1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCInstrInfo.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCHazardRecognizers.h"
18 #include "PPCInstrBuilder.h"
19 #include "PPCMachineFunctionInfo.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCInst.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/raw_ostream.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "ppc-instr-info"
44 
45 #define GET_INSTRMAP_INFO
46 #define GET_INSTRINFO_CTOR_DTOR
47 #include "PPCGenInstrInfo.inc"
48 
49 static cl::
50 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
51             cl::desc("Disable analysis for CTR loops"));
52 
53 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
54 cl::desc("Disable compare instruction optimization"), cl::Hidden);
55 
56 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
57 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
58 cl::Hidden);
59 
60 static cl::opt<bool>
61 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
62   cl::desc("Use the old (incorrect) instruction latency calculation"));
63 
64 // Pin the vtable to this file.
65 void PPCInstrInfo::anchor() {}
66 
67 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
68     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
69       Subtarget(STI), RI(STI.getTargetMachine()) {}
70 
71 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
72 /// this target when scheduling the DAG.
73 ScheduleHazardRecognizer *
74 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
75                                            const ScheduleDAG *DAG) const {
76   unsigned Directive =
77       static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
78   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
79       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
80     const InstrItineraryData *II =
81         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
82     return new ScoreboardHazardRecognizer(II, DAG);
83   }
84 
85   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
86 }
87 
88 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
89 /// to use for this target when scheduling the DAG.
90 ScheduleHazardRecognizer *
91 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
92                                                  const ScheduleDAG *DAG) const {
93   unsigned Directive =
94       DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
95 
96   // FIXME: Leaving this as-is until we have POWER9 scheduling info
97   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
98     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
99 
100   // Most subtargets use a PPC970 recognizer.
101   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
102       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
103     assert(DAG->TII && "No InstrInfo?");
104 
105     return new PPCHazardRecognizer970(*DAG);
106   }
107 
108   return new ScoreboardHazardRecognizer(II, DAG);
109 }
110 
111 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
112                                        const MachineInstr &MI,
113                                        unsigned *PredCost) const {
114   if (!ItinData || UseOldLatencyCalc)
115     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
116 
117   // The default implementation of getInstrLatency calls getStageLatency, but
118   // getStageLatency does not do the right thing for us. While we have
119   // itinerary, most cores are fully pipelined, and so the itineraries only
120   // express the first part of the pipeline, not every stage. Instead, we need
121   // to use the listed output operand cycle number (using operand 0 here, which
122   // is an output).
123 
124   unsigned Latency = 1;
125   unsigned DefClass = MI.getDesc().getSchedClass();
126   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
127     const MachineOperand &MO = MI.getOperand(i);
128     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
129       continue;
130 
131     int Cycle = ItinData->getOperandCycle(DefClass, i);
132     if (Cycle < 0)
133       continue;
134 
135     Latency = std::max(Latency, (unsigned) Cycle);
136   }
137 
138   return Latency;
139 }
140 
141 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
142                                     const MachineInstr &DefMI, unsigned DefIdx,
143                                     const MachineInstr &UseMI,
144                                     unsigned UseIdx) const {
145   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
146                                                    UseMI, UseIdx);
147 
148   if (!DefMI.getParent())
149     return Latency;
150 
151   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
152   unsigned Reg = DefMO.getReg();
153 
154   bool IsRegCR;
155   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
156     const MachineRegisterInfo *MRI =
157         &DefMI.getParent()->getParent()->getRegInfo();
158     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
159               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
160   } else {
161     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
162               PPC::CRBITRCRegClass.contains(Reg);
163   }
164 
165   if (UseMI.isBranch() && IsRegCR) {
166     if (Latency < 0)
167       Latency = getInstrLatency(ItinData, DefMI);
168 
169     // On some cores, there is an additional delay between writing to a condition
170     // register, and using it from a branch.
171     unsigned Directive = Subtarget.getDarwinDirective();
172     switch (Directive) {
173     default: break;
174     case PPC::DIR_7400:
175     case PPC::DIR_750:
176     case PPC::DIR_970:
177     case PPC::DIR_E5500:
178     case PPC::DIR_PWR4:
179     case PPC::DIR_PWR5:
180     case PPC::DIR_PWR5X:
181     case PPC::DIR_PWR6:
182     case PPC::DIR_PWR6X:
183     case PPC::DIR_PWR7:
184     case PPC::DIR_PWR8:
185     // FIXME: Is this needed for POWER9?
186       Latency += 2;
187       break;
188     }
189   }
190 
191   return Latency;
192 }
193 
194 // This function does not list all associative and commutative operations, but
195 // only those worth feeding through the machine combiner in an attempt to
196 // reduce the critical path. Mostly, this means floating-point operations,
197 // because they have high latencies (compared to other operations, such and
198 // and/or, which are also associative and commutative, but have low latencies).
199 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
200   switch (Inst.getOpcode()) {
201   // FP Add:
202   case PPC::FADD:
203   case PPC::FADDS:
204   // FP Multiply:
205   case PPC::FMUL:
206   case PPC::FMULS:
207   // Altivec Add:
208   case PPC::VADDFP:
209   // VSX Add:
210   case PPC::XSADDDP:
211   case PPC::XVADDDP:
212   case PPC::XVADDSP:
213   case PPC::XSADDSP:
214   // VSX Multiply:
215   case PPC::XSMULDP:
216   case PPC::XVMULDP:
217   case PPC::XVMULSP:
218   case PPC::XSMULSP:
219   // QPX Add:
220   case PPC::QVFADD:
221   case PPC::QVFADDS:
222   case PPC::QVFADDSs:
223   // QPX Multiply:
224   case PPC::QVFMUL:
225   case PPC::QVFMULS:
226   case PPC::QVFMULSs:
227     return true;
228   default:
229     return false;
230   }
231 }
232 
233 bool PPCInstrInfo::getMachineCombinerPatterns(
234     MachineInstr &Root,
235     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
236   // Using the machine combiner in this way is potentially expensive, so
237   // restrict to when aggressive optimizations are desired.
238   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
239     return false;
240 
241   // FP reassociation is only legal when we don't need strict IEEE semantics.
242   if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
243     return false;
244 
245   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
246 }
247 
248 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
249 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
250                                          unsigned &SrcReg, unsigned &DstReg,
251                                          unsigned &SubIdx) const {
252   switch (MI.getOpcode()) {
253   default: return false;
254   case PPC::EXTSW:
255   case PPC::EXTSW_32_64:
256     SrcReg = MI.getOperand(1).getReg();
257     DstReg = MI.getOperand(0).getReg();
258     SubIdx = PPC::sub_32;
259     return true;
260   }
261 }
262 
263 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
264                                            int &FrameIndex) const {
265   // Note: This list must be kept consistent with LoadRegFromStackSlot.
266   switch (MI.getOpcode()) {
267   default: break;
268   case PPC::LD:
269   case PPC::LWZ:
270   case PPC::LFS:
271   case PPC::LFD:
272   case PPC::RESTORE_CR:
273   case PPC::RESTORE_CRBIT:
274   case PPC::LVX:
275   case PPC::LXVD2X:
276   case PPC::LXVX:
277   case PPC::QVLFDX:
278   case PPC::QVLFSXs:
279   case PPC::QVLFDXb:
280   case PPC::RESTORE_VRSAVE:
281     // Check for the operands added by addFrameReference (the immediate is the
282     // offset which defaults to 0).
