operands we are swapping are the two at the end (the common case)
2905   // we can just remove both and add them in the opposite order.
2906   if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
2907     MI.addOperand(MOp2);
2908     MI.addOperand(MOp1);
2909   } else {
2910     // Store all operands in a temporary vector, remove them and re-add in the
2911     // right order.
2912     SmallVector<MachineOperand, 2> MOps;
2913     unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
2914     for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
2915       MOps.push_back(MI.getOperand(i));
2916       MI.RemoveOperand(i);
2917     }
2918     // MOp2 needs to be added next.
2919     MI.addOperand(MOp2);
2920     // Now add the rest.
2921     for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
2922       if (i == MaxOp)
2923         MI.addOperand(MOp1);
2924       else {
2925         MI.addOperand(MOps.back());
2926         MOps.pop_back();
2927       }
2928     }
2929   }
2930 }
2931 
2932 bool PPCInstrInfo::transformToImmForm(MachineInstr &MI, const ImmInstrInfo &III,
2933                                       unsigned ConstantOpNo,
2934                                       int64_t Imm) const {
2935   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2936   bool PostRA = !MRI.isSSA();
2937   // Exit early if we can't convert this.
2938   if ((ConstantOpNo != III.ConstantOpNo) && !III.IsCommutative)
2939     return false;
2940   if (Imm % III.ImmMustBeMultipleOf)
2941     return false;
2942   if (III.TruncateImmTo)
2943     Imm &= ((1 << III.TruncateImmTo) - 1);
2944   if (III.SignedImm) {
2945     APInt ActualValue(64, Imm, true);
2946     if (!ActualValue.isSignedIntN(III.ImmWidth))
2947       return false;
2948   } else {
2949     uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
2950     if ((uint64_t)Imm > UnsignedMax)
2951       return false;
2952   }
2953 
2954   // If we're post-RA, the instructions don't agree on whether register zero is
2955   // special, we can transform this as long as the register operand that will
2956   // end up in the location where zero is special isn't R0.
2957   if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
2958     unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
2959       III.ZeroIsSpecialNew + 1;
2960     unsigned OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
2961     unsigned NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
2962     // If R0 is in the operand where zero is special for the new instruction,
2963     // it is unsafe to transform if the constant operand isn't that operand.
2964     if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
2965         ConstantOpNo != III.ZeroIsSpecialNew)
2966       return false;
2967     if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
2968         ConstantOpNo != PosForOrigZero)
2969       return false;
2970   }
2971 
2972   unsigned Opc = MI.getOpcode();
2973   bool SpecialShift32 =
2974     Opc == PPC::SLW || Opc == PPC::SLWo || Opc == PPC::SRW || Opc == PPC::SRWo;
2975   bool SpecialShift64 =
2976     Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo;
2977   bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo ||
2978     Opc == PPC::SLDo || Opc == PPC::SRDo;
2979   bool RightShift =
2980     Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo;
2981 
2982   MI.setDesc(get(III.ImmOpcode));
2983   if (ConstantOpNo == III.ConstantOpNo) {
2984     // Converting shifts to immediate form is a bit tricky since they may do
2985     // one of three things:
2986     // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
2987     // 2. If the shift amount is zero, the result is unchanged (save for maybe
2988     //    setting CR0)
2989     // 3. If the shift amount is in [1, OpSize), it's just a shift
2990     if (SpecialShift32 || SpecialShift64) {
2991       LoadImmediateInfo LII;
2992       LII.Imm = 0;
2993       LII.SetCR = SetCR;
2994       LII.Is64Bit = SpecialShift64;
2995       uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
2996       if (Imm & (SpecialShift32 ? 0x20 : 0x40))
2997         replaceInstrWithLI(MI, LII);
2998       // Shifts by zero don't change the value. If we don't need to set CR0,
2999       // just convert this to a COPY. Can't do this post-RA since we've already
3000       // cleaned up the copies.
3001       else if (!SetCR && ShAmt == 0 && !PostRA) {
3002         MI.RemoveOperand(2);
3003         MI.setDesc(get(PPC::COPY));
3004       } else {
3005         // The 32 bit and 64 bit instructions are quite different.
3006         if (SpecialShift32) {
3007           // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31).
3008           uint64_t SH = RightShift ? 32 - ShAmt : ShAmt;
3009           uint64_t MB = RightShift ? ShAmt : 0;
3010           uint64_t ME = RightShift ? 31 : 31 - ShAmt;
3011           MI.getOperand(III.ConstantOpNo).ChangeToImmediate(SH);
3012           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
3013             .addImm(ME);
3014         } else {
3015           // Left shifts use (N, 63-N), right shifts use (64-N, N).
