1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the PowerPC implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCInstrInfo.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCHazardRecognizers.h" 18 #include "PPCInstrBuilder.h" 19 #include "PPCMachineFunctionInfo.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/ScheduleDAG.h" 31 #include "llvm/CodeGen/SlotIndexes.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/TargetRegistry.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "ppc-instr-info" 42 43 #define GET_INSTRMAP_INFO 44 #define GET_INSTRINFO_CTOR_DTOR 45 #include "PPCGenInstrInfo.inc" 46 47 static cl:: 48 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 49 cl::desc("Disable analysis for CTR loops")); 50 51 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 52 cl::desc("Disable compare instruction optimization"), cl::Hidden); 53 54 static cl::opt<bool> DisableVSXFMAMutate("disable-ppc-vsx-fma-mutation", 55 cl::desc("Disable VSX FMA instruction mutation"), cl::Hidden); 56 57 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 58 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 59 cl::Hidden); 60 61 // Pin the vtable to this file. 62 void PPCInstrInfo::anchor() {} 63 64 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 65 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP), 66 Subtarget(STI), RI(STI) {} 67 68 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 69 /// this target when scheduling the DAG. 70 ScheduleHazardRecognizer * 71 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 72 const ScheduleDAG *DAG) const { 73 unsigned Directive = 74 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); 75 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 76 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 77 const InstrItineraryData *II = 78 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 79 return new ScoreboardHazardRecognizer(II, DAG); 80 } 81 82 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 83 } 84 85 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 86 /// to use for this target when scheduling the DAG. 87 ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetPostRAHazardRecognizer( 88 const InstrItineraryData *II, 89 const ScheduleDAG *DAG) const { 90 unsigned Directive = 91 DAG->TM.getSubtarget<PPCSubtarget>().getDarwinDirective(); 92 93 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 94 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 95 96 // Most subtargets use a PPC970 recognizer. 97 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 98 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 99 assert(DAG->TII && "No InstrInfo?"); 100 101 return new PPCHazardRecognizer970(*DAG); 102 } 103 104 return new ScoreboardHazardRecognizer(II, DAG); 105 } 106 107 108 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 109 const MachineInstr *DefMI, unsigned DefIdx, 110 const MachineInstr *UseMI, 111 unsigned UseIdx) const { 112 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 113 UseMI, UseIdx); 114 115 const MachineOperand &DefMO = DefMI->getOperand(DefIdx); 116 unsigned Reg = DefMO.getReg(); 117 118 const TargetRegisterInfo *TRI = &getRegisterInfo(); 119 bool IsRegCR; 120 if (TRI->isVirtualRegister(Reg)) { 121 const MachineRegisterInfo *MRI = 122 &DefMI->getParent()->getParent()->getRegInfo(); 123 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 124 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 125 } else { 126 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 127 PPC::CRBITRCRegClass.contains(Reg); 128 } 129 130 if (UseMI->isBranch() && IsRegCR) { 131 if (Latency < 0) 132 Latency = getInstrLatency(ItinData, DefMI); 133 134 // On some cores, there is an additional delay between writing to a condition 135 // register, and using it from a branch. 136 unsigned Directive = Subtarget.getDarwinDirective(); 137 switch (Directive) { 138 default: break; 139 case PPC::DIR_7400: 140 case PPC::DIR_750: 141 case PPC::DIR_970: 142 case PPC::DIR_E5500: 143 case PPC::DIR_PWR4: 144 case PPC::DIR_PWR5: 145 case PPC::DIR_PWR5X: 146 case PPC::DIR_PWR6: 147 case PPC::DIR_PWR6X: 148 case PPC::DIR_PWR7: 149 case PPC::DIR_PWR8: 150 Latency += 2; 151 break; 152 } 153 } 154 155 return Latency; 156 } 157 158 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 159 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 160 unsigned &SrcReg, unsigned &DstReg, 161 unsigned &SubIdx) const { 162 switch (MI.getOpcode()) { 163 default: return false; 164 case PPC::EXTSW: 165 case PPC::EXTSW_32_64: 166 SrcReg = MI.getOperand(1).getReg(); 167 DstReg = MI.getOperand(0).getReg(); 168 SubIdx = PPC::sub_32; 169 return true; 170 } 171 } 172 173 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 174 int &FrameIndex) const { 175 // Note: This list must be kept consistent with LoadRegFromStackSlot. 176 switch (MI->getOpcode()) { 177 default: break; 178 case PPC::LD: 179 case PPC::LWZ: 180 case PPC::LFS: 181 case PPC::LFD: 182 case PPC::RESTORE_CR: 183 case PPC::RESTORE_CRBIT: 184 case PPC::LVX: 185 case PPC::LXVD2X: 186 case PPC::RESTORE_VRSAVE: 187 // Check for the operands added by addFrameReference (the immediate is the 188 // offset which defaults to 0). 189 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 190 MI->getOperand(2).isFI()) { 191 FrameIndex = MI->getOperand(2).getIndex(); 192 return MI->getOperand(0).getReg(); 193 } 194 break; 195 } 196 return 0; 197 } 198 199 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI, 200 int &FrameIndex) const { 201 // Note: This list must be kept consistent with StoreRegToStackSlot. 202 switch (MI->getOpcode()) { 203 default: break; 204 case PPC::STD: 205 case PPC::STW: 206 case PPC::STFS: 207 case PPC::STFD: 208 case PPC::SPILL_CR: 209 case PPC::SPILL_CRBIT: 210 case PPC::STVX: 211 case PPC::STXVD2X: 212 case PPC::SPILL_VRSAVE: 213 // Check for the operands added by addFrameReference (the immediate is the 214 // offset which defaults to 0). 215 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 216 MI->getOperand(2).isFI()) { 217 FrameIndex = MI->getOperand(2).getIndex(); 218 return MI->getOperand(0).getReg(); 219 } 220 break; 221 } 222 return 0; 223 } 224 225 // commuteInstruction - We can commute rlwimi instructions, but only if the 226 // rotate amt is zero. We also have to munge the immediates a bit. 227 MachineInstr * 228 PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { 229 MachineFunction &MF = *MI->getParent()->getParent(); 230 231 // Normal instructions can be commuted the obvious way. 232 if (MI->getOpcode() != PPC::RLWIMI && 233 MI->getOpcode() != PPC::RLWIMIo) 234 return TargetInstrInfo::commuteInstruction(MI, NewMI); 235 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 236 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 237 // changing the relative order of the mask operands might change what happens 238 // to the high-bits of the mask (and, thus, the result). 239 240 // Cannot commute if it has a non-zero rotate count. 241 if (MI->getOperand(3).getImm() != 0) 242 return nullptr; 243 244 // If we have a zero rotate count, we have: 245 // M = mask(MB,ME) 246 // Op0 = (Op1 & ~M) | (Op2 & M) 247 // Change this to: 248 // M = mask((ME+1)&31, (MB-1)&31) 249 // Op0 = (Op2 & ~M) | (Op1 & M) 250 251 // Swap op1/op2 252 unsigned Reg0 = MI->getOperand(0).getReg(); 253 unsigned Reg1 = MI->getOperand(1).getReg(); 254 unsigned Reg2 = MI->getOperand(2).getReg(); 255 unsigned SubReg1 = MI->getOperand(1).getSubReg(); 256 unsigned SubReg2 = MI->getOperand(2).getSubReg(); 257 bool Reg1IsKill = MI->getOperand(1).isKill(); 258 bool Reg2IsKill = MI->getOperand(2).isKill(); 259 bool ChangeReg0 = false; 260 // If machine instrs are no longer in two-address forms, update 261 // destination register as well. 262 if (Reg0 == Reg1) { 263 // Must be two address instruction! 264 assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 265 "Expecting a two-address instruction!"); 266 assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 267 Reg2IsKill = false; 268 ChangeReg0 = true; 269 } 270 271 // Masks. 272 unsigned MB = MI->getOperand(4).getImm(); 273 unsigned ME = MI->getOperand(5).getImm(); 274 275 if (NewMI) { 276 // Create a new instruction. 277 unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg(); 278 bool Reg0IsDead = MI->getOperand(0).isDead(); 279 return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) 280 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 281 .addReg(Reg2, getKillRegState(Reg2IsKill)) 282 .addReg(Reg1, getKillRegState(Reg1IsKill)) 283 .addImm((ME+1) & 31) 284 .addImm((MB-1) & 31); 285 } 286 287 if (ChangeReg0) { 288 MI->getOperand(0).setReg(Reg2); 289 MI->getOperand(0).setSubReg(SubReg2); 290 } 291 MI->getOperand(2).setReg(Reg1); 292 MI->getOperand(1).setReg(Reg2); 293 MI->getOperand(2).setSubReg(SubReg1); 294 MI->getOperand(1).setSubReg(SubReg2); 295 MI->getOperand(2).setIsKill(Reg1IsKill); 296 MI->getOperand(1).setIsKill(Reg2IsKill); 297 298 // Swap the mask around. 299 MI->getOperand(4).setImm((ME+1) & 31); 300 MI->getOperand(5).setImm((MB-1) & 31); 301 return MI; 302 } 303 304 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1, 305 unsigned &SrcOpIdx2) const { 306 // For VSX A-Type FMA instructions, it is the first two operands that can be 307 // commuted, however, because the non-encoded tied input operand is listed 308 // first, the operands to swap are actually the second and third. 309 310 int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode()); 311 if (AltOpc == -1) 312 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 313 314 SrcOpIdx1 = 2; 315 SrcOpIdx2 = 3; 316 return true; 317 } 318 319 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 320 MachineBasicBlock::iterator MI) const { 321 // This function is used for scheduling, and the nop wanted here is the type 322 // that terminates dispatch groups on the POWER cores. 