1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the PowerPC implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCInstrInfo.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCHazardRecognizers.h" 18 #include "PPCInstrBuilder.h" 19 #include "PPCMachineFunctionInfo.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/ScheduleDAG.h" 31 #include "llvm/CodeGen/SlotIndexes.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/TargetRegistry.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "ppc-instr-info" 42 43 #define GET_INSTRMAP_INFO 44 #define GET_INSTRINFO_CTOR_DTOR 45 #include "PPCGenInstrInfo.inc" 46 47 static cl:: 48 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 49 cl::desc("Disable analysis for CTR loops")); 50 51 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 52 cl::desc("Disable compare instruction optimization"), cl::Hidden); 53 54 static cl::opt<bool> DisableVSXFMAMutate("disable-ppc-vsx-fma-mutation", 55 cl::desc("Disable VSX FMA instruction mutation"), cl::Hidden); 56 57 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 58 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 59 cl::Hidden); 60 61 // Pin the vtable to this file. 62 void PPCInstrInfo::anchor() {} 63 64 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 65 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP), 66 Subtarget(STI), RI(STI) {} 67 68 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 69 /// this target when scheduling the DAG. 70 ScheduleHazardRecognizer * 71 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 72 const ScheduleDAG *DAG) const { 73 unsigned Directive = 74 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); 75 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 76 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 77 const InstrItineraryData *II = 78 &static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 79 return new ScoreboardHazardRecognizer(II, DAG); 80 } 81 82 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 83 } 84 85 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 86 /// to use for this target when scheduling the DAG. 87 ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetPostRAHazardRecognizer( 88 const InstrItineraryData *II, 89 const ScheduleDAG *DAG) const { 90 unsigned Directive = 91 DAG->TM.getSubtarget<PPCSubtarget>().getDarwinDirective(); 92 93 if (Directive == PPC::DIR_PWR7) 94 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 95 96 // Most subtargets use a PPC970 recognizer. 97 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 98 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 99 assert(DAG->TII && "No InstrInfo?"); 100 101 return new PPCHazardRecognizer970(*DAG); 102 } 103 104 return new ScoreboardHazardRecognizer(II, DAG); 105 } 106 107 108 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 109 const MachineInstr *DefMI, unsigned DefIdx, 110 const MachineInstr *UseMI, 111 unsigned UseIdx) const { 112 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 113 UseMI, UseIdx); 114 115 const MachineOperand &DefMO = DefMI->getOperand(DefIdx); 116 unsigned Reg = DefMO.getReg(); 117 118 const TargetRegisterInfo *TRI = &getRegisterInfo(); 119 bool IsRegCR; 120 if (TRI->isVirtualRegister(Reg)) { 121 const MachineRegisterInfo *MRI = 122 &DefMI->getParent()->getParent()->getRegInfo(); 123 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 124 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 125 } else { 126 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 127 PPC::CRBITRCRegClass.contains(Reg); 128 } 129 130 if (UseMI->isBranch() && IsRegCR) { 131 if (Latency < 0) 132 Latency = getInstrLatency(ItinData, DefMI); 133 134 // On some cores, there is an additional delay between writing to a condition 135 // register, and using it from a branch. 136 unsigned Directive = Subtarget.getDarwinDirective(); 137 switch (Directive) { 138 default: break; 139 case PPC::DIR_7400: 140 case PPC::DIR_750: 141 case PPC::DIR_970: 142 case PPC::DIR_E5500: 143 case PPC::DIR_PWR4: 144 case PPC::DIR_PWR5: 145 case PPC::DIR_PWR5X: 146 case PPC::DIR_PWR6: 147 case PPC::DIR_PWR6X: 148 case PPC::DIR_PWR7: 149 Latency += 2; 150 break; 151 } 152 } 153 154 return Latency; 155 } 156 157 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 158 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 159 unsigned &SrcReg, unsigned &DstReg, 160 unsigned &SubIdx) const { 161 switch (MI.getOpcode()) { 162 default: return false; 163 case PPC::EXTSW: 164 case PPC::EXTSW_32_64: 165 SrcReg = MI.getOperand(1).getReg(); 166 DstReg = MI.getOperand(0).getReg(); 167 SubIdx = PPC::sub_32; 168 return true; 169 } 170 } 171 172 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 173 int &FrameIndex) const { 174 // Note: This list must be kept consistent with LoadRegFromStackSlot. 175 switch (MI->getOpcode()) { 176 default: break; 177 case PPC::LD: 178 case PPC::LWZ: 179 case PPC::LFS: 180 case PPC::LFD: 181 case PPC::RESTORE_CR: 182 case PPC::RESTORE_CRBIT: 183 case PPC::LVX: 184 case PPC::LXVD2X: 185 case PPC::RESTORE_VRSAVE: 186 // Check for the operands added by addFrameReference (the immediate is the 187 // offset which defaults to 0). 188 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 189 MI->getOperand(2).isFI()) { 190 FrameIndex = MI->getOperand(2).getIndex(); 191 return MI->getOperand(0).getReg(); 192 } 193 break; 194 } 195 return 0; 196 } 197 198 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI, 199 int &FrameIndex) const { 200 // Note: This list must be kept consistent with StoreRegToStackSlot. 201 switch (MI->getOpcode()) { 202 default: break; 203 case PPC::STD: 204 case PPC::STW: 205 case PPC::STFS: 206 case PPC::STFD: 207 case PPC::SPILL_CR: 208 case PPC::SPILL_CRBIT: 209 case PPC::STVX: 210 case PPC::STXVD2X: 211 case PPC::SPILL_VRSAVE: 212 // Check for the operands added by addFrameReference (the immediate is the 213 // offset which defaults to 0). 214 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 215 MI->getOperand(2).isFI()) { 216 FrameIndex = MI->getOperand(2).getIndex(); 217 return MI->getOperand(0).getReg(); 218 } 219 break; 220 } 221 return 0; 222 } 223 224 // commuteInstruction - We can commute rlwimi instructions, but only if the 225 // rotate amt is zero. We also have to munge the immediates a bit. 226 MachineInstr * 227 PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { 228 MachineFunction &MF = *MI->getParent()->getParent(); 229 230 // Normal instructions can be commuted the obvious way. 231 if (MI->getOpcode() != PPC::RLWIMI && 232 MI->getOpcode() != PPC::RLWIMIo && 233 MI->getOpcode() != PPC::RLWIMI8 && 234 MI->getOpcode() != PPC::RLWIMI8o) 235 return TargetInstrInfo::commuteInstruction(MI, NewMI); 236 237 // Cannot commute if it has a non-zero rotate count. 238 if (MI->getOperand(3).getImm() != 0) 239 return nullptr; 240 241 // If we have a zero rotate count, we have: 242 // M = mask(MB,ME) 243 // Op0 = (Op1 & ~M) | (Op2 & M) 244 // Change this to: 245 // M = mask((ME+1)&31, (MB-1)&31) 246 // Op0 = (Op2 & ~M) | (Op1 & M) 247 248 // Swap op1/op2 249 unsigned Reg0 = MI->getOperand(0).getReg(); 250 unsigned Reg1 = MI->getOperand(1).getReg(); 251 unsigned Reg2 = MI->getOperand(2).getReg(); 252 unsigned SubReg1 = MI->getOperand(1).getSubReg(); 253 unsigned SubReg2 = MI->getOperand(2).getSubReg(); 254 bool Reg1IsKill = MI->getOperand(1).isKill(); 255 bool Reg2IsKill = MI->getOperand(2).isKill(); 256 bool ChangeReg0 = false; 257 // If machine instrs are no longer in two-address forms, update 258 // destination register as well. 259 if (Reg0 == Reg1) { 260 // Must be two address instruction! 261 assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 262 "Expecting a two-address instruction!"); 263 assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 264 Reg2IsKill = false; 265 ChangeReg0 = true; 266 } 267 268 // Masks. 269 unsigned MB = MI->getOperand(4).getImm(); 270 unsigned ME = MI->getOperand(5).getImm(); 271 272 if (NewMI) { 273 // Create a new instruction. 274 unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg(); 275 bool Reg0IsDead = MI->getOperand(0).isDead(); 276 return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) 277 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 278 .addReg(Reg2, getKillRegState(Reg2IsKill)) 279 .addReg(Reg1, getKillRegState(Reg1IsKill)) 280 .addImm((ME+1) & 31) 281 .addImm((MB-1) & 31); 282 } 283 284 if (ChangeReg0) { 285 MI->getOperand(0).setReg(Reg2); 286 MI->getOperand(0).setSubReg(SubReg2); 287 } 288 MI->getOperand(2).setReg(Reg1); 289 MI->getOperand(1).setReg(Reg2); 290 MI->getOperand(2).setSubReg(SubReg1); 291 MI->getOperand(1).setSubReg(SubReg2); 292 MI->getOperand(2).setIsKill(Reg1IsKill); 293 MI->getOperand(1).setIsKill(Reg2IsKill); 294 295 // Swap the mask around. 296 MI->getOperand(4).setImm((ME+1) & 31); 297 MI->getOperand(5).setImm((MB-1) & 31); 298 return MI; 299 } 300 301 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1, 302 unsigned &SrcOpIdx2) const { 303 // For VSX A-Type FMA instructions, it is the first two operands that can be 304 // commuted, however, because the non-encoded tied input operand is listed 305 // first, the operands to swap are actually the second and third. 306 307 int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode()); 308 if (AltOpc == -1) 309 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 310 311 SrcOpIdx1 = 2; 312 SrcOpIdx2 = 3; 313 return true; 314 } 315 316 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 317 MachineBasicBlock::iterator MI) const { 318 // This function is used for scheduling, and the nop wanted here is the type 319 // that terminates dispatch groups on the POWER cores. 