283     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
284         MI.getOperand(2).isFI()) {
285       FrameIndex = MI.getOperand(2).getIndex();
286       return MI.getOperand(0).getReg();
287     }
288     break;
289   }
290   return 0;
291 }
292 
293 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
294                                           int &FrameIndex) const {
295   // Note: This list must be kept consistent with StoreRegToStackSlot.
296   switch (MI.getOpcode()) {
297   default: break;
298   case PPC::STD:
299   case PPC::STW:
300   case PPC::STFS:
301   case PPC::STFD:
302   case PPC::SPILL_CR:
303   case PPC::SPILL_CRBIT:
304   case PPC::STVX:
305   case PPC::STXVD2X:
306   case PPC::STXVX:
307   case PPC::QVSTFDX:
308   case PPC::QVSTFSXs:
309   case PPC::QVSTFDXb:
310   case PPC::SPILL_VRSAVE:
311     // Check for the operands added by addFrameReference (the immediate is the
312     // offset which defaults to 0).
313     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
314         MI.getOperand(2).isFI()) {
315       FrameIndex = MI.getOperand(2).getIndex();
316       return MI.getOperand(0).getReg();
317     }
318     break;
319   }
320   return 0;
321 }
322 
323 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
324                                                    unsigned OpIdx1,
325                                                    unsigned OpIdx2) const {
326   MachineFunction &MF = *MI.getParent()->getParent();
327 
328   // Normal instructions can be commuted the obvious way.
329   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
330     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
331   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
332   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
333   // changing the relative order of the mask operands might change what happens
334   // to the high-bits of the mask (and, thus, the result).
335 
336   // Cannot commute if it has a non-zero rotate count.
337   if (MI.getOperand(3).getImm() != 0)
338     return nullptr;
339 
340   // If we have a zero rotate count, we have:
341   //   M = mask(MB,ME)
342   //   Op0 = (Op1 & ~M) | (Op2 & M)
343   // Change this to:
344   //   M = mask((ME+1)&31, (MB-1)&31)
345   //   Op0 = (Op2 & ~M) | (Op1 & M)
346 
347   // Swap op1/op2
348   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
349          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
350   unsigned Reg0 = MI.getOperand(0).getReg();
351   unsigned Reg1 = MI.getOperand(1).getReg();
352   unsigned Reg2 = MI.getOperand(2).getReg();
353   unsigned SubReg1 = MI.getOperand(1).getSubReg();
354   unsigned SubReg2 = MI.getOperand(2).getSubReg();
355   bool Reg1IsKill = MI.getOperand(1).isKill();
356   bool Reg2IsKill = MI.getOperand(2).isKill();
357   bool ChangeReg0 = false;
358   // If machine instrs are no longer in two-address forms, update
359   // destination register as well.
360   if (Reg0 == Reg1) {
361     // Must be two address instruction!
362     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
363            "Expecting a two-address instruction!");
364     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
365     Reg2IsKill = false;
366     ChangeReg0 = true;
367   }
368 
369   // Masks.
370   unsigned MB = MI.getOperand(4).getImm();
371   unsigned ME = MI.getOperand(5).getImm();
372 
373   // We can't commute a trivial mask (there is no way to represent an all-zero
374   // mask).
375   if (MB == 0 && ME == 31)
376     return nullptr;
377 
378   if (NewMI) {
379     // Create a new instruction.
380     unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
381     bool Reg0IsDead = MI.getOperand(0).isDead();
382     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
383         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
384         .addReg(Reg2, getKillRegState(Reg2IsKill))
385         .addReg(Reg1, getKillRegState(Reg1IsKill))
386         .addImm((ME + 1) & 31)
387         .addImm((MB - 1) & 31);
388   }
389 
390   if (ChangeReg0) {
391     MI.getOperand(0).setReg(Reg2);
392     MI.getOperand(0).setSubReg(SubReg2);
393   }
394   MI.getOperand(2).setReg(Reg1);
395   MI.getOperand(1).setReg(Reg2);
396   MI.getOperand(2).setSubReg(SubReg1);
397   MI.getOperand(1).setSubReg(SubReg2);
398   MI.getOperand(2).setIsKill(Reg1IsKill);
399   MI.getOperand(1).setIsKill(Reg2IsKill);
400 
401   // Swap the mask around.
402   MI.getOperand(4).setImm((ME + 1) & 31);
403   MI.getOperand(5).setImm((MB - 1) & 31);
404   return &MI;
405 }
406 
407 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
408                                          unsigned &SrcOpIdx2) const {
409   // For VSX A-Type FMA instructions, it is the first two operands that can be
410   // commuted, however, because the non-encoded tied input operand is listed
411   // first, the operands to swap are actually the second and third.
412 
413   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
414   if (AltOpc == -1)
415     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
416 
417   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
418   // and SrcOpIdx2.
419   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
420 }
421 
422 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
423                               MachineBasicBlock::iterator MI) const {
424   // This function is used for scheduling, and the nop wanted here is the type
425   // that terminates dispatch groups on the POWER cores.
426   unsigned Directive = Subtarget.getDarwinDirective();
427   unsigned Opcode;
428   switch (Directive) {
429   default:            Opcode = PPC::NOP; break;
430   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
431   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
432   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
433   // FIXME: Update when POWER9 scheduling model is ready.
434   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
435   }
436 
437   DebugLoc DL;
438   BuildMI(MBB, MI, DL, get(Opcode));
439 }
440 
441 /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
442 void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
443   NopInst.setOpcode(PPC::NOP);
444 }
445 
446 // Branch analysis.
447 // Note: If the condition register is set to CTR or CTR8 then this is a
448 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
449 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
450                                  MachineBasicBlock *&TBB,
451                                  MachineBasicBlock *&FBB,
452                                  SmallVectorImpl<MachineOperand> &Cond,
453                                  bool AllowModify) const {
454   bool isPPC64 = Subtarget.isPPC64();
455 
456   // If the block has no terminators, it just falls into the block after it.
457   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
458   if (I == MBB.end())
459     return false;
460 
461   if (!isUnpredicatedTerminator(*I))
462     return false;
463 
464   // Get the last instruction in the block.
465   MachineInstr &LastInst = *I;
466 
467   // If there is only one terminator instruction, process it.
468   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
469     if (LastInst.getOpcode() == PPC::B) {
470       if (!LastInst.getOperand(0).isMBB())
471         return true;
472       TBB = LastInst.getOperand(0).getMBB();
473       return false;
474     } else if (LastInst.getOpcode() == PPC::BCC) {
475       if (!LastInst.getOperand(2).isMBB())
476         return true;
477       // Block ends with fall-through condbranch.
478       TBB = LastInst.getOperand(2).getMBB();
479       Cond.push_back(LastInst.getOperand(0));
480       Cond.push_back(LastInst.getOperand(1));
481       return false;
482     } else if (LastInst.getOpcode() == PPC::BC) {
483       if (!LastInst.getOperand(1).isMBB())
484         return true;
485       // Block ends with fall-through condbranch.
486       TBB = LastInst.getOperand(1).getMBB();
487       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
488       Cond.push_back(LastInst.getOperand(0));
489       return false;
490     } else if (LastInst.getOpcode() == PPC::BCn) {
491       if (!LastInst.getOperand(1).isMBB())
492         return true;
493       // Block ends with fall-through condbranch.
