1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/ScheduleDAG.h" 31 #include "llvm/CodeGen/SlotIndexes.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCInst.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "ppc-instr-info" 44 45 #define GET_INSTRMAP_INFO 46 #define GET_INSTRINFO_CTOR_DTOR 47 #include "PPCGenInstrInfo.inc" 48 49 STATISTIC(NumStoreSPILLVSRRCAsVec, 50 "Number of spillvsrrc spilled to stack as vec"); 51 STATISTIC(NumStoreSPILLVSRRCAsGpr, 52 "Number of spillvsrrc spilled to stack as gpr"); 53 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 54 STATISTIC(CmpIselsConverted, 55 "Number of ISELs that depend on comparison of constants converted"); 56 STATISTIC(MissedConvertibleImmediateInstrs, 57 "Number of compare-immediate instructions fed by constants"); 58 STATISTIC(NumRcRotatesConvertedToRcAnd, 59 "Number of record-form rotates converted to record-form andi"); 60 61 static cl:: 62 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 63 cl::desc("Disable analysis for CTR loops")); 64 65 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 66 cl::desc("Disable compare instruction optimization"), cl::Hidden); 67 68 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 69 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 70 cl::Hidden); 71 72 static cl::opt<bool> 73 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 74 cl::desc("Use the old (incorrect) instruction latency calculation")); 75 76 // Pin the vtable to this file. 77 void PPCInstrInfo::anchor() {} 78 79 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 80 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 81 /* CatchRetOpcode */ -1, 82 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 83 Subtarget(STI), RI(STI.getTargetMachine()) {} 84 85 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 86 /// this target when scheduling the DAG. 87 ScheduleHazardRecognizer * 88 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 89 const ScheduleDAG *DAG) const { 90 unsigned Directive = 91 static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); 92 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 93 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 94 const InstrItineraryData *II = 95 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 96 return new ScoreboardHazardRecognizer(II, DAG); 97 } 98 99 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 100 } 101 102 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 103 /// to use for this target when scheduling the DAG. 104 ScheduleHazardRecognizer * 105 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 106 const ScheduleDAG *DAG) const { 107 unsigned Directive = 108 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); 109 110 // FIXME: Leaving this as-is until we have POWER9 scheduling info 111 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 112 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 113 114 // Most subtargets use a PPC970 recognizer. 115 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 116 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 117 assert(DAG->TII && "No InstrInfo?"); 118 119 return new PPCHazardRecognizer970(*DAG); 120 } 121 122 return new ScoreboardHazardRecognizer(II, DAG); 123 } 124 125 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 126 const MachineInstr &MI, 127 unsigned *PredCost) const { 128 if (!ItinData || UseOldLatencyCalc) 129 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 130 131 // The default implementation of getInstrLatency calls getStageLatency, but 132 // getStageLatency does not do the right thing for us. While we have 133 // itinerary, most cores are fully pipelined, and so the itineraries only 134 // express the first part of the pipeline, not every stage. Instead, we need 135 // to use the listed output operand cycle number (using operand 0 here, which 136 // is an output). 137 138 unsigned Latency = 1; 139 unsigned DefClass = MI.getDesc().getSchedClass(); 140 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 141 const MachineOperand &MO = MI.getOperand(i); 142 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 143 continue; 144 145 int Cycle = ItinData->getOperandCycle(DefClass, i); 146 if (Cycle < 0) 147 continue; 148 149 Latency = std::max(Latency, (unsigned) Cycle); 150 } 151 152 return Latency; 153 } 154 155 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 156 const MachineInstr &DefMI, unsigned DefIdx, 157 const MachineInstr &UseMI, 158 unsigned UseIdx) const { 159 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 160 UseMI, UseIdx); 161 162 if (!DefMI.getParent()) 163 return Latency; 164 165 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 166 Register Reg = DefMO.getReg(); 167 168 bool IsRegCR; 169 if (Register::isVirtualRegister(Reg)) { 170 const MachineRegisterInfo *MRI = 171 &DefMI.getParent()->getParent()->getRegInfo(); 172 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 173 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 174 } else { 175 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 176 PPC::CRBITRCRegClass.contains(Reg); 177 } 178 179 if (UseMI.isBranch() && IsRegCR) { 180 if (Latency < 0) 181 Latency = getInstrLatency(ItinData, DefMI); 182 183 // On some cores, there is an additional delay between writing to a condition 184 // register, and using it from a branch. 185 unsigned Directive = Subtarget.getCPUDirective(); 186 switch (Directive) { 187 default: break; 188 case PPC::DIR_7400: 189 case PPC::DIR_750: 190 case PPC::DIR_970: 191 case PPC::DIR_E5500: 192 case PPC::DIR_PWR4: 193 case PPC::DIR_PWR5: 194 case PPC::DIR_PWR5X: 195 case PPC::DIR_PWR6: 196 case PPC::DIR_PWR6X: 197 case PPC::DIR_PWR7: 198 case PPC::DIR_PWR8: 199 // FIXME: Is this needed for POWER9? 200 Latency += 2; 201 break; 202 } 203 } 204 205 return Latency; 206 } 207 208 /// This is an architecture-specific helper function of reassociateOps. 209 /// Set special operand attributes for new instructions after reassociation. 210 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, 211 MachineInstr &OldMI2, 212 MachineInstr &NewMI1, 213 MachineInstr &NewMI2) const { 214 // Propagate FP flags from the original instructions. 215 // But clear poison-generating flags because those may not be valid now. 216 uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags(); 217 NewMI1.setFlags(IntersectedFlags); 218 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap); 219 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap); 220 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact); 221 222 NewMI2.setFlags(IntersectedFlags); 223 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap); 224 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap); 225 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact); 226 } 227 228 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI, 229 uint16_t Flags) const { 230 MI.setFlags(Flags); 231 MI.clearFlag(MachineInstr::MIFlag::NoSWrap); 232 MI.clearFlag(MachineInstr::MIFlag::NoUWrap); 233 MI.clearFlag(MachineInstr::MIFlag::IsExact); 234 } 235 236 // This function does not list all associative and commutative operations, but 237 // only those worth feeding through the machine combiner in an attempt to 238 // reduce the critical path. Mostly, this means floating-point operations, 239 // because they have high latencies(>=5) (compared to other operations, such as 240 // and/or, which are also associative and commutative, but have low latencies). 241 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 242 switch (Inst.getOpcode()) { 243 // Floating point: 244 // FP Add: 245 case PPC::FADD: 246 case PPC::FADDS: 247 // FP Multiply: 248 case PPC::FMUL: 249 case PPC::FMULS: 250 // Altivec Add: 251 case PPC::VADDFP: 252 // VSX Add: 253 case PPC::XSADDDP: 254 case PPC::XVADDDP: 255 case PPC::XVADDSP: 256 case PPC::XSADDSP: 257 // VSX Multiply: 258 case PPC::XSMULDP: 259 case PPC::XVMULDP: 260 case PPC::XVMULSP: 261 case PPC::XSMULSP: 262 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && 263 Inst.getFlag(MachineInstr::MIFlag::FmNsz); 264 // Fixed point: 265 // Multiply: 266 case PPC::MULHD: 267 case PPC::MULLD: 268 case PPC::MULHW: 269 case PPC::MULLW: 270 return true; 271 default: 272 return false; 273 } 274 } 275 276 #define InfoArrayIdxFMAInst 0 277 #define InfoArrayIdxFAddInst 1 278 #define InfoArrayIdxFMULInst 2 279 #define InfoArrayIdxAddOpIdx 3 280 #define InfoArrayIdxMULOpIdx 4 281 // Array keeps info for FMA instructions: 282 // Index 0(InfoArrayIdxFMAInst): FMA instruction; 283 // Index 1(InfoArrayIdxFAddInst): ADD instruction assoaicted with FMA; 284 // Index 2(InfoArrayIdxFMULInst): MUL instruction assoaicted with FMA; 285 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands; 286 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands; 287 // second MUL operand index is plus 1. 288 static const uint16_t FMAOpIdxInfo[][5] = { 289 // FIXME: Add more FMA instructions like XSNMADDADP and so on. 290 {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2}, 291 {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2}, 292 {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2}, 293 {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2}, 294 {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1}, 295 {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1}}; 296 297 // Check if an opcode is a FMA instruction. If it is, return the index in array 298 // FMAOpIdxInfo. Otherwise, return -1. 299 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const { 300 for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++) 301 if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode) 302 return I; 303 return -1; 304 } 305 306 // Try to reassociate FMA chains like below: 307 // 308 // Pattern 1: 309 // A = FADD X, Y (Leaf) 310 // B = FMA A, M21, M22 (Prev) 311 // C = FMA B, M31, M32 (Root) 312 // --> 313 // A = FMA X, M21, M22 314 // B = FMA Y, M31, M32 315 // C = FADD A, B 316 // 317 // Pattern 2: 318 // A = FMA X, M11, M12 (Leaf) 319 // B = FMA A, M21, M22 (Prev) 320 // C = FMA B, M31, M32 (Root) 321 // --> 322 // A = FMUL M11, M12 323 // B = FMA X, M21, M22 324 // D = FMA A, M31, M32 325 // C = FADD B, D 326 // 327 // breaking the dependency between A and B, allowing FMA to be executed in 328 // parallel (or back-to-back in a pipeline) instead of depending on each other. 329 bool PPCInstrInfo::getFMAPatterns( 330 MachineInstr &Root, 331 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 332 MachineBasicBlock *MBB = Root.getParent(); 333 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 334 335 auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) { 336 for (const auto &MO : Instr.explicit_operands()) 337 if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg()))) 338 return false; 339 return true; 340 }; 341 342 auto IsReassociable = [&](const MachineInstr &Instr, int16_t &AddOpIdx, 343 bool IsLeaf, bool IsAdd) { 344 int16_t Idx = -1; 345 if (!IsAdd) { 346 Idx = getFMAOpIdxInfo(Instr.getOpcode()); 347 if (Idx < 0) 348 return false; 349 } else if (Instr.getOpcode() != 350 FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())] 351 [InfoArrayIdxFAddInst]) 352 return false; 353 354 // Instruction can be reassociated. 355 // fast math flags may prohibit reassociation. 356 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 357 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 358 return false; 359 360 // Instruction operands are virtual registers for reassociation. 361 if (!IsAllOpsVirtualReg(Instr)) 362 return false; 363 364 if (IsAdd && IsLeaf) 365 return true; 366 367 AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 368 369 const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx); 370 MachineInstr *MIAdd = MRI.getUniqueVRegDef(OpAdd.getReg()); 371 // If 'add' operand's def is not in current block, don't do ILP related opt. 372 if (!MIAdd || MIAdd->getParent() != MBB) 373 return false; 374 375 // If this is not Leaf FMA Instr, its 'add' operand should only have one use 376 // as this fma will be changed later. 377 return IsLeaf ? true : MRI.hasOneNonDBGUse(OpAdd.getReg()); 378 }; 379 380 int16_t AddOpIdx = -1; 381 // Root must be a valid FMA like instruction. 382 if (!IsReassociable(Root, AddOpIdx, false, false)) 383 return false; 384 385 assert((AddOpIdx >= 0) && "add operand index not right!"); 386 387 Register RegB = Root.getOperand(AddOpIdx).getReg(); 388 MachineInstr *Prev = MRI.getUniqueVRegDef(RegB); 389 390 // Prev must be a valid FMA like instruction. 391 AddOpIdx = -1; 392 if (!IsReassociable(*Prev, AddOpIdx, false, false)) 393 return false; 394 395 assert((AddOpIdx >= 0) && "add operand index not right!"); 396 397 Register RegA = Prev->getOperand(AddOpIdx).getReg(); 398 MachineInstr *Leaf = MRI.getUniqueVRegDef(RegA); 399 AddOpIdx = -1; 400 if (IsReassociable(*Leaf, AddOpIdx, true, false)) { 401 Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 402 return true; 403 } 404 if (IsReassociable(*Leaf, AddOpIdx, true, true)) { 405 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM); 406 return true; 407 } 408 return false; 409 } 410 411 bool PPCInstrInfo::getMachineCombinerPatterns( 412 MachineInstr &Root, 413 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 414 // Using the machine combiner in this way is potentially expensive, so 415 // restrict to when aggressive optimizations are desired. 416 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 417 return false; 418 419 if (getFMAPatterns(Root, Patterns)) 420 return true; 421 422 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 423 } 424 425 void PPCInstrInfo::genAlternativeCodeSequence( 426 MachineInstr &Root, MachineCombinerPattern Pattern, 427 SmallVectorImpl<MachineInstr *> &InsInstrs, 428 SmallVectorImpl<MachineInstr *> &DelInstrs, 429 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 430 switch (Pattern) { 431 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 432 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 433 reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg); 434 break; 435 default: 436 // Reassociate default patterns. 437 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, 438 DelInstrs, InstrIdxForVirtReg); 439 break; 440 } 441 } 442 443 // Currently, only handle two patterns REASSOC_XY_AMM_BMM and 444 // REASSOC_XMM_AMM_BMM. See comments for getFMAPatterns. 445 void PPCInstrInfo::reassociateFMA( 446 MachineInstr &Root, MachineCombinerPattern Pattern, 447 SmallVectorImpl<MachineInstr *> &InsInstrs, 448 SmallVectorImpl<MachineInstr *> &DelInstrs, 449 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 450 MachineFunction *MF = Root.getMF(); 451 MachineRegisterInfo &MRI = MF->getRegInfo(); 452 MachineOperand &OpC = Root.getOperand(0); 453 Register RegC = OpC.getReg(); 454 const TargetRegisterClass *RC = MRI.getRegClass(RegC); 455 MRI.constrainRegClass(RegC, RC); 456 457 unsigned FmaOp = Root.getOpcode(); 458 int16_t Idx = getFMAOpIdxInfo(FmaOp); 459 assert(Idx >= 0 && "Root must be a FMA instruction"); 460 461 uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 462 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 463 MachineInstr *Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg()); 464 MachineInstr *Leaf = 465 MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg()); 466 uint16_t IntersectedFlags = 467 Root.getFlags() & Prev->getFlags() & Leaf->getFlags(); 468 469 auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg, 470 bool &KillFlag) { 471 Reg = Operand.getReg(); 472 MRI.constrainRegClass(Reg, RC); 473 KillFlag = Operand.isKill(); 474 }; 475 476 auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1, 477 Register &MulOp2, bool &MulOp1KillFlag, 478 bool &MulOp2KillFlag) { 479 GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag); 480 GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag); 481 }; 482 483 Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32; 484 bool KillX = false, KillY = false, KillM11 = false, KillM12 = false, 485 KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false; 486 487 GetFMAInstrInfo(Root, RegM31, RegM32, KillM31, KillM32); 488 GetFMAInstrInfo(*Prev, RegM21, RegM22, KillM21, KillM22); 489 490 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 491 GetFMAInstrInfo(*Leaf, RegM11, RegM12, KillM11, KillM12); 492 GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX); 493 } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) { 494 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 495 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 496 } 497 498 // Create new virtual registers for the new results instead of 499 // recycling legacy ones because the MachineCombiner's computation of the 500 // critical path requires a new register definition rather than an existing 501 // one. 502 Register NewVRA = MRI.createVirtualRegister(RC); 503 InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0)); 504 505 Register NewVRB = MRI.createVirtualRegister(RC); 506 InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1)); 507 508 Register NewVRD = 0; 509 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 510 NewVRD = MRI.createVirtualRegister(RC); 511 InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2)); 512 } 513 514 auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd, 515 Register RegMul1, bool KillRegMul1, 516 Register RegMul2, bool KillRegMul2) { 517 MI->getOperand(AddOpIdx).setReg(RegAdd); 518 MI->getOperand(AddOpIdx).setIsKill(KillAdd); 519 MI->getOperand(FirstMulOpIdx).setReg(RegMul1); 520 MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1); 521 MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2); 522 MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2); 523 }; 524 525 if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) { 526 // Create new instructions for insertion. 527 MachineInstrBuilder MINewB = 528 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 529 .addReg(RegX, getKillRegState(KillX)) 530 .addReg(RegM21, getKillRegState(KillM21)) 531 .addReg(RegM22, getKillRegState(KillM22)); 532 MachineInstrBuilder MINewA = 533 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 534 .addReg(RegY, getKillRegState(KillY)) 535 .addReg(RegM31, getKillRegState(KillM31)) 536 .addReg(RegM32, getKillRegState(KillM32)); 537 // If AddOpIdx is not 1, adjust the order. 538 if (AddOpIdx != 1) { 539 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 540 AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32); 541 } 542 543 MachineInstrBuilder MINewC = 544 BuildMI(*MF, Root.getDebugLoc(), 545 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 546 .addReg(NewVRB, getKillRegState(true)) 547 .addReg(NewVRA, getKillRegState(true)); 548 549 // Update flags for newly created instructions. 550 setSpecialOperandAttr(*MINewA, IntersectedFlags); 551 setSpecialOperandAttr(*MINewB, IntersectedFlags); 552 setSpecialOperandAttr(*MINewC, IntersectedFlags); 553 554 // Record new instructions for insertion. 555 InsInstrs.push_back(MINewA); 556 InsInstrs.push_back(MINewB); 557 InsInstrs.push_back(MINewC); 558 } else if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 559 assert(NewVRD && "new FMA register not created!"); 560 // Create new instructions for insertion. 561 MachineInstrBuilder MINewA = 562 BuildMI(*MF, Leaf->getDebugLoc(), 563 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA) 564 .addReg(RegM11, getKillRegState(KillM11)) 565 .addReg(RegM12, getKillRegState(KillM12)); 566 MachineInstrBuilder MINewB = 567 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 568 .addReg(RegX, getKillRegState(KillX)) 569 .addReg(RegM21, getKillRegState(KillM21)) 570 .addReg(RegM22, getKillRegState(KillM22)); 571 MachineInstrBuilder MINewD = 572 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD) 573 .addReg(NewVRA, getKillRegState(true)) 574 .addReg(RegM31, getKillRegState(KillM31)) 575 .addReg(RegM32, getKillRegState(KillM32)); 576 // If AddOpIdx is not 1, adjust the order. 577 if (AddOpIdx != 1) { 578 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 579 AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32, 580 KillM32); 581 } 582 583 MachineInstrBuilder MINewC = 584 BuildMI(*MF, Root.getDebugLoc(), 585 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 586 .addReg(NewVRB, getKillRegState(true)) 587 .addReg(NewVRD, getKillRegState(true)); 588 589 // Update flags for newly created instructions. 590 setSpecialOperandAttr(*MINewA, IntersectedFlags); 591 setSpecialOperandAttr(*MINewB, IntersectedFlags); 592 setSpecialOperandAttr(*MINewD, IntersectedFlags); 593 setSpecialOperandAttr(*MINewC, IntersectedFlags); 594 595 // Record new instructions for insertion. 596 InsInstrs.push_back(MINewA); 597 InsInstrs.push_back(MINewB); 598 InsInstrs.push_back(MINewD); 599 InsInstrs.push_back(MINewC); 600 } 601 602 assert(!InsInstrs.empty() && 603 "Insertion instructions set should not be empty!"); 604 605 // Record old instructions for deletion. 606 DelInstrs.push_back(Leaf); 607 DelInstrs.push_back(Prev); 608 DelInstrs.push_back(&Root); 609 } 610 611 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 612 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 613 Register &SrcReg, Register &DstReg, 614 unsigned &SubIdx) const { 615 switch (MI.getOpcode()) { 616 default: return false; 617 case PPC::EXTSW: 618 case PPC::EXTSW_32: 619 case PPC::EXTSW_32_64: 620 SrcReg = MI.getOperand(1).getReg(); 621 DstReg = MI.getOperand(0).getReg(); 622 SubIdx = PPC::sub_32; 623 return true; 624 } 625 } 626 627 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 628 int &FrameIndex) const { 629 unsigned Opcode = MI.getOpcode(); 630 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 631 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 632 633 if (End != std::find(OpcodesForSpill, End, Opcode)) { 634 // Check for the operands added by addFrameReference (the immediate is the 635 // offset which defaults to 0). 