320 unsigned Directive = Subtarget.getDarwinDirective(); 321 unsigned Opcode; 322 switch (Directive) { 323 default: Opcode = PPC::NOP; break; 324 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 325 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 326 } 327 328 DebugLoc DL; 329 BuildMI(MBB, MI, DL, get(Opcode)); 330 } 331 332 // Branch analysis. 333 // Note: If the condition register is set to CTR or CTR8 then this is a 334 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 335 bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, 336 MachineBasicBlock *&FBB, 337 SmallVectorImpl<MachineOperand> &Cond, 338 bool AllowModify) const { 339 bool isPPC64 = Subtarget.isPPC64(); 340 341 // If the block has no terminators, it just falls into the block after it. 342 MachineBasicBlock::iterator I = MBB.end(); 343 if (I == MBB.begin()) 344 return false; 345 --I; 346 while (I->isDebugValue()) { 347 if (I == MBB.begin()) 348 return false; 349 --I; 350 } 351 if (!isUnpredicatedTerminator(I)) 352 return false; 353 354 // Get the last instruction in the block. 355 MachineInstr *LastInst = I; 356 357 // If there is only one terminator instruction, process it. 358 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { 359 if (LastInst->getOpcode() == PPC::B) { 360 if (!LastInst->getOperand(0).isMBB()) 361 return true; 362 TBB = LastInst->getOperand(0).getMBB(); 363 return false; 364 } else if (LastInst->getOpcode() == PPC::BCC) { 365 if (!LastInst->getOperand(2).isMBB()) 366 return true; 367 // Block ends with fall-through condbranch. 368 TBB = LastInst->getOperand(2).getMBB(); 369 Cond.push_back(LastInst->getOperand(0)); 370 Cond.push_back(LastInst->getOperand(1)); 371 return false; 372 } else if (LastInst->getOpcode() == PPC::BC) { 373 if (!LastInst->getOperand(1).isMBB()) 374 return true; 375 // Block ends with fall-through condbranch. 376 TBB = LastInst->getOperand(1).getMBB(); 377 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 378 Cond.push_back(LastInst->getOperand(0)); 379 return false; 380 } else if (LastInst->getOpcode() == PPC::BCn) { 381 if (!LastInst->getOperand(1).isMBB()) 382 return true; 383 // Block ends with fall-through condbranch. 384 TBB = LastInst->getOperand(1).getMBB(); 385 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 386 Cond.push_back(LastInst->getOperand(0)); 387 return false; 388 } else if (LastInst->getOpcode() == PPC::BDNZ8 || 389 LastInst->getOpcode() == PPC::BDNZ) { 390 if (!LastInst->getOperand(0).isMBB()) 391 return true; 392 if (DisableCTRLoopAnal) 393 return true; 394 TBB = LastInst->getOperand(0).getMBB(); 395 Cond.push_back(MachineOperand::CreateImm(1)); 396 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 397 true)); 398 return false; 399 } else if (LastInst->getOpcode() == PPC::BDZ8 || 400 LastInst->getOpcode() == PPC::BDZ) { 401 if (!LastInst->getOperand(0).isMBB()) 402 return true; 403 if (DisableCTRLoopAnal) 404 return true; 405 TBB = LastInst->getOperand(0).getMBB(); 406 Cond.push_back(MachineOperand::CreateImm(0)); 407 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 408 true)); 409 return false; 410 } 411 412 // Otherwise, don't know what this is. 413 return true; 414 } 415 416 // Get the instruction before it if it's a terminator. 417 MachineInstr *SecondLastInst = I; 418 419 // If there are three terminators, we don't know what sort of block this is. 420 if (SecondLastInst && I != MBB.begin() && 421 isUnpredicatedTerminator(--I)) 422 return true; 423 424 // If the block ends with PPC::B and PPC:BCC, handle it. 425 if (SecondLastInst->getOpcode() == PPC::BCC && 426 LastInst->getOpcode() == PPC::B) { 427 if (!SecondLastInst->getOperand(2).isMBB() || 428 !LastInst->getOperand(0).isMBB()) 429 return true; 430 TBB = SecondLastInst->getOperand(2).getMBB(); 431 Cond.push_back(SecondLastInst->getOperand(0)); 432 Cond.push_back(SecondLastInst->getOperand(1)); 433 FBB = LastInst->getOperand(0).getMBB(); 434 return false; 435 } else if (SecondLastInst->getOpcode() == PPC::BC && 436 LastInst->getOpcode() == PPC::B) { 437 if (!SecondLastInst->getOperand(1).isMBB() || 438 !LastInst->getOperand(0).isMBB()) 439 return true; 440 TBB = SecondLastInst->getOperand(1).getMBB(); 441 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 442 Cond.push_back(SecondLastInst->getOperand(0)); 443 FBB = LastInst->getOperand(0).getMBB(); 444 return false; 445 } else if (SecondLastInst->getOpcode() == PPC::BCn && 446 LastInst->getOpcode() == PPC::B) { 447 if (!SecondLastInst->getOperand(1).isMBB() || 448 !LastInst->getOperand(0).isMBB()) 449 return true; 450 TBB = SecondLastInst->getOperand(1).getMBB(); 451 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 452 Cond.push_back(SecondLastInst->getOperand(0)); 453 FBB = LastInst->getOperand(0).getMBB(); 454 return false; 455 } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 || 456 SecondLastInst->getOpcode() == PPC::BDNZ) && 457 LastInst->getOpcode() == PPC::B) { 458 if (!SecondLastInst->getOperand(0).isMBB() || 459 !LastInst->getOperand(0).isMBB()) 460 return true; 461 if (DisableCTRLoopAnal) 462 return true; 463 TBB = SecondLastInst->getOperand(0).getMBB(); 464 Cond.push_back(MachineOperand::CreateImm(1)); 465 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 466 true)); 467 FBB = LastInst->getOperand(0).getMBB(); 468 return false; 469 } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 || 470 SecondLastInst->getOpcode() == PPC::BDZ) && 471 LastInst->getOpcode() == PPC::B) { 472 if (!SecondLastInst->getOperand(0).isMBB() || 473 !LastInst->getOperand(0).isMBB()) 474 return true; 475 if (DisableCTRLoopAnal) 476 return true; 477 TBB = SecondLastInst->getOperand(0).getMBB(); 478 Cond.push_back(MachineOperand::CreateImm(0)); 479 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 480 true)); 481 FBB = LastInst->getOperand(0).getMBB(); 482 return false; 483 } 484 485 // If the block ends with two PPC:Bs, handle it. The second one is not 486 // executed, so remove it. 487 if (SecondLastInst->getOpcode() == PPC::B && 488 LastInst->getOpcode() == PPC::B) { 489 if (!SecondLastInst->getOperand(0).isMBB()) 490 return true; 491 TBB = SecondLastInst->getOperand(0).getMBB(); 492 I = LastInst; 493 if (AllowModify) 494 I->eraseFromParent(); 495 return false; 496 } 497 498 // Otherwise, can't handle this. 499 return true; 500 } 501 502 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 503 MachineBasicBlock::iterator I = MBB.end(); 504 if (I == MBB.begin()) return 0; 505 --I; 506 while (I->isDebugValue()) { 507 if (I == MBB.begin()) 508 return 0; 509 --I; 510 } 511 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 512 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 513 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 514 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 515 return 0; 516 517 // Remove the branch. 518 I->eraseFromParent(); 519 520 I = MBB.end(); 521 522 if (I == MBB.begin()) return 1; 523 --I; 524 if (I->getOpcode() != PPC::BCC && 525 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 526 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 527 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 528 return 1; 529 530 // Remove the branch. 531 I->eraseFromParent(); 532 return 2; 533 } 534 535 unsigned 536 PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 537 MachineBasicBlock *FBB, 538 const SmallVectorImpl<MachineOperand> &Cond, 539 DebugLoc DL) const { 540 // Shouldn't be a fall through. 541 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 542 assert((Cond.size() == 2 || Cond.size() == 0) && 543 "PPC branch conditions have two components!"); 544 545 bool isPPC64 = Subtarget.isPPC64(); 546 547 // One-way branch. 548 if (!FBB) { 549 if (Cond.empty()) // Unconditional branch 550 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 551 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 552 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 553 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 554 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 555 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 556 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); 557 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 558 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); 559 else // Conditional branch 560 BuildMI(&MBB, DL, get(PPC::BCC)) 561 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); 562 return 1; 563 } 564 565 // Two-way Conditional Branch. 566 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 567 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 568 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 569 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 570 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 571 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); 572 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 573 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); 574 else 575 BuildMI(&MBB, DL, get(PPC::BCC)) 576 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); 577 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 578 return 2; 579 } 580 581 // Select analysis. 582 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 583 const SmallVectorImpl<MachineOperand> &Cond, 584 unsigned TrueReg, unsigned FalseReg, 585 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 586 if (!Subtarget.hasISEL()) 587 return false; 588 589 if (Cond.size() != 2) 590 return false; 591 592 // If this is really a bdnz-like condition, then it cannot be turned into a 593 // select. 