494       TBB = LastInst.getOperand(1).getMBB();
495       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
496       Cond.push_back(LastInst.getOperand(0));
497       return false;
498     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
499                LastInst.getOpcode() == PPC::BDNZ) {
500       if (!LastInst.getOperand(0).isMBB())
501         return true;
502       if (DisableCTRLoopAnal)
503         return true;
504       TBB = LastInst.getOperand(0).getMBB();
505       Cond.push_back(MachineOperand::CreateImm(1));
506       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
507                                                true));
508       return false;
509     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
510                LastInst.getOpcode() == PPC::BDZ) {
511       if (!LastInst.getOperand(0).isMBB())
512         return true;
513       if (DisableCTRLoopAnal)
514         return true;
515       TBB = LastInst.getOperand(0).getMBB();
516       Cond.push_back(MachineOperand::CreateImm(0));
517       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
518                                                true));
519       return false;
520     }
521 
522     // Otherwise, don't know what this is.
523     return true;
524   }
525 
526   // Get the instruction before it if it's a terminator.
527   MachineInstr &SecondLastInst = *I;
528 
529   // If there are three terminators, we don't know what sort of block this is.
530   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
531     return true;
532 
533   // If the block ends with PPC::B and PPC:BCC, handle it.
534   if (SecondLastInst.getOpcode() == PPC::BCC &&
535       LastInst.getOpcode() == PPC::B) {
536     if (!SecondLastInst.getOperand(2).isMBB() ||
537         !LastInst.getOperand(0).isMBB())
538       return true;
539     TBB = SecondLastInst.getOperand(2).getMBB();
540     Cond.push_back(SecondLastInst.getOperand(0));
541     Cond.push_back(SecondLastInst.getOperand(1));
542     FBB = LastInst.getOperand(0).getMBB();
543     return false;
544   } else if (SecondLastInst.getOpcode() == PPC::BC &&
545              LastInst.getOpcode() == PPC::B) {
546     if (!SecondLastInst.getOperand(1).isMBB() ||
547         !LastInst.getOperand(0).isMBB())
548       return true;
549     TBB = SecondLastInst.getOperand(1).getMBB();
550     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
551     Cond.push_back(SecondLastInst.getOperand(0));
552     FBB = LastInst.getOperand(0).getMBB();
553     return false;
554   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
555              LastInst.getOpcode() == PPC::B) {
556     if (!SecondLastInst.getOperand(1).isMBB() ||
557         !LastInst.getOperand(0).isMBB())
558       return true;
559     TBB = SecondLastInst.getOperand(1).getMBB();
560     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
561     Cond.push_back(SecondLastInst.getOperand(0));
562     FBB = LastInst.getOperand(0).getMBB();
563     return false;
564   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
565               SecondLastInst.getOpcode() == PPC::BDNZ) &&
566              LastInst.getOpcode() == PPC::B) {
567     if (!SecondLastInst.getOperand(0).isMBB() ||
568         !LastInst.getOperand(0).isMBB())
569       return true;
570     if (DisableCTRLoopAnal)
571       return true;
572     TBB = SecondLastInst.getOperand(0).getMBB();
573     Cond.push_back(MachineOperand::CreateImm(1));
574     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
575                                              true));
576     FBB = LastInst.getOperand(0).getMBB();
577     return false;
578   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
579               SecondLastInst.getOpcode() == PPC::BDZ) &&
580              LastInst.getOpcode() == PPC::B) {
581     if (!SecondLastInst.getOperand(0).isMBB() ||
582         !LastInst.getOperand(0).isMBB())
583       return true;
584     if (DisableCTRLoopAnal)
585       return true;
586     TBB = SecondLastInst.getOperand(0).getMBB();
587     Cond.push_back(MachineOperand::CreateImm(0));
588     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
589                                              true));
590     FBB = LastInst.getOperand(0).getMBB();
591     return false;
592   }
593 
594   // If the block ends with two PPC:Bs, handle it.  The second one is not
595   // executed, so remove it.
596   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
597     if (!SecondLastInst.getOperand(0).isMBB())
598       return true;
599     TBB = SecondLastInst.getOperand(0).getMBB();
600     I = LastInst;
601     if (AllowModify)
602       I->eraseFromParent();
603     return false;
604   }
605 
606   // Otherwise, can't handle this.
607   return true;
608 }
609 
610 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
611                                     int *BytesRemoved) const {
612   assert(!BytesRemoved && "code size not handled");
613 
614   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
615   if (I == MBB.end())
616     return 0;
617 
618   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
619       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
620       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
621       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
622     return 0;
623 
624   // Remove the branch.
625   I->eraseFromParent();
626 
627   I = MBB.end();
628 
629   if (I == MBB.begin()) return 1;
630   --I;
631   if (I->getOpcode() != PPC::BCC &&
632       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
633       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
634       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
635     return 1;
636 
637   // Remove the branch.
638   I->eraseFromParent();
639   return 2;
640 }
641 
642 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
643                                     MachineBasicBlock *TBB,
644                                     MachineBasicBlock *FBB,
645                                     ArrayRef<MachineOperand> Cond,
646                                     const DebugLoc &DL,
647                                     int *BytesAdded) const {
648   // Shouldn't be a fall through.
649   assert(TBB && "insertBranch must not be told to insert a fallthrough");
650   assert((Cond.size() == 2 || Cond.size() == 0) &&
651          "PPC branch conditions have two components!");
652   assert(!BytesAdded && "code size not handled");
653 
654   bool isPPC64 = Subtarget.isPPC64();
655 
656   // One-way branch.
657   if (!FBB) {
658     if (Cond.empty())   // Unconditional branch
659       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
660     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
661       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
662                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
663                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
664     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
665       BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
666     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
667       BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
668     else                // Conditional branch
669       BuildMI(&MBB, DL, get(PPC::BCC))
670         .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
671     return 1;
672   }
673 
674   // Two-way Conditional Branch.
675   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
676     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
677                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
678                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
679   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
680     BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
681   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
682     BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
683   else
684     BuildMI(&MBB, DL, get(PPC::BCC))
685       .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
686   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
687   return 2;
688 }
689 
690 // Select analysis.
691 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
692                 ArrayRef<MachineOperand> Cond,
693                 unsigned TrueReg, unsigned FalseReg,
694                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
695   if (!Subtarget.hasISEL())
696     return false;
697 
698   if (Cond.size() != 2)
699     return false;
700 
701   // If this is really a bdnz-like condition, then it cannot be turned into a
702   // select.
703   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
704     return false;
705 
706   // Check register classes.
707   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
708   const TargetRegisterClass *RC =
709     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
710   if (!RC)
711     return false;
712 
713   // isel is for regular integer GPRs only.
714   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
715       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
716       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
717       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
718     return false;
719 
720   // FIXME: These numbers are for the A2, how well they work for other cores is
721   // an open question. On the A2, the isel instruction has a 2-cycle latency
722   // but single-cycle throughput. These numbers are used in combination with
723   // the MispredictPenalty setting from the active SchedMachineModel.
724   CondCycles = 1;
725   TrueCycles = 1;
726   FalseCycles = 1;
727 
728   return true;
729 }
730 
731 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
732                                 MachineBasicBlock::iterator MI,
733                                 const DebugLoc &dl, unsigned DestReg,
734                                 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
735                                 unsigned FalseReg) const {
736   assert(Cond.size() == 2 &&
737          "PPC branch conditions have two components!");
738 
739   assert(Subtarget.hasISEL() &&
740          "Cannot insert select on target without ISEL support");
741 
742   // Get the register classes.