636 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 637 MI.getOperand(2).isFI()) { 638 FrameIndex = MI.getOperand(2).getIndex(); 639 return MI.getOperand(0).getReg(); 640 } 641 } 642 return 0; 643 } 644 645 // For opcodes with the ReMaterializable flag set, this function is called to 646 // verify the instruction is really rematable. 647 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 648 AliasAnalysis *AA) const { 649 switch (MI.getOpcode()) { 650 default: 651 // This function should only be called for opcodes with the ReMaterializable 652 // flag set. 653 llvm_unreachable("Unknown rematerializable operation!"); 654 break; 655 case PPC::LI: 656 case PPC::LI8: 657 case PPC::LIS: 658 case PPC::LIS8: 659 case PPC::ADDIStocHA: 660 case PPC::ADDIStocHA8: 661 case PPC::ADDItocL: 662 case PPC::LOAD_STACK_GUARD: 663 case PPC::XXLXORz: 664 case PPC::XXLXORspz: 665 case PPC::XXLXORdpz: 666 case PPC::XXLEQVOnes: 667 case PPC::V_SET0B: 668 case PPC::V_SET0H: 669 case PPC::V_SET0: 670 case PPC::V_SETALLONESB: 671 case PPC::V_SETALLONESH: 672 case PPC::V_SETALLONES: 673 case PPC::CRSET: 674 case PPC::CRUNSET: 675 return true; 676 } 677 return false; 678 } 679 680 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 681 int &FrameIndex) const { 682 unsigned Opcode = MI.getOpcode(); 683 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 684 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 685 686 if (End != std::find(OpcodesForSpill, End, Opcode)) { 687 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 688 MI.getOperand(2).isFI()) { 689 FrameIndex = MI.getOperand(2).getIndex(); 690 return MI.getOperand(0).getReg(); 691 } 692 } 693 return 0; 694 } 695 696 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 697 unsigned OpIdx1, 698 unsigned OpIdx2) const { 699 MachineFunction &MF = *MI.getParent()->getParent(); 700 701 // Normal instructions can be commuted the obvious way. 702 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) 703 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 704 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 705 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 706 // changing the relative order of the mask operands might change what happens 707 // to the high-bits of the mask (and, thus, the result). 708 709 // Cannot commute if it has a non-zero rotate count. 710 if (MI.getOperand(3).getImm() != 0) 711 return nullptr; 712 713 // If we have a zero rotate count, we have: 714 // M = mask(MB,ME) 715 // Op0 = (Op1 & ~M) | (Op2 & M) 716 // Change this to: 717 // M = mask((ME+1)&31, (MB-1)&31) 718 // Op0 = (Op2 & ~M) | (Op1 & M) 719 720 // Swap op1/op2 721 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 722 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); 723 Register Reg0 = MI.getOperand(0).getReg(); 724 Register Reg1 = MI.getOperand(1).getReg(); 725 Register Reg2 = MI.getOperand(2).getReg(); 726 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 727 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 728 bool Reg1IsKill = MI.getOperand(1).isKill(); 729 bool Reg2IsKill = MI.getOperand(2).isKill(); 730 bool ChangeReg0 = false; 731 // If machine instrs are no longer in two-address forms, update 732 // destination register as well. 733 if (Reg0 == Reg1) { 734 // Must be two address instruction! 735 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 736 "Expecting a two-address instruction!"); 737 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 738 Reg2IsKill = false; 739 ChangeReg0 = true; 740 } 741 742 // Masks. 743 unsigned MB = MI.getOperand(4).getImm(); 744 unsigned ME = MI.getOperand(5).getImm(); 745 746 // We can't commute a trivial mask (there is no way to represent an all-zero 747 // mask). 748 if (MB == 0 && ME == 31) 749 return nullptr; 750 751 if (NewMI) { 752 // Create a new instruction. 753 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 754 bool Reg0IsDead = MI.getOperand(0).isDead(); 755 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 756 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 757 .addReg(Reg2, getKillRegState(Reg2IsKill)) 758 .addReg(Reg1, getKillRegState(Reg1IsKill)) 759 .addImm((ME + 1) & 31) 760 .addImm((MB - 1) & 31); 761 } 762 763 if (ChangeReg0) { 764 MI.getOperand(0).setReg(Reg2); 765 MI.getOperand(0).setSubReg(SubReg2); 766 } 767 MI.getOperand(2).setReg(Reg1); 768 MI.getOperand(1).setReg(Reg2); 769 MI.getOperand(2).setSubReg(SubReg1); 770 MI.getOperand(1).setSubReg(SubReg2); 771 MI.getOperand(2).setIsKill(Reg1IsKill); 772 MI.getOperand(1).setIsKill(Reg2IsKill); 773 774 // Swap the mask around. 775 MI.getOperand(4).setImm((ME + 1) & 31); 776 MI.getOperand(5).setImm((MB - 1) & 31); 777 return &MI; 778 } 779 780 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 781 unsigned &SrcOpIdx1, 782 unsigned &SrcOpIdx2) const { 783 // For VSX A-Type FMA instructions, it is the first two operands that can be 784 // commuted, however, because the non-encoded tied input operand is listed 785 // first, the operands to swap are actually the second and third. 786 787 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 788 if (AltOpc == -1) 789 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 790 791 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 792 // and SrcOpIdx2. 793 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 794 } 795 796 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 797 MachineBasicBlock::iterator MI) const { 798 // This function is used for scheduling, and the nop wanted here is the type 799 // that terminates dispatch groups on the POWER cores. 800 unsigned Directive = Subtarget.getCPUDirective(); 801 unsigned Opcode; 802 switch (Directive) { 803 default: Opcode = PPC::NOP; break; 804 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 805 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 806 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 807 // FIXME: Update when POWER9 scheduling model is ready. 808 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 809 } 810 811 DebugLoc DL; 812 BuildMI(MBB, MI, DL, get(Opcode)); 813 } 814 815 /// Return the noop instruction to use for a noop. 816 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 817 NopInst.setOpcode(PPC::NOP); 818 } 819 820 // Branch analysis. 821 // Note: If the condition register is set to CTR or CTR8 then this is a 822 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 823 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 824 MachineBasicBlock *&TBB, 825 MachineBasicBlock *&FBB, 826 SmallVectorImpl<MachineOperand> &Cond, 827 bool AllowModify) const { 828 bool isPPC64 = Subtarget.isPPC64(); 829 830 // If the block has no terminators, it just falls into the block after it. 831 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 832 if (I == MBB.end()) 833 return false; 834 835 if (!isUnpredicatedTerminator(*I)) 836 return false; 837 838 if (AllowModify) { 839 // If the BB ends with an unconditional branch to the fallthrough BB, 840 // we eliminate the branch instruction. 841 if (I->getOpcode() == PPC::B && 842 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 843 I->eraseFromParent(); 844 845 // We update iterator after deleting the last branch. 846 I = MBB.getLastNonDebugInstr(); 847 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 848 return false; 849 } 850 } 851 852 // Get the last instruction in the block. 853 MachineInstr &LastInst = *I; 854 855 // If there is only one terminator instruction, process it. 856 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 857 if (LastInst.getOpcode() == PPC::B) { 858 if (!LastInst.getOperand(0).isMBB()) 859 return true; 860 TBB = LastInst.getOperand(0).getMBB(); 861 return false; 862 } else if (LastInst.getOpcode() == PPC::BCC) { 863 if (!LastInst.getOperand(2).isMBB()) 864 return true; 865 // Block ends with fall-through condbranch. 866 TBB = LastInst.getOperand(2).getMBB(); 867 Cond.push_back(LastInst.getOperand(0)); 868 Cond.push_back(LastInst.getOperand(1)); 869 return false; 870 } else if (LastInst.getOpcode() == PPC::BC) { 871 if (!LastInst.getOperand(1).isMBB()) 872 return true; 873 // Block ends with fall-through condbranch. 874 TBB = LastInst.getOperand(1).getMBB(); 875 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 876 Cond.push_back(LastInst.getOperand(0)); 877 return false; 878 } else if (LastInst.getOpcode() == PPC::BCn) { 879 if (!LastInst.getOperand(1).isMBB()) 880 return true; 881 // Block ends with fall-through condbranch. 882 TBB = LastInst.getOperand(1).getMBB(); 883 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 884 Cond.push_back(LastInst.getOperand(0)); 885 return false; 886 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 887 LastInst.getOpcode() == PPC::BDNZ) { 888 if (!LastInst.getOperand(0).isMBB()) 889 return true; 890 if (DisableCTRLoopAnal) 891 return true; 892 TBB = LastInst.getOperand(0).getMBB(); 893 Cond.push_back(MachineOperand::CreateImm(1)); 894 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 895 true)); 896 return false; 897 } else if (LastInst.getOpcode() == PPC::BDZ8 || 898 LastInst.getOpcode() == PPC::BDZ) { 899 if (!LastInst.getOperand(0).isMBB()) 900 return true; 901 if (DisableCTRLoopAnal) 902 return true; 903 TBB = LastInst.getOperand(0).getMBB(); 904 Cond.push_back(MachineOperand::CreateImm(0)); 905 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 906 true)); 907 return false; 908 } 909 910 // Otherwise, don't know what this is. 911 return true; 912 } 913 914 // Get the instruction before it if it's a terminator. 915 MachineInstr &SecondLastInst = *I; 916 917 // If there are three terminators, we don't know what sort of block this is. 918 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 919 return true; 920 921 // If the block ends with PPC::B and PPC:BCC, handle it. 922 if (SecondLastInst.getOpcode() == PPC::BCC && 923 LastInst.getOpcode() == PPC::B) { 924 if (!SecondLastInst.getOperand(2).isMBB() || 925 !LastInst.getOperand(0).isMBB()) 926 return true; 927 TBB = SecondLastInst.getOperand(2).getMBB(); 928 Cond.push_back(SecondLastInst.getOperand(0)); 929 Cond.push_back(SecondLastInst.getOperand(1)); 930 FBB = LastInst.getOperand(0).getMBB(); 931 return false; 932 } else if (SecondLastInst.getOpcode() == PPC::BC && 933 LastInst.getOpcode() == PPC::B) { 934 if (!SecondLastInst.getOperand(1).isMBB() || 935 !LastInst.getOperand(0).isMBB()) 936 return true; 937 TBB = SecondLastInst.getOperand(1).getMBB(); 938 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 939 Cond.push_back(SecondLastInst.getOperand(0)); 940 FBB = LastInst.getOperand(0).getMBB(); 941 return false; 942 } else if (SecondLastInst.getOpcode() == PPC::BCn && 943 LastInst.getOpcode() == PPC::B) { 944 if (!SecondLastInst.getOperand(1).isMBB() || 945 !LastInst.getOperand(0).isMBB()) 946 return true; 947 TBB = SecondLastInst.getOperand(1).getMBB(); 948 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 949 Cond.push_back(SecondLastInst.getOperand(0)); 950 FBB = LastInst.getOperand(0).getMBB(); 951 return false; 952 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 953 SecondLastInst.getOpcode() == PPC::BDNZ) && 954 LastInst.getOpcode() == PPC::B) { 955 if (!SecondLastInst.getOperand(0).isMBB() || 956 !LastInst.getOperand(0).isMBB()) 957 return true; 958 if (DisableCTRLoopAnal) 959 return true; 960 TBB = SecondLastInst.getOperand(0).getMBB(); 961 Cond.push_back(MachineOperand::CreateImm(1)); 962 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 963 true)); 964 FBB = LastInst.getOperand(0).getMBB(); 965 return false; 966 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 967 SecondLastInst.getOpcode() == PPC::BDZ) && 968 LastInst.getOpcode() == PPC::B) { 969 if (!SecondLastInst.getOperand(0).isMBB() || 970 !LastInst.getOperand(0).isMBB()) 971 return true; 972 if (DisableCTRLoopAnal) 973 return true; 974 TBB = SecondLastInst.getOperand(0).getMBB(); 975 Cond.push_back(MachineOperand::CreateImm(0)); 976 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 977 true)); 978 FBB = LastInst.getOperand(0).getMBB(); 979 return false; 980 } 981 982 // If the block ends with two PPC:Bs, handle it. The second one is not 983 // executed, so remove it. 984 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 985 if (!SecondLastInst.getOperand(0).isMBB()) 986 return true; 987 TBB = SecondLastInst.getOperand(0).getMBB(); 988 I = LastInst; 989 if (AllowModify) 990 I->eraseFromParent(); 991 return false; 992 } 993 994 // Otherwise, can't handle this. 995 return true; 996 } 997 998 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 999 int *BytesRemoved) const { 1000 assert(!BytesRemoved && "code size not handled"); 1001 1002 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1003 if (I == MBB.end()) 1004 return 0; 1005 1006 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 1007 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1008 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1009 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1010 return 0; 1011 1012 // Remove the branch. 1013 I->eraseFromParent(); 1014 1015 I = MBB.end(); 1016 1017 if (I == MBB.begin()) return 1; 1018 --I; 1019 if (I->getOpcode() != PPC::BCC && 1020 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1021 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1022 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1023 return 1; 1024 1025 // Remove the branch. 1026 I->eraseFromParent(); 1027 return 2; 1028 } 1029 1030 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 1031 MachineBasicBlock *TBB, 1032 MachineBasicBlock *FBB, 1033 ArrayRef<MachineOperand> Cond, 1034 const DebugLoc &DL, 1035 int *BytesAdded) const { 1036 // Shouldn't be a fall through. 1037 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 1038 assert((Cond.size() == 2 || Cond.size() == 0) && 1039 "PPC branch conditions have two components!"); 1040 assert(!BytesAdded && "code size not handled"); 1041 1042 bool isPPC64 = Subtarget.isPPC64(); 1043 1044 // One-way branch. 1045 if (!FBB) { 1046 if (Cond.empty()) // Unconditional branch 1047 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 1048 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1049 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1050 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1051 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1052 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1053 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1054 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1055 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1056 else // Conditional branch 1057 BuildMI(&MBB, DL, get(PPC::BCC)) 1058 .addImm(Cond[0].getImm()) 1059 .add(Cond[1]) 1060 .addMBB(TBB); 1061 return 1; 1062 } 1063 1064 // Two-way Conditional Branch. 1065 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1066 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1067 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1068 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1069 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1070 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1071 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1072 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1073 else 1074 BuildMI(&MBB, DL, get(PPC::BCC)) 1075 .addImm(Cond[0].getImm()) 1076 .add(Cond[1]) 1077 .addMBB(TBB); 1078 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 1079 return 2; 1080 } 1081 1082 // Select analysis. 1083 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 1084 ArrayRef<MachineOperand> Cond, 1085 Register DstReg, Register TrueReg, 1086 Register FalseReg, int &CondCycles, 1087 int &TrueCycles, int &FalseCycles) const { 1088 if (Cond.size() != 2) 1089 return false; 1090 1091 // If this is really a bdnz-like condition, then it cannot be turned into a 1092 // select. 1093 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1094 return false; 1095 1096 // Check register classes. 1097 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1098 const TargetRegisterClass *RC = 1099 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1100 if (!RC) 1101 return false; 1102 1103 // isel is for regular integer GPRs only. 1104 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 1105 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 1106 !PPC::G8RCRegClass.hasSubClassEq(RC) && 1107 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 1108 return false; 1109 1110 // FIXME: These numbers are for the A2, how well they work for other cores is 1111 // an open question. On the A2, the isel instruction has a 2-cycle latency 1112 // but single-cycle throughput. These numbers are used in combination with 1113 // the MispredictPenalty setting from the active SchedMachineModel. 1114 CondCycles = 1; 1115 TrueCycles = 1; 1116 FalseCycles = 1; 1117 1118 return true; 1119 } 1120 1121 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 1122 MachineBasicBlock::iterator MI, 1123 const DebugLoc &dl, Register DestReg, 1124 ArrayRef<MachineOperand> Cond, Register TrueReg, 1125 Register FalseReg) const { 1126 assert(Cond.size() == 2 && 1127 "PPC branch conditions have two components!"); 1128 1129 // Get the register classes. 1130 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1131 const TargetRegisterClass *RC = 1132 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1133 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 1134 1135 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 1136 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 1137 assert((Is64Bit || 1138 PPC::GPRCRegClass.hasSubClassEq(RC) || 1139 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 1140 "isel is for regular integer GPRs only"); 1141 1142 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 1143 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 1144 1145 unsigned SubIdx = 0; 1146 bool SwapOps = false; 1147 switch (SelectPred) { 1148 case PPC::PRED_EQ: 1149 case PPC::PRED_EQ_MINUS: 1150 case PPC::PRED_EQ_PLUS: 1151 SubIdx = PPC::sub_eq; SwapOps = false; break; 1152 case PPC::PRED_NE: 1153 case PPC::PRED_NE_MINUS: 1154 case PPC::PRED_NE_PLUS: 1155 SubIdx = PPC::sub_eq; SwapOps = true; break; 1156 case PPC::PRED_LT: 1157 case PPC::PRED_LT_MINUS: 1158 case PPC::PRED_LT_PLUS: 1159 SubIdx = PPC::sub_lt; SwapOps = false; break; 1160 case PPC::PRED_GE: 1161 case PPC::PRED_GE_MINUS: 1162 case PPC::PRED_GE_PLUS: 1163 SubIdx = PPC::sub_lt; SwapOps = true; break; 1164 case PPC::PRED_GT: 1165 case PPC::PRED_GT_MINUS: 1166 case PPC::PRED_GT_PLUS: 1167 SubIdx = PPC::sub_gt; SwapOps = false; break; 1168 case PPC::PRED_LE: 1169 case PPC::PRED_LE_MINUS: 1170 case PPC::PRED_LE_PLUS: 1171 SubIdx = PPC::sub_gt; SwapOps = true; break; 1172 case PPC::PRED_UN: 1173 case PPC::PRED_UN_MINUS: 1174 case PPC::PRED_UN_PLUS: 1175 SubIdx = PPC::sub_un; SwapOps = false; break; 1176 case PPC::PRED_NU: 1177 case PPC::PRED_NU_MINUS: 1178 case PPC::PRED_NU_PLUS: 1179 SubIdx = PPC::sub_un; SwapOps = true; break; 1180 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 1181 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 1182 } 1183 1184 Register FirstReg = SwapOps ? FalseReg : TrueReg, 1185 SecondReg = SwapOps ? TrueReg : FalseReg; 1186 1187 // The first input register of isel cannot be r0. If it is a member 1188 // of a register class that can be r0, then copy it first (the 1189 // register allocator should eliminate the copy). 1190 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 1191 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 1192 const TargetRegisterClass *FirstRC = 1193 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 1194 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 1195 Register OldFirstReg = FirstReg; 1196 FirstReg = MRI.createVirtualRegister(FirstRC); 1197 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 1198 .addReg(OldFirstReg); 1199 } 1200 1201 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 1202 .addReg(FirstReg).addReg(SecondReg) 1203 .addReg(Cond[1].getReg(), 0, SubIdx); 1204 } 1205 1206 static unsigned getCRBitValue(unsigned CRBit) { 1207 unsigned Ret = 4; 1208 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 1209 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 1210 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 1211 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 1212 Ret = 3; 1213 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 1214 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 1215 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 1216 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 1217 Ret = 2; 1218 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 1219 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 1220 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 1221 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 1222 Ret = 1; 1223 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 1224 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 1225 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 1226 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 1227 Ret = 0; 1228 1229 assert(Ret != 4 && "Invalid CR bit register"); 1230 return Ret; 1231 } 1232 1233 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 1234 MachineBasicBlock::iterator I, 1235 const DebugLoc &DL, MCRegister DestReg, 1236 MCRegister SrcReg, bool KillSrc) const { 1237 // We can end up with self copies and similar things as a result of VSX copy 1238 // legalization. Promote them here. 1239 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1240 if (PPC::F8RCRegClass.contains(DestReg) && 1241 PPC::VSRCRegClass.contains(SrcReg)) { 1242 MCRegister SuperReg = 1243 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 1244 1245 if (VSXSelfCopyCrash && SrcReg == SuperReg) 1246 llvm_unreachable("nop VSX copy"); 1247 1248 DestReg = SuperReg; 1249 } else if (PPC::F8RCRegClass.contains(SrcReg) && 1250 PPC::VSRCRegClass.contains(DestReg)) { 1251 MCRegister SuperReg = 1252 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 1253 1254 if (VSXSelfCopyCrash && DestReg == SuperReg) 1255 llvm_unreachable("nop VSX copy"); 1256 1257 SrcReg = SuperReg; 1258 } 1259 1260 // Different class register copy 1261 if (PPC::CRBITRCRegClass.contains(SrcReg) && 1262 PPC::GPRCRegClass.contains(DestReg)) { 1263 MCRegister CRReg = getCRFromCRBit(SrcReg); 1264 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 1265 getKillRegState(KillSrc); 1266 // Rotate the CR bit in the CR fields to be the least significant bit and 1267 // then mask with 0x1 (MB = ME = 31). 