323 unsigned Directive = Subtarget.getDarwinDirective(); 324 unsigned Opcode; 325 switch (Directive) { 326 default: Opcode = PPC::NOP; break; 327 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 328 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 329 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 330 } 331 332 DebugLoc DL; 333 BuildMI(MBB, MI, DL, get(Opcode)); 334 } 335 336 /// getNoopForMachoTarget - Return the noop instruction to use for a noop. 337 void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { 338 NopInst.setOpcode(PPC::NOP); 339 } 340 341 // Branch analysis. 342 // Note: If the condition register is set to CTR or CTR8 then this is a 343 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 344 bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, 345 MachineBasicBlock *&FBB, 346 SmallVectorImpl<MachineOperand> &Cond, 347 bool AllowModify) const { 348 bool isPPC64 = Subtarget.isPPC64(); 349 350 // If the block has no terminators, it just falls into the block after it. 351 MachineBasicBlock::iterator I = MBB.end(); 352 if (I == MBB.begin()) 353 return false; 354 --I; 355 while (I->isDebugValue()) { 356 if (I == MBB.begin()) 357 return false; 358 --I; 359 } 360 if (!isUnpredicatedTerminator(I)) 361 return false; 362 363 // Get the last instruction in the block. 364 MachineInstr *LastInst = I; 365 366 // If there is only one terminator instruction, process it. 367 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { 368 if (LastInst->getOpcode() == PPC::B) { 369 if (!LastInst->getOperand(0).isMBB()) 370 return true; 371 TBB = LastInst->getOperand(0).getMBB(); 372 return false; 373 } else if (LastInst->getOpcode() == PPC::BCC) { 374 if (!LastInst->getOperand(2).isMBB()) 375 return true; 376 // Block ends with fall-through condbranch. 377 TBB = LastInst->getOperand(2).getMBB(); 378 Cond.push_back(LastInst->getOperand(0)); 379 Cond.push_back(LastInst->getOperand(1)); 380 return false; 381 } else if (LastInst->getOpcode() == PPC::BC) { 382 if (!LastInst->getOperand(1).isMBB()) 383 return true; 384 // Block ends with fall-through condbranch. 385 TBB = LastInst->getOperand(1).getMBB(); 386 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 387 Cond.push_back(LastInst->getOperand(0)); 388 return false; 389 } else if (LastInst->getOpcode() == PPC::BCn) { 390 if (!LastInst->getOperand(1).isMBB()) 391 return true; 392 // Block ends with fall-through condbranch. 393 TBB = LastInst->getOperand(1).getMBB(); 394 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 395 Cond.push_back(LastInst->getOperand(0)); 396 return false; 397 } else if (LastInst->getOpcode() == PPC::BDNZ8 || 398 LastInst->getOpcode() == PPC::BDNZ) { 399 if (!LastInst->getOperand(0).isMBB()) 400 return true; 401 if (DisableCTRLoopAnal) 402 return true; 403 TBB = LastInst->getOperand(0).getMBB(); 404 Cond.push_back(MachineOperand::CreateImm(1)); 405 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 406 true)); 407 return false; 408 } else if (LastInst->getOpcode() == PPC::BDZ8 || 409 LastInst->getOpcode() == PPC::BDZ) { 410 if (!LastInst->getOperand(0).isMBB()) 411 return true; 412 if (DisableCTRLoopAnal) 413 return true; 414 TBB = LastInst->getOperand(0).getMBB(); 415 Cond.push_back(MachineOperand::CreateImm(0)); 416 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 417 true)); 418 return false; 419 } 420 421 // Otherwise, don't know what this is. 422 return true; 423 } 424 425 // Get the instruction before it if it's a terminator. 426 MachineInstr *SecondLastInst = I; 427 428 // If there are three terminators, we don't know what sort of block this is. 429 if (SecondLastInst && I != MBB.begin() && 430 isUnpredicatedTerminator(--I)) 431 return true; 432 433 // If the block ends with PPC::B and PPC:BCC, handle it. 434 if (SecondLastInst->getOpcode() == PPC::BCC && 435 LastInst->getOpcode() == PPC::B) { 436 if (!SecondLastInst->getOperand(2).isMBB() || 437 !LastInst->getOperand(0).isMBB()) 438 return true; 439 TBB = SecondLastInst->getOperand(2).getMBB(); 440 Cond.push_back(SecondLastInst->getOperand(0)); 441 Cond.push_back(SecondLastInst->getOperand(1)); 442 FBB = LastInst->getOperand(0).getMBB(); 443 return false; 444 } else if (SecondLastInst->getOpcode() == PPC::BC && 445 LastInst->getOpcode() == PPC::B) { 446 if (!SecondLastInst->getOperand(1).isMBB() || 447 !LastInst->getOperand(0).isMBB()) 448 return true; 449 TBB = SecondLastInst->getOperand(1).getMBB(); 450 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 451 Cond.push_back(SecondLastInst->getOperand(0)); 452 FBB = LastInst->getOperand(0).getMBB(); 453 return false; 454 } else if (SecondLastInst->getOpcode() == PPC::BCn && 455 LastInst->getOpcode() == PPC::B) { 456 if (!SecondLastInst->getOperand(1).isMBB() || 457 !LastInst->getOperand(0).isMBB()) 458 return true; 459 TBB = SecondLastInst->getOperand(1).getMBB(); 460 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 461 Cond.push_back(SecondLastInst->getOperand(0)); 462 FBB = LastInst->getOperand(0).getMBB(); 463 return false; 464 } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 || 465 SecondLastInst->getOpcode() == PPC::BDNZ) && 466 LastInst->getOpcode() == PPC::B) { 467 if (!SecondLastInst->getOperand(0).isMBB() || 468 !LastInst->getOperand(0).isMBB()) 469 return true; 470 if (DisableCTRLoopAnal) 471 return true; 472 TBB = SecondLastInst->getOperand(0).getMBB(); 473 Cond.push_back(MachineOperand::CreateImm(1)); 474 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 475 true)); 476 FBB = LastInst->getOperand(0).getMBB(); 477 return false; 478 } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 || 479 SecondLastInst->getOpcode() == PPC::BDZ) && 480 LastInst->getOpcode() == PPC::B) { 481 if (!SecondLastInst->getOperand(0).isMBB() || 482 !LastInst->getOperand(0).isMBB()) 483 return true; 484 if (DisableCTRLoopAnal) 485 return true; 486 TBB = SecondLastInst->getOperand(0).getMBB(); 487 Cond.push_back(MachineOperand::CreateImm(0)); 488 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 489 true)); 490 FBB = LastInst->getOperand(0).getMBB(); 491 return false; 492 } 493 494 // If the block ends with two PPC:Bs, handle it. The second one is not 495 // executed, so remove it. 496 if (SecondLastInst->getOpcode() == PPC::B && 497 LastInst->getOpcode() == PPC::B) { 498 if (!SecondLastInst->getOperand(0).isMBB()) 499 return true; 500 TBB = SecondLastInst->getOperand(0).getMBB(); 501 I = LastInst; 502 if (AllowModify) 503 I->eraseFromParent(); 504 return false; 505 } 506 507 // Otherwise, can't handle this. 508 return true; 509 } 510 511 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 512 MachineBasicBlock::iterator I = MBB.end(); 513 if (I == MBB.begin()) return 0; 514 --I; 515 while (I->isDebugValue()) { 516 if (I == MBB.begin()) 517 return 0; 518 --I; 519 } 520 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 521 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 522 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 523 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 524 return 0; 525 526 // Remove the branch. 527 I->eraseFromParent(); 528 529 I = MBB.end(); 530 531 if (I == MBB.begin()) return 1; 532 --I; 533 if (I->getOpcode() != PPC::BCC && 534 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 535 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 536 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 537 return 1; 538 539 // Remove the branch. 540 I->eraseFromParent(); 541 return 2; 542 } 543 544 unsigned 545 PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 546 MachineBasicBlock *FBB, 547 const SmallVectorImpl<MachineOperand> &Cond, 548 DebugLoc DL) const { 549 // Shouldn't be a fall through. 550 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 551 assert((Cond.size() == 2 || Cond.size() == 0) && 552 "PPC branch conditions have two components!"); 553 554 bool isPPC64 = Subtarget.isPPC64(); 555 556 // One-way branch. 557 if (!FBB) { 558 if (Cond.empty()) // Unconditional branch 559 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 560 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 561 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 562 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 563 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 564 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 565 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); 566 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 567 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); 568 else // Conditional branch 569 BuildMI(&MBB, DL, get(PPC::BCC)) 570 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); 571 return 1; 572 } 573 574 // Two-way Conditional Branch. 575 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 576 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 577 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 578 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 579 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 580 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); 581 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 582 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); 583 else 584 BuildMI(&MBB, DL, get(PPC::BCC)) 585 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); 586 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 587 return 2; 588 } 589 590 // Select analysis. 591 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 592 const SmallVectorImpl<MachineOperand> &Cond, 593 unsigned TrueReg, unsigned FalseReg, 594 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 595 if (!Subtarget.hasISEL()) 596 return false; 597 598 if (Cond.size() != 2) 599 return false; 600 601 // If this is really a bdnz-like condition, then it cannot be turned into a 602 // select. 