3016           uint64_t SH = RightShift ? 64 - ShAmt : ShAmt;
3017           uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
3018           MI.getOperand(III.ConstantOpNo).ChangeToImmediate(SH);
3019           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
3020         }
3021       }
3022     } else
3023       MI.getOperand(ConstantOpNo).ChangeToImmediate(Imm);
3024   }
3025   // Convert commutative instructions (switch the operands and convert the
3026   // desired one to an immediate.
3027   else if (III.IsCommutative) {
3028     MI.getOperand(ConstantOpNo).ChangeToImmediate(Imm);
3029     swapMIOperands(MI, ConstantOpNo, III.ConstantOpNo);
3030   } else
3031     llvm_unreachable("Should have exited early!");
3032 
3033   // For instructions for which the constant register replaces a different
3034   // operand than where the immediate goes, we need to swap them.
3035   if (III.ConstantOpNo != III.ImmOpNo)
3036     swapMIOperands(MI, III.ConstantOpNo, III.ImmOpNo);
3037 
3038   // If the R0/X0 register is special for the original instruction and not for
3039   // the new instruction (or vice versa), we need to fix up the register class.
3040   if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3041     if (!III.ZeroIsSpecialOrig) {
3042       unsigned RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3043       const TargetRegisterClass *NewRC =
3044         MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
3045         &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
3046       MRI.setRegClass(RegToModify, NewRC);
3047     }
3048   }
3049   return true;
3050 }
3051 
3052 const TargetRegisterClass *
3053 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
3054   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
3055     return &PPC::VSRCRegClass;
3056   return RC;
3057 }
3058 
3059 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
3060   return PPC::getRecordFormOpcode(Opcode);
3061 }
3062 
3063 // This function returns true if the machine instruction
3064 // always outputs a value by sign-extending a 32 bit value,
3065 // i.e. 0 to 31-th bits are same as 32-th bit.
3066 static bool isSignExtendingOp(const MachineInstr &MI) {
3067   int Opcode = MI.getOpcode();
3068   if (Opcode == PPC::LI     || Opcode == PPC::LI8     ||
3069       Opcode == PPC::LIS    || Opcode == PPC::LIS8    ||
3070       Opcode == PPC::SRAW   || Opcode == PPC::SRAWo   ||
3071       Opcode == PPC::SRAWI  || Opcode == PPC::SRAWIo  ||
3072       Opcode == PPC::LWA    || Opcode == PPC::LWAX    ||
3073       Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
3074       Opcode == PPC::LHA    || Opcode == PPC::LHAX    ||
3075       Opcode == PPC::LHA8   || Opcode == PPC::LHAX8   ||
3076       Opcode == PPC::LBZ    || Opcode == PPC::LBZX    ||
3077       Opcode == PPC::LBZ8   || Opcode == PPC::LBZX8   ||
3078       Opcode == PPC::LBZU   || Opcode == PPC::LBZUX   ||
3079       Opcode == PPC::LBZU8  || Opcode == PPC::LBZUX8  ||
3080       Opcode == PPC::LHZ    || Opcode == PPC::LHZX    ||
3081       Opcode == PPC::LHZ8   || Opcode == PPC::LHZX8   ||
3082       Opcode == PPC::LHZU   || Opcode == PPC::LHZUX   ||
3083       Opcode == PPC::LHZU8  || Opcode == PPC::LHZUX8  ||
3084       Opcode == PPC::EXTSB  || Opcode == PPC::EXTSBo  ||
3085       Opcode == PPC::EXTSH  || Opcode == PPC::EXTSHo  ||
3086       Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8  ||
3087       Opcode == PPC::EXTSW  || Opcode == PPC::EXTSWo  ||
3088       Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
3089       Opcode == PPC::EXTSB8_32_64)
3090     return true;
3091 
3092   if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
3093     return true;
3094 
3095   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
3096        Opcode == PPC::RLWNM  || Opcode == PPC::RLWNMo) &&
3097       MI.getOperand(3).getImm() > 0 &&
3098       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3099     return true;
3100 
3101   return false;
3102 }
3103 
3104 // This function returns true if the machine instruction
3105 // always outputs zeros in higher 32 bits.
3106 static bool isZeroExtendingOp(const MachineInstr &MI) {
3107   int Opcode = MI.getOpcode();
3108   // The 16-bit immediate is sign-extended in li/lis.
3109   // If the most significant bit is zero, all higher bits are zero.
3110   if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
3111       Opcode == PPC::LIS || Opcode == PPC::LIS8) {
3112     int64_t Imm = MI.getOperand(1).getImm();
3113     if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
3114       return true;
3115   }
3116 
3117   // We have some variations of rotate-and-mask instructions
3118   // that clear higher 32-bits.