1268 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 1269 .addReg(DestReg, RegState::Kill) 1270 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 1271 .addImm(31) 1272 .addImm(31); 1273 return; 1274 } else if (PPC::CRRCRegClass.contains(SrcReg) && 1275 (PPC::G8RCRegClass.contains(DestReg) || 1276 PPC::GPRCRegClass.contains(DestReg))) { 1277 bool Is64Bit = PPC::G8RCRegClass.contains(DestReg); 1278 unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF; 1279 unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM; 1280 unsigned CRNum = TRI->getEncodingValue(SrcReg); 1281 BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg); 1282 getKillRegState(KillSrc); 1283 if (CRNum == 7) 1284 return; 1285 // Shift the CR bits to make the CR field in the lowest 4 bits of GRC. 1286 BuildMI(MBB, I, DL, get(ShCode), DestReg) 1287 .addReg(DestReg, RegState::Kill) 1288 .addImm(CRNum * 4 + 4) 1289 .addImm(28) 1290 .addImm(31); 1291 return; 1292 } else if (PPC::G8RCRegClass.contains(SrcReg) && 1293 PPC::VSFRCRegClass.contains(DestReg)) { 1294 assert(Subtarget.hasDirectMove() && 1295 "Subtarget doesn't support directmove, don't know how to copy."); 1296 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 1297 NumGPRtoVSRSpill++; 1298 getKillRegState(KillSrc); 1299 return; 1300 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 1301 PPC::G8RCRegClass.contains(DestReg)) { 1302 assert(Subtarget.hasDirectMove() && 1303 "Subtarget doesn't support directmove, don't know how to copy."); 1304 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 1305 getKillRegState(KillSrc); 1306 return; 1307 } else if (PPC::SPERCRegClass.contains(SrcReg) && 1308 PPC::GPRCRegClass.contains(DestReg)) { 1309 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 1310 getKillRegState(KillSrc); 1311 return; 1312 } else if (PPC::GPRCRegClass.contains(SrcReg) && 1313 PPC::SPERCRegClass.contains(DestReg)) { 1314 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 1315 getKillRegState(KillSrc); 1316 return; 1317 } 1318 1319 unsigned Opc; 1320 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 1321 Opc = PPC::OR; 1322 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 1323 Opc = PPC::OR8; 1324 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 1325 Opc = PPC::FMR; 1326 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 1327 Opc = PPC::MCRF; 1328 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 1329 Opc = PPC::VOR; 1330 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 1331 // There are two different ways this can be done: 1332 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 1333 // issue in VSU pipeline 0. 1334 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 1335 // can go to either pipeline. 1336 // We'll always use xxlor here, because in practically all cases where 1337 // copies are generated, they are close enough to some use that the 1338 // lower-latency form is preferable. 1339 Opc = PPC::XXLOR; 1340 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1341 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1342 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1343 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1344 Opc = PPC::CROR; 1345 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1346 Opc = PPC::EVOR; 1347 else 1348 llvm_unreachable("Impossible reg-to-reg copy"); 1349 1350 const MCInstrDesc &MCID = get(Opc); 1351 if (MCID.getNumOperands() == 3) 1352 BuildMI(MBB, I, DL, MCID, DestReg) 1353 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1354 else 1355 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1356 } 1357 1358 static unsigned getSpillIndex(const TargetRegisterClass *RC) { 1359 int OpcodeIndex = 0; 1360 1361 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1362 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1363 OpcodeIndex = SOK_Int4Spill; 1364 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1365 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1366 OpcodeIndex = SOK_Int8Spill; 1367 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1368 OpcodeIndex = SOK_Float8Spill; 1369 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1370 OpcodeIndex = SOK_Float4Spill; 1371 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1372 OpcodeIndex = SOK_SPESpill; 1373 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1374 OpcodeIndex = SOK_CRSpill; 1375 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1376 OpcodeIndex = SOK_CRBitSpill; 1377 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1378 OpcodeIndex = SOK_VRVectorSpill; 1379 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1380 OpcodeIndex = SOK_VSXVectorSpill; 1381 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1382 OpcodeIndex = SOK_VectorFloat8Spill; 1383 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1384 OpcodeIndex = SOK_VectorFloat4Spill; 1385 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1386 OpcodeIndex = SOK_SpillToVSR; 1387 } else { 1388 llvm_unreachable("Unknown regclass!"); 1389 } 1390 return OpcodeIndex; 1391 } 1392 1393 unsigned 1394 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const { 1395 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1396 return OpcodesForSpill[getSpillIndex(RC)]; 1397 } 1398 1399 unsigned 1400 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const { 1401 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1402 return OpcodesForSpill[getSpillIndex(RC)]; 1403 } 1404 1405 void PPCInstrInfo::StoreRegToStackSlot( 1406 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1407 const TargetRegisterClass *RC, 1408 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1409 unsigned Opcode = getStoreOpcodeForSpill(RC); 1410 DebugLoc DL; 1411 1412 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1413 FuncInfo->setHasSpills(); 1414 1415 NewMIs.push_back(addFrameReference( 1416 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1417 FrameIdx)); 1418 1419 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1420 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1421 FuncInfo->setSpillsCR(); 1422 1423 if (isXFormMemOp(Opcode)) 1424 FuncInfo->setHasNonRISpills(); 1425 } 1426 1427 void PPCInstrInfo::storeRegToStackSlotNoUpd( 1428 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, 1429 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 1430 const TargetRegisterInfo *TRI) const { 1431 MachineFunction &MF = *MBB.getParent(); 1432 SmallVector<MachineInstr *, 4> NewMIs; 1433 1434 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1435 1436 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1437 MBB.insert(MI, NewMIs[i]); 1438 1439 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1440 MachineMemOperand *MMO = MF.getMachineMemOperand( 1441 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1442 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1443 MFI.getObjectAlign(FrameIdx)); 1444 NewMIs.back()->addMemOperand(MF, MMO); 1445 } 1446 1447 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1448 MachineBasicBlock::iterator MI, 1449 Register SrcReg, bool isKill, 1450 int FrameIdx, 1451 const TargetRegisterClass *RC, 1452 const TargetRegisterInfo *TRI) const { 1453 // We need to avoid a situation in which the value from a VRRC register is 1454 // spilled using an Altivec instruction and reloaded into a VSRC register 1455 // using a VSX instruction. The issue with this is that the VSX 1456 // load/store instructions swap the doublewords in the vector and the Altivec 1457 // ones don't. The register classes on the spill/reload may be different if 1458 // the register is defined using an Altivec instruction and is then used by a 1459 // VSX instruction. 1460 RC = updatedRC(RC); 1461 storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI); 1462 } 1463 1464 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1465 unsigned DestReg, int FrameIdx, 1466 const TargetRegisterClass *RC, 1467 SmallVectorImpl<MachineInstr *> &NewMIs) 1468 const { 1469 unsigned Opcode = getLoadOpcodeForSpill(RC); 1470 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1471 FrameIdx)); 1472 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1473 1474 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1475 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1476 FuncInfo->setSpillsCR(); 1477 1478 if (isXFormMemOp(Opcode)) 1479 FuncInfo->setHasNonRISpills(); 1480 } 1481 1482 void PPCInstrInfo::loadRegFromStackSlotNoUpd( 1483 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, 1484 int FrameIdx, const TargetRegisterClass *RC, 1485 const TargetRegisterInfo *TRI) const { 1486 MachineFunction &MF = *MBB.getParent(); 1487 SmallVector<MachineInstr*, 4> NewMIs; 1488 DebugLoc DL; 1489 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1490 1491 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1492 FuncInfo->setHasSpills(); 1493 1494 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1495 1496 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1497 MBB.insert(MI, NewMIs[i]); 1498 1499 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1500 MachineMemOperand *MMO = MF.getMachineMemOperand( 1501 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1502 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1503 MFI.getObjectAlign(FrameIdx)); 1504 NewMIs.back()->addMemOperand(MF, MMO); 1505 } 1506 1507 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1508 MachineBasicBlock::iterator MI, 1509 Register DestReg, int FrameIdx, 1510 const TargetRegisterClass *RC, 1511 const TargetRegisterInfo *TRI) const { 1512 // We need to avoid a situation in which the value from a VRRC register is 1513 // spilled using an Altivec instruction and reloaded into a VSRC register 1514 // using a VSX instruction. The issue with this is that the VSX 1515 // load/store instructions swap the doublewords in the vector and the Altivec 1516 // ones don't. The register classes on the spill/reload may be different if 1517 // the register is defined using an Altivec instruction and is then used by a 1518 // VSX instruction. 1519 RC = updatedRC(RC); 1520 1521 loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI); 1522 } 1523 1524 bool PPCInstrInfo:: 1525 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1526 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1527 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1528 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1529 else 1530 // Leave the CR# the same, but invert the condition. 1531 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1532 return false; 1533 } 1534 1535 // For some instructions, it is legal to fold ZERO into the RA register field. 1536 // This function performs that fold by replacing the operand with PPC::ZERO, 1537 // it does not consider whether the load immediate zero is no longer in use. 1538 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1539 Register Reg) const { 1540 // A zero immediate should always be loaded with a single li. 1541 unsigned DefOpc = DefMI.getOpcode(); 1542 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1543 return false; 1544 if (!DefMI.getOperand(1).isImm()) 1545 return false; 1546 if (DefMI.getOperand(1).getImm() != 0) 1547 return false; 1548 1549 // Note that we cannot here invert the arguments of an isel in order to fold 1550 // a ZERO into what is presented as the second argument. All we have here 1551 // is the condition bit, and that might come from a CR-logical bit operation. 1552 1553 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1554 1555 // Only fold into real machine instructions. 1556 if (UseMCID.isPseudo()) 1557 return false; 1558 1559 // We need to find which of the User's operands is to be folded, that will be 1560 // the operand that matches the given register ID. 1561 unsigned UseIdx; 1562 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1563 if (UseMI.getOperand(UseIdx).isReg() && 1564 UseMI.getOperand(UseIdx).getReg() == Reg) 1565 break; 1566 1567 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1568 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1569 1570 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1571 1572 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1573 // register (which might also be specified as a pointer class kind). 1574 if (UseInfo->isLookupPtrRegClass()) { 1575 if (UseInfo->RegClass /* Kind */ != 1) 1576 return false; 1577 } else { 1578 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1579 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1580 return false; 1581 } 1582 1583 // Make sure this is not tied to an output register (or otherwise 1584 // constrained). This is true for ST?UX registers, for example, which 1585 // are tied to their output registers. 1586 if (UseInfo->Constraints != 0) 1587 return false; 1588 1589 MCRegister ZeroReg; 1590 if (UseInfo->isLookupPtrRegClass()) { 1591 bool isPPC64 = Subtarget.isPPC64(); 1592 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1593 } else { 1594 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1595 PPC::ZERO8 : PPC::ZERO; 1596 } 1597 1598 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1599 return true; 1600 } 1601 1602 // Folds zero into instructions which have a load immediate zero as an operand 1603 // but also recognize zero as immediate zero. If the definition of the load 1604 // has no more users it is deleted. 1605 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1606 Register Reg, MachineRegisterInfo *MRI) const { 1607 bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg); 1608 if (MRI->use_nodbg_empty(Reg)) 1609 DefMI.eraseFromParent(); 1610 return Changed; 1611 } 1612 1613 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1614 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1615 I != IE; ++I) 1616 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1617 return true; 1618 return false; 1619 } 1620 1621 // We should make sure that, if we're going to predicate both sides of a 1622 // condition (a diamond), that both sides don't define the counter register. We 1623 // can predicate counter-decrement-based branches, but while that predicates 1624 // the branching, it does not predicate the counter decrement. If we tried to 1625 // merge the triangle into one predicated block, we'd decrement the counter 1626 // twice. 1627 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1628 unsigned NumT, unsigned ExtraT, 1629 MachineBasicBlock &FMBB, 1630 unsigned NumF, unsigned ExtraF, 1631 BranchProbability Probability) const { 1632 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1633 } 1634 1635 1636 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1637 // The predicated branches are identified by their type, not really by the 1638 // explicit presence of a predicate. Furthermore, some of them can be 1639 // predicated more than once. Because if conversion won't try to predicate 1640 // any instruction which already claims to be predicated (by returning true 1641 // here), always return false. In doing so, we let isPredicable() be the 1642 // final word on whether not the instruction can be (further) predicated. 1643 1644 return false; 1645 } 1646 1647 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 1648 const MachineBasicBlock *MBB, 1649 const MachineFunction &MF) const { 1650 // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion 1651 // across them, since some FP operations may change content of FPSCR. 1652 // TODO: Model FPSCR in PPC instruction definitions and remove the workaround 1653 if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF) 1654 return true; 1655 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); 1656 } 1657 1658 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1659 ArrayRef<MachineOperand> Pred) const { 1660 unsigned OpC = MI.getOpcode(); 1661 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1662 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1663 bool isPPC64 = Subtarget.isPPC64(); 1664 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1665 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1666 // Need add Def and Use for CTR implicit operand. 1667 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1668 .addReg(Pred[1].getReg(), RegState::Implicit) 1669 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 1670 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1671 MI.setDesc(get(PPC::BCLR)); 1672 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1673 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1674 MI.setDesc(get(PPC::BCLRn)); 1675 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1676 } else { 1677 MI.setDesc(get(PPC::BCCLR)); 1678 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1679 .addImm(Pred[0].getImm()) 1680 .add(Pred[1]); 1681 } 1682 1683 return true; 1684 } else if (OpC == PPC::B) { 1685 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1686 bool isPPC64 = Subtarget.isPPC64(); 1687 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1688 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1689 // Need add Def and Use for CTR implicit operand. 1690 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1691 .addReg(Pred[1].getReg(), RegState::Implicit) 1692 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 1693 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1694 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1695 MI.RemoveOperand(0); 1696 1697 MI.setDesc(get(PPC::BC)); 1698 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1699 .add(Pred[1]) 1700 .addMBB(MBB); 1701 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1702 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1703 MI.RemoveOperand(0); 1704 1705 MI.setDesc(get(PPC::BCn)); 1706 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1707 .add(Pred[1]) 1708 .addMBB(MBB); 1709 } else { 1710 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1711 MI.RemoveOperand(0); 1712 1713 MI.setDesc(get(PPC::BCC)); 1714 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1715 .addImm(Pred[0].getImm()) 1716 .add(Pred[1]) 1717 .addMBB(MBB); 1718 } 1719 1720 return true; 1721 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 1722 OpC == PPC::BCTRL8) { 1723 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1724 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1725 1726 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1727 bool isPPC64 = Subtarget.isPPC64(); 1728 1729 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1730 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1731 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1732 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1733 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1734 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1735 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1736 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1737 } else { 1738 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1739 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1740 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1741 .addImm(Pred[0].getImm()) 1742 .add(Pred[1]); 1743 } 1744 1745 // Need add Def and Use for LR implicit operand. 1746 if (setLR) 1747 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1748 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit) 1749 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine); 1750 1751 return true; 1752 } 1753 1754 return false; 1755 } 1756 1757 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1758 ArrayRef<MachineOperand> Pred2) const { 1759 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1760 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1761 1762 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1763 return false; 1764 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1765 return false; 1766 1767 // P1 can only subsume P2 if they test the same condition register. 1768 if (Pred1[1].getReg() != Pred2[1].getReg()) 1769 return false; 1770 1771 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1772 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1773 1774 if (P1 == P2) 1775 return true; 1776 1777 // Does P1 subsume P2, e.g. GE subsumes GT. 1778 if (P1 == PPC::PRED_LE && 1779 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1780 return true; 1781 if (P1 == PPC::PRED_GE && 1782 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1783 return true; 1784 1785 return false; 1786 } 1787 1788 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1789 std::vector<MachineOperand> &Pred) const { 1790 // Note: At the present time, the contents of Pred from this function is 1791 // unused by IfConversion. This implementation follows ARM by pushing the 1792 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1793 // predicate, instructions defining CTR or CTR8 are also included as 1794 // predicate-defining instructions. 