1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the PowerPC implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCInstrInfo.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCHazardRecognizers.h" 18 #include "PPCInstrBuilder.h" 19 #include "PPCMachineFunctionInfo.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/PseudoSourceValue.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/TargetRegistry.h" 33 #include "llvm/Support/raw_ostream.h" 34 35 #define GET_INSTRMAP_INFO 36 #define GET_INSTRINFO_CTOR_DTOR 37 #include "PPCGenInstrInfo.inc" 38 39 using namespace llvm; 40 41 static cl:: 42 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 43 cl::desc("Disable analysis for CTR loops")); 44 45 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 46 cl::desc("Disable compare instruction optimization"), cl::Hidden); 47 48 // Pin the vtable to this file. 49 void PPCInstrInfo::anchor() {} 50 51 PPCInstrInfo::PPCInstrInfo(PPCTargetMachine &tm) 52 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP), 53 TM(tm), RI(*TM.getSubtargetImpl()) {} 54 55 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 56 /// this target when scheduling the DAG. 57 ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetHazardRecognizer( 58 const TargetMachine *TM, 59 const ScheduleDAG *DAG) const { 60 unsigned Directive = TM->getSubtarget<PPCSubtarget>().getDarwinDirective(); 61 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 62 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 63 const InstrItineraryData *II = TM->getInstrItineraryData(); 64 return new ScoreboardHazardRecognizer(II, DAG); 65 } 66 67 return TargetInstrInfo::CreateTargetHazardRecognizer(TM, DAG); 68 } 69 70 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 71 /// to use for this target when scheduling the DAG. 72 ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetPostRAHazardRecognizer( 73 const InstrItineraryData *II, 74 const ScheduleDAG *DAG) const { 75 unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective(); 76 77 if (Directive == PPC::DIR_PWR7) 78 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 79 80 // Most subtargets use a PPC970 recognizer. 81 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 82 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 83 assert(TM.getInstrInfo() && "No InstrInfo?"); 84 85 return new PPCHazardRecognizer970(TM); 86 } 87 88 return new ScoreboardHazardRecognizer(II, DAG); 89 } 90 91 92 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 93 const MachineInstr *DefMI, unsigned DefIdx, 94 const MachineInstr *UseMI, 95 unsigned UseIdx) const { 96 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 97 UseMI, UseIdx); 98 99 const MachineOperand &DefMO = DefMI->getOperand(DefIdx); 100 unsigned Reg = DefMO.getReg(); 101 102 const TargetRegisterInfo *TRI = &getRegisterInfo(); 103 bool IsRegCR; 104 if (TRI->isVirtualRegister(Reg)) { 105 const MachineRegisterInfo *MRI = 106 &DefMI->getParent()->getParent()->getRegInfo(); 107 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 108 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 109 } else { 110 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 111 PPC::CRBITRCRegClass.contains(Reg); 112 } 113 114 if (UseMI->isBranch() && IsRegCR) { 115 if (Latency < 0) 116 Latency = getInstrLatency(ItinData, DefMI); 117 118 // On some cores, there is an additional delay between writing to a condition 119 // register, and using it from a branch. 120 unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective(); 121 switch (Directive) { 122 default: break; 123 case PPC::DIR_7400: 124 case PPC::DIR_750: 125 case PPC::DIR_970: 126 case PPC::DIR_E5500: 127 case PPC::DIR_PWR4: 128 case PPC::DIR_PWR5: 129 case PPC::DIR_PWR5X: 130 case PPC::DIR_PWR6: 131 case PPC::DIR_PWR6X: 132 case PPC::DIR_PWR7: 133 Latency += 2; 134 break; 135 } 136 } 137 138 return Latency; 139 } 140 141 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 142 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 143 unsigned &SrcReg, unsigned &DstReg, 144 unsigned &SubIdx) const { 145 switch (MI.getOpcode()) { 146 default: return false; 147 case PPC::EXTSW: 148 case PPC::EXTSW_32_64: 149 SrcReg = MI.getOperand(1).getReg(); 150 DstReg = MI.getOperand(0).getReg(); 151 SubIdx = PPC::sub_32; 152 return true; 153 } 154 } 155 156 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 157 int &FrameIndex) const { 158 // Note: This list must be kept consistent with LoadRegFromStackSlot. 159 switch (MI->getOpcode()) { 160 default: break; 161 case PPC::LD: 162 case PPC::LWZ: 163 case PPC::LFS: 164 case PPC::LFD: 165 case PPC::RESTORE_CR: 166 case PPC::LVX: 167 case PPC::RESTORE_VRSAVE: 168 // Check for the operands added by addFrameReference (the immediate is the 169 // offset which defaults to 0). 170 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 171 MI->getOperand(2).isFI()) { 172 FrameIndex = MI->getOperand(2).getIndex(); 173 return MI->getOperand(0).getReg(); 174 } 175 break; 176 } 177 return 0; 178 } 179 180 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI, 181 int &FrameIndex) const { 182 // Note: This list must be kept consistent with StoreRegToStackSlot. 183 switch (MI->getOpcode()) { 184 default: break; 185 case PPC::STD: 186 case PPC::STW: 187 case PPC::STFS: 188 case PPC::STFD: 189 case PPC::SPILL_CR: 190 case PPC::STVX: 191 case PPC::SPILL_VRSAVE: 192 // Check for the operands added by addFrameReference (the immediate is the 193 // offset which defaults to 0). 194 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 195 MI->getOperand(2).isFI()) { 196 FrameIndex = MI->getOperand(2).getIndex(); 197 return MI->getOperand(0).getReg(); 198 } 199 break; 200 } 201 return 0; 202 } 203 204 // commuteInstruction - We can commute rlwimi instructions, but only if the 205 // rotate amt is zero. We also have to munge the immediates a bit. 206 MachineInstr * 207 PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { 208 MachineFunction &MF = *MI->getParent()->getParent(); 209 210 // Normal instructions can be commuted the obvious way. 211 if (MI->getOpcode() != PPC::RLWIMI && 212 MI->getOpcode() != PPC::RLWIMIo) 213 return TargetInstrInfo::commuteInstruction(MI, NewMI); 214 215 // Cannot commute if it has a non-zero rotate count. 216 if (MI->getOperand(3).getImm() != 0) 217 return 0; 218 219 // If we have a zero rotate count, we have: 220 // M = mask(MB,ME) 221 // Op0 = (Op1 & ~M) | (Op2 & M) 222 // Change this to: 223 // M = mask((ME+1)&31, (MB-1)&31) 224 // Op0 = (Op2 & ~M) | (Op1 & M) 225 226 // Swap op1/op2 227 unsigned Reg0 = MI->getOperand(0).getReg(); 228 unsigned Reg1 = MI->getOperand(1).getReg(); 229 unsigned Reg2 = MI->getOperand(2).getReg(); 230 unsigned SubReg1 = MI->getOperand(1).getSubReg(); 231 unsigned SubReg2 = MI->getOperand(2).getSubReg(); 232 bool Reg1IsKill = MI->getOperand(1).isKill(); 233 bool Reg2IsKill = MI->getOperand(2).isKill(); 234 bool ChangeReg0 = false; 235 // If machine instrs are no longer in two-address forms, update 236 // destination register as well. 237 if (Reg0 == Reg1) { 238 // Must be two address instruction! 