603 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 604 return false; 605 606 // Check register classes. 607 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 608 const TargetRegisterClass *RC = 609 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 610 if (!RC) 611 return false; 612 613 // isel is for regular integer GPRs only. 614 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 615 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 616 !PPC::G8RCRegClass.hasSubClassEq(RC) && 617 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 618 return false; 619 620 // FIXME: These numbers are for the A2, how well they work for other cores is 621 // an open question. On the A2, the isel instruction has a 2-cycle latency 622 // but single-cycle throughput. These numbers are used in combination with 623 // the MispredictPenalty setting from the active SchedMachineModel. 624 CondCycles = 1; 625 TrueCycles = 1; 626 FalseCycles = 1; 627 628 return true; 629 } 630 631 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 632 MachineBasicBlock::iterator MI, DebugLoc dl, 633 unsigned DestReg, 634 const SmallVectorImpl<MachineOperand> &Cond, 635 unsigned TrueReg, unsigned FalseReg) const { 636 assert(Cond.size() == 2 && 637 "PPC branch conditions have two components!"); 638 639 assert(Subtarget.hasISEL() && 640 "Cannot insert select on target without ISEL support"); 641 642 // Get the register classes. 643 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 644 const TargetRegisterClass *RC = 645 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 646 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 647 648 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 649 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 650 assert((Is64Bit || 651 PPC::GPRCRegClass.hasSubClassEq(RC) || 652 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 653 "isel is for regular integer GPRs only"); 654 655 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 656 unsigned SelectPred = Cond[0].getImm(); 657 658 unsigned SubIdx; 659 bool SwapOps; 660 switch (SelectPred) { 661 default: llvm_unreachable("invalid predicate for isel"); 662 case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break; 663 case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break; 664 case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break; 665 case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break; 666 case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break; 667 case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break; 668 case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break; 669 case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break; 670 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 671 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 672 } 673 674 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 675 SecondReg = SwapOps ? TrueReg : FalseReg; 676 677 // The first input register of isel cannot be r0. If it is a member 678 // of a register class that can be r0, then copy it first (the 679 // register allocator should eliminate the copy). 680 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 681 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 682 const TargetRegisterClass *FirstRC = 683 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 684 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 685 unsigned OldFirstReg = FirstReg; 686 FirstReg = MRI.createVirtualRegister(FirstRC); 687 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 688 .addReg(OldFirstReg); 689 } 690 691 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 692 .addReg(FirstReg).addReg(SecondReg) 693 .addReg(Cond[1].getReg(), 0, SubIdx); 694 } 695 696 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 697 MachineBasicBlock::iterator I, DebugLoc DL, 698 unsigned DestReg, unsigned SrcReg, 699 bool KillSrc) const { 700 // We can end up with self copies and similar things as a result of VSX copy 701 // legalization. Promote them here. 702 const TargetRegisterInfo *TRI = &getRegisterInfo(); 703 if (PPC::F8RCRegClass.contains(DestReg) && 704 PPC::VSLRCRegClass.contains(SrcReg)) { 705 unsigned SuperReg = 706 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 707 708 if (VSXSelfCopyCrash && SrcReg == SuperReg) 709 llvm_unreachable("nop VSX copy"); 710 711 DestReg = SuperReg; 712 } else if (PPC::VRRCRegClass.contains(DestReg) && 713 PPC::VSHRCRegClass.contains(SrcReg)) { 714 unsigned SuperReg = 715 TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass); 716 717 if (VSXSelfCopyCrash && SrcReg == SuperReg) 718 llvm_unreachable("nop VSX copy"); 719 720 DestReg = SuperReg; 721 } else if (PPC::F8RCRegClass.contains(SrcReg) && 722 PPC::VSLRCRegClass.contains(DestReg)) { 723 unsigned SuperReg = 724 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 725 726 if (VSXSelfCopyCrash && DestReg == SuperReg) 727 llvm_unreachable("nop VSX copy"); 728 729 SrcReg = SuperReg; 730 } else if (PPC::VRRCRegClass.contains(SrcReg) && 731 PPC::VSHRCRegClass.contains(DestReg)) { 732 unsigned SuperReg = 733 TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass); 734 735 if (VSXSelfCopyCrash && DestReg == SuperReg) 736 llvm_unreachable("nop VSX copy"); 737 738 SrcReg = SuperReg; 739 } 740 741 unsigned Opc; 742 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 743 Opc = PPC::OR; 744 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 745 Opc = PPC::OR8; 746 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 747 Opc = PPC::FMR; 748 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 749 Opc = PPC::MCRF; 750 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 751 Opc = PPC::VOR; 752 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 753 // There are two different ways this can be done: 754 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 755 // issue in VSU pipeline 0. 756 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 757 // can go to either pipeline. 758 // We'll always use xxlor here, because in practically all cases where 759 // copies are generated, they are close enough to some use that the 760 // lower-latency form is preferable. 761 Opc = PPC::XXLOR; 762 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg)) 763 Opc = PPC::XXLORf; 764 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 765 Opc = PPC::CROR; 766 else 767 llvm_unreachable("Impossible reg-to-reg copy"); 768 769 const MCInstrDesc &MCID = get(Opc); 770 if (MCID.getNumOperands() == 3) 771 BuildMI(MBB, I, DL, MCID, DestReg) 772 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 773 else 774 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 775 } 776 777 // This function returns true if a CR spill is necessary and false otherwise. 778 bool 779 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, 780 unsigned SrcReg, bool isKill, 781 int FrameIdx, 782 const TargetRegisterClass *RC, 783 SmallVectorImpl<MachineInstr*> &NewMIs, 784 bool &NonRI, bool &SpillsVRS) const{ 785 // Note: If additional store instructions are added here, 786 // update isStoreToStackSlot. 787 788 DebugLoc DL; 789 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 790 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 791 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) 792 .addReg(SrcReg, 793 getKillRegState(isKill)), 794 FrameIdx)); 795 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 796 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 797 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) 798 .addReg(SrcReg, 799 getKillRegState(isKill)), 800 FrameIdx)); 801 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 802 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) 803 .addReg(SrcReg, 804 getKillRegState(isKill)), 805 FrameIdx)); 806 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 807 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) 808 .addReg(SrcReg, 809 getKillRegState(isKill)), 810 FrameIdx)); 811 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 812 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) 813 .addReg(SrcReg, 814 getKillRegState(isKill)), 815 FrameIdx)); 816 return true; 817 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 818 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT)) 819 .addReg(SrcReg, 820 getKillRegState(isKill)), 821 FrameIdx)); 822 return true; 823 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 824 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX)) 825 .addReg(SrcReg, 826 getKillRegState(isKill)), 827 FrameIdx)); 828 NonRI = true; 829 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 830 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X)) 831 .addReg(SrcReg, 832 getKillRegState(isKill)), 833 FrameIdx)); 834 NonRI = true; 835 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 836 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX)) 837 .addReg(SrcReg, 838 getKillRegState(isKill)), 839 FrameIdx)); 840 NonRI = true; 841 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 842 assert(Subtarget.isDarwin() && 843 "VRSAVE only needs spill/restore on Darwin"); 844 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE)) 845 .addReg(SrcReg, 846 getKillRegState(isKill)), 847 FrameIdx)); 848 SpillsVRS = true; 849 } else { 850 llvm_unreachable("Unknown regclass!"); 851 } 852 853 return false; 854 } 855 856 void 857 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 858 MachineBasicBlock::iterator MI, 859 unsigned SrcReg, bool isKill, int FrameIdx, 860 const TargetRegisterClass *RC, 861 const TargetRegisterInfo *TRI) const { 862 MachineFunction &MF = *MBB.getParent(); 863 SmallVector<MachineInstr*, 4> NewMIs; 864 865 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 866 FuncInfo->setHasSpills(); 867 868 bool NonRI = false, SpillsVRS = false; 869 if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs, 870 NonRI, SpillsVRS)) 871 FuncInfo->setSpillsCR(); 872 873 if (SpillsVRS) 874 FuncInfo->setSpillsVRSAVE(); 875 876 if (NonRI) 877 FuncInfo->setHasNonRISpills(); 878 879 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 880 MBB.insert(MI, NewMIs[i]); 881 882 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 883 MachineMemOperand *MMO = 884 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 885 MachineMemOperand::MOStore, 886 MFI.getObjectSize(FrameIdx), 887 MFI.getObjectAlignment(FrameIdx)); 888 NewMIs.back()->addMemOperand(MF, MMO); 889 } 890 891 bool 892 PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL, 893 unsigned DestReg, int FrameIdx, 894 const TargetRegisterClass *RC, 895 SmallVectorImpl<MachineInstr*> &NewMIs, 896 bool &NonRI, bool &SpillsVRS) const{ 897 // Note: If additional load instructions are added here, 898 // update isLoadFromStackSlot. 