1795 1796 const TargetRegisterClass *RCs[] = 1797 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1798 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1799 1800 bool Found = false; 1801 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1802 const MachineOperand &MO = MI.getOperand(i); 1803 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1804 const TargetRegisterClass *RC = RCs[c]; 1805 if (MO.isReg()) { 1806 if (MO.isDef() && RC->contains(MO.getReg())) { 1807 Pred.push_back(MO); 1808 Found = true; 1809 } 1810 } else if (MO.isRegMask()) { 1811 for (TargetRegisterClass::iterator I = RC->begin(), 1812 IE = RC->end(); I != IE; ++I) 1813 if (MO.clobbersPhysReg(*I)) { 1814 Pred.push_back(MO); 1815 Found = true; 1816 } 1817 } 1818 } 1819 } 1820 1821 return Found; 1822 } 1823 1824 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 1825 Register &SrcReg2, int &Mask, 1826 int &Value) const { 1827 unsigned Opc = MI.getOpcode(); 1828 1829 switch (Opc) { 1830 default: return false; 1831 case PPC::CMPWI: 1832 case PPC::CMPLWI: 1833 case PPC::CMPDI: 1834 case PPC::CMPLDI: 1835 SrcReg = MI.getOperand(1).getReg(); 1836 SrcReg2 = 0; 1837 Value = MI.getOperand(2).getImm(); 1838 Mask = 0xFFFF; 1839 return true; 1840 case PPC::CMPW: 1841 case PPC::CMPLW: 1842 case PPC::CMPD: 1843 case PPC::CMPLD: 1844 case PPC::FCMPUS: 1845 case PPC::FCMPUD: 1846 SrcReg = MI.getOperand(1).getReg(); 1847 SrcReg2 = MI.getOperand(2).getReg(); 1848 Value = 0; 1849 Mask = 0; 1850 return true; 1851 } 1852 } 1853 1854 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 1855 Register SrcReg2, int Mask, int Value, 1856 const MachineRegisterInfo *MRI) const { 1857 if (DisableCmpOpt) 1858 return false; 1859 1860 int OpC = CmpInstr.getOpcode(); 1861 Register CRReg = CmpInstr.getOperand(0).getReg(); 1862 1863 // FP record forms set CR1 based on the exception status bits, not a 1864 // comparison with zero. 1865 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1866 return false; 1867 1868 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1869 // The record forms set the condition register based on a signed comparison 1870 // with zero (so says the ISA manual). This is not as straightforward as it 1871 // seems, however, because this is always a 64-bit comparison on PPC64, even 1872 // for instructions that are 32-bit in nature (like slw for example). 1873 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1874 // for equality checks (as those don't depend on the sign). On PPC64, 1875 // we are restricted to equality for unsigned 64-bit comparisons and for 1876 // signed 32-bit comparisons the applicability is more restricted. 1877 bool isPPC64 = Subtarget.isPPC64(); 1878 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1879 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1880 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1881 1882 // Look through copies unless that gets us to a physical register. 1883 Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 1884 if (ActualSrc.isVirtual()) 1885 SrcReg = ActualSrc; 1886 1887 // Get the unique definition of SrcReg. 1888 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1889 if (!MI) return false; 1890 1891 bool equalityOnly = false; 1892 bool noSub = false; 1893 if (isPPC64) { 1894 if (is32BitSignedCompare) { 1895 // We can perform this optimization only if MI is sign-extending. 1896 if (isSignExtended(*MI)) 1897 noSub = true; 1898 else 1899 return false; 1900 } else if (is32BitUnsignedCompare) { 1901 // We can perform this optimization, equality only, if MI is 1902 // zero-extending. 1903 if (isZeroExtended(*MI)) { 1904 noSub = true; 1905 equalityOnly = true; 1906 } else 1907 return false; 1908 } else 1909 equalityOnly = is64BitUnsignedCompare; 1910 } else 1911 equalityOnly = is32BitUnsignedCompare; 1912 1913 if (equalityOnly) { 1914 // We need to check the uses of the condition register in order to reject 1915 // non-equality comparisons. 1916 for (MachineRegisterInfo::use_instr_iterator 1917 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1918 I != IE; ++I) { 1919 MachineInstr *UseMI = &*I; 1920 if (UseMI->getOpcode() == PPC::BCC) { 1921 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1922 unsigned PredCond = PPC::getPredicateCondition(Pred); 1923 // We ignore hint bits when checking for non-equality comparisons. 1924 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1925 return false; 1926 } else if (UseMI->getOpcode() == PPC::ISEL || 1927 UseMI->getOpcode() == PPC::ISEL8) { 1928 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1929 if (SubIdx != PPC::sub_eq) 1930 return false; 1931 } else 1932 return false; 1933 } 1934 } 1935 1936 MachineBasicBlock::iterator I = CmpInstr; 1937 1938 // Scan forward to find the first use of the compare. 1939 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1940 ++I) { 1941 bool FoundUse = false; 1942 for (MachineRegisterInfo::use_instr_iterator 1943 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 1944 J != JE; ++J) 1945 if (&*J == &*I) { 1946 FoundUse = true; 1947 break; 1948 } 1949 1950 if (FoundUse) 1951 break; 1952 } 1953 1954 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1955 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1956 1957 // There are two possible candidates which can be changed to set CR[01]. 1958 // One is MI, the other is a SUB instruction. 1959 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1960 MachineInstr *Sub = nullptr; 1961 if (SrcReg2 != 0) 1962 // MI is not a candidate for CMPrr. 1963 MI = nullptr; 1964 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1965 // same BB as the comparison. This is to allow the check below to avoid calls 1966 // (and other explicit clobbers); instead we should really check for these 1967 // more explicitly (in at least a few predecessors). 1968 else if (MI->getParent() != CmpInstr.getParent()) 1969 return false; 1970 else if (Value != 0) { 1971 // The record-form instructions set CR bit based on signed comparison 1972 // against 0. We try to convert a compare against 1 or -1 into a compare 1973 // against 0 to exploit record-form instructions. For example, we change 1974 // the condition "greater than -1" into "greater than or equal to 0" 1975 // and "less than 1" into "less than or equal to 0". 1976 1977 // Since we optimize comparison based on a specific branch condition, 1978 // we don't optimize if condition code is used by more than once. 1979 if (equalityOnly || !MRI->hasOneUse(CRReg)) 1980 return false; 1981 1982 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 1983 if (UseMI->getOpcode() != PPC::BCC) 1984 return false; 1985 1986 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1987 unsigned PredCond = PPC::getPredicateCondition(Pred); 1988 unsigned PredHint = PPC::getPredicateHint(Pred); 1989 int16_t Immed = (int16_t)Value; 1990 1991 // When modifying the condition in the predicate, we propagate hint bits 1992 // from the original predicate to the new one. 1993 if (Immed == -1 && PredCond == PPC::PRED_GT) 1994 // We convert "greater than -1" into "greater than or equal to 0", 1995 // since we are assuming signed comparison by !equalityOnly 1996 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 1997 else if (Immed == -1 && PredCond == PPC::PRED_LE) 1998 // We convert "less than or equal to -1" into "less than 0". 1999 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 2000 else if (Immed == 1 && PredCond == PPC::PRED_LT) 2001 // We convert "less than 1" into "less than or equal to 0". 2002 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 2003 else if (Immed == 1 && PredCond == PPC::PRED_GE) 2004 // We convert "greater than or equal to 1" into "greater than 0". 2005 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 2006 else 2007 return false; 2008 2009 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred)); 2010 } 2011 2012 // Search for Sub. 2013 --I; 2014 2015 // Get ready to iterate backward from CmpInstr. 2016 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 2017 2018 for (; I != E && !noSub; --I) { 2019 const MachineInstr &Instr = *I; 2020 unsigned IOpC = Instr.getOpcode(); 2021 2022 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 2023 Instr.readsRegister(PPC::CR0, TRI))) 2024 // This instruction modifies or uses the record condition register after 2025 // the one we want to change. While we could do this transformation, it 2026 // would likely not be profitable. This transformation removes one 2027 // instruction, and so even forcing RA to generate one move probably 2028 // makes it unprofitable. 2029 return false; 2030 2031 // Check whether CmpInstr can be made redundant by the current instruction. 2032 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 2033 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 2034 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 2035 ((Instr.getOperand(1).getReg() == SrcReg && 2036 Instr.getOperand(2).getReg() == SrcReg2) || 2037 (Instr.getOperand(1).getReg() == SrcReg2 && 2038 Instr.getOperand(2).getReg() == SrcReg))) { 2039 Sub = &*I; 2040 break; 2041 } 2042 2043 if (I == B) 2044 // The 'and' is below the comparison instruction. 2045 return false; 2046 } 2047 2048 // Return false if no candidates exist. 2049 if (!MI && !Sub) 2050 return false; 2051 2052 // The single candidate is called MI. 2053 if (!MI) MI = Sub; 2054 2055 int NewOpC = -1; 2056 int MIOpC = MI->getOpcode(); 2057 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || 2058 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) 2059 NewOpC = MIOpC; 2060 else { 2061 NewOpC = PPC::getRecordFormOpcode(MIOpC); 2062 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 2063 NewOpC = MIOpC; 2064 } 2065 2066 // FIXME: On the non-embedded POWER architectures, only some of the record 2067 // forms are fast, and we should use only the fast ones. 2068 2069 // The defining instruction has a record form (or is already a record 2070 // form). It is possible, however, that we'll need to reverse the condition 2071 // code of the users. 2072 if (NewOpC == -1) 2073 return false; 2074 2075 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 2076 // needs to be updated to be based on SUB. Push the condition code 2077 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 2078 // condition code of these operands will be modified. 2079 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 2080 // comparison against 0, which may modify predicate. 2081 bool ShouldSwap = false; 2082 if (Sub && Value == 0) { 2083 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 2084 Sub->getOperand(2).getReg() == SrcReg; 2085 2086 // The operands to subf are the opposite of sub, so only in the fixed-point 2087 // case, invert the order. 2088 ShouldSwap = !ShouldSwap; 2089 } 2090 2091 if (ShouldSwap) 2092 for (MachineRegisterInfo::use_instr_iterator 2093 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2094 I != IE; ++I) { 2095 MachineInstr *UseMI = &*I; 2096 if (UseMI->getOpcode() == PPC::BCC) { 2097 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 2098 unsigned PredCond = PPC::getPredicateCondition(Pred); 2099 assert((!equalityOnly || 2100 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 2101 "Invalid predicate for equality-only optimization"); 2102 (void)PredCond; // To suppress warning in release build. 2103 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 2104 PPC::getSwappedPredicate(Pred))); 2105 } else if (UseMI->getOpcode() == PPC::ISEL || 2106 UseMI->getOpcode() == PPC::ISEL8) { 2107 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 2108 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 2109 "Invalid CR bit for equality-only optimization"); 2110 2111 if (NewSubReg == PPC::sub_lt) 2112 NewSubReg = PPC::sub_gt; 2113 else if (NewSubReg == PPC::sub_gt) 2114 NewSubReg = PPC::sub_lt; 2115 2116 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 2117 NewSubReg)); 2118 } else // We need to abort on a user we don't understand. 2119 return false; 2120 } 2121 assert(!(Value != 0 && ShouldSwap) && 2122 "Non-zero immediate support and ShouldSwap" 2123 "may conflict in updating predicate"); 2124 2125 // Create a new virtual register to hold the value of the CR set by the 2126 // record-form instruction. If the instruction was not previously in 2127 // record form, then set the kill flag on the CR. 2128 CmpInstr.eraseFromParent(); 2129 2130 MachineBasicBlock::iterator MII = MI; 2131 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 2132 get(TargetOpcode::COPY), CRReg) 2133 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 2134 2135 // Even if CR0 register were dead before, it is alive now since the 2136 // instruction we just built uses it. 2137 MI->clearRegisterDeads(PPC::CR0); 2138 2139 if (MIOpC != NewOpC) { 2140 // We need to be careful here: we're replacing one instruction with 2141 // another, and we need to make sure that we get all of the right 2142 // implicit uses and defs. On the other hand, the caller may be holding 2143 // an iterator to this instruction, and so we can't delete it (this is 2144 // specifically the case if this is the instruction directly after the 2145 // compare). 2146 2147 // Rotates are expensive instructions. If we're emitting a record-form 2148 // rotate that can just be an andi/andis, we should just emit that. 2149 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 2150 Register GPRRes = MI->getOperand(0).getReg(); 2151 int64_t SH = MI->getOperand(2).getImm(); 2152 int64_t MB = MI->getOperand(3).getImm(); 2153 int64_t ME = MI->getOperand(4).getImm(); 2154 // We can only do this if both the start and end of the mask are in the 2155 // same halfword. 2156 bool MBInLoHWord = MB >= 16; 2157 bool MEInLoHWord = ME >= 16; 2158 uint64_t Mask = ~0LLU; 2159 2160 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 2161 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2162 // The mask value needs to shift right 16 if we're emitting andis. 2163 Mask >>= MBInLoHWord ? 0 : 16; 2164 NewOpC = MIOpC == PPC::RLWINM 2165 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) 2166 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); 2167 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 2168 (ME - MB + 1 == SH) && (MB >= 16)) { 2169 // If we are rotating by the exact number of bits as are in the mask 2170 // and the mask is in the least significant bits of the register, 2171 // that's just an andis. (as long as the GPR result has no uses). 2172 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 2173 Mask >>= 16; 2174 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; 2175 } 2176 // If we've set the mask, we can transform. 2177 if (Mask != ~0LLU) { 2178 MI->RemoveOperand(4); 2179 MI->RemoveOperand(3); 2180 MI->getOperand(2).setImm(Mask); 2181 NumRcRotatesConvertedToRcAnd++; 2182 } 2183 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 2184 int64_t MB = MI->getOperand(3).getImm(); 2185 if (MB >= 48) { 2186 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2187 NewOpC = PPC::ANDI8_rec; 2188 MI->RemoveOperand(3); 2189 MI->getOperand(2).setImm(Mask); 2190 NumRcRotatesConvertedToRcAnd++; 2191 } 2192 } 2193 2194 const MCInstrDesc &NewDesc = get(NewOpC); 2195 MI->setDesc(NewDesc); 2196 2197 if (NewDesc.ImplicitDefs) 2198 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 2199 *ImpDefs; ++ImpDefs) 2200 if (!MI->definesRegister(*ImpDefs)) 2201 MI->addOperand(*MI->getParent()->getParent(), 2202 MachineOperand::CreateReg(*ImpDefs, true, true)); 2203 if (NewDesc.ImplicitUses) 2204 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 2205 *ImpUses; ++ImpUses) 2206 if (!MI->readsRegister(*ImpUses)) 2207 MI->addOperand(*MI->getParent()->getParent(), 2208 MachineOperand::CreateReg(*ImpUses, false, true)); 2209 } 2210 assert(MI->definesRegister(PPC::CR0) && 2211 "Record-form instruction does not define cr0?"); 2212 2213 // Modify the condition code of operands in OperandsToUpdate. 2214 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 2215 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 2216 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 2217 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 2218 2219 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 2220 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 2221 2222 return true; 2223 } 2224 2225 bool PPCInstrInfo::getMemOperandsWithOffsetWidth( 2226 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, 2227 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, 2228 const TargetRegisterInfo *TRI) const { 2229 const MachineOperand *BaseOp; 2230 OffsetIsScalable = false; 2231 if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI)) 2232 return false; 2233 BaseOps.push_back(BaseOp); 2234 return true; 2235 } 2236 2237 static bool isLdStSafeToCluster(const MachineInstr &LdSt, 2238 const TargetRegisterInfo *TRI) { 2239 // If this is a volatile load/store, don't mess with it. 2240 if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3) 2241 return false; 2242 2243 if (LdSt.getOperand(2).isFI()) 2244 return true; 2245 2246 assert(LdSt.getOperand(2).isReg() && "Expected a reg operand."); 2247 // Can't cluster if the instruction modifies the base register 2248 // or it is update form. e.g. ld r2,3(r2) 2249 if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI)) 2250 return false; 2251 2252 return true; 2253 } 2254 2255 // Only cluster instruction pair that have the same opcode, and they are 2256 // clusterable according to PowerPC specification. 2257 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc, 2258 const PPCSubtarget &Subtarget) { 2259 switch (FirstOpc) { 2260 default: 2261 return false; 2262 case PPC::STD: 2263 case PPC::STFD: 2264 case PPC::STXSD: 2265 case PPC::DFSTOREf64: 2266 return FirstOpc == SecondOpc; 2267 // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with 2268 // 32bit and 64bit instruction selection. They are clusterable pair though 2269 // they are different opcode. 2270 case PPC::STW: 2271 case PPC::STW8: 2272 return SecondOpc == PPC::STW || SecondOpc == PPC::STW8; 2273 } 2274 } 2275 2276 bool PPCInstrInfo::shouldClusterMemOps( 2277 ArrayRef<const MachineOperand *> BaseOps1, 2278 ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads, 2279 unsigned NumBytes) const { 2280 2281 assert(BaseOps1.size() == 1 && BaseOps2.size() == 1); 2282 const MachineOperand &BaseOp1 = *BaseOps1.front(); 2283 const MachineOperand &BaseOp2 = *BaseOps2.front(); 2284 assert((BaseOp1.isReg() || BaseOp1.isFI()) && 2285 "Only base registers and frame indices are supported."); 2286 2287 // The NumLoads means the number of loads that has been clustered. 2288 // Don't cluster memory op if there are already two ops clustered at least. 2289 if (NumLoads > 2) 2290 return false; 2291 2292 // Cluster the load/store only when they have the same base 2293 // register or FI. 2294 if ((BaseOp1.isReg() != BaseOp2.isReg()) || 2295 (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) || 2296 (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex())) 2297 return false; 2298 2299 // Check if the load/store are clusterable according to the PowerPC 2300 // specification. 2301 const MachineInstr &FirstLdSt = *BaseOp1.getParent(); 2302 const MachineInstr &SecondLdSt = *BaseOp2.getParent(); 2303 unsigned FirstOpc = FirstLdSt.getOpcode(); 2304 unsigned SecondOpc = SecondLdSt.getOpcode(); 2305 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2306 // Cluster the load/store only when they have the same opcode, and they are 2307 // clusterable opcode according to PowerPC specification. 2308 if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget)) 2309 return false; 2310 2311 // Can't cluster load/store that have ordered or volatile memory reference. 2312 if (!isLdStSafeToCluster(FirstLdSt, TRI) || 2313 !isLdStSafeToCluster(SecondLdSt, TRI)) 2314 return false; 2315 2316 int64_t Offset1 = 0, Offset2 = 0; 2317 unsigned Width1 = 0, Width2 = 0; 2318 const MachineOperand *Base1 = nullptr, *Base2 = nullptr; 2319 if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) || 2320 !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) || 2321 Width1 != Width2) 2322 return false; 2323 2324 assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 && 2325 "getMemOperandWithOffsetWidth return incorrect base op"); 2326 // The caller should already have ordered FirstMemOp/SecondMemOp by offset. 2327 assert(Offset1 <= Offset2 && "Caller should have ordered offsets."); 2328 return Offset1 + Width1 == Offset2; 2329 } 2330 2331 /// GetInstSize - Return the number of bytes of code the specified 2332 /// instruction may be. This returns the maximum number of bytes. 2333 /// 2334 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2335 unsigned Opcode = MI.getOpcode(); 2336 2337 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 2338 const MachineFunction *MF = MI.getParent()->getParent(); 2339 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2340 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2341 } else if (Opcode == TargetOpcode::STACKMAP) { 2342 StackMapOpers Opers(&MI); 2343 return Opers.getNumPatchBytes(); 2344 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2345 PatchPointOpers Opers(&MI); 2346 return Opers.getNumPatchBytes(); 2347 } else { 2348 return get(Opcode).getSize(); 2349 } 2350 } 2351 2352 std::pair<unsigned, unsigned> 2353 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2354 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2355 return std::make_pair(TF & Mask, TF & ~Mask); 2356 } 2357 2358 ArrayRef<std::pair<unsigned, const char *>> 2359 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2360 using namespace PPCII; 2361 static const std::pair<unsigned, const char *> TargetFlags[] = { 2362 {MO_LO, "ppc-lo"}, 2363 {MO_HA, "ppc-ha"}, 2364 {MO_TPREL_LO, "ppc-tprel-lo"}, 2365 {MO_TPREL_HA, "ppc-tprel-ha"}, 2366 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2367 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2368 {MO_TOC_LO, "ppc-toc-lo"}, 2369 {MO_TLS, "ppc-tls"}}; 2370 return makeArrayRef(TargetFlags); 2371 } 2372 2373 ArrayRef<std::pair<unsigned, const char *>> 2374 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2375 using namespace PPCII; 2376 static const std::pair<unsigned, const char *> TargetFlags[] = { 2377 {MO_PLT, "ppc-plt"}, 2378 {MO_PIC_FLAG, "ppc-pic"}, 2379 {MO_PCREL_FLAG, "ppc-pcrel"}, 2380 {MO_GOT_FLAG, "ppc-got"}, 2381 {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"}, 2382 {MO_TLSGD_FLAG, "ppc-tlsgd"}, 2383 {MO_TLSLD_FLAG, "ppc-tlsld"}, 2384 {MO_TPREL_FLAG, "ppc-tprel"}, 2385 {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"}, 2386 {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"}, 2387 {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}}; 2388 return makeArrayRef(TargetFlags); 2389 } 2390 2391 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2392 // The VSX versions have the advantage of a full 64-register target whereas 2393 // the FP ones have the advantage of lower latency and higher throughput. So 2394 // what we are after is using the faster instructions in low register pressure 2395 // situations and using the larger register file in high register pressure 2396 // situations. 