594 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 595 return false; 596 597 // Check register classes. 598 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 599 const TargetRegisterClass *RC = 600 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 601 if (!RC) 602 return false; 603 604 // isel is for regular integer GPRs only. 605 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 606 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 607 !PPC::G8RCRegClass.hasSubClassEq(RC) && 608 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 609 return false; 610 611 // FIXME: These numbers are for the A2, how well they work for other cores is 612 // an open question. On the A2, the isel instruction has a 2-cycle latency 613 // but single-cycle throughput. These numbers are used in combination with 614 // the MispredictPenalty setting from the active SchedMachineModel. 615 CondCycles = 1; 616 TrueCycles = 1; 617 FalseCycles = 1; 618 619 return true; 620 } 621 622 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 623 MachineBasicBlock::iterator MI, DebugLoc dl, 624 unsigned DestReg, 625 const SmallVectorImpl<MachineOperand> &Cond, 626 unsigned TrueReg, unsigned FalseReg) const { 627 assert(Cond.size() == 2 && 628 "PPC branch conditions have two components!"); 629 630 assert(Subtarget.hasISEL() && 631 "Cannot insert select on target without ISEL support"); 632 633 // Get the register classes. 634 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 635 const TargetRegisterClass *RC = 636 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 637 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 638 639 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 640 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 641 assert((Is64Bit || 642 PPC::GPRCRegClass.hasSubClassEq(RC) || 643 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 644 "isel is for regular integer GPRs only"); 645 646 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 647 unsigned SelectPred = Cond[0].getImm(); 648 649 unsigned SubIdx; 650 bool SwapOps; 651 switch (SelectPred) { 652 default: llvm_unreachable("invalid predicate for isel"); 653 case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break; 654 case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break; 655 case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break; 656 case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break; 657 case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break; 658 case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break; 659 case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break; 660 case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break; 661 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 662 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 663 } 664 665 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 666 SecondReg = SwapOps ? TrueReg : FalseReg; 667 668 // The first input register of isel cannot be r0. If it is a member 669 // of a register class that can be r0, then copy it first (the 670 // register allocator should eliminate the copy). 671 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 672 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 673 const TargetRegisterClass *FirstRC = 674 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 675 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 676 unsigned OldFirstReg = FirstReg; 677 FirstReg = MRI.createVirtualRegister(FirstRC); 678 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 679 .addReg(OldFirstReg); 680 } 681 682 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 683 .addReg(FirstReg).addReg(SecondReg) 684 .addReg(Cond[1].getReg(), 0, SubIdx); 685 } 686 687 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 688 MachineBasicBlock::iterator I, DebugLoc DL, 689 unsigned DestReg, unsigned SrcReg, 690 bool KillSrc) const { 691 // We can end up with self copies and similar things as a result of VSX copy 692 // legalization. Promote them here. 693 const TargetRegisterInfo *TRI = &getRegisterInfo(); 694 if (PPC::F8RCRegClass.contains(DestReg) && 695 PPC::VSLRCRegClass.contains(SrcReg)) { 696 unsigned SuperReg = 697 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 698 699 if (VSXSelfCopyCrash && SrcReg == SuperReg) 700 llvm_unreachable("nop VSX copy"); 701 702 DestReg = SuperReg; 703 } else if (PPC::VRRCRegClass.contains(DestReg) && 704 PPC::VSHRCRegClass.contains(SrcReg)) { 705 unsigned SuperReg = 706 TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass); 707 708 if (VSXSelfCopyCrash && SrcReg == SuperReg) 709 llvm_unreachable("nop VSX copy"); 710 711 DestReg = SuperReg; 712 } else if (PPC::F8RCRegClass.contains(SrcReg) && 713 PPC::VSLRCRegClass.contains(DestReg)) { 714 unsigned SuperReg = 715 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 716 717 if (VSXSelfCopyCrash && DestReg == SuperReg) 718 llvm_unreachable("nop VSX copy"); 719 720 SrcReg = SuperReg; 721 } else if (PPC::VRRCRegClass.contains(SrcReg) && 722 PPC::VSHRCRegClass.contains(DestReg)) { 723 unsigned SuperReg = 724 TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass); 725 726 if (VSXSelfCopyCrash && DestReg == SuperReg) 727 llvm_unreachable("nop VSX copy"); 728 729 SrcReg = SuperReg; 730 } 731 732 unsigned Opc; 733 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 734 Opc = PPC::OR; 735 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 736 Opc = PPC::OR8; 737 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 738 Opc = PPC::FMR; 739 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 740 Opc = PPC::MCRF; 741 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 742 Opc = PPC::VOR; 743 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 744 // There are two different ways this can be done: 745 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 746 // issue in VSU pipeline 0. 747 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 748 // can go to either pipeline. 749 // We'll always use xxlor here, because in practically all cases where 750 // copies are generated, they are close enough to some use that the 751 // lower-latency form is preferable. 752 Opc = PPC::XXLOR; 753 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg)) 754 Opc = PPC::XXLORf; 755 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 756 Opc = PPC::CROR; 757 else 758 llvm_unreachable("Impossible reg-to-reg copy"); 759 760 const MCInstrDesc &MCID = get(Opc); 761 if (MCID.getNumOperands() == 3) 762 BuildMI(MBB, I, DL, MCID, DestReg) 763 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 764 else 765 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 766 } 767 768 // This function returns true if a CR spill is necessary and false otherwise. 769 bool 770 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, 771 unsigned SrcReg, bool isKill, 772 int FrameIdx, 773 const TargetRegisterClass *RC, 774 SmallVectorImpl<MachineInstr*> &NewMIs, 775 bool &NonRI, bool &SpillsVRS) const{ 776 // Note: If additional store instructions are added here, 777 // update isStoreToStackSlot. 778 779 DebugLoc DL; 780 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 781 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 782 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) 783 .addReg(SrcReg, 784 getKillRegState(isKill)), 785 FrameIdx)); 786 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 787 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 788 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) 789 .addReg(SrcReg, 790 getKillRegState(isKill)), 791 FrameIdx)); 792 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 793 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) 794 .addReg(SrcReg, 795 getKillRegState(isKill)), 796 FrameIdx)); 797 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 798 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) 799 .addReg(SrcReg, 800 getKillRegState(isKill)), 801 FrameIdx)); 802 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 803 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) 804 .addReg(SrcReg, 805 getKillRegState(isKill)), 806 FrameIdx)); 807 return true; 808 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 809 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT)) 810 .addReg(SrcReg, 811 getKillRegState(isKill)), 812 FrameIdx)); 813 return true; 814 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 815 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX)) 816 .addReg(SrcReg, 817 getKillRegState(isKill)), 818 FrameIdx)); 819 NonRI = true; 820 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 821 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X)) 822 .addReg(SrcReg, 823 getKillRegState(isKill)), 824 FrameIdx)); 825 NonRI = true; 826 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 827 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX)) 828 .addReg(SrcReg, 829 getKillRegState(isKill)), 830 FrameIdx)); 831 NonRI = true; 832 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 833 assert(Subtarget.isDarwin() && 834 "VRSAVE only needs spill/restore on Darwin"); 835 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE)) 836 .addReg(SrcReg, 837 getKillRegState(isKill)), 838 FrameIdx)); 839 SpillsVRS = true; 840 } else { 841 llvm_unreachable("Unknown regclass!"); 842 } 843 844 return false; 845 } 846 847 void 848 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 849 MachineBasicBlock::iterator MI, 850 unsigned SrcReg, bool isKill, int FrameIdx, 851 const TargetRegisterClass *RC, 852 const TargetRegisterInfo *TRI) const { 853 MachineFunction &MF = *MBB.getParent(); 854 SmallVector<MachineInstr*, 4> NewMIs; 855 856 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 857 FuncInfo->setHasSpills(); 858 859 bool NonRI = false, SpillsVRS = false; 860 if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs, 861 NonRI, SpillsVRS)) 862 FuncInfo->setSpillsCR(); 863 864 if (SpillsVRS) 865 FuncInfo->setSpillsVRSAVE(); 866 867 if (NonRI) 868 FuncInfo->setHasNonRISpills(); 869 870 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 871 MBB.insert(MI, NewMIs[i]); 872 873 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 874 MachineMemOperand *MMO = 875 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 876 MachineMemOperand::MOStore, 877 MFI.getObjectSize(FrameIdx), 878 MFI.getObjectAlignment(FrameIdx)); 879 NewMIs.back()->addMemOperand(MF, MMO); 880 } 881 882 bool 883 PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL, 884 unsigned DestReg, int FrameIdx, 885 const TargetRegisterClass *RC, 886 SmallVectorImpl<MachineInstr*> &NewMIs, 887 bool &NonRI, bool &SpillsVRS) const{ 888 // Note: If additional load instructions are added here, 889 // update isLoadFromStackSlot. 