239 assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 240 "Expecting a two-address instruction!"); 241 assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 242 Reg2IsKill = false; 243 ChangeReg0 = true; 244 } 245 246 // Masks. 247 unsigned MB = MI->getOperand(4).getImm(); 248 unsigned ME = MI->getOperand(5).getImm(); 249 250 if (NewMI) { 251 // Create a new instruction. 252 unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg(); 253 bool Reg0IsDead = MI->getOperand(0).isDead(); 254 return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) 255 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 256 .addReg(Reg2, getKillRegState(Reg2IsKill)) 257 .addReg(Reg1, getKillRegState(Reg1IsKill)) 258 .addImm((ME+1) & 31) 259 .addImm((MB-1) & 31); 260 } 261 262 if (ChangeReg0) { 263 MI->getOperand(0).setReg(Reg2); 264 MI->getOperand(0).setSubReg(SubReg2); 265 } 266 MI->getOperand(2).setReg(Reg1); 267 MI->getOperand(1).setReg(Reg2); 268 MI->getOperand(2).setSubReg(SubReg1); 269 MI->getOperand(1).setSubReg(SubReg2); 270 MI->getOperand(2).setIsKill(Reg1IsKill); 271 MI->getOperand(1).setIsKill(Reg2IsKill); 272 273 // Swap the mask around. 274 MI->getOperand(4).setImm((ME+1) & 31); 275 MI->getOperand(5).setImm((MB-1) & 31); 276 return MI; 277 } 278 279 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 280 MachineBasicBlock::iterator MI) const { 281 // This function is used for scheduling, and the nop wanted here is the type 282 // that terminates dispatch groups on the POWER cores. 283 unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective(); 284 unsigned Opcode; 285 switch (Directive) { 286 default: Opcode = PPC::NOP; break; 287 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 288 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 289 } 290 291 DebugLoc DL; 292 BuildMI(MBB, MI, DL, get(Opcode)); 293 } 294 295 // Branch analysis. 296 // Note: If the condition register is set to CTR or CTR8 then this is a 297 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 298 bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, 299 MachineBasicBlock *&FBB, 300 SmallVectorImpl<MachineOperand> &Cond, 301 bool AllowModify) const { 302 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 303 304 // If the block has no terminators, it just falls into the block after it. 305 MachineBasicBlock::iterator I = MBB.end(); 306 if (I == MBB.begin()) 307 return false; 308 --I; 309 while (I->isDebugValue()) { 310 if (I == MBB.begin()) 311 return false; 312 --I; 313 } 314 if (!isUnpredicatedTerminator(I)) 315 return false; 316 317 // Get the last instruction in the block. 318 MachineInstr *LastInst = I; 319 320 // If there is only one terminator instruction, process it. 321 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { 322 if (LastInst->getOpcode() == PPC::B) { 323 if (!LastInst->getOperand(0).isMBB()) 324 return true; 325 TBB = LastInst->getOperand(0).getMBB(); 326 return false; 327 } else if (LastInst->getOpcode() == PPC::BCC) { 328 if (!LastInst->getOperand(2).isMBB()) 329 return true; 330 // Block ends with fall-through condbranch. 331 TBB = LastInst->getOperand(2).getMBB(); 332 Cond.push_back(LastInst->getOperand(0)); 333 Cond.push_back(LastInst->getOperand(1)); 334 return false; 335 } else if (LastInst->getOpcode() == PPC::BDNZ8 || 336 LastInst->getOpcode() == PPC::BDNZ) { 337 if (!LastInst->getOperand(0).isMBB()) 338 return true; 339 if (DisableCTRLoopAnal) 340 return true; 341 TBB = LastInst->getOperand(0).getMBB(); 342 Cond.push_back(MachineOperand::CreateImm(1)); 343 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 344 true)); 345 return false; 346 } else if (LastInst->getOpcode() == PPC::BDZ8 || 347 LastInst->getOpcode() == PPC::BDZ) { 348 if (!LastInst->getOperand(0).isMBB()) 349 return true; 350 if (DisableCTRLoopAnal) 351 return true; 352 TBB = LastInst->getOperand(0).getMBB(); 353 Cond.push_back(MachineOperand::CreateImm(0)); 354 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 355 true)); 356 return false; 357 } 358 359 // Otherwise, don't know what this is. 360 return true; 361 } 362 363 // Get the instruction before it if it's a terminator. 364 MachineInstr *SecondLastInst = I; 365 366 // If there are three terminators, we don't know what sort of block this is. 367 if (SecondLastInst && I != MBB.begin() && 368 isUnpredicatedTerminator(--I)) 369 return true; 370 371 // If the block ends with PPC::B and PPC:BCC, handle it. 372 if (SecondLastInst->getOpcode() == PPC::BCC && 373 LastInst->getOpcode() == PPC::B) { 374 if (!SecondLastInst->getOperand(2).isMBB() || 375 !LastInst->getOperand(0).isMBB()) 376 return true; 377 TBB = SecondLastInst->getOperand(2).getMBB(); 378 Cond.push_back(SecondLastInst->getOperand(0)); 379 Cond.push_back(SecondLastInst->getOperand(1)); 380 FBB = LastInst->getOperand(0).getMBB(); 381 return false; 382 } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 || 383 SecondLastInst->getOpcode() == PPC::BDNZ) && 384 LastInst->getOpcode() == PPC::B) { 385 if (!SecondLastInst->getOperand(0).isMBB() || 386 !LastInst->getOperand(0).isMBB()) 387 return true; 388 if (DisableCTRLoopAnal) 389 return true; 390 TBB = SecondLastInst->getOperand(0).getMBB(); 391 Cond.push_back(MachineOperand::CreateImm(1)); 392 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 393 true)); 394 FBB = LastInst->getOperand(0).getMBB(); 395 return false; 396 } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 || 397 SecondLastInst->getOpcode() == PPC::BDZ) && 398 LastInst->getOpcode() == PPC::B) { 399 if (!SecondLastInst->getOperand(0).isMBB() || 400 !LastInst->getOperand(0).isMBB()) 401 return true; 402 if (DisableCTRLoopAnal) 403 return true; 404 TBB = SecondLastInst->getOperand(0).getMBB(); 405 Cond.push_back(MachineOperand::CreateImm(0)); 406 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 407 true)); 408 FBB = LastInst->getOperand(0).getMBB(); 409 return false; 410 } 411 412 // If the block ends with two PPC:Bs, handle it. The second one is not 413 // executed, so remove it. 414 if (SecondLastInst->getOpcode() == PPC::B && 415 LastInst->getOpcode() == PPC::B) { 416 if (!SecondLastInst->getOperand(0).isMBB()) 417 return true; 418 TBB = SecondLastInst->getOperand(0).getMBB(); 419 I = LastInst; 420 if (AllowModify) 421 I->eraseFromParent(); 422 return false; 423 } 424 425 // Otherwise, can't handle this. 426 return true; 427 } 428 429 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 430 MachineBasicBlock::iterator I = MBB.end(); 431 if (I == MBB.begin()) return 0; 432 --I; 433 while (I->isDebugValue()) { 434 if (I == MBB.begin()) 435 return 0; 436 --I; 437 } 438 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 439 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 440 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 441 return 0; 442 443 // Remove the branch. 