2397 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2398 unsigned UpperOpcode, LowerOpcode; 2399 switch (MI.getOpcode()) { 2400 case PPC::DFLOADf32: 2401 UpperOpcode = PPC::LXSSP; 2402 LowerOpcode = PPC::LFS; 2403 break; 2404 case PPC::DFLOADf64: 2405 UpperOpcode = PPC::LXSD; 2406 LowerOpcode = PPC::LFD; 2407 break; 2408 case PPC::DFSTOREf32: 2409 UpperOpcode = PPC::STXSSP; 2410 LowerOpcode = PPC::STFS; 2411 break; 2412 case PPC::DFSTOREf64: 2413 UpperOpcode = PPC::STXSD; 2414 LowerOpcode = PPC::STFD; 2415 break; 2416 case PPC::XFLOADf32: 2417 UpperOpcode = PPC::LXSSPX; 2418 LowerOpcode = PPC::LFSX; 2419 break; 2420 case PPC::XFLOADf64: 2421 UpperOpcode = PPC::LXSDX; 2422 LowerOpcode = PPC::LFDX; 2423 break; 2424 case PPC::XFSTOREf32: 2425 UpperOpcode = PPC::STXSSPX; 2426 LowerOpcode = PPC::STFSX; 2427 break; 2428 case PPC::XFSTOREf64: 2429 UpperOpcode = PPC::STXSDX; 2430 LowerOpcode = PPC::STFDX; 2431 break; 2432 case PPC::LIWAX: 2433 UpperOpcode = PPC::LXSIWAX; 2434 LowerOpcode = PPC::LFIWAX; 2435 break; 2436 case PPC::LIWZX: 2437 UpperOpcode = PPC::LXSIWZX; 2438 LowerOpcode = PPC::LFIWZX; 2439 break; 2440 case PPC::STIWX: 2441 UpperOpcode = PPC::STXSIWX; 2442 LowerOpcode = PPC::STFIWX; 2443 break; 2444 default: 2445 llvm_unreachable("Unknown Operation!"); 2446 } 2447 2448 Register TargetReg = MI.getOperand(0).getReg(); 2449 unsigned Opcode; 2450 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2451 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2452 Opcode = LowerOpcode; 2453 else 2454 Opcode = UpperOpcode; 2455 MI.setDesc(get(Opcode)); 2456 return true; 2457 } 2458 2459 static bool isAnImmediateOperand(const MachineOperand &MO) { 2460 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2461 } 2462 2463 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2464 auto &MBB = *MI.getParent(); 2465 auto DL = MI.getDebugLoc(); 2466 2467 switch (MI.getOpcode()) { 2468 case PPC::BUILD_UACC: { 2469 MCRegister ACC = MI.getOperand(0).getReg(); 2470 MCRegister UACC = MI.getOperand(1).getReg(); 2471 if (ACC - PPC::ACC0 != UACC - PPC::UACC0) { 2472 MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4; 2473 MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4; 2474 // FIXME: This can easily be improved to look up to the top of the MBB 2475 // to see if the inputs are XXLOR's. If they are and SrcReg is killed, 2476 // we can just re-target any such XXLOR's to DstVSR + offset. 2477 for (int VecNo = 0; VecNo < 4; VecNo++) 2478 BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo) 2479 .addReg(SrcVSR + VecNo) 2480 .addReg(SrcVSR + VecNo); 2481 } 2482 // BUILD_UACC is expanded to 4 copies of the underlying vsx regisers. 2483 // So after building the 4 copies, we can replace the BUILD_UACC instruction 2484 // with a NOP. 2485 LLVM_FALLTHROUGH; 2486 } 2487 case PPC::KILL_PAIR: { 2488 MI.setDesc(get(PPC::UNENCODED_NOP)); 2489 MI.RemoveOperand(1); 2490 MI.RemoveOperand(0); 2491 return true; 2492 } 2493 case TargetOpcode::LOAD_STACK_GUARD: { 2494 assert(Subtarget.isTargetLinux() && 2495 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 2496 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 2497 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 2498 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 2499 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2500 .addImm(Offset) 2501 .addReg(Reg); 2502 return true; 2503 } 2504 case PPC::DFLOADf32: 2505 case PPC::DFLOADf64: 2506 case PPC::DFSTOREf32: 2507 case PPC::DFSTOREf64: { 2508 assert(Subtarget.hasP9Vector() && 2509 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 2510 assert(MI.getOperand(2).isReg() && 2511 isAnImmediateOperand(MI.getOperand(1)) && 2512 "D-form op must have register and immediate operands"); 2513 return expandVSXMemPseudo(MI); 2514 } 2515 case PPC::XFLOADf32: 2516 case PPC::XFSTOREf32: 2517 case PPC::LIWAX: 2518 case PPC::LIWZX: 2519 case PPC::STIWX: { 2520 assert(Subtarget.hasP8Vector() && 2521 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 2522 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2523 "X-form op must have register and register operands"); 2524 return expandVSXMemPseudo(MI); 2525 } 2526 case PPC::XFLOADf64: 2527 case PPC::XFSTOREf64: { 2528 assert(Subtarget.hasVSX() && 2529 "Invalid X-Form Pseudo-ops on target that has no VSX."); 2530 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2531 "X-form op must have register and register operands"); 2532 return expandVSXMemPseudo(MI); 2533 } 2534 case PPC::SPILLTOVSR_LD: { 2535 Register TargetReg = MI.getOperand(0).getReg(); 2536 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2537 MI.setDesc(get(PPC::DFLOADf64)); 2538 return expandPostRAPseudo(MI); 2539 } 2540 else 2541 MI.setDesc(get(PPC::LD)); 2542 return true; 2543 } 2544 case PPC::SPILLTOVSR_ST: { 2545 Register SrcReg = MI.getOperand(0).getReg(); 2546 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2547 NumStoreSPILLVSRRCAsVec++; 2548 MI.setDesc(get(PPC::DFSTOREf64)); 2549 return expandPostRAPseudo(MI); 2550 } else { 2551 NumStoreSPILLVSRRCAsGpr++; 2552 MI.setDesc(get(PPC::STD)); 2553 } 2554 return true; 2555 } 2556 case PPC::SPILLTOVSR_LDX: { 2557 Register TargetReg = MI.getOperand(0).getReg(); 2558 if (PPC::VSFRCRegClass.contains(TargetReg)) 2559 MI.setDesc(get(PPC::LXSDX)); 2560 else 2561 MI.setDesc(get(PPC::LDX)); 2562 return true; 2563 } 2564 case PPC::SPILLTOVSR_STX: { 2565 Register SrcReg = MI.getOperand(0).getReg(); 2566 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2567 NumStoreSPILLVSRRCAsVec++; 2568 MI.setDesc(get(PPC::STXSDX)); 2569 } else { 2570 NumStoreSPILLVSRRCAsGpr++; 2571 MI.setDesc(get(PPC::STDX)); 2572 } 2573 return true; 2574 } 2575 2576 case PPC::CFENCE8: { 2577 auto Val = MI.getOperand(0).getReg(); 2578 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2579 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2580 .addImm(PPC::PRED_NE_MINUS) 2581 .addReg(PPC::CR7) 2582 .addImm(1); 2583 MI.setDesc(get(PPC::ISYNC)); 2584 MI.RemoveOperand(0); 2585 return true; 2586 } 2587 } 2588 return false; 2589 } 2590 2591 // Essentially a compile-time implementation of a compare->isel sequence. 2592 // It takes two constants to compare, along with the true/false registers 2593 // and the comparison type (as a subreg to a CR field) and returns one 2594 // of the true/false registers, depending on the comparison results. 2595 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 2596 unsigned TrueReg, unsigned FalseReg, 2597 unsigned CRSubReg) { 2598 // Signed comparisons. The immediates are assumed to be sign-extended. 2599 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 2600 switch (CRSubReg) { 2601 default: llvm_unreachable("Unknown integer comparison type."); 2602 case PPC::sub_lt: 2603 return Imm1 < Imm2 ? TrueReg : FalseReg; 2604 case PPC::sub_gt: 2605 return Imm1 > Imm2 ? TrueReg : FalseReg; 2606 case PPC::sub_eq: 2607 return Imm1 == Imm2 ? TrueReg : FalseReg; 2608 } 2609 } 2610 // Unsigned comparisons. 2611 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 2612 switch (CRSubReg) { 2613 default: llvm_unreachable("Unknown integer comparison type."); 2614 case PPC::sub_lt: 2615 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 2616 case PPC::sub_gt: 2617 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 2618 case PPC::sub_eq: 2619 return Imm1 == Imm2 ? TrueReg : FalseReg; 2620 } 2621 } 2622 return PPC::NoRegister; 2623 } 2624 2625 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 2626 unsigned OpNo, 2627 int64_t Imm) const { 2628 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 2629 // Replace the REG with the Immediate. 2630 Register InUseReg = MI.getOperand(OpNo).getReg(); 2631 MI.getOperand(OpNo).ChangeToImmediate(Imm); 2632 2633 if (MI.implicit_operands().empty()) 2634 return; 2635 2636 // We need to make sure that the MI didn't have any implicit use 2637 // of this REG any more. 2638 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2639 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 2640 if (UseOpIdx >= 0) { 2641 MachineOperand &MO = MI.getOperand(UseOpIdx); 2642 if (MO.isImplicit()) 2643 // The operands must always be in the following order: 2644 // - explicit reg defs, 2645 // - other explicit operands (reg uses, immediates, etc.), 2646 // - implicit reg defs 2647 // - implicit reg uses 2648 // Therefore, removing the implicit operand won't change the explicit 2649 // operands layout. 2650 MI.RemoveOperand(UseOpIdx); 2651 } 2652 } 2653 2654 // Replace an instruction with one that materializes a constant (and sets 2655 // CR0 if the original instruction was a record-form instruction). 2656 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 2657 const LoadImmediateInfo &LII) const { 2658 // Remove existing operands. 2659 int OperandToKeep = LII.SetCR ? 1 : 0; 2660 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 2661 MI.RemoveOperand(i); 2662 2663 // Replace the instruction. 2664 if (LII.SetCR) { 2665 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 2666 // Set the immediate. 2667 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2668 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 2669 return; 2670 } 2671 else 2672 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 2673 2674 // Set the immediate. 2675 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2676 .addImm(LII.Imm); 2677 } 2678 2679 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 2680 bool &SeenIntermediateUse) const { 2681 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 2682 "Should be called after register allocation."); 2683 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2684 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 2685 It++; 2686 SeenIntermediateUse = false; 2687 for (; It != E; ++It) { 2688 if (It->modifiesRegister(Reg, TRI)) 2689 return &*It; 2690 if (It->readsRegister(Reg, TRI)) 2691 SeenIntermediateUse = true; 2692 } 2693 return nullptr; 2694 } 2695 2696 MachineInstr *PPCInstrInfo::getForwardingDefMI( 2697 MachineInstr &MI, 2698 unsigned &OpNoForForwarding, 2699 bool &SeenIntermediateUse) const { 2700 OpNoForForwarding = ~0U; 2701 MachineInstr *DefMI = nullptr; 2702 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 2703 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2704 // If we're in SSA, get the defs through the MRI. Otherwise, only look 2705 // within the basic block to see if the register is defined using an 2706 // LI/LI8/ADDI/ADDI8. 2707 if (MRI->isSSA()) { 2708 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2709 if (!MI.getOperand(i).isReg()) 2710 continue; 2711 Register Reg = MI.getOperand(i).getReg(); 2712 if (!Register::isVirtualRegister(Reg)) 2713 continue; 2714 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 2715 if (Register::isVirtualRegister(TrueReg)) { 2716 DefMI = MRI->getVRegDef(TrueReg); 2717 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 || 2718 DefMI->getOpcode() == PPC::ADDI || 2719 DefMI->getOpcode() == PPC::ADDI8) { 2720 OpNoForForwarding = i; 2721 // The ADDI and LI operand maybe exist in one instruction at same 2722 // time. we prefer to fold LI operand as LI only has one Imm operand 2723 // and is more possible to be converted. So if current DefMI is 2724 // ADDI/ADDI8, we continue to find possible LI/LI8. 2725 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) 2726 break; 2727 } 2728 } 2729 } 2730 } else { 2731 // Looking back through the definition for each operand could be expensive, 2732 // so exit early if this isn't an instruction that either has an immediate 2733 // form or is already an immediate form that we can handle. 2734 ImmInstrInfo III; 2735 unsigned Opc = MI.getOpcode(); 2736 bool ConvertibleImmForm = 2737 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || 2738 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || 2739 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || 2740 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || 2741 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 2742 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || 2743 Opc == PPC::RLWINM8_rec; 2744 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 2745 ? isVFRegister(MI.getOperand(0).getReg()) 2746 : false; 2747 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 2748 return nullptr; 2749 2750 // Don't convert or %X, %Y, %Y since that's just a register move. 2751 if ((Opc == PPC::OR || Opc == PPC::OR8) && 2752 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 2753 return nullptr; 2754 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2755 MachineOperand &MO = MI.getOperand(i); 2756 SeenIntermediateUse = false; 2757 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 2758 Register Reg = MI.getOperand(i).getReg(); 2759 // If we see another use of this reg between the def and the MI, 2760 // we want to flat it so the def isn't deleted. 2761 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 2762 if (DefMI) { 2763 // Is this register defined by some form of add-immediate (including 2764 // load-immediate) within this basic block? 2765 switch (DefMI->getOpcode()) { 2766 default: 2767 break; 2768 case PPC::LI: 2769 case PPC::LI8: 2770 case PPC::ADDItocL: 2771 case PPC::ADDI: 2772 case PPC::ADDI8: 2773 OpNoForForwarding = i; 2774 return DefMI; 2775 } 2776 } 2777 } 2778 } 2779 } 2780 return OpNoForForwarding == ~0U ? nullptr : DefMI; 2781 } 2782 2783 unsigned PPCInstrInfo::getSpillTarget() const { 2784 return Subtarget.hasP9Vector() ? 1 : 0; 2785 } 2786 2787 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 2788 return StoreSpillOpcodesArray[getSpillTarget()]; 2789 } 2790 2791 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 2792 return LoadSpillOpcodesArray[getSpillTarget()]; 2793 } 2794 2795 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI, 2796 unsigned RegNo) const { 2797 // Conservatively clear kill flag for the register if the instructions are in 2798 // different basic blocks and in SSA form, because the kill flag may no longer 2799 // be right. There is no need to bother with dead flags since defs with no 2800 // uses will be handled by DCE. 2801 MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo(); 2802 if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) { 2803 MRI.clearKillFlags(RegNo); 2804 return; 2805 } 2806 2807 // Instructions between [StartMI, EndMI] should be in same basic block. 2808 assert((StartMI->getParent() == EndMI->getParent()) && 2809 "Instructions are not in same basic block"); 2810 2811 // If before RA, StartMI may be def through COPY, we need to adjust it to the 2812 // real def. See function getForwardingDefMI. 2813 if (MRI.isSSA()) { 2814 bool Reads, Writes; 2815 std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo); 2816 if (!Reads && !Writes) { 2817 assert(Register::isVirtualRegister(RegNo) && 2818 "Must be a virtual register"); 2819 // Get real def and ignore copies. 2820 StartMI = MRI.getVRegDef(RegNo); 2821 } 2822 } 2823 2824 bool IsKillSet = false; 2825 2826 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 2827 MachineOperand &MO = MI.getOperand(Index); 2828 if (MO.isReg() && MO.isUse() && MO.isKill() && 2829 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 2830 MO.setIsKill(false); 2831 }; 2832 2833 // Set killed flag for EndMI. 2834 // No need to do anything if EndMI defines RegNo. 2835 int UseIndex = 2836 EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 2837 if (UseIndex != -1) { 2838 EndMI->getOperand(UseIndex).setIsKill(true); 2839 IsKillSet = true; 2840 // Clear killed flag for other EndMI operands related to RegNo. In some 2841 // upexpected cases, killed may be set multiple times for same register 2842 // operand in same MI. 2843 for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i) 2844 if (i != UseIndex) 2845 clearOperandKillInfo(*EndMI, i); 2846 } 2847 2848 // Walking the inst in reverse order (EndMI -> StartMI]. 2849 MachineBasicBlock::reverse_iterator It = *EndMI; 2850 MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend(); 2851 // EndMI has been handled above, skip it here. 2852 It++; 2853 MachineOperand *MO = nullptr; 2854 for (; It != E; ++It) { 2855 // Skip insturctions which could not be a def/use of RegNo. 2856 if (It->isDebugInstr() || It->isPosition()) 2857 continue; 2858 2859 // Clear killed flag for all It operands related to RegNo. In some 2860 // upexpected cases, killed may be set multiple times for same register 2861 // operand in same MI. 2862 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 2863 clearOperandKillInfo(*It, i); 2864 2865 // If killed is not set, set killed for its last use or set dead for its def 2866 // if no use found. 2867 if (!IsKillSet) { 2868 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 2869 // Use found, set it killed. 2870 IsKillSet = true; 2871 MO->setIsKill(true); 2872 continue; 2873 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 2874 &getRegisterInfo()))) { 2875 // No use found, set dead for its def. 2876 assert(&*It == StartMI && "No new def between StartMI and EndMI."); 2877 MO->setIsDead(true); 2878 break; 2879 } 2880 } 2881 2882 if ((&*It) == StartMI) 2883 break; 2884 } 2885 // Ensure RegMo liveness is killed after EndMI. 2886 assert((IsKillSet || (MO && MO->isDead())) && 2887 "RegNo should be killed or dead"); 2888 } 2889 2890 // This opt tries to convert the following imm form to an index form to save an 2891 // add for stack variables. 2892 // Return false if no such pattern found. 2893 // 2894 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 2895 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg 2896 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) 2897 // 2898 // can be converted to: 2899 // 2900 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) 2901 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) 2902 // 2903 // In order to eliminate ADD instr, make sure that: 2904 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in 2905 // new ADDI instr and ADDI can only take int16 Imm. 2906 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use 2907 // between ADDI and ADD instr since its original def in ADDI will be changed 2908 // in new ADDI instr. And also there should be no new def for it between 2909 // ADD and Imm instr as ToBeChangedReg will be used in Index instr. 2910 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use 2911 // between ADD and Imm instr since ADD instr will be eliminated. 2912 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be 2913 // moved to Index instr. 2914 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { 2915 MachineFunction *MF = MI.getParent()->getParent(); 2916 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2917 bool PostRA = !MRI->isSSA(); 2918 // Do this opt after PEI which is after RA. The reason is stack slot expansion 2919 // in PEI may expose such opportunities since in PEI, stack slot offsets to 2920 // frame base(OffsetAddi) are determined. 2921 if (!PostRA) 2922 return false; 2923 unsigned ToBeDeletedReg = 0; 2924 int64_t OffsetImm = 0; 2925 unsigned XFormOpcode = 0; 2926 ImmInstrInfo III; 2927 2928 // Check if Imm instr meets requirement. 2929 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, 2930 III)) 2931 return false; 2932 2933 bool OtherIntermediateUse = false; 2934 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); 2935 2936 // Exit if there is other use between ADD and Imm instr or no def found. 2937 if (OtherIntermediateUse || !ADDMI) 2938 return false; 2939 2940 // Check if ADD instr meets requirement. 2941 if (!isADDInstrEligibleForFolding(*ADDMI)) 2942 return false; 2943 2944 unsigned ScaleRegIdx = 0; 2945 int64_t OffsetAddi = 0; 2946 MachineInstr *ADDIMI = nullptr; 2947 2948 // Check if there is a valid ToBeChangedReg in ADDMI. 2949 // 1: It must be killed. 2950 // 2: Its definition must be a valid ADDIMI. 2951 // 3: It must satify int16 offset requirement. 2952 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) 2953 ScaleRegIdx = 2; 2954 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) 2955 ScaleRegIdx = 1; 2956 else 2957 return false; 2958 2959 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); 2960 unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg(); 2961 unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); 2962 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, 2963 MachineBasicBlock::iterator End) { 2964 for (auto It = ++Start; It != End; It++) 2965 if (It->modifiesRegister(Reg, &getRegisterInfo())) 2966 return true; 2967 return false; 2968 }; 2969 2970 // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is 2971 // treated as special zero when ScaleReg is R0/X0 register. 2972 if (III.ZeroIsSpecialOrig == III.ImmOpNo && 2973 (ScaleReg == PPC::R0 || ScaleReg == PPC::X0)) 2974 return false; 2975 2976 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr 2977 // and Imm Instr. 2978 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) 2979 return false; 2980 2981 // Now start to do the transformation. 