890 891 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 892 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 893 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), 894 DestReg), FrameIdx)); 895 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 896 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 897 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), 898 FrameIdx)); 899 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 900 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), 901 FrameIdx)); 902 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 903 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), 904 FrameIdx)); 905 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 906 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 907 get(PPC::RESTORE_CR), DestReg), 908 FrameIdx)); 909 return true; 910 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 911 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 912 get(PPC::RESTORE_CRBIT), DestReg), 913 FrameIdx)); 914 return true; 915 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 916 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg), 917 FrameIdx)); 918 NonRI = true; 919 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 920 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg), 921 FrameIdx)); 922 NonRI = true; 923 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 924 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg), 925 FrameIdx)); 926 NonRI = true; 927 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 928 assert(Subtarget.isDarwin() && 929 "VRSAVE only needs spill/restore on Darwin"); 930 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 931 get(PPC::RESTORE_VRSAVE), 932 DestReg), 933 FrameIdx)); 934 SpillsVRS = true; 935 } else { 936 llvm_unreachable("Unknown regclass!"); 937 } 938 939 return false; 940 } 941 942 void 943 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 944 MachineBasicBlock::iterator MI, 945 unsigned DestReg, int FrameIdx, 946 const TargetRegisterClass *RC, 947 const TargetRegisterInfo *TRI) const { 948 MachineFunction &MF = *MBB.getParent(); 949 SmallVector<MachineInstr*, 4> NewMIs; 950 DebugLoc DL; 951 if (MI != MBB.end()) DL = MI->getDebugLoc(); 952 953 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 954 FuncInfo->setHasSpills(); 955 956 bool NonRI = false, SpillsVRS = false; 957 if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs, 958 NonRI, SpillsVRS)) 959 FuncInfo->setSpillsCR(); 960 961 if (SpillsVRS) 962 FuncInfo->setSpillsVRSAVE(); 963 964 if (NonRI) 965 FuncInfo->setHasNonRISpills(); 966 967 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 968 MBB.insert(MI, NewMIs[i]); 969 970 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 971 MachineMemOperand *MMO = 972 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 973 MachineMemOperand::MOLoad, 974 MFI.getObjectSize(FrameIdx), 975 MFI.getObjectAlignment(FrameIdx)); 976 NewMIs.back()->addMemOperand(MF, MMO); 977 } 978 979 bool PPCInstrInfo:: 980 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 981 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 982 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 983 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 984 else 985 // Leave the CR# the same, but invert the condition. 986 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 987 return false; 988 } 989 990 bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, 991 unsigned Reg, MachineRegisterInfo *MRI) const { 992 // For some instructions, it is legal to fold ZERO into the RA register field. 993 // A zero immediate should always be loaded with a single li. 994 unsigned DefOpc = DefMI->getOpcode(); 995 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 996 return false; 997 if (!DefMI->getOperand(1).isImm()) 998 return false; 999 if (DefMI->getOperand(1).getImm() != 0) 1000 return false; 1001 1002 // Note that we cannot here invert the arguments of an isel in order to fold 1003 // a ZERO into what is presented as the second argument. All we have here 1004 // is the condition bit, and that might come from a CR-logical bit operation. 1005 1006 const MCInstrDesc &UseMCID = UseMI->getDesc(); 1007 1008 // Only fold into real machine instructions. 1009 if (UseMCID.isPseudo()) 1010 return false; 1011 1012 unsigned UseIdx; 1013 for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx) 1014 if (UseMI->getOperand(UseIdx).isReg() && 1015 UseMI->getOperand(UseIdx).getReg() == Reg) 1016 break; 1017 1018 assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI"); 1019 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1020 1021 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1022 1023 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1024 // register (which might also be specified as a pointer class kind). 1025 if (UseInfo->isLookupPtrRegClass()) { 1026 if (UseInfo->RegClass /* Kind */ != 1) 1027 return false; 1028 } else { 1029 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1030 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1031 return false; 1032 } 1033 1034 // Make sure this is not tied to an output register (or otherwise 1035 // constrained). This is true for ST?UX registers, for example, which 1036 // are tied to their output registers. 1037 if (UseInfo->Constraints != 0) 1038 return false; 1039 1040 unsigned ZeroReg; 1041 if (UseInfo->isLookupPtrRegClass()) { 1042 bool isPPC64 = Subtarget.isPPC64(); 1043 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1044 } else { 1045 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1046 PPC::ZERO8 : PPC::ZERO; 1047 } 1048 1049 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1050 UseMI->getOperand(UseIdx).setReg(ZeroReg); 1051 1052 if (DeleteDef) 1053 DefMI->eraseFromParent(); 1054 1055 return true; 1056 } 1057 1058 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1059 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1060 I != IE; ++I) 1061 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1062 return true; 1063 return false; 1064 } 1065 1066 // We should make sure that, if we're going to predicate both sides of a 1067 // condition (a diamond), that both sides don't define the counter register. We 1068 // can predicate counter-decrement-based branches, but while that predicates 1069 // the branching, it does not predicate the counter decrement. If we tried to 1070 // merge the triangle into one predicated block, we'd decrement the counter 1071 // twice. 1072 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1073 unsigned NumT, unsigned ExtraT, 1074 MachineBasicBlock &FMBB, 1075 unsigned NumF, unsigned ExtraF, 1076 const BranchProbability &Probability) const { 1077 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1078 } 1079 1080 1081 bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const { 1082 // The predicated branches are identified by their type, not really by the 1083 // explicit presence of a predicate. Furthermore, some of them can be 1084 // predicated more than once. Because if conversion won't try to predicate 1085 // any instruction which already claims to be predicated (by returning true 1086 // here), always return false. In doing so, we let isPredicable() be the 1087 // final word on whether not the instruction can be (further) predicated. 1088 1089 return false; 1090 } 1091 1092 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 1093 if (!MI->isTerminator()) 1094 return false; 1095 1096 // Conditional branch is a special case. 1097 if (MI->isBranch() && !MI->isBarrier()) 1098 return true; 1099 1100 return !isPredicated(MI); 1101 } 1102 1103 bool PPCInstrInfo::PredicateInstruction( 1104 MachineInstr *MI, 1105 const SmallVectorImpl<MachineOperand> &Pred) const { 1106 unsigned OpC = MI->getOpcode(); 1107 if (OpC == PPC::BLR) { 1108 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1109 bool isPPC64 = Subtarget.isPPC64(); 1110 MI->setDesc(get(Pred[0].getImm() ? 1111 (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) : 1112 (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1113 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1114 MI->setDesc(get(PPC::BCLR)); 1115 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1116 .addReg(Pred[1].getReg()); 1117 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1118 MI->setDesc(get(PPC::BCLRn)); 1119 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1120 .addReg(Pred[1].getReg()); 1121 } else { 1122 MI->setDesc(get(PPC::BCCLR)); 1123 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1124 .addImm(Pred[0].getImm()) 1125 .addReg(Pred[1].getReg()); 1126 } 1127 1128 return true; 1129 } else if (OpC == PPC::B) { 1130 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1131 bool isPPC64 = Subtarget.isPPC64(); 1132 MI->setDesc(get(Pred[0].getImm() ? 