899 900 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 901 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 902 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), 903 DestReg), FrameIdx)); 904 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 905 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 906 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), 907 FrameIdx)); 908 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 909 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), 910 FrameIdx)); 911 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 912 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), 913 FrameIdx)); 914 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 915 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 916 get(PPC::RESTORE_CR), DestReg), 917 FrameIdx)); 918 return true; 919 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 920 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 921 get(PPC::RESTORE_CRBIT), DestReg), 922 FrameIdx)); 923 return true; 924 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 925 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg), 926 FrameIdx)); 927 NonRI = true; 928 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 929 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg), 930 FrameIdx)); 931 NonRI = true; 932 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 933 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg), 934 FrameIdx)); 935 NonRI = true; 936 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 937 assert(Subtarget.isDarwin() && 938 "VRSAVE only needs spill/restore on Darwin"); 939 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 940 get(PPC::RESTORE_VRSAVE), 941 DestReg), 942 FrameIdx)); 943 SpillsVRS = true; 944 } else { 945 llvm_unreachable("Unknown regclass!"); 946 } 947 948 return false; 949 } 950 951 void 952 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 953 MachineBasicBlock::iterator MI, 954 unsigned DestReg, int FrameIdx, 955 const TargetRegisterClass *RC, 956 const TargetRegisterInfo *TRI) const { 957 MachineFunction &MF = *MBB.getParent(); 958 SmallVector<MachineInstr*, 4> NewMIs; 959 DebugLoc DL; 960 if (MI != MBB.end()) DL = MI->getDebugLoc(); 961 962 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 963 FuncInfo->setHasSpills(); 964 965 bool NonRI = false, SpillsVRS = false; 966 if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs, 967 NonRI, SpillsVRS)) 968 FuncInfo->setSpillsCR(); 969 970 if (SpillsVRS) 971 FuncInfo->setSpillsVRSAVE(); 972 973 if (NonRI) 974 FuncInfo->setHasNonRISpills(); 975 976 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 977 MBB.insert(MI, NewMIs[i]); 978 979 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 980 MachineMemOperand *MMO = 981 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 982 MachineMemOperand::MOLoad, 983 MFI.getObjectSize(FrameIdx), 984 MFI.getObjectAlignment(FrameIdx)); 985 NewMIs.back()->addMemOperand(MF, MMO); 986 } 987 988 bool PPCInstrInfo:: 989 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 990 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 991 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 992 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 993 else 994 // Leave the CR# the same, but invert the condition. 995 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 996 return false; 997 } 998 999 bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, 1000 unsigned Reg, MachineRegisterInfo *MRI) const { 1001 // For some instructions, it is legal to fold ZERO into the RA register field. 1002 // A zero immediate should always be loaded with a single li. 1003 unsigned DefOpc = DefMI->getOpcode(); 1004 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1005 return false; 1006 if (!DefMI->getOperand(1).isImm()) 1007 return false; 1008 if (DefMI->getOperand(1).getImm() != 0) 1009 return false; 1010 1011 // Note that we cannot here invert the arguments of an isel in order to fold 1012 // a ZERO into what is presented as the second argument. All we have here 1013 // is the condition bit, and that might come from a CR-logical bit operation. 1014 1015 const MCInstrDesc &UseMCID = UseMI->getDesc(); 1016 1017 // Only fold into real machine instructions. 1018 if (UseMCID.isPseudo()) 1019 return false; 1020 1021 unsigned UseIdx; 1022 for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx) 1023 if (UseMI->getOperand(UseIdx).isReg() && 1024 UseMI->getOperand(UseIdx).getReg() == Reg) 1025 break; 1026 1027 assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI"); 1028 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1029 1030 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1031 1032 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1033 // register (which might also be specified as a pointer class kind). 1034 if (UseInfo->isLookupPtrRegClass()) { 1035 if (UseInfo->RegClass /* Kind */ != 1) 1036 return false; 1037 } else { 1038 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1039 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1040 return false; 1041 } 1042 1043 // Make sure this is not tied to an output register (or otherwise 1044 // constrained). This is true for ST?UX registers, for example, which 1045 // are tied to their output registers. 1046 if (UseInfo->Constraints != 0) 1047 return false; 1048 1049 unsigned ZeroReg; 1050 if (UseInfo->isLookupPtrRegClass()) { 1051 bool isPPC64 = Subtarget.isPPC64(); 1052 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1053 } else { 1054 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1055 PPC::ZERO8 : PPC::ZERO; 1056 } 1057 1058 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1059 UseMI->getOperand(UseIdx).setReg(ZeroReg); 1060 1061 if (DeleteDef) 1062 DefMI->eraseFromParent(); 1063 1064 return true; 1065 } 1066 1067 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1068 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1069 I != IE; ++I) 1070 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1071 return true; 1072 return false; 1073 } 1074 1075 // We should make sure that, if we're going to predicate both sides of a 1076 // condition (a diamond), that both sides don't define the counter register. We 1077 // can predicate counter-decrement-based branches, but while that predicates 1078 // the branching, it does not predicate the counter decrement. If we tried to 1079 // merge the triangle into one predicated block, we'd decrement the counter 1080 // twice. 1081 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1082 unsigned NumT, unsigned ExtraT, 1083 MachineBasicBlock &FMBB, 1084 unsigned NumF, unsigned ExtraF, 1085 const BranchProbability &Probability) const { 1086 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1087 } 1088 1089 1090 bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const { 1091 // The predicated branches are identified by their type, not really by the 1092 // explicit presence of a predicate. Furthermore, some of them can be 1093 // predicated more than once. Because if conversion won't try to predicate 1094 // any instruction which already claims to be predicated (by returning true 1095 // here), always return false. In doing so, we let isPredicable() be the 1096 // final word on whether not the instruction can be (further) predicated. 1097 1098 return false; 1099 } 1100 1101 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 1102 if (!MI->isTerminator()) 1103 return false; 1104 1105 // Conditional branch is a special case. 1106 if (MI->isBranch() && !MI->isBarrier()) 1107 return true; 1108 1109 return !isPredicated(MI); 1110 } 1111 1112 bool PPCInstrInfo::PredicateInstruction( 1113 MachineInstr *MI, 1114 const SmallVectorImpl<MachineOperand> &Pred) const { 1115 unsigned OpC = MI->getOpcode(); 1116 if (OpC == PPC::BLR) { 1117 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1118 bool isPPC64 = Subtarget.isPPC64(); 1119 MI->setDesc(get(Pred[0].getImm() ? 1120 (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) : 1121 (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1122 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1123 MI->setDesc(get(PPC::BCLR)); 1124 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1125 .addReg(Pred[1].getReg()); 1126 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1127 MI->setDesc(get(PPC::BCLRn)); 1128 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1129 .addReg(Pred[1].getReg()); 1130 } else { 1131 MI->setDesc(get(PPC::BCCLR)); 1132 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1133 .addImm(Pred[0].getImm()) 1134 .addReg(Pred[1].getReg()); 1135 } 1136 1137 return true; 1138 } else if (OpC == PPC::B) { 1139 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1140 bool isPPC64 = Subtarget.isPPC64(); 1141 MI->setDesc(get(Pred[0].getImm() ? 