444 I->eraseFromParent(); 445 446 I = MBB.end(); 447 448 if (I == MBB.begin()) return 1; 449 --I; 450 if (I->getOpcode() != PPC::BCC && 451 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 452 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 453 return 1; 454 455 // Remove the branch. 456 I->eraseFromParent(); 457 return 2; 458 } 459 460 unsigned 461 PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 462 MachineBasicBlock *FBB, 463 const SmallVectorImpl<MachineOperand> &Cond, 464 DebugLoc DL) const { 465 // Shouldn't be a fall through. 466 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 467 assert((Cond.size() == 2 || Cond.size() == 0) && 468 "PPC branch conditions have two components!"); 469 470 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 471 472 // One-way branch. 473 if (FBB == 0) { 474 if (Cond.empty()) // Unconditional branch 475 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 476 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 477 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 478 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 479 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 480 else // Conditional branch 481 BuildMI(&MBB, DL, get(PPC::BCC)) 482 .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB); 483 return 1; 484 } 485 486 // Two-way Conditional Branch. 487 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 488 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 489 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 490 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 491 else 492 BuildMI(&MBB, DL, get(PPC::BCC)) 493 .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB); 494 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 495 return 2; 496 } 497 498 // Select analysis. 499 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 500 const SmallVectorImpl<MachineOperand> &Cond, 501 unsigned TrueReg, unsigned FalseReg, 502 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 503 if (!TM.getSubtargetImpl()->hasISEL()) 504 return false; 505 506 if (Cond.size() != 2) 507 return false; 508 509 // If this is really a bdnz-like condition, then it cannot be turned into a 510 // select. 511 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 512 return false; 513 514 // Check register classes. 515 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 516 const TargetRegisterClass *RC = 517 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 518 if (!RC) 519 return false; 520 521 // isel is for regular integer GPRs only. 522 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 523 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 524 !PPC::G8RCRegClass.hasSubClassEq(RC) && 525 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 526 return false; 527 528 // FIXME: These numbers are for the A2, how well they work for other cores is 529 // an open question. On the A2, the isel instruction has a 2-cycle latency 530 // but single-cycle throughput. These numbers are used in combination with 531 // the MispredictPenalty setting from the active SchedMachineModel. 532 CondCycles = 1; 533 TrueCycles = 1; 534 FalseCycles = 1; 535 536 return true; 537 } 538 539 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 540 MachineBasicBlock::iterator MI, DebugLoc dl, 541 unsigned DestReg, 542 const SmallVectorImpl<MachineOperand> &Cond, 543 unsigned TrueReg, unsigned FalseReg) const { 544 assert(Cond.size() == 2 && 545 "PPC branch conditions have two components!"); 546 547 assert(TM.getSubtargetImpl()->hasISEL() && 548 "Cannot insert select on target without ISEL support"); 549 550 // Get the register classes. 551 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 552 const TargetRegisterClass *RC = 553 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 554 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 555 556 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 557 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 558 assert((Is64Bit || 559 PPC::GPRCRegClass.hasSubClassEq(RC) || 560 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 561 "isel is for regular integer GPRs only"); 562 563 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 564 unsigned SelectPred = Cond[0].getImm(); 565 566 unsigned SubIdx; 567 bool SwapOps; 568 switch (SelectPred) { 569 default: llvm_unreachable("invalid predicate for isel"); 570 case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break; 571 case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break; 572 case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break; 573 case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break; 574 case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break; 575 case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break; 576 case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break; 577 case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break; 578 } 579 580 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 581 SecondReg = SwapOps ? TrueReg : FalseReg; 582 583 // The first input register of isel cannot be r0. If it is a member 584 // of a register class that can be r0, then copy it first (the 585 // register allocator should eliminate the copy). 586 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 587 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 588 const TargetRegisterClass *FirstRC = 589 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 590 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 591 unsigned OldFirstReg = FirstReg; 592 FirstReg = MRI.createVirtualRegister(FirstRC); 593 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 594 .addReg(OldFirstReg); 595 } 596 597 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 598 .addReg(FirstReg).addReg(SecondReg) 599 .addReg(Cond[1].getReg(), 0, SubIdx); 600 } 601 602 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 603 MachineBasicBlock::iterator I, DebugLoc DL, 604 unsigned DestReg, unsigned SrcReg, 605 bool KillSrc) const { 606 unsigned Opc; 607 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 608 Opc = PPC::OR; 609 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 610 Opc = PPC::OR8; 611 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 612 Opc = PPC::FMR; 613 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 614 Opc = PPC::MCRF; 615 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 616 Opc = PPC::VOR; 617 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 618 Opc = PPC::CROR; 619 else 620 llvm_unreachable("Impossible reg-to-reg copy"); 621 622 const MCInstrDesc &MCID = get(Opc); 623 if (MCID.getNumOperands() == 3) 624 BuildMI(MBB, I, DL, MCID, DestReg) 625 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 626 else 627 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 628 } 629 630 // This function returns true if a CR spill is necessary and false otherwise. 