2982 LLVM_DEBUG(dbgs() << "Replace instruction: " 2983 << "\n"); 2984 LLVM_DEBUG(ADDIMI->dump()); 2985 LLVM_DEBUG(ADDMI->dump()); 2986 LLVM_DEBUG(MI.dump()); 2987 LLVM_DEBUG(dbgs() << "with: " 2988 << "\n"); 2989 2990 // Update ADDI instr. 2991 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); 2992 2993 // Update Imm instr. 2994 MI.setDesc(get(XFormOpcode)); 2995 MI.getOperand(III.ImmOpNo) 2996 .ChangeToRegister(ScaleReg, false, false, 2997 ADDMI->getOperand(ScaleRegIdx).isKill()); 2998 2999 MI.getOperand(III.OpNoForForwarding) 3000 .ChangeToRegister(ToBeChangedReg, false, false, true); 3001 3002 // Eliminate ADD instr. 3003 ADDMI->eraseFromParent(); 3004 3005 LLVM_DEBUG(ADDIMI->dump()); 3006 LLVM_DEBUG(MI.dump()); 3007 3008 return true; 3009 } 3010 3011 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, 3012 int64_t &Imm) const { 3013 unsigned Opc = ADDIMI.getOpcode(); 3014 3015 // Exit if the instruction is not ADDI. 3016 if (Opc != PPC::ADDI && Opc != PPC::ADDI8) 3017 return false; 3018 3019 // The operand may not necessarily be an immediate - it could be a relocation. 3020 if (!ADDIMI.getOperand(2).isImm()) 3021 return false; 3022 3023 Imm = ADDIMI.getOperand(2).getImm(); 3024 3025 return true; 3026 } 3027 3028 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { 3029 unsigned Opc = ADDMI.getOpcode(); 3030 3031 // Exit if the instruction is not ADD. 3032 return Opc == PPC::ADD4 || Opc == PPC::ADD8; 3033 } 3034 3035 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, 3036 unsigned &ToBeDeletedReg, 3037 unsigned &XFormOpcode, 3038 int64_t &OffsetImm, 3039 ImmInstrInfo &III) const { 3040 // Only handle load/store. 3041 if (!MI.mayLoadOrStore()) 3042 return false; 3043 3044 unsigned Opc = MI.getOpcode(); 3045 3046 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); 3047 3048 // Exit if instruction has no index form. 3049 if (XFormOpcode == PPC::INSTRUCTION_LIST_END) 3050 return false; 3051 3052 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. 3053 if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()), 3054 III, true)) 3055 return false; 3056 3057 if (!III.IsSummingOperands) 3058 return false; 3059 3060 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); 3061 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); 3062 // Only support imm operands, not relocation slots or others. 3063 if (!ImmOperand.isImm()) 3064 return false; 3065 3066 assert(RegOperand.isReg() && "Instruction format is not right"); 3067 3068 // There are other use for ToBeDeletedReg after Imm instr, can not delete it. 3069 if (!RegOperand.isKill()) 3070 return false; 3071 3072 ToBeDeletedReg = RegOperand.getReg(); 3073 OffsetImm = ImmOperand.getImm(); 3074 3075 return true; 3076 } 3077 3078 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, 3079 MachineInstr *&ADDIMI, 3080 int64_t &OffsetAddi, 3081 int64_t OffsetImm) const { 3082 assert((Index == 1 || Index == 2) && "Invalid operand index for add."); 3083 MachineOperand &MO = ADDMI->getOperand(Index); 3084 3085 if (!MO.isKill()) 3086 return false; 3087 3088 bool OtherIntermediateUse = false; 3089 3090 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); 3091 // Currently handle only one "add + Imminstr" pair case, exit if other 3092 // intermediate use for ToBeChangedReg found. 3093 // TODO: handle the cases where there are other "add + Imminstr" pairs 3094 // with same offset in Imminstr which is like: 3095 // 3096 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 3097 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 3098 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) 3099 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 3100 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) 3101 // 3102 // can be converted to: 3103 // 3104 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, 3105 // (OffsetAddi + OffsetImm) 3106 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg 3107 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) 3108 3109 if (OtherIntermediateUse || !ADDIMI) 3110 return false; 3111 // Check if ADDI instr meets requirement. 3112 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) 3113 return false; 3114 3115 if (isInt<16>(OffsetAddi + OffsetImm)) 3116 return true; 3117 return false; 3118 } 3119 3120 // If this instruction has an immediate form and one of its operands is a 3121 // result of a load-immediate or an add-immediate, convert it to 3122 // the immediate form if the constant is in range. 3123 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 3124 MachineInstr **KilledDef) const { 3125 MachineFunction *MF = MI.getParent()->getParent(); 3126 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3127 bool PostRA = !MRI->isSSA(); 3128 bool SeenIntermediateUse = true; 3129 unsigned ForwardingOperand = ~0U; 3130 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 3131 SeenIntermediateUse); 3132 if (!DefMI) 3133 return false; 3134 assert(ForwardingOperand < MI.getNumOperands() && 3135 "The forwarding operand needs to be valid at this point"); 3136 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 3137 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 3138 if (KilledDef && KillFwdDefMI) 3139 *KilledDef = DefMI; 3140 3141 // If this is a imm instruction and its register operands is produced by ADDI, 3142 // put the imm into imm inst directly. 3143 if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) != 3144 PPC::INSTRUCTION_LIST_END && 3145 transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand)) 3146 return true; 3147 3148 ImmInstrInfo III; 3149 bool IsVFReg = MI.getOperand(0).isReg() 3150 ? isVFRegister(MI.getOperand(0).getReg()) 3151 : false; 3152 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 3153 // If this is a reg+reg instruction that has a reg+imm form, 3154 // and one of the operands is produced by an add-immediate, 3155 // try to convert it. 3156 if (HasImmForm && 3157 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 3158 KillFwdDefMI)) 3159 return true; 3160 3161 // If this is a reg+reg instruction that has a reg+imm form, 3162 // and one of the operands is produced by LI, convert it now. 3163 if (HasImmForm && 3164 transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI)) 3165 return true; 3166 3167 // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI 3168 // can be simpified to LI. 3169 if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef)) 3170 return true; 3171 3172 return false; 3173 } 3174 3175 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 3176 ImmInstrInfo &III, bool PostRA) const { 3177 // The vast majority of the instructions would need their operand 2 replaced 3178 // with an immediate when switching to the reg+imm form. A marked exception 3179 // are the update form loads/stores for which a constant operand 2 would need 3180 // to turn into a displacement and move operand 1 to the operand 2 position. 3181 III.ImmOpNo = 2; 3182 III.OpNoForForwarding = 2; 3183 III.ImmWidth = 16; 3184 III.ImmMustBeMultipleOf = 1; 3185 III.TruncateImmTo = 0; 3186 III.IsSummingOperands = false; 3187 switch (Opc) { 3188 default: return false; 3189 case PPC::ADD4: 3190 case PPC::ADD8: 3191 III.SignedImm = true; 3192 III.ZeroIsSpecialOrig = 0; 3193 III.ZeroIsSpecialNew = 1; 3194 III.IsCommutative = true; 3195 III.IsSummingOperands = true; 3196 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 3197 break; 3198 case PPC::ADDC: 3199 case PPC::ADDC8: 3200 III.SignedImm = true; 3201 III.ZeroIsSpecialOrig = 0; 3202 III.ZeroIsSpecialNew = 0; 3203 III.IsCommutative = true; 3204 III.IsSummingOperands = true; 3205 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 3206 break; 3207 case PPC::ADDC_rec: 3208 III.SignedImm = true; 3209 III.ZeroIsSpecialOrig = 0; 3210 III.ZeroIsSpecialNew = 0; 3211 III.IsCommutative = true; 3212 III.IsSummingOperands = true; 3213 III.ImmOpcode = PPC::ADDIC_rec; 3214 break; 3215 case PPC::SUBFC: 3216 case PPC::SUBFC8: 3217 III.SignedImm = true; 3218 III.ZeroIsSpecialOrig = 0; 3219 III.ZeroIsSpecialNew = 0; 3220 III.IsCommutative = false; 3221 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 3222 break; 3223 case PPC::CMPW: 3224 case PPC::CMPD: 3225 III.SignedImm = true; 3226 III.ZeroIsSpecialOrig = 0; 3227 III.ZeroIsSpecialNew = 0; 3228 III.IsCommutative = false; 3229 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 3230 break; 3231 case PPC::CMPLW: 3232 case PPC::CMPLD: 3233 III.SignedImm = false; 3234 III.ZeroIsSpecialOrig = 0; 3235 III.ZeroIsSpecialNew = 0; 3236 III.IsCommutative = false; 3237 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 3238 break; 3239 case PPC::AND_rec: 3240 case PPC::AND8_rec: 3241 case PPC::OR: 3242 case PPC::OR8: 3243 case PPC::XOR: 3244 case PPC::XOR8: 3245 III.SignedImm = false; 3246 III.ZeroIsSpecialOrig = 0; 3247 III.ZeroIsSpecialNew = 0; 3248 III.IsCommutative = true; 3249 switch(Opc) { 3250 default: llvm_unreachable("Unknown opcode"); 3251 case PPC::AND_rec: 3252 III.ImmOpcode = PPC::ANDI_rec; 3253 break; 3254 case PPC::AND8_rec: 3255 III.ImmOpcode = PPC::ANDI8_rec; 3256 break; 3257 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 3258 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 3259 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 3260 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 3261 } 3262 break; 3263 case PPC::RLWNM: 3264 case PPC::RLWNM8: 3265 case PPC::RLWNM_rec: 3266 case PPC::RLWNM8_rec: 3267 case PPC::SLW: 3268 case PPC::SLW8: 3269 case PPC::SLW_rec: 3270 case PPC::SLW8_rec: 3271 case PPC::SRW: 3272 case PPC::SRW8: 3273 case PPC::SRW_rec: 3274 case PPC::SRW8_rec: 3275 case PPC::SRAW: 3276 case PPC::SRAW_rec: 3277 III.SignedImm = false; 3278 III.ZeroIsSpecialOrig = 0; 3279 III.ZeroIsSpecialNew = 0; 3280 III.IsCommutative = false; 3281 // This isn't actually true, but the instructions ignore any of the 3282 // upper bits, so any immediate loaded with an LI is acceptable. 3283 // This does not apply to shift right algebraic because a value 3284 // out of range will produce a -1/0. 3285 III.ImmWidth = 16; 3286 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || 3287 Opc == PPC::RLWNM8_rec) 3288 III.TruncateImmTo = 5; 3289 else 3290 III.TruncateImmTo = 6; 3291 switch(Opc) { 3292 default: llvm_unreachable("Unknown opcode"); 3293 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 3294 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 3295 case PPC::RLWNM_rec: 3296 III.ImmOpcode = PPC::RLWINM_rec; 3297 break; 3298 case PPC::RLWNM8_rec: 3299 III.ImmOpcode = PPC::RLWINM8_rec; 3300 break; 3301 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 3302 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 3303 case PPC::SLW_rec: 3304 III.ImmOpcode = PPC::RLWINM_rec; 3305 break; 3306 case PPC::SLW8_rec: 3307 III.ImmOpcode = PPC::RLWINM8_rec; 3308 break; 3309 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 3310 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 3311 case PPC::SRW_rec: 3312 III.ImmOpcode = PPC::RLWINM_rec; 3313 break; 3314 case PPC::SRW8_rec: 3315 III.ImmOpcode = PPC::RLWINM8_rec; 3316 break; 3317 case PPC::SRAW: 3318 III.ImmWidth = 5; 3319 III.TruncateImmTo = 0; 3320 III.ImmOpcode = PPC::SRAWI; 3321 break; 3322 case PPC::SRAW_rec: 3323 III.ImmWidth = 5; 3324 III.TruncateImmTo = 0; 3325 III.ImmOpcode = PPC::SRAWI_rec; 3326 break; 3327 } 3328 break; 3329 case PPC::RLDCL: 3330 case PPC::RLDCL_rec: 3331 case PPC::RLDCR: 3332 case PPC::RLDCR_rec: 3333 case PPC::SLD: 3334 case PPC::SLD_rec: 3335 case PPC::SRD: 3336 case PPC::SRD_rec: 3337 case PPC::SRAD: 3338 case PPC::SRAD_rec: 3339 III.SignedImm = false; 3340 III.ZeroIsSpecialOrig = 0; 3341 III.ZeroIsSpecialNew = 0; 3342 III.IsCommutative = false; 3343 // This isn't actually true, but the instructions ignore any of the 3344 // upper bits, so any immediate loaded with an LI is acceptable. 3345 // This does not apply to shift right algebraic because a value 3346 // out of range will produce a -1/0. 3347 III.ImmWidth = 16; 3348 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || 3349 Opc == PPC::RLDCR_rec) 3350 III.TruncateImmTo = 6; 3351 else 3352 III.TruncateImmTo = 7; 3353 switch(Opc) { 3354 default: llvm_unreachable("Unknown opcode"); 3355 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 3356 case PPC::RLDCL_rec: 3357 III.ImmOpcode = PPC::RLDICL_rec; 3358 break; 3359 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 3360 case PPC::RLDCR_rec: 3361 III.ImmOpcode = PPC::RLDICR_rec; 3362 break; 3363 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 3364 case PPC::SLD_rec: 3365 III.ImmOpcode = PPC::RLDICR_rec; 3366 break; 3367 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 3368 case PPC::SRD_rec: 3369 III.ImmOpcode = PPC::RLDICL_rec; 3370 break; 3371 case PPC::SRAD: 3372 III.ImmWidth = 6; 3373 III.TruncateImmTo = 0; 3374 III.ImmOpcode = PPC::SRADI; 3375 break; 3376 case PPC::SRAD_rec: 3377 III.ImmWidth = 6; 3378 III.TruncateImmTo = 0; 3379 III.ImmOpcode = PPC::SRADI_rec; 3380 break; 3381 } 3382 break; 3383 // Loads and stores: 3384 case PPC::LBZX: 3385 case PPC::LBZX8: 3386 case PPC::LHZX: 3387 case PPC::LHZX8: 3388 case PPC::LHAX: 3389 case PPC::LHAX8: 3390 case PPC::LWZX: 3391 case PPC::LWZX8: 3392 case PPC::LWAX: 3393 case PPC::LDX: 3394 case PPC::LFSX: 3395 case PPC::LFDX: 3396 case PPC::STBX: 3397 case PPC::STBX8: 3398 case PPC::STHX: 3399 case PPC::STHX8: 3400 case PPC::STWX: 3401 case PPC::STWX8: 3402 case PPC::STDX: 3403 case PPC::STFSX: 3404 case PPC::STFDX: 3405 III.SignedImm = true; 3406 III.ZeroIsSpecialOrig = 1; 3407 III.ZeroIsSpecialNew = 2; 3408 III.IsCommutative = true; 3409 III.IsSummingOperands = true; 3410 III.ImmOpNo = 1; 3411 III.OpNoForForwarding = 2; 3412 switch(Opc) { 3413 default: llvm_unreachable("Unknown opcode"); 3414 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 3415 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 3416 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 3417 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 3418 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 3419 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 3420 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 3421 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 3422 case PPC::LWAX: 3423 III.ImmOpcode = PPC::LWA; 3424 III.ImmMustBeMultipleOf = 4; 3425 break; 3426 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 3427 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 3428 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 3429 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 3430 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 3431 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 3432 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 3433 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 3434 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 3435 case PPC::STDX: 3436 III.ImmOpcode = PPC::STD; 3437 III.ImmMustBeMultipleOf = 4; 3438 break; 3439 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 3440 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 3441 } 3442 break; 3443 case PPC::LBZUX: 3444 case PPC::LBZUX8: 3445 case PPC::LHZUX: 3446 case PPC::LHZUX8: 3447 case PPC::LHAUX: 3448 case PPC::LHAUX8: 3449 case PPC::LWZUX: 3450 case PPC::LWZUX8: 3451 case PPC::LDUX: 3452 case PPC::LFSUX: 3453 case PPC::LFDUX: 3454 case PPC::STBUX: 3455 case PPC::STBUX8: 3456 case PPC::STHUX: 3457 case PPC::STHUX8: 3458 case PPC::STWUX: 3459 case PPC::STWUX8: 3460 case PPC::STDUX: 3461 case PPC::STFSUX: 3462 case PPC::STFDUX: 3463 III.SignedImm = true; 3464 III.ZeroIsSpecialOrig = 2; 3465 III.ZeroIsSpecialNew = 3; 3466 III.IsCommutative = false; 3467 III.IsSummingOperands = true; 3468 III.ImmOpNo = 2; 3469 III.OpNoForForwarding = 3; 3470 switch(Opc) { 3471 default: llvm_unreachable("Unknown opcode"); 3472 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 3473 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 3474 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 3475 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 3476 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 3477 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 3478 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 3479 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 3480 case PPC::LDUX: 3481 III.ImmOpcode = PPC::LDU; 3482 III.ImmMustBeMultipleOf = 4; 3483 break; 3484 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 3485 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 3486 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 3487 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 3488 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 3489 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 3490 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 3491 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 3492 case PPC::STDUX: 3493 III.ImmOpcode = PPC::STDU; 3494 III.ImmMustBeMultipleOf = 4; 3495 break; 3496 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 3497 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 3498 } 3499 break; 3500 // Power9 and up only. For some of these, the X-Form version has access to all 3501 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 3502 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 3503 // into or stored from is one of the VR registers. 3504 case PPC::LXVX: 3505 case PPC::LXSSPX: 3506 case PPC::LXSDX: 3507 case PPC::STXVX: 3508 case PPC::STXSSPX: 3509 case PPC::STXSDX: 3510 case PPC::XFLOADf32: 3511 case PPC::XFLOADf64: 3512 case PPC::XFSTOREf32: 3513 case PPC::XFSTOREf64: 3514 if (!Subtarget.hasP9Vector()) 3515 return false; 3516 III.SignedImm = true; 3517 III.ZeroIsSpecialOrig = 1; 3518 III.ZeroIsSpecialNew = 2; 3519 III.IsCommutative = true; 3520 III.IsSummingOperands = true; 3521 III.ImmOpNo = 1; 3522 III.OpNoForForwarding = 2; 3523 III.ImmMustBeMultipleOf = 4; 3524 switch(Opc) { 3525 default: llvm_unreachable("Unknown opcode"); 3526 case PPC::LXVX: 3527 III.ImmOpcode = PPC::LXV; 3528 III.ImmMustBeMultipleOf = 16; 3529 break; 3530 case PPC::LXSSPX: 3531 if (PostRA) { 3532 if (IsVFReg) 3533 III.ImmOpcode = PPC::LXSSP; 3534 else { 3535 III.ImmOpcode = PPC::LFS; 3536 III.ImmMustBeMultipleOf = 1; 3537 } 3538 break; 3539 } 3540 LLVM_FALLTHROUGH; 3541 case PPC::XFLOADf32: 3542 III.ImmOpcode = PPC::DFLOADf32; 3543 break; 3544 case PPC::LXSDX: 3545 if (PostRA) { 3546 if (IsVFReg) 3547 III.ImmOpcode = PPC::LXSD; 3548 else { 3549 III.ImmOpcode = PPC::LFD; 3550 III.ImmMustBeMultipleOf = 1; 3551 } 3552 break; 3553 } 3554 LLVM_FALLTHROUGH; 3555 case PPC::XFLOADf64: 3556 III.ImmOpcode = PPC::DFLOADf64; 3557 break; 3558 case PPC::STXVX: 3559 III.ImmOpcode = PPC::STXV; 3560 III.ImmMustBeMultipleOf = 16; 3561 break; 3562 case PPC::STXSSPX: 3563 if (PostRA) { 3564 if (IsVFReg) 3565 III.ImmOpcode = PPC::STXSSP; 3566 else { 3567 III.ImmOpcode = PPC::STFS; 3568 III.ImmMustBeMultipleOf = 1; 3569 } 3570 break; 3571 } 3572 LLVM_FALLTHROUGH; 3573 case PPC::XFSTOREf32: 3574 III.ImmOpcode = PPC::DFSTOREf32; 3575 break; 3576 case PPC::STXSDX: 3577 if (PostRA) { 3578 if (IsVFReg) 3579 III.ImmOpcode = PPC::STXSD; 3580 else { 3581 III.ImmOpcode = PPC::STFD; 3582 III.ImmMustBeMultipleOf = 1; 3583 } 3584 break; 3585 } 3586 LLVM_FALLTHROUGH; 3587 case PPC::XFSTOREf64: 3588 III.ImmOpcode = PPC::DFSTOREf64; 3589 break; 3590 } 3591 break; 3592 } 3593 return true; 3594 } 3595 3596 // Utility function for swaping two arbitrary operands of an instruction. 3597 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 3598 assert(Op1 != Op2 && "Cannot swap operand with itself."); 3599 3600 unsigned MaxOp = std::max(Op1, Op2); 3601 unsigned MinOp = std::min(Op1, Op2); 3602 MachineOperand MOp1 = MI.getOperand(MinOp); 3603 MachineOperand MOp2 = MI.getOperand(MaxOp); 3604 MI.RemoveOperand(std::max(Op1, Op2)); 3605 MI.RemoveOperand(std::min(Op1, Op2)); 3606 3607 // If the operands we are swapping are the two at the end (the common case) 3608 // we can just remove both and add them in the opposite order. 3609 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 3610 MI.addOperand(MOp2); 3611 MI.addOperand(MOp1); 3612 } else { 3613 // Store all operands in a temporary vector, remove them and re-add in the 3614 // right order. 3615 SmallVector<MachineOperand, 2> MOps; 3616 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 3617 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 3618 MOps.push_back(MI.getOperand(i)); 3619 MI.RemoveOperand(i); 3620 } 3621 // MOp2 needs to be added next. 3622 MI.addOperand(MOp2); 3623 // Now add the rest. 3624 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 3625 if (i == MaxOp) 3626 MI.addOperand(MOp1); 3627 else { 3628 MI.addOperand(MOps.back()); 3629 MOps.pop_back(); 3630 } 3631 } 3632 } 3633 } 3634 3635 // Check if the 'MI' that has the index OpNoForForwarding 3636 // meets the requirement described in the ImmInstrInfo. 3637 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 3638 const ImmInstrInfo &III, 3639 unsigned OpNoForForwarding 3640 ) const { 3641 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 3642 // would not work pre-RA, we can only do the check post RA. 3643 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3644 if (MRI.isSSA()) 3645 return false; 3646 3647 // Cannot do the transform if MI isn't summing the operands. 3648 if (!III.IsSummingOperands) 3649 return false; 3650 3651 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 3652 if (!III.ZeroIsSpecialOrig) 3653 return false; 3654 3655 // We cannot do the transform if the operand we are trying to replace 3656 // isn't the same as the operand the instruction allows. 3657 if (OpNoForForwarding != III.OpNoForForwarding) 3658 return false; 3659 3660 // Check if the instruction we are trying to transform really has 3661 // the special zero register as its operand. 