1142 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1143 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1144 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1145 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1146 MI->RemoveOperand(0); 1147 1148 MI->setDesc(get(PPC::BC)); 1149 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1150 .addReg(Pred[1].getReg()) 1151 .addMBB(MBB); 1152 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1153 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1154 MI->RemoveOperand(0); 1155 1156 MI->setDesc(get(PPC::BCn)); 1157 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1158 .addReg(Pred[1].getReg()) 1159 .addMBB(MBB); 1160 } else { 1161 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1162 MI->RemoveOperand(0); 1163 1164 MI->setDesc(get(PPC::BCC)); 1165 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1166 .addImm(Pred[0].getImm()) 1167 .addReg(Pred[1].getReg()) 1168 .addMBB(MBB); 1169 } 1170 1171 return true; 1172 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || 1173 OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { 1174 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1175 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1176 1177 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1178 bool isPPC64 = Subtarget.isPPC64(); 1179 1180 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1181 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) : 1182 (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1183 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1184 .addReg(Pred[1].getReg()); 1185 return true; 1186 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1187 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) : 1188 (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1189 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1190 .addReg(Pred[1].getReg()); 1191 return true; 1192 } 1193 1194 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) : 1195 (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1196 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1197 .addImm(Pred[0].getImm()) 1198 .addReg(Pred[1].getReg()); 1199 return true; 1200 } 1201 1202 return false; 1203 } 1204 1205 bool PPCInstrInfo::SubsumesPredicate( 1206 const SmallVectorImpl<MachineOperand> &Pred1, 1207 const SmallVectorImpl<MachineOperand> &Pred2) const { 1208 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1209 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1210 1211 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1212 return false; 1213 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1214 return false; 1215 1216 // P1 can only subsume P2 if they test the same condition register. 1217 if (Pred1[1].getReg() != Pred2[1].getReg()) 1218 return false; 1219 1220 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1221 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1222 1223 if (P1 == P2) 1224 return true; 1225 1226 // Does P1 subsume P2, e.g. GE subsumes GT. 1227 if (P1 == PPC::PRED_LE && 1228 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1229 return true; 1230 if (P1 == PPC::PRED_GE && 1231 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1232 return true; 1233 1234 return false; 1235 } 1236 1237 bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI, 1238 std::vector<MachineOperand> &Pred) const { 1239 // Note: At the present time, the contents of Pred from this function is 1240 // unused by IfConversion. This implementation follows ARM by pushing the 1241 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1242 // predicate, instructions defining CTR or CTR8 are also included as 1243 // predicate-defining instructions. 1244 1245 const TargetRegisterClass *RCs[] = 1246 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1247 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1248 1249 bool Found = false; 1250 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1251 const MachineOperand &MO = MI->getOperand(i); 1252 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1253 const TargetRegisterClass *RC = RCs[c]; 1254 if (MO.isReg()) { 1255 if (MO.isDef() && RC->contains(MO.getReg())) { 1256 Pred.push_back(MO); 1257 Found = true; 1258 } 1259 } else if (MO.isRegMask()) { 1260 for (TargetRegisterClass::iterator I = RC->begin(), 1261 IE = RC->end(); I != IE; ++I) 1262 if (MO.clobbersPhysReg(*I)) { 1263 Pred.push_back(MO); 1264 Found = true; 1265 } 1266 } 1267 } 1268 } 1269 1270 return Found; 1271 } 1272 1273 bool PPCInstrInfo::isPredicable(MachineInstr *MI) const { 1274 unsigned OpC = MI->getOpcode(); 1275 switch (OpC) { 1276 default: 1277 return false; 1278 case PPC::B: 1279 case PPC::BLR: 1280 case PPC::BCTR: 1281 case PPC::BCTR8: 1282 case PPC::BCTRL: 1283 case PPC::BCTRL8: 1284 return true; 1285 } 1286 } 1287 1288 bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI, 1289 unsigned &SrcReg, unsigned &SrcReg2, 1290 int &Mask, int &Value) const { 1291 unsigned Opc = MI->getOpcode(); 1292 1293 switch (Opc) { 1294 default: return false; 1295 case PPC::CMPWI: 1296 case PPC::CMPLWI: 1297 case PPC::CMPDI: 1298 case PPC::CMPLDI: 1299 SrcReg = MI->getOperand(1).getReg(); 1300 SrcReg2 = 0; 1301 Value = MI->getOperand(2).getImm(); 1302 Mask = 0xFFFF; 1303 return true; 1304 case PPC::CMPW: 1305 case PPC::CMPLW: 1306 case PPC::CMPD: 1307 case PPC::CMPLD: 1308 case PPC::FCMPUS: 1309 case PPC::FCMPUD: 1310 SrcReg = MI->getOperand(1).getReg(); 1311 SrcReg2 = MI->getOperand(2).getReg(); 1312 return true; 1313 } 1314 } 1315 1316 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr, 1317 unsigned SrcReg, unsigned SrcReg2, 1318 int Mask, int Value, 1319 const MachineRegisterInfo *MRI) const { 1320 if (DisableCmpOpt) 1321 return false; 1322 1323 int OpC = CmpInstr->getOpcode(); 1324 unsigned CRReg = CmpInstr->getOperand(0).getReg(); 1325 1326 // FP record forms set CR1 based on the execption status bits, not a 1327 // comparison with zero. 1328 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1329 return false; 1330 1331 // The record forms set the condition register based on a signed comparison 1332 // with zero (so says the ISA manual). This is not as straightforward as it 1333 // seems, however, because this is always a 64-bit comparison on PPC64, even 1334 // for instructions that are 32-bit in nature (like slw for example). 1335 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1336 // for equality checks (as those don't depend on the sign). On PPC64, 1337 // we are restricted to equality for unsigned 64-bit comparisons and for 1338 // signed 32-bit comparisons the applicability is more restricted. 1339 bool isPPC64 = Subtarget.isPPC64(); 1340 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1341 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1342 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1343 1344 // Get the unique definition of SrcReg. 1345 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1346 if (!MI) return false; 1347 int MIOpC = MI->getOpcode(); 1348 1349 bool equalityOnly = false; 1350 bool noSub = false; 1351 if (isPPC64) { 1352 if (is32BitSignedCompare) { 1353 // We can perform this optimization only if MI is sign-extending. 1354 if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo || 1355 MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo || 1356 MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo || 1357 MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo || 1358 MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) { 1359 noSub = true; 1360 } else 1361 return false; 1362 } else if (is32BitUnsignedCompare) { 1363 // We can perform this optimization, equality only, if MI is 1364 // zero-extending. 1365 if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo || 1366 MIOpC == PPC::SLW || MIOpC == PPC::SLWo || 1367 MIOpC == PPC::SRW || MIOpC == PPC::SRWo) { 1368 noSub = true; 1369 equalityOnly = true; 1370 } else 1371 return false; 1372 } else 1373 equalityOnly = is64BitUnsignedCompare; 1374 } else 1375 equalityOnly = is32BitUnsignedCompare; 1376 1377 if (equalityOnly) { 1378 // We need to check the uses of the condition register in order to reject 1379 // non-equality comparisons. 1380 for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg), 1381 IE = MRI->use_instr_end(); I != IE; ++I) { 1382 MachineInstr *UseMI = &*I; 1383 if (UseMI->getOpcode() == PPC::BCC) { 1384 unsigned Pred = UseMI->getOperand(0).getImm(); 1385 if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE) 1386 return false; 1387 } else if (UseMI->getOpcode() == PPC::ISEL || 1388 UseMI->getOpcode() == PPC::ISEL8) { 1389 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1390 if (SubIdx != PPC::sub_eq) 1391 return false; 1392 } else 1393 return false; 1394 } 1395 } 1396 1397 MachineBasicBlock::iterator I = CmpInstr; 1398 1399 // Scan forward to find the first use of the compare. 1400 for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end(); 1401 I != EL; ++I) { 1402 bool FoundUse = false; 1403 for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg), 1404 JE = MRI->use_instr_end(); J != JE; ++J) 1405 if (&*J == &*I) { 1406 FoundUse = true; 1407 break; 1408 } 1409 1410 if (FoundUse) 1411 break; 1412 } 1413 1414 // There are two possible candidates which can be changed to set CR[01]. 1415 // One is MI, the other is a SUB instruction. 1416 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1417 MachineInstr *Sub = nullptr; 1418 if (SrcReg2 != 0) 1419 // MI is not a candidate for CMPrr. 1420 MI = nullptr; 1421 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1422 // same BB as the comparison. This is to allow the check below to avoid calls 1423 // (and other explicit clobbers); instead we should really check for these 1424 // more explicitly (in at least a few predecessors). 