743   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
744   const TargetRegisterClass *RC =
745     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
746   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
747 
748   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
749                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
750   assert((Is64Bit ||
751           PPC::GPRCRegClass.hasSubClassEq(RC) ||
752           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
753          "isel is for regular integer GPRs only");
754 
755   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
756   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
757 
758   unsigned SubIdx = 0;
759   bool SwapOps = false;
760   switch (SelectPred) {
761   case PPC::PRED_EQ:
762   case PPC::PRED_EQ_MINUS:
763   case PPC::PRED_EQ_PLUS:
764       SubIdx = PPC::sub_eq; SwapOps = false; break;
765   case PPC::PRED_NE:
766   case PPC::PRED_NE_MINUS:
767   case PPC::PRED_NE_PLUS:
768       SubIdx = PPC::sub_eq; SwapOps = true; break;
769   case PPC::PRED_LT:
770   case PPC::PRED_LT_MINUS:
771   case PPC::PRED_LT_PLUS:
772       SubIdx = PPC::sub_lt; SwapOps = false; break;
773   case PPC::PRED_GE:
774   case PPC::PRED_GE_MINUS:
775   case PPC::PRED_GE_PLUS:
776       SubIdx = PPC::sub_lt; SwapOps = true; break;
777   case PPC::PRED_GT:
778   case PPC::PRED_GT_MINUS:
779   case PPC::PRED_GT_PLUS:
780       SubIdx = PPC::sub_gt; SwapOps = false; break;
781   case PPC::PRED_LE:
782   case PPC::PRED_LE_MINUS:
783   case PPC::PRED_LE_PLUS:
784       SubIdx = PPC::sub_gt; SwapOps = true; break;
785   case PPC::PRED_UN:
786   case PPC::PRED_UN_MINUS:
787   case PPC::PRED_UN_PLUS:
788       SubIdx = PPC::sub_un; SwapOps = false; break;
789   case PPC::PRED_NU:
790   case PPC::PRED_NU_MINUS:
791   case PPC::PRED_NU_PLUS:
792       SubIdx = PPC::sub_un; SwapOps = true; break;
793   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
794   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
795   }
796 
797   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
798            SecondReg = SwapOps ? TrueReg  : FalseReg;
799 
800   // The first input register of isel cannot be r0. If it is a member
801   // of a register class that can be r0, then copy it first (the
802   // register allocator should eliminate the copy).
803   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
804       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
805     const TargetRegisterClass *FirstRC =
806       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
807         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
808     unsigned OldFirstReg = FirstReg;
809     FirstReg = MRI.createVirtualRegister(FirstRC);
810     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
811       .addReg(OldFirstReg);
812   }
813 
814   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
815     .addReg(FirstReg).addReg(SecondReg)
816     .addReg(Cond[1].getReg(), 0, SubIdx);
817 }
818 
819 static unsigned getCRBitValue(unsigned CRBit) {
820   unsigned Ret = 4;
821   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
822       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
823       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
824       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
825     Ret = 3;
826   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
827       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
828       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
829       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
830     Ret = 2;
831   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
832       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
833       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
834       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
835     Ret = 1;
836   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
837       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
838       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
839       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
840     Ret = 0;
841 
842   assert(Ret != 4 && "Invalid CR bit register");
843   return Ret;
844 }
845 
846 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
847                                MachineBasicBlock::iterator I,
848                                const DebugLoc &DL, unsigned DestReg,
849                                unsigned SrcReg, bool KillSrc) const {
850   // We can end up with self copies and similar things as a result of VSX copy
851   // legalization. Promote them here.
852   const TargetRegisterInfo *TRI = &getRegisterInfo();
853   if (PPC::F8RCRegClass.contains(DestReg) &&
854       PPC::VSRCRegClass.contains(SrcReg)) {
855     unsigned SuperReg =
856       TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
857 
858     if (VSXSelfCopyCrash && SrcReg == SuperReg)
859       llvm_unreachable("nop VSX copy");
860 
861     DestReg = SuperReg;
862   } else if (PPC::VRRCRegClass.contains(DestReg) &&
863              PPC::VSRCRegClass.contains(SrcReg)) {
864     unsigned SuperReg =
865       TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass);
866 
867     if (VSXSelfCopyCrash && SrcReg == SuperReg)
868       llvm_unreachable("nop VSX copy");
869 
870     DestReg = SuperReg;
871   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
872              PPC::VSRCRegClass.contains(DestReg)) {
873     unsigned SuperReg =
874       TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
875 
876     if (VSXSelfCopyCrash && DestReg == SuperReg)
877       llvm_unreachable("nop VSX copy");
878 
879     SrcReg = SuperReg;
880   } else if (PPC::VRRCRegClass.contains(SrcReg) &&
881              PPC::VSRCRegClass.contains(DestReg)) {
882     unsigned SuperReg =
883       TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass);
884 
885     if (VSXSelfCopyCrash && DestReg == SuperReg)
886       llvm_unreachable("nop VSX copy");
887 
888     SrcReg = SuperReg;
889   }
890 
891   // Different class register copy
892   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
893       PPC::GPRCRegClass.contains(DestReg)) {
894     unsigned CRReg = getCRFromCRBit(SrcReg);
895     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
896     getKillRegState(KillSrc);
897     // Rotate the CR bit in the CR fields to be the least significant bit and
898     // then mask with 0x1 (MB = ME = 31).
899     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
900        .addReg(DestReg, RegState::Kill)
901        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
902        .addImm(31)
903        .addImm(31);
904     return;
905   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
906       PPC::G8RCRegClass.contains(DestReg)) {
907     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
908     getKillRegState(KillSrc);
909     return;
910   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
911       PPC::GPRCRegClass.contains(DestReg)) {
912     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
913     getKillRegState(KillSrc);
914     return;
915    }
916 
917   unsigned Opc;
918   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
919     Opc = PPC::OR;
920   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
921     Opc = PPC::OR8;
922   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
923     Opc = PPC::FMR;
924   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
925     Opc = PPC::MCRF;
926   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
927     Opc = PPC::VOR;
928   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
929     // There are two different ways this can be done:
930     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
931     //      issue in VSU pipeline 0.
932     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
933     //      can go to either pipeline.
934     // We'll always use xxlor here, because in practically all cases where
935     // copies are generated, they are close enough to some use that the
936     // lower-latency form is preferable.
937     Opc = PPC::XXLOR;
938   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
939            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
940     Opc = PPC::XXLORf;
941   else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
942     Opc = PPC::QVFMR;
943   else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
944     Opc = PPC::QVFMRs;
945   else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
946     Opc = PPC::QVFMRb;
947   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
948     Opc = PPC::CROR;
949   else
950     llvm_unreachable("Impossible reg-to-reg copy");
951 
952   const MCInstrDesc &MCID = get(Opc);
953   if (MCID.getNumOperands() == 3)
954     BuildMI(MBB, I, DL, MCID, DestReg)
955       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
956   else
957     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
958 }
959 
960 // This function returns true if a CR spill is necessary and false otherwise.
961 bool
962 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
963                                   unsigned SrcReg, bool isKill,
964                                   int FrameIdx,
965                                   const TargetRegisterClass *RC,
966                                   SmallVectorImpl<MachineInstr*> &NewMIs,
967                                   bool &NonRI, bool &SpillsVRS) const{
968   // Note: If additional store instructions are added here,
969   // update isStoreToStackSlot.