3662 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 3663 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 3664 return false; 3665 3666 // This machine instruction is convertible if it is, 3667 // 1. summing the operands. 3668 // 2. one of the operands is special zero register. 3669 // 3. the operand we are trying to replace is allowed by the MI. 3670 return true; 3671 } 3672 3673 // Check if the DefMI is the add inst and set the ImmMO and RegMO 3674 // accordingly. 3675 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 3676 const ImmInstrInfo &III, 3677 MachineOperand *&ImmMO, 3678 MachineOperand *&RegMO) const { 3679 unsigned Opc = DefMI.getOpcode(); 3680 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 3681 return false; 3682 3683 assert(DefMI.getNumOperands() >= 3 && 3684 "Add inst must have at least three operands"); 3685 RegMO = &DefMI.getOperand(1); 3686 ImmMO = &DefMI.getOperand(2); 3687 3688 // Before RA, ADDI first operand could be a frame index. 3689 if (!RegMO->isReg()) 3690 return false; 3691 3692 // This DefMI is elgible for forwarding if it is: 3693 // 1. add inst 3694 // 2. one of the operands is Imm/CPI/Global. 3695 return isAnImmediateOperand(*ImmMO); 3696 } 3697 3698 bool PPCInstrInfo::isRegElgibleForForwarding( 3699 const MachineOperand &RegMO, const MachineInstr &DefMI, 3700 const MachineInstr &MI, bool KillDefMI, 3701 bool &IsFwdFeederRegKilled) const { 3702 // x = addi y, imm 3703 // ... 3704 // z = lfdx 0, x -> z = lfd imm(y) 3705 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 3706 // of "y" between the DEF of "x" and "z". 3707 // The query is only valid post RA. 3708 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3709 if (MRI.isSSA()) 3710 return false; 3711 3712 Register Reg = RegMO.getReg(); 3713 3714 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 3715 MachineBasicBlock::const_reverse_iterator It = MI; 3716 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 3717 It++; 3718 for (; It != E; ++It) { 3719 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3720 return false; 3721 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3722 IsFwdFeederRegKilled = true; 3723 // Made it to DefMI without encountering a clobber. 3724 if ((&*It) == &DefMI) 3725 break; 3726 } 3727 assert((&*It) == &DefMI && "DefMI is missing"); 3728 3729 // If DefMI also defines the register to be forwarded, we can only forward it 3730 // if DefMI is being erased. 3731 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 3732 return KillDefMI; 3733 3734 return true; 3735 } 3736 3737 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 3738 const MachineInstr &DefMI, 3739 const ImmInstrInfo &III, 3740 int64_t &Imm, 3741 int64_t BaseImm) const { 3742 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 3743 if (DefMI.getOpcode() == PPC::ADDItocL) { 3744 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 3745 // However, we know that, it is 16-bit width, and has the alignment of 4. 3746 // Check if the instruction met the requirement. 3747 if (III.ImmMustBeMultipleOf > 4 || 3748 III.TruncateImmTo || III.ImmWidth != 16) 3749 return false; 3750 3751 // Going from XForm to DForm loads means that the displacement needs to be 3752 // not just an immediate but also a multiple of 4, or 16 depending on the 3753 // load. A DForm load cannot be represented if it is a multiple of say 2. 3754 // XForm loads do not have this restriction. 3755 if (ImmMO.isGlobal()) { 3756 const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout(); 3757 if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf) 3758 return false; 3759 } 3760 3761 return true; 3762 } 3763 3764 if (ImmMO.isImm()) { 3765 // It is Imm, we need to check if the Imm fit the range. 3766 // Sign-extend to 64-bits. 3767 // DefMI may be folded with another imm form instruction, the result Imm is 3768 // the sum of Imm of DefMI and BaseImm which is from imm form instruction. 3769 Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm); 3770 3771 if (Imm % III.ImmMustBeMultipleOf) 3772 return false; 3773 if (III.TruncateImmTo) 3774 Imm &= ((1 << III.TruncateImmTo) - 1); 3775 if (III.SignedImm) { 3776 APInt ActualValue(64, Imm, true); 3777 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3778 return false; 3779 } else { 3780 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3781 if ((uint64_t)Imm > UnsignedMax) 3782 return false; 3783 } 3784 } 3785 else 3786 return false; 3787 3788 // This ImmMO is forwarded if it meets the requriement describle 3789 // in ImmInstrInfo 3790 return true; 3791 } 3792 3793 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI, 3794 unsigned OpNoForForwarding, 3795 MachineInstr **KilledDef) const { 3796 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 3797 !DefMI.getOperand(1).isImm()) 3798 return false; 3799 3800 MachineFunction *MF = MI.getParent()->getParent(); 3801 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3802 bool PostRA = !MRI->isSSA(); 3803 3804 int64_t Immediate = DefMI.getOperand(1).getImm(); 3805 // Sign-extend to 64-bits. 3806 int64_t SExtImm = SignExtend64<16>(Immediate); 3807 3808 bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill(); 3809 Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 3810 3811 bool ReplaceWithLI = false; 3812 bool Is64BitLI = false; 3813 int64_t NewImm = 0; 3814 bool SetCR = false; 3815 unsigned Opc = MI.getOpcode(); 3816 switch (Opc) { 3817 default: 3818 return false; 3819 3820 // FIXME: Any branches conditional on such a comparison can be made 3821 // unconditional. At this time, this happens too infrequently to be worth 3822 // the implementation effort, but if that ever changes, we could convert 3823 // such a pattern here. 3824 case PPC::CMPWI: 3825 case PPC::CMPLWI: 3826 case PPC::CMPDI: 3827 case PPC::CMPLDI: { 3828 // Doing this post-RA would require dataflow analysis to reliably find uses 3829 // of the CR register set by the compare. 3830 // No need to fixup killed/dead flag since this transformation is only valid 3831 // before RA. 3832 if (PostRA) 3833 return false; 3834 // If a compare-immediate is fed by an immediate and is itself an input of 3835 // an ISEL (the most common case) into a COPY of the correct register. 3836 bool Changed = false; 3837 Register DefReg = MI.getOperand(0).getReg(); 3838 int64_t Comparand = MI.getOperand(2).getImm(); 3839 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 3840 ? (Comparand | 0xFFFFFFFFFFFF0000) 3841 : Comparand; 3842 3843 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 3844 unsigned UseOpc = CompareUseMI.getOpcode(); 3845 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 3846 continue; 3847 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 3848 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 3849 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 3850 unsigned RegToCopy = 3851 selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg); 3852 if (RegToCopy == PPC::NoRegister) 3853 continue; 3854 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 3855 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 3856 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 3857 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 3858 CompareUseMI.RemoveOperand(3); 3859 CompareUseMI.RemoveOperand(2); 3860 continue; 3861 } 3862 LLVM_DEBUG( 3863 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 3864 LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump()); 3865 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 3866 // Convert to copy and remove unneeded operands. 3867 CompareUseMI.setDesc(get(PPC::COPY)); 3868 CompareUseMI.RemoveOperand(3); 3869 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 3870 CmpIselsConverted++; 3871 Changed = true; 3872 LLVM_DEBUG(CompareUseMI.dump()); 3873 } 3874 if (Changed) 3875 return true; 3876 // This may end up incremented multiple times since this function is called 3877 // during a fixed-point transformation, but it is only meant to indicate the 3878 // presence of this opportunity. 3879 MissedConvertibleImmediateInstrs++; 3880 return false; 3881 } 3882 3883 // Immediate forms - may simply be convertable to an LI. 3884 case PPC::ADDI: 3885 case PPC::ADDI8: { 3886 // Does the sum fit in a 16-bit signed field? 3887 int64_t Addend = MI.getOperand(2).getImm(); 3888 if (isInt<16>(Addend + SExtImm)) { 3889 ReplaceWithLI = true; 3890 Is64BitLI = Opc == PPC::ADDI8; 3891 NewImm = Addend + SExtImm; 3892 break; 3893 } 3894 return false; 3895 } 3896 case PPC::SUBFIC: 3897 case PPC::SUBFIC8: { 3898 // Only transform this if the CARRY implicit operand is dead. 3899 if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead()) 3900 return false; 3901 int64_t Minuend = MI.getOperand(2).getImm(); 3902 if (isInt<16>(Minuend - SExtImm)) { 3903 ReplaceWithLI = true; 3904 Is64BitLI = Opc == PPC::SUBFIC8; 3905 NewImm = Minuend - SExtImm; 3906 break; 3907 } 3908 return false; 3909 } 3910 case PPC::RLDICL: 3911 case PPC::RLDICL_rec: 3912 case PPC::RLDICL_32: 3913 case PPC::RLDICL_32_64: { 3914 // Use APInt's rotate function. 3915 int64_t SH = MI.getOperand(2).getImm(); 3916 int64_t MB = MI.getOperand(3).getImm(); 3917 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, 3918 SExtImm, true); 3919 InVal = InVal.rotl(SH); 3920 uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1; 3921 InVal &= Mask; 3922 // Can't replace negative values with an LI as that will sign-extend 3923 // and not clear the left bits. If we're setting the CR bit, we will use 3924 // ANDI_rec which won't sign extend, so that's safe. 3925 if (isUInt<15>(InVal.getSExtValue()) || 3926 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { 3927 ReplaceWithLI = true; 3928 Is64BitLI = Opc != PPC::RLDICL_32; 3929 NewImm = InVal.getSExtValue(); 3930 SetCR = Opc == PPC::RLDICL_rec; 3931 break; 3932 } 3933 return false; 3934 } 3935 case PPC::RLWINM: 3936 case PPC::RLWINM8: 3937 case PPC::RLWINM_rec: 3938 case PPC::RLWINM8_rec: { 3939 int64_t SH = MI.getOperand(2).getImm(); 3940 int64_t MB = MI.getOperand(3).getImm(); 3941 int64_t ME = MI.getOperand(4).getImm(); 3942 APInt InVal(32, SExtImm, true); 3943 InVal = InVal.rotl(SH); 3944 APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB); 3945 InVal &= Mask; 3946 // Can't replace negative values with an LI as that will sign-extend 3947 // and not clear the left bits. If we're setting the CR bit, we will use 3948 // ANDI_rec which won't sign extend, so that's safe. 3949 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 3950 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && 3951 isUInt<16>(InVal.getSExtValue())); 3952 if (ValueFits) { 3953 ReplaceWithLI = true; 3954 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; 3955 NewImm = InVal.getSExtValue(); 3956 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; 3957 break; 3958 } 3959 return false; 3960 } 3961 case PPC::ORI: 3962 case PPC::ORI8: 3963 case PPC::XORI: 3964 case PPC::XORI8: { 3965 int64_t LogicalImm = MI.getOperand(2).getImm(); 3966 int64_t Result = 0; 3967 if (Opc == PPC::ORI || Opc == PPC::ORI8) 3968 Result = LogicalImm | SExtImm; 3969 else 3970 Result = LogicalImm ^ SExtImm; 3971 if (isInt<16>(Result)) { 3972 ReplaceWithLI = true; 3973 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 3974 NewImm = Result; 3975 break; 3976 } 3977 return false; 3978 } 3979 } 3980 3981 if (ReplaceWithLI) { 3982 // We need to be careful with CR-setting instructions we're replacing. 3983 if (SetCR) { 3984 // We don't know anything about uses when we're out of SSA, so only 3985 // replace if the new immediate will be reproduced. 3986 bool ImmChanged = (SExtImm & NewImm) != NewImm; 3987 if (PostRA && ImmChanged) 3988 return false; 3989 3990 if (!PostRA) { 3991 // If the defining load-immediate has no other uses, we can just replace 3992 // the immediate with the new immediate. 3993 if (MRI->hasOneUse(DefMI.getOperand(0).getReg())) 3994 DefMI.getOperand(1).setImm(NewImm); 3995 3996 // If we're not using the GPR result of the CR-setting instruction, we 3997 // just need to and with zero/non-zero depending on the new immediate. 3998 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 3999 if (NewImm) { 4000 assert(Immediate && "Transformation converted zero to non-zero?"); 4001 NewImm = Immediate; 4002 } 4003 } else if (ImmChanged) 4004 return false; 4005 } 4006 } 4007 4008 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4009 LLVM_DEBUG(MI.dump()); 4010 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4011 LLVM_DEBUG(DefMI.dump()); 4012 LoadImmediateInfo LII; 4013 LII.Imm = NewImm; 4014 LII.Is64Bit = Is64BitLI; 4015 LII.SetCR = SetCR; 4016 // If we're setting the CR, the original load-immediate must be kept (as an 4017 // operand to ANDI_rec/ANDI8_rec). 4018 if (KilledDef && SetCR) 4019 *KilledDef = nullptr; 4020 replaceInstrWithLI(MI, LII); 4021 4022 // Fixup killed/dead flag after transformation. 4023 // Pattern: 4024 // ForwardingOperandReg = LI imm1 4025 // y = op2 imm2, ForwardingOperandReg(killed) 4026 if (IsForwardingOperandKilled) 4027 fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg); 4028 4029 LLVM_DEBUG(dbgs() << "With:\n"); 4030 LLVM_DEBUG(MI.dump()); 4031 return true; 4032 } 4033 return false; 4034 } 4035 4036 bool PPCInstrInfo::transformToNewImmFormFedByAdd( 4037 MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const { 4038 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 4039 bool PostRA = !MRI->isSSA(); 4040 // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI 4041 // for post-ra. 4042 if (PostRA) 4043 return false; 4044 4045 // Only handle load/store. 4046 if (!MI.mayLoadOrStore()) 4047 return false; 4048 4049 unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode()); 4050 4051 assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) && 4052 "MI must have x-form opcode"); 4053 4054 // get Imm Form info. 4055 ImmInstrInfo III; 4056 bool IsVFReg = MI.getOperand(0).isReg() 4057 ? isVFRegister(MI.getOperand(0).getReg()) 4058 : false; 4059 4060 if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA)) 4061 return false; 4062 4063 if (!III.IsSummingOperands) 4064 return false; 4065 4066 if (OpNoForForwarding != III.OpNoForForwarding) 4067 return false; 4068 4069 MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo); 4070 if (!ImmOperandMI.isImm()) 4071 return false; 4072 4073 // Check DefMI. 4074 MachineOperand *ImmMO = nullptr; 4075 MachineOperand *RegMO = nullptr; 4076 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4077 return false; 4078 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4079 4080 // Check Imm. 4081 // Set ImmBase from imm instruction as base and get new Imm inside 4082 // isImmElgibleForForwarding. 4083 int64_t ImmBase = ImmOperandMI.getImm(); 4084 int64_t Imm = 0; 4085 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase)) 4086 return false; 4087 4088 // Get killed info in case fixup needed after transformation. 4089 unsigned ForwardKilledOperandReg = ~0U; 4090 if (MI.getOperand(III.OpNoForForwarding).isKill()) 4091 ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg(); 4092 4093 // Do the transform 4094 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4095 LLVM_DEBUG(MI.dump()); 4096 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4097 LLVM_DEBUG(DefMI.dump()); 4098 4099 MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg()); 4100 MI.getOperand(III.OpNoForForwarding).setIsKill(RegMO->isKill()); 4101 MI.getOperand(III.ImmOpNo).setImm(Imm); 4102 4103 // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block. 4104 if (DefMI.getParent() == MI.getParent()) { 4105 // Check if reg is killed between MI and DefMI. 4106 auto IsKilledFor = [&](unsigned Reg) { 4107 MachineBasicBlock::const_reverse_iterator It = MI; 4108 MachineBasicBlock::const_reverse_iterator E = DefMI; 4109 It++; 4110 for (; It != E; ++It) { 4111 if (It->killsRegister(Reg)) 4112 return true; 4113 } 4114 return false; 4115 }; 4116 4117 // Update kill flag 4118 if (RegMO->isKill() || IsKilledFor(RegMO->getReg())) 4119 fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); 4120 if (ForwardKilledOperandReg != ~0U) 4121 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4122 } 4123 4124 LLVM_DEBUG(dbgs() << "With:\n"); 4125 LLVM_DEBUG(MI.dump()); 4126 return true; 4127 } 4128 4129 // If an X-Form instruction is fed by an add-immediate and one of its operands 4130 // is the literal zero, attempt to forward the source of the add-immediate to 4131 // the corresponding D-Form instruction with the displacement coming from 4132 // the immediate being added. 4133 bool PPCInstrInfo::transformToImmFormFedByAdd( 4134 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 4135 MachineInstr &DefMI, bool KillDefMI) const { 4136 // RegMO ImmMO 4137 // | | 4138 // x = addi reg, imm <----- DefMI 4139 // y = op 0 , x <----- MI 4140 // | 4141 // OpNoForForwarding 4142 // Check if the MI meet the requirement described in the III. 4143 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 4144 return false; 4145 4146 // Check if the DefMI meet the requirement 4147 // described in the III. If yes, set the ImmMO and RegMO accordingly. 4148 MachineOperand *ImmMO = nullptr; 4149 MachineOperand *RegMO = nullptr; 4150 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4151 return false; 4152 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4153 4154 // As we get the Imm operand now, we need to check if the ImmMO meet 4155 // the requirement described in the III. If yes set the Imm. 4156 int64_t Imm = 0; 4157 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 4158 return false; 4159 4160 bool IsFwdFeederRegKilled = false; 4161 // Check if the RegMO can be forwarded to MI. 4162 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 4163 IsFwdFeederRegKilled)) 4164 return false; 4165 4166 // Get killed info in case fixup needed after transformation. 4167 unsigned ForwardKilledOperandReg = ~0U; 4168 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4169 bool PostRA = !MRI.isSSA(); 4170 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 4171 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 4172 4173 // We know that, the MI and DefMI both meet the pattern, and 4174 // the Imm also meet the requirement with the new Imm-form. 4175 // It is safe to do the transformation now. 4176 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4177 LLVM_DEBUG(MI.dump()); 4178 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4179 LLVM_DEBUG(DefMI.dump()); 4180 4181 // Update the base reg first. 4182 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 4183 false, false, 4184 RegMO->isKill()); 4185 4186 // Then, update the imm. 4187 if (ImmMO->isImm()) { 4188 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 4189 // directly. 4190 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 4191 } 4192 else { 4193 // Otherwise, it is Constant Pool Index(CPI) or Global, 4194 // which is relocation in fact. We need to replace the special zero 4195 // register with ImmMO. 4196 // Before that, we need to fixup the target flags for imm. 4197 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 4198 if (DefMI.getOpcode() == PPC::ADDItocL) 4199 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 4200 4201 // MI didn't have the interface such as MI.setOperand(i) though 4202 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 4203 // ImmMO, we need to remove ZERO operand and all the operands behind it, 4204 // and, add the ImmMO, then, move back all the operands behind ZERO. 4205 SmallVector<MachineOperand, 2> MOps; 4206 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 4207 MOps.push_back(MI.getOperand(i)); 4208 MI.RemoveOperand(i); 4209 } 4210 4211 // Remove the last MO in the list, which is ZERO operand in fact. 4212 MOps.pop_back(); 4213 // Add the imm operand. 4214 MI.addOperand(*ImmMO); 4215 // Now add the rest back. 4216 for (auto &MO : MOps) 4217 MI.addOperand(MO); 4218 } 4219 4220 // Update the opcode. 4221 MI.setDesc(get(III.ImmOpcode)); 4222 4223 // Fix up killed/dead flag after transformation. 4224 // Pattern 1: 4225 // x = ADD KilledFwdFeederReg, imm 4226 // n = opn KilledFwdFeederReg(killed), regn 4227 // y = XOP 0, x 4228 // Pattern 2: 4229 // x = ADD reg(killed), imm 4230 // y = XOP 0, x 4231 if (IsFwdFeederRegKilled || RegMO->isKill()) 4232 fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); 4233 // Pattern 3: 4234 // ForwardKilledOperandReg = ADD reg, imm 4235 // y = XOP 0, ForwardKilledOperandReg(killed) 4236 if (ForwardKilledOperandReg != ~0U) 4237 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4238 4239 LLVM_DEBUG(dbgs() << "With:\n"); 4240 LLVM_DEBUG(MI.dump()); 4241 4242 return true; 4243 } 4244 4245 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 4246 const ImmInstrInfo &III, 4247 unsigned ConstantOpNo, 4248 MachineInstr &DefMI) const { 4249 // DefMI must be LI or LI8. 4250 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4251 !DefMI.getOperand(1).isImm()) 4252 return false; 4253 4254 // Get Imm operand and Sign-extend to 64-bits. 4255 int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm()); 4256 4257 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4258 bool PostRA = !MRI.isSSA(); 4259 // Exit early if we can't convert this. 4260 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 4261 return false; 4262 if (Imm % III.ImmMustBeMultipleOf) 4263 return false; 4264 if (III.TruncateImmTo) 4265 Imm &= ((1 << III.TruncateImmTo) - 1); 4266 if (III.SignedImm) { 4267 APInt ActualValue(64, Imm, true); 4268 if (!ActualValue.isSignedIntN(III.ImmWidth)) 4269 return false; 4270 } else { 4271 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 4272 if ((uint64_t)Imm > UnsignedMax) 4273 return false; 4274 } 4275 4276 // If we're post-RA, the instructions don't agree on whether register zero is 4277 // special, we can transform this as long as the register operand that will 4278 // end up in the location where zero is special isn't R0. 