1133 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1134 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1135 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1136 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1137 MI->RemoveOperand(0); 1138 1139 MI->setDesc(get(PPC::BC)); 1140 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1141 .addReg(Pred[1].getReg()) 1142 .addMBB(MBB); 1143 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1144 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1145 MI->RemoveOperand(0); 1146 1147 MI->setDesc(get(PPC::BCn)); 1148 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1149 .addReg(Pred[1].getReg()) 1150 .addMBB(MBB); 1151 } else { 1152 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1153 MI->RemoveOperand(0); 1154 1155 MI->setDesc(get(PPC::BCC)); 1156 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1157 .addImm(Pred[0].getImm()) 1158 .addReg(Pred[1].getReg()) 1159 .addMBB(MBB); 1160 } 1161 1162 return true; 1163 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || 1164 OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { 1165 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1166 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1167 1168 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1169 bool isPPC64 = Subtarget.isPPC64(); 1170 1171 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1172 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) : 1173 (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1174 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1175 .addReg(Pred[1].getReg()); 1176 return true; 1177 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1178 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) : 1179 (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1180 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1181 .addReg(Pred[1].getReg()); 1182 return true; 1183 } 1184 1185 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) : 1186 (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1187 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1188 .addImm(Pred[0].getImm()) 1189 .addReg(Pred[1].getReg()); 1190 return true; 1191 } 1192 1193 return false; 1194 } 1195 1196 bool PPCInstrInfo::SubsumesPredicate( 1197 const SmallVectorImpl<MachineOperand> &Pred1, 1198 const SmallVectorImpl<MachineOperand> &Pred2) const { 1199 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1200 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1201 1202 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1203 return false; 1204 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1205 return false; 1206 1207 // P1 can only subsume P2 if they test the same condition register. 1208 if (Pred1[1].getReg() != Pred2[1].getReg()) 1209 return false; 1210 1211 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1212 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1213 1214 if (P1 == P2) 1215 return true; 1216 1217 // Does P1 subsume P2, e.g. GE subsumes GT. 1218 if (P1 == PPC::PRED_LE && 1219 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1220 return true; 1221 if (P1 == PPC::PRED_GE && 1222 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1223 return true; 1224 1225 return false; 1226 } 1227 1228 bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI, 1229 std::vector<MachineOperand> &Pred) const { 1230 // Note: At the present time, the contents of Pred from this function is 1231 // unused by IfConversion. This implementation follows ARM by pushing the 1232 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1233 // predicate, instructions defining CTR or CTR8 are also included as 1234 // predicate-defining instructions. 1235 1236 const TargetRegisterClass *RCs[] = 1237 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1238 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1239 1240 bool Found = false; 1241 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1242 const MachineOperand &MO = MI->getOperand(i); 1243 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1244 const TargetRegisterClass *RC = RCs[c]; 1245 if (MO.isReg()) { 1246 if (MO.isDef() && RC->contains(MO.getReg())) { 1247 Pred.push_back(MO); 1248 Found = true; 1249 } 1250 } else if (MO.isRegMask()) { 1251 for (TargetRegisterClass::iterator I = RC->begin(), 1252 IE = RC->end(); I != IE; ++I) 1253 if (MO.clobbersPhysReg(*I)) { 1254 Pred.push_back(MO); 1255 Found = true; 1256 } 1257 } 1258 } 1259 } 1260 1261 return Found; 1262 } 1263 1264 bool PPCInstrInfo::isPredicable(MachineInstr *MI) const { 1265 unsigned OpC = MI->getOpcode(); 1266 switch (OpC) { 1267 default: 1268 return false; 1269 case PPC::B: 1270 case PPC::BLR: 1271 case PPC::BCTR: 1272 case PPC::BCTR8: 1273 case PPC::BCTRL: 1274 case PPC::BCTRL8: 1275 return true; 1276 } 1277 } 1278 1279 bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI, 1280 unsigned &SrcReg, unsigned &SrcReg2, 1281 int &Mask, int &Value) const { 1282 unsigned Opc = MI->getOpcode(); 1283 1284 switch (Opc) { 1285 default: return false; 1286 case PPC::CMPWI: 1287 case PPC::CMPLWI: 1288 case PPC::CMPDI: 1289 case PPC::CMPLDI: 1290 SrcReg = MI->getOperand(1).getReg(); 1291 SrcReg2 = 0; 1292 Value = MI->getOperand(2).getImm(); 1293 Mask = 0xFFFF; 1294 return true; 1295 case PPC::CMPW: 1296 case PPC::CMPLW: 1297 case PPC::CMPD: 1298 case PPC::CMPLD: 1299 case PPC::FCMPUS: 1300 case PPC::FCMPUD: 1301 SrcReg = MI->getOperand(1).getReg(); 1302 SrcReg2 = MI->getOperand(2).getReg(); 1303 return true; 1304 } 1305 } 1306 1307 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr, 1308 unsigned SrcReg, unsigned SrcReg2, 1309 int Mask, int Value, 1310 const MachineRegisterInfo *MRI) const { 1311 if (DisableCmpOpt) 1312 return false; 1313 1314 int OpC = CmpInstr->getOpcode(); 1315 unsigned CRReg = CmpInstr->getOperand(0).getReg(); 1316 1317 // FP record forms set CR1 based on the execption status bits, not a 1318 // comparison with zero. 1319 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1320 return false; 1321 1322 // The record forms set the condition register based on a signed comparison 1323 // with zero (so says the ISA manual). This is not as straightforward as it 1324 // seems, however, because this is always a 64-bit comparison on PPC64, even 1325 // for instructions that are 32-bit in nature (like slw for example). 1326 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1327 // for equality checks (as those don't depend on the sign). On PPC64, 1328 // we are restricted to equality for unsigned 64-bit comparisons and for 1329 // signed 32-bit comparisons the applicability is more restricted. 1330 bool isPPC64 = Subtarget.isPPC64(); 1331 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1332 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1333 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1334 1335 // Get the unique definition of SrcReg. 1336 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1337 if (!MI) return false; 1338 int MIOpC = MI->getOpcode(); 1339 1340 bool equalityOnly = false; 1341 bool noSub = false; 1342 if (isPPC64) { 1343 if (is32BitSignedCompare) { 1344 // We can perform this optimization only if MI is sign-extending. 1345 if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo || 1346 MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo || 1347 MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo || 1348 MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo || 1349 MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) { 1350 noSub = true; 1351 } else 1352 return false; 1353 } else if (is32BitUnsignedCompare) { 1354 // We can perform this optimization, equality only, if MI is 1355 // zero-extending. 1356 if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo || 1357 MIOpC == PPC::SLW || MIOpC == PPC::SLWo || 1358 MIOpC == PPC::SRW || MIOpC == PPC::SRWo) { 1359 noSub = true; 1360 equalityOnly = true; 1361 } else 1362 return false; 1363 } else 1364 equalityOnly = is64BitUnsignedCompare; 1365 } else 1366 equalityOnly = is32BitUnsignedCompare; 1367 1368 if (equalityOnly) { 1369 // We need to check the uses of the condition register in order to reject 1370 // non-equality comparisons. 1371 for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg), 1372 IE = MRI->use_instr_end(); I != IE; ++I) { 1373 MachineInstr *UseMI = &*I; 1374 if (UseMI->getOpcode() == PPC::BCC) { 1375 unsigned Pred = UseMI->getOperand(0).getImm(); 1376 if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE) 1377 return false; 1378 } else if (UseMI->getOpcode() == PPC::ISEL || 1379 UseMI->getOpcode() == PPC::ISEL8) { 1380 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1381 if (SubIdx != PPC::sub_eq) 1382 return false; 1383 } else 1384 return false; 1385 } 1386 } 1387 1388 MachineBasicBlock::iterator I = CmpInstr; 1389 1390 // Scan forward to find the first use of the compare. 1391 for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end(); 1392 I != EL; ++I) { 1393 bool FoundUse = false; 1394 for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg), 1395 JE = MRI->use_instr_end(); J != JE; ++J) 1396 if (&*J == &*I) { 1397 FoundUse = true; 1398 break; 1399 } 1400 1401 if (FoundUse) 1402 break; 1403 } 1404 1405 // There are two possible candidates which can be changed to set CR[01]. 