970 
971   DebugLoc DL;
972   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
973       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
974     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
975                                        .addReg(SrcReg,
976                                                getKillRegState(isKill)),
977                                        FrameIdx));
978   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
979              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
980     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
981                                        .addReg(SrcReg,
982                                                getKillRegState(isKill)),
983                                        FrameIdx));
984   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
985     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
986                                        .addReg(SrcReg,
987                                                getKillRegState(isKill)),
988                                        FrameIdx));
989   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
990     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
991                                        .addReg(SrcReg,
992                                                getKillRegState(isKill)),
993                                        FrameIdx));
994   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
995     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
996                                        .addReg(SrcReg,
997                                                getKillRegState(isKill)),
998                                        FrameIdx));
999     return true;
1000   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1001     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
1002                                        .addReg(SrcReg,
1003                                                getKillRegState(isKill)),
1004                                        FrameIdx));
1005     return true;
1006   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1007     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
1008                                        .addReg(SrcReg,
1009                                                getKillRegState(isKill)),
1010                                        FrameIdx));
1011     NonRI = true;
1012   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1013     unsigned Op = Subtarget.hasP9Vector() ? PPC::STXVX : PPC::STXVD2X;
1014     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Op))
1015                                        .addReg(SrcReg,
1016                                                getKillRegState(isKill)),
1017                                        FrameIdx));
1018     NonRI = true;
1019   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1020     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX))
1021                                        .addReg(SrcReg,
1022                                                getKillRegState(isKill)),
1023                                        FrameIdx));
1024     NonRI = true;
1025   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1026     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSSPX))
1027                                        .addReg(SrcReg,
1028                                                getKillRegState(isKill)),
1029                                        FrameIdx));
1030     NonRI = true;
1031   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1032     assert(Subtarget.isDarwin() &&
1033            "VRSAVE only needs spill/restore on Darwin");
1034     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
1035                                        .addReg(SrcReg,
1036                                                getKillRegState(isKill)),
1037                                        FrameIdx));
1038     SpillsVRS = true;
1039   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1040     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX))
1041                                        .addReg(SrcReg,
1042                                                getKillRegState(isKill)),
1043                                        FrameIdx));
1044     NonRI = true;
1045   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1046     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs))
1047                                        .addReg(SrcReg,
1048                                                getKillRegState(isKill)),
1049                                        FrameIdx));
1050     NonRI = true;
1051   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1052     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb))
1053                                        .addReg(SrcReg,
1054                                                getKillRegState(isKill)),
1055                                        FrameIdx));
1056     NonRI = true;
1057   } else {
1058     llvm_unreachable("Unknown regclass!");
1059   }
1060 
1061   return false;
1062 }
1063 
1064 void
1065 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1066                                   MachineBasicBlock::iterator MI,
1067                                   unsigned SrcReg, bool isKill, int FrameIdx,
1068                                   const TargetRegisterClass *RC,
1069                                   const TargetRegisterInfo *TRI) const {
1070   MachineFunction &MF = *MBB.getParent();
1071   SmallVector<MachineInstr*, 4> NewMIs;
1072 
1073   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1074   FuncInfo->setHasSpills();
1075 
1076   bool NonRI = false, SpillsVRS = false;
1077   if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
1078                           NonRI, SpillsVRS))
1079     FuncInfo->setSpillsCR();
1080 
1081   if (SpillsVRS)
1082     FuncInfo->setSpillsVRSAVE();
1083 
1084   if (NonRI)
1085     FuncInfo->setHasNonRISpills();
1086 
1087   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1088     MBB.insert(MI, NewMIs[i]);
1089 
1090   const MachineFrameInfo &MFI = MF.getFrameInfo();
1091   MachineMemOperand *MMO = MF.getMachineMemOperand(
1092       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1093       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1094       MFI.getObjectAlignment(FrameIdx));
1095   NewMIs.back()->addMemOperand(MF, MMO);
1096 }
1097 
1098 bool PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1099                                         unsigned DestReg, int FrameIdx,
1100                                         const TargetRegisterClass *RC,
1101                                         SmallVectorImpl<MachineInstr *> &NewMIs,
1102                                         bool &NonRI, bool &SpillsVRS) const {
1103   // Note: If additional load instructions are added here,
1104   // update isLoadFromStackSlot.
1105 
1106   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1107       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1108     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
1109                                                DestReg), FrameIdx));
1110   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1111              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1112     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
1113                                        FrameIdx));
1114   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1115     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
1116                                        FrameIdx));
1117   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1118     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
1119                                        FrameIdx));
1120   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1121     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1122                                                get(PPC::RESTORE_CR), DestReg),
1123                                        FrameIdx));
1124     return true;
1125   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1126     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1127                                                get(PPC::RESTORE_CRBIT), DestReg),
1128                                        FrameIdx));
1129     return true;
1130   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1131     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
1132                                        FrameIdx));
1133     NonRI = true;
1134   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1135     unsigned Op = Subtarget.hasP9Vector() ? PPC::LXVX : PPC::LXVD2X;
1136     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Op), DestReg),
1137                                        FrameIdx));
1138     NonRI = true;
1139   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1140     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg),
1141                                        FrameIdx));
1142     NonRI = true;
1143   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1144     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSSPX), DestReg),
1145                                        FrameIdx));
1146     NonRI = true;
1147   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1148     assert(Subtarget.isDarwin() &&
1149            "VRSAVE only needs spill/restore on Darwin");
1150     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1151                                                get(PPC::RESTORE_VRSAVE),
1152                                                DestReg),
1153                                        FrameIdx));
1154     SpillsVRS = true;
1155   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1156     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg),
1157                                        FrameIdx));
1158     NonRI = true;
1159   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1160     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg),
1161                                        FrameIdx));
1162     NonRI = true;
1163   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1164     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg),
1165                                        FrameIdx));
1166     NonRI = true;
1167   } else {
1168     llvm_unreachable("Unknown regclass!");
1169   }
1170 
1171   return false;
1172 }
1173 
1174 void
1175 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1176                                    MachineBasicBlock::iterator MI,
1177                                    unsigned DestReg, int FrameIdx,
1178                                    const TargetRegisterClass *RC,
1179                                    const TargetRegisterInfo *TRI) const {
1180   MachineFunction &MF = *MBB.getParent();
1181   SmallVector<MachineInstr*, 4> NewMIs;
1182   DebugLoc DL;
1183   if (MI != MBB.end()) DL = MI->getDebugLoc();
1184 
1185   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1186   FuncInfo->setHasSpills();
1187 
1188   bool NonRI = false, SpillsVRS = false;
1189   if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
1190                            NonRI, SpillsVRS))
1191     FuncInfo->setSpillsCR();
1192 
1193   if (SpillsVRS)
1194     FuncInfo->setSpillsVRSAVE();
1195 
1196   if (NonRI)
1197     FuncInfo->setHasNonRISpills();
1198 
1199   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1200     MBB.insert(MI, NewMIs[i]);
1201 
1202   const MachineFrameInfo &MFI = MF.getFrameInfo();
1203   MachineMemOperand *MMO = MF.getMachineMemOperand(
1204       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1205       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1206       MFI.getObjectAlignment(FrameIdx));
1207   NewMIs.back()->addMemOperand(MF, MMO);
1208 }
1209 
1210 bool PPCInstrInfo::
1211 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1212   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1213   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1214     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1215   else
1216     // Leave the CR# the same, but invert the condition.