4279 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 4280 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 4281 III.ZeroIsSpecialNew + 1; 4282 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 4283 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 4284 // If R0 is in the operand where zero is special for the new instruction, 4285 // it is unsafe to transform if the constant operand isn't that operand. 4286 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 4287 ConstantOpNo != III.ZeroIsSpecialNew) 4288 return false; 4289 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 4290 ConstantOpNo != PosForOrigZero) 4291 return false; 4292 } 4293 4294 // Get killed info in case fixup needed after transformation. 4295 unsigned ForwardKilledOperandReg = ~0U; 4296 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 4297 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 4298 4299 unsigned Opc = MI.getOpcode(); 4300 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || 4301 Opc == PPC::SRW || Opc == PPC::SRW_rec || 4302 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || 4303 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; 4304 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || 4305 Opc == PPC::SRD || Opc == PPC::SRD_rec; 4306 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || 4307 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; 4308 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || 4309 Opc == PPC::SRD_rec; 4310 4311 MI.setDesc(get(III.ImmOpcode)); 4312 if (ConstantOpNo == III.OpNoForForwarding) { 4313 // Converting shifts to immediate form is a bit tricky since they may do 4314 // one of three things: 4315 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 4316 // 2. If the shift amount is zero, the result is unchanged (save for maybe 4317 // setting CR0) 4318 // 3. If the shift amount is in [1, OpSize), it's just a shift 4319 if (SpecialShift32 || SpecialShift64) { 4320 LoadImmediateInfo LII; 4321 LII.Imm = 0; 4322 LII.SetCR = SetCR; 4323 LII.Is64Bit = SpecialShift64; 4324 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 4325 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 4326 replaceInstrWithLI(MI, LII); 4327 // Shifts by zero don't change the value. If we don't need to set CR0, 4328 // just convert this to a COPY. Can't do this post-RA since we've already 4329 // cleaned up the copies. 4330 else if (!SetCR && ShAmt == 0 && !PostRA) { 4331 MI.RemoveOperand(2); 4332 MI.setDesc(get(PPC::COPY)); 4333 } else { 4334 // The 32 bit and 64 bit instructions are quite different. 4335 if (SpecialShift32) { 4336 // Left shifts use (N, 0, 31-N). 4337 // Right shifts use (32-N, N, 31) if 0 < N < 32. 4338 // use (0, 0, 31) if N == 0. 4339 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; 4340 uint64_t MB = RightShift ? ShAmt : 0; 4341 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 4342 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 4343 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 4344 .addImm(ME); 4345 } else { 4346 // Left shifts use (N, 63-N). 4347 // Right shifts use (64-N, N) if 0 < N < 64. 4348 // use (0, 0) if N == 0. 4349 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; 4350 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 4351 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 4352 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 4353 } 4354 } 4355 } else 4356 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 4357 } 4358 // Convert commutative instructions (switch the operands and convert the 4359 // desired one to an immediate. 4360 else if (III.IsCommutative) { 4361 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 4362 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 4363 } else 4364 llvm_unreachable("Should have exited early!"); 4365 4366 // For instructions for which the constant register replaces a different 4367 // operand than where the immediate goes, we need to swap them. 4368 if (III.OpNoForForwarding != III.ImmOpNo) 4369 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 4370 4371 // If the special R0/X0 register index are different for original instruction 4372 // and new instruction, we need to fix up the register class in new 4373 // instruction. 4374 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 4375 if (III.ZeroIsSpecialNew) { 4376 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 4377 // need to fix up register class. 4378 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 4379 if (Register::isVirtualRegister(RegToModify)) { 4380 const TargetRegisterClass *NewRC = 4381 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 4382 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 4383 MRI.setRegClass(RegToModify, NewRC); 4384 } 4385 } 4386 } 4387 4388 // Fix up killed/dead flag after transformation. 4389 // Pattern: 4390 // ForwardKilledOperandReg = LI imm 4391 // y = XOP reg, ForwardKilledOperandReg(killed) 4392 if (ForwardKilledOperandReg != ~0U) 4393 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4394 return true; 4395 } 4396 4397 const TargetRegisterClass * 4398 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 4399 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 4400 return &PPC::VSRCRegClass; 4401 return RC; 4402 } 4403 4404 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 4405 return PPC::getRecordFormOpcode(Opcode); 4406 } 4407 4408 // This function returns true if the machine instruction 4409 // always outputs a value by sign-extending a 32 bit value, 4410 // i.e. 0 to 31-th bits are same as 32-th bit. 4411 static bool isSignExtendingOp(const MachineInstr &MI) { 4412 int Opcode = MI.getOpcode(); 4413 if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS || 4414 Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec || 4415 Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA || 4416 Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 4417 Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 || 4418 Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX || 4419 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU || 4420 Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 4421 Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 || 4422 Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 4423 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB || 4424 Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH || 4425 Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 || 4426 Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW || 4427 Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 || 4428 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 4429 Opcode == PPC::EXTSB8_32_64) 4430 return true; 4431 4432 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 4433 return true; 4434 4435 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 4436 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && 4437 MI.getOperand(3).getImm() > 0 && 4438 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 4439 return true; 4440 4441 return false; 4442 } 4443 4444 // This function returns true if the machine instruction 4445 // always outputs zeros in higher 32 bits. 4446 static bool isZeroExtendingOp(const MachineInstr &MI) { 4447 int Opcode = MI.getOpcode(); 4448 // The 16-bit immediate is sign-extended in li/lis. 4449 // If the most significant bit is zero, all higher bits are zero. 4450 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 4451 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 4452 int64_t Imm = MI.getOperand(1).getImm(); 4453 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 4454 return true; 4455 } 4456 4457 // We have some variations of rotate-and-mask instructions 4458 // that clear higher 32-bits. 4459 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 4460 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || 4461 Opcode == PPC::RLDICL_32_64) && 4462 MI.getOperand(3).getImm() >= 32) 4463 return true; 4464 4465 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 4466 MI.getOperand(3).getImm() >= 32 && 4467 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 4468 return true; 4469 4470 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 4471 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 4472 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 4473 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 4474 return true; 4475 4476 // There are other instructions that clear higher 32-bits. 4477 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec || 4478 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec || 4479 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 4480 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec || 4481 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec || 4482 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW || 4483 Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec || 4484 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI || 4485 Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI || 4486 Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX || 4487 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX || 4488 Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX || 4489 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ || 4490 Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 4491 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 || 4492 Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 4493 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 || 4494 Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 4495 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 4496 Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec || 4497 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec || 4498 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec || 4499 Opcode == PPC::MFVSRWZ) 4500 return true; 4501 4502 return false; 4503 } 4504 4505 // This function returns true if the input MachineInstr is a TOC save 4506 // instruction. 4507 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 4508 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 4509 return false; 4510 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4511 unsigned StackOffset = MI.getOperand(1).getImm(); 4512 Register StackReg = MI.getOperand(2).getReg(); 4513 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) 4514 return true; 4515 4516 return false; 4517 } 4518 4519 // We limit the max depth to track incoming values of PHIs or binary ops 4520 // (e.g. AND) to avoid excessive cost. 4521 const unsigned MAX_DEPTH = 1; 4522 4523 bool 4524 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 4525 const unsigned Depth) const { 4526 const MachineFunction *MF = MI.getParent()->getParent(); 4527 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 4528 4529 // If we know this instruction returns sign- or zero-extended result, 4530 // return true. 4531 if (SignExt ? isSignExtendingOp(MI): 4532 isZeroExtendingOp(MI)) 4533 return true; 4534 4535 switch (MI.getOpcode()) { 4536 case PPC::COPY: { 4537 Register SrcReg = MI.getOperand(1).getReg(); 4538 4539 // In both ELFv1 and v2 ABI, method parameters and the return value 4540 // are sign- or zero-extended. 4541 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 4542 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 4543 // We check the ZExt/SExt flags for a method parameter. 4544 if (MI.getParent()->getBasicBlock() == 4545 &MF->getFunction().getEntryBlock()) { 4546 Register VReg = MI.getOperand(0).getReg(); 4547 if (MF->getRegInfo().isLiveIn(VReg)) 4548 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 4549 FuncInfo->isLiveInZExt(VReg); 4550 } 4551 4552 // For a method return value, we check the ZExt/SExt flags in attribute. 4553 // We assume the following code sequence for method call. 4554 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 4555 // BL8_NOP @func,... 4556 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 4557 // %5 = COPY %x3; G8RC:%5 4558 if (SrcReg == PPC::X3) { 4559 const MachineBasicBlock *MBB = MI.getParent(); 4560 MachineBasicBlock::const_instr_iterator II = 4561 MachineBasicBlock::const_instr_iterator(&MI); 4562 if (II != MBB->instr_begin() && 4563 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 4564 const MachineInstr &CallMI = *(--II); 4565 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 4566 const Function *CalleeFn = 4567 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 4568 if (!CalleeFn) 4569 return false; 4570 const IntegerType *IntTy = 4571 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 4572 const AttributeSet &Attrs = 4573 CalleeFn->getAttributes().getRetAttributes(); 4574 if (IntTy && IntTy->getBitWidth() <= 32) 4575 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 4576 Attribute::ZExt); 4577 } 4578 } 4579 } 4580 } 4581 4582 // If this is a copy from another register, we recursively check source. 4583 if (!Register::isVirtualRegister(SrcReg)) 4584 return false; 4585 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4586 if (SrcMI != NULL) 4587 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 4588 4589 return false; 4590 } 4591 4592 case PPC::ANDI_rec: 4593 case PPC::ANDIS_rec: 4594 case PPC::ORI: 4595 case PPC::ORIS: 4596 case PPC::XORI: 4597 case PPC::XORIS: 4598 case PPC::ANDI8_rec: 4599 case PPC::ANDIS8_rec: 4600 case PPC::ORI8: 4601 case PPC::ORIS8: 4602 case PPC::XORI8: 4603 case PPC::XORIS8: { 4604 // logical operation with 16-bit immediate does not change the upper bits. 4605 // So, we track the operand register as we do for register copy. 4606 Register SrcReg = MI.getOperand(1).getReg(); 4607 if (!Register::isVirtualRegister(SrcReg)) 4608 return false; 4609 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4610 if (SrcMI != NULL) 4611 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 4612 4613 return false; 4614 } 4615 4616 // If all incoming values are sign-/zero-extended, 4617 // the output of OR, ISEL or PHI is also sign-/zero-extended. 4618 case PPC::OR: 4619 case PPC::OR8: 4620 case PPC::ISEL: 4621 case PPC::PHI: { 4622 if (Depth >= MAX_DEPTH) 4623 return false; 4624 4625 // The input registers for PHI are operand 1, 3, ... 4626 // The input registers for others are operand 1 and 2. 4627 unsigned E = 3, D = 1; 4628 if (MI.getOpcode() == PPC::PHI) { 4629 E = MI.getNumOperands(); 4630 D = 2; 4631 } 4632 4633 for (unsigned I = 1; I != E; I += D) { 4634 if (MI.getOperand(I).isReg()) { 4635 Register SrcReg = MI.getOperand(I).getReg(); 4636 if (!Register::isVirtualRegister(SrcReg)) 4637 return false; 4638 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4639 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 4640 return false; 4641 } 4642 else 4643 return false; 4644 } 4645 return true; 4646 } 4647 4648 // If at least one of the incoming values of an AND is zero extended 4649 // then the output is also zero-extended. If both of the incoming values 4650 // are sign-extended then the output is also sign extended. 4651 case PPC::AND: 4652 case PPC::AND8: { 4653 if (Depth >= MAX_DEPTH) 4654 return false; 4655 4656 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 4657 4658 Register SrcReg1 = MI.getOperand(1).getReg(); 4659 Register SrcReg2 = MI.getOperand(2).getReg(); 4660 4661 if (!Register::isVirtualRegister(SrcReg1) || 4662 !Register::isVirtualRegister(SrcReg2)) 4663 return false; 4664 4665 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 4666 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 4667 if (!MISrc1 || !MISrc2) 4668 return false; 4669 4670 if(SignExt) 4671 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 4672 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4673 else 4674 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 4675 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4676 } 4677 4678 default: 4679 break; 4680 } 4681 return false; 4682 } 4683 4684 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 4685 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 4686 } 4687 4688 namespace { 4689 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 4690 MachineInstr *Loop, *EndLoop, *LoopCount; 4691 MachineFunction *MF; 4692 const TargetInstrInfo *TII; 4693 int64_t TripCount; 4694 4695 public: 4696 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 4697 MachineInstr *LoopCount) 4698 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 4699 MF(Loop->getParent()->getParent()), 4700 TII(MF->getSubtarget().getInstrInfo()) { 4701 // Inspect the Loop instruction up-front, as it may be deleted when we call 4702 // createTripCountGreaterCondition. 4703 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 4704 TripCount = LoopCount->getOperand(1).getImm(); 4705 else 4706 TripCount = -1; 4707 } 4708 4709 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 4710 // Only ignore the terminator. 4711 return MI == EndLoop; 4712 } 4713 4714 Optional<bool> 4715 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 4716 SmallVectorImpl<MachineOperand> &Cond) override { 4717 if (TripCount == -1) { 4718 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4719 // so we don't need to generate any thing here. 4720 Cond.push_back(MachineOperand::CreateImm(0)); 4721 Cond.push_back(MachineOperand::CreateReg( 4722 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 4723 true)); 4724 return {}; 4725 } 4726 4727 return TripCount > TC; 4728 } 4729 4730 void setPreheader(MachineBasicBlock *NewPreheader) override { 4731 // Do nothing. We want the LOOP setup instruction to stay in the *old* 4732 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 4733 } 4734 4735 void adjustTripCount(int TripCountAdjust) override { 4736 // If the loop trip count is a compile-time value, then just change the 4737 // value. 4738 if (LoopCount->getOpcode() == PPC::LI8 || 4739 LoopCount->getOpcode() == PPC::LI) { 4740 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 4741 LoopCount->getOperand(1).setImm(TripCount); 4742 return; 4743 } 4744 4745 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4746 // so we don't need to generate any thing here. 4747 } 4748 4749 void disposed() override { 4750 Loop->eraseFromParent(); 4751 // Ensure the loop setup instruction is deleted too. 4752 LoopCount->eraseFromParent(); 4753 } 4754 }; 4755 } // namespace 4756 4757 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 4758 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 4759 // We really "analyze" only hardware loops right now. 4760 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 4761 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 4762 if (Preheader == LoopBB) 4763 Preheader = *std::next(LoopBB->pred_begin()); 4764 MachineFunction *MF = Preheader->getParent(); 4765 4766 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 4767 SmallPtrSet<MachineBasicBlock *, 8> Visited; 4768 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 4769 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 4770 MachineRegisterInfo &MRI = MF->getRegInfo(); 4771 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 4772 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 4773 } 4774 } 4775 return nullptr; 4776 } 4777 4778 MachineInstr *PPCInstrInfo::findLoopInstr( 4779 MachineBasicBlock &PreHeader, 4780 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 4781 4782 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 4783 4784 // The loop set-up instruction should be in preheader 4785 for (auto &I : PreHeader.instrs()) 4786 if (I.getOpcode() == LOOPi) 4787 return &I; 4788 return nullptr; 4789 } 4790 4791 // Return true if get the base operand, byte offset of an instruction and the 4792 // memory width. Width is the size of memory that is being loaded/stored. 4793 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 4794 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, 4795 unsigned &Width, const TargetRegisterInfo *TRI) const { 4796 if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3) 4797 return false; 4798 4799 // Handle only loads/stores with base register followed by immediate offset. 4800 if (!LdSt.getOperand(1).isImm() || 4801 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 4802 return false; 4803 if (!LdSt.getOperand(1).isImm() || 4804 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 4805 return false; 4806 4807 if (!LdSt.hasOneMemOperand()) 4808 return false; 4809 4810 Width = (*LdSt.memoperands_begin())->getSize(); 4811 Offset = LdSt.getOperand(1).getImm(); 4812 BaseReg = &LdSt.getOperand(2); 4813 return true; 4814 } 4815 4816 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 4817 const MachineInstr &MIa, const MachineInstr &MIb) const { 4818 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 4819 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 4820 4821 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 4822 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 4823 return false; 4824 4825 // Retrieve the base register, offset from the base register and width. Width 4826 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 4827 // base registers are identical, and the offset of a lower memory access + 4828 // the width doesn't overlap the offset of a higher memory access, 4829 // then the memory accesses are different. 4830 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4831 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 4832 int64_t OffsetA = 0, OffsetB = 0; 4833 unsigned int WidthA = 0, WidthB = 0; 4834 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 4835 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 4836 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 4837 int LowOffset = std::min(OffsetA, OffsetB); 4838 int HighOffset = std::max(OffsetA, OffsetB); 4839 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 4840 if (LowOffset + LowWidth <= HighOffset) 4841 return true; 4842 } 4843 } 4844 return false; 4845 } 4846