1425 else if (MI->getParent() != CmpInstr->getParent() || Value != 0) { 1426 // PPC does not have a record-form SUBri. 1427 return false; 1428 } 1429 1430 // Search for Sub. 1431 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1432 --I; 1433 1434 // Get ready to iterate backward from CmpInstr. 1435 MachineBasicBlock::iterator E = MI, 1436 B = CmpInstr->getParent()->begin(); 1437 1438 for (; I != E && !noSub; --I) { 1439 const MachineInstr &Instr = *I; 1440 unsigned IOpC = Instr.getOpcode(); 1441 1442 if (&*I != CmpInstr && ( 1443 Instr.modifiesRegister(PPC::CR0, TRI) || 1444 Instr.readsRegister(PPC::CR0, TRI))) 1445 // This instruction modifies or uses the record condition register after 1446 // the one we want to change. While we could do this transformation, it 1447 // would likely not be profitable. This transformation removes one 1448 // instruction, and so even forcing RA to generate one move probably 1449 // makes it unprofitable. 1450 return false; 1451 1452 // Check whether CmpInstr can be made redundant by the current instruction. 1453 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1454 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1455 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1456 ((Instr.getOperand(1).getReg() == SrcReg && 1457 Instr.getOperand(2).getReg() == SrcReg2) || 1458 (Instr.getOperand(1).getReg() == SrcReg2 && 1459 Instr.getOperand(2).getReg() == SrcReg))) { 1460 Sub = &*I; 1461 break; 1462 } 1463 1464 if (I == B) 1465 // The 'and' is below the comparison instruction. 1466 return false; 1467 } 1468 1469 // Return false if no candidates exist. 1470 if (!MI && !Sub) 1471 return false; 1472 1473 // The single candidate is called MI. 1474 if (!MI) MI = Sub; 1475 1476 int NewOpC = -1; 1477 MIOpC = MI->getOpcode(); 1478 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8) 1479 NewOpC = MIOpC; 1480 else { 1481 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1482 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1483 NewOpC = MIOpC; 1484 } 1485 1486 // FIXME: On the non-embedded POWER architectures, only some of the record 1487 // forms are fast, and we should use only the fast ones. 1488 1489 // The defining instruction has a record form (or is already a record 1490 // form). It is possible, however, that we'll need to reverse the condition 1491 // code of the users. 1492 if (NewOpC == -1) 1493 return false; 1494 1495 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1496 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1497 1498 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1499 // needs to be updated to be based on SUB. Push the condition code 1500 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1501 // condition code of these operands will be modified. 1502 bool ShouldSwap = false; 1503 if (Sub) { 1504 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1505 Sub->getOperand(2).getReg() == SrcReg; 1506 1507 // The operands to subf are the opposite of sub, so only in the fixed-point 1508 // case, invert the order. 1509 ShouldSwap = !ShouldSwap; 1510 } 1511 1512 if (ShouldSwap) 1513 for (MachineRegisterInfo::use_instr_iterator 1514 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1515 I != IE; ++I) { 1516 MachineInstr *UseMI = &*I; 1517 if (UseMI->getOpcode() == PPC::BCC) { 1518 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1519 assert((!equalityOnly || 1520 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) && 1521 "Invalid predicate for equality-only optimization"); 1522 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1523 PPC::getSwappedPredicate(Pred))); 1524 } else if (UseMI->getOpcode() == PPC::ISEL || 1525 UseMI->getOpcode() == PPC::ISEL8) { 1526 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1527 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1528 "Invalid CR bit for equality-only optimization"); 1529 1530 if (NewSubReg == PPC::sub_lt) 1531 NewSubReg = PPC::sub_gt; 1532 else if (NewSubReg == PPC::sub_gt) 1533 NewSubReg = PPC::sub_lt; 1534 1535 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1536 NewSubReg)); 1537 } else // We need to abort on a user we don't understand. 1538 return false; 1539 } 1540 1541 // Create a new virtual register to hold the value of the CR set by the 1542 // record-form instruction. If the instruction was not previously in 1543 // record form, then set the kill flag on the CR. 1544 CmpInstr->eraseFromParent(); 1545 1546 MachineBasicBlock::iterator MII = MI; 1547 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1548 get(TargetOpcode::COPY), CRReg) 1549 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1550 1551 if (MIOpC != NewOpC) { 1552 // We need to be careful here: we're replacing one instruction with 1553 // another, and we need to make sure that we get all of the right 1554 // implicit uses and defs. On the other hand, the caller may be holding 1555 // an iterator to this instruction, and so we can't delete it (this is 1556 // specifically the case if this is the instruction directly after the 1557 // compare). 1558 1559 const MCInstrDesc &NewDesc = get(NewOpC); 1560 MI->setDesc(NewDesc); 1561 1562 if (NewDesc.ImplicitDefs) 1563 for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs(); 1564 *ImpDefs; ++ImpDefs) 1565 if (!MI->definesRegister(*ImpDefs)) 1566 MI->addOperand(*MI->getParent()->getParent(), 1567 MachineOperand::CreateReg(*ImpDefs, true, true)); 1568 if (NewDesc.ImplicitUses) 1569 for (const uint16_t *ImpUses = NewDesc.getImplicitUses(); 1570 *ImpUses; ++ImpUses) 1571 if (!MI->readsRegister(*ImpUses)) 1572 MI->addOperand(*MI->getParent()->getParent(), 1573 MachineOperand::CreateReg(*ImpUses, false, true)); 1574 } 1575 1576 // Modify the condition code of operands in OperandsToUpdate. 1577 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1578 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1579 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1580 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1581 1582 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1583 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1584 1585 return true; 1586 } 1587 1588 /// GetInstSize - Return the number of bytes of code the specified 1589 /// instruction may be. This returns the maximum number of bytes. 1590 /// 1591 unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { 1592 unsigned Opcode = MI->getOpcode(); 1593 1594 if (Opcode == PPC::INLINEASM) { 1595 const MachineFunction *MF = MI->getParent()->getParent(); 1596 const char *AsmStr = MI->getOperand(0).getSymbolName(); 1597 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1598 } else { 1599 const MCInstrDesc &Desc = get(Opcode); 1600 return Desc.getSize(); 1601 } 1602 } 1603 1604 #undef DEBUG_TYPE 1605 #define DEBUG_TYPE "ppc-vsx-fma-mutate" 1606 1607 namespace { 1608 // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers 1609 // (Altivec and scalar floating-point registers), we need to transform the 1610 // copies into subregister copies with other restrictions. 1611 struct PPCVSXFMAMutate : public MachineFunctionPass { 1612 static char ID; 1613 PPCVSXFMAMutate() : MachineFunctionPass(ID) { 1614 initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry()); 1615 } 1616 1617 LiveIntervals *LIS; 1618 1619 const PPCTargetMachine *TM; 1620 const PPCInstrInfo *TII; 1621 1622 protected: 1623 bool processBlock(MachineBasicBlock &MBB) { 1624 bool Changed = false; 1625 1626 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1627 const TargetRegisterInfo *TRI = &TII->getRegisterInfo(); 1628 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1629 I != IE; ++I) { 1630 MachineInstr *MI = I; 1631 1632 // The default (A-type) VSX FMA form kills the addend (it is taken from 1633 // the target register, which is then updated to reflect the result of 1634 // the FMA). If the instruction, however, kills one of the registers 1635 // used for the product, then we can use the M-form instruction (which 1636 // will take that value from the to-be-defined register). 1637 1638 int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode()); 1639 if (AltOpc == -1) 1640 continue; 1641 1642 // This pass is run after register coalescing, and so we're looking for 1643 // a situation like this: 1644 // ... 1645 // %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9 1646 // %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16, 1647 // %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16 1648 // ... 1649 // %vreg9<def,tied1> = XSMADDADP %vreg9<tied0>, %vreg17, %vreg19, 1650 // %RM<imp-use>; VSLRC:%vreg9,%vreg17,%vreg19 1651 // ... 1652 // Where we can eliminate the copy by changing from the A-type to the 1653 // M-type instruction. Specifically, for this example, this means: 1654 // %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16, 1655 // %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16 1656 // is replaced by: 1657 // %vreg16<def,tied1> = XSMADDMDP %vreg16<tied0>, %vreg18, %vreg9, 1658 // %RM<imp-use>; VSLRC:%vreg16,%vreg18,%vreg9 1659 // and we remove: %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9 1660 1661 SlotIndex FMAIdx = LIS->getInstructionIndex(MI); 1662 1663 VNInfo *AddendValNo = 1664 LIS->getInterval(MI->getOperand(1).getReg()).Query(FMAIdx).valueIn(); 1665 MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def); 1666 1667 // The addend and this instruction must be in the same block. 1668 1669 if (!AddendMI || AddendMI->getParent() != MI->getParent()) 1670 continue; 1671 1672 // The addend must be a full copy within the same register class. 