631 bool 632 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, 633 unsigned SrcReg, bool isKill, 634 int FrameIdx, 635 const TargetRegisterClass *RC, 636 SmallVectorImpl<MachineInstr*> &NewMIs, 637 bool &NonRI, bool &SpillsVRS) const{ 638 // Note: If additional store instructions are added here, 639 // update isStoreToStackSlot. 640 641 DebugLoc DL; 642 if (PPC::GPRCRegClass.hasSubClassEq(RC)) { 643 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) 644 .addReg(SrcReg, 645 getKillRegState(isKill)), 646 FrameIdx)); 647 } else if (PPC::G8RCRegClass.hasSubClassEq(RC)) { 648 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) 649 .addReg(SrcReg, 650 getKillRegState(isKill)), 651 FrameIdx)); 652 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 653 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) 654 .addReg(SrcReg, 655 getKillRegState(isKill)), 656 FrameIdx)); 657 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 658 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) 659 .addReg(SrcReg, 660 getKillRegState(isKill)), 661 FrameIdx)); 662 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 663 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) 664 .addReg(SrcReg, 665 getKillRegState(isKill)), 666 FrameIdx)); 667 return true; 668 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 669 // FIXME: We use CRi here because there is no mtcrf on a bit. Since the 670 // backend currently only uses CR1EQ as an individual bit, this should 671 // not cause any bug. If we need other uses of CR bits, the following 672 // code may be invalid. 673 unsigned Reg = 0; 674 if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR0GT || 675 SrcReg == PPC::CR0EQ || SrcReg == PPC::CR0UN) 676 Reg = PPC::CR0; 677 else if (SrcReg == PPC::CR1LT || SrcReg == PPC::CR1GT || 678 SrcReg == PPC::CR1EQ || SrcReg == PPC::CR1UN) 679 Reg = PPC::CR1; 680 else if (SrcReg == PPC::CR2LT || SrcReg == PPC::CR2GT || 681 SrcReg == PPC::CR2EQ || SrcReg == PPC::CR2UN) 682 Reg = PPC::CR2; 683 else if (SrcReg == PPC::CR3LT || SrcReg == PPC::CR3GT || 684 SrcReg == PPC::CR3EQ || SrcReg == PPC::CR3UN) 685 Reg = PPC::CR3; 686 else if (SrcReg == PPC::CR4LT || SrcReg == PPC::CR4GT || 687 SrcReg == PPC::CR4EQ || SrcReg == PPC::CR4UN) 688 Reg = PPC::CR4; 689 else if (SrcReg == PPC::CR5LT || SrcReg == PPC::CR5GT || 690 SrcReg == PPC::CR5EQ || SrcReg == PPC::CR5UN) 691 Reg = PPC::CR5; 692 else if (SrcReg == PPC::CR6LT || SrcReg == PPC::CR6GT || 693 SrcReg == PPC::CR6EQ || SrcReg == PPC::CR6UN) 694 Reg = PPC::CR6; 695 else if (SrcReg == PPC::CR7LT || SrcReg == PPC::CR7GT || 696 SrcReg == PPC::CR7EQ || SrcReg == PPC::CR7UN) 697 Reg = PPC::CR7; 698 699 return StoreRegToStackSlot(MF, Reg, isKill, FrameIdx, 700 &PPC::CRRCRegClass, NewMIs, NonRI, SpillsVRS); 701 702 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 703 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX)) 704 .addReg(SrcReg, 705 getKillRegState(isKill)), 706 FrameIdx)); 707 NonRI = true; 708 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 709 assert(TM.getSubtargetImpl()->isDarwin() && 710 "VRSAVE only needs spill/restore on Darwin"); 711 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE)) 712 .addReg(SrcReg, 713 getKillRegState(isKill)), 714 FrameIdx)); 715 SpillsVRS = true; 716 } else { 717 llvm_unreachable("Unknown regclass!"); 718 } 719 720 return false; 721 } 722 723 void 724 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 725 MachineBasicBlock::iterator MI, 726 unsigned SrcReg, bool isKill, int FrameIdx, 727 const TargetRegisterClass *RC, 728 const TargetRegisterInfo *TRI) const { 729 MachineFunction &MF = *MBB.getParent(); 730 SmallVector<MachineInstr*, 4> NewMIs; 731 732 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 733 FuncInfo->setHasSpills(); 734 735 bool NonRI = false, SpillsVRS = false; 736 if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs, 737 NonRI, SpillsVRS)) 738 FuncInfo->setSpillsCR(); 739 740 if (SpillsVRS) 741 FuncInfo->setSpillsVRSAVE(); 742 743 if (NonRI) 744 FuncInfo->setHasNonRISpills(); 745 746 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 747 MBB.insert(MI, NewMIs[i]); 748 749 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 750 MachineMemOperand *MMO = 751 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 752 MachineMemOperand::MOStore, 753 MFI.getObjectSize(FrameIdx), 754 MFI.getObjectAlignment(FrameIdx)); 755 NewMIs.back()->addMemOperand(MF, MMO); 756 } 757 758 bool 759 PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL, 760 unsigned DestReg, int FrameIdx, 761 const TargetRegisterClass *RC, 762 SmallVectorImpl<MachineInstr*> &NewMIs, 763 bool &NonRI, bool &SpillsVRS) const{ 764 // Note: If additional load instructions are added here, 765 // update isLoadFromStackSlot. 766 767 if (PPC::GPRCRegClass.hasSubClassEq(RC)) { 768 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), 769 DestReg), FrameIdx)); 770 } else if (PPC::G8RCRegClass.hasSubClassEq(RC)) { 771 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), 772 FrameIdx)); 773 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 774 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), 775 FrameIdx)); 776 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 777 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), 778 FrameIdx)); 779 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 780 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 781 get(PPC::RESTORE_CR), DestReg), 782 FrameIdx)); 783 return true; 784 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 785 786 unsigned Reg = 0; 787 if (DestReg == PPC::CR0LT || DestReg == PPC::CR0GT || 788 DestReg == PPC::CR0EQ || DestReg == PPC::CR0UN) 789 Reg = PPC::CR0; 790 else if (DestReg == PPC::CR1LT || DestReg == PPC::CR1GT || 791 DestReg == PPC::CR1EQ || DestReg == PPC::CR1UN) 792 Reg = PPC::CR1; 793 else if (DestReg == PPC::CR2LT || DestReg == PPC::CR2GT || 794 DestReg == PPC::CR2EQ || DestReg == PPC::CR2UN) 795 Reg = PPC::CR2; 796 else if (DestReg == PPC::CR3LT || DestReg == PPC::CR3GT || 797 DestReg == PPC::CR3EQ || DestReg == PPC::CR3UN) 798 Reg = PPC::CR3; 799 else if (DestReg == PPC::CR4LT || DestReg == PPC::CR4GT || 800 DestReg == PPC::CR4EQ || DestReg == PPC::CR4UN) 801 Reg = PPC::CR4; 802 else if (DestReg == PPC::CR5LT || DestReg == PPC::CR5GT || 803 DestReg == PPC::CR5EQ || DestReg == PPC::CR5UN) 804 Reg = PPC::CR5; 805 else if (DestReg == PPC::CR6LT || DestReg == PPC::CR6GT || 806 DestReg == PPC::CR6EQ || DestReg == PPC::CR6UN) 807 Reg = PPC::CR6; 808 else if (DestReg == PPC::CR7LT || DestReg == PPC::CR7GT || 809 DestReg == PPC::CR7EQ || DestReg == PPC::CR7UN) 810 