3119   if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
3120        Opcode == PPC::RLDCL  || Opcode == PPC::RLDCLo  ||
3121        Opcode == PPC::RLDICL_32_64) &&
3122       MI.getOperand(3).getImm() >= 32)
3123     return true;
3124 
3125   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
3126       MI.getOperand(3).getImm() >= 32 &&
3127       MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
3128     return true;
3129 
3130   if ((Opcode == PPC::RLWINM  || Opcode == PPC::RLWINMo ||
3131        Opcode == PPC::RLWNM   || Opcode == PPC::RLWNMo  ||
3132        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
3133       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3134     return true;
3135 
3136   // There are other instructions that clear higher 32-bits.
3137   if (Opcode == PPC::CNTLZW  || Opcode == PPC::CNTLZWo ||
3138       Opcode == PPC::CNTTZW  || Opcode == PPC::CNTTZWo ||
3139       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
3140       Opcode == PPC::CNTLZD  || Opcode == PPC::CNTLZDo ||
3141       Opcode == PPC::CNTTZD  || Opcode == PPC::CNTTZDo ||
3142       Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW ||
3143       Opcode == PPC::SLW     || Opcode == PPC::SLWo    ||
3144       Opcode == PPC::SRW     || Opcode == PPC::SRWo    ||
3145       Opcode == PPC::SLW8    || Opcode == PPC::SRW8    ||
3146       Opcode == PPC::SLWI    || Opcode == PPC::SLWIo   ||
3147       Opcode == PPC::SRWI    || Opcode == PPC::SRWIo   ||
3148       Opcode == PPC::LWZ     || Opcode == PPC::LWZX    ||
3149       Opcode == PPC::LWZU    || Opcode == PPC::LWZUX   ||
3150       Opcode == PPC::LWBRX   || Opcode == PPC::LHBRX   ||
3151       Opcode == PPC::LHZ     || Opcode == PPC::LHZX    ||
3152       Opcode == PPC::LHZU    || Opcode == PPC::LHZUX   ||
3153       Opcode == PPC::LBZ     || Opcode == PPC::LBZX    ||
3154       Opcode == PPC::LBZU    || Opcode == PPC::LBZUX   ||
3155       Opcode == PPC::LWZ8    || Opcode == PPC::LWZX8   ||
3156       Opcode == PPC::LWZU8   || Opcode == PPC::LWZUX8  ||
3157       Opcode == PPC::LWBRX8  || Opcode == PPC::LHBRX8  ||
3158       Opcode == PPC::LHZ8    || Opcode == PPC::LHZX8   ||
3159       Opcode == PPC::LHZU8   || Opcode == PPC::LHZUX8  ||
3160       Opcode == PPC::LBZ8    || Opcode == PPC::LBZX8   ||
3161       Opcode == PPC::LBZU8   || Opcode == PPC::LBZUX8  ||
3162       Opcode == PPC::ANDIo   || Opcode == PPC::ANDISo  ||
3163       Opcode == PPC::ROTRWI  || Opcode == PPC::ROTRWIo ||
3164       Opcode == PPC::EXTLWI  || Opcode == PPC::EXTLWIo ||
3165       Opcode == PPC::MFVSRWZ)
3166     return true;
3167 
3168   return false;
3169 }
3170 
3171 // This function returns true if the input MachineInstr is a TOC save
3172 // instruction.
3173 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
3174   if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
3175     return false;
3176   unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
3177   unsigned StackOffset = MI.getOperand(1).getImm();
3178   unsigned StackReg = MI.getOperand(2).getReg();
3179   if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
3180     return true;
3181 
3182   return false;
3183 }
3184 
3185 // We limit the max depth to track incoming values of PHIs or binary ops
3186 // (e.g. AND) to avoid exsessive cost.
3187 const unsigned MAX_DEPTH = 1;
3188 
3189 bool
3190 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
3191                                    const unsigned Depth) const {
3192   const MachineFunction *MF = MI.getParent()->getParent();
3193   const MachineRegisterInfo *MRI = &MF->getRegInfo();
3194 
3195   // If we know this instruction returns sign- or zero-extended result,
3196   // return true.
3197   if (SignExt ? isSignExtendingOp(MI):
3198                 isZeroExtendingOp(MI))
3199     return true;
3200 
3201   switch (MI.getOpcode()) {
3202   case PPC::COPY: {
3203     unsigned SrcReg = MI.getOperand(1).getReg();
3204 
3205     // In both ELFv1 and v2 ABI, method parameters and the return value
3206     // are sign- or zero-extended.