1673 1674 if (!AddendMI->isFullCopy()) 1675 continue; 1676 1677 unsigned AddendSrcReg = AddendMI->getOperand(1).getReg(); 1678 if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg)) { 1679 if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) != 1680 MRI.getRegClass(AddendSrcReg)) 1681 continue; 1682 } else { 1683 // If AddendSrcReg is a physical register, make sure the destination 1684 // register class contains it. 1685 if (!MRI.getRegClass(AddendMI->getOperand(0).getReg()) 1686 ->contains(AddendSrcReg)) 1687 continue; 1688 } 1689 1690 // In theory, there could be other uses of the addend copy before this 1691 // fma. We could deal with this, but that would require additional 1692 // logic below and I suspect it will not occur in any relevant 1693 // situations. Additionally, check whether the copy source is killed 1694 // prior to the fma. In order to replace the addend here with the 1695 // source of the copy, it must still be live here. We can't use 1696 // interval testing for a physical register, so as long as we're 1697 // walking the MIs we may as well test liveness here. 1698 bool OtherUsers = false, KillsAddendSrc = false; 1699 for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI); 1700 J != JE; --J) { 1701 if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) { 1702 OtherUsers = true; 1703 break; 1704 } 1705 if (J->modifiesRegister(AddendSrcReg, TRI) || 1706 J->killsRegister(AddendSrcReg, TRI)) { 1707 KillsAddendSrc = true; 1708 break; 1709 } 1710 } 1711 1712 if (OtherUsers || KillsAddendSrc) 1713 continue; 1714 1715 // Find one of the product operands that is killed by this instruction. 1716 1717 unsigned KilledProdOp = 0, OtherProdOp = 0; 1718 if (LIS->getInterval(MI->getOperand(2).getReg()) 1719 .Query(FMAIdx).isKill()) { 1720 KilledProdOp = 2; 1721 OtherProdOp = 3; 1722 } else if (LIS->getInterval(MI->getOperand(3).getReg()) 1723 .Query(FMAIdx).isKill()) { 1724 KilledProdOp = 3; 1725 OtherProdOp = 2; 1726 } 1727 1728 // If there are no killed product operands, then this transformation is 1729 // likely not profitable. 1730 if (!KilledProdOp) 1731 continue; 1732 1733 // For virtual registers, verify that the addend source register 1734 // is live here (as should have been assured above). 1735 assert((!TargetRegisterInfo::isVirtualRegister(AddendSrcReg) || 1736 LIS->getInterval(AddendSrcReg).liveAt(FMAIdx)) && 1737 "Addend source register is not live!"); 1738 1739 // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3. 1740 1741 unsigned AddReg = AddendMI->getOperand(1).getReg(); 1742 unsigned KilledProdReg = MI->getOperand(KilledProdOp).getReg(); 1743 unsigned OtherProdReg = MI->getOperand(OtherProdOp).getReg(); 1744 1745 unsigned AddSubReg = AddendMI->getOperand(1).getSubReg(); 1746 unsigned KilledProdSubReg = MI->getOperand(KilledProdOp).getSubReg(); 1747 unsigned OtherProdSubReg = MI->getOperand(OtherProdOp).getSubReg(); 1748 1749 bool AddRegKill = AddendMI->getOperand(1).isKill(); 1750 bool KilledProdRegKill = MI->getOperand(KilledProdOp).isKill(); 1751 bool OtherProdRegKill = MI->getOperand(OtherProdOp).isKill(); 1752 1753 bool AddRegUndef = AddendMI->getOperand(1).isUndef(); 1754 bool KilledProdRegUndef = MI->getOperand(KilledProdOp).isUndef(); 1755 bool OtherProdRegUndef = MI->getOperand(OtherProdOp).isUndef(); 1756 1757 unsigned OldFMAReg = MI->getOperand(0).getReg(); 1758 1759 // The transformation doesn't work well with things like: 1760 // %vreg5 = A-form-op %vreg5, %vreg11, %vreg5; 1761 // so leave such things alone. 1762 if (OldFMAReg == KilledProdReg) 1763 continue; 1764 1765 assert(OldFMAReg == AddendMI->getOperand(0).getReg() && 1766 "Addend copy not tied to old FMA output!"); 1767 1768 DEBUG(dbgs() << "VSX FMA Mutation:\n " << *MI;); 1769 1770 MI->getOperand(0).setReg(KilledProdReg); 1771 MI->getOperand(1).setReg(KilledProdReg); 1772 MI->getOperand(3).setReg(AddReg); 1773 MI->getOperand(2).setReg(OtherProdReg); 1774 1775 MI->getOperand(0).setSubReg(KilledProdSubReg); 1776 MI->getOperand(1).setSubReg(KilledProdSubReg); 1777 MI->getOperand(3).setSubReg(AddSubReg); 1778 MI->getOperand(2).setSubReg(OtherProdSubReg); 1779 1780 MI->getOperand(1).setIsKill(KilledProdRegKill); 1781 MI->getOperand(3).setIsKill(AddRegKill); 1782 MI->getOperand(2).setIsKill(OtherProdRegKill); 1783 1784 MI->getOperand(1).setIsUndef(KilledProdRegUndef); 1785 MI->getOperand(3).setIsUndef(AddRegUndef); 1786 MI->getOperand(2).setIsUndef(OtherProdRegUndef); 1787 1788 MI->setDesc(TII->get(AltOpc)); 1789 1790 DEBUG(dbgs() << " -> " << *MI); 1791 1792 // The killed product operand was killed here, so we can reuse it now 1793 // for the result of the fma. 1794 1795 LiveInterval &FMAInt = LIS->getInterval(OldFMAReg); 1796 VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot()); 1797 for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end(); 1798 UI != UE;) { 1799 MachineOperand &UseMO = *UI; 1800 MachineInstr *UseMI = UseMO.getParent(); 1801 ++UI; 1802 1803 // Don't replace the result register of the copy we're about to erase. 1804 if (UseMI == AddendMI) 1805 continue; 1806 1807 UseMO.setReg(KilledProdReg); 1808 UseMO.setSubReg(KilledProdSubReg); 1809 } 1810 1811 // Extend the live intervals of the killed product operand to hold the 1812 // fma result. 1813 1814 LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg); 1815 for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end(); 1816 AI != AE; ++AI) { 1817 // Don't add the segment that corresponds to the original copy. 1818 if (AI->valno == AddendValNo) 1819 continue; 1820 1821 VNInfo *NewFMAValNo = 1822 NewFMAInt.getNextValue(AI->start, 1823 LIS->getVNInfoAllocator()); 1824 1825 NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end, 1826 NewFMAValNo)); 1827 } 1828 DEBUG(dbgs() << " extended: " << NewFMAInt << '\n'); 1829 1830 FMAInt.removeValNo(FMAValNo); 1831 DEBUG(dbgs() << " trimmed: " << FMAInt << '\n'); 1832 1833 // Remove the (now unused) copy. 1834 1835 DEBUG(dbgs() << " removing: " << *AddendMI << '\n'); 1836 LIS->RemoveMachineInstrFromMaps(AddendMI); 1837 AddendMI->eraseFromParent(); 1838 1839 Changed = true; 1840 } 1841 1842 return Changed; 1843 } 1844 1845 public: 1846 bool runOnMachineFunction(MachineFunction &MF) override { 1847 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 1848 // If we don't have VSX then go ahead and return without doing 1849 // anything. 1850 if (!TM->getSubtargetImpl()->hasVSX()) 1851 return false; 1852 1853 LIS = &getAnalysis<LiveIntervals>(); 1854 1855 TII = TM->getSubtargetImpl()->getInstrInfo(); 1856 1857 bool Changed = false; 1858 1859 if (DisableVSXFMAMutate) 1860 return Changed; 1861 1862 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 1863 MachineBasicBlock &B = *I++; 1864 if (processBlock(B)) 1865 Changed = true; 1866 } 1867 1868 return Changed; 1869 } 1870 1871 void getAnalysisUsage(AnalysisUsage &AU) const override { 1872 AU.addRequired<LiveIntervals>(); 1873 AU.addPreserved<LiveIntervals>(); 1874 AU.addRequired<SlotIndexes>(); 1875 AU.addPreserved<SlotIndexes>(); 1876 MachineFunctionPass::getAnalysisUsage(AU); 1877 } 1878 }; 1879 } 1880 1881 INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE, 1882 "PowerPC VSX FMA Mutation", false, false) 1883 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 1884 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 1885 INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE, 1886 "PowerPC VSX FMA Mutation", false, false) 1887 1888 char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID; 1889 1890 char PPCVSXFMAMutate::ID = 0; 1891 FunctionPass* 1892 llvm::createPPCVSXFMAMutatePass() { return new PPCVSXFMAMutate(); } 1893 1894 #undef DEBUG_TYPE 1895 #define DEBUG_TYPE "ppc-vsx-copy" 1896 1897 namespace llvm { 1898 void initializePPCVSXCopyPass(PassRegistry&); 1899 } 1900 1901 namespace { 1902 // PPCVSXCopy pass - For copies between VSX registers and non-VSX registers 1903 // (Altivec and scalar floating-point registers), we need to transform the 1904 // copies into subregister copies with other restrictions. 1905 struct PPCVSXCopy : public MachineFunctionPass { 1906 static char ID; 1907 PPCVSXCopy() : MachineFunctionPass(ID) { 1908 initializePPCVSXCopyPass(*PassRegistry::getPassRegistry()); 1909 } 1910 1911 const PPCTargetMachine *TM; 1912 const PPCInstrInfo *TII; 1913 1914 bool IsRegInClass(unsigned Reg, const TargetRegisterClass *RC, 1915 MachineRegisterInfo &MRI) { 1916 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1917 return RC->hasSubClassEq(MRI.getRegClass(Reg)); 1918 } else if (RC->contains(Reg)) { 1919 return true; 1920 } 1921 1922 return false; 1923 } 1924 1925 bool IsVSReg(unsigned Reg, MachineRegisterInfo &MRI) { 1926 return IsRegInClass(Reg, &PPC::VSRCRegClass, MRI); 1927 } 1928 1929 bool IsVRReg(unsigned Reg, MachineRegisterInfo &MRI) { 1930 return IsRegInClass(Reg, &PPC::VRRCRegClass, MRI); 1931 } 1932 1933 bool IsF8Reg(unsigned Reg, MachineRegisterInfo &MRI) { 1934 return IsRegInClass(Reg, &PPC::F8RCRegClass, MRI); 1935 } 1936 1937 protected: 1938 bool processBlock(MachineBasicBlock &MBB) { 1939 bool Changed = false; 1940 1941 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1942 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1943 I != IE; ++I) { 1944 MachineInstr *MI = I; 1945 if (!MI->isFullCopy()) 1946 continue; 1947 1948 MachineOperand &DstMO = MI->getOperand(0); 1949 MachineOperand &SrcMO = MI->getOperand(1); 1950 1951 if ( IsVSReg(DstMO.getReg(), MRI) && 1952 !IsVSReg(SrcMO.getReg(), MRI)) { 1953 // This is a copy *to* a VSX register from a non-VSX register. 