1406 // One is MI, the other is a SUB instruction. 1407 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1408 MachineInstr *Sub = nullptr; 1409 if (SrcReg2 != 0) 1410 // MI is not a candidate for CMPrr. 1411 MI = nullptr; 1412 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1413 // same BB as the comparison. This is to allow the check below to avoid calls 1414 // (and other explicit clobbers); instead we should really check for these 1415 // more explicitly (in at least a few predecessors). 1416 else if (MI->getParent() != CmpInstr->getParent() || Value != 0) { 1417 // PPC does not have a record-form SUBri. 1418 return false; 1419 } 1420 1421 // Search for Sub. 1422 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1423 --I; 1424 1425 // Get ready to iterate backward from CmpInstr. 1426 MachineBasicBlock::iterator E = MI, 1427 B = CmpInstr->getParent()->begin(); 1428 1429 for (; I != E && !noSub; --I) { 1430 const MachineInstr &Instr = *I; 1431 unsigned IOpC = Instr.getOpcode(); 1432 1433 if (&*I != CmpInstr && ( 1434 Instr.modifiesRegister(PPC::CR0, TRI) || 1435 Instr.readsRegister(PPC::CR0, TRI))) 1436 // This instruction modifies or uses the record condition register after 1437 // the one we want to change. While we could do this transformation, it 1438 // would likely not be profitable. This transformation removes one 1439 // instruction, and so even forcing RA to generate one move probably 1440 // makes it unprofitable. 1441 return false; 1442 1443 // Check whether CmpInstr can be made redundant by the current instruction. 1444 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1445 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1446 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1447 ((Instr.getOperand(1).getReg() == SrcReg && 1448 Instr.getOperand(2).getReg() == SrcReg2) || 1449 (Instr.getOperand(1).getReg() == SrcReg2 && 1450 Instr.getOperand(2).getReg() == SrcReg))) { 1451 Sub = &*I; 1452 break; 1453 } 1454 1455 if (I == B) 1456 // The 'and' is below the comparison instruction. 1457 return false; 1458 } 1459 1460 // Return false if no candidates exist. 1461 if (!MI && !Sub) 1462 return false; 1463 1464 // The single candidate is called MI. 1465 if (!MI) MI = Sub; 1466 1467 int NewOpC = -1; 1468 MIOpC = MI->getOpcode(); 1469 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8) 1470 NewOpC = MIOpC; 1471 else { 1472 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1473 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1474 NewOpC = MIOpC; 1475 } 1476 1477 // FIXME: On the non-embedded POWER architectures, only some of the record 1478 // forms are fast, and we should use only the fast ones. 1479 1480 // The defining instruction has a record form (or is already a record 1481 // form). It is possible, however, that we'll need to reverse the condition 1482 // code of the users. 1483 if (NewOpC == -1) 1484 return false; 1485 1486 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1487 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1488 1489 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1490 // needs to be updated to be based on SUB. Push the condition code 1491 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1492 // condition code of these operands will be modified. 1493 bool ShouldSwap = false; 1494 if (Sub) { 1495 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1496 Sub->getOperand(2).getReg() == SrcReg; 1497 1498 // The operands to subf are the opposite of sub, so only in the fixed-point 1499 // case, invert the order. 1500 ShouldSwap = !ShouldSwap; 1501 } 1502 1503 if (ShouldSwap) 1504 for (MachineRegisterInfo::use_instr_iterator 1505 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1506 I != IE; ++I) { 1507 MachineInstr *UseMI = &*I; 1508 if (UseMI->getOpcode() == PPC::BCC) { 1509 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1510 assert((!equalityOnly || 1511 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) && 1512 "Invalid predicate for equality-only optimization"); 1513 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1514 PPC::getSwappedPredicate(Pred))); 1515 } else if (UseMI->getOpcode() == PPC::ISEL || 1516 UseMI->getOpcode() == PPC::ISEL8) { 1517 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1518 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1519 "Invalid CR bit for equality-only optimization"); 1520 1521 if (NewSubReg == PPC::sub_lt) 1522 NewSubReg = PPC::sub_gt; 1523 else if (NewSubReg == PPC::sub_gt) 1524 NewSubReg = PPC::sub_lt; 1525 1526 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1527 NewSubReg)); 1528 } else // We need to abort on a user we don't understand. 1529 return false; 1530 } 1531 1532 // Create a new virtual register to hold the value of the CR set by the 1533 // record-form instruction. If the instruction was not previously in 1534 // record form, then set the kill flag on the CR. 1535 CmpInstr->eraseFromParent(); 1536 1537 MachineBasicBlock::iterator MII = MI; 1538 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1539 get(TargetOpcode::COPY), CRReg) 1540 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1541 1542 if (MIOpC != NewOpC) { 1543 // We need to be careful here: we're replacing one instruction with 1544 // another, and we need to make sure that we get all of the right 1545 // implicit uses and defs. On the other hand, the caller may be holding 1546 // an iterator to this instruction, and so we can't delete it (this is 1547 // specifically the case if this is the instruction directly after the 1548 // compare). 1549 1550 const MCInstrDesc &NewDesc = get(NewOpC); 1551 MI->setDesc(NewDesc); 1552 1553 if (NewDesc.ImplicitDefs) 1554 for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs(); 1555 *ImpDefs; ++ImpDefs) 1556 if (!MI->definesRegister(*ImpDefs)) 1557 MI->addOperand(*MI->getParent()->getParent(), 1558 MachineOperand::CreateReg(*ImpDefs, true, true)); 1559 if (NewDesc.ImplicitUses) 1560 for (const uint16_t *ImpUses = NewDesc.getImplicitUses(); 1561 *ImpUses; ++ImpUses) 1562 if (!MI->readsRegister(*ImpUses)) 1563 MI->addOperand(*MI->getParent()->getParent(), 1564 MachineOperand::CreateReg(*ImpUses, false, true)); 1565 } 1566 1567 // Modify the condition code of operands in OperandsToUpdate. 1568 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1569 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1570 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1571 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1572 1573 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1574 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1575 1576 return true; 1577 } 1578 1579 /// GetInstSize - Return the number of bytes of code the specified 1580 /// instruction may be. This returns the maximum number of bytes. 1581 /// 1582 unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { 1583 unsigned Opcode = MI->getOpcode(); 1584 1585 if (Opcode == PPC::INLINEASM) { 1586 const MachineFunction *MF = MI->getParent()->getParent(); 1587 const char *AsmStr = MI->getOperand(0).getSymbolName(); 1588 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1589 } else { 1590 const MCInstrDesc &Desc = get(Opcode); 1591 return Desc.getSize(); 1592 } 1593 } 1594 1595 #undef DEBUG_TYPE 1596 #define DEBUG_TYPE "ppc-vsx-fma-mutate" 1597 1598 namespace { 1599 // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers 1600 // (Altivec and scalar floating-point registers), we need to transform the 1601 // copies into subregister copies with other restrictions. 1602 struct PPCVSXFMAMutate : public MachineFunctionPass { 1603 static char ID; 1604 PPCVSXFMAMutate() : MachineFunctionPass(ID) { 1605 initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry()); 1606 } 1607 1608 LiveIntervals *LIS; 1609 1610 const PPCTargetMachine *TM; 1611 const PPCInstrInfo *TII; 1612 1613 protected: 1614 bool processBlock(MachineBasicBlock &MBB) { 1615 bool Changed = false; 1616 1617 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1618 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1619 I != IE; ++I) { 1620 MachineInstr *MI = I; 1621 1622 // The default (A-type) VSX FMA form kills the addend (it is taken from 1623 // the target register, which is then updated to reflect the result of 1624 // the FMA). If the instruction, however, kills one of the registers 1625 // used for the product, then we can use the M-form instruction (which 1626 // will take that value from the to-be-defined register). 1627 1628 int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode()); 1629 if (AltOpc == -1) 1630 continue; 1631 1632 // This pass is run after register coalescing, and so we're looking for 1633 // a situation like this: 1634 // ... 1635 // %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9 1636 // %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16, 1637 // %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16 1638 // ... 1639 // %vreg9<def,tied1> = XSMADDADP %vreg9<tied0>, %vreg17, %vreg19, 1640 // %RM<imp-use>; VSLRC:%vreg9,%vreg17,%vreg19 1641 // ... 1642 // Where we can eliminate the copy by changing from the A-type to the 1643 // M-type instruction. Specifically, for this example, this means: 1644 // %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16, 1645 // %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16 1646 // is replaced by: 1647 // %vreg16<def,tied1> = XSMADDMDP %vreg16<tied0>, %vreg18, %vreg9, 1648 // %RM<imp-use>; VSLRC:%vreg16,%vreg18,%vreg9 1649 // and we remove: %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9 1650 1651 SlotIndex FMAIdx = LIS->getInstructionIndex(MI); 1652 1653 VNInfo *AddendValNo = 1654 LIS->getInterval(MI->getOperand(1).getReg()).Query(FMAIdx).valueIn(); 1655 MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def); 1656 1657 // The addend and this instruction must be in the same block. 