Reg = PPC::CR7; 811 812 return LoadRegFromStackSlot(MF, DL, Reg, FrameIdx, 813 &PPC::CRRCRegClass, NewMIs, NonRI, SpillsVRS); 814 815 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 816 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg), 817 FrameIdx)); 818 NonRI = true; 819 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 820 assert(TM.getSubtargetImpl()->isDarwin() && 821 "VRSAVE only needs spill/restore on Darwin"); 822 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 823 get(PPC::RESTORE_VRSAVE), 824 DestReg), 825 FrameIdx)); 826 SpillsVRS = true; 827 } else { 828 llvm_unreachable("Unknown regclass!"); 829 } 830 831 return false; 832 } 833 834 void 835 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 836 MachineBasicBlock::iterator MI, 837 unsigned DestReg, int FrameIdx, 838 const TargetRegisterClass *RC, 839 const TargetRegisterInfo *TRI) const { 840 MachineFunction &MF = *MBB.getParent(); 841 SmallVector<MachineInstr*, 4> NewMIs; 842 DebugLoc DL; 843 if (MI != MBB.end()) DL = MI->getDebugLoc(); 844 845 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 846 FuncInfo->setHasSpills(); 847 848 bool NonRI = false, SpillsVRS = false; 849 if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs, 850 NonRI, SpillsVRS)) 851 FuncInfo->setSpillsCR(); 852 853 if (SpillsVRS) 854 FuncInfo->setSpillsVRSAVE(); 855 856 if (NonRI) 857 FuncInfo->setHasNonRISpills(); 858 859 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 860 MBB.insert(MI, NewMIs[i]); 861 862 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 863 MachineMemOperand *MMO = 864 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 865 MachineMemOperand::MOLoad, 866 MFI.getObjectSize(FrameIdx), 867 MFI.getObjectAlignment(FrameIdx)); 868 NewMIs.back()->addMemOperand(MF, MMO); 869 } 870 871 bool PPCInstrInfo:: 872 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 873 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 874 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 875 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 876 else 877 // Leave the CR# the same, but invert the condition. 878 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 879 return false; 880 } 881 882 bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, 883 unsigned Reg, MachineRegisterInfo *MRI) const { 884 // For some instructions, it is legal to fold ZERO into the RA register field. 885 // A zero immediate should always be loaded with a single li. 886 unsigned DefOpc = DefMI->getOpcode(); 887 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 888 return false; 889 if (!DefMI->getOperand(1).isImm()) 890 return false; 891 if (DefMI->getOperand(1).getImm() != 0) 892 return false; 893 894 // Note that we cannot here invert the arguments of an isel in order to fold 895 // a ZERO into what is presented as the second argument. All we have here 896 // is the condition bit, and that might come from a CR-logical bit operation. 897 898 const MCInstrDesc &UseMCID = UseMI->getDesc(); 899 900 // Only fold into real machine instructions. 901 if (UseMCID.isPseudo()) 902 return false; 903 904 unsigned UseIdx; 905 for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx) 906 if (UseMI->getOperand(UseIdx).isReg() && 907 UseMI->getOperand(UseIdx).getReg() == Reg) 908 break; 909 910 assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI"); 911 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 912 913 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 914 915 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 916 // register (which might also be specified as a pointer class kind). 917 if (UseInfo->isLookupPtrRegClass()) { 918 if (UseInfo->RegClass /* Kind */ != 1) 919 return false; 920 } else { 921 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 922 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 923 return false; 924 } 925 926 // Make sure this is not tied to an output register (or otherwise 927 // constrained). This is true for ST?UX registers, for example, which 928 // are tied to their output registers. 929 if (UseInfo->Constraints != 0) 930 return false; 931 932 unsigned ZeroReg; 933 if (UseInfo->isLookupPtrRegClass()) { 934 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 935 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 936 } else { 937 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 938 PPC::ZERO8 : PPC::ZERO; 939 } 940 941 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 942 UseMI->getOperand(UseIdx).setReg(ZeroReg); 943 944 if (DeleteDef) 945 DefMI->eraseFromParent(); 946 947 return true; 948 } 949 950 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 951 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 952 I != IE; ++I) 953 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 954 return true; 955 return false; 956 } 957 958 // We should make sure that, if we're going to predicate both sides of a 959 // condition (a diamond), that both sides don't define the counter register. We 960 // can predicate counter-decrement-based branches, but while that predicates 961 // the branching, it does not predicate the counter decrement. If we tried to 962 // merge the triangle into one predicated block, we'd decrement the counter 963 // twice. 964 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 965 unsigned NumT, unsigned ExtraT, 966 MachineBasicBlock &FMBB, 967 unsigned NumF, unsigned ExtraF, 968 const BranchProbability &Probability) const { 969 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 970 } 971 972 973 bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const { 974 // The predicated branches are identified by their type, not really by the 975 // explicit presence of a predicate. Furthermore, some of them can be 976 // predicated more than once. Because if conversion won't try to predicate 977 // any instruction which already claims to be predicated (by returning true 978 // here), always return false. In doing so, we let isPredicable() be the 979 // final word on whether not the instruction can be (further) predicated. 980 981 return false; 982 } 983 984 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 985 if (!MI->isTerminator()) 986 return false; 987 988 // Conditional branch is a special case. 989 if (MI->isBranch() && !MI->isBarrier()) 990 return true; 991 992 return !isPredicated(MI); 993 } 994 995 bool PPCInstrInfo::PredicateInstruction( 996 MachineInstr *MI, 997 const SmallVectorImpl<MachineOperand> &Pred) const { 998 unsigned OpC = MI->getOpcode(); 999 if (OpC == PPC::BLR) { 1000 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1001 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 1002 MI->setDesc(get(Pred[0].getImm() ? 