1217     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1218   return false;
1219 }
1220 
1221 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1222                                  unsigned Reg, MachineRegisterInfo *MRI) const {
1223   // For some instructions, it is legal to fold ZERO into the RA register field.
1224   // A zero immediate should always be loaded with a single li.
1225   unsigned DefOpc = DefMI.getOpcode();
1226   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1227     return false;
1228   if (!DefMI.getOperand(1).isImm())
1229     return false;
1230   if (DefMI.getOperand(1).getImm() != 0)
1231     return false;
1232 
1233   // Note that we cannot here invert the arguments of an isel in order to fold
1234   // a ZERO into what is presented as the second argument. All we have here
1235   // is the condition bit, and that might come from a CR-logical bit operation.
1236 
1237   const MCInstrDesc &UseMCID = UseMI.getDesc();
1238 
1239   // Only fold into real machine instructions.
1240   if (UseMCID.isPseudo())
1241     return false;
1242 
1243   unsigned UseIdx;
1244   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1245     if (UseMI.getOperand(UseIdx).isReg() &&
1246         UseMI.getOperand(UseIdx).getReg() == Reg)
1247       break;
1248 
1249   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1250   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1251 
1252   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1253 
1254   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1255   // register (which might also be specified as a pointer class kind).
1256   if (UseInfo->isLookupPtrRegClass()) {
1257     if (UseInfo->RegClass /* Kind */ != 1)
1258       return false;
1259   } else {
1260     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1261         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1262       return false;
1263   }
1264 
1265   // Make sure this is not tied to an output register (or otherwise
1266   // constrained). This is true for ST?UX registers, for example, which
1267   // are tied to their output registers.
1268   if (UseInfo->Constraints != 0)
1269     return false;
1270 
1271   unsigned ZeroReg;
1272   if (UseInfo->isLookupPtrRegClass()) {
1273     bool isPPC64 = Subtarget.isPPC64();
1274     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1275   } else {
1276     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1277               PPC::ZERO8 : PPC::ZERO;
1278   }
1279 
1280   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1281   UseMI.getOperand(UseIdx).setReg(ZeroReg);
1282 
1283   if (DeleteDef)
1284     DefMI.eraseFromParent();
1285 
1286   return true;
1287 }
1288 
1289 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1290   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1291        I != IE; ++I)
1292     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1293       return true;
1294   return false;
1295 }
1296 
1297 // We should make sure that, if we're going to predicate both sides of a
1298 // condition (a diamond), that both sides don't define the counter register. We
1299 // can predicate counter-decrement-based branches, but while that predicates
1300 // the branching, it does not predicate the counter decrement. If we tried to
1301 // merge the triangle into one predicated block, we'd decrement the counter
1302 // twice.
1303 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1304                      unsigned NumT, unsigned ExtraT,
1305                      MachineBasicBlock &FMBB,
1306                      unsigned NumF, unsigned ExtraF,
1307                      BranchProbability Probability) const {
1308   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1309 }
1310 
1311 
1312 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1313   // The predicated branches are identified by their type, not really by the
1314   // explicit presence of a predicate. Furthermore, some of them can be
1315   // predicated more than once. Because if conversion won't try to predicate
1316   // any instruction which already claims to be predicated (by returning true
1317   // here), always return false. In doing so, we let isPredicable() be the
1318   // final word on whether not the instruction can be (further) predicated.
1319 
1320   return false;
1321 }
1322 
1323 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1324   if (!MI.isTerminator())
1325     return false;
1326 
1327   // Conditional branch is a special case.
1328   if (MI.isBranch() && !MI.isBarrier())
1329     return true;
1330 
1331   return !isPredicated(MI);
1332 }
1333 
1334 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1335                                         ArrayRef<MachineOperand> Pred) const {
1336   unsigned OpC = MI.getOpcode();
1337   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1338     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1339       bool isPPC64 = Subtarget.isPPC64();
1340       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1341                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1342     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1343       MI.setDesc(get(PPC::BCLR));
1344       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1345           .addReg(Pred[1].getReg());
1346     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1347       MI.setDesc(get(PPC::BCLRn));
1348       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1349           .addReg(Pred[1].getReg());
1350     } else {
1351       MI.setDesc(get(PPC::BCCLR));
1352       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1353           .addImm(Pred[0].getImm())
1354           .addReg(Pred[1].getReg());
1355     }
1356 
1357     return true;
1358   } else if (OpC == PPC::B) {
1359     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1360       bool isPPC64 = Subtarget.isPPC64();
1361       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1362                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1363     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1364       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1365       MI.RemoveOperand(0);
1366 
1367       MI.setDesc(get(PPC::BC));
1368       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1369           .addReg(Pred[1].getReg())
1370           .addMBB(MBB);
1371     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1372       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1373       MI.RemoveOperand(0);
1374 
1375       MI.setDesc(get(PPC::BCn));
1376       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1377           .addReg(Pred[1].getReg())
1378           .addMBB(MBB);
1379     } else {
1380       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1381       MI.RemoveOperand(0);
1382 
1383       MI.setDesc(get(PPC::BCC));
1384       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1385           .addImm(Pred[0].getImm())
1386           .addReg(Pred[1].getReg())
1387           .addMBB(MBB);
1388     }
1389 
1390     return true;
1391   } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
1392              OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
1393     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1394       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1395 
1396     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1397     bool isPPC64 = Subtarget.isPPC64();
1398 
1399     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1400       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1401                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1402       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1403           .addReg(Pred[1].getReg());
1404       return true;
1405     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1406       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1407                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1408       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1409           .addReg(Pred[1].getReg());
1410       return true;
1411     }
1412 
1413     MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1414                            : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1415     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1416         .addImm(Pred[0].getImm())
1417         .addReg(Pred[1].getReg());
1418     return true;
1419   }
1420 
1421   return false;
1422 }
1423 
1424 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1425                                      ArrayRef<MachineOperand> Pred2) const {
1426   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1427   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1428 
1429   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1430     return false;
1431   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1432     return false;
1433 
1434   // P1 can only subsume P2 if they test the same condition register.
1435   if (Pred1[1].getReg() != Pred2[1].getReg())
1436     return false;
1437 
1438   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1439   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1440 
1441   if (P1 == P2)
1442     return true;
1443 
1444   // Does P1 subsume P2, e.g. GE subsumes GT.
1445   if (P1 == PPC::PRED_LE &&
1446       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1447     return true;
1448   if (P1 == PPC::PRED_GE &&
1449       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1450     return true;
1451 
1452   return false;
1453 }
1454 
1455 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1456                                     std::vector<MachineOperand> &Pred) const {
1457   // Note: At the present time, the contents of Pred from this function is
1458   // unused by IfConversion. This implementation follows ARM by pushing the
1459   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1460   // predicate, instructions defining CTR or CTR8 are also included as
1461   // predicate-defining instructions.