1658 1659 if (!AddendMI || AddendMI->getParent() != MI->getParent()) 1660 continue; 1661 1662 // The addend must be a full copy within the same register class. 1663 1664 if (!AddendMI->isFullCopy()) 1665 continue; 1666 1667 unsigned AddendSrcReg = AddendMI->getOperand(1).getReg(); 1668 if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg)) { 1669 if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) != 1670 MRI.getRegClass(AddendSrcReg)) 1671 continue; 1672 } else { 1673 // If AddendSrcReg is a physical register, make sure the destination 1674 // register class contains it. 1675 if (!MRI.getRegClass(AddendMI->getOperand(0).getReg()) 1676 ->contains(AddendSrcReg)) 1677 continue; 1678 } 1679 1680 // In theory, there could be other uses of the addend copy before this 1681 // fma. We could deal with this, but that would require additional 1682 // logic below and I suspect it will not occur in any relevant 1683 // situations. 1684 bool OtherUsers = false; 1685 for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI); 1686 J != JE; --J) 1687 if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) { 1688 OtherUsers = true; 1689 break; 1690 } 1691 1692 if (OtherUsers) 1693 continue; 1694 1695 // Find one of the product operands that is killed by this instruction. 1696 1697 unsigned KilledProdOp = 0, OtherProdOp = 0; 1698 if (LIS->getInterval(MI->getOperand(2).getReg()) 1699 .Query(FMAIdx).isKill()) { 1700 KilledProdOp = 2; 1701 OtherProdOp = 3; 1702 } else if (LIS->getInterval(MI->getOperand(3).getReg()) 1703 .Query(FMAIdx).isKill()) { 1704 KilledProdOp = 3; 1705 OtherProdOp = 2; 1706 } 1707 1708 // If there are no killed product operands, then this transformation is 1709 // likely not profitable. 1710 if (!KilledProdOp) 1711 continue; 1712 1713 // In order to replace the addend here with the source of the copy, 1714 // it must still be live here. 1715 if (!LIS->getInterval(AddendMI->getOperand(1).getReg()).liveAt(FMAIdx)) 1716 continue; 1717 1718 // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3. 1719 1720 unsigned AddReg = AddendMI->getOperand(1).getReg(); 1721 unsigned KilledProdReg = MI->getOperand(KilledProdOp).getReg(); 1722 unsigned OtherProdReg = MI->getOperand(OtherProdOp).getReg(); 1723 1724 unsigned AddSubReg = AddendMI->getOperand(1).getSubReg(); 1725 unsigned KilledProdSubReg = MI->getOperand(KilledProdOp).getSubReg(); 1726 unsigned OtherProdSubReg = MI->getOperand(OtherProdOp).getSubReg(); 1727 1728 bool AddRegKill = AddendMI->getOperand(1).isKill(); 1729 bool KilledProdRegKill = MI->getOperand(KilledProdOp).isKill(); 1730 bool OtherProdRegKill = MI->getOperand(OtherProdOp).isKill(); 1731 1732 bool AddRegUndef = AddendMI->getOperand(1).isUndef(); 1733 bool KilledProdRegUndef = MI->getOperand(KilledProdOp).isUndef(); 1734 bool OtherProdRegUndef = MI->getOperand(OtherProdOp).isUndef(); 1735 1736 unsigned OldFMAReg = MI->getOperand(0).getReg(); 1737 1738 assert(OldFMAReg == AddendMI->getOperand(0).getReg() && 1739 "Addend copy not tied to old FMA output!"); 1740 1741 DEBUG(dbgs() << "VSX FMA Mutation:\n " << *MI;); 1742 1743 MI->getOperand(0).setReg(KilledProdReg); 1744 MI->getOperand(1).setReg(KilledProdReg); 1745 MI->getOperand(3).setReg(AddReg); 1746 MI->getOperand(2).setReg(OtherProdReg); 1747 1748 MI->getOperand(0).setSubReg(KilledProdSubReg); 1749 MI->getOperand(1).setSubReg(KilledProdSubReg); 1750 MI->getOperand(3).setSubReg(AddSubReg); 1751 MI->getOperand(2).setSubReg(OtherProdSubReg); 1752 1753 MI->getOperand(1).setIsKill(KilledProdRegKill); 1754 MI->getOperand(3).setIsKill(AddRegKill); 1755 MI->getOperand(2).setIsKill(OtherProdRegKill); 1756 1757 MI->getOperand(1).setIsUndef(KilledProdRegUndef); 1758 MI->getOperand(3).setIsUndef(AddRegUndef); 1759 MI->getOperand(2).setIsUndef(OtherProdRegUndef); 1760 1761 MI->setDesc(TII->get(AltOpc)); 1762 1763 DEBUG(dbgs() << " -> " << *MI); 1764 1765 // The killed product operand was killed here, so we can reuse it now 1766 // for the result of the fma. 1767 1768 LiveInterval &FMAInt = LIS->getInterval(OldFMAReg); 1769 VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot()); 1770 for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end(); 1771 UI != UE;) { 1772 MachineOperand &UseMO = *UI; 1773 MachineInstr *UseMI = UseMO.getParent(); 1774 ++UI; 1775 1776 // Don't replace the result register of the copy we're about to erase. 1777 if (UseMI == AddendMI) 1778 continue; 1779 1780 UseMO.setReg(KilledProdReg); 1781 UseMO.setSubReg(KilledProdSubReg); 1782 } 1783 1784 // Extend the live intervals of the killed product operand to hold the 1785 // fma result. 1786 1787 LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg); 1788 for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end(); 1789 AI != AE; ++AI) { 1790 // Don't add the segment that corresponds to the original copy. 1791 if (AI->valno == AddendValNo) 1792 continue; 1793 1794 VNInfo *NewFMAValNo = 1795 NewFMAInt.getNextValue(AI->start, 1796 LIS->getVNInfoAllocator()); 1797 1798 NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end, 1799 NewFMAValNo)); 1800 } 1801 DEBUG(dbgs() << " extended: " << NewFMAInt << '\n'); 1802 1803 FMAInt.removeValNo(FMAValNo); 1804 DEBUG(dbgs() << " trimmed: " << FMAInt << '\n'); 1805 1806 // Remove the (now unused) copy. 1807 1808 DEBUG(dbgs() << " removing: " << *AddendMI << '\n'); 1809 LIS->RemoveMachineInstrFromMaps(AddendMI); 1810 AddendMI->eraseFromParent(); 1811 1812 Changed = true; 1813 } 1814 1815 return Changed; 1816 } 1817 1818 public: 1819 bool runOnMachineFunction(MachineFunction &MF) override { 1820 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 1821 // If we don't have VSX then go ahead and return without doing 1822 // anything. 1823 if (!TM->getSubtargetImpl()->hasVSX()) 1824 return false; 1825 1826 LIS = &getAnalysis<LiveIntervals>(); 1827 1828 TII = TM->getInstrInfo(); 1829 1830 bool Changed = false; 1831 1832 if (DisableVSXFMAMutate) 1833 return Changed; 1834 1835 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 1836 MachineBasicBlock &B = *I++; 1837 if (processBlock(B)) 1838 Changed = true; 1839 } 1840 1841 return Changed; 1842 } 1843 1844 void getAnalysisUsage(AnalysisUsage &AU) const override { 1845 AU.addRequired<LiveIntervals>(); 1846 AU.addPreserved<LiveIntervals>(); 1847 AU.addRequired<SlotIndexes>(); 1848 AU.addPreserved<SlotIndexes>(); 1849 MachineFunctionPass::getAnalysisUsage(AU); 1850 } 1851 }; 1852 } 1853 1854 INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE, 1855 "PowerPC VSX FMA Mutation", false, false) 1856 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 1857 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 1858 INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE, 1859 "PowerPC VSX FMA Mutation", false, false) 1860 1861 char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID; 1862 1863 char PPCVSXFMAMutate::ID = 0; 1864 FunctionPass* 1865 llvm::createPPCVSXFMAMutatePass() { return new PPCVSXFMAMutate(); } 1866 1867 #undef DEBUG_TYPE 1868 #define DEBUG_TYPE "ppc-vsx-copy" 1869 1870 namespace llvm { 1871 void initializePPCVSXCopyPass(PassRegistry&); 1872 } 1873 1874 namespace { 1875 // PPCVSXCopy pass - For copies between VSX registers and non-VSX registers 1876 // (Altivec and scalar floating-point registers), we need to transform the 1877 // copies into subregister copies with other restrictions. 1878 struct PPCVSXCopy : public MachineFunctionPass { 1879 static char ID; 1880 PPCVSXCopy() : MachineFunctionPass(ID) { 1881 initializePPCVSXCopyPass(*PassRegistry::getPassRegistry()); 1882 } 1883 1884 const PPCTargetMachine *TM; 1885 const PPCInstrInfo *TII; 1886 1887 bool IsRegInClass(unsigned Reg, const TargetRegisterClass *RC, 1888 MachineRegisterInfo &MRI) { 1889 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1890 return RC->hasSubClassEq(MRI.getRegClass(Reg)); 1891 } else if (RC->contains(Reg)) { 1892 return true; 1893 } 1894 1895 return false; 1896 } 1897 1898 bool IsVSReg(unsigned Reg, MachineRegisterInfo &MRI) { 1899 return IsRegInClass(Reg, &PPC::VSRCRegClass, MRI); 1900 } 1901 1902 bool IsVRReg(unsigned Reg, MachineRegisterInfo &MRI) { 1903 return IsRegInClass(Reg, &PPC::VRRCRegClass, MRI); 1904 } 1905 1906 bool IsF8Reg(unsigned Reg, MachineRegisterInfo &MRI) { 1907 return IsRegInClass(Reg, &PPC::F8RCRegClass, MRI); 1908 } 1909 1910 protected: 1911 bool processBlock(MachineBasicBlock &MBB) { 1912 bool Changed = false; 1913 1914 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1915 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1916 I != IE; ++I) { 1917 MachineInstr *MI = I; 1918 if (!MI->isFullCopy()) 1919 continue; 1920 1921 MachineOperand &DstMO = MI->getOperand(0); 1922 MachineOperand &SrcMO = MI->getOperand(1); 1923 1924 if ( IsVSReg(DstMO.getReg(), MRI) && 1925 !IsVSReg(SrcMO.getReg(), MRI)) { 1926 // This is a copy *to* a VSX register from a non-VSX register. 1927 Changed = true; 1928 1929 const TargetRegisterClass *SrcRC = 1930 IsVRReg(SrcMO.getReg(), MRI) ? &PPC::VSHRCRegClass : 1931 &PPC::VSLRCRegClass; 1932 assert((IsF8Reg(SrcMO.getReg(), MRI) || 1933 IsVRReg(SrcMO.getReg(), MRI)) && 1934 "Unknown source for a VSX copy"); 1935 1936 unsigned NewVReg = MRI.createVirtualRegister(SrcRC); 1937 BuildMI(MBB, MI, MI->getDebugLoc(), 1938 TII->get(TargetOpcode::SUBREG_TO_REG), NewVReg) 1939 .addImm(1) // add 1, not 0, because there is no implicit clearing 1940 // of the high bits. 1941 .addOperand(SrcMO) 1942 .addImm(IsVRReg(SrcMO.getReg(), MRI) ? PPC::sub_128 : 1943 PPC::sub_64); 1944 1945 // The source of the original copy is now the new virtual register. 