1954 Changed = true; 1955 1956 const TargetRegisterClass *SrcRC = 1957 IsVRReg(SrcMO.getReg(), MRI) ? &PPC::VSHRCRegClass : 1958 &PPC::VSLRCRegClass; 1959 assert((IsF8Reg(SrcMO.getReg(), MRI) || 1960 IsVRReg(SrcMO.getReg(), MRI)) && 1961 "Unknown source for a VSX copy"); 1962 1963 unsigned NewVReg = MRI.createVirtualRegister(SrcRC); 1964 BuildMI(MBB, MI, MI->getDebugLoc(), 1965 TII->get(TargetOpcode::SUBREG_TO_REG), NewVReg) 1966 .addImm(1) // add 1, not 0, because there is no implicit clearing 1967 // of the high bits. 1968 .addOperand(SrcMO) 1969 .addImm(IsVRReg(SrcMO.getReg(), MRI) ? PPC::sub_128 : 1970 PPC::sub_64); 1971 1972 // The source of the original copy is now the new virtual register. 1973 SrcMO.setReg(NewVReg); 1974 } else if (!IsVSReg(DstMO.getReg(), MRI) && 1975 IsVSReg(SrcMO.getReg(), MRI)) { 1976 // This is a copy *from* a VSX register to a non-VSX register. 1977 Changed = true; 1978 1979 const TargetRegisterClass *DstRC = 1980 IsVRReg(DstMO.getReg(), MRI) ? &PPC::VSHRCRegClass : 1981 &PPC::VSLRCRegClass; 1982 assert((IsF8Reg(DstMO.getReg(), MRI) || 1983 IsVRReg(DstMO.getReg(), MRI)) && 1984 "Unknown destination for a VSX copy"); 1985 1986 // Copy the VSX value into a new VSX register of the correct subclass. 1987 unsigned NewVReg = MRI.createVirtualRegister(DstRC); 1988 BuildMI(MBB, MI, MI->getDebugLoc(), 1989 TII->get(TargetOpcode::COPY), NewVReg) 1990 .addOperand(SrcMO); 1991 1992 // Transform the original copy into a subregister extraction copy. 1993 SrcMO.setReg(NewVReg); 1994 SrcMO.setSubReg(IsVRReg(DstMO.getReg(), MRI) ? PPC::sub_128 : 1995 PPC::sub_64); 1996 } 1997 } 1998 1999 return Changed; 2000 } 2001 2002 public: 2003 bool runOnMachineFunction(MachineFunction &MF) override { 2004 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 2005 // If we don't have VSX on the subtarget, don't do anything. 2006 if (!TM->getSubtargetImpl()->hasVSX()) 2007 return false; 2008 TII = TM->getSubtargetImpl()->getInstrInfo(); 2009 2010 bool Changed = false; 2011 2012 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 2013 MachineBasicBlock &B = *I++; 2014 if (processBlock(B)) 2015 Changed = true; 2016 } 2017 2018 return Changed; 2019 } 2020 2021 void getAnalysisUsage(AnalysisUsage &AU) const override { 2022 MachineFunctionPass::getAnalysisUsage(AU); 2023 } 2024 }; 2025 } 2026 2027 INITIALIZE_PASS(PPCVSXCopy, DEBUG_TYPE, 2028 "PowerPC VSX Copy Legalization", false, false) 2029 2030 char PPCVSXCopy::ID = 0; 2031 FunctionPass* 2032 llvm::createPPCVSXCopyPass() { return new PPCVSXCopy(); } 2033 2034 #undef DEBUG_TYPE 2035 #define DEBUG_TYPE "ppc-vsx-copy-cleanup" 2036 2037 namespace llvm { 2038 void initializePPCVSXCopyCleanupPass(PassRegistry&); 2039 } 2040 2041 namespace { 2042 // PPCVSXCopyCleanup pass - We sometimes end up generating self copies of VSX 2043 // registers (mostly because the ABI code still places all values into the 2044 // "traditional" floating-point and vector registers). Remove them here. 2045 struct PPCVSXCopyCleanup : public MachineFunctionPass { 2046 static char ID; 2047 PPCVSXCopyCleanup() : MachineFunctionPass(ID) { 2048 initializePPCVSXCopyCleanupPass(*PassRegistry::getPassRegistry()); 2049 } 2050 2051 const PPCTargetMachine *TM; 2052 const PPCInstrInfo *TII; 2053 2054 protected: 2055 bool processBlock(MachineBasicBlock &MBB) { 2056 bool Changed = false; 2057 2058 SmallVector<MachineInstr *, 4> ToDelete; 2059 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 2060 I != IE; ++I) { 2061 MachineInstr *MI = I; 2062 if (MI->getOpcode() == PPC::XXLOR && 2063 MI->getOperand(0).getReg() == MI->getOperand(1).getReg() && 2064 MI->getOperand(0).getReg() == MI->getOperand(2).getReg()) 2065 ToDelete.push_back(MI); 2066 } 2067 2068 if (!ToDelete.empty()) 2069 Changed = true; 2070 2071 for (unsigned i = 0, ie = ToDelete.size(); i != ie; ++i) { 2072 DEBUG(dbgs() << "Removing VSX self-copy: " << *ToDelete[i]); 2073 ToDelete[i]->eraseFromParent(); 2074 } 2075 2076 return Changed; 2077 } 2078 2079 public: 2080 bool runOnMachineFunction(MachineFunction &MF) override { 2081 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 2082 // If we don't have VSX don't bother doing anything here. 2083 if (!TM->getSubtargetImpl()->hasVSX()) 2084 return false; 2085 TII = TM->getSubtargetImpl()->getInstrInfo(); 2086 2087 bool Changed = false; 2088 2089 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 2090 MachineBasicBlock &B = *I++; 2091 if (processBlock(B)) 2092 Changed = true; 2093 } 2094 2095 return Changed; 2096 } 2097 2098 void getAnalysisUsage(AnalysisUsage &AU) const override { 2099 MachineFunctionPass::getAnalysisUsage(AU); 2100 } 2101 }; 2102 } 2103 2104 INITIALIZE_PASS(PPCVSXCopyCleanup, DEBUG_TYPE, 2105 "PowerPC VSX Copy Cleanup", false, false) 2106 2107 char PPCVSXCopyCleanup::ID = 0; 2108 FunctionPass* 2109 llvm::createPPCVSXCopyCleanupPass() { return new PPCVSXCopyCleanup(); } 2110 2111 #undef DEBUG_TYPE 2112 #define DEBUG_TYPE "ppc-early-ret" 2113 STATISTIC(NumBCLR, "Number of early conditional returns"); 2114 STATISTIC(NumBLR, "Number of early returns"); 2115 2116 namespace llvm { 2117 void initializePPCEarlyReturnPass(PassRegistry&); 2118 } 2119 2120 namespace { 2121 // PPCEarlyReturn pass - For simple functions without epilogue code, move 2122 // returns up, and create conditional returns, to avoid unnecessary 2123 // branch-to-blr sequences. 2124 struct PPCEarlyReturn : public MachineFunctionPass { 2125 static char ID; 2126 PPCEarlyReturn() : MachineFunctionPass(ID) { 2127 initializePPCEarlyReturnPass(*PassRegistry::getPassRegistry()); 2128 } 2129 2130 const PPCTargetMachine *TM; 2131 const PPCInstrInfo *TII; 2132 2133 protected: 2134 bool processBlock(MachineBasicBlock &ReturnMBB) { 2135 bool Changed = false; 2136 2137 MachineBasicBlock::iterator I = ReturnMBB.begin(); 2138 I = ReturnMBB.SkipPHIsAndLabels(I); 2139 2140 // The block must be essentially empty except for the blr. 2141 if (I == ReturnMBB.end() || I->getOpcode() != PPC::BLR || 2142 I != ReturnMBB.getLastNonDebugInstr()) 2143 return Changed; 2144 2145 SmallVector<MachineBasicBlock*, 8> PredToRemove; 2146 for (MachineBasicBlock::pred_iterator PI = ReturnMBB.pred_begin(), 2147 PIE = ReturnMBB.pred_end(); PI != PIE; ++PI) { 2148 bool OtherReference = false, BlockChanged = false; 2149 for (MachineBasicBlock::iterator J = (*PI)->getLastNonDebugInstr();;) { 2150 if (J->getOpcode() == PPC::B) { 2151 if (J->getOperand(0).getMBB() == &ReturnMBB) { 2152 // This is an unconditional branch to the return. Replace the 2153 // branch with a blr. 2154 BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BLR)); 2155 MachineBasicBlock::iterator K = J--; 2156 K->eraseFromParent(); 2157 BlockChanged = true; 2158 ++NumBLR; 2159 continue; 2160 } 2161 } else if (J->getOpcode() == PPC::BCC) { 2162 if (J->getOperand(2).getMBB() == &ReturnMBB) { 2163 // This is a conditional branch to the return. Replace the branch 2164 // with a bclr. 2165 BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BCCLR)) 2166 .addImm(J->getOperand(0).getImm()) 2167 .addReg(J->getOperand(1).getReg()); 2168 MachineBasicBlock::iterator K = J--; 2169 K->eraseFromParent(); 2170 BlockChanged = true; 2171 ++NumBCLR; 2172 continue; 2173 } 2174 } else if (J->getOpcode() == PPC::BC || J->getOpcode() == PPC::BCn) { 2175 if (J->getOperand(1).getMBB() == &ReturnMBB) { 2176 // This is a conditional branch to the return. Replace the branch 2177 // with a bclr. 2178 BuildMI(**PI, J, J->getDebugLoc(), 2179 TII->get(J->getOpcode() == PPC::BC ? 2180 PPC::BCLR : PPC::BCLRn)) 2181 .addReg(J->getOperand(0).getReg()); 2182 MachineBasicBlock::iterator K = J--; 2183 K->eraseFromParent(); 2184 BlockChanged = true; 2185 ++NumBCLR; 2186 continue; 2187 } 2188 } else if (J->isBranch()) { 2189 if (J->isIndirectBranch()) { 2190 if (ReturnMBB.hasAddressTaken()) 2191 OtherReference = true; 2192 } else 2193 for (unsigned i = 0; i < J->getNumOperands(); ++i) 2194 if (J->getOperand(i).isMBB() && 2195 J->getOperand(i).getMBB() == &ReturnMBB) 2196 OtherReference = true; 2197 } else if (!J->isTerminator() && !J->isDebugValue()) 2198 break; 2199 2200 if (J == (*PI)->begin()) 2201 break; 2202 2203 --J; 2204 } 2205 2206 if ((*PI)->canFallThrough() && (*PI)->isLayoutSuccessor(&ReturnMBB)) 2207 OtherReference = true; 2208 2209 // Predecessors are stored in a vector and can't be removed here. 2210 if (!OtherReference && BlockChanged) { 2211 PredToRemove.push_back(*PI); 2212 } 2213 2214 if (BlockChanged) 2215 Changed = true; 2216 } 2217 2218 for (unsigned i = 0, ie = PredToRemove.size(); i != ie; ++i) 2219 PredToRemove[i]->removeSuccessor(&ReturnMBB); 2220 2221 if (Changed && !ReturnMBB.hasAddressTaken()) { 2222 // We now might be able to merge this blr-only block into its 2223 // by-layout predecessor. 2224 if (ReturnMBB.pred_size() == 1 && 2225 (*ReturnMBB.pred_begin())->isLayoutSuccessor(&ReturnMBB)) { 2226 // Move the blr into the preceding block. 2227 MachineBasicBlock &PrevMBB = **ReturnMBB.pred_begin(); 2228 PrevMBB.splice(PrevMBB.end(), &ReturnMBB, I); 2229 PrevMBB.removeSuccessor(&ReturnMBB); 2230 } 2231 2232 if (ReturnMBB.pred_empty()) 2233 ReturnMBB.eraseFromParent(); 2234 } 2235 2236 return Changed; 2237 } 2238 2239 public: 2240 bool runOnMachineFunction(MachineFunction &MF) override { 2241 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 2242 TII = TM->getSubtargetImpl()->getInstrInfo(); 2243 2244 bool Changed = false; 2245 2246 // If the function does not have at least two blocks, then there is 2247 // nothing to do. 2248 if (MF.size() < 2) 2249 return Changed; 2250 2251 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 2252 MachineBasicBlock &B = *I++; 2253 if (processBlock(B)) 2254 Changed = true; 2255 } 2256 2257 return Changed; 2258 } 2259 2260 void getAnalysisUsage(AnalysisUsage &AU) const override { 2261 MachineFunctionPass::getAnalysisUsage(AU); 2262 } 2263 }; 2264 } 2265 2266 INITIALIZE_PASS(PPCEarlyReturn, DEBUG_TYPE, 2267 "PowerPC Early-Return Creation", false, false) 2268 2269 char PPCEarlyReturn::ID = 0; 2270 FunctionPass* 2271 llvm::createPPCEarlyReturnPass() { return new PPCEarlyReturn(); } 2272