1462 
1463   const TargetRegisterClass *RCs[] =
1464     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1465       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1466 
1467   bool Found = false;
1468   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1469     const MachineOperand &MO = MI.getOperand(i);
1470     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1471       const TargetRegisterClass *RC = RCs[c];
1472       if (MO.isReg()) {
1473         if (MO.isDef() && RC->contains(MO.getReg())) {
1474           Pred.push_back(MO);
1475           Found = true;
1476         }
1477       } else if (MO.isRegMask()) {
1478         for (TargetRegisterClass::iterator I = RC->begin(),
1479              IE = RC->end(); I != IE; ++I)
1480           if (MO.clobbersPhysReg(*I)) {
1481             Pred.push_back(MO);
1482             Found = true;
1483           }
1484       }
1485     }
1486   }
1487 
1488   return Found;
1489 }
1490 
1491 bool PPCInstrInfo::isPredicable(MachineInstr &MI) const {
1492   unsigned OpC = MI.getOpcode();
1493   switch (OpC) {
1494   default:
1495     return false;
1496   case PPC::B:
1497   case PPC::BLR:
1498   case PPC::BLR8:
1499   case PPC::BCTR:
1500   case PPC::BCTR8:
1501   case PPC::BCTRL:
1502   case PPC::BCTRL8:
1503     return true;
1504   }
1505 }
1506 
1507 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1508                                   unsigned &SrcReg2, int &Mask,
1509                                   int &Value) const {
1510   unsigned Opc = MI.getOpcode();
1511 
1512   switch (Opc) {
1513   default: return false;
1514   case PPC::CMPWI:
1515   case PPC::CMPLWI:
1516   case PPC::CMPDI:
1517   case PPC::CMPLDI:
1518     SrcReg = MI.getOperand(1).getReg();
1519     SrcReg2 = 0;
1520     Value = MI.getOperand(2).getImm();
1521     Mask = 0xFFFF;
1522     return true;
1523   case PPC::CMPW:
1524   case PPC::CMPLW:
1525   case PPC::CMPD:
1526   case PPC::CMPLD:
1527   case PPC::FCMPUS:
1528   case PPC::FCMPUD:
1529     SrcReg = MI.getOperand(1).getReg();
1530     SrcReg2 = MI.getOperand(2).getReg();
1531     return true;
1532   }
1533 }
1534 
1535 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1536                                         unsigned SrcReg2, int Mask, int Value,
1537                                         const MachineRegisterInfo *MRI) const {
1538   if (DisableCmpOpt)
1539     return false;
1540 
1541   int OpC = CmpInstr.getOpcode();
1542   unsigned CRReg = CmpInstr.getOperand(0).getReg();
1543 
1544   // FP record forms set CR1 based on the execption status bits, not a
1545   // comparison with zero.
1546   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1547     return false;
1548 
1549   // The record forms set the condition register based on a signed comparison
1550   // with zero (so says the ISA manual). This is not as straightforward as it
1551   // seems, however, because this is always a 64-bit comparison on PPC64, even
1552   // for instructions that are 32-bit in nature (like slw for example).
1553   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1554   // for equality checks (as those don't depend on the sign). On PPC64,
1555   // we are restricted to equality for unsigned 64-bit comparisons and for
1556   // signed 32-bit comparisons the applicability is more restricted.
1557   bool isPPC64 = Subtarget.isPPC64();
1558   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1559   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1560   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1561 
1562   // Get the unique definition of SrcReg.
1563   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1564   if (!MI) return false;
1565   int MIOpC = MI->getOpcode();
1566 
1567   bool equalityOnly = false;
1568   bool noSub = false;
1569   if (isPPC64) {
1570     if (is32BitSignedCompare) {
1571       // We can perform this optimization only if MI is sign-extending.
1572       if (MIOpC == PPC::SRAW  || MIOpC == PPC::SRAWo ||
1573           MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
1574           MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
1575           MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
1576           MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
1577         noSub = true;
1578       } else
1579         return false;
1580     } else if (is32BitUnsignedCompare) {
1581       // 32-bit rotate and mask instructions are zero extending only if MB <= ME
1582       bool isZeroExtendingRotate  =
1583           (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINMo ||
1584            MIOpC == PPC::RLWNM || MIOpC == PPC::RLWNMo)
1585           && MI->getOperand(3).getImm() <= MI->getOperand(4).getImm();
1586 
1587       // We can perform this optimization, equality only, if MI is
1588       // zero-extending.
1589       if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
1590           MIOpC == PPC::SLW    || MIOpC == PPC::SLWo ||
1591           MIOpC == PPC::SRW    || MIOpC == PPC::SRWo ||
1592           isZeroExtendingRotate) {
1593         noSub = true;
1594         equalityOnly = true;
1595       } else
1596         return false;
1597     } else
1598       equalityOnly = is64BitUnsignedCompare;
1599   } else
1600     equalityOnly = is32BitUnsignedCompare;
1601 
1602   if (equalityOnly) {
1603     // We need to check the uses of the condition register in order to reject
1604     // non-equality comparisons.
1605     for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg),
1606          IE = MRI->use_instr_end(); I != IE; ++I) {
1607       MachineInstr *UseMI = &*I;
1608       if (UseMI->getOpcode() == PPC::BCC) {
1609         unsigned Pred = UseMI->getOperand(0).getImm();
1610         if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
1611           return false;
1612       } else if (UseMI->getOpcode() == PPC::ISEL ||
1613                  UseMI->getOpcode() == PPC::ISEL8) {
1614         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1615         if (SubIdx != PPC::sub_eq)
1616           return false;
1617       } else
1618         return false;
1619     }
1620   }
1621 
1622   MachineBasicBlock::iterator I = CmpInstr;
1623 
1624   // Scan forward to find the first use of the compare.
1625   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1626        ++I) {
1627     bool FoundUse = false;
1628     for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg),
1629          JE = MRI->use_instr_end(); J != JE; ++J)
1630       if (&*J == &*I) {
1631         FoundUse = true;
1632         break;
1633       }
1634 
1635     if (FoundUse)
1636       break;
1637   }
1638 
1639   // There are two possible candidates which can be changed to set CR[01].
1640   // One is MI, the other is a SUB instruction.
1641   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1642   MachineInstr *Sub = nullptr;
1643   if (SrcReg2 != 0)
1644     // MI is not a candidate for CMPrr.
1645     MI = nullptr;
1646   // FIXME: Conservatively refuse to convert an instruction which isn't in the
1647   // same BB as the comparison. This is to allow the check below to avoid calls
1648   // (and other explicit clobbers); instead we should really check for these
1649   // more explicitly (in at least a few predecessors).
1650   else if (MI->getParent() != CmpInstr.getParent() || Value != 0) {
1651     // PPC does not have a record-form SUBri.
1652     return false;
1653   }
1654 
1655   // Search for Sub.
1656   const TargetRegisterInfo *TRI = &getRegisterInfo();
1657   --I;
1658 
1659   // Get ready to iterate backward from CmpInstr.
1660   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
1661 
1662   for (; I != E && !noSub; --I) {
1663     const MachineInstr &Instr = *I;
1664     unsigned IOpC = Instr.getOpcode();
1665 
1666     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
1667                              Instr.readsRegister(PPC::CR0, TRI)))
1668       // This instruction modifies or uses the record condition register after
1669       // the one we want to change. While we could do this transformation, it
1670       // would likely not be profitable. This transformation removes one
1671       // instruction, and so even forcing RA to generate one move probably
1672       // makes it unprofitable.
1673       return false;
1674 
1675     // Check whether CmpInstr can be made redundant by the current instruction.
1676     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1677          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1678         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1679         ((Instr.getOperand(1).getReg() == SrcReg &&
1680           Instr.getOperand(2).getReg() == SrcReg2) ||
1681         (Instr.getOperand(1).getReg() == SrcReg2 &&
1682          Instr.getOperand(2).getReg() == SrcReg))) {
1683       Sub = &*I;
1684       break;
1685     }
1686 
1687     if (I == B)
1688       // The 'and' is below the comparison instruction.