1946 SrcMO.setReg(NewVReg); 1947 } else if (!IsVSReg(DstMO.getReg(), MRI) && 1948 IsVSReg(SrcMO.getReg(), MRI)) { 1949 // This is a copy *from* a VSX register to a non-VSX register. 1950 Changed = true; 1951 1952 const TargetRegisterClass *DstRC = 1953 IsVRReg(DstMO.getReg(), MRI) ? &PPC::VSHRCRegClass : 1954 &PPC::VSLRCRegClass; 1955 assert((IsF8Reg(DstMO.getReg(), MRI) || 1956 IsVRReg(DstMO.getReg(), MRI)) && 1957 "Unknown destination for a VSX copy"); 1958 1959 // Copy the VSX value into a new VSX register of the correct subclass. 1960 unsigned NewVReg = MRI.createVirtualRegister(DstRC); 1961 BuildMI(MBB, MI, MI->getDebugLoc(), 1962 TII->get(TargetOpcode::COPY), NewVReg) 1963 .addOperand(SrcMO); 1964 1965 // Transform the original copy into a subregister extraction copy. 1966 SrcMO.setReg(NewVReg); 1967 SrcMO.setSubReg(IsVRReg(DstMO.getReg(), MRI) ? PPC::sub_128 : 1968 PPC::sub_64); 1969 } 1970 } 1971 1972 return Changed; 1973 } 1974 1975 public: 1976 bool runOnMachineFunction(MachineFunction &MF) override { 1977 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 1978 // If we don't have VSX on the subtarget, don't do anything. 1979 if (!TM->getSubtargetImpl()->hasVSX()) 1980 return false; 1981 TII = TM->getInstrInfo(); 1982 1983 bool Changed = false; 1984 1985 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 1986 MachineBasicBlock &B = *I++; 1987 if (processBlock(B)) 1988 Changed = true; 1989 } 1990 1991 return Changed; 1992 } 1993 1994 void getAnalysisUsage(AnalysisUsage &AU) const override { 1995 MachineFunctionPass::getAnalysisUsage(AU); 1996 } 1997 }; 1998 } 1999 2000 INITIALIZE_PASS(PPCVSXCopy, DEBUG_TYPE, 2001 "PowerPC VSX Copy Legalization", false, false) 2002 2003 char PPCVSXCopy::ID = 0; 2004 FunctionPass* 2005 llvm::createPPCVSXCopyPass() { return new PPCVSXCopy(); } 2006 2007 #undef DEBUG_TYPE 2008 #define DEBUG_TYPE "ppc-vsx-copy-cleanup" 2009 2010 namespace llvm { 2011 void initializePPCVSXCopyCleanupPass(PassRegistry&); 2012 } 2013 2014 namespace { 2015 // PPCVSXCopyCleanup pass - We sometimes end up generating self copies of VSX 2016 // registers (mostly because the ABI code still places all values into the 2017 // "traditional" floating-point and vector registers). Remove them here. 2018 struct PPCVSXCopyCleanup : public MachineFunctionPass { 2019 static char ID; 2020 PPCVSXCopyCleanup() : MachineFunctionPass(ID) { 2021 initializePPCVSXCopyCleanupPass(*PassRegistry::getPassRegistry()); 2022 } 2023 2024 const PPCTargetMachine *TM; 2025 const PPCInstrInfo *TII; 2026 2027 protected: 2028 bool processBlock(MachineBasicBlock &MBB) { 2029 bool Changed = false; 2030 2031 SmallVector<MachineInstr *, 4> ToDelete; 2032 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 2033 I != IE; ++I) { 2034 MachineInstr *MI = I; 2035 if (MI->getOpcode() == PPC::XXLOR && 2036 MI->getOperand(0).getReg() == MI->getOperand(1).getReg() && 2037 MI->getOperand(0).getReg() == MI->getOperand(2).getReg()) 2038 ToDelete.push_back(MI); 2039 } 2040 2041 if (!ToDelete.empty()) 2042 Changed = true; 2043 2044 for (unsigned i = 0, ie = ToDelete.size(); i != ie; ++i) { 2045 DEBUG(dbgs() << "Removing VSX self-copy: " << *ToDelete[i]); 2046 ToDelete[i]->eraseFromParent(); 2047 } 2048 2049 return Changed; 2050 } 2051 2052 public: 2053 bool runOnMachineFunction(MachineFunction &MF) override { 2054 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 2055 // If we don't have VSX don't bother doing anything here. 2056 if (!TM->getSubtargetImpl()->hasVSX()) 2057 return false; 2058 TII = TM->getInstrInfo(); 2059 2060 bool Changed = false; 2061 2062 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 2063 MachineBasicBlock &B = *I++; 2064 if (processBlock(B)) 2065 Changed = true; 2066 } 2067 2068 return Changed; 2069 } 2070 2071 void getAnalysisUsage(AnalysisUsage &AU) const override { 2072 MachineFunctionPass::getAnalysisUsage(AU); 2073 } 2074 }; 2075 } 2076 2077 INITIALIZE_PASS(PPCVSXCopyCleanup, DEBUG_TYPE, 2078 "PowerPC VSX Copy Cleanup", false, false) 2079 2080 char PPCVSXCopyCleanup::ID = 0; 2081 FunctionPass* 2082 llvm::createPPCVSXCopyCleanupPass() { return new PPCVSXCopyCleanup(); } 2083 2084 #undef DEBUG_TYPE 2085 #define DEBUG_TYPE "ppc-early-ret" 2086 STATISTIC(NumBCLR, "Number of early conditional returns"); 2087 STATISTIC(NumBLR, "Number of early returns"); 2088 2089 namespace llvm { 2090 void initializePPCEarlyReturnPass(PassRegistry&); 2091 } 2092 2093 namespace { 2094 // PPCEarlyReturn pass - For simple functions without epilogue code, move 2095 // returns up, and create conditional returns, to avoid unnecessary 2096 // branch-to-blr sequences. 2097 struct PPCEarlyReturn : public MachineFunctionPass { 2098 static char ID; 2099 PPCEarlyReturn() : MachineFunctionPass(ID) { 2100 initializePPCEarlyReturnPass(*PassRegistry::getPassRegistry()); 2101 } 2102 2103 const PPCTargetMachine *TM; 2104 const PPCInstrInfo *TII; 2105 2106 protected: 2107 bool processBlock(MachineBasicBlock &ReturnMBB) { 2108 bool Changed = false; 2109 2110 MachineBasicBlock::iterator I = ReturnMBB.begin(); 2111 I = ReturnMBB.SkipPHIsAndLabels(I); 2112 2113 // The block must be essentially empty except for the blr. 2114 if (I == ReturnMBB.end() || I->getOpcode() != PPC::BLR || 2115 I != ReturnMBB.getLastNonDebugInstr()) 2116 return Changed; 2117 2118 SmallVector<MachineBasicBlock*, 8> PredToRemove; 2119 for (MachineBasicBlock::pred_iterator PI = ReturnMBB.pred_begin(), 2120 PIE = ReturnMBB.pred_end(); PI != PIE; ++PI) { 2121 bool OtherReference = false, BlockChanged = false; 2122 for (MachineBasicBlock::iterator J = (*PI)->getLastNonDebugInstr();;) { 2123 if (J->getOpcode() == PPC::B) { 2124 if (J->getOperand(0).getMBB() == &ReturnMBB) { 2125 // This is an unconditional branch to the return. Replace the 2126 // branch with a blr. 2127 BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BLR)); 2128 MachineBasicBlock::iterator K = J--; 2129 K->eraseFromParent(); 2130 BlockChanged = true; 2131 ++NumBLR; 2132 continue; 2133 } 2134 } else if (J->getOpcode() == PPC::BCC) { 2135 if (J->getOperand(2).getMBB() == &ReturnMBB) { 2136 // This is a conditional branch to the return. Replace the branch 2137 // with a bclr. 2138 BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BCCLR)) 2139 .addImm(J->getOperand(0).getImm()) 2140 .addReg(J->getOperand(1).getReg()); 2141 MachineBasicBlock::iterator K = J--; 2142 K->eraseFromParent(); 2143 BlockChanged = true; 2144 ++NumBCLR; 2145 continue; 2146 } 2147 } else if (J->getOpcode() == PPC::BC || J->getOpcode() == PPC::BCn) { 2148 if (J->getOperand(1).getMBB() == &ReturnMBB) { 2149 // This is a conditional branch to the return. Replace the branch 2150 // with a bclr. 2151 BuildMI(**PI, J, J->getDebugLoc(), 2152 TII->get(J->getOpcode() == PPC::BC ? 2153 PPC::BCLR : PPC::BCLRn)) 2154 .addReg(J->getOperand(0).getReg()); 2155 MachineBasicBlock::iterator K = J--; 2156 K->eraseFromParent(); 2157 BlockChanged = true; 2158 ++NumBCLR; 2159 continue; 2160 } 2161 } else if (J->isBranch()) { 2162 if (J->isIndirectBranch()) { 2163 if (ReturnMBB.hasAddressTaken()) 2164 OtherReference = true; 2165 } else 2166 for (unsigned i = 0; i < J->getNumOperands(); ++i) 2167 if (J->getOperand(i).isMBB() && 2168 J->getOperand(i).getMBB() == &ReturnMBB) 2169 OtherReference = true; 2170 } else if (!J->isTerminator() && !J->isDebugValue()) 2171 break; 2172 2173 if (J == (*PI)->begin()) 2174 break; 2175 2176 --J; 2177 } 2178 2179 if ((*PI)->canFallThrough() && (*PI)->isLayoutSuccessor(&ReturnMBB)) 2180 OtherReference = true; 2181 2182 // Predecessors are stored in a vector and can't be removed here. 2183 if (!OtherReference && BlockChanged) { 2184 PredToRemove.push_back(*PI); 2185 } 2186 2187 if (BlockChanged) 2188 Changed = true; 2189 } 2190 2191 for (unsigned i = 0, ie = PredToRemove.size(); i != ie; ++i) 2192 PredToRemove[i]->removeSuccessor(&ReturnMBB); 2193 2194 if (Changed && !ReturnMBB.hasAddressTaken()) { 2195 // We now might be able to merge this blr-only block into its 2196 // by-layout predecessor. 2197 if (ReturnMBB.pred_size() == 1 && 2198 (*ReturnMBB.pred_begin())->isLayoutSuccessor(&ReturnMBB)) { 2199 // Move the blr into the preceding block. 2200 MachineBasicBlock &PrevMBB = **ReturnMBB.pred_begin(); 2201 PrevMBB.splice(PrevMBB.end(), &ReturnMBB, I); 2202 PrevMBB.removeSuccessor(&ReturnMBB); 2203 } 2204 2205 if (ReturnMBB.pred_empty()) 2206 ReturnMBB.eraseFromParent(); 2207 } 2208 2209 return Changed; 2210 } 2211 2212 public: 2213 bool runOnMachineFunction(MachineFunction &MF) override { 2214 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 2215 TII = TM->getInstrInfo(); 2216 2217 bool Changed = false; 2218 2219 // If the function does not have at least two blocks, then there is 2220 // nothing to do. 2221 if (MF.size() < 2) 2222 return Changed; 2223 2224 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 2225 MachineBasicBlock &B = *I++; 2226 if (processBlock(B)) 2227 Changed = true; 2228 } 2229 2230 return Changed; 2231 } 2232 2233 void getAnalysisUsage(AnalysisUsage &AU) const override { 2234 MachineFunctionPass::getAnalysisUsage(AU); 2235 } 2236 }; 2237 } 2238 2239 INITIALIZE_PASS(PPCEarlyReturn, DEBUG_TYPE, 2240 "PowerPC Early-Return Creation", false, false) 2241 2242 char PPCEarlyReturn::ID = 0; 2243 FunctionPass* 2244 llvm::createPPCEarlyReturnPass() { return new PPCEarlyReturn(); } 2245