1003 (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) : 1004 (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1005 } else { 1006 MI->setDesc(get(PPC::BCLR)); 1007 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1008 .addImm(Pred[0].getImm()) 1009 .addReg(Pred[1].getReg()); 1010 } 1011 1012 return true; 1013 } else if (OpC == PPC::B) { 1014 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1015 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 1016 MI->setDesc(get(Pred[0].getImm() ? 1017 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1018 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1019 } else { 1020 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1021 MI->RemoveOperand(0); 1022 1023 MI->setDesc(get(PPC::BCC)); 1024 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1025 .addImm(Pred[0].getImm()) 1026 .addReg(Pred[1].getReg()) 1027 .addMBB(MBB); 1028 } 1029 1030 return true; 1031 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || 1032 OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { 1033 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1034 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1035 1036 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1037 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 1038 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) : 1039 (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1040 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1041 .addImm(Pred[0].getImm()) 1042 .addReg(Pred[1].getReg()); 1043 return true; 1044 } 1045 1046 return false; 1047 } 1048 1049 bool PPCInstrInfo::SubsumesPredicate( 1050 const SmallVectorImpl<MachineOperand> &Pred1, 1051 const SmallVectorImpl<MachineOperand> &Pred2) const { 1052 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1053 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1054 1055 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1056 return false; 1057 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1058 return false; 1059 1060 // P1 can only subsume P2 if they test the same condition register. 1061 if (Pred1[1].getReg() != Pred2[1].getReg()) 1062 return false; 1063 1064 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1065 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1066 1067 if (P1 == P2) 1068 return true; 1069 1070 // Does P1 subsume P2, e.g. GE subsumes GT. 1071 if (P1 == PPC::PRED_LE && 1072 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1073 return true; 1074 if (P1 == PPC::PRED_GE && 1075 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1076 return true; 1077 1078 return false; 1079 } 1080 1081 bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI, 1082 std::vector<MachineOperand> &Pred) const { 1083 // Note: At the present time, the contents of Pred from this function is 1084 // unused by IfConversion. This implementation follows ARM by pushing the 1085 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1086 // predicate, instructions defining CTR or CTR8 are also included as 1087 // predicate-defining instructions. 1088 1089 const TargetRegisterClass *RCs[] = 1090 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1091 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1092 1093 bool Found = false; 1094 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1095 const MachineOperand &MO = MI->getOperand(i); 1096 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1097 const TargetRegisterClass *RC = RCs[c]; 1098 if (MO.isReg()) { 1099 if (MO.isDef() && RC->contains(MO.getReg())) { 1100 Pred.push_back(MO); 1101 Found = true; 1102 } 1103 } else if (MO.isRegMask()) { 1104 for (TargetRegisterClass::iterator I = RC->begin(), 1105 IE = RC->end(); I != IE; ++I) 1106 if (MO.clobbersPhysReg(*I)) { 1107 Pred.push_back(MO); 1108 Found = true; 1109 } 1110 } 1111 } 1112 } 1113 1114 return Found; 1115 } 1116 1117 bool PPCInstrInfo::isPredicable(MachineInstr *MI) const { 1118 unsigned OpC = MI->getOpcode(); 1119 switch (OpC) { 1120 default: 1121 return false; 1122 case PPC::B: 1123 case PPC::BLR: 1124 case PPC::BCTR: 1125 case PPC::BCTR8: 1126 case PPC::BCTRL: 1127 case PPC::BCTRL8: 1128 return true; 1129 } 1130 } 1131 1132 bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI, 1133 unsigned &SrcReg, unsigned &SrcReg2, 1134 int &Mask, int &Value) const { 1135 unsigned Opc = MI->getOpcode(); 1136 1137 switch (Opc) { 1138 default: return false; 1139 case PPC::CMPWI: 1140 case PPC::CMPLWI: 1141 case PPC::CMPDI: 1142 case PPC::CMPLDI: 1143 SrcReg = MI->getOperand(1).getReg(); 1144 SrcReg2 = 0; 1145 Value = MI->getOperand(2).getImm(); 1146 Mask = 0xFFFF; 1147 return true; 1148 case PPC::CMPW: 1149 case PPC::CMPLW: 1150 case PPC::CMPD: 1151 case PPC::CMPLD: 1152 case PPC::FCMPUS: 1153 case PPC::FCMPUD: 1154 SrcReg = MI->getOperand(1).getReg(); 1155 SrcReg2 = MI->getOperand(2).getReg(); 1156 return true; 1157 } 1158 } 1159 1160 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr, 1161 unsigned SrcReg, unsigned SrcReg2, 1162 int Mask, int Value, 1163 const MachineRegisterInfo *MRI) const { 1164 if (DisableCmpOpt) 1165 return false; 1166 1167 int OpC = CmpInstr->getOpcode(); 1168 unsigned CRReg = CmpInstr->getOperand(0).getReg(); 1169 1170 // FP record forms set CR1 based on the execption status bits, not a 1171 // comparison with zero. 1172 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1173 return false; 1174 1175 // The record forms set the condition register based on a signed comparison 1176 // with zero (so says the ISA manual). This is not as straightforward as it 1177 // seems, however, because this is always a 64-bit comparison on PPC64, even 1178 // for instructions that are 32-bit in nature (like slw for example). 1179 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1180 // for equality checks (as those don't depend on the sign). On PPC64, 1181 // we are restricted to equality for unsigned 64-bit comparisons and for 1182 // signed 32-bit comparisons the applicability is more restricted. 1183 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 1184 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1185 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1186 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1187 1188 // Get the unique definition of SrcReg. 1189 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1190 if (!MI) return false; 1191 int MIOpC = MI->getOpcode(); 1192 1193 bool equalityOnly = false; 1194 bool noSub = false; 1195 if (isPPC64) { 1196 if (is32BitSignedCompare) { 1197 // We can perform this optimization only if MI is sign-extending. 1198 if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo || 1199 MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo || 1200 MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo || 1201 MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo || 1202 MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) { 1203 noSub = true; 1204 } else 1205 return false; 1206 } else if (is32BitUnsignedCompare) { 1207 // We can perform this optimization, equality only, if MI is 1208 // zero-extending. 1209 if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo || 1210 MIOpC == PPC::SLW || MIOpC == PPC::SLWo || 1211 MIOpC == PPC::SRW || MIOpC == PPC::SRWo) { 1212 noSub = true; 1213 equalityOnly = true; 1214 } else 1215 return false; 1216 } else 1217 equalityOnly = is64BitUnsignedCompare; 1218 } else 1219 equalityOnly = is32BitUnsignedCompare; 1220 1221 if (equalityOnly) { 1222 // We need to check the uses of the condition register in order to reject 1223 // non-equality comparisons. 1224 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(CRReg), 1225 IE = MRI->use_end(); I != IE; ++I) { 1226 MachineInstr *UseMI = &*I; 1227 if (UseMI->getOpcode() == PPC::BCC) { 1228 unsigned Pred = UseMI->getOperand(0).getImm(); 1229 if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE) 1230 return false; 1231 } else if (UseMI->getOpcode() == PPC::ISEL || 1232 UseMI->getOpcode() == PPC::ISEL8) { 1233 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1234 if (SubIdx != PPC::sub_eq) 1235 return false; 1236 } else 1237 return false; 1238 } 1239 } 1240 1241 MachineBasicBlock::iterator I = CmpInstr; 1242 1243 // Scan forward to find the first use of the compare. 1244 for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end(); 1245 I != EL; ++I) { 1246 bool FoundUse = false; 1247 for (MachineRegisterInfo::use_iterator J = MRI->use_begin(CRReg), 1248 JE = MRI->use_end(); J != JE; ++J) 1249 if (&*J == &*I) { 1250 FoundUse = true; 1251 break; 1252 } 1253 1254 if (FoundUse) 1255 break; 1256 } 1257 1258 // There are two possible candidates which can be changed to set CR[01]. 1259 // One is MI, the other is a SUB instruction. 1260 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1261 MachineInstr *Sub = NULL; 1262 if (SrcReg2 != 0) 1263 // MI is not a candidate for CMPrr. 1264 MI = NULL; 1265 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1266 // same BB as the comparison. This is to allow the check below to avoid calls 1267 // (and other explicit clobbers); instead we should really check for these 1268 // more explicitly (in at least a few predecessors). 1269 else if (MI->getParent() != CmpInstr->getParent() || Value != 0) { 1270 // PPC does not have a record-form SUBri. 1271 return false; 1272 } 1273 1274 // Search for Sub. 1275 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1276 --I; 1277 1278 // Get ready to iterate backward from CmpInstr. 1279 MachineBasicBlock::iterator E = MI, 1280 B = CmpInstr->getParent()->begin(); 1281 1282 for (; I != E && !noSub; --I) { 1283 const MachineInstr &Instr = *I; 1284 unsigned IOpC = Instr.getOpcode(); 1285 1286 if (&*I != CmpInstr && ( 1287 Instr.modifiesRegister(PPC::CR0, TRI) || 1288 Instr.readsRegister(PPC::CR0, TRI))) 1289 // This instruction modifies or uses the record condition register after 1290 // the one we want to change. While we could do this transformation, it 1291 // would likely not be profitable. This transformation removes one 1292 // instruction, and so even forcing RA to generate one move probably 1293 // makes it unprofitable. 1294 return false; 1295 1296 // Check whether CmpInstr can be made redundant by the current instruction. 1297 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1298 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1299 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1300 ((Instr.getOperand(1).getReg() == SrcReg && 1301 Instr.getOperand(2).getReg() == SrcReg2) || 1302 (Instr.getOperand(1).getReg() == SrcReg2 && 1303 Instr.getOperand(2).getReg() == SrcReg))) { 1304 Sub = &*I; 1305 break; 1306 } 1307 1308 if (I == B) 1309 // The 'and' is below the comparison instruction. 1310 return false; 1311 } 1312 1313 // Return false if no candidates exist. 1314 if (!MI && !Sub) 1315 return false; 1316 1317 // The single candidate is called MI. 1318 if (!MI) MI = Sub; 1319 1320 int NewOpC = -1; 1321 MIOpC = MI->getOpcode(); 1322 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8) 1323 NewOpC = MIOpC; 1324 else { 1325 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1326 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1327 NewOpC = MIOpC; 1328 } 1329 1330 // FIXME: On the non-embedded POWER architectures, only some of the record 1331 // forms are fast, and we should use only the fast ones. 1332 1333 // The defining instruction has a record form (or is already a record 1334 // form). It is possible, however, that we'll need to reverse the condition 1335 // code of the users. 1336 if (NewOpC == -1) 1337 return false; 1338 1339 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1340 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1341 1342 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1343 // needs to be updated to be based on SUB. Push the condition code 1344 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1345 // condition code of these operands will be modified. 1346 bool ShouldSwap = false; 1347 if (Sub) { 1348 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1349 Sub->getOperand(2).getReg() == SrcReg; 1350 1351 // The operands to subf are the opposite of sub, so only in the fixed-point 1352 // case, invert the order. 1353 ShouldSwap = !ShouldSwap; 1354 } 1355 1356 if (ShouldSwap) 1357 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(CRReg), 1358 IE = MRI->use_end(); I != IE; ++I) { 1359 MachineInstr *UseMI = &*I; 1360 if (UseMI->getOpcode() == PPC::BCC) { 1361 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1362 assert((!equalityOnly || 1363 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) && 1364 "Invalid predicate for equality-only optimization"); 1365 PredsToUpdate.push_back(std::make_pair(&((*I).getOperand(0)), 1366 PPC::getSwappedPredicate(Pred))); 1367 } else if (UseMI->getOpcode() == PPC::ISEL || 1368 UseMI->getOpcode() == PPC::ISEL8) { 1369 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1370 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1371 "Invalid CR bit for equality-only optimization"); 1372 1373 if (NewSubReg == PPC::sub_lt) 1374 NewSubReg = PPC::sub_gt; 1375 else if (NewSubReg == PPC::sub_gt) 1376 NewSubReg = PPC::sub_lt; 1377 1378 SubRegsToUpdate.push_back(std::make_pair(&((*I).getOperand(3)), 1379 NewSubReg)); 1380 } else // We need to abort on a user we don't understand. 1381 return false; 1382 } 1383 1384 // Create a new virtual register to hold the value of the CR set by the 1385 // record-form instruction. If the instruction was not previously in 1386 // record form, then set the kill flag on the CR. 1387 CmpInstr->eraseFromParent(); 1388 1389 MachineBasicBlock::iterator MII = MI; 1390 BuildMI(*MI->getParent(), llvm::next(MII), MI->getDebugLoc(), 1391 get(TargetOpcode::COPY), CRReg) 1392 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1393 1394 if (MIOpC != NewOpC) { 1395 // We need to be careful here: we're replacing one instruction with 1396 // another, and we need to make sure that we get all of the right 1397 // implicit uses and defs. On the other hand, the caller may be holding 1398 // an iterator to this instruction, and so we can't delete it (this is 1399 // specifically the case if this is the instruction directly after the 1400 // compare). 1401 1402 const MCInstrDesc &NewDesc = get(NewOpC); 1403 MI->setDesc(NewDesc); 1404 1405 if (NewDesc.ImplicitDefs) 1406 for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs(); 1407 *ImpDefs; ++ImpDefs) 1408 if (!MI->definesRegister(*ImpDefs)) 1409 MI->addOperand(*MI->getParent()->getParent(), 1410 MachineOperand::CreateReg(*ImpDefs, true, true)); 1411 if (NewDesc.ImplicitUses) 1412 for (const uint16_t *ImpUses = NewDesc.getImplicitUses(); 1413 *ImpUses; ++ImpUses) 1414 if (!MI->readsRegister(*ImpUses)) 1415 MI->addOperand(*MI->getParent()->getParent(), 1416 MachineOperand::CreateReg(*ImpUses, false, true)); 1417 } 1418 1419 // Modify the condition code of operands in OperandsToUpdate. 1420 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1421 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1422 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1423 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1424 1425 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1426 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1427 1428 return true; 1429 } 1430 1431 /// GetInstSize - Return the number of bytes of code the specified 1432 /// instruction may be. This returns the maximum number of bytes. 1433 /// 1434 unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { 1435 switch (MI->getOpcode()) { 1436 case PPC::INLINEASM: { // Inline Asm: Variable size. 1437 const MachineFunction *MF = MI->getParent()->getParent(); 1438 const char *AsmStr = MI->getOperand(0).getSymbolName(); 1439 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1440 } 1441 case PPC::PROLOG_LABEL: 1442 case PPC::EH_LABEL: 1443 case PPC::GC_LABEL: 1444 case PPC::DBG_VALUE: 1445 return 0; 1446 case PPC::BL8_NOP: 1447 case PPC::BLA8_NOP: 1448 return 8; 1449 default: 1450 return 4; // PowerPC instructions are all 4 bytes 1451 } 1452 } 1453 1454 #undef DEBUG_TYPE 1455 #define DEBUG_TYPE "ppc-early-ret" 1456 STATISTIC(NumBCLR, "Number of early conditional returns"); 1457 STATISTIC(NumBLR, "Number of early returns"); 1458 1459 namespace llvm { 1460 void initializePPCEarlyReturnPass(PassRegistry&); 1461 } 1462 1463 namespace { 1464 // PPCEarlyReturn pass - For simple functions without epilogue code, move 1465 // returns up, and create conditional returns, to avoid unnecessary 1466 // branch-to-blr sequences. 1467 struct PPCEarlyReturn : public MachineFunctionPass { 1468 static char ID; 1469 PPCEarlyReturn() : MachineFunctionPass(ID) { 1470 initializePPCEarlyReturnPass(*PassRegistry::getPassRegistry()); 1471 } 1472 1473 const PPCTargetMachine *TM; 1474 const PPCInstrInfo *TII; 1475 1476 protected: 1477 bool processBlock(MachineBasicBlock &ReturnMBB) { 1478 bool Changed = false; 1479 1480 MachineBasicBlock::iterator I = ReturnMBB.begin(); 1481 I = ReturnMBB.SkipPHIsAndLabels(I); 1482 1483 // The block must be essentially empty except for the blr. 1484 if (I == ReturnMBB.end() || I->getOpcode() != PPC::BLR || 1485 I != ReturnMBB.getLastNonDebugInstr()) 1486 return Changed; 1487 1488 SmallVector<MachineBasicBlock*, 8> PredToRemove; 1489 for (MachineBasicBlock::pred_iterator PI = ReturnMBB.pred_begin(), 1490 PIE = ReturnMBB.pred_end(); PI != PIE; ++PI) { 1491 bool OtherReference = false, BlockChanged = false; 1492 for (MachineBasicBlock::iterator J = (*PI)->getLastNonDebugInstr();;) { 1493 if (J->getOpcode() == PPC::B) { 1494 if (J->getOperand(0).getMBB() == &ReturnMBB) { 1495 // This is an unconditional branch to the return. Replace the 1496 // branch with a blr. 1497 BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BLR)); 1498 MachineBasicBlock::iterator K = J--; 1499 K->eraseFromParent(); 1500 BlockChanged = true; 1501 ++NumBLR; 1502 continue; 1503 } 1504 } else if (J->getOpcode() == PPC::BCC) { 1505 if (J->getOperand(2).getMBB() == &ReturnMBB) { 1506 // This is a conditional branch to the return. Replace the branch 1507 // with a bclr. 1508 BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BCLR)) 1509 .addImm(J->getOperand(0).getImm()) 1510 .addReg(J->getOperand(1).getReg()); 1511 MachineBasicBlock::iterator K = J--; 1512 K->eraseFromParent(); 1513 BlockChanged = true; 1514 ++NumBCLR; 1515 continue; 1516 } 1517 } else if (J->isBranch()) { 1518 if (J->isIndirectBranch()) { 1519 if (ReturnMBB.hasAddressTaken()) 1520 OtherReference = true; 1521 } else 1522 for (unsigned i = 0; i < J->getNumOperands(); ++i) 1523 if (J->getOperand(i).isMBB() && 1524 J->getOperand(i).getMBB() == &ReturnMBB) 1525 OtherReference = true; 1526 } else if (!J->isTerminator() && !J->isDebugValue()) 1527 break; 1528 1529 if (J == (*PI)->begin()) 1530 break; 1531 1532 --J; 1533 } 1534 1535 if ((*PI)->canFallThrough() && (*PI)->isLayoutSuccessor(&ReturnMBB)) 1536 OtherReference = true; 1537 1538 // Predecessors are stored in a vector and can't be removed here. 1539 if (!OtherReference && BlockChanged) { 1540 PredToRemove.push_back(*PI); 1541 } 1542 1543 if (BlockChanged) 1544 Changed = true; 1545 } 1546 1547 for (unsigned i = 0, ie = PredToRemove.size(); i != ie; ++i) 1548 PredToRemove[i]->removeSuccessor(&ReturnMBB); 1549 1550 if (Changed && !ReturnMBB.hasAddressTaken()) { 1551 // We now might be able to merge this blr-only block into its 1552 // by-layout predecessor. 1553 if (ReturnMBB.pred_size() == 1 && 1554 (*ReturnMBB.pred_begin())->isLayoutSuccessor(&ReturnMBB)) { 1555 // Move the blr into the preceding block. 1556 MachineBasicBlock &PrevMBB = **ReturnMBB.pred_begin(); 1557 PrevMBB.splice(PrevMBB.end(), &ReturnMBB, I); 1558 PrevMBB.removeSuccessor(&ReturnMBB); 1559 } 1560 1561 if (ReturnMBB.pred_empty()) 1562 ReturnMBB.eraseFromParent(); 1563 } 1564 1565 return Changed; 1566 } 1567 1568 public: 1569 virtual bool runOnMachineFunction(MachineFunction &MF) { 1570 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 1571 TII = TM->getInstrInfo(); 1572 1573 bool Changed = false; 1574 1575 // If the function does not have at least two blocks, then there is 1576 // nothing to do. 1577 if (MF.size() < 2) 1578 return Changed; 1579 1580 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 1581 MachineBasicBlock &B = *I++; 1582 if (processBlock(B)) 1583 Changed = true; 1584 } 1585 1586 return Changed; 1587 } 1588 1589 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1590 MachineFunctionPass::getAnalysisUsage(AU); 1591 } 1592 }; 1593 } 1594 1595 INITIALIZE_PASS(PPCEarlyReturn, DEBUG_TYPE, 1596 "PowerPC Early-Return Creation", false, false) 1597 1598 char PPCEarlyReturn::ID = 0; 1599 FunctionPass* 1600 llvm::createPPCEarlyReturnPass() { return new PPCEarlyReturn(); } 1601