3207     if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
3208       const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
3209       // We check the ZExt/SExt flags for a method parameter.
3210       if (MI.getParent()->getBasicBlock() ==
3211           &MF->getFunction().getEntryBlock()) {
3212         unsigned VReg = MI.getOperand(0).getReg();
3213         if (MF->getRegInfo().isLiveIn(VReg))
3214           return SignExt ? FuncInfo->isLiveInSExt(VReg) :
3215                            FuncInfo->isLiveInZExt(VReg);
3216       }
3217 
3218       // For a method return value, we check the ZExt/SExt flags in attribute.
3219       // We assume the following code sequence for method call.
3220       //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
3221       //   BL8_NOP @func,...
3222       //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
3223       //   %5 = COPY %x3; G8RC:%5
3224       if (SrcReg == PPC::X3) {
3225         const MachineBasicBlock *MBB = MI.getParent();
3226         MachineBasicBlock::const_instr_iterator II =
3227           MachineBasicBlock::const_instr_iterator(&MI);
3228         if (II != MBB->instr_begin() &&
3229             (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
3230           const MachineInstr &CallMI = *(--II);
3231           if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
3232             const Function *CalleeFn =
3233               dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
3234             if (!CalleeFn)
3235               return false;
3236             const IntegerType *IntTy =
3237               dyn_cast<IntegerType>(CalleeFn->getReturnType());
3238             const AttributeSet &Attrs =
3239               CalleeFn->getAttributes().getRetAttributes();
3240             if (IntTy && IntTy->getBitWidth() <= 32)
3241               return Attrs.hasAttribute(SignExt ? Attribute::SExt :
3242                                                   Attribute::ZExt);
3243           }
3244         }
3245       }
3246     }
3247 
3248     // If this is a copy from another register, we recursively check source.
3249     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3250       return false;
3251     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3252     if (SrcMI != NULL)
3253       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3254 
3255     return false;
3256   }
3257 
3258   case PPC::ANDIo:
3259   case PPC::ANDISo:
3260   case PPC::ORI:
3261   case PPC::ORIS:
3262   case PPC::XORI:
3263   case PPC::XORIS:
3264   case PPC::ANDIo8:
3265   case PPC::ANDISo8:
3266   case PPC::ORI8:
3267   case PPC::ORIS8:
3268   case PPC::XORI8:
3269   case PPC::XORIS8: {
3270     // logical operation with 16-bit immediate does not change the upper bits.
3271     // So, we track the operand register as we do for register copy.
3272     unsigned SrcReg = MI.getOperand(1).getReg();
3273     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3274       return false;
3275     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3276     if (SrcMI != NULL)
3277       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3278 
3279     return false;
3280   }
3281 
3282   // If all incoming values are sign-/zero-extended,
3283   // the output of OR, ISEL or PHI is also sign-/zero-extended.
3284   case PPC::OR:
3285   case PPC::OR8:
3286   case PPC::ISEL:
3287   case PPC::PHI: {
3288     if (Depth >= MAX_DEPTH)
3289       return false;
3290 
3291     // The input registers for PHI are operand 1, 3, ...
3292     // The input registers for others are operand 1 and 2.
3293     unsigned E = 3, D = 1;
3294     if (MI.getOpcode() == PPC::PHI) {
3295       E = MI.getNumOperands();
3296       D = 2;
3297     }
3298 
3299     for (unsigned I = 1; I != E; I += D) {
3300       if (MI.getOperand(I).isReg()) {
3301         unsigned SrcReg = MI.getOperand(I).getReg();
3302         if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3303           return false;
3304         const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3305         if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
3306           return false;
3307       }
3308       else
3309         return false;
3310     }
3311     return true;
3312   }
3313 
3314   // If at least one of the incoming values of an AND is zero extended
3315   // then the output is also zero-extended. If both of the incoming values
3316   // are sign-extended then the output is also sign extended.
3317   case PPC::AND:
3318   case PPC::AND8: {
3319     if (Depth >= MAX_DEPTH)
3320        return false;
3321 
3322     assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
3323 
3324     unsigned SrcReg1 = MI.getOperand(1).getReg();
3325     unsigned SrcReg2 = MI.getOperand(2).getReg();
3326 
3327     if (!TargetRegisterInfo::isVirtualRegister(SrcReg1) ||
3328         !TargetRegisterInfo::isVirtualRegister(SrcReg2))
3329        return false;
3330 
3331     const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
3332     const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
3333     if (!MISrc1 || !MISrc2)
3334         return false;
3335 
3336     if(SignExt)
3337         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
3338                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3339     else
3340         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
3341                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3342   }
3343 
3344   default:
3345     break;
3346   }
3347   return false;
3348 }
3349