1689       return false;
1690   }
1691 
1692   // Return false if no candidates exist.
1693   if (!MI && !Sub)
1694     return false;
1695 
1696   // The single candidate is called MI.
1697   if (!MI) MI = Sub;
1698 
1699   int NewOpC = -1;
1700   MIOpC = MI->getOpcode();
1701   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
1702     NewOpC = MIOpC;
1703   else {
1704     NewOpC = PPC::getRecordFormOpcode(MIOpC);
1705     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1706       NewOpC = MIOpC;
1707   }
1708 
1709   // FIXME: On the non-embedded POWER architectures, only some of the record
1710   // forms are fast, and we should use only the fast ones.
1711 
1712   // The defining instruction has a record form (or is already a record
1713   // form). It is possible, however, that we'll need to reverse the condition
1714   // code of the users.
1715   if (NewOpC == -1)
1716     return false;
1717 
1718   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1719   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1720 
1721   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1722   // needs to be updated to be based on SUB.  Push the condition code
1723   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1724   // condition code of these operands will be modified.
1725   bool ShouldSwap = false;
1726   if (Sub) {
1727     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1728       Sub->getOperand(2).getReg() == SrcReg;
1729 
1730     // The operands to subf are the opposite of sub, so only in the fixed-point
1731     // case, invert the order.
1732     ShouldSwap = !ShouldSwap;
1733   }
1734 
1735   if (ShouldSwap)
1736     for (MachineRegisterInfo::use_instr_iterator
1737          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1738          I != IE; ++I) {
1739       MachineInstr *UseMI = &*I;
1740       if (UseMI->getOpcode() == PPC::BCC) {
1741         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1742         assert((!equalityOnly ||
1743                 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
1744                "Invalid predicate for equality-only optimization");
1745         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1746                                 PPC::getSwappedPredicate(Pred)));
1747       } else if (UseMI->getOpcode() == PPC::ISEL ||
1748                  UseMI->getOpcode() == PPC::ISEL8) {
1749         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1750         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1751                "Invalid CR bit for equality-only optimization");
1752 
1753         if (NewSubReg == PPC::sub_lt)
1754           NewSubReg = PPC::sub_gt;
1755         else if (NewSubReg == PPC::sub_gt)
1756           NewSubReg = PPC::sub_lt;
1757 
1758         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1759                                                  NewSubReg));
1760       } else // We need to abort on a user we don't understand.
1761         return false;
1762     }
1763 
1764   // Create a new virtual register to hold the value of the CR set by the
1765   // record-form instruction. If the instruction was not previously in
1766   // record form, then set the kill flag on the CR.
1767   CmpInstr.eraseFromParent();
1768 
1769   MachineBasicBlock::iterator MII = MI;
1770   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1771           get(TargetOpcode::COPY), CRReg)
1772     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1773 
1774   // Even if CR0 register were dead before, it is alive now since the
1775   // instruction we just built uses it.
1776   MI->clearRegisterDeads(PPC::CR0);
1777 
1778   if (MIOpC != NewOpC) {
1779     // We need to be careful here: we're replacing one instruction with
1780     // another, and we need to make sure that we get all of the right
1781     // implicit uses and defs. On the other hand, the caller may be holding
1782     // an iterator to this instruction, and so we can't delete it (this is
1783     // specifically the case if this is the instruction directly after the
1784     // compare).
1785 
1786     const MCInstrDesc &NewDesc = get(NewOpC);
1787     MI->setDesc(NewDesc);
1788 
1789     if (NewDesc.ImplicitDefs)
1790       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1791            *ImpDefs; ++ImpDefs)
1792         if (!MI->definesRegister(*ImpDefs))
1793           MI->addOperand(*MI->getParent()->getParent(),
1794                          MachineOperand::CreateReg(*ImpDefs, true, true));
1795     if (NewDesc.ImplicitUses)
1796       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1797            *ImpUses; ++ImpUses)
1798         if (!MI->readsRegister(*ImpUses))
1799           MI->addOperand(*MI->getParent()->getParent(),
1800                          MachineOperand::CreateReg(*ImpUses, false, true));
1801   }
1802   assert(MI->definesRegister(PPC::CR0) &&
1803          "Record-form instruction does not define cr0?");
1804 
1805   // Modify the condition code of operands in OperandsToUpdate.
1806   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1807   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1808   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1809     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1810 
1811   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1812     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1813 
1814   return true;
1815 }
1816 
1817 /// GetInstSize - Return the number of bytes of code the specified
1818 /// instruction may be.  This returns the maximum number of bytes.
1819 ///
1820 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1821   unsigned Opcode = MI.getOpcode();
1822 
1823   if (Opcode == PPC::INLINEASM) {
1824     const MachineFunction *MF = MI.getParent()->getParent();
1825     const char *AsmStr = MI.getOperand(0).getSymbolName();
1826     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1827   } else if (Opcode == TargetOpcode::STACKMAP) {
1828     StackMapOpers Opers(&MI);
1829     return Opers.getNumPatchBytes();
1830   } else if (Opcode == TargetOpcode::PATCHPOINT) {
1831     PatchPointOpers Opers(&MI);
1832     return Opers.getNumPatchBytes();
1833   } else {
1834     const MCInstrDesc &Desc = get(Opcode);
1835     return Desc.getSize();
1836   }
1837 }
1838 
1839 std::pair<unsigned, unsigned>
1840 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
1841   const unsigned Mask = PPCII::MO_ACCESS_MASK;
1842   return std::make_pair(TF & Mask, TF & ~Mask);
1843 }
1844 
1845 ArrayRef<std::pair<unsigned, const char *>>
1846 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
1847   using namespace PPCII;
1848   static const std::pair<unsigned, const char *> TargetFlags[] = {
1849       {MO_LO, "ppc-lo"},
1850       {MO_HA, "ppc-ha"},
1851       {MO_TPREL_LO, "ppc-tprel-lo"},
1852       {MO_TPREL_HA, "ppc-tprel-ha"},
1853       {MO_DTPREL_LO, "ppc-dtprel-lo"},
1854       {MO_TLSLD_LO, "ppc-tlsld-lo"},
1855       {MO_TOC_LO, "ppc-toc-lo"},
1856       {MO_TLS, "ppc-tls"}};
1857   return makeArrayRef(TargetFlags);
1858 }
1859 
1860 ArrayRef<std::pair<unsigned, const char *>>
1861 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
1862   using namespace PPCII;
1863   static const std::pair<unsigned, const char *> TargetFlags[] = {
1864       {MO_PLT, "ppc-plt"},
1865       {MO_PIC_FLAG, "ppc-pic"},
1866       {MO_NLP_FLAG, "ppc-nlp"},
1867       {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
1868   return makeArrayRef(TargetFlags);
1869 }
1870 
1871 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1872   switch (MI.getOpcode()) {
1873   case TargetOpcode::LOAD_STACK_GUARD: {
1874     assert(Subtarget.isTargetLinux() &&
1875            "Only Linux target is expected to contain LOAD_STACK_GUARD");
1876     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
1877     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
1878     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
1879     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1880         .addImm(Offset)
1881         .addReg(Reg);
1882